PHYSICAL REVIEW B 71, 104508(2005

Superfluid, Mott-insulator, and mass-density-wave phases in the one-dimensional extended
Bose-Hubbard model

Ramesh V. Pdi
Department of Physics, Goa University, Goa 403 206, India

Rahul Pandit
Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Sciences, Bangalore 560 012, India
and Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 064, India
(Received 30 April 2004; published 15 March 2005

We use the finite-size, density-matrix-renormalization-grd68DMRG method to obtain the phase dia-
gram of the one-dimensionél=1) extended Bose-Hubbard model for dengityl in theU-V plane, where
U andV are, respectively, onsite and nearest-neighbor interactions. The phase diagram comprises three phases:
superfluid(SH, Mott insulator(MI), and mass-density-wa®DW). For small values otJ andV, we get a
reentrant SF-MI-SF phase transition. For intermediate values of interactions the SF phase is sandwiched
between MI and MDW phases with continuous SF-MI and SF-MDW transitions. We show, by a detailed,
finite-size scaling analysis, that the MI-SF transition is of Kosterlitz-Thoul€$s type whereas the MDW-SF
transition has both KT and two-dimensional Ising characters. For large valudsaofl V we get a direct,
first-order, MI-MDW transition. The MI-SF, MDW-SF, and MI-MDW phase boundaries join at a bicritical
point at(U,V)=(8.5+0.05,4.75+0.06
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I. INTRODUCTION neighbor sitg with amplitudet. a (a;) is the boson creation

The study of quantum phase transitions in systems of in(annihilation operator at site andf;=aa; is the associated
teracting bosons is an exciting area with a fruitful interplaynumber operator; onsite) and nearest-neighbdr interac-
between theory;1° numerical simulation$!-14 and experi- tions are represented, respectively, by the second and third
ments. A variety of experimental systems have been studiederms and are positive since they are repulsive. We restrict
liquid “He in porous media like vycor or aerogélmicro-  ourselves to the physically relevant regigss U and set the
fabricated Josephson-junction arrd§s; the disorder-driven  scale of energies by usirtgr1.
superconductor-insulator transition in thin films of supercon- Model (1) has been studied by a number of authéris
ducting materials like bismutk flux lines in type-1l super- the case/=0, i.e., in the absence of nearest-neighbor inter-
conductors pinned by columnar defects aligned with an exactions. At zero temperaturéf=0) it has been shown to
ternal magnetic field? and best from the point of view of have a superfluid phase if the mean number of bosons per
comparing theory with experiments, atoms trapped insite 5 is not an integer; however, for integer densities, it

optical-lattice potentials. In a system where the number ohows a SF to MI transition. This SF-MI transition is of the
atoms per site is an integer, Greiretral 2 have observed a Kosterlitz-ThoulesgKT) type?® in one dimensioR:’-1!

superfluid-Mott-insulator transition fdt’Rb atoms, trapped In the limit U—c model (1) maps onto the spil/2)

in a three-dimensional optical-lattice potential, by changin : X
the strength of the onsite potential. Experiments in such OSXXZ model if the mean number of bosons per siel/2.

. . ; Every site can now have only two possible states, namely, a
tical lattices have several advantages over their condensecFI- Y y P Y

matter counterparts, including precise knowledge of the unState with no boson and another with one boson. We repre-

derlying microscopic modef, the possibility of controlling sent these a©) and|1), respectively, and make the identifi-

parameters in the effective lattice Hamiltonians, and the abcation|0)—|[|) and|1)—[1), where| | ) and|T) are, respec-

sence of disorder. The recent probable observation of a sfiVelY; SpPin{1/2) TdOW” and up states. Now, by using the
persolid helium phag@has given a further fillip to this area. transformationsa/—§, a—§, and i —[§-(1/2)], the
Even in the absence of disorder these systems can shownedel (1) maps onto the spifit/2) XXZ model with the
variety of phases like superfluigSF), Mott-insulator(MI), ~ Hamiltonian
and mass-density-wavéMDW) [or charge-density-wave
(CDW) if the bosons are charggdlrhe simplest model that
can \ngw these phases is theggxtended Lgose-Hubbard model Hxxz=~ ZtE (SXSX + SyS%/) + Vz SZ%Z (2)
whose Hamiltonian is @ @p
H=-t> (aiTaj +H.c)+ 92 AR -1 +V > A where we have suppressed constant terms. This model has
) i <ij> been solved exactl§ and shows a KT-type transition from
1) XY to Ising ordering atv=2t. The bosonic analogs of XY
and Ising phases are, respectively, SF and MDW phases.
The first term in Eq(1) represents the kinetic energy asso- If p=1 andt=0, it is easy to see that modél) has a
ciated with the hopping of bosons from sit their nearest- first-order, MI-MDW transition atJ=2V. Large values olJ
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B y phase with a uniform density of bosons on nearest-neighbor
sites; instead, an MDW phase, with a periodic variation of
the boson density, is stabilized. The lattice we consider is
bipartite and has two sublattices A and$ay odd-numbered
and even-numbered sijesghe ground state in the MDW
phase is, therefore, doubly degenerate since the peaks in
the MDW can lie either on the A or the B sublattice. If
the bosons are charged, this MDW phase is a CDW phase.
By using the FSDMRG method we have determined the
phase boundaries between these phases. The MI-SF phase
boundary in Fig. 1 lies in the KT universality class, whereas
the MDW-SF phase boundary has both KT and two-
dimensional Ising characters. For large valuedJoandV,
the MI-MDW transition occurs directly and is of first-order
S N (dashed line in Fig. ) as noted above, a@t0, a first-order
0123458678 91011121314 MI-MDW transition is obtained atU=2V. Within the
accuracy of our calculation, the MI-SF, MDW-SF, and
MI-MDW phase boundaries meet at a bicritical point at
FIG. 1. The FSDMRG phase diagram of the one-dimensional(U,V)=(8.5+0.05,4.75+0.06 We have looked for, but not
extended Bose-Hubbard model for density1 showing SF, MI,  found, a supersolid phase with both SF and MDW order. A
and MDW phases. The two full lines indicate continuous transitionsyery prief discussion of some of our preliminary results has
vv_he_r_eas thg dashed line is a f_irst-order boundary;_ these meet atien given in Ref. 28.
bicritical point. We do not consider the shaded region U. The remaining part of this paper is organized as follows.
favor the MI phase, whereas large values\bffavor the Sect?on 1] contai_ns the details of our FSDMRG calcu_lation.
MDW phase. Sectloq [l contains our results. We end with concluding re-
Recently Kihner and Moniérstudied model1) in one ~ Marks in Sec. IV.
dimension by the using a finite-size, density-matrix renor-
malization groug® (FSDMRG and showed that, fov=0.4,
it has a continuous SF-MDW transition for densipy
=(1/2) and a continuous SF-MI transition fp=1. Niyazet The FSDMRG method has proven to be very useful in
al.?® have studied this model in one dimension by a Monte-studies of one-dimensional quantum systérf#s2To make
Carlo method and obtained its phase diagram in(theV)  this paper self-contained we summarize the salient points of
plane forp=1. They obtain SF, Ml and MDW phases in this method. Open boundary conditions are preferred for
model (1) and continuous SF-MI, SF-MDW, and MI-MDW such calculations since the loss of accuracy with increasing
transitions but conjecture that, at lardethe MI-MDW tran-  system size is much less than in the case of periodic bound-
sition should be first order. The study of Ref. 26 has obtained@ry conditions. The conventional FSDMRG method consists
a phase diagram for modé€l); however, they have not in- of the following two steps:
vestigated the universality classes of the transitions in detail. (1) The infinite-system, density-matrix renormalization
We obtain the phase diagram here for denpityl by using group method(DMRG), in which we start with a system
the FSDMRG method which, as we show below, gives verywith four sites, add two sites at each step of the iteration, and
accurate results for the nature of ordering in the differenttontinue until we obtain a system with the desired nuntber
phases and the types and universality classes of the transif sites(in most of our calculations we ude=100 but, in
tions. We restrict ourselves to the case of integer densitgome representative cases, we have gone wp=200.
(p=1) since we want to explore the competition between SF, (2) The finite-system method in which the system dize
MDW, and MI phases. We note in passing that, even foris held fixed, but the energy of a target state is improved
V=0, the Bose-Hubbard modél) cannot be solved exactly iteratively by a sweeping procedure, described below, until
unlike its fermionic counterpart; and for the fermionic case,convergence is obtained.
too, there has been renewed interest in the phase diagram of For a model like Eq.(1) we first construct the Hamil-
the extended Hubbard modél. tonian matrix of the superblock configurati&je « B}, where
Before proceeding further we give a brief summary of ourB‘i and B} represent left- and right-block Hamiltonians, re-
results. Our FSDMRG phase diagram for mod#), with  spectively, and each one of the ¢ represents a single-site
d=1 andp=1, is given in the(U,V) plane of Fig. 1. It Hamiltonian. In the first step of the DMRG iteration btﬂlﬁ
consists of three phases; SF, MI, and MDW. For small valuesind B also represent single sites, so, at this step, we have a
of the interactiond) andV, the SF phase dominates, as is tofour-site chain. We now diagonalize the Hamiltonian matrix
be expected, since the bosons interact weakly here; howevaf the superblock and obtain the energy and the eigenfunc-
as the interaction strengths increase, either Ml or MDWtion of a target state In our study the target state is the
phases get stabilized. The former dominates whiés much  ground state of the system of sizewith either N=L or
larger thanV, whereas the latter dominateslf andV are N=Lx1 bosons. The latter is required for obtaining the gap
both large and comparable. A large, repulsiwelisfavors a in the energy spectrum. We now divide the superblock into

Il. FSDMRG CALCULATIONS
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two equal halves, the left and the right parts, which are 5

treated, respectively, as tegstenmand theuniverse The den- . -
sity matrix for this system namely,B5=B!s, is calculated ad .
from the target state If we write the target state as ] .
ly)=3i; ¢ ;lD)j), whereli) and|j) are, respectively, the basis .

states of thesystemand theuniverse then the density matrix
for thesystenhas elementg; ;: =X; ¢ ;4 ;. The eigenvalues
of this density matrix measure the weight of each of its
eigenstates in therget state The optimal states for describ- ]
ing the systemare the ones with the largest eigenvalues of -
the associated density matrix. In this first step of the DMRG .
the superblock, and hence the dimension of the density ma- 1 .
trix, is small, so all the states can be retained. In subsequent 04 aaemmant
steps, however, when the sizes of the superblocks and den- —
sity matrices increase, only the most significant states are 0 10 20 30 40 50
retained, say the ones corresponding to the laryesigen- L

values of the density matriXin our studies we choose
M:128).€We then obtain the effective Hamiltonian for the
(Sj)ésr;]t;gBr%;rt]rig;]ihti)saisu(;]:afjh?n S{'Srr:]'f::rt]rt_‘ee'g:tnﬁrgéisf;f ttr?gFSDMRG methods fpr a representative point in the SF phase of Fig.
next DMRG iteration. In the same manner we obtain thel’ plotted as a function df.
effective Hamiltonian for the right block,e., B=+B}. In  decreasesincreasesby one site at each step. Furthermore,
the next step of the DMRG we construct the Hamiltonianin each of the right- and left-sweeping steps, the energy of
matrix for the superblocBje B}, so the size of the system the target state decreases systematically until it converges.
increases fromL=4 to L=6. For a system of siz&, we  (We use a six-figure convergence criterion in our calcula-
continue, as in the first step, by diagonalizing the Hamil-tions)

tonian matrix for the configuratioB, ,,_,* *B{, ;,-, and set- We use a slightly modified form of the FSDMRG method
ting Bflzz Bfuz)—l' and B[ ,= 'B[L/z)—l in the next step of in which we sweep, as described abovegwatry stepf the

the DMRG iteration. Thus at each step of the DMRG itera-O2MRG scheme and not only in the one that corresponds to
tion the left and right blocks increase in length by one sitelh€ largest value ot. This helps in obtaining accuraje

and the total length. of the chain increases by 2. functions wr_uch we use .t(.) obtain critical expolnefﬁee be-

In the infinite-system DMRG method outlined above thelov_v) at continuous transitions. Furthermore, since the super-
left- and right-block bases are not optimized in the following fluid phase in models such as E@), in d=1 and afT=0, is
sense: The DMRG estimate for the target-state energy, at tHgitical and has a correlation length that diverges with the
step when the length of the systenLisis not as close to the SySteém size, finite-size effects must be removed by using
exact value of the target-state energy for this system size asfifite-Size scaling as we show below. For this purpose, the
can be. It has been found that the FSDMRG method overenergies and correlation functions, obtained from a DMRG
comes this probler? In this method we first use the infinite- calculation, should have converged properly for each system
system DMRG iterations to build up the system to a certairsiz€ L. It is important, therefore, that we use the FSDMRG
desired sizel. The L-site superblock configuration is now Method as opposed to the infinite-system DMRG method,
given byB(eL/Z)—l..B[L/Z)—l' In the next step of the FSDMRG especially in the vicinities of continuous phase transitions.

i . VoR' . We find that convergence, to a specified accuracy for the
method, the superblock confrguratlﬁrﬁuz) B(Li2)-2» Which target-state energy, is faster in the MI phase than in the SF

clearly keeps the system size fixedLatis used. This step is phase. Figure 2 shows, at a representative point in the SF
called sweepingn the right direction since it increaséde- phase of Fig. 1, how the percentage disagreement between
creasepthe size of the leftright) block by one site. For this pyMRG and FSDMRG ground-state energies increases with
superblock thesystemis BY ¢, the universeis *B{ , , the | in our calculations.

associated density matrix can be found, and from its most Since the bases of left- and right-block Hamiltonians are
significant states the new effective Hamiltonian for the lefttruncated by neglecting the eigenstates of the density matrix
block, with[(L/2)+1] sites, is obtained. We sweep again, in corresponding to small eigenvalues, this leads to truncation
this way, to obtain a left block witfi(L/2)+2] sites and so errors. If we retairM states, the density-matrix weight of the
on until the left block hasL - 3) sites and the right block has discarded states By, =E';A=1(1‘wa)a wherew,, are the eigen-

1 site so that, along with the two sites between these blocksjalues of density matrixPy, provides a convenient measure
the system still has sizk; or, if a preassigned convergence of the truncation errors. We find that these errors depend on
criterion for the target-state energy is satisfied, this sweepinthe order-parameter correlation length in a phase. For a fixed
can be terminated earlier. Note that, in these sweeping stepll, we find very small truncation errors in the Ml and MDW
for the right block we need’ to B|_;, which we have al- phases; these grow as the MI-SF and MDW-SF transitions
ready obtained in earlier steps of the infinite-system DMRGare approached, and the truncation errors are largest in the
Next we sweep leftward; the size of the léfight) block  SF phase. In our calculations we choddesuch that the

AE, (in %)

FIG. 2. The percentage difference between the ground state en-
ergiesAE, =(EPMRC- g SPMRG/EFSPMRG gptained by DMRG and
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truncation error is always less thanx30°6; we find that ]
M =128 suffices. 8- L 7
The number of possible states per site in the Bose- 1 70 ,7;
Hubbard model is infinite since there can be any number of 71 _:_g 77
. . . J £
bosons on a site. In a practical DMRG calculation we must L v—100 /';f
restrict the numben,,,, of states or bosons allowed per site. ]
The smaller the interaction parametétsandV, the larger ~ 5
mustn,,.. be. As in earlier calculatiod$-?2 on related mod- Yy
els, we find than,,,=4 is sufficient for the values df and 4
V considered here; we have checked in representative cases :
that our results do not change significantlynjf,,=5. 3
In summary, then, our FSDMRG procedure gives us the 1
energyE, (N) for the ground state of modél) and the as- 21
sociated eigenstatey, ). Given these we can calculate the 32 34 36 38 4D 42 44 46 48 50 52
energy gaps, order parameters, and correlation functions that u
characterize all the phases of this model and thence the phase
diagram. We discuss this in Sec. IIl. FIG. 3. L/&F plotted as a function ofJ for different system
sizes and/=0 in model(1). The coalescence of different curves for
U=3.4 shows a KT-type SF-MI transition.

Ill. RESULTS

The single-particle energy gdp, for a system of sizé, F[ADW(r) = (ounl (Fo = p) (By = p)|doLn); (7)
the order parameter for the MDW phase, and the correlation MDW

functions that characterize SF and MDW phases in m@ijel  the correlation length for MDW ordering” " can be de-
can be defined in a straightforward manner in terms of thdined as in Eq(5) but with I'""™ instead ofl'7".
energies and wave functions mentioned in the previous Sec. It is useful first to discuss the ca%-=0. Here we repro-

Il. The energy gap is duce the well-understood SF-MI transition. d=1 the ap-
pearance of the SF phase is signaled by the divergence of the
G, =E.(N+1)+E (N-1) - 2E,(N), (3)  correlation lengtheSF .. For a finite systeng." is finite, and

) . we must extrapolate to tHe— o limit, which is best done by
whereE, (N) is the ground-state energy for a system of &ize ging finjte-size scaling. In the critical region the correlation
with N bosons. Since we are interested in studying the casgngh is

p=1, we increase the number of bosons by 2 at every DMRG
step in which 2 sites are added to the syst&ec. 1) so that [ = LH(LED, (8)
p=N/L=1. We expect, and show explicitly below, that this ) .
gap is positive in both MI and MDW phases, which areWheSrFe the scaling functiorf(x) ~x,x—0. Thus plots of
incompressible insulators, but it vanishes in the SF phasd;/é versusU, for different system sizes, consist of
which is compressible. curves that intersect at the critical point at which the corre-
The correlation function that characterizes the SF phase igtion length forL. =« diverges. Such plots are given in Fig.
3 for V=0. Curves for different values df coalesce for
TER(r) = (onladar o, (4 UsU,=3.4. The criterion of coalescence of different curves
_ _ to obtain an estimate of); used here, as well as in the
where|ygLy) is the ground-state wave function of the systemsimilar plots below, is that the difference betweehtSF for

with sizeL andN bosons. The associated correlation lengthl =50 andL=100 should be less than 1%. The coalescence
can be obtained from the second moment of this correlatiowf different curves fotJ < U.= 3.4 indicates the existence of

function, namely, a critical SF phase, with a diverging correlation length, i.e., a
e e power-law decay of correlations, for all<OU<U,.. The

> r21*f (r) single-particle gajs, scales as the inverse of this correlation
£F = SLE—— (5) length and is, therefore, zero ftu=o for O=<U=<U,.. For

> A U>U, we have an Ml phase with a finite correlation length

r and a nonzero gap. Figure 3 also suggests that the SF-MI
SF - . o transition here is of the KT type. We can quantify this by
Note that{™ is the correlation length for SF ordering in @ cajculating thes function at this transition via the Roomany-

system of sizd; it remains finite so long ak <o°. Wyld (RW) approximant293°
The MDW phase can be differentiated from the M| phase
by using the order parameter for the MDW phase B =[1- In(nglgf,F)/In(L/L’)]/[(nggf,Flgﬁgﬁ,)l/z], (9)
i o whereL andL’ denote two system sizes agfi=d&>"/dU.
Muwow = LEi (= 1 Chounl (= p) oL ®  For a KT tansion the corelation length is

&r~exde/(U-Uy?] and B~ (U-Uy*, with 6=1/2. In
and the associated correlation function Fig. 4 we show thes function for the SF-MI transition for
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0.6 - .

g(U)

5.2 0.1+

0.0 T T T T T T T T
28 30 32 34 36 38 40 42 44 48

u

FIG. 4. The g function for the MI-SF transition fov=0 ob-
tained by using RW approximantgEqg. (9)] with L=98 and
L’=100. The full line is a fit to the fornB(U)=c(U-Uy1*); we
get ¢=0.37+0.01, U;=3.35£0.02 and 0=0.48+0.05. In the FIG. 6. Theg function of the MI-SF transition fo/=0.5, ob-
inset we show the3 function for three different pairs of lengths tained by using the RW approximants wltk98 andL’ =100 as in
{L,L'}={48,50,{98,10@,{148,150. On the scale of this figure Fig. 4. The full line is a fit to the fornB(U)=c(U-Uy)**); we get
the different curves can barely be distinguished. This illustrates thg=0.27+0.01,U,=2.95+0.02 andr=0.53+0.05.
convergence of ouB function with increasind- andL’.

V=0. To obtain thig3 function we use.=98 andL’=100 in  or V=0.5; by comparing this with Fig. 3 we see that
Eq. (9). We have checked the convergence of ghieinction, ~ Jc(V=0.9<Uc(V=0). Curves for different values df coa-
taking L=48 andL’=50 as well asL=148 andL’'=150, lesce forU=U.(V=0.5=3.0 indicating a povygr-law SF
and found it to be very good, as shown in the inset of Fig. 4Phase, as fov=0, and a KT-type MI-SF transition. Again
Our fit to the data of Fig. 4 vyieldsU,=3.35+0.02, We use RW approximants to obtain tfefunction shown in
and 0=0.48+0.05, which are consistent with the valuesFig- 6, and our numerical fit yield#);=2.95+0.02 and
reported earlief:? If we fit our data (here and below 0=0.53+0.05. Eventually thg MI-SF phagFe boundary in Fig.
over a fixed region ofU-U,)/U,, then our nonlinear least- 1 turns back. A representative plot af &°" versusL, for
squares program vyields smaller errors. The conservativ¥=2-5, illustrates thigFig. b)] ; we find U(V=2.5=4.2.
error bars we quote here reflect the range over which oufhis reentrance of the SF phase, with increasigvas not
fitted values forU,, o, etc., vary when we change the resolved by the study of Ref. 26.
region of (U-U.)/U, over which we fit our data, namely, ~ For sufficiently large values df we can have an MDW
0.001<|U-U,/U,<0.2 or 0.00K |U-U,/U.<0.35. phase and an SF-MDW transition, at small valuesJofind
Initially the nearest-neighbor interactiod suppresses an MI-MDW transition at large values &, as shown in the
the SF phase relative to the Ml phase, but at larger valueBnase diagram of Fig. 1. In Fig. 7 we plot the MDW order
of V this trend is reversed, leading to a reentrant SFParameteMypy as a function of 1L for U=6 and values of

(Fig. 1). Figure 5a) shows a plot ofL/ :LsF versus U V ranging fromV=3.0 to 5.3 in steps of 0.1. We see that

Mupw goes to zero folV<V (U=6)=3.9, whereas it is

10 -
o L (b) /
32 o /"?: 06

6
% 5]
43
37

L

0.5 1

1 —TTTr77T 04
5.5-—30 35 40 45 50 55 6.0
5.0 L g
J a 4 =
45 |—=—70 (@ ',:f;: = 034
] .
4.0 —e—80 /:;;;,. o]
0.2

0.1 4

30 35 40 45 . . i . ' .
U 0.00 0.;)2 0.;)4 0.:)6 0.;)8 0.’10 0.I12
1L
FIG. 5. L/&F plotted as a function ot for different system
sizes and fora) V=0.5 and(b) V=2.5 in model(1). The coales- FIG. 7. The MDW order parameteMypy versus 1L for
cence of different curves fdd < 3.0 in(a) andU <4.2 in (b) show U=6 and different values o starting from 3.0 below to 5.3 above

KT-type SF-MI transitions. in steps of 0.1.
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35 o7 16
1 -=— =90 14-. (a)
304 [—e—L=100 Y :ﬁ-
—~ 0.8
L 05 & 06
04
02
L 0.4
b X
E T T T T T T T T T T
Fos 3 18 20 22 24 26 vz.a 30 32 34 36
10
0.2 05.] (b) .
- 0.1 9 0.6 <
= 04-
L 0.0
02
50
Y 8 e —
v 38 40 42 44 48 48

FIG. 8. Plots ofL/&F and Mypy versusV for U=6 and _
L=90 and 100. The coalescence of different curves k", for _ FIG. 10. Thep functions for MI-SF(a) and MDW-SF(b) tran-
3.5<V<3.9, shows an SF phase sandwiched between MI andition forU=6, obtained by using RW approximants witk 98 and

MDW phases: for 3.6V we obtain the MDW phase with L =100. The full line is a fit to the formg(V)=c(V-V)**\. For
Mypw 0. the MI-SF transition(a) we getc=0.76+0.01,V.=3.59+0.05, and

0=0.47£0.05, and for the MDW-SF transitiob) we get
nonzero for higher values af. To determine the universality €=0-86£0.01V;=3.7820.05, andr=0.49+0.05.

classes of the MI-SF and SF-MDW transitioSnFs we plot in ;-0 49+0.05. Thus both of these transitions are of the KT
Fig. 8 both the order parametdfypy andL/& " as func- — type: however, in addition, the MDW-SF transition also has
tions of V for U=6. The different curves fok/&> coalesce gn Ising characteftwo-dimensional since the MDW phase

in the region 3.5U=<3.9, indicating an SF phase has a doubly degenerate ground state as mentioned above. To
sandwiched between MI and MDW phases. Both SF-MI ancextract such Ising-model exponents, we use the form

SF-MDW transitions are continuous. To confirm this Mypy~ (V-V)vow as V| V., where Bypw is the MDW

we have also obtained plots of the ground-state energgrder-parameter exponent. FolJ=6 our fit yields
Eo=lim__..E (N) as a function otV for fixed U. In Fig. 9  V.=3.87+0.05 andgy,pw=0.12+0.01 (Fig. 11 in good

we plot Ey anddEy/dV versusV; this plot shows no discon- agreement with the two-dimensional, Ising order parameter
tinuity at the SF-MI and SF-MDW transition@s it does at  exponent. Note that the value @f obtained from this fit for
the first-order MI-MDW transition discussed below for Mypw is within error bars of that obtained from thgfunc-
U=12). To determine the universality classes of these SF-Mtion for the SF-MDW transition. Thus, within our calculation
and SF-MDW transitions we have obtaingdunctions, via  we cannot resolve a supersolid phase which has long-range
RW approximants for. EF, in Fig. 10 for U=6.0. For the SF correlations and MDW ordering.

MI-SF transition, we get/.=3.59+0.05 andr=0.47+0.05 From the phase diagram of Fig. 1 we see that, for suffi-
and, for the SF-MDW transition,V.=3.78+0.05 and ciently large values ofJ, there is no SF phase and only a

0.0100
=
.08
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- 0.0050 2 1
o > 8 014
ul g
3 m 1
° -0.16 -
0.015 -
L 0.0025 1
0.18
T T L] T L]
12 40 08 06 04 02
0.010 4+———r——————r——
20 25 30 35 40 45 50 log,, (V-V,)

FIG. 11. A log-log plot(base 10 of the MDW order parameter

FIG. 9. Plots of the ground-state enerBy and its derivative  Mypw versusV-V, for U=6. The straight line is a fit to the form

dEy/dV versusV for U=6. There is no visible discontinuity in  Mypw~ (V-V)Avow, V|V, Our fit yields V,=3.87+0.05 and
dEy/dV, so both MI-SF and SF-MDW transitions are continuous. Bypw=0.12+0.01.
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FIG. 12. Plots ofL/&" and Mypy versusV for U=12 and

different system sizek. Note that the curves fdr/ & do not meet FIG. 14. Plots ofL/gfF versusV for different values oU and
at any point; howeverMypw jumps at the first-order, MI-MDW  different system sizels(80,90,100. The region over which curves
transition atvV==6.3. for different values oL coalesce decreases as we go fldm8 to

U=8.5; and there is no coalescence fbr9. This shows how the
direct, first-order MI-MDW transition. This direct transition SF phase shrinks as we approach the bicritical point.
shows up clearly in Fig. 12, where we plot&>F andMy,pw

versusV for U=12: Curves ofL/ &>, for different values of  extent of the SF phasihe region over which the curves of
L, do not merge at any point, so we can conclude that n@ /£SF coalesce shrinks as we approach the bicritical point.
power-law SF phase intervenes between Ml and MDWsimilarly Fig. 15 shows how the jump iNlypy across the
phases. Furthermore, the sharp jumpMypw at V=6.3  MmI-MDW first-order transition decreases as we approach the
indicates that we have a first-order MI-MDW transition. This pjcritical point. To confirm that this is indeed the topology of
is corroborated by the plots of the ground-state endfgy the phase diagram in the region where the MI-SF, SF-MDW,
and its derivativede/dV given in Fig. 13 forU=12; the  and MI-MDW phase boundaries meet, we must obtain the
discontinuity of dE/dV at V=6.3 indicates the first-order critical exponents in the vicinity of the bicritical point. This
nature of the transition. . o is beyond the accuracy of our calculation at the moment. Nor
The only feature of the phase diagram in Fig. 1 that rexan we rule out completely more complicated topologies of
mains unexplored now is the region in which the continuougyhase diagrams in which very closely spaced, tricrital points

MI-SF and SF-MDW phase boundaries meet the first-ordepn critical endpoints are used to link the three phase bound-
MI-MDW boundary. The simplest topology possible here is zries we have studied above.

that these meet at orgcritical point. Our data are not in-
consistent with such a topology. Figure 14 shows, via plots
of L/&F versusV, for different values ol andU, how the 074

a8
» .---a---.----—u-----—uaa -
i
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v

FIG. 15. The MDW order parametdt,,p\ plotted versud//V,
FIG. 13. The ground-state ener&y and its derivativedEy/dV for different values olU across the MI-MDW first-order transition.
versusV for U=12.0; the jump indEy/dV atV=6.3 shows that the The jump inMy,pw at the first-order phase boundary decreases as
MI-MDW transition is first order. we approach the bicritical point &U,V)=(8.5+0.05,4.75+0.06
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IV. CONCLUSIONS We hope our detailed study of modé) will stimulate
] . experimental studies. A recent experimental stédgas
~We have carried out an extensive study of the oneshown that it is possible, by a suitable choice of confining
dimensional, extended Bose-Hubbard mddglby using the  potentials in optical lattices, to obtain a physical realization
FSDMRG method. Our study yields ground-state energiesyf the one-dimensional Bose-Hubbard models. It would be
single-particle gaps, the MDW order parameter, and SF COfinteresting to see how nearest-neighbor interactions, \like
relation functions and correlation lengths. By studying thesean be obtained in such lattices. If this can be done, the rich

we obtain an accurate phase diagréfiy. 1) for this model.  phase diagram of Fig. 1 can be explored experimentally.
This shows continuous MI-SF and SF-MDW transitions

meeting the first-order MI-MDW boundary at a bicritical
point.

We have looked for, but not found, a superso{8S We would like to thank H. R. Krishnamurthy for discus-
phase which, in the context of the lattice model we studysions. One of the authok&.V.P) is grateful to the Jawaha-
here, would exhibit power-law superfluid correlations, as inrlal Nehru Centre for Advanced Scientific Research and the
the SF phase, and a nonzero order paranmigs,, as inthe  Department of Physics, Indian Institute of Science, Banga-
MDW phase. It is likely! that further than nearest-neighbor lore, for hospitality during the time when a part of this paper
interactions will be required to stabilize the SS phase, as wwas written. This work was supported by DST, Ind&rants
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