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We use the finite-size, density-matrix-renormalization-groupsFSDMRGd method to obtain the phase dia-
gram of the one-dimensionalsd=1d extended Bose-Hubbard model for densityr=1 in theU−V plane, where
U andV are, respectively, onsite and nearest-neighbor interactions. The phase diagram comprises three phases:
superfluidsSFd, Mott insulatorsMI d, and mass-density-wavesMDWd. For small values ofU andV, we get a
reentrant SF-MI-SF phase transition. For intermediate values of interactions the SF phase is sandwiched
between MI and MDW phases with continuous SF-MI and SF-MDW transitions. We show, by a detailed,
finite-size scaling analysis, that the MI-SF transition is of Kosterlitz-ThoulesssKTd type whereas the MDW-SF
transition has both KT and two-dimensional Ising characters. For large values ofU and V we get a direct,
first-order, MI-MDW transition. The MI-SF, MDW-SF, and MI-MDW phase boundaries join at a bicritical
point at sU ,Vd=s8.5±0.05,4.75±0.05d.
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I. INTRODUCTION

The study of quantum phase transitions in systems of in-
teracting bosons is an exciting area with a fruitful interplay
between theory,1–10 numerical simulations,11–14 and experi-
ments. A variety of experimental systems have been studied:
liquid 4He in porous media like vycor or aerogel;15 micro-
fabricated Josephson-junction arrays;16,17 the disorder-driven
superconductor-insulator transition in thin films of supercon-
ducting materials like bismuth;18 flux lines in type-II super-
conductors pinned by columnar defects aligned with an ex-
ternal magnetic field;19 and best from the point of view of
comparing theory with experiments, atoms trapped in
optical-lattice potentials. In a system where the number of
atoms per site is an integer, Greineret al.20 have observed a
superfluid-Mott-insulator transition for87Rb atoms, trapped
in a three-dimensional optical-lattice potential, by changing
the strength of the onsite potential. Experiments in such op-
tical lattices have several advantages over their condensed-
matter counterparts, including precise knowledge of the un-
derlying microscopic models,21 the possibility of controlling
parameters in the effective lattice Hamiltonians, and the ab-
sence of disorder. The recent probable observation of a su-
persolid helium phase22 has given a further fillip to this area.
Even in the absence of disorder these systems can show a
variety of phases like superfluidsSFd, Mott-insulator sMI d,
and mass-density-wavesMDWd for charge-density-wave
sCDWd if the bosons are chargedg. The simplest model that
can show these phases is the extended Bose-Hubbard model
whose Hamiltonian is

H = − to
ki,jl

sai
†aj + H.c.d +

U

2o
i

n̂isn̂i − 1d + V o
,i,j.

n̂in̂j .

s1d

The first term in Eq.s1d represents the kinetic energy asso-
ciated with the hopping of bosons from sitei to their nearest-

neighbor sitej with amplitudet. ai
† said is the boson creation

sannihilationd operator at sitei and n̂i =ai
†ai is the associated

number operator; onsiteU and nearest-neighborV interac-
tions are represented, respectively, by the second and third
terms and are positive since they are repulsive. We restrict
ourselves to the physically relevant regionVøU and set the
scale of energies by usingt=1.

Model s1d has been studied by a number of authors4,5 in
the caseV=0, i.e., in the absence of nearest-neighbor inter-
actions. At zero temperaturesT=0d it has been shown to
have a superfluid phase if the mean number of bosons per
site r is not an integer; however, for integer densities, it
shows a SF to MI transition. This SF-MI transition is of the
Kosterlitz-ThoulesssKTd type23 in one dimension.2,7–11

In the limit U→` model s1d maps onto the spins1/2d
XXZ model if the mean number of bosons per siter=1/2.
Every site can now have only two possible states, namely, a
state with no boson and another with one boson. We repre-
sent these asu0l and u1l, respectively, and make the identifi-
cationu0l→ u↓ l andu1l→ u↑ l, whereu↓ l andu↑ l are, respec-
tively, spin-s1/2d down and up states. Now, by using the
transformationsai

†→Si
+, ai →Si

−, and n̂i → fSi
z−s1/2dg, the

model s1d maps onto the spin-s1/2d XXZ model with the
Hamiltonian

HXXZ= − 2to
ki,jl

sSi
xSj

x + Si
ySj

yd + Vo
ki,jl

Si
zSj

z, s2d

where we have suppressed constant terms. This model has
been solved exactly24 and shows a KT-type transition from
XY to Ising ordering atV=2t. The bosonic analogs of XY
and Ising phases are, respectively, SF and MDW phases.

If r=1 and t=0, it is easy to see that models1d has a
first-order, MI-MDW transition atU=2V. Large values ofU
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favor the MI phase, whereas large values ofV favor the
MDW phase.

Recently Kühner and Monien9 studied models1d in one
dimension by the using a finite-size, density-matrix renor-
malization group25 sFSDMRGd and showed that, forV=0.4,
it has a continuous SF-MDW transition for densityr
=s1/2d and a continuous SF-MI transition forr=1. Niyazet
al.26 have studied this model in one dimension by a Monte-
Carlo method and obtained its phase diagram in thesU ,Vd
plane for r=1. They obtain SF, MI and MDW phases in
model s1d and continuous SF-MI, SF-MDW, and MI-MDW
transitions but conjecture that, at largeU, the MI-MDW tran-
sition should be first order. The study of Ref. 26 has obtained
a phase diagram for models1d; however, they have not in-
vestigated the universality classes of the transitions in detail.
We obtain the phase diagram here for densityr=1 by using
the FSDMRG method which, as we show below, gives very
accurate results for the nature of ordering in the different
phases and the types and universality classes of the transi-
tions. We restrict ourselves to the case of integer density
sr=1d since we want to explore the competition between SF,
MDW, and MI phases. We note in passing that, even for
V=0, the Bose-Hubbard models1d cannot be solved exactly
unlike its fermionic counterpart; and for the fermionic case,
too, there has been renewed interest in the phase diagram of
the extended Hubbard model.27

Before proceeding further we give a brief summary of our
results. Our FSDMRG phase diagram for models1d, with
d=1 and r=1, is given in thesU ,Vd plane of Fig. 1. It
consists of three phases; SF, MI, and MDW. For small values
of the interactionsU andV, the SF phase dominates, as is to
be expected, since the bosons interact weakly here; however,
as the interaction strengths increase, either MI or MDW
phases get stabilized. The former dominates whenU is much
larger thanV, whereas the latter dominates ifU and V are
both large and comparable. A large, repulsiveV disfavors a

phase with a uniform density of bosons on nearest-neighbor
sites; instead, an MDW phase, with a periodic variation of
the boson density, is stabilized. The lattice we consider is
bipartite and has two sublattices A and Bssay odd-numbered
and even-numbered sitesd; the ground state in the MDW
phase is, therefore, doubly degenerate since the peaks in
the MDW can lie either on the A or the B sublattice. If
the bosons are charged, this MDW phase is a CDW phase.
By using the FSDMRG method we have determined the
phase boundaries between these phases. The MI-SF phase
boundary in Fig. 1 lies in the KT universality class, whereas
the MDW-SF phase boundary has both KT and two-
dimensional Ising characters. For large values ofU and V,
the MI-MDW transition occurs directly and is of first-order
sdashed line in Fig. 1d; as noted above, att=0, a first-order
MI-MDW transition is obtained atU=2V. Within the
accuracy of our calculation, the MI-SF, MDW-SF, and
MI-MDW phase boundaries meet at a bicritical point at
sU ,Vd=s8.5±0.05,4.75±0.05d. We have looked for, but not
found, a supersolid phase with both SF and MDW order. A
very brief discussion of some of our preliminary results has
been given in Ref. 28.

The remaining part of this paper is organized as follows.
Section II contains the details of our FSDMRG calculation.
Section III contains our results. We end with concluding re-
marks in Sec. IV.

II. FSDMRG CALCULATIONS

The FSDMRG method has proven to be very useful in
studies of one-dimensional quantum systems.7,25,28To make
this paper self-contained we summarize the salient points of
this method. Open boundary conditions are preferred for
such calculations since the loss of accuracy with increasing
system size is much less than in the case of periodic bound-
ary conditions. The conventional FSDMRG method consists
of the following two steps:

s1d The infinite-system, density-matrix renormalization
group methodsDMRGd, in which we start with a system
with four sites, add two sites at each step of the iteration, and
continue until we obtain a system with the desired numberL
of sitessin most of our calculations we useL.100 but, in
some representative cases, we have gone up toL=200d.

s2d The finite-system method in which the system sizeL
is held fixed, but the energy of a target state is improved
iteratively by a sweeping procedure, described below, until
convergence is obtained.

For a model like Eq.s1d we first construct the Hamil-
tonian matrix of the superblock configurationB1

,• •B1
r , where

B1
, and B1

r represent left- and right-block Hamiltonians, re-
spectively, and each one of the • represents a single-site
Hamiltonian. In the first step of the DMRG iteration bothB1

,

andB1
r also represent single sites, so, at this step, we have a

four-site chain. We now diagonalize the Hamiltonian matrix
of the superblock and obtain the energy and the eigenfunc-
tion of a target state. In our study the target state is the
ground state of the system of sizeL with either N=L or
N=L±1 bosons. The latter is required for obtaining the gap
in the energy spectrum. We now divide the superblock into

FIG. 1. The FSDMRG phase diagram of the one-dimensional,
extended Bose-Hubbard model for densityr=1 showing SF, MI,
and MDW phases. The two full lines indicate continuous transitions
whereas the dashed line is a first-order boundary; these meet at a
bicritical point. We do not consider the shaded regionV.U.
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two equal halves, the left and the right parts, which are
treated, respectively, as thesystemand theuniverse. The den-
sity matrix for this system, namely,B2

,;B1
,•, is calculated

from the target state. If we write the target state as
ucl=oi,j ci,juilu jl, whereuil andu jl are, respectively, the basis
states of thesystemand theuniverse, then the density matrix
for thesystemhas elementsri,i8=o j ci,jci8,j. The eigenvalues
of this density matrix measure the weight of each of its
eigenstates in thetarget state. The optimal states for describ-
ing the systemare the ones with the largest eigenvalues of
the associated density matrix. In this first step of the DMRG
the superblock, and hence the dimension of the density ma-
trix, is small, so all the states can be retained. In subsequent
steps, however, when the sizes of the superblocks and den-
sity matrices increase, only the most significant states are
retained, say the ones corresponding to the largestM eigen-
values of the density matrixsin our studies we choose
M =128d. We then obtain the effective Hamiltonian for the
systemB2

, in the basis of the significant eigenstates of the
density matrix; this is used in turn as the left block for the
next DMRG iteration. In the same manner we obtain the
effective Hamiltonian for the right block,i.e., B2

r ; •B1
r . In

the next step of the DMRG we construct the Hamiltonian
matrix for the superblockB2

,• •B2
r , so the size of the system

increases fromL=4 to L=6. For a system of sizeL, we
continue, as in the first step, by diagonalizing the Hamil-
tonian matrix for the configurationBsL/2d−1

, • •BsL/2d−1
r and set-

ting BL/2
, ;BsL/2d−1

, • and BL/2
r ; •BsL/2d−1

r in the next step of
the DMRG iteration. Thus at each step of the DMRG itera-
tion the left and right blocks increase in length by one site
and the total lengthL of the chain increases by 2.

In the infinite-system DMRG method outlined above the
left- and right-block bases are not optimized in the following
sense: The DMRG estimate for the target-state energy, at the
step when the length of the system isL, is not as close to the
exact value of the target-state energy for this system size as it
can be. It has been found that the FSDMRG method over-
comes this problem.25 In this method we first use the infinite-
system DMRG iterations to build up the system to a certain
desired sizeL. The L-site superblock configuration is now
given byBsL/2d−1

, • •BsL/2d−1
r . In the next step of the FSDMRG

method, the superblock configurationBsL/2d
, • •BsL/2d−2

r , which
clearly keeps the system size fixed atL, is used. This step is
calledsweepingin the right direction since it increasessde-
creasesd the size of the leftsrightd block by one site. For this
superblock thesystemis BL/2

, •, the universeis •BsL/2d–2
r , the

associated density matrix can be found, and from its most
significant states the new effective Hamiltonian for the left
block, with fsL /2d+1g sites, is obtained. We sweep again, in
this way, to obtain a left block withfsL /2d+2g sites and so
on until the left block hassL−3d sites and the right block has
1 site so that, along with the two sites between these blocks,
the system still has sizeL; or, if a preassigned convergence
criterion for the target-state energy is satisfied, this sweeping
can be terminated earlier. Note that, in these sweeping steps,
for the right block we needB1

r to BL−3
r , which we have al-

ready obtained in earlier steps of the infinite-system DMRG.
Next we sweep leftward; the size of the leftsrightd block

decreasessincreasesd by one site at each step. Furthermore,
in each of the right- and left-sweeping steps, the energy of
the target state decreases systematically until it converges.
sWe use a six-figure convergence criterion in our calcula-
tions.d

We use a slightly modified form of the FSDMRG method
in which we sweep, as described above, atevery stepof the
DMRG scheme and not only in the one that corresponds to
the largest value ofL. This helps in obtaining accurateb
functions which we use to obtain critical exponentsssee be-
lowd at continuous transitions. Furthermore, since the super-
fluid phase in models such as Eq.s1d, in d=1 and atT=0, is
critical and has a correlation length that diverges with the
system sizeL, finite-size effects must be removed by using
finite-size scaling as we show below. For this purpose, the
energies and correlation functions, obtained from a DMRG
calculation, should have converged properly for each system
sizeL. It is important, therefore, that we use the FSDMRG
method as opposed to the infinite-system DMRG method,
especially in the vicinities of continuous phase transitions.
We find that convergence, to a specified accuracy for the
target-state energy, is faster in the MI phase than in the SF
phase. Figure 2 shows, at a representative point in the SF
phase of Fig. 1, how the percentage disagreement between
DMRG and FSDMRG ground-state energies increases with
L in our calculations.

Since the bases of left- and right-block Hamiltonians are
truncated by neglecting the eigenstates of the density matrix
corresponding to small eigenvalues, this leads to truncation
errors. If we retainM states, the density-matrix weight of the
discarded states isPM =oa=1

M s1−vad, whereva are the eigen-
values of density matrix.PM provides a convenient measure
of the truncation errors. We find that these errors depend on
the order-parameter correlation length in a phase. For a fixed
M, we find very small truncation errors in the MI and MDW
phases; these grow as the MI-SF and MDW-SF transitions
are approached, and the truncation errors are largest in the
SF phase. In our calculations we chooseM such that the

FIG. 2. The percentage difference between the ground state en-
ergiesDEL=sEL

DMRG−EL
FSDMRGd /EL

FSDMRGobtained by DMRG and
FSDMRG methods for a representative point in the SF phase of Fig.
1, plotted as a function ofL.
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truncation error is always less than 5310−6; we find that
M =128 suffices.

The number of possible states per site in the Bose-
Hubbard model is infinite since there can be any number of
bosons on a site. In a practical DMRG calculation we must
restrict the numbernmax of states or bosons allowed per site.
The smaller the interaction parametersU and V, the larger
mustnmax be. As in earlier calculations7,9,28 on related mod-
els, we find thatnmax=4 is sufficient for the values ofU and
V considered here; we have checked in representative cases
that our results do not change significantly ifnmax=5.

In summary, then, our FSDMRG procedure gives us the
energyELsNd for the ground state of models1d and the as-
sociated eigenstateuc0LNl. Given these we can calculate the
energy gaps, order parameters, and correlation functions that
characterize all the phases of this model and thence the phase
diagram. We discuss this in Sec. III.

III. RESULTS

The single-particle energy gapGL for a system of sizeL,
the order parameter for the MDW phase, and the correlation
functions that characterize SF and MDW phases in models1d
can be defined in a straightforward manner in terms of the
energies and wave functions mentioned in the previous Sec.
II. The energy gap is

GL = ELsN + 1d + ELsN − 1d − 2ELsNd, s3d

whereELsNd is the ground-state energy for a system of sizeL
with N bosons. Since we are interested in studying the case
r=1, we increase the number of bosons by 2 at every DMRG
step in which 2 sites are added to the systemsSec. IId so that
r=N/L=1. We expect, and show explicitly below, that this
gap is positive in both MI and MDW phases, which are
incompressible insulators, but it vanishes in the SF phase,
which is compressible.

The correlation function that characterizes the SF phase is

GL
SFsrd ; kc0LNua0

†aruc0LNl, s4d

whereuc0LNl is the ground-state wave function of the system
with sizeL andN bosons. The associated correlation length
can be obtained from the second moment of this correlation
function, namely,

jL
SF; 3o

r

r2GL
SFsrd

o
r

GL
SFsrd 4

1/2

. s5d

Note thatjL
SF is the correlation length for SF ordering in a

system of sizeL; it remains finite so long asL,`.
The MDW phase can be differentiated from the MI phase

by using the order parameter for the MDW phase

MMDW =
1

Lo
i

s− 1dikc0LNusn̂i − rduc0LNl s6d

and the associated correlation function

GL
MDWsrd ; kc0LNusn̂0 − rdsn̂r − rduc0LNl; s7d

the correlation length for MDW orderingjL
MDW can be de-

fined as in Eq.s5d but with GL
MDW instead ofGL

SF.
It is useful first to discuss the caseV=0. Here we repro-

duce the well-understood SF-MI transition. Ind=1 the ap-
pearance of the SF phase is signaled by the divergence of the
correlation lengthjL→`

SF . For a finite systemjL
SF is finite, and

we must extrapolate to theL→` limit, which is best done by
using finite-size scaling. In the critical region the correlation
length is

fjL
SFg−1 < L−1fsL/j`

SFd, s8d

where the scaling functionfsxd,x,x→0. Thus plots of
L /jL

SF versus U, for different system sizesL, consist of
curves that intersect at the critical point at which the corre-
lation length forL=` diverges. Such plots are given in Fig.
3 for V=0. Curves for different values ofL coalesce for
UøUc.3.4. The criterion of coalescence of different curves
to obtain an estimate ofUc used here, as well as in the
similar plots below, is that the difference betweenL /jL

SF for
L=50 andL=100 should be less than 1%. The coalescence
of different curves forUøUc.3.4 indicates the existence of
a critical SF phase, with a diverging correlation length, i.e., a
power-law decay of correlations, for all 0øUøUc. The
single-particle gapGL scales as the inverse of this correlation
length and is, therefore, zero forL=` for 0øUøUc. For
U.Uc we have an MI phase with a finite correlation length
and a nonzero gap. Figure 3 also suggests that the SF-MI
transition here is of the KT type. We can quantify this by
calculating theb function at this transition via the Roomany-
Wyld sRWd approximants7,29,30

bLL8 = f1 − lnsjL
SF/jL8

SFd/lnsL/L8dg/fsjL
SFjL8

SF/jL8jL8
8 d1/2g, s9d

whereL andL8 denote two system sizes andjL8;djL
SF/dU.

For a KT transition the correlation length is
jKT ,expfc/ sU−Ucdsg andb,sU−Ucd1+s, with s=1/2. In
Fig. 4 we show theb function for the SF-MI transition for

FIG. 3. L /jL
SF plotted as a function ofU for different system

sizes andV=0 in models1d. The coalescence of different curves for
U.3.4 shows a KT-type SF-MI transition.
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V=0. To obtain thisb function we useL=98 andL8=100 in
Eq. s9d. We have checked the convergence of theb function,
taking L=48 and L8=50 as well asL=148 andL8=150,
and found it to be very good, as shown in the inset of Fig. 4.
Our fit to the data of Fig. 4 yieldsUc=3.35±0.02,
and s=0.48±0.05, which are consistent with the values
reported earlier.7,9 If we fit our data shere and belowd
over a fixed region ofsU−Ucd /Uc, then our nonlinear least-
squares program yields smaller errors. The conservative
error bars we quote here reflect the range over which our
fitted values forUc, s, etc., vary when we change the
region of sU−Ucd /Uc over which we fit our data, namely,
0.001, uU−Ucu /Uc,0.2 or 0.001, uU−Ucu /Uc,0.35.

Initially the nearest-neighbor interactionV suppresses
the SF phase relative to the MI phase, but at larger values
of V this trend is reversed, leading to a reentrant SF
sFig. 1d. Figure 5sad shows a plot ofL /jL

SF versus U

for V=0.5; by comparing this with Fig. 3 we see that
UcsV=0.5d,UcsV=0d. Curves for different values ofL coa-
lesce for UøUcsV=0.5d.3.0 indicating a power-law SF
phase, as forV=0, and a KT-type MI-SF transition. Again
we use RW approximants to obtain theb function shown in
Fig. 6, and our numerical fit yieldsUc=2.95±0.02 and
s=0.53±0.05. Eventually the MI-SF phase boundary in Fig.
1 turns back. A representative plot ofL /jL

SF versusL, for
V=2.5, illustrates thisfFig. 5sbdg ; we find UcsV=2.5d.4.2.
This reentrance of the SF phase, with increasingV, was not
resolved by the study of Ref. 26.

For sufficiently large values ofV we can have an MDW
phase and an SF-MDW transition, at small values ofU, and
an MI-MDW transition at large values ofU, as shown in the
phase diagram of Fig. 1. In Fig. 7 we plot the MDW order
parameterMMDW as a function of 1/L for U=6 and values of
V ranging fromV=3.0 to 5.3 in steps of 0.1. We see that
MMDW goes to zero forV,VcsU=6d.3.9, whereas it is

FIG. 5. L /jL
SF plotted as a function ofU for different system

sizes and forsad V=0.5 andsbd V=2.5 in models1d. The coales-
cence of different curves forU,3.0 in sad andU,4.2 in sbd show
KT-type SF-MI transitions.

FIG. 6. Theb function of the MI-SF transition forV=0.5, ob-
tained by using the RW approximants withL=98 andL8=100 as in
Fig. 4. The full line is a fit to the formbsUd=csU−Ucds1+sd; we get
c=0.27±0.01,Uc=2.95±0.02 ands=0.53±0.05.

FIG. 7. The MDW order parameterMMDW versus 1/L for
U=6 and different values ofV starting from 3.0 below to 5.3 above
in steps of 0.1.

FIG. 4. Theb function for the MI-SF transition forV=0 ob-
tained by using RW approximantsfEq. s9dg with L=98 and
L8=100. The full line is a fit to the formbsUd=csU−Ucds1+sd; we
get c=0.37±0.01, Uc=3.35±0.02 and s=0.48±0.05. In the
inset we show theb function for three different pairs of lengths
hL ,L8j=h48,50j ,h98,100j ,h148,150j. On the scale of this figure
the different curves can barely be distinguished. This illustrates the
convergence of ourb function with increasingL andL8.
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nonzero for higher values ofV. To determine the universality
classes of the MI-SF and SF-MDW transitions we plot in
Fig. 8 both the order parameterMMDW and L /jL

SF as func-
tions of V for U=6. The different curves forL /jL

SF coalesce
in the region 3.5&U&3.9, indicating an SF phase
sandwiched between MI and MDW phases. Both SF-MI and
SF-MDW transitions are continuous. To confirm this
we have also obtained plots of the ground-state energy
E0; limL→`ELsNd as a function ofV for fixed U. In Fig. 9
we plot E0 anddE0/dV versusV; this plot shows no discon-
tinuity at the SF-MI and SF-MDW transitionssas it does at
the first-order MI-MDW transition discussed below for
U=12d. To determine the universality classes of these SF-MI
and SF-MDW transitions we have obtainedb functions, via
RW approximants forjL

SF, in Fig. 10 for U=6.0. For the
MI-SF transition, we getVc=3.59±0.05 ands=0.47±0.05
and, for the SF-MDW transition,Vc=3.78±0.05 and

s=0.49±0.05. Thus both of these transitions are of the KT
type; however, in addition, the MDW-SF transition also has
an Ising characterstwo-dimensionald since the MDW phase
has a doubly degenerate ground state as mentioned above. To
extract such Ising-model exponents, we use the form
MMDW,sV−VcdbMDW as V↓Vc, where bMDW is the MDW
order-parameter exponent. ForU=6 our fit yields
Vc=3.87±0.05 andbMDW=0.12±0.01 sFig. 11d in good
agreement with the two-dimensional, Ising order parameter
exponent. Note that the value ofVc obtained from this fit for
MMDW is within error bars of that obtained from theb func-
tion for the SF-MDW transition. Thus, within our calculation
we cannot resolve a supersolid phase which has long-range
SF correlations and MDW ordering.

From the phase diagram of Fig. 1 we see that, for suffi-
ciently large values ofU, there is no SF phase and only a

FIG. 8. Plots of L /jL
SF and MMDW versus V for U=6 and

L=90 and 100. The coalescence of different curves ofL /jL
SF, for

3.5,V,3.9, shows an SF phase sandwiched between MI and
MDW phases; for 3.9&V we obtain the MDW phase with
MMDW.0.

FIG. 9. Plots of the ground-state energyE0 and its derivative
dE0/dV versusV for U=6. There is no visible discontinuity in
dE0/dV, so both MI-SF and SF-MDW transitions are continuous.

FIG. 10. Theb functions for MI-SFsad and MDW-SFsbd tran-
sition for U=6, obtained by using RW approximants withL=98 and
L8=100. The full line is a fit to the formbsVd=csV−Vcds1+sd. For
the MI-SF transitionsad we getc=0.76±0.01,Vc=3.59±0.05, and
s=0.47±0.05, and for the MDW-SF transitionsbd we get
c=0.86±0.01,Vc=3.78±0.05, ands=0.49±0.05.

FIG. 11. A log-log plotsbase 10d of the MDW order parameter
MMDW versusV−Vc for U=6. The straight line is a fit to the form
MMDW,sV−VcdbMDW, V↓Vc. Our fit yields Vc=3.87±0.05 and
bMDW=0.12±0.01.
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direct, first-order MI-MDW transition. This direct transition
shows up clearly in Fig. 12, where we plotL /jL

SF andMMDW
versusV for U=12: Curves ofL /jL

SF, for different values of
L, do not merge at any point, so we can conclude that no
power-law SF phase intervenes between MI and MDW
phases. Furthermore, the sharp jump inMMDW at V.6.3
indicates that we have a first-order MI-MDW transition. This
is corroborated by the plots of the ground-state energyE0
and its derivativedE/dV given in Fig. 13 forU=12; the
discontinuity of dE/dV at V.6.3 indicates the first-order
nature of the transition.

The only feature of the phase diagram in Fig. 1 that re-
mains unexplored now is the region in which the continuous
MI-SF and SF-MDW phase boundaries meet the first-order
MI-MDW boundary. The simplest topology possible here is
that these meet at onebicritical point. Our data are not in-
consistent with such a topology. Figure 14 shows, via plots
of L /jL

SF versusV, for different values ofL andU, how the

extent of the SF phasesthe region over which the curves of
L /jL

SF coalesced shrinks as we approach the bicritical point.
Similarly Fig. 15 shows how the jump inMMDW across the
MI-MDW first-order transition decreases as we approach the
bicritical point. To confirm that this is indeed the topology of
the phase diagram in the region where the MI-SF, SF-MDW,
and MI-MDW phase boundaries meet, we must obtain the
critical exponents in the vicinity of the bicritical point. This
is beyond the accuracy of our calculation at the moment. Nor
can we rule out completely more complicated topologies of
phase diagrams in which very closely spaced, tricrital points
and critical endpoints are used to link the three phase bound-
aries we have studied above.

FIG. 12. Plots ofL /jL
SF and MMDW versusV for U=12 and

different system sizesL. Note that the curves forL /jL do not meet
at any point; however,MMDW jumps at the first-order, MI-MDW
transition atV.6.3.

FIG. 13. The ground-state energyE0 and its derivativedE0/dV
versusV for U=12.0; the jump indE0/dV at V.6.3 shows that the
MI-MDW transition is first order.

FIG. 14. Plots ofL /jL
SF versusV for different values ofU and

different system sizesLs80,90,100d. The region over which curves
for different values ofL coalesce decreases as we go fromU=8 to
U=8.5; and there is no coalescence forU=9. This shows how the
SF phase shrinks as we approach the bicritical point.

FIG. 15. The MDW order parameterMMDW plotted versusV/Vc

for different values ofU across the MI-MDW first-order transition.
The jump inMMDW at the first-order phase boundary decreases as
we approach the bicritical point atsU ,Vd=s8.5±0.05,4.75±0.05d.
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IV. CONCLUSIONS

We have carried out an extensive study of the one-
dimensional, extended Bose-Hubbard models1d by using the
FSDMRG method. Our study yields ground-state energies,
single-particle gaps, the MDW order parameter, and SF cor-
relation functions and correlation lengths. By studying these
we obtain an accurate phase diagramsFig. 1d for this model.
This shows continuous MI-SF and SF-MDW transitions
meeting the first-order MI-MDW boundary at a bicritical
point.

We have looked for, but not found, a supersolidsSSd
phase which, in the context of the lattice model we study
here, would exhibit power-law superfluid correlations, as in
the SF phase, and a nonzero order parameterMMDW, as in the
MDW phase. It is likely31 that further than nearest-neighbor
interactions will be required to stabilize the SS phase, as we
will explore elsewhere.

We hope our detailed study of models1d will stimulate
experimental studies. A recent experimental study32 has
shown that it is possible, by a suitable choice of confining
potentials in optical lattices, to obtain a physical realization
of the one-dimensional Bose-Hubbard models. It would be
interesting to see how nearest-neighbor interactions, likeV,
can be obtained in such lattices. If this can be done, the rich
phase diagram of Fig. 1 can be explored experimentally.
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