trans-Cyclohexane-1,4-diammonium tetrathiotungstate(VI)

Bikshandarkoil R. Srinivasan, Ashish R. Naik, Christian Näther and Wolfgang Bensch
trans-Cyclohexane-1,4-diammonium tetrathiotungstate(VI)

The structure of the title complex, \((\text{C}_6\text{H}_{16}\text{N}_2)[\text{WS}_4]\), consists of a tetrahedral \([\text{WS}_4]^{2–}\) dianion situated in a general position and two crystallographically independent \(trans\)-cyclohexane-1,4-diammonium cations located on centres of inversion. The anions are linked to the organic ammonium cations via \(N–H\cdots S\) hydrogen bonds, resulting in the formation of alternating layers of cations and anions.

Comment

As part of an ongoing research programme, we are investigating the synthesis and structural characterization of organic ammonium tetrathiotungstates (Srinivasan et al., 2005; Srinivasan, Nätcher et al., 2006a,b). In the present report, we describe the structure of the title compound, (I), which is isostructural with the corresponding Mo compound, \((\text{C}_6\text{H}_{16}\text{N}_2)[\text{MoS}_4]\) (Srinivasan et al., 2006).

The structure of (I) consists of a tetrahedral \([\text{WS}_4]^{2–}\) dianion situated in a general position and two crystallographically independent \(trans\)-cyclohexane-1,4-diammonium cations located on centres of inversion (Fig. 1). The cations adopt a chair conformation and their geometric parameters are in agreement with those in \((\text{C}_6\text{H}_{16}\text{N}_2)[\text{MoS}_4]\) (Srinivasan, Nätcher & Bensch, 2006). The WS\(_4\) tetrahedron is slightly distorted, with S–W–S angles between 107.06 (4) and 110.84 (5)° and W–S bond lengths ranging from 2.1834 (12) to 2.2001 (11) Å. These values are in good agreement with literature data (Srinivasan, Nätcher et al., 2006a).

A total of ten short intermolecular S–H···H contacts ranging from 2.47 to 2.95 Å are observed, all of which are less than the sum of their van der Waals radii (Bondi, 1964); the separation of 2.95 Å is indicative of a weak hydrogen bond (Table 2). Each \([\text{WS}_4]^{2–}\) anion is linked to six different cations through nine \(N–H\cdots S\) interactions (Fig. 2). All H atoms attached to the N atoms are involved in these hydrogen bonds, three of which are bifurcated. Each crystallographically independent cation is hydrogen-bonded to six different \([\text{WS}_4]^{2–}\) anions. The shortest W–S distance is observed for S4, which is involved in

Key indicators

- Single-crystal X-ray study
- \(T = 293\) K
- Mean \(e(C–C) = 0.006\) Å
- \(R\) factor = 0.023
- \(wR\) factor = 0.052
- Data-to-parameter ratio = 32.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2006 International Union of Crystallography
All rights reserved

doi:10.1107/S1600536806049166

Srinivasan et al. · (C\text{6}H\text{16}N\text{2})\text{[WS}_4\text{]}
two bifurcated hydrogen bonds, while all other S atoms make at least one singly shared hydrogen bond in addition to bifurcated hydrogen bonds. The observed W—S bond lengths can be attributed to the different numbers and strengths of hydrogen bonds between the H atoms of the cation and the S atoms. The W—S bond lengths tend to be longer when the S=C1/C1/C1/C1H contacts are shorter and the N—H/C1/C1/C1 angles are more linear. As a result of the hydrogen-bonding interactions in (I), alternating layers of cations and anions are formed parallel to the (100) plane (Fig. 3).

Experimental

To ammonium tetrathiotungstate (348 mg, 1 mmol) in distilled water (15 ml), a few drops of aqueous ammonia were added and the solution was filtered. To the clear yellow filtrate trans-cyclohexane-1,4-amine (114 mg) was added and the reaction mixture was left aside for crystallization. After 1 d, yellow crystals of (I) separated slowly. The crystals were filtered off, washed with ice-cold water (2 ml) followed by propan-2-ol (10 ml) and diethyl ether (10 ml), and air-dried (yield 70%). The compound is air-stable and analyzed satisfactorily.

Table 1

<table>
<thead>
<tr>
<th>Selected geometric parameters (Å, °)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1—S4</td>
</tr>
<tr>
<td>W1—S2</td>
</tr>
<tr>
<td>W1—S1</td>
</tr>
<tr>
<td>S4—W1—S2</td>
</tr>
<tr>
<td>S4—W1—S1</td>
</tr>
<tr>
<td>S2—W1—S1</td>
</tr>
</tbody>
</table>
Table 2
Hydrogen-bond geometry (Å, °).

<table>
<thead>
<tr>
<th>D—H···A</th>
<th>D—H</th>
<th>H···A</th>
<th>D···A</th>
<th>D—H···A</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1—H1N1···S3i</td>
<td>0.89</td>
<td>2.67</td>
<td>3.372</td>
<td>4 (4)</td>
</tr>
<tr>
<td>N1—H1N1···S4i</td>
<td>0.89</td>
<td>2.95</td>
<td>3.459</td>
<td>3 (4)</td>
</tr>
<tr>
<td>N1—H2N1···S1ii</td>
<td>0.89</td>
<td>2.53</td>
<td>3.399</td>
<td>4 (4)</td>
</tr>
<tr>
<td>N1—H3N1···S1ii</td>
<td>0.89</td>
<td>2.78</td>
<td>3.600</td>
<td>4 (4)</td>
</tr>
<tr>
<td>N1—H3N1···S4i</td>
<td>0.89</td>
<td>2.95</td>
<td>3.459</td>
<td>3 (4)</td>
</tr>
<tr>
<td>N2—H1N2···S1iii</td>
<td>0.89</td>
<td>2.63</td>
<td>3.349</td>
<td>4 (4)</td>
</tr>
<tr>
<td>N2—H1N2···S2iii</td>
<td>0.89</td>
<td>2.72</td>
<td>3.424</td>
<td>4 (4)</td>
</tr>
<tr>
<td>N2—H2N2···S3ii</td>
<td>0.89</td>
<td>2.53</td>
<td>3.412</td>
<td>4 (4)</td>
</tr>
<tr>
<td>N2—H3N2···S2</td>
<td>0.89</td>
<td>2.47</td>
<td>3.289</td>
<td>4 (4)</td>
</tr>
<tr>
<td>C3—H3···A</td>
<td>0.97</td>
<td>2.95</td>
<td>3.810</td>
<td>4 (4)</td>
</tr>
</tbody>
</table>

Symmetry codes: (i) −x + 1, −y + 2, −z + 2; (ii) x + 1, y, z; (iii) −x + 1, −y, −z − 1.

C– and N-bound H atoms were located in a difference map but they were placed in idealized positions, with C—H = 0.97 Å and N—H = 0.89 Å, and refined as riding, with Ueq(H) = 1.2Ueq(C) or 1.5Ueq(N). There were practically no differences between the calculated positions and those found in a difference map.

Data collection: DIF4 (Stoe & Cie, 1998); cell refinement: DIF4; data reduction: REDU4 (Stoe & Cie, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: CIFTAB in SHELXTL (Bruker, 1998).

This work was supported by the Department of Science and Technology (DST), New Delhi, under grant No. SR/S1/IC-41/2003. WB and BRS thank the DST and the Deutscher Akademischer Austauschdienst (DAAD), Bonn, for the sanction of a DST-DAAD (PPP) project.

References