Ferrite grade iron oxides from ore rejects

K S RANE*, V M S VERENKAR and P Y SAWANT

Department of Chemistry, Goa University, Goa 403 206, India

MS received 13 October 2000; revised 5 March 2001

Abstract. Iron oxyhydroxides and hydroxides were synthesized from chemically beneficiated high SiO₂/Al₂O₃ low-grade iron ore (57·49% Fe₂O₃) rejects and heated to get iron oxides of 96–99·73% purity. The infrared band positions, isothermal weight loss and thermogravimetric and chemical analysis established the chemical formulas of iron-oxyhydroxides as gFeOOH·0·3H₂O; **a**-FeOOH·0·2H₂O and amorphous FeOOH. The thermal products of all these were **a**-Fe₂O₃ excepting that of gFeOOH·0·3H₂O which gave mainly gFe₂O₃ and some admixture of **a**-Fe₂O₃. The hydrazinated iron hydroxides and oxyhydroxides, on the other hand, decomposed autocatalytically to mainly gFe₂O₃. Hydrazine method modifies the thermal decomposition path of the hydroxides. The saturation magnetization, J_s , values were found to be in the range 60–71 emu g⁻¹ which are close to the reported values for gFe₂O₃. Mechanism of the gFe₂O₃ formation by hydrazine method is discussed.

Keywords. Ore rejects; chemical beneficiation; iron hydroxide; iron oxyhydroxide; ferrite.

1. Introduction

The ferrites, both hard and soft, find technological importance in ever expanding electronic industry and this is evident from the estimated world ferrite production (Ruthner 1989, 1997) of 5,16,000 metric tons per year (MTPY) in 1990 and 15,00,000 MTPY in the year 2005. The ferrite grade iron oxide, \mathbf{a} -Fe₂O₃, required for such a production of ferrites in year 2005 would be of about 10,50,000 MTPY. The ferrites production had been on rise ever since the commercialization of these took place some 60 years ago (Sugimoto 1999) and comparing with the world ferrite producing countries capacity (Ruthner 1989) the Indian contribution was mere 2% in 70s and 80s. And there is no significant improvement in the Indian ferrite production capacity, at present. India can certainly increase its ferrite production capacity, as we have huge iron oxide sources in our country. It is being estimated (Ruthner 1989) that the iron oxide required for such a huge production of ferrites would mostly come from the upgraded hematite ore and we have plenty of that sort of iron oxide sources. But, the Indian iron mine industry caters high-grade ore for the domestic steel industry requirements and export, and the highly mechanized industry discards the low-grade ore and tailings at the mining areas that are creating environmental problems. And, considering deteriorating mineral resources, it is high time that one should look into the low-grade ores to make them value added materials. We (Verenkar 1997; Sawant 1998; Rane et al 1999, 2000) have been making a modest effort to make use of these ore rejects to synthesize active pure iron oxides and from these ferrites to see the suitability of such iron oxide sources in ferrite industry, after chemical beneficiation.

Advantages of chemically synthesized iron oxides are many as one can get (i) impurity free fine particles of high surface area and hence reactive and (ii) oxide of desired crystal structure. The need of high surface area fine particles in solid state reactions is well known and industrial process for achieving this is mechanical grinding. The necessity of desired crystal structure of the raw materials seems also essential in obtaining ferrite of good quality. We (Verenkar 1997; Sawant 1998; Rane et al 1999, 2000) observed the formation of low porosity single phase MgFe₂O₄ of uniform saturation magnetization, 4 $pM_s \cong$ 1000–1150 Gauss, from synthetic cubic iron oxide, g Fe₂O₃ and cubic MgO at 1000°C. On the other hand, a high porosity and low $4 pM_s$ (609 G) mixed phase MgFe₂O₄ containing unreacted \mathbf{a} -Fe₂O₃ was obtained at 1000°C from the usual ferrite raw material of commercial grade hexagonal, corundum a-Fe₂O₃.

The high reactivity of the synthetic \mathbf{g} Fe₂O₃ is no doubt due to their fine particles of nanometer size. But, the cubic structure of \mathbf{g} Fe₂O₃ may also be the reason for it to easily react with cubic MgO to give cubic spinel MgFe₂O₄, while the hexagonal corundum \mathbf{a} -Fe₂O₃ may not react that easily. Solid state reactions are sluggish and several factors influence the reactivity such as particle size, gas atmosphere, and defect nature of the reactants. As compared to the hexagonal corundum \mathbf{a} -Fe₂O₃, the cubic \mathbf{g} Fe₂O₃ is a defect spinel with vacancies on the octahedral sites. The unit cell structure of \mathbf{g} Fe₂O₃ is represented as, (Fe³⁺)_{tetr.}[Fe³⁺_{40/3} $\square_{8/3}$]_{oct}O₃₂ and this defective iron oxide may have superior reactivity. The enhanced reactivity of \mathbf{g} Fe₂O₃ may also be viewed as due to its phase transfor-

^{*}Author for correspondence

mation to \mathbf{a} -Fe₂O₃ during the heat treatment in ferrite preparation. The \mathbf{g} to \mathbf{a} -phase transformation takes place at ~ 350°C. Certain solid state reactions are favoured (Rao and Gopalakrishnan 1997) if they are carried out at the phase transformation of one of the reactants (Hedvall effect); formation of CoAl₂O₄ is easier at the $\mathbf{g} \rightarrow \mathbf{a}$ transition of Al₂O₃.

The use of \mathbf{g} Fe₂O₃ in the synthesis of ferrites giving superior magnetic properties in systems such as ZnFe₂O₄ (Huhn 1987), NiZn ferrites (Shrotri *et al* 1992), LiMn ferrite (Sano and Tamaura 1999) are in conformity with our own studies on MgFe₂O₄ (Verenkar 1997; Sawant 1998; Rane *et al* 1999, 2000). Having understood the effectiveness of \mathbf{g} Fe₂O₃ in ferrites synthesis we investigated different techniques to prepare the oxide easily, as the commercial manufacture of the oxide is a multi step process,

a-FeOOH
$$\xrightarrow{\text{oxidation}}$$
 a-Fe₂O₃ $\xrightarrow{\text{reduction}}$ Fe₃O₄
 $\xrightarrow{\text{controlled [O]}}$ **g**Fe₂O₃. (1)

There are several methods of preparation of active iron oxide, \mathbf{a} -Fe₂O₃, from precursors such as hydroxides, oxyhydroxides, carboxylates, etc. \mathbf{g} FeOOH on dehydration yields, \mathbf{g} Fe₂O₃, but the commercial \mathbf{g} Fe₂O₃ is a magnetic recording material of needle shape which is being synthesized from acicular \mathbf{a} -FeOOH, as shown in (1). Since our requirement of \mathbf{g} Fe₂O₃ in ferrite synthesis is not of acicular one, any method which gives the oxide in fine size is good enough.

1.1 Hydrazine method

We adopted (Rane *et al* 1981) the decomposition of ferrous oxalate dihydrate precursor in a controlled moisture atmosphere to get \mathbf{g} Fe₂O₃ at ~ 310°C. However, we found (Moye *et al* 1993) that the hydrazine complex of the ferrous oxalate decomposed autocatalytically at an ordinary temperature and pressure when a small portion was ignited with a burning splinter. The decomposition occurred instantaneously yielding mainly \mathbf{g} Fe₂O₃. Several ferrous carboxylato-hydrazinates were also found (Verenkar 1997; Rane *et al* 2001) to decompose autocatalytically to \mathbf{g} Fe₂O₃. Although \mathbf{g} FeOOH dehydrates at ~ 300°C to \mathbf{g} Fe₂O₃, the hydrazinated iron oxyhydroxide immediately catches fire when exposed to air yielding \mathbf{g} Fe₂O₃ of superior magnetic characteristics (Verenkar 1997) compared to the product of the un-hydrazinated \mathbf{g} FeOOH.

Hydrazine method of preparation of transition to rare earth metal oxides of spinel and perovskite structure is a novel way adopted (Ferrari *et al* 1966; Braibanti *et al* 1969; Sharov *et al* 1977; Patil and Pai Verenkar 1982; Ravindranathan and Patil 1987; Kikkawa *et al* 1995; Patil *et al* 1997) to obtain fine nano metre sized reactive substances. We prepared active \mathbf{g} Fe₂O₃, NiZn/MnZn/Mg ferrites (Moye *et al* 1990, 1993; Verenkar 1997; Sawant 1998; Rane *et al* 1999, 2000) by hydrazine method. The MgFe₂O₄ synthesized from synthetic iron oxides (mainly \mathbf{g} Fe₂O₃) from iron ore rejects by the hydrazine method indicated superior magnetic and electrical properties as compared to the ferrite prepared from commercial grade \mathbf{a} -Fe₂O₃. Here in this paper we discuss the novel hydrazine method of easy preparation of \mathbf{g} Fe₂O₃ from iron hydroxide and iron oxyhydroxides obtained from iron ore rejects.

2. Experimental

High SiO₂/Al₂O₃ = 2.56 low grade iron ore (57.49% Fe₂O₃) rejects were extracted with acid and precipitated as iron hydroxide and iron oxyhydroxides: **g**FeOOH, **a**-FeOOH and amorphous FeOOH using precipitants (Verenkar 1997; Sawant 1998) such as NH₃, NaOH, NaOH + NH₃, and Na₂CO₃. The thermal products at ~ 300°C of all these hydroxides yielded 96–98% pure iron oxide, **a**-Fe₂O₃, excepting **g**FeOOH which transformed into mainly **g**Fe₂O₃ and partly **a**-Fe₂O₃. Also a solvent extraction method using methyl iso-butyl ketone (MIBK) was adopted to get 99.73% pure iron oxide. The chemical beneficiation reduced the SiO₂/Al₂O₃ ratio to 0.02.

2.1 Hydrazine method

The iron hydroxide and oxyhydroxides were then equilibrated with hydrazine by storing them on a petri dish over hydrazine hydrate, N₂H₄·H₂O (99%), in a desiccator for 4–5 days. On exposure to ordinary atmosphere they all autocatalytically decomposed to iron oxides, mainly **g** Fe₂O₃.

2.2 Analysis

Chemical analysis of iron was done by standard method. Pyknometric density measurements were done in CCl₄. Infrared band positions were detected on Schimadzu FTIR instrument, model 8101A. Isothermal weight loss of the hydroxides and iron oxyhydroxides was established in a muffle furnace. Thermogravimetric analysis was done on Rigaku TAS 1000 instrument in N₂ atmosphere. The Xray diffraction patterns of all oxide products were obtained on Rigaku DMAX II using Cu and Fe targets. Saturation magnetization values, J_s in emu g⁻¹, of all oxide products were measured using an alternating current high field hysteresis loop tracer (Likhite *et al* 1965) supplied by M/s Arun Electronics, Mumbai, India. Pure nickel (99.9%) was used as a standard. Scanning electron microscopic (SEM) studies done on Cambridge Stereoscan S 250 MK III were used to find out the particle size distributions in the final oxide products.

3. Results and discussion

3.1 Phase identification

The d_{hkl} values of all oxide products were compared with the JCPDS files: 24–81 and 25–1402. All were found to be mainly gFe_2O_3 as shown in table 1. The X-ray diffraction (XRD) pattern of one representative sample of g Fe_2O_3 obtained from autocatalytically decomposed hydrazinated gFeOOH and one standard commercial gFe_2O_3 is shown in figure 1. The detailed d_{hkl} values of all other samples are tabulated in table 1. A thermal dehydration of the unhydrazinated gFeOOH gives gFe_2O_3 the XRD pattern of which, however, is similar to figure 1, but with few extra peaks (table 1) attributing to the presence of a-Fe₂O₃ along with the main product gFe_2O_3 . a-FeOOH dehydrates in air to give a-Fe₂O₃, while the hydrazinated iron oxyhydroxide decomposes to form a mixture of gFe_2O_3 and a-Fe₂O₃.

The hydrazinated amorphous FeOOH autocatalytically decomposes to \mathbf{g} Fe₂O₃, while the unhydrazinated one dehydrates into \mathbf{a} -Fe₂O₃. Thus the hydrazination method yields easily \mathbf{g} Fe₂O₃ from iron oxyhydroxides.

3.2 Magnetic characterization

The saturation magnetization values, J_s , for all these oxide products were obtained from the high field hysteresis loops using Ni as a standard and a representative loop of \mathbf{g} Fe₂O₃ prepared from the autocatalytic decomposition of hydrazinated \mathbf{g} FeOOH is shown in figure 2. The figure also shows the detailed J_s values in emu g⁻¹ of all the oxide products that fell in the range 2·36–71·65 emu g⁻¹. The saturation magnetization, J_s of 71·65 emu g⁻¹ was observed for \mathbf{g} Fe₂O₃ prepared from the autocatalytically decomposed hydrazinated \mathbf{g} FeOOH and the value is close to the reported (Khalafalla and Morrish 1972) value of 71–74 emu g⁻¹. The mixture of \mathbf{g} Fe₂O₃ and \mathbf{a} -Fe₂O₃ obtained by heating \mathbf{g} FeOOH in air amounts to lower J_s value of 19·20 emu g⁻¹ and this suggests that the hydrazine method produces single phase \mathbf{g} Fe₂O₃ of better magnetic character.

a-FeOOH in air decomposed to a non magnetic a- Fe_2O_3 and it showed J_s value of 2.36 emu g⁻¹, while the mixed products $gFe_2O_3 + a-Fe_2O_3$ obtained from autocatalytically decomposed hydrazinated a-FeOOH showed an increased J_s of 16.03 emu g⁻¹, suggesting that the hydrazine method modifies the decomposition path of the oxyhydroxide. The thermal product of amorphous FeOOH showed a low J_s of 2.46 emu g⁻¹ which means the formed oxide product was \mathbf{a} -Fe₂O₃, but the hydrazine method yielded a product, $\mathbf{g} \operatorname{Fe}_2 O_3$ of high J_s of 60.14 emu g⁻¹. These results are in conformity with the X-ray phase analysis (table 1). The J_s values in the range of 50-74 emu g⁻¹ were also observed (Coey and Khalafalla 1972; Khalafalla and Morrish 1972) for gFe₂O₃ synthesized from different techniques and hence our values in the range 60–71 emu g^{-1} for the oxide from **g**FeOOH and amorphous FeOOH by hydrazine method suggest that the hydrazination modifies the thermal decomposition path of these oxyhydroxides.

Table 1. X-ray data of iron oxides obtained by autocatalytic decomposition of hydrazinated iron oxyhydroxides and **g**FeOOH in air.

g Fe ₂ O ₃ * Tetragonal	D I/I ₀	_	2·95 30	2·78 13	-	2·51 100	2·09 15	-	1·70 19	1.60 20	1·47 40	1·27 08
g Fe ₂ O ₃ * Cubic	D I/I ₀	_	2·95 30	2·78 19	_	$\begin{array}{c} 2.52\\ 100 \end{array}$	2∙08 24	_	1·70 12	1·61 33	1·48 53	1·27 11
Fe ₃ O ₄ *	D I/I ₀		2·97 30		_	2.53 100	2·09 20	_	$1.71 \\ 10$	1·61 30	1·48 40	1·28 10
a -Fe ₂ O ₃ *	D I/I ₀	3.66 25	-	-	2.69 100	2·51 50	2·20 30	1.84 40	1·69 60	-	1·45 35	_ _
g FeOOH (in air) Decomp.	D I/I ₀		2·94 47	2·78 58	2·70 62	2·52 99	2·08 30	1.83 45	1·70 45	1.60 34	1·47 35	_ _
g FeOOH Hydrazinate/ autocatalytic	D I/I ₀	_	2·96 53	2·78 43	_	$\begin{array}{c} 2.52\\ 100 \end{array}$	2·09 33	_	1·70 27	1.61 33	1·48 43	1·27 17
a -FeOOH Hydrazinate/ autocatalytic	D I/I ₀	_		_	2·70 78	$\begin{array}{c} 2.52\\ 100 \end{array}$	_	1.83 42	1∙69 42	1.60 36	1·48 51	1·27 23
Amorphous FeOOH Hydrazinate/ autocatalytic	D I/I ₀	_	_	_	_	2·51 99	2·08 58	_	_	1∙60 74	1·47 81	1·27 71

*Reported values from JCPDS files Nos. 6-615; 13-534; 19-629; 24-81 and 25-1402.

3.3 Chemical formula fixation

3.3a *Iron oxyhydroxides*: The total weight loss values, iron contents, density and IR band positions of the iron oxyhydroxides are shown in table 2. From the analytical observations the following chemical formulas have been fixed for the oxyhydroxides

gFeOOH·0·3H₂O; **a**-FeOOH·0·2H₂O and amorphous FeOOH·0·8H₂O.

At high temperatures (~ 250°C) the simple dehydration of **a**-FeOOH yields **a**-Fe₂O₃, while **g**FeOOH topotactically transforms (Dasgupta 1961) into **g**Fe₂O₃. An increase in temperature may lead to the phase transformation of **g**Fe₂O₃ to **a**-Fe₂O₃.

3.3b *Hydrazination of iron oxyhydroxides*: The reddish orange **g**FeOOH·0·3H₂O and reddish brown amorphous FeOOH·0·8H₂O when equilibrated with hydrazine in a hydrazine hydrate (99%) atmosphere in a desiccator turned black, while yellow **a**-FeOOH·0·2H₂O did not change its colour. On exposure to air all fumed immediately into reddish brown magnetic oxide products. All hydrazinated compounds were unstable in an ordinary atmosphere and hence the hydrazine uptake could not be analyzed to fix plausible formula of the complexes.

Figure 1. X-ray diffractogram of **g**Fe₂O₃.

Therefore, a special reactor was built to monitor the hydrazine uptake and analyse titrimetrically by KIO₃.

3.4 Equilibration with 80 (%) N_2H_4 · H_2O

In a special reactor when hydrazine uptake was analyzed the hydrazine contents of 10.4% and 10.8% were observed, respectively, in gFeOOH 0.3H2O and amorphous FeOOH-0-8H2O, while just 1.5% was found in a-FeOOH·0·2H₂O. Both gFeOOH·0·3H₂O and amorphous FeOOH 0.8H2O turned black and the yellow colour of **a**-FeOOH·0·2H₂O remained unchanged. On estimating the iron contents of the black coloured samples, it was observed that ~ 41% FeO was present in the product of hydrazinated \mathbf{g} FeOOH $\cdot 0.3H_2O$, while amorphous FeOOH showed just 1.2% FeO. As the black coloured product of gFeOOH·0·3H₂O contains ~ 41% FeO, it must be ferrousoferric oxide of $Fe_3O_4 = FeO \cdot Fe_2O_3$ type whose theoretical FeO content is 31.03%. These observations suggest that the black coloured product in 99% hydrazine hydrate equilibration was a ferrouso-ferric type oxide which may be the intermediate phase of the final fumed product \mathbf{g} Fe₂O₃.

3.5 Mechanism of hydrazine method of synthesis of metal oxides

Hydrazine is a reducing agent and the X-ray diffraction done (Tikkanen 1961) on the catalyst, \mathbf{a} -Fe₂O₃, on hydrazine decomposition found the oxide converted into Fe₃O₄. Hydrazine sulfate decomposition in an alkaline medium on \mathbf{a} -Fe₂O₃ also converts the oxide into magnetite (Fakuda 1957) and here the hydrazine sulfate first dissociates into hydrazine,

$$(N_2H_4)_2 \cdot H_2SO_4 \Longrightarrow N_2H_5^{1+} + SO_4^{2-} \Longrightarrow 2N_2H_4$$
$$+ 2H^{1+} + SO_4^{2-}.$$

The reduction of Fe₂O₃ is then a coupled reaction,

$$N_2H_5^{1+} \Rightarrow N_2 + 5H^{1+} + 4e^-,$$

$$3Fe_2O_3 + 2H^{1+} + 2e^- \Rightarrow 2Fe_3O_4 + H_2O.$$

Similarly a hydrous ferric oxide decomposes hydrazine sulfate (Furuichi *et al* 1969) and transforms itself into magnetite

$$3Fe_2O_{3-x/2}(OH)_x + 2H^{1+} + 2e^- \Rightarrow 2Fe_3O_4 + (1 + 3/2x)H_2O.$$

In the present study the formed magnetite type phase in the hydrazinated gFeOOH·0·3H₂O transforms in air into maghemite, gFe₂O₃. The hydrazinated amorphous FeOOH, however, also shows black product consisting of 1·2% FeO which transforms into maghemite. The low per cent

Figure 2. Saturation magnetization, J_s , (emu g⁻¹), values of the thermal products of the iron oxyhydroxides and hydrazinated iron oxyhydroxides. (Inset: A typical hysteresis loop of synthetic $g_Fe_2O_3$).

Table 2. Chemical analysis, density, IR, total weight loss of iron oxyhydroxides.

			Inf	frared ban (cm^{-1})	Total % weight loss Obsd. (Calcd.)		
Sample	% Fe Obsd. (Calcd.)	Density (g cm ⁻¹)	O–H stretch	O–H stretch	Fe–O bend	Air	N_2
g FeOOH·0·3H ₂ O	59.00 (59.25)	1.54	2890	1020	747	15·62 (15·	15.00 ·28)
Amorphous FeOOH·0·8H ₂ O	54.00 (54.09)	1.73				22·90 (22-	23.00 .66)
a -FeOOH·0·2H ₂ O	60.00 (60.41)	2.66	3100	904	774	13·76 (13·	15.00 .63)

Figure 3. SEM micrographs of synthetic iron oxides and MgFe₂O₄.

of FeO may be due to the formation of gFe_2O_3 directly in the hydrazine atmosphere itself. The absence of FeO in the yellow product of the hydrazinated **a**-FeOOH suggests that no intermediate magnetite phase is formed, but the product transforms into **a**-Fe₂O₃. Hydrazination in 99% N₂H₄·H₂O makes the iron oxyhydroxides to fume immediately when exposed to air.

Hydrazine methods are adopted because the hydrazinated complexes, in general, especially carboxylato-hydrazinates, decompose explosively. Metal carboxylates are pyrophoric and the hydrazination further enhances their pyrophoric nature. And we observed (Rane et al 1981; Moye et al 1993) FeC₂O₄·2H₂O in air decomposes at $300-350^{\circ}$ C to **a**-Fe₂O₃, while in an inert atmosphere of N_2 the decomposed product is black magnetic Fe₃O₄, but a controlled atmosphere of moisture at ~ 310°C allows the formation of gFe_2O_3 . In fact, moist ferrous oxalate when heated in muffle furnace shows a bright glow at ~ 310°C (Rao et al 1974), which on removal from the furnace and cooling the product indicates magnetic nature due to g Fe_2O_3 The $FeC_2O_4 \cdot 2H_2O$ on hydrazination (Moye *et al* 1993) forms $FeC_2O_4 \cdot 2N_2H_4$ which when brought near a burning splinter catches fire and a glow that forms spreads through the bulk completing the decomposition autocatalytically to \mathbf{g} Fe₂O₃. Thus, hydrazinated complexes are pyrophoric which allow the decomposition to take place easily at an ordinary temperature. Similar observations were also made on iron (II) carboxylato-hydrazinates such as ferrous fumarato-, succinato-, maleato-, malato-, malonato- and tartrato-hydrazinate (Verenkar 1997; Rane and Verenkar 2001) which autocatalytically decomposed to $\mathbf{g} \operatorname{Fe}_2 O_3$. Iron oxyhydroxides also become pyrophoric on hydrazination.

The easy formation of gFe_2O_3 from hydrazinated ferrous oxalate without controlling the moisture atmosphere, which otherwise is needed for the unhydrazinated complex, indicates that the required partial pressure of water is supplied by the decomposed products (N₂ + H₂O). Thus the hydrazine released from the hydrazinated ferrous oxalate reacts with the atmospheric oxygen liberating enormous energy (Schmidt 1984),

$$N_2H_4 + O_2 \rightarrow N_2 + H_2O; \Delta H = -621 \text{ kJ mole}^{-1},$$

which enables to oxidatively decompose the dehydrazinated complex to γ -Fe₂O₃. The decomposition of ferrous oxalate in air (Rane *et al* 1981, 1999) leads to,

$$FeC_2O_4 \cdot 2H_2O \rightarrow FeC_2O_4 \rightarrow (FeO \rightarrow Fe_3O_4)$$
$$\rightarrow \boldsymbol{g}Fe_2O_3) \Rightarrow \boldsymbol{a}\text{-}Fe_2O_3.$$

In inert atmosphere of N₂ the decomposition arrests at Fe_3O_4 , while the controlled atmosphere of moisture allows the magnetite to oxidize to gFe_2O_3 without allowing it to go further to thermodynamically stable phase a-Fe₂O₃. Thus, a metastable cubic spinel phase gFe_2O_3 is the oxi-

dation product of cubic inverse spinel Fe_3O_4 and the stabilization of the $\mathbf{g}Fe_2O_3$ occurs in a controlled atmosphere of moisture. Therefore, the pyrophoric hydrazinated iron oxyhydroxide, $\mathbf{g}FeOOH$, decomposes to Fe_3O_4 and further oxidation to metastable $\mathbf{g}Fe_2O_3$ occurs under the moisture atmosphere, $N_2 + H_2O$ produced due to the oxidation of N_2H_4 in air.

All iron oxyhydroxides and iron hydroxides easily produce mainly \mathbf{g} Fe₂O₃ or mixture of \mathbf{g} Fe₂O₃ + \mathbf{a} -Fe₂O₃ by hydrazine method. All show high BET surface area in the range 50–80 m² g⁻¹ and particles distribute in the 0–1 µ size as revealed by SEM. The ferrite, MgFe₂O₄, prepared from these (Rane *et al* 1999, 2000) show superior magnetic and electrical properties as compared to the ferrite synthesized from commercial grade (1–2 µ sizes) \mathbf{a} -Fe₂O₃ and needle shape \mathbf{g} Fe₂O₃. The SEM micrographs of some representative samples of the synthetic \mathbf{g} Fe₂O₃ and the ferrite from these are reproduced in figure 3 (Sawant 1998; Rane *et al* 1999, 2000).

In fact, the commercial \mathbf{g} Fe₂O₃ particles are acicular (needle shaped) suitable for use as a magnetic tape material. The MgFe₂O₄ prepared from such acicular shaped particle gave a dumb bell shaped porous ferrite (figure 3), while all synthetic submicron size non-acicular \mathbf{g} Fe₂O₃ samples from the present studies gave well dense ferrites.

The commercial grade $(1-2 \mu \text{ sizes})$ **a**-Fe₂O₃ ended up into porous ferrite. Uniform saturation magnetization values (4 $pM_s \cong 1000-1150$ Gauss) and Curie temperatures ($T_c = 670 \pm 30$ K) and normal dielectric dispersions observed for low porosity (20–25%) MgFe₂O₄ (Verenkar 1997; Sawant 1998; Rane *et al* 1999, 2001) suggest that iron oxides prepared from iron ore rejects are quite suitable for ferrite preparation. High porosity (40–41%) mixed phase MgFe₂O₄ containing some unreacted **a**-Fe₂O₃ obtained from commercial **a**-Fe₂O₃ showed low 4 pM_s value of 609 G. Thus, iron ore rejects can be efficiently chemically beneficiated to obtain value added iron oxide of ferrite grade.

Acknowledgements

One of the authors (KSR) thanks German Academic Exchange Service (DAAD), Deutsche Gesellschaft fur Technische Zusammenarbeit (GTZ) GmbH, International Seminar of University of Karlsruhe and Prof. W Weisweiler, Institute fur Chemische Technik of Univ. Karlsruhe, Germany, for financial support (in part) by way of Minor Research Equipment Grant. Also thanks are due to the Department of Science, Technology and Environment, Goa Government, for financial support in part.

References

Braibanti F, Dalavalle F, Pelinghelli M A and Leporati E 1968 Inorg. Chem. 7 1430

- Coey J M and Khalafalla D 1972 Phys. Status Solidi 11 229
- Dasgupta D R 1961 Indian J. Phys. 35 401
- Fakuda M 1957 Nat. Tech. Rep. 3 1
- Ferrari A, Braibanti A, Bigliardi G and Menotti Lanfredi A M 1966 Nature **211** 1174
- Furuichi R, Sato N and Okamoto G 1969 Separatum of Chimia 23 455
- Huhn H J 1987 Z. Chem. 27 334
- Khalafalla D and Morrish A H 1972 J. Appl. Phys. 42 624
- Kikkawa T, Yoshinaka M, Hirota K and Yamaguchi O 1995 J. Mater. Sci. Lett. 14 1071
- Likhite S D, Radhakrishnamurthy C and Sahasrabudhe P W 1965 *Rev. Sci. Instrum.* **25** 302
- Moye V, Rane K S and Kamat Dalal V N 1990 J. Mater. Sci. Mater. Electr. 1 212
- Moye V, Rane K S and Kamat Dalal V N 1993 J. Mater. Sci. Mater. Electr. 4 241
- Patil K C and Pai Verenker V R 1982 Mater. Res. Bull. 17 29
- Patil K C, Aruna S T and Ekambaram S 1997 *Current opinion* in solid state and material science **2** 158
- Rane K S and Verenkar V M S 2001 Bull. Mater. Sci. 24 39
- Rane K S, Nikumbh A K and Mukhedkar A J 1981 J. Mater. Sci. 16 2387
- Rane K S, Verenkar V M S and Sawant P Y 1999 J. Mater. Sci. Mater. Electr. 10 121, 133
- Rane K S, Verenkar V M S and Sawant P Y 2000 *Digest of the 8th international conference on ferrites (ICF 8), Kyoto, Japan,* (Tokyo: The Japan Society of Powder and Powder Metallurgy), Paper No.19 PpI-2 page 158 (The complete paper will appear in the proceedings of the ICF (in press))

- Rane K S, Verenkar V M S and Sawant P Y 2001 Bull. Mater. Sci. 24 323
- Rao C N R and Gopalakrishnan J 1997 *New directions in solid state chemistry* (New York: Cambridge University Press)
- Rao V, Shashimohan A L and Biswas A B 1974 J. Mater. Sci. 9 430
- Ravindranathan P and Patil Kashinath C 1987 Am. Ceram. Soc. Bull. **66** 688
- Ruthner M J 1989 Proceedings of V international conference on ferrites, Bombay, (eds) C M Srivastava and M J Patni (New Delhi, Bombay, Calcutta: Oxford & IBH Publishing Co. Pvt. Ltd.)
- Ruthner M J 1997 J. Phys. IV (Paris) [Suppl. III] 53
- Sano T and Tamaura Y 1999 Mater. Res. Bull. 34 389
- Sawant P Y 1998 Physico-chemical methods to determine the trace rare elements in Goan ore rejects and beneficiate the ore to get pure iron oxides useful for high-tech ferrite manufacture, Ph.D Thesis, Goa University, Goa
- Schmidt E W 1984 *Hydrazine and its derivatives* (New York: John Wiley & Sons Inc.)
- Sharov V A, Bezdenezhnykh G V, Nikoneko E A and Krylov E I 1977 *Russ. J. Inorg. Chem.* **22** 356
- Shrotri J J, Bagul A G, Kulkarni S D, Deshpande C E and Date S K 1992 Proceedings of the VI international conference on ferrites (Tokyo/Kyoto: The Japan Society of Powder and Powder Metallurgy) p. 404
- Sugimoto M 1999 J. Am. Ceram. Soc. 82 269
- Tikkanen M H 1961 Werkstoffe U. Kossos 13 480
- Verenkar V M S 1997 Beneficiation of Goan ore rejects to get pure iron oxide and utilization of the iron oxide to synthesize ferrites, high-tech magnetic materials, Ph.D. Thesis, Goa University, Goa