electronic reprint

Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Piperazinium chromate(VI)

Bikshandarkoil R. Srinivasan, Christian Näther and Wolfgang Bensch

[^0]
Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bikshandarkoil R. Srinivasan, ${ }^{\text {a }}$ Christian Näther ${ }^{b_{*}}$ and Wolfgang Bensch ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Goa University PO, Goa 403 206, India, and ${ }^{\mathbf{b}}$ Institut für Anorganische Chemie, Christian-AlbrechtsUniversität Kiel, Olshausenstraße 40, D-24098

Kiel, Germany

Correspondence e-mail:
cnaether@ac.uni-kiel.de

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.026$
$w R$ factor $=0.082$
Data-to-parameter ratio $=23.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Piperazinium chromate(VI)

The structure of the title complex, $\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left[\mathrm{CrO}_{4}\right]$, consists of tetrahedral $\left[\mathrm{CrO}_{4}\right]^{2-}$ dianions which are connected to the cyclic organic piperazinium dications via hydrogen bonding. All the atoms are located in general positions.

Comment

The present structural description of piperazinium chromate constitutes a part of our ongoing investigations of compounds resulting from the interaction of organic diamines with group 6 oxo- and thiometalates. Among the investigated complexes we have previously described the structures of ethylenediammonium tetrathiomolybdate (Srinivasan et al., 2001), ethylenediamonium tetrathiotungstate (Srinivasan et al., 2002), 1,3-propanediammonium tetrathiotungstate, $N, N,-$ N^{\prime}, N^{\prime}-tetramethylethylenediammonium tetrathiotungstate (Srinivasan et al., 2003a) and ethylenediammonium chromate (Srinivasan et al., 2003b). Some examples of chromates bound to organic cations, such as 2,2-dimethyl-1,3-propanediammonium chromate (Chebbi et al., 2000), 4-ammonio-2,2,6,6,-tetramethylpiperidinium chromate (Chebbi \& Driss, 2001), 1,4-butanediammonium chromate (Chebbi \& Driss, 2002a) and bis(2-methyl-2-propanammonium) chromate (Chebbi \& Driss, 2002b), have also been reported in the recent literature. The extensive use of $\mathrm{Cr}^{\mathrm{VI}}$ compounds in combination with organic amines in organic synthesis is one reason for the continued interest in this field. The base-promoted cation exchange reactions developed by us for the synthesis of the sulfide complexes of Mo and W mentioned above can also be used for the synthesis of oxochromates. Thus the title complex, (I), was obtained in good yields by reacting the cyclic diamine piperazine with ammonium chromate.

(I)

The structure of (I) consists of tetrahedral $\left[\mathrm{CrO}_{4}\right]^{2-}$ dianions and piperazinium dications (Fig. 1). As expected, the piperazinium dication adopts the chair conformation, with internal bond lengths and bond angles (Table 1) in the ranges usually observed in this form (Tran Qui \& Palacios, 1990; Tyrselová et al., 1996). The CrO_{4} tetrahedron in (I) is distorted, with $\mathrm{O}-\mathrm{Cr}-\mathrm{O}$ angles ranging from 107.07 (6) to 111.27 (8$)^{\circ}$ (Table 1). The $\mathrm{Cr}-\mathrm{O}$ bond distances vary from

Received 1 July 2003
Accepted 3 July 2003
Online 24 July 2003

Figure 1
The crystal structure of piperazinium chromate, with the atom labelling scheme and displacement ellipsoids drawn at the 50% probability level.

Figure 2
The crystal structure of piperazinium chromate, viewed along the b axis (intermolecular hydrogen bonding is shown as dashed lines).
1.6176 (14) to 1.6631 (12) \AA, with a mean $\mathrm{Cr}-\mathrm{O}$ bond length of $1.6468 \AA$. This value is generally observed for this type of tetrahedron (Bars et al., 1977; Brauer et al., 1991; Chebbi et al., 2000; Chebbi \& Driss, 2002a). The maximum difference in $\mathrm{O} \cdots \mathrm{O}$ distances in (I) is $0.034 \AA$. This value is of the same order as that observed in $\left(\mathrm{NaNH}_{4}\right)\left[\mathrm{CrO}_{4}\right](0.030 \AA$; Khan \& Baur, 1972), in $\left(\mathrm{C}_{4} \mathrm{H}_{14} \mathrm{~N}_{2}\right)\left[\mathrm{CrO}_{4}\right](0.037 \mathrm{~A}$; Chebbi \& Driss, 2002a) and in $\left(\mathrm{CH}_{6} \mathrm{~N}_{3}\right)_{2}\left[\mathrm{CrO}_{4}\right](0.040 \AA$ A ; Cygler et al., 1976).

In the crystal structure, the anions and cations are connected via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding between the O atoms of the chromate dianions and the H atoms of the N atoms. Each chromate is connected to five piperazinium cations, forming a three-dimensional hydrogen-bonding network (Fig. 2). The deformation of the chromate tetrahedron in (I) is related to the hydrogen bonding interactions. A dependence of the $\mathrm{Cr}-\mathrm{O}$ distances upon the strength of hydrogen bonds formed has been found in the title complex, with short hydrogen-bonding contacts ranging from 1.78 to $2.22 \AA$ (Table 2). Atom O1, which forms two short hydrogen bonds with an average $\mathrm{N} \cdots$ O distance of $2.785 \AA$, corresponds to the longest $\mathrm{Cr}-\mathrm{O}$ distance $[1.6631$ (12) \AA], while atom O 4 , which is not involved in any hydrogen bonding, shows the
shortest $\mathrm{Cr}-\mathrm{O}$ bond length $[1.6176(14) \AA$. Intermediate $\mathrm{Cr}-\mathrm{O}$ distances of 1.6451 (12) and 1.6617 (12) \AA, respectively, are found for O 3 , which has a single $\mathrm{H} \cdots \mathrm{O}$ contact, and O 2 , which makes two contacts with an average $\mathrm{N} \cdots \mathrm{O}$ distance of $2.807 \AA$. In chromates bound to acyclic organic diammonium cations such as 1,4-butanediammonium, 2,2-di-methyl-1,3-propanediammonium and ethylenediammonium, longer $\mathrm{Cr}-\mathrm{O}$ distances than in (I) have been reported.

Experimental

$\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{CrO}_{4}\right](5 \mathrm{mmol})$ was dissolved in 10 ml distilled water and anhydrous piperazine (5 mmol) was added. The solution was stirred well and filtered. The clear yellow filtrate was left undisturbed. After a few days, yellow blocks of the title compound crystallized. The crystals were washed with ice-cold water (1 ml), and dried in air. Yield 70% based on Cr . The crystals are stable in air. Analysis calculated for $\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{CrN}_{2} \mathrm{O}_{4}$: C $23.53, \mathrm{H} 5.94, \mathrm{~N} 13.72 \%$; found: C 23.58, H 5.94, N 13.59%.

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}{ }^{2+} . \mathrm{O}_{4} \mathrm{Cr}^{2-}$
$M_{r}=204.16$
Monoclinic, $P 2_{\mathrm{d}} / n$
$a=7.6651$ (9) A 。
$b=12.3726(18) \AA$
$c=8.4886(10) \AA$
$\beta=93.766(12)^{\circ}$
$V=803.30(18) \AA^{3}$
$Z=4$
$D_{x}=1.688 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 105 reflections
$\theta=16-20^{\circ}$
$\mu=1.40 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, yellow
$0.18 \times 0.12 \times 0.08 \mathrm{~mm}$

Data collection

Stoe AED-II four-circle
diffractometer
ω scans
Absorption correction: numerical
(X-SHAPE and X-RED; Stoe \&
Cie, 1998)
$T_{\text {min }}=0.810, T_{\text {max }}=0.894$
4578 measured reflections
2350 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.082$
$S=1.06$
2350 reflections
101 parameters
H -atom parameters constrained
2034 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.035$
$\theta_{\text {max }}=30.0^{\circ}$
$h=-10 \rightarrow 1$
$k=-17 \rightarrow 9$
$l=-11 \rightarrow 11$
4 standard reflections frequency: 120 min intensity decay: none

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cr} 1-\mathrm{O} 4$	$1.6176(14)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.490(2)$
$\mathrm{Cr} 1-\mathrm{O} 3$	$1.6451(12)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.503(2)$
$\mathrm{Cr} 1-\mathrm{O} 2$	$1.6617(12)$	$\mathrm{C} 2-\mathrm{N} 2$	$1.486(2)$
$\mathrm{Cr} 1-\mathrm{O} 1$	$1.6631(12)$	$\mathrm{N} 2-\mathrm{C} 3$	$1.486(2)$
$\mathrm{N} 1-\mathrm{C} 4$	$1.476(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.508(2)$
$\mathrm{O} 4-\mathrm{Cr} 1-\mathrm{O} 3$	$111.27(8)$	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1$	$112.01(12)$
$\mathrm{O} 4-\mathrm{Cr} 1-\mathrm{O} 2$	$109.97(7)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$109.36(13)$
$\mathrm{O} 3-\mathrm{Cr} 1-\mathrm{O} 2$	$109.96(7)$	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$	$110.52(14)$
$\mathrm{O} 4-\mathrm{Cr} 1-\mathrm{O} 1$	$109.23(8)$	$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 3$	$111.48(12)$
$\mathrm{O} 3-\mathrm{Cr} 1-\mathrm{O} 1$	$109.25(6)$	$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4$	$109.94(13)$
$\mathrm{O} 2-\mathrm{Cr} 1-\mathrm{O} 1$	$107.07(6)$	$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3$	$110.10(14)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1N1 $\cdots \mathrm{O}^{\text {i }}{ }^{\text {i }}$	0.90	1.78	$2.6697(18)$	169
N1-H2N1 \cdots O $^{\text {ii }}$	0.90	1.81	$2.7009(18)$	173
N2-H1N2 \cdots O3 $^{\text {iii }}$	0.90	1.83	$2.709(2)$	164
N2-H2N2 \cdots O $^{\text {iii }}$	0.90	2.19	$2.9133(19)$	137
N2-H2N2 $\cdots 1^{\text {iii }}$	0.90	2.22	$2.9014(19)$	132

Symmetry codes: (i) $-x, 2-y, 1-z$; (ii) $x, y, 1+z$; (iii) $\frac{1}{2}+x$, $\frac{3}{2}-y, \frac{1}{2}+z$.
The H atoms on C and N atoms were positioned with idealized geometry $(\mathrm{C}-\mathrm{H}=0.97 \AA$ and $\mathrm{N}-\mathrm{H}=0.90 \AA)$ and refined with fixed isotropic displacement parameters according to a riding model $\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}\left(\mathrm{C}_{\text {methylene }} / \mathrm{N}-\mathrm{H}\right)\right]$.

Data collection: DIF4 (Stoe \& Cie, 1992); cell refinement: DIF4; data reduction: REDU4 (Stoe \& Cie, 1992); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Bruker, 1998); software used to prepare material for publication: CIFTAB in SHELXTL.

This work is supported by the State of Schleswig-Holstein and the Deutsche Forschungsgemeinschaft. BRS thanks the Deutscher Akademischer Austauschdienst (DAAD), Bonn, for a visiting fellowship.

References

Bars, O., Le Marouille, J. Y. \& Grandjean, D. (1977). Acta Cryst. B33, 37513755.

Brauer, C., Jannin, M., Puget, R. \& Perret, R. (1991). Acta Cryst. C47, 22312232.

Bruker (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Chebbi, H. \& Driss, A. (2001). Acta Cryst. C57, 1369-1370.
Chebbi, H. \& Driss, A. (2002a). Acta Cryst. E58, m147-m149.
Chebbi, H. \& Driss, A. (2002b). Acta Cryst. E58, m494-m496.
Chebbi, H., Hajem, A. A. \& Driss, A. (2000). Acta Cryst. C56, e333-e334.
Cygler, M., Grabowski, M. J., Stepien, A. \& Wajsman, E. (1976). Acta Cryst. B32, 2391-2395.
Khan, A. A. \& Baur, W. H. (1972). Acta Cryst. B28, 683-693.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Srinivasan, B. R., Dhuri, S. N., Näther, C. \& Bensch, W. (2002). Acta Cryst. E58, m622-m624.
Srinivasan, B. R., Dhuri, S. N., Näther, C. \& Bensch, W. (2003a). Acta Cryst. C59, m124-m127.
Srinivasan, B. R., Dhuri, S. N., Näther, C. \& Bensch, W. (2003b). Indian J. Chem. Sect. A. In the press.
Srinivasan, B. R., Vernekar, B. K. \& Nagarajan, K. (2001). Indian J. Chem. Sect. A, 40, 563-567.
Stoe \& Cie (1992). DIF4 (Version 7.09X/DOS) and REDU4 (Version 7.03). Stoe \& Cie, Darmstadt, Germany.
Stoe \& Cie (1998). X-SHAPE and X-RED. Version 1.03. Stoe \& Cie, Darmstadt, Germany.
Tran Qui, D. \& Palacios, E. (1990). Acta Cryst. C46, 1212-1215.
Tyrselová, J., Kuchta, L. \& Pavelcik, F. (1996). Acta Cryst. C52, 17-19.

[^0]: Copyright © International Union of Crystallography
 Author(s) of this paper may load this reprint on their own web site provided that this cover page is retained. Republication of this article or its storage in electronic databases or the like is not permitted without prior permission in writing from the IUCr.

