

Synthetic Communications

ISSN: 0039-7911 (Print) 1532-2432 (Online) Journal homepage: http://www.tandfonline.com/loi/lsyc20

A Novel and Convenient Method for the Synthesis of 3, 5-Diarylisoxazoles

Vidya G. Desai & Santosh G. Tilve

To cite this article: Vidya G. Desai & Santosh G. Tilve (1999) A Novel and Convenient Method for the Synthesis of 3, 5-Diarylisoxazoles, Synthetic Communications, 29:17, 3017-3020, DOI: 10.1080/00397919908086477

To link to this article: http://dx.doi.org/10.1080/00397919908086477

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=lsyc20

A NOVEL AND CONVENIENT METHOD FOR THE SYNTHESIS OF 3, 5-DIARYLISOXAZOLES

Vidya G.Desai, Santosh G.Tilve*

Department of Chemistry, Goa University, Taleigao Plateau, Goa 403206 India E-mail:stilve @unigoa.ernet.in

Abstract: α,β -Unsaturated oximes of chalcones on treatment with 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) in methanol furnish 3,5-disubstituted isoxazoles in good yield.

Isoxazoles are important class of heterocycles used as intermediates for natural product synthesis and building blocks for construction of new molecular system¹. Various methods comprising α,β-unsaturated oximes have been adopted for the synthesis of isoxazoles. These methods include iodine/potassium iodide², N-bromosuccinimide³, Palladium Complex in presence of sodium phenoxide⁴, Lead(IV)acetate⁵ and tetralin(pyridine)Cobalt(II)dichromate (TPCD)⁶ as reagents. Herein we report a novel convenient procedure (Scheme 1) for the synthesis of 3,5-diarylisoxazoles by oxidative cyclisation of chalcone oximes by 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) in methanol. A total of six 3,5-diarylisoxazoles were prepared in 60-75% under same conditions from the corresponding substituted chalcone oximes (Table 1).

^{*} To whom correspondence should be addressed

3018 DESAI AND TILVE

1,2	Ar ¹	Ar ²	1,2	Ar ¹	Ar ²
a	Ph	Ph	d	4-CH ₃ OC ₆ H ₄	Ph
Ь	Ph	3,4(OCH ₂ O)C ₆ H ₃	c	4-CH ₃ OC ₆ H ₄	4-CH3OC6H4
С	Ph	PhCH=CH	f	4-CH ₃ OC ₆ H ₄	3,4(OCH ₂ O)C ₆ H ₃

Scheme 1

Table 1. 3,5 -diarylisoxazoles 2a-f Prepared

Product	Yield(%)	mp(°C)	Mol.F or lit.mp(°C)
2a	75	140	1416
2 b	72	120	120 ⁶
2 c	70	130	134 ⁶
2d	74	120	120-121 ⁸
2e	64	140	141-1429
2f	71	152	C ₁₆ H ₁₅ NO ₄ (295)

However, extension of this methodology for oxidative cyclisation of cinnamaldehyde oxime, benzalacetone oxime and β -ionone failed. Thus, probably for effective cyclisation with DDQ presence of two phenyl groups at 1,3-positions of chalcones is necessary. A report using DDQ for oxidative conversion of isoxazolidines to isoxazolines has recently appeared. In conclusion, the reaction presents a general and a convenient procedure for the

Table 2	Spectroscopi	ic Data of	New	Compound 2f
I duit b.	DDCCG OBCOD	i U L/ala Ul	TACM	

Compound	IR (KBr) v (cm ⁻¹)	H NMR (CDCl3/TMS)	¹³ C NIMR	MS m/z (%)
		δ,J(Hz)	(CDCl3/TM3) δ	
2f	1619, 1514, 1450,	3.86(s,3H,OCH ₃),	55.43, 77.10,	149(100), 239,
	1269, 1058, 813	6.04(s,2H,OCH ₂ O),	96.39, 101.68,	280(4),
		6.63(s,1H,CH),	106.23, 108.88,	295(M ⁺ ,52)
		6.88(d,2H,9Hz),	114.37, 120.52,	
		6.99(d,2H,9Hz),	121.74, 121.80,	
		7.26-7.78(m,3H,ArH)	128.25, 148.30,	
			149.30, 161.06,	
			162.64, 169.64	

^{*}Satisfactory microanalysis were obtained

preparation of 3,5-diarylisoxazoles. Comparing with other methods mentioned above our method is a very mild method with known commercial reagent and in good yields.

All melting points are uncorrected and measured by normal thiels tube method. IR spectra were recorded on a FT-IR spectrophotometer. ¹H NMR were recorded at 300mhz.

EXPERIMENTAL

Preparation of Isoxazoles 2; General Procedure:

A mixture of chalcone- oxime 1(1 mmol), DDQ(2 mmol) was stirred overnight in methanol (5 mL). The reaction mixture was concentrated in vacuo. The residue was taken up in CH₂Cl₂ (20 mL) and washed with 2M NaOH. The organic phase was dried (Na₂SO₄) and concentrated. Purification column chromatography over silica gel with petroleum ether/ethyl acetate (4:1) furnished the product 2. For analysis, the product was recrystallised using an appropriate solvent.

3020 DESAI AND TILVE

ACKNOWLEDGEMENT:

The Authors thank UGC for financial assistance, Prof.S.Chandrasekharan IISc, Bangalore and RSIC, Mumbai for spectral analysis.

REFERENCES:

- (a)Dominguez, E.; Ibeus, E.; Matrinez de margorta, E.; Palacious, J. K.; San Marka, E. J.Org. Chem. 1996, 61, 5435. (b)Buron, C.; Kairon, L.E.; Hslu, A. Tetrahedron lett. 1997, 38, 8027. (c)Grunanger, P.; Vitafinzi, P. Isoxazoles In the Chemistry of Heterocyclic compounds, Taylor, E.C.; Ed., Wiley Interscience: New York, 1991; Vol. part I, pp 1-416.
- 2 Buchi, G.; Vederas, J.C. J.Am. Chem. Soc. 1972, 94, 9128.
- 3 Macda, K.; Hosokawa, T.; Murahashi, S.I.; Moritani, J. Tetrahedron Lett. 1973, 51, 5075.
- 4 Hanson, J.F.; Strong, S.A. J. Heterocycles Chem. 1977, 14, 1289.
- 5 Sharma, J.C.; Roginder, S.; Berger, D.D.; Kale. A.V. Indian J. Chem. 1986, 25B, 437.
- 6 Wei, X.; Fang, J.; Hu, Y.; Hu, H. Synthesis 1992, 1205,
- 7 Li, P.; Gi, H-J.; Zhao, K. J.Org Chem. 1998, 63, 336.
- 8 Beam, C.F.; Dyer, C.D.M.; Schwarz, R.A. and Hauser, C.R. J. Org. Chem. 1970, 35, 1806.
- 9 Ichinose, N.; Mizuno, K.; Tamai, T.; Otsuji, Y. Chem.lett. 1988, 233.

(Received in the USA 11 February 1999)