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Abstract. Existence of a family of locally invariant probability measures for large 
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understanding the meso-scale phenomena in oceans. The techniques used are those 
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1. Introduction 

Dynamical systems with infinite degrees of freedom arise in all field theories in physics. At 
a formal level they have many similarities with dynamical systems with finitely many 
degrees of freedom. Often they admit a Hamiltonian description. It is tempting to attempt 
an investigation of their ergodic properties. Any such attempt requires the construction of 
an invariant probability measure on the phase space of the system. As the phase space is in 
general infinite dimensional a natural approach would be to exploit the specific topological 
structure which may be present on the phase space. I f  the phase space is a Hilbertian space 
(i.e. admits a structure of a Hilbert space) one could exploit Gaussian measures on this 
space. The only canonical Gaussian probability measures associated with such spaces are 
of the white noise type. But these measures are supported on generalized vectors, the 
Hilbert space itself being measurable but with measure zero. As the system is non-linear 
the existence of dynamics would have to be established, as the vector field concerned 
would involve products of distributions. These non-linear terms would have to be regula- 
rized and energy renormalized. It is this approach that is successfully exploited in [1, 2] to 
construct locally invariant measures for two dimensional Eulerian flows on a flat toms. 

Periodic two dimensional Eulerian flows which have been investigated at great length 
in [2, 3, 5, 7], although of great interest in  understanding two dimensional flows in 
laboratory experiments, are not of much use in understanding the motion of temperate 
seas. Flows with horizontal spatial scale of a few hundred kilometers and temporal scales 
of a few weeks are essentially two dimensional with little or no vertical variability (the 
depth of the sea is about 4 kms on an average). The motion to a large extent is controlled 
by the variable rotation of the Earth. This motion is called quasi-geostrophic motion. The 
variability of Coriolis force with latitude gives rise to a restoring mechanism, which 
allows for the existence of propagating Rossby waves and leads to the observed westward 
intensification of oceanic currents. These effects stand in sharp contrast to 2-D Eulerian 
flows. A clear account of quasi-geostrophy can be found in [11, 12]. Quasi-geostrophic 
flows are very close to 2-D Eulerian flows. Formal investigations into the construction of 
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invariant probability measures for such flows have been carried out in [9, 13, 17]. A 
rigorous investigation on the construction of locally invariant probability measures for 
such flows using the techniques of Albeverio and his group was carried out for single 
layer model in [10]. The analysis of the authors is strictly valid for an unstratified ocean, 
therefore of limited validity. Real oceans have a vertical density stratification. This 
stratification gives rise to baroclinic motion. The quasi-geostrophic motion in the sea is 
characterized by the coupling of the barotropic and baroclinic modes. In the sequel a 
simple two layer quasi-geostrophic model, which has been used with great effect by 
oceanographers, is studied. The existence of locally invariant probability measures is 
proved. The techniques used are essentially those of Albeverio and his collaborators. 

2. Two layer quasi-geostrophic model 

A two layer quasi-geostrophic (see [12]) model consists of a layer of an ideal fluid with 
density pl and thickness H1 superposed on another layer with density p2 and thickness HE 
with Pl < P2. The equations governing this model on the/3-plane i.e. local tangent plane 
at a reference latitude A0, with the X-axis oriented eastwards and the Y-axis oriented 
northwards are 

[-~ -+ Ox 0 O~lox][VEffdl _ Fl(XPl _ k~E) + /3y] (2.1) 

[-fit-~ Ox Oy Ok~2 0 Ok~2 X][V2k~z_ F2(~2_ k~l) + /3y] (2.2) 

Change of Coriolis frequency at latitude A0 and f0 = 2a sin Ao, with c~ = (2rr/24)hr -1. 
~1 (x, y) and ~2(x, y) are the stream functions for the two dimensional velocity fields in 
the upper and lower layers respectively. 

Introducing new stream functions @ = kI/1 - -  k I /2  the barotropic and ~P = (H!H2) 1/2 
(H191 +H2ffdE)/H 2 the baroclinic stream functions, where H = H1 +H2.  Equations 
(2.1) and (2.2) take the form 

(v2 ) + v2,  ) + j(r  v2, ) + ~ x  = 0, (2.3) 

~t [ (-vztb + FO)] + rot(O, V2O) + J (q ,  V24P) 

+ J(q~, V2O) - FJ(~, O) + / 3 ~  = 0, (2.4) 

where ~ = (H1 --Hz)/(H1H2)I/2,F : Fl + F2 and 

0~, 0~  0ep 0~  
J ( r ' ~ ) - Ox Oy Oy Ox 

is the Jacobian of ~ and q~. 
This system admits two quadratic constants of motion. 

r  2 + IVr 2 + F~2}dxdy, (2.5) H(~,  

S(O, ~5) = {(V2~) 2 + ( ( - V  2 + F)O)Z}dxdy. (2.6) 

S(~I', ~) is called the enstrophy, H(~,  q)) is the energy of the system. 
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Let wl = -x72~ be the vorticity of the baroclinic mode and WE = (--V 2 + F)~  be the 
modified vorticity of the barotropic mode. In terms of these modes enstrophy and energy 
take the form 

1 2 f f {W 1 + r dr, (2.7) S(t,,t,)l, •2) 

Energy and enstrophy being positive, attempts to construct Gibbs-like distributions on 
the space of vortices have been made in [9, 13, 14, 17]. There have been enthusiastic 
attempts at examining the ergodic properties of these systems in [4, 19]. As the space of 
vortices is infinite dimensional, such formal distribution functions do not exist. In this 
note we construct probability measures of the Gibbsian type for the two-layer quasi- 
geostrophic model following the techniques of Albeverio and his collaborators. 

3. Mathematical  formulation of  the quasi-geostrophic model 

In order to facilitate analysis, we consider an ocean basin occupying the region 
f~ = [0, Tr] x [0, Tr] C R 2. Consider the Hilbert space L2(f~,dxdy). The Friedrichs exten- 
sion of the Dirichlet Laplacian - V  2 on C~(12) C L2(~2, dxdy) is self-adjoint and has a 
Hilbert-Schmidt inverse. The eigenvalues and eigenfunctions can be computed explicitly. 
The eigenvalues of the operator are K 2 = 2 2 k I + k~, where K = (kl, k2) C Z 2 and kl ~ 0 for 
i = 1,2. Denote the eigenfunction corresponding to eigenvalue K 2 by ~r. It is assumed 
that wi, i = 1,2 are in L2(Q, dxdy). Expanding wi, i = 1,2 in terms of eigenfunctions ix,  
we have wl = ~-] Xr ~r and w2 = ~ Yr ~ic. Denote the sequences { Xx } r ~z and { Yr } r ~z 
by X and Y. Using these expansions both equations (2.3) and (2.4) are reduced to a 
countably infinite system of equations. The explicit form of these equations are 

OXN 1 N f  XKXN-K YKYN-K_ ~ 1 
Ot - - f ~ . ~ K "  [ ( N _ K )  2 ~ N _ K )  2 + F J  2"x 

•  fXKXJ(N-K) _~-K----)_~=AN(X,Y), (3.1) 
[ (N-K): + N-K) + e J 

OYN 

+ 17r ~ FN{ygXN-x - rrX.,(N-r)} = BN(X,Y), (3.2) 

where summation is taken over all K E Z E, K # 0, J(N) = (nl, -nE), K.N = klnz - kEnl, 

E~c = K.  N/((N - K) z + F) 

and 

F~ = K.  N{K 2 - (N - K) 2 - F}/{K2((N - K) 2 + V)). 

Energy and enstrophy take the form 

H ( X , y ) = ~ { X ~ + - ~  K2+Fj,y2 "1, (3.3) 
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and 

S(X, Y) = E{X2x + y Z}, (3.4) 
K 

the summation being taken over K E Z 2 and K r 0. 
For a fixed K E Z2,K r O,Ag(X, Y) and Bx(X, Y) are independent of Xx and Ix. 

Since enstropby and energy are conserved it can be easily seen that 

E {XrAr(X, Y) + YKBr(X, Y)} = 0, (3.5) 
K 

~ r { ~ A K ( X , Y ) + ~ F B K ( X , Y ) }  = 0 .  (3.6) 

Following Daletskii [6], consider the space {(X, Y)} of real sequences in •2. For 
m E N, the subspace H,, defined by 

Hm = (X, Y) I ~{K;/x;~ + (K 2 + oo 
K 

is a Hilbert space. Set H~  = Mm~__oHm. Clearly H~  is a locally convex space with dual 
H Clearly Hor C Ho C H _ ~  is a Gelfand triplet (rigged Hilbert space). H-or = Urn= 0 -m. 

For every 7 > 0 the function C : H a  ~ ~ defined by 

C[X, Y] = e (-7/2) ~ { x ~ + r g t  

is a positive definite Frechet continuous functional on H~,  normalized to 1 at 0. By 
Bochner-Minlos theorem (see [8]) there exists a Borel probability measure P'r on H_~,  
which has C[X, Y] as its characteristic functional. Theprpperties of P.: are well known. Its 
two important properties are 

1. H0 is a measurable subset of H-o~ and has measure 0. 
2. I f f 1 r  7. 

The enstrophy allows us to construct a one parameter family of mutually singular 
measures, with support on H-oo. Clearly these measures are supported not on regular 
vortices but on generalized vortices i.e. distributional vortices. In the sequel these 
probability measures play the role analogous to the Lebsegue measure on R ~. Further 
these measures are a pure Hilbert space construction. 

If  one were to regard these measures as the one sought, the baroclinic and modified 
barotropic vorticity components are statistically independent identically distributed normal 
random variable with mean zero and variance "y-indicating an equipartition of enstrophy and 
energy. 

4. Renormalization of  energy 

PROPOSITION 4.1 

Energy is P7 almost surely infinite. 

Proof. For each n E N, consider the cylinder function 

~ + K 2 + F J "  
(4.1) 
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Hn is measurable and Hn converges monotonically to H, hence H is measurable. For each 
n, Hn > 0 therefore 

But 

(4.2) 

which diverges to infinity as n --* oe. Hence H is almost surely infinite. [As {X~/K2 2 _~._y[:/2 
(K 2 +F)}k are mutually independent random variables by the Kolmogorov zero-one law it 
follows that 2 2 2 2 )-~.x{X~/K +Y~/(K + F)} either converges or diverges almost surely.] []  

The support of P.y indicates that the enstrophy is P.y almost surely infinite. In a system 
occupying a finite region of space, clearly this is unphysical. For n C N, define 

H~(X, Y) = - ~  ( X2 - 3') + ~ - ~  (y2 _ "7) �9 (4.3) 

Then for each n 

f H". (x, r)dP~ = o. 

PROPOSITION 4.2 

{HnR(X, r)}ne ~ is a Cauchy sequence in L2(p~) and converges to a limit HR(x, r)  in 
L2(P~). 

Proof. We prove that {Hff(X, Y)}n~ is Cauchy sequence in L2(p~). For n,m E N and 
n ~ m ,  

(4.4) 
[m<,'<n) k ( K2 + r )2  

} 

which tends to zero as n, m --* oe. Hence the result. [] 

We now use the fact that HR(X, Y) EL2(p.r) to construct the measure which corres- 
ponds to the formal distribution introduced by Rhines, Salmon and others. 

Theorem 4.3. For t~ > O, the formal object 

dPa,7 = e-a~R(x'r)dP.y 

is a well-defined probability measure on H-oo, which is absolutely continuous with 
respect to P~ and for 71 ~ "72, Pa,7 and Pc~,~ are mutually singular. [] 

5. Regularization of AN(X, Y) and BN(X , Y) 

The right hand side of equations (3.1) and (3.2) involve products of distributions i.e. 
generalized vectors and are as such ill-defined. These can be given acceptable meaning 
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only by a process of regularization. In order to regularize AN and/iN we resort to a high 
wave number cut-off and a subsequent limit process. Note that for N, M E Z 2 and 
N # M, XN and Xm, YN and YM are statistically independent, normally distributed random 
variables. Also note that XN and YM are independent. The random variable XN is normally 
distributed with mean 0 and v a r i a n c e  ")'N2/(ot7 + N2). Also YN is normally distributed 
with mean 0 and variance 7(N 2 + V)/[a'7 + (N 2 + V)]. For m E N define a~v and B~v by 

N S X K X ( N - K )  YKY(N-K) 
a?v(X'y)=l K~ y~<,,K" { (N_ K) 2 +(N_K)2+F 

XrXj(lV--x) YK YJ(N--K) 
�9 ~ (5.1)  

(N-K) 2 (N-  K) 2 + FJ 

and 

t~ N 

K2<m 

1 U 
+~-~ ~ F~ {YKXN-K - YKXj(N-X)}. 

l~ ~ ,< m 
(5.z) 

Theorem 5.1 For each m C ~,A~v(X, Y) and B~c(X, Y) E L2(p~,7) and converge to limit 
a~(x, Y) and BRu(X, Y) ~ L2(P~,~) respectively, as m --~ c~. 

Proof A~,(X, Y) and B~(X, Y) are cylinder functions and hence measurable. It is clear 
that A~(X, Y) and B~(X, Y) E L2(p,~,7). We now prove that the sequence {A~v(X, Y)}meN 
is a Cauchy sequence in L2(p~,7). It is enough to show that the sequence {L~(X, Y)}m~N 
defined by 

~ ( X ,  Y) = ~ K - N  X~X~_~ (5.3) 
X~<,n (N -- K) 2 

is a Cauchy sequence. Since KN is antisymmetric in K and N, equation (5.3) takes the 
form 

1 ) 
D'~(X, Y) = ~ Z K . N ~  1 1 hn<m ( ( N  - K) 2 / ~  XlvXlv-K. (5.4) 

Clearly D~u(X , Y) is a cylinder function and hence measurable. Moreover 

i (,<, E,<' - (_-_-,<)'1 , (K2(N-K) . ) 

f [L2-(N-L) ~]'1 f x x x x de •  ,.-c,,,-Lj- j ' J  '<"-'< <"- '~ ~  (5.5) 

But 

~K2 IS ~(U-K/2 }(eK,L+~,.-L)- 
f X"X"-'~X:"-Lde~'~=t,~::u J I,~+(--~-KI2 

(5.6) 
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Note that K 2 - (N- K) 2 = -N 2 + 2(N. K). Hence 

/ID'~N(X, Y)lzdP,~.r < 7--~2 W [-N2 + 2(S.  K)]2(K �9 N) 2 (5.7) 
' --  2 ~<m g 4 ( u - K )  4 

and 

f iD~N(X' r)12dpa7 < 72N6'y2 E " I (5.8) 
' - X~<m ( N  - K )  4" 

In the same way we get for p, q E • and p < q 

/flDq(X,Y)-DPN(X,y)I2dPoqT<721V6~p<~<q(NI_ _ K) 4 . (5.9) 

This proves that/9~N(X, Y) converges in L2(P~,,,r) as m ~ oo. Similarly the other terms 

can be handled. This implies that A~(X, Y) converges to a limit A~v(X , Y) E L2(p~,,,r). 
Similarly it can also be proved that B~v(X, Y) converges to a limit B~(X, Y) E L2(P,~,,~) as 
m ----> OO. [] 

With A~ (X, Y) and B~ (X, Y) as defined above, in place of equations (3.1) and (3.2) we 
consider their regularized version, namely 

OXN _ A~(X, Y), (5.10) 
Ot 

Orlv = B~(X, V). (5.11) 
Ot 

6.  D y n a m i c s  

The dynamics of the model can be conveniently described in the Liouville-Koopman 
framework. Consider the Hilbert space L2(pa,7). Define the Liouville operator L as 
follows: 

iL (X ,Y)=~{A~(X ,Y  O)-O-~x+ B~(X, Y) ~y~ }. (6.1) 

With domain ~ =  {F E L2(p~,7)/F depends on finitely many Xr's and Yr's, is once 
continuously differentiable and vanishes at infinity}. 

Clearly ~ is a dense subspace of L2(P~:r). L is a differential operator in countably 
infinite number of variables and is well-defined on ~. 

PROPOSITION 6.1 

The operator L is a symmetric operator in L2(Pa,7). 

Proof. Consider F, G E .~ then 

OG G 0 a (6.2) 
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and 

G 0 / F CgG dp = - / ( -~-~ - yr ( l + .~----~ ] ~ F dpc, ,~ . (6.3) 
OYr ~,n \ 7  tt- -t- r / )  ' 

From equations (3.5) and (3.6) it follows that 

r ~  { (1V "~a) (1  _ a _~Br(X,Y)~ O. (6.4) x r  - + : - ~  A r ( X , Y ) +  Yr + -- 
K~ + C I  J 

For each K E Z2,Ar(X, Y) and Br(X, Y) are independent of Xr and Yr. Hence from 
equations (6.2), (6.3) and (6.4) it follows that L is a symmetric operator. [] 

L is a well-defined symmetric operator, with L* 1 = 0. This implies that P,~,v is locally 
invariant. If L is either self-adjoint or at least essentially self-adjoint, one could conclude 
that the probability measures {Pa,~} for a,  7 > 0 are globally invariant. However all that 
can be proved is that it has self-adjoint extensions. 

PROPOSITION 6.2 

L is a symmetric operator with equal deficiency indices and therefore has self-adjoint 
extensions. 

Proof. In order to prove that L has equal deficiency indices, it is enough to prove that 
there exists a conjugation operator J on the Hilbert space commutes with the operator L. 

Define the conjugation J : L2(p~,.r) ~ L2(p,~,7) by J(f)  = f  - the complex conjugate 
of the function. Then clearly J ( ~ ) = ~  and AJ = JA. This implies that A has equal 
deficiency indices and therefore self adjoint extensions. [] 

The main result of this investigation can be stated as 

Theorem 6.1 There exists a two-parameter family of probability measures {Pa,.r}a, 7 > 0 
on H-oo the extended phase space of the quasi-geostrophic two-layer model, which are 
locally invariant under evolution and if 7t ~ 72 then Pa,7 • Pa,7. [] 

7. Discussion 

While we have presented a construction of a class of locally invariant probability 
measures for a two-layer quasi-geostrophic fluid, it should be noted that in a sense these 
measures are trivial and cannot be expected to reveal any interesting features that may be 
observed in real flows. Clearly the barotropic and baroclinic modes are statistically 
independent. Further the unrenormalized energy is almost surely infinite. This is to some 
extent quenched by renormalizing it. The renormalization of energy depends on the 
pseudo-temperature 7- What has not been noticed is that the total enstrophy is also almost 
surely infinite. Again note the fact that the enstrophy is equipartitioned among the modes. 
Except for mathematical difficulties involved, there is really no good ground for not 
considering other functions of vortices. All quantities of the form f~dx, k E N are also 
conserved. It is conceivable that non-quadratic conserved quantities may reveal more 
interesting phenomena, as in the case of quantum fields. 

There have been various attempts to link these states with geostrophic turbulence (see 
[16]). This link is extremely tenuous as the system considered has no dissipation at all. 
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These locally invariant statistical states are distinct from the statistical stationary 
solutions considered in [20]. 

After completing this work we became aware of the work carded out in [15] on 2-D 
Euler flows, where the entire emphasis is based on obtaining a descritization. 
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