

Synthetic Communications

An International Journal for Rapid Communication of Synthetic Organic Chemistry

ISSN: 0039-7911 (Print) 1532-2432 (Online) Journal homepage: http://www.tandfonline.com/loi/lsyc20

Convenient Synthesis of 3,5-Disubstituted Isoxazoles

Reshma F. Kurangi , Rima Kawthankar , Sulfala Sawal , Vidya G. Desai & Santosh G. Tilve

To cite this article: Reshma F. Kurangi , Rima Kawthankar , Sulfala Sawal , Vidya G. Desai & Santosh G. Tilve (2007) Convenient Synthesis of 3,5#Disubstituted Isoxazoles, Synthetic Communications, 37:4, 585-587, DOI: 10.1080/00397910601055107

To link to this article: http://dx.doi.org/10.1080/00397910601055107

	Published online: 06 Mar 2007.
	Submit your article to this journal $oldsymbol{oldsymbol{\mathcal{G}}}$
hil	Article views: 195
Q ^L	View related articles 🗗
4	Citing articles: 12 View citing articles 🖸

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=lsyc20

Synthetic Communications[®], 37: 585–587, 2007 Copyright © Taylor & Francis Group, LLC ISSN 0039-7911 print/1532-2432 online DOI: 10.1080/00397910601055107

Convenient Synthesis of 3,5-Disubstituted Isoxazoles

Reshma F. Kurangi

Department of Chemistry, Goa University, Goa, India

Rima Kawthankar, Sulfala Sawal, and Vidya G. Desai

Department of Chemistry, Dnyanprassarak Mandal's College of Arts, Science, and Commerce, Assagao, Mapusa, Bardez, Goa, India

Santosh G. Tilve

Department of Chemistry, Goa University, Goa, India

Abstract: α,β -Unsaturated oximes obtained from the corresponding α,β -unsaturated ketones on treatment with 2 equivalents of manganese dioxide in refluxing chloroform gives 3,5-disubstituted isoxazoles in good yields.

Keywords: heterocycle, isoxazole, MnO₂, oxidative cyclisation

Isoxazoles^[1] form an important class of aromatic heterocycles and have diverse applications. Their range of uses includes medicinal, herbicidal, fungicidal, pesticidal applications; dyes; insulating oils and lubricants. Isoxazoles contain a weak nitrogen—oxygen bond, which has been exploited to provide difunctionalized compounds such as 1,3-dicarbonyl, enaminoketone, γ -aminoalcohols, and β -hydroxy ketone. Thus, isoxazoles serve as building blocks in organic synthesis.

Earlier, we had reported dichloro dicyano benzoquinone (DDQ) as an oxidative cyclizing agent for the synthesis of 3,5-diaryl isoxazoles from the oximes of corresponding ketones.^[2] Recently, MnO₂ has been used as a

Received July 12, 2006

Address correspondence to Vidya G. Desai, Department of Chemistry, Dnyanprassarak Mandal's College of Arts, Science, and Commerce, Assagao, Mapusa, Bardez, Goa 403 507, India. E-mail: vidchem@gmx.net

Scheme 1.

tandem oxidation process (TOP) agent^[3] in a variety of synthetic manipulations including synthesis of heterocycles. Because MnO2 is a mild, nontoxic, and cheaply available reagent, we thought of using this for the synthesis of isoxazoles (Scheme 1). Our initial attempt at oxidative cyclisation of the chalcone oxime 1a in CH₂Cl₂ failed. When refluxing chloroform was used, we could get the corresponding 3,5-diphenyl isoxazole (2a) in 60% yield after 2 h. Similarly the other unsaturated oximes (Table 1, entries 2a-j) yielded the corresponding isoxazoles. To check the feasibility of the TOP sequence, [3] a mixture of chalcone 1a, MnO₂, NH₂OH · HCl, and triethylamine (TEA) in refluxing CHCl₃ was attempted, but without success. When tetrahydrofuran (THF) was used as a solvent, some amount of direct formation of product was observed, but under the varying conditions tried, complete conversion could not be obtained. However, it was possible to obtain the isoxazole in a one-pot experiment wherein initially chalcone 1a, 3 equivalents of NH₂OH · HCl, and 3 equivalents of TEA were stirred for 30 min, followed by the addition of MnO₂ (5 equivalents) and refluxing for 2 h.

In conclusion, we have developed a convenient method for the synthesis of 3,5-disubstituted isoxazoles from α,β -unsaturated ketones. The procedure works well for differently substituted 3,5-diaryl isoxazoles (Table 1, entries 2a-h). It also works well when one of the group is alkyl (entries 2i-j). It fails to work when both the groups are alkyl and also with α,β -unsaturated aldehydes or

Table 1. Preparation of 3,5-disubstituted isoxazoles 3a-j

Compound 1–3	R_1	R_2	Yield of 3 (%)	Mp (°C) (lit.mp)
a	Ph	Ph	67	141 (140–141 ^[4])
b	Ph	$4-MeOC_6H_4$	62	122 (122 ^[5])
c	Ph	$4-ClC_6H_4$	69	175 (172–178 ^[6])
d	Ph	4-BrC ₆ H ₄	75	178 (178–180 ^[6])
e	Ph	$4-NO_2C_6H_4$	65	228 (226–228 ^[7])
f	$4-MeOC_6H_4$	$4-ClC_6H_4$	79	209 (210 ^[7])
g	$4-MeOC_6H_4$	4-BrC ₆ H ₄	65	$130 (130-132^{[6]})$
h	$4-MeOC_6H_4$	$4-NO_2C_6H_4$	60	175 (172–175 ^[6])
i	Ph	CH_3	70	67 (67 ^[8])
j	4 -MeOC $_6$ H $_4$	CH ₃	75	113 (111–112 ^[9])

their oximes. Also, extending the method for the one-pot synthesis of corresponding pyrazoles using hydrazine did not work well in our hands.

EXPERIMENTAL

All melting points are uncorrected and were measured by the normal Thiels tube (paraffin) method. Column chromatography was performed on silica gel G (13% CaSO₄ as binder). IR spectra were recorded on a Shimadzu FT-IR spectrophotometer (KBr pellets). ¹H NMR and ¹³CMR were recorded on a Brucker 300-MHz instrument. The multiplicities of carbon signals were obtained from distortionless enhancement by polarization transfer (DEPT) experiments.

General Procedure

A mixture of α , β -unsaturated oxime 2 (1 mmol), MnO₂ (2 mmol), and chloroform (15 mL) was refluxed for 2 h (or until the reaction was completed). After cooling, it was filtered and the black residue was washed with chloroform (5 × 5 mL). The combined filtrate after concentration was further purified by passing through a small column of silica gel using ethyl acetate—hexane (5:95) as an eluent.

ACKNOWLEDGMENT

We thank the University Grants Commission for financial assistance and the National Institute of Oceanography, Goa, for spectral analysis.

REFERENCES

- (a) Barco, A.; Benetti, S.; Pollini, G. P.; Simoni, D. Synthesis 1987, 857;
 (b) Kondo, Y.; Uchiyama, D.; Yamanaka, H. Tetrahedron. Lett. 1989, 30, 4249;
 (c) Monya, O.; Urata, Y. Tetrahedron Lett. 1989, 30, 3987.
- 2. Desai, V. G.; Tilve, S. G. Synth. Commun. 1999, 29 (17), 3017.
- 3. Kanno, H.; Taylor, R. J. K. Synlett 2002, 1287.
- 4. Wei, X.; Fang, J.; Hu, Y.; Hu, H. Synthesis 1992, 1205.
- 5. Himo, F.; Lovell, T.; Hilgraft, R.; Rostovrsev, V. V.; Noodleman, L.; Sharpless, K. B.; Fokin, V. V. J. Am. Chem. Soc. 2005, 127.
- 6. Baranski, A. Polish J. Chem. 1989, 63 (4-12), 483.
- Deshmukh, A. Y.; Raghuvanshi, P. B.; Joshi, A. G. Asian J. Chem. 2002, 14 (1), 548.
- Bunelle, W. H.; Singam, P. R.; Narayan, B. A.; Bradshaw, C. W.; Lios, J. S. Synthesis 1997, 436–442.
- Palacios, F.; Aparicio, D.; Delos Santos, J. M.; Rodriguez, E. Tetrahedron 1998, 54, 599–614.