Note

A convenient synthesis of γ -methyl α -(alkylidene)- γ -butyrolactones[†]

Jyoti B Shet, Chandan P Amonkar, Vishnu S Nadkarni & Santosh G Tilve*

Department of Chemistry, Goa University, Goa 403 206, India

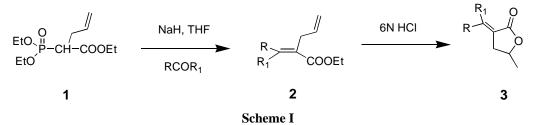
E-mail: <u>santoshtilve@yahoo.com</u>

Received 14 March 2004; accepted (revised) 16 September 2004

 γ -Methyl- α -(alkylidene substituted)- γ -butyrolactones have been synthesized in two steps. The anion of allyl phosphonate **1** is condensed with different carbonyl compounds to afford α , β unsaturated esters **2a-g** which are cyclised using 6N HCl to give title compounds.

IPC: Int.Cl.⁷ C 07 D 307/32

 γ -Substituted α -(alkylidene)- γ -butyrolactones continue to be target of new synthetic methodologies¹ due to the presence of this moiety in natural products² and the biological activity associated with these molecules. For example, these compounds show cytotoxic, antitumoral^{3,4} antibacterial⁵, plant growth inhibition⁶, antifungal⁷ and antiallergic activities.⁸ In addition, these molecules have been used as synthetic precursors for the synthesis of cyclopentenones, butenolides and furans.¹


Although there are various methods available for the synthesis of γ -substituted α -(alkylidene substituted)- γ -butyrolactones,^{1,9-18} most of these involve use of organometallic reagents or multiple steps or harsh reaction conditions. Wittig reaction on aryl aldehydes for the synthesis of α -benzylidene- γ -methyl - γ -butyrolactones is also reported.¹⁹ However, this method is not reported for aliphatic aldehydes and fails in case of ketones. This prompts us to develop a simple method utilizing Horner-Wordsworth-Emmons (HWE) reaction as a key reaction (**Scheme I**).

Initially, the anion of allyl phosphonate²⁰ generated at 0°C in THF was condensed with benzaldehyde to give exclusively (*E*)- α , β -unsaturated ester **2a** in excellent yield. 6*N* hydrochloric acid was chosen for lactonisation to avoid the problem of ring annulation to naphthalene. Thus, α , β -unsaturated ester **2a** was refluxed with 6*N* HCl for 6hr to get the *E*-lactone **3a** in good yield. Similar sequence of reactions on other aryl aldehydes provided lactones **3b-d**. Compound **3d** is known to show antifungal activity⁷. This method was then extended for aliphatic aldehydes to get corresponding lactones **3e-f** (**Table I**). When ketonic compound acetone was reacted, we could obtain the corresponding lactone **3g**.

In conclusion, a convenient method has been developed using HWE reaction for the synthesis of γ -methyl α -(alkylidene)- γ -butyrolactones. The method becomes attractive because it can be also being applied to ketones. Further attempt to convert this method for the asymmetric synthesis of butenolides is in progress.

Experimental Section

All melting points are uncorrected and measured by normal thiels tube method. Column chromatography was performed on silica gel 60-120 mesh size and TLC on silica gel G (13% CaSO₄ as binder). IR spectra were recorded on a Shimadzu FT-IR spectrophotometer (KBr pellet or neat sample).¹H NMR and ¹³CMR spectra (TMS, CDCl₃) were recorded on a Brucker-300 MHz instrument. The multiplicities of carbon signals were obtained from DEPT experiments. Mass spectra were recorded on a QstarXL MS/MS of Applied Biosystems Mass, Canada.

[†] Dedicated to Dr. J. K. Kirtany

	C 1*	D	р	•		•	
	Compd*	R	R_1	2 (% yield)	(%yie	3 ld)/m.p.⁰C	Reaction time (for 3 in hr)
	a	C ₆ H ₅	Н	95		70	6
	b	$o-NO_2C_6H_4$	H	90		(102-03)	6
	c d	<i>m</i> -NO ₂ C ₆ H ₄ <i>o</i> -ClC ₆ H ₄	H H	90 85	60	/(125) 58	6 6
	u e	$O-CIC_6H_4$ CH ₃ CH ₂ CH ₂	Н	83 70		60	9
	f	(CH ₃) ₂ CH	Н	65		65	9
	g	CH ₃	CH ₃	40		60	6
	0	compounds gav			ntal ana		
		Table II –	– ¹ H NI	MR and ¹³ C	NMR d	ata for 2a-g	
Compd		¹ H NMR	(δ, ppr	n)		13	³ C NMR (δ, ppm)
2a ^{19c}	1.32 (t, 3H, $J=7.1$ Hz, $-CH_3$), 3.32 (d, 2H, $J=5.5$ Hz, $-CH_2$ -CH=), 4.24 (q, 2H, $J=7.1$ Hz, $-OCH_2$ -CH ₃),14.19 (CH ₃), 31.56 (CH ₂), 60.7 (OCH ₂), 115.55 (=CH ₂), 128.33 128.46, 129.16, 130.48, 135.44 135.61 and 140.04 (Ar, =CH an CH=C)-CH=CH ₂), 7.19-7.50 (m, 5H, Ar-H), 7.78 (s, 1H, CH=C)14.19 (CH ₃), 31.56 (CH ₂), 60.7 (OCH ₂), 115.55 (=CH ₂), 128.33 128.46, 129.16, 130.48, 135.44 135.61 and 140.04 (Ar, =CH an CC)						
2b ^{19a}	1.35 (t, 3H, $J=7.2$ Hz, $-CH_3$), 3.05 (d, 2H, $J=5.31$ Hz, $-CH_2-CH=$), 4.26 (q, 2H, $J=7.2$ Hz, $-OCH_2-$ CH ₃), 4.82-5.07 (m, 2H, $=CH_2$), 5.84-5.96 (m, 1H, $-CH=CH_2$), 7.2-7.7 (m, 3H, Ar-H), 7.96 (s, 1H, CH=C), 8.15 (d, 1H, $J=8.1$ Hz, Ar-H) (0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,						
2c ^{19c}	1.36 (t, 3H, $J=7.1$ Hz, $-CH_3$), 3.2 (d, 2H, $J=5.4$ Hz, $-CH_2-CH=$), 4.29 (q, 2H, $J=7.1$ Hz, $-OCH_2-CH_3$), 5.12-5.19 (m, 2H, $=CH_2$), 5.94-6.06 (m, 1H, $-CH=CH_2$), 7.50 (dd, 1H, $J=7.8$, 7.8 Hz, Ar-H), 7.69 (dd, 1H, $J=7.2$ Hz, 0.6 Hz, Ar-H), 7.79 (s, 1H, CH=C), 8.17 (dd, 1H, $J=7.2$ Hz and 0.9 Hz, Ar-H), 8.29 (s, 1H, Ar-H)					116.26 (=CH ₂), 123.08, 129.40, 133.44, 133.44, 34.91, 137.12 and 148.37	
2d	1.35 (t, 3H, J =7.1Hz, -CH ₃), 3.15 (d, 2H, J =5.4 Hz, -CH ₂ -CH=), 4.3 (q, 2H, J =7.1Hz, -OCH ₂ -CH ₃), 5.02-5.11(m, 2H, =CH ₂), 5.89-6.02 (m, 1H, - CH=CH ₂), 7.25-7.29 (m, 2H, Ar-H), 7.36-7.40 (m, 2H, Ar-H), 7.85, (s, 1H, CH=C)					(OCH ₂), 128.80, 132.47, 13	H ₃), 31.82 (CH ₂), 60.97 115.77 (=CH ₂), 125.35 130.25, 130.67, 131.05 44.13, 134.92 and 136.36 =C $<$), 167.44 (CO)
2e	$\begin{array}{l} \text{-OCH}_2\text{-CH}_3\text{), } 1.44\text{-}1.53 \text{ (m, 2H, - CH}_2\text{-}), 2.16 \text{ (m, (CH}_2\text{), } 30.46 \text{ (}\\ 2\text{H, =CH}\text{-}CH_2\text{-}CH}_2\text{), } 3.06 \text{ (d, 2H, } J\text{=}5.7 \text{ Hz, -}CH}_2\text{-} & 60.30 \text{ (OCH}_2\text{)} \end{array}$						(3), 14.15 (CH ₃), 21.89 (46 (CH ₂), 30.75 (CH ₂)) (CH ₂), 114.84 (=CH ₂)) (CH ₂), 114.84 (=CH ₂)) (135.55 (=CH), 143.45 (7.52 (CO))
2f	$J=7.2 \text{ Hz}, -CH_3), 2.64-2.67 \text{ (m, 1H, } CH(CH_3)_2), (C 3.07 \text{ (d, 2H, } J=5.3 \text{ Hz}, -CH_2-CH=), 4.19 \text{ (q, 2H, 11)}$					(CH ₂), 30 114.78 (=	(a), 22.01 (2 × CH ₃), 27.78 (75 (CH ₂), 60.30 (OCH ₂), CH ₂), 127.60 and 135.96 (9.86 (=C<), 167.72 (CO)
2g [#]	1.21 (t, 3H, <i>J</i> =7.1 Hz, -CH ₃), 1.74 (s, 3H, CH ₃), 2.99 (d, 2H, <i>J</i> =6.0 Hz, -CH ₂ -CH=), 4.15 (q, 2H, <i>J</i> =7.1 Hz, -OCH ₂ -CH ₃), 4.89-4.97 (m, 2H, =CH ₂), 5.60-5.80 (m, 1H, -CH=CH ₂)					(CH ₃), 34 114.96 (H ₃), 22.08 (CH ₃), 23.02 $(03 (CH_2), 66.02 (OCH_2))$ $=CH_2), 125.30 (=CH))$ nd 144.14 (=C<), 169.99

MS-ESI(CH₃OH + H₂O + CH₃COONa): *m*/*z*(amu)169.1026 (M+1); Calculated 169.2352 (M+1).

Table III — ¹H NMR and ¹³C NMR data for **3a-g**

Compd	¹ H NMR (δ, ppm)	¹³ C NMR (δ, ppm)			
3a ¹⁸	1.47 (d, 3H, <i>J</i> =6.3 Hz, CH-C <i>H</i> ₃), 2.81(ddd, 1H, <i>J</i> = 17.4, 5.5 and 3.0 Hz, <i>-H</i> CH-), 3.39(ddd, 1H, <i>J</i> =17.4, 7.7, 2.7 Hz <i>-H</i> CH-), 4.79-4.84 (m, 1H, <i>-</i> CH-), 7.34-7.51 (m, 5H, Ar-H), 7.56 (t, 1H, <i>J</i> =2.8 Hz, CH=)	22.27 (CH ₃), 35.20 (CH ₂), 73.98 (CH), 124.90, 128.82, 129.68, 129.85, 134.64 and 136.42 (Ar, =CH, =C<), 171.95 (CO)			
3b ^{19b}	1.47 (d, 3H, <i>J</i> =6.3 Hz, CH-C <i>H</i> ₃), 2.69 (ddd, 1H, <i>J</i> = 17.2, 7.3 and 2.6 Hz, - <i>H</i> CH-), 3.19 (ddd, 1H, <i>J</i> = 17.2, 6.0 and 3.1 Hz, -HCH-), 4.64-4.80 (m, 1H, - CH-), 7.45-7.72 (m, 3H, Ar-H), 7.85 (t, 1H, <i>J</i> = 2.7 Hz, CH=), 8.12 (d, 1H, <i>J</i> = 8.1 Hz, Ar-H)	21.92 (CH ₃), 34.53(CH ₂), 74.23 (CH), 125.05, 129.56, 129.84, 130.35, 133.29, 134.95 and 148.40 (Ar, =CH, =C<), 170.33 (CO)			
3c ^{19c}	1.52 (d, 3H, <i>J</i> =5.5 Hz, CH- <i>CH</i> ₃), 2.89 (ddd, 1H, <i>J</i> = 17.7, 8.5 and 3.1 Hz, - <i>H</i> CH-), 3.44 (ddd, 1H, <i>J</i> =17.7, 10.4, 2.7 Hz -HCH-); 4.78-4.87(m, 1H, -CH-), 7.61(t, 1H, <i>J</i> =2.9 Hz, CH=), 7.65(d, 1H, <i>J</i> =8.10 Hz, Ar-H), 7.81(d, 1H, <i>J</i> =7.8 Hz, Ar-H), 8.25 (d, 1H, <i>J</i> = 8.1 Hz, Ar-H), 8.34 (s, 1H, Ar-H)	22.30 (CH ₃), 35.13 (CH ₂), 74.24 (CH), 123.54, 124.06, 128.46, 130.00, 133.55, 135.77, 136.29, and 148.60 (Ar and =CH), 171.03 (CO)			
3d	1.48 (d, 3H, <i>J</i> =6.3 Hz, CH-C <i>H</i> ₃), 2.75 (ddd, 1H, <i>J</i> = 17.4, 8.7 and 3.0 Hz, - <i>H</i> CH-), 3.30 (ddd, 1H, <i>J</i> =17.4, 7.2, 2.7 Hz -HC <i>H</i> -), 4.69- 4.80 (m, 1H, -CH-), 7.30-7.34 (m, 2H, Ar- H), 7.44-7.49 (m, 2H, Ar-H), 7.90 (t, 1H, <i>J</i> =2.7 Hz, CH=)	22.11 (CH ₃), 35.09 (CH ₂), 74.18 (CH), 126.77, 127.72, 129.19, 130.20, 130.55, 132.54, 132.89 and 135.50 (Ar and =CH), 171.30 (CO).			
3e	0.95 (t, 3H, $J=7.35$ Hz, $-CH_3$), 1.4 (d, 3H, $J=6.3$ Hz, $CH-CH_3$), 1.45-1.59 (m, 2H, $-CH_2$ -), 2.11-2.21 (m, 2H, $-CH_2$ -CH=), 2.43 (ddd, 1H, $J=16.8$, 7.8 and 3.0 Hz, $-HCH$ -), 3.04 (ddd, 1H, $J=16.8$, 6.8, 2.7 Hz $-HCH$ -), 4.64-4.75 (m, 1H, $-CH$ -), 6.67-6.76 (m, 1H, CH=)	13.52 (CH ₃), 21.24 (CH ₃), 21.89 (CH ₃), 31.90 (CH ₂), 32.69 (CH ₂), 73.89 (CH), 129.66(=CH), 140.36 (=C<), 170.85 (CO)			
3f	1.07 (d, 6H, J =6.6 Hz, CH(CH ₃) ₂), 1.42 (d, 3H, J =6.3 Hz, CH-CH ₃), 2.37-2.53 (m, 2H, - H CH- and CH(CH ₃) ₂), 3.02 (ddd, 1H, J=16.8 7.8, 2.7 Hz -HCH-), 4.60-4.73 (m, 1H, - CH-), 6.55 (m, 1H, CH=)	21.36 (CH ₃), 22.10 (CH ₃), 29.67 (CH ₂), 32.50(CH ₂), 73.88 (CH), 124.25 (=CH), 146.75 (=C<), 171.20 (CO)			
3 g ^{18#}	1.38 (d, 3H, <i>J</i> =6.3 Hz, CH-C <i>H</i> ₃), 1.86 (s, 3H, CH ₃), 2.26 (s, 3H, CH ₃), 2.43 (ddd, 1H, <i>J</i> = 15.9, 7.8 and 3.9 Hz, - <i>H</i> CH-), 3.00 (ddd, 1H, <i>J</i> = 15.9, 7.8 and 3.9 Hz, - <i>H</i> CH-), 4.51-4.63 (m, 1H, - CH-)	19.79 (CH ₃), 22.27 (CH ₃), 22.42 (CH ₃), 35.42 (CH ₂), 72.36 (CH), 119.72 and 149.88 (=C<), 170.19 (CO)			
# MS-ESI(CH ₃ OH + H ₂ O + CH ₃ COONa): m/z (amu)141.0883 (M+1); Calculated 141.1816 (M+1).					

General procedure for preparation of ethyl (α allyl)- α , β -unsaturated esters 2a-g. To a suspension of NaH (60% in mineral oil) (0.225g, 9.4 mmole) in dry THF (10 mL) was added dropwise with cooling allylphosphonate **1** (2.48g, 9.4 mmole). The mixture was stirred at 0°C, till evolution of H₂ ceased. The corresponding carbonyl compound (9.4 mmole) in THF was added. After 30 min, aq. NH₄Cl (10 mL) was added. The reaction mixture was then extracted with ether (3×20 mL). The combined extracts were washed with brine, dried over anhydrous Na₂SO₄ and evaporated to dryness. Column chromatography of the

residue over silica gel using pet. ether as an eluent furnished the products **2a-g** as viscous oils.

General procedure for preparation of γ -methyl α -(alkylidene substituted)- γ -butyrolactones 3a-f. To ethyl (α -allyl)- α , β -unsaturated esters 2a-g (4.6 mmole) was added 6N HCl (10 mL). The reaction mixture was then refluxed for the time as mentioned in **Table I**. It was then cooled and extracted with CHCl₃ (2 × 20 mL). The combined extracts were washed with brine, dried over anhydrous Na₂SO₄ and evaporated to dryness. Column chromatography of the residue over silica gel using pet. ether - ethyl acetate (95:5) as an eluent, furnished γ -methyl α -(alkylidene substituted)- γ -butyrolactones 3a, d-g as viscous oils and 3b-c as solids.

Acknowledgement

The authors thank the CSIR, New Delhi for financial assistance and NIO, Goa for spectral analysis.

References

- 1 (a) Sharpless K B, Lauer R F & Teranishi A Y, *J Am Chem Soc*, 95, **1973**, 6137.
 - (b) Trost B M, Salzmann T N & Hiroi K, *J Am Chem Soc*, 98, **1976**, 4887.
 - (c) Grimm E L & Reissig H U, J Org Chem, 50, 1985, 242.
 - (d) Ballani R, Marcantoni E & Perella S, *J Org Chem*, 64, **1999**, 2954.
 - (e) Carter N B, Nadany A E & Sweeny J B, *J Chem Soc Perkin Trans* 1, **2002**, 2324.

- (f) Bruckner R, J Chem Soc Chem Commun, 2001, 141
- 2 (a) Kano S, Shibuya S & Ebata T, *Heterocycles*, 14, 1980, 661.
 (b) Mori K, *Tetrahedron*, 45, 1988, 3233.
- (c) Dubs P & Stussi R, Helv Chim Acta, 61, 1978, 990.
- 3 Smith C H, Larner J, Thomas A M, & Kupchan S M, *Biochim Biophys Acta*, 276, **1972**, 94.
- 4 Hartwell J L & Abbott B J, Adv Pharmcol Chemother, 7, **1969**, 117.
- 5 Lee K H, Ibuka T, Wu R Y & Geissman T A, *Phytochemistry*, 16, **1977**, 1177.
- 6 Garciduenas M R, Dominguez X A, Fernandez J & Alaniz G, *Rev Latinoam Quim*, 3, **1972**, 52.
- 7 Sanemitsu Y, Uematsu T, Inoue S & Tanaka K, Agric Biol Chem, 48, **1984**, 1927.
- 8 Schlewer G, Stampf J L & Benezra C, J Med Chem, 23, 1980, 1031.
- 9 Zimmer H & Rothe J, J Org Chem, 24, 1959, 28.
- 10 Burke D S, Wang C J & Grieco P A, *J Chem Soc Chem Comm*, **1975**, 537.
- 11 Martin S F & Moore D R, Tetrahedron Lett, 49, 1976, 4459.
- 12 Thebtaranonth Y, Jenkitkasemwong Y & Wajirum N, *Tetrahedron Lett*, 18, **1979**, 1615.
- 13 Yamamoto K & Tomo Y, Chem Lett, 1983, 531.
- 14 Sanemitsu Y, Matsuo N, Uematsu T, Agric Biol Chem, 48, 1984, 2477.
- 15 Jackson R W, Perlmutter P & Smallridge J, Aust J Chem, 41, 1988, 251.
- 16 Munonz A H, Tamariz J, Jimenez R & Mora G G, *J Chem* Res (*s*), **1993**, 68.
- 17 Savic V & Grigg R, J Chem Soc Chem Comm, 2000, 2381.
- 18 Datta A, Ila H & Junjappa H, Tetrahedron, 43, 1987, 5367.
- (a) Mali R S & Tilve S G, *Synth Commun*, **1989**, 1815.
 (b) Mali R S & Garkhedkar M P, *J Chem Res* (s), **1996**, 496.
 (c) Mali R S & Babu K N, *Helv Chim Acta*, 85, **2002**, 3525.
- 20 Minami T K, Hirakawa K, Koyanagi S, Nakamura S & Yamaguchi M, *J Chem Soc Perkin Trans* 1, **1990**, 2385.