Note

A simple two-step synthesis of avenanthramides, constituents of oats (Avena sativa $L)^{\dagger}$

Shrivallabh P Kamat* \& Sulaksha J Parab
Department of Chemistry, Goa University, Goa 403 206, India
E-mail: shrivkamat@yahoo.com

Received 29 June 2007; accepted (revised) 4 October 2007
A simple two-step general procedure has been developed to prepare naturally occurring and synthetic avenanthramides, constituents of oats (Avena sativa L). Reaction of anthranilic acid $\mathbf{1}$ with Meldrum's acid $\mathbf{2}$ gives half amide of malonic acid $\mathbf{3}$ which on condensation with different benzaldehyde derivatives $4 \mathbf{a}-\mathbf{m}$ gives avenanthramides $\mathbf{5 a - m}$ of which $\mathbf{5 a - d}$ are natural, $\mathbf{5 e - g}$ are their methyl ethers and $\mathbf{5 h} \mathbf{- m}$ are synthetic.

Keywords: Oats, Avena sativa, antioxidants, avenanthramides, anthranilic acid, Meldrum's acid, 2-[(carboxyacetyl)amino]benzoic acid

Oats have been considered to be a good source of antioxidants for a long time ${ }^{1}$ and recently it has been shown that, this antioxidant activity and the fresh taste of oat products is mainly due to the presence of a group of amides called avenanthramides ${ }^{2}$. Chemically avenanthramides are substituted N -cinnamoylanthraxnilate derivatives. They are phytoalexins and are produced when oat leaves are infected or inoculated with an incompatible race of crown rust fungus ${ }^{3,4}$. Although avenanthramides have also been isolated from oat groats and hulls ${ }^{5}$, none appear to be present in healthy leaves prior to inoculation with pathogens ${ }^{6}$. It has been demonstrated by administering labelled putative precursors to oat leaf segments that avenanthramides are de novo synthesized from primary metabolites and phenylpropanoid metabolism is involved in their biosynthesis ${ }^{6}$.

Avenanthramides have been prepared in milligram quantities mainly for the purpose of identification in oat extracts ${ }^{2,5}$, structure-antioxidant activity studies ${ }^{2}$ and for providing support to the structure assigned ${ }^{5}$. For example avenanthramides 5a-d have been synthesized ${ }^{2}$ in about 40% yields by the acid catalyzed aldol reactions of 2-methylbenzoxazin-4-

[^0]ones 4,7 with substituted benzaldehyde derivatives followed by hydrolysis. On the other hand, satisfactory yields of avenanthramides $\mathbf{5 a}$ and $\mathbf{5 b}$ have been obtained ${ }^{5}$ by using a modification of the Bain and Smalley's procedure ${ }^{8}$ in which substituted cinnamoyl chlorides are condensed with anthranilic acid in presence of pyridine ${ }^{3,5}$. However, these ${ }^{2,5}$ methods involve additional protection and deprotection steps.

We have developed a simple two-step procedure for the synthesis of cinnamyl esters by condensation of monomalonates with substituted benzaldehyde derivatives in the presence of pyridine ${ }^{9}$. These monomalonates are obtained in high yields by simply heating Meldrum's acid 2 with alcohols or phenols ${ }^{10}$ in benzene ${ }^{9}$ or toluene ${ }^{11}$. On similar lines, reaction of $\mathbf{2}$ with anthranilic acid $\mathbf{1}$ in refluxing toluene gave the half amide of malonic acid, 2-[(carboxyacetyl)amino]benzoic acid 3 in 90% yield (Scheme I). To our knowledge compound 3 and its preparation is being reported for the first time. It was fully characterized on the basis of its spectral data ($\mathrm{IR},{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR) and elemental analysis. In the ${ }^{1} \mathrm{H}$ NMR spectrum of 3 the singlet at $\delta 3.44$ integrated for 2 H indicated the presence of the methylene group flanked by two carbonyls, one of the carboxyl and the other of the amide group. This was further confirmed by DEPT experiments. The remaining four aromatic protons are seen as doublet of doublets between δ 7.08 to 8.56 . Further condensation of $\mathbf{3}$ with benzaldehyde and its derivatives $\mathbf{4 a - m}$ in the presence of dry pyridine and β-alanine using a Verley-Doebner modification of Knoevenagel condensation ${ }^{12}$ gave avenanthramides $\mathbf{5 a - m}$ (Table I) in yields ranging from $65-95 \%$. The avenanthramides $\mathbf{5 a - d}$ have been isolated from oats ${ }^{5}$ while $\mathbf{5 e - g}$ are their methyl ethers and $\mathbf{5 h} \mathbf{- m}$ are synthetic. The structures of $\mathbf{5 a - d}$ were confirmed by comparison of their m.p. and spectroscopic data with that reported in the literature ${ }^{2,5}$ and hence their reported data is not included in the experimental. The structure of each new avenanthramide was confirmed by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectroscopy and MS spectrometry. Although preparation of avenanthramides $\mathbf{5 c}, 5 \mathrm{e}$ and $\mathbf{5 h}$ has been reported by Ashok Kumar and coworkers ${ }^{13}$, the melting point and the ${ }^{1} \mathrm{H}$ NMR data on $\mathbf{5 c}$ (ref.13)

Scheme I

Table I - Natural (5a-d) and synthetic (5e-m) avenanthramides										
Aldehyde 4		R	R_{1}	R_{2}	R_{3}	$\begin{gathered} \text { Avenanthramide } \\ \mathbf{5} \end{gathered}$	R	R_{1}	R_{2}	R_{3}
	a	H	H	OH	H	a	H	H	OH	H
	b	H	OH	OH	H	b	H	OH	OH	H
	c	H	OMe	OH	H	c	H	OMe	OH	H
	d	H	OMe	OH	OMe	d	H	OMe	OH	OMe
	e	H	H	OMe	H	e	H	H	OMe	H
	f	H	OMe	OMe	H	f	H	OMe	OMe	H
	g	H	OMe	OMe	OMe	g	H	OMe	OMe	OMe
	h	H	-O-CH2-O-		H	h	H	$-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}-$		H
	i	OMe	H	OMe	H	i	OMe	H	OMe	H
	j	H	H	Cl	H	j	H	H	Cl	H
	k	Cl	H	H	H	k	Cl	H	H	H
	1	H	OH	H	H	1	H	OH	H	H
	m	H	H	H	H	n	H	H	H	H

clearly shows its non-identity with $\mathbf{5 c}$ prepared in the present study as well as with that reported in the literature ${ }^{2,5}$. Moreover, our attempts to prepare 5c using the procedure of Ashok Kumar and coworkers ${ }^{13}$ did not work and instead gave the starting N-acetylanthranilic acid back with no trace of $\mathbf{5 c}$.

It may be noted that several phenolics such as p-hydroxybenzoic, protocatechuic, vanillic, syringic, p-coumaric, caffeic, ferulic, sinapic, etc. are also isolated as free acids or their esters from the bran layer of oat grains ${ }^{14}$. Moreover, the silica gel two dimensional TLC analysis of the mixture of avenanthramides isolated from oat groat extracts is found to contain at least 40 chromatographically distinct avenanthramides ${ }^{5}$ of which very few have been individually isolated and characterized as they are present in very small quantities. Our method can be efficiently used to prepare these remaining (not isolated but detected) avenanthramides in sufficient quantities and subsequently used to detect their presence in oat extracts and also study their bioactivity.

The major advantage of the present method is that the intermediate half amide of malonic acid $\mathbf{3}$ can be chemically separated and purified. Secondly, it does not involve any type of chromatography for separation and purification and as such it can be conveniently scaled up.

Experimental Section

Melting points were determined in open capillary tubes and are uncorrected. IR spectra were recorded on a Shimadzu 8101A FTIR spectrophotometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker WT 300 MHz FTNMR spectrophotometer in CDCl_{3} and DMSO- d_{6} with TMS as internal standard and chemical shifts are recorded in δ values. All yields refer to pure isolated products. Meldrum's acid 2 was prepared from malonic acid by using the procedure reported in the literature ${ }^{15}$.

2-[(carboxyacetyl)amino]benzoic acid 3. An equimolar mixture of Meldrum's acid $2(1.44 \mathrm{~g}, 10$ mmole) and anthranilic acid $\mathbf{1}(1.37 \mathrm{~g}, 10 \mathrm{mmole})$ in dry toluene (10 mL) was refluxed for 4 hr . On cooling
to room temperature, the half amide of malonic acid 3 separated out as white solid which was filtered and washed with water. It was then chemically purified by dissolving in saturated NaHCO_{3} solution, regenerated using $1: 1 \mathrm{HCl}$, filtered under suction, washed with water and dried at $100^{\circ} \mathrm{C}$ to give white solid $(2.01 \mathrm{~g}$, 90\%). Recrystallization from hot water afforded white solid, m.p. $174^{\circ} \mathrm{C}$; IR (KBr): 3118 (NH), 1720 $\left(\mathrm{CH}_{2} \mathrm{COOH}\right), 1685$ (NHCO), 1643 ($\mathrm{Ar}-\mathrm{COOH}$), 1608, 1591, $1296 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, MeOH in traces): $\delta 3.44\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{2^{\prime}}-\mathrm{H}\right), 7.08$ (dd, $\left.J=8.25,7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{5}-\mathrm{H}\right), 7.50(\mathrm{dd}, \mathrm{J}=8.7,7.1,1.7$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}\right), 8.03\left(\mathrm{dd}, J=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6}-\mathrm{H}\right)$, 8.56 (dd, $\left.J=8.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{MeOH}$ in traces): $\delta 116.1(\mathrm{C}-1), 120.1$ (C-3), 122.8 (C-5), 131.0 (C-6), 133.7 (C-4), 140.1 (C-2), 164.9 (C-7), 169.0 (C-3'), 169.6 (C-1'). Found: C, $52.74 ; \quad \mathrm{H}, ~ 4.17 ; \mathrm{N}, 6.15$ Calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{5} .1 / 4 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 52.96 ; \mathrm{H}, 4.22 ; \mathrm{N}, 6.27 . \%$.

General procedure for the preparation of avenanthramides $5 \mathbf{a}-\mathbf{m}$. A mixture of $2-[($ carboxyacetyl)amino]benzoic acid 3 (0.45 mmole), the corresponding benzaldehyde derivatives 4a-m (0.45 mmole) and catalytic amount of β-alanine (10 mg) was refluxed in pyridine (0.5 mL) for 110 min . For the hydroxybenzaldehydes $\mathbf{4 a - d}$ and $\mathbf{4 1}$, the reaction mixtures were just kept in loosely stoppered Erlenmeyer flasks for two weeks. The reaction mass was cooled in ice and acidified with Conc $\mathrm{HCl}(1.0$ mL). The solid product that separated out was filtered, washed with water and recrystallized using hot wateracetone mixture to give the title compounds.
N-[4'-hydroxy-(E)-cinnamoyl]anthranilic acid 5a. Reaction of $3(0.10 \mathrm{~g}, 0.45 \mathrm{mmole})$ and 4hydroxybenzaldehyde $4 \mathbf{4}(0.055 \mathrm{~g}, 0.45 \mathrm{mmole})$ gave pale yellow crystals from hot water-acetone mixture, m.p. $220^{\circ} \mathrm{C}$ (Lit. ref. $5,219^{\circ} \mathrm{C}$), yield: $0.110 \mathrm{~g}, 85 \%$; IR (KBr): $3120(\mathrm{NH}), 1665$ (NHCO), $1610 \mathrm{~cm}^{-1}$; UV and ${ }^{1} \mathrm{H}$ NMR data of $\mathbf{5 a}$ was found to be identical with that reported ${ }^{5}$.
N-[3',4'-dihydroxy-(E)-cinnamoyl]anthranilic acid 5b. Reaction of $\mathbf{3}(0.10 \mathrm{~g}, 0.45 \mathrm{mmole})$ and $3,4-$ dihydroxybenzaldehyde $\mathbf{4 b}$ ($0.062 \mathrm{~g}, 0.45 \mathrm{mmole})$ gave yellow crystals from hot water-acetone, m.p. $230-34^{\circ} \mathrm{C}$ (Lit. ref. 2, $221-30^{\circ} \mathrm{C}$), yield: $0.10 \mathrm{~g}, 75 \%$; UV, IR and ${ }^{1} \mathrm{H}$ NMR data of $\mathbf{5 b}$ was found to be identical with that reported ${ }^{2}$.
N-[4'-hydroxy-3'-methoxy-(E)-cinnamoyl]anthranilic acid 5c. Reaction of $3(0.10 \mathrm{~g}, 0.45$ mmole) and 4-hydroxy-3-methoxybenzaldehyde $4 \mathrm{c}(0.069 \mathrm{~g}$, 0.45 mmole) gave pale yellow crystals from hot
water-acetone mixture, m.p. $212^{\circ} \mathrm{C}$ (Lit. ref.5, $235^{\circ} \mathrm{C}$), yield: $0.12 \mathrm{~g}, 85 \%$; IR (KBr): 3515 (NH), 1660 (NHCO), 1600, $1520,1270 \mathrm{~cm}^{-1}$; UV and ${ }^{1} \mathrm{H}$ NMR data of 5 c was found to be identical with that reported ${ }^{5}$.
N-[4'-hydroxy-3',5'-dimethoxy-(E)-cinnamoyl]anthranilic acid 5d. Reaction of $3(0.10 \mathrm{~g}, 0.45$ mmole) and 4-hydroxy-3,5-dimethoxybenzaldehyde $4 \mathbf{d}(0.082 \mathrm{~g}, 0.45 \mathrm{mmole})$ gave bright yellow crystals from hot water-acetone, m.p. $214^{\circ} \mathrm{C}$ (Lit. ref.2, 199$200^{\circ} \mathrm{C}$), yield: $0.10 \mathrm{~g}, 65 \%$; UV, IR and ${ }^{1} \mathrm{H}$ NMR data of $\mathbf{5 d}$ was found to be identical with that reported ${ }^{2}$.
N-[4'-methoxy-(E)-cinnamoyl]anthranilic acid 5e. Reaction of $3(0.10 \mathrm{~g}, 0.45 \mathrm{mmole})$ and 4methoxybenzaldehyde $\mathbf{4 e}(0.061 \mathrm{~g}, 0.45 \mathrm{mmole})$ gave pale yellow crystals from hot water-acetone, m.p. $190^{\circ} \mathrm{C}$ (Lit. ref. $13,123^{\circ} \mathrm{C}$), yield: $0.093 \mathrm{~g}, 70 \%$; UV (MeOH): 326, 301, 226, 211 nm ; IR (KBr): 3310 (NH), 1670 (NHCO), 1600, $1255 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta 6.70\left(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{8}-\mathrm{H}\right)$, 6.98 (d, J=8.4 Hz, 2H, C 3^{\prime} \& C $\left.5_{5^{\prime}}-\mathrm{H}\right), 7.16(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{C}_{5}-\mathrm{H}\right), 7.56\left(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{7}-\mathrm{H}\right), 7.62(\mathrm{~d}$, $\left.J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{2^{\prime}} \& \mathrm{C}_{6^{\prime}}-\mathrm{H}\right), 7.67\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{4}{ }^{-}\right.$ H), $8.00\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6}-\mathrm{H}\right), 8.58(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right), 11.28(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}) ;{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 56.2\left(4{ }^{\prime}-\mathrm{OCH}_{3}\right), 114.2(\mathrm{C}-3 ' \& \mathrm{C}-5 '), 115.4$ (C-1), 119.3 (C-8'), 120.2 (C-3), 122.4 (C-5), 127.3 (C-1'), 129.5 (C-2' \& C-6'), 131.4 (C-6), 134.3 (C-4), 141.6 (C-2), 141.8 (C-7'), 161.1 (C-4'), 165.2 (C-7), 170.4 (C-9'); FAB HRMS: m/z 320.0898 [M + Na] ${ }^{+}$; Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{Na}^{+}$: 320.0899 .
N-[3',4'-dimethoxy-(E)-cinnamoyl]anthranilic acid 5f. Reaction of $\mathbf{3}(0.10 \mathrm{~g}, 0.45 \mathrm{mmole})$ and $3,4-$ dimethoxybenzaldehyde $4 f(0.074 \mathrm{~g}, 0.45 \mathrm{mmole})$ gave yellow crystals from hot water-acetone, m.p. $184^{\circ} \mathrm{C}$, yield: $0.109 \mathrm{~g}, 74 \%$; UV (MeOH): 336, 299, 237, 208 nm ; IR (KBr): 3200 (NH), 1687 (NHCO), 1597, 1260, $1192 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO$\left.d_{6}\right): \delta 6.77\left(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{8} \cdot \mathrm{H}\right), 7.00(\mathrm{~d}$, $\left.J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{5^{\prime}} \mathrm{H}\right), 7.17\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6^{\prime}} \mathrm{H}\right)$, $7.23\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{5}-\mathrm{H}\right), 7.34\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{2}{ }^{\prime}-\mathrm{H}\right), 7.55$ (d, $\left.J=15.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{7^{-}}-\mathrm{H}\right), 7.63\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{4}-\right.$ H), $8.00\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6}-\mathrm{H}\right), 8.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right), 11.28(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH})$.
N-[3',4',5'-Trimethoxy-(E)-cinnamoyl]anthranilic acid 5 g . Reaction of $3(0.10 \mathrm{~g}, 0.45 \mathrm{mmole})$ and 3,4,5-trimethoxybenzaldehyde $\mathbf{4 g}(0.088 \mathrm{~g}, 0.45$ mmole) gave yellow crystals from hot water-acetone, m.p. $168^{\circ} \mathrm{C}$, yield: $0.104 \mathrm{~g}, 65 \%$; UV (MeOH): 339, 239, 211 nm ; IR (KBr): 3580 (NH), 1660 (NHCO), 1600, 1583, $1267 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
$\delta 3.89\left(\mathrm{~s}, \mathrm{OCH}_{3}, 3 \mathrm{H}\right), 3.92\left(\mathrm{~s}, \mathrm{OCH}_{3}, 6 \mathrm{H}\right), 6.52(\mathrm{~d}$, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{8^{-}} \mathrm{H}$), 6.81 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{C}_{2}{ }^{\prime} \& \mathrm{C}_{6^{\prime}}-\mathrm{H}$), 7.15 ($\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{5}-\mathrm{H}$), $7.65\left(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}\right)$, 7.69 (d, J=15.6 Hz, 1H, C $7>-\mathrm{H}$), 8.15 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{C}_{6}-\mathrm{H}\right), 8.90\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right), 11.25(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{COOH}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 56.1\left(3^{\prime}, 5^{\prime}-\right.$ $\left.\mathrm{OCH}_{3}\right), 60.1\left(4^{\prime}-\mathrm{OCH}_{3}\right), 105.3\left(\mathrm{C}-2^{\prime} \& \mathrm{C}-6 '\right), 115.3$ (C-1), 120.3 (C-8'), 121.0 (C-3), 122.6 (C-5), 130.2 (C-1'), 131.5 (C-6), 134.6 (C-4), 139.8 (C-2), 141.8 (C-3' \& C-5'), 142.2 (C-7'), 153.3 (C-4'), 164.7 (C-7), 171.0 (C-9'); FAB HRMS: m/z $380.1113[\mathrm{M}+\mathrm{Na}]^{+}$; Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{6} \mathrm{Na}^{+}$: 380.1110 .
N-[3',4'-Methylenedioxy-(E)-cinnamoyl]anthranilic acid 5h. Reaction of $3(0.10 \mathrm{~g}, 0.45 \mathrm{mmole})$ and 3,4-methylenedioxybenzaldehyde $4 \mathrm{~h}(0.067 \mathrm{~g}, 0.45$ mmole) gave pale yellow crystals from watermethanol, m.p. $202^{\circ} \mathrm{C}$ (dec), yield: $0.22 \mathrm{~g}, 71 \%$; UV (MeOH): 337, 297, 234, 207 nm ; IR (KBr): 1691 (NHCO), 1600, $1450,1211 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta 6.09\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}-\right), 6.77(\mathrm{~d}$, $\left.J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{8^{\prime}} \mathrm{H}\right), 6.97\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{5^{\prime}}-\mathrm{H}\right)$, $7.16\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{5}-\mathrm{H}\right), 7.21(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{C}_{6^{\prime}}-\mathrm{H}\right), 7.45\left(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{2^{\prime}} \mathrm{H}\right), 7.55(\mathrm{~d}, J=15.6$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{C}_{7}-\mathrm{H}\right), 7.62\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}\right), 8.01$ (dd, $\left.J=8.0 \mathrm{~Hz} \& 1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6}-\mathrm{H}\right), 8.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right), 11.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}) ;{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, DMSO- d_{6}): $\delta 101.0\left(\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}\right), 106.2\left(\mathrm{C}-2^{\prime}\right), 108.0$ (C-5'), 116.1 (C-1), 119.8 (C-8' \& C-6'), 122.2 (C-3), 124.0 (C-5), 128.4 (C-1'), 130.6 (C-6), 133.5 (C-4), 140.5 (C-7'), 140.8 (C-2), 147.5 (C-3'), 148.5 (C-4'), 163.5 (C-7), 168.9 (C-9'); LCMS: m/z $334.2902[\mathrm{M}+$ $\mathrm{Na}]^{+}$; Calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}_{5} \mathrm{Na}^{+}: 334.0691$.
N-[2',4'-Dimethoxy-(E)-cinnamoyl]anthranilic
acid 5i. Reaction of $\mathbf{3}(0.10 \mathrm{~g}, 0.45$ mmole) and $3,4-$ methoxybenzaldehyde $4 \mathrm{i}(0.075 \mathrm{~g}, 0.45 \mathrm{mmole})$ gave orange crystals from water-methanol, m.p. $194-98^{\circ} \mathrm{C}$ (dec), yield: $0.281 \mathrm{~g}, 86 \%$; UV (MeOH): 339, 299, 240, 208 nm ; IR (KBr): 1693 (NHCO), 1660, 1598, $1288 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 3.82(\mathrm{~s}$, $\left.\mathrm{OCH}_{3}, 3 \mathrm{H}\right), 3.89\left(\mathrm{~s}, \mathrm{OCH}_{3}, 3 \mathrm{H}\right), 6.60(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{C}_{5^{\prime}}-\mathrm{H}\right), 6.64\left(\mathrm{~d}, J=1.53 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{3^{\prime}}-\mathrm{H}\right), 6.70(\mathrm{~d}$, $\left.J=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{8^{\prime}}-\mathrm{H}\right), 7.16\left(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{5}-\mathrm{H}\right)$, $7.61\left(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}\right), 7.69(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{C}_{6}-\mathrm{H}\right), 7.80\left(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{7}-\mathrm{H}\right), 8.00(\mathrm{~d}, J=7.9$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{C}_{6}-\mathrm{H}\right), 8.61\left(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right), 11.3$ (s, $1 \mathrm{H}, \mathrm{COOH}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 55.0$ $\left(2^{\prime}-\mathrm{OCH}_{3}\right), 55.3\left(4^{\prime}-\mathrm{OCH}_{3}\right), 97.9(\mathrm{C}-3 '), 105.6(\mathrm{C}-5 ')$, 115.2 (C-6'), 116.1 (C-1), 119.1 (C-3), 119.7 (C-8'), 122.1 (C-5), 129.3 (C-1'), 130.6 (C-6), 133.5 (C-4), 135.7 (C-7'), 140.6 (C-2), 158.8 (C-2'), 161.9 (C-4'),
163.9 (C-7), 169.0 (C-9'); LCMS: m/z 350.6357 [M + $\mathrm{Na}]^{+}$; Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{Na}^{+}: 350.1004$.
N-[4'-Chloro-(E)-cinnamoyl]anthranilic acid $\mathbf{5 j}$. Reaction of $3(0.10 \mathrm{~g}, 0.45 \mathrm{mmole})$ and 4 chlorobenzaldehyde $4 \mathbf{j}(0.063 \mathrm{~g}, 0.45 \mathrm{mmole})$ gave pale yellow crystals from water-methanol, m.p. $220^{\circ} \mathrm{C}$ (dec), yield: $0.223 \mathrm{~g}, 74 \%$; UV (MeOH): 317, 297, 289, 247, 208 nm ; IR (KBr): 3329 (NH), 1672 (NHCO), 1608, 1531, $1259 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta 6.83\left(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{8^{\prime}}-\mathrm{H}\right), 7.14(\mathrm{t}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{5}-\mathrm{H}$), 7.43 (d, J=8.4 Hz, 2H, C 3^{\prime} \& $\mathrm{C}_{5^{\prime}}-\mathrm{H}$), $7.57\left(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}\right), 7.60(\mathrm{~d}, J=15.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{C}_{7^{\prime}}-\mathrm{H}$), $7.71\left(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{2^{\prime}} \& \mathrm{C}_{6^{\prime}}-\mathrm{H}\right.$), $8.00\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6}-\mathrm{H}\right), 8.61(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{C}_{3}-\mathrm{H}\right), 11.44(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}): $\delta 115.9$ (C-1), 119.6 (C-8'), 122.1 (C-3), 122.5 (C-5), 128.3 (C-2' \& C-6'), 129.1 (C-3' \& C-5'), 130.5 (C-6), 132.7 (C-1'), 133.3 (C-4'), 134.0 (C-4), 139.3 (C-7'), 140.4 (C-2), 162.9 .(C-7), 169.0 (C-9'); LCMS: $m / z 324.0379[\mathrm{M}+\mathrm{Na}]^{+}$; Calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{NO}_{3} \mathrm{ClNa}^{+}: 324.0403$.
N-[2'-Chloro-(E)-cinnamoyl]anthranilic acid 5k. Reaction of 3 ($0.10 \mathrm{~g}, 0.45 \mathrm{mmole}$) and 2-chlorobenzaldehyde $4 \mathbf{k}(0.063 \mathrm{~g}, 0.45 \mathrm{mmole})$ gave white crystals from water-methanol, m.p. $200^{\circ} \mathrm{C}$ (dec), yield: $0.196 \mathrm{~g}, 65 \%$; UV (MeOH): 318, 287, 247, 214 nm; IR (KBr): 3064 (NH), 1678 (NHCO), 1608, 1531, $1228 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): δ 6.95 (d, $\left.J=16.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{8^{\prime}}-\mathrm{H}\right), 7.21(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}_{5^{-}}-\mathrm{H}$), $7.43\left(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{4^{\prime}} \& \mathrm{C}_{5^{\prime}}-\mathrm{H}\right), 7.54(\mathrm{~d}$, $\left.J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6^{\prime}}-\mathrm{H}\right), 7.64\left(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{3^{\prime}}-\mathrm{H}\right)$, 7.93 (d, $\left.J=16.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{7}-\mathrm{H}\right), 8.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{C}_{4}-\mathrm{H}\right), 8.01\left(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6}-\mathrm{H}\right), 8.60(\mathrm{~d}, \mathrm{~J}=8.0$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right), 11.43(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO-d d_{6}): $\delta 117.3$ (C-1), 120.7 (C-8'), 123.3 (C-3), 125.7 (C-5), 127.9 (C-5'), 128.4 (C-6'), 130.2 (C-6), 131.4 (C-4'), 131.7 (C-3'), 132.3 (C-1'), 133.9 (C-2'), 134.2 (C-4), 136.3 (C-7'), 140.8 (C-2), 163.5 (C-7), 169.7 (C-9'); LCMS: m/z $324.0572[\mathrm{M}+\mathrm{Na}]^{+}$; Calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{NO}_{3} \mathrm{ClNa}^{+}$: 324.0403 .
N-[3'-Hydroxy-(E)-cinnamoyl]anthranilic acid 51. Reaction of 3 ($0.10 \mathrm{~g}, 0.45 \mathrm{mmole})$ and 3hydroxybenzaldehyde $41(0.055 \mathrm{~g}, 0.45 \mathrm{mmole})$ gave white shiny crystals from hot water-acetone, m.p. $242^{\circ} \mathrm{C}(\mathrm{dec})$, yield: $0.269 \mathrm{~g}, 95 \%$; UV (MeOH): 322, 289, 238, 216, 207 nm ; IR (KBr): 3169 (NH), 1693 (NHCO), 1612, 1514, $1288 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta 6.76$ (d, $\left.J=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{8}-\mathrm{H}\right), 6.83$ (dd, $\left.J=7.9 \mathrm{~Hz} \& 1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{5}-\mathrm{H}\right), 7.06\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{2}{ }^{-}\right.$ H), 7.26-7.12 (m, 3H, C $\left.{ }_{4} ; \mathrm{C}_{5}, \mathrm{C}_{6}-\mathrm{H}\right), 7.52(\mathrm{~d}, J=15.7$
$\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{C}_{7}-\mathrm{H}\right), 7.62\left(\mathrm{dt}, J=7.9 \mathrm{~Hz} \& 1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{4}-\right.$ H), $8.00\left(\mathrm{dd}, J=7.9 \mathrm{~Hz} \& 1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6}-\mathrm{H}\right), 8.56(\mathrm{~d}$, $\left.J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right), 11.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO-d d_{6}): $\delta 113.9$ (C-2'), 116.6 (C-1), 116.8 (C-4'), 118.7 (C-5'), 120.0 (C-8'), 121.7 (C-3), 122.5 (C-5), 129.5 (C-6'), 130.6 (C-1'), 133.5 (C-6), 135.2 (C-4), 140.2 (C-2), 141.0 (C-7'), 157.2 (C-3'), 163.3 (C-7), 168.9 (C-9'); LCMS: m/z 306.0243 [M + $\mathrm{Na}]^{+}$; Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{4} \mathrm{Na}^{+}: 306.0742$.
\mathbf{N}-(E)-cinnamoylanthranilic acid 5m. Reaction of $3(0.10 \mathrm{~g}, 0.45 \mathrm{mmole})$ and benzaldehyde $\mathbf{4 m}(0.048$ $\mathrm{g}, 0.45 \mathrm{mmole}$) gave light green flakes from hot water-acetone, m.p. $188^{\circ} \mathrm{C}$ (Lit. ref. 13, $136^{\circ} \mathrm{C}$), yield: $0.080 \mathrm{~g}, 66 \%$; UV (MeOH): 311, 211 nm ; IR (KBr): 3141 (NH), 1668 (NHCO), 1611, 1548, $1223 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 6.63$ (d, $J=15.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{C}_{8}-\mathrm{H}$), $7.16\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{5}-\mathrm{H}\right), 7.40-7.64$ (m, 5H, Ar-H), $7.66\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}\right), 7.80(\mathrm{~d}$, $\left.J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{7}-\mathrm{H}\right), 8.12\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6}-\mathrm{H}\right)$, 8.91 (d, J=8.4 Hz, 1H, C $\mathrm{C}_{3}-\mathrm{H}$), 11.23 (s, $1 \mathrm{H}, \mathrm{COOH}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 114.1(\mathrm{C}-1)$, $120.9(\mathrm{C}-$ $\left.8^{\prime}\right), 121.8$ (C-3), 122.9 (C-5), 128.2 (C-2' \& C-6'), 128.9 (C-3' \& C-5'), 130.2 (C-4'), 131.9 (C-1'), 134.7 (C-6), 135.7 (C-4), 142.3 (C-2), 142.8 (C-7'), 164.9 (C-7), 171.9 (C-9'); FAB HRMS: m/z 290.0791 [M + $\mathrm{Na}]^{+}$; Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{Na}^{+}$: 290.0793.

Acknowledgement

We thank Dr C G Naik, NIO, Goa, for his help in recording NMR data, Prof M Mar Herrador del Pino,

Universidad De Granada, Spain for HRMS, Prof J A S Cavaleiro, University of Aveiro, Portugal for elemental analysis, Dr P P Wadgaonkar, NCL, Pune for MS data of samples and Prof S K Paknikar for useful discussions.

References

1 Peters F N \& Musher S, Ind Eng Chem, 24, 1937, 146.
2 Bratt K, Sunnerheim K, Bryngelsson S, Fagerlund A, Engman L, Andersson R E \& Dimberg L H, J Agri Food Chem, 51, 2003, 594.
3 Crombie L \& Mistry J, Tetrahedron Lett, 31, 1990, 2647.
4 Mayama S \& Tani T, Tetrahedron Lett, 22, 1981, 2103.
5 Collins F W, J Agri Food Chem, 37, 1989, 60.
6 Ishihara A, Ohtsu Y \& Iwamura H, Phytochemistry, 50, 1999, 237.

7 Eckroth D R, J Chem Edu, 49, 1972, 66.
8 Bain D I \& Smalley R K, J Chem Soc, 1968, 1593.
9 D'Souza A M, Ph D Thesis "Synthesis and transformation of some natural products and their analogues" 2002, 96.
10 Junek H, Ziegler E, Herzog U \& Kroboth H, Synthesis, 5, 1976, 332.
11 Ryu Y \& Scott I, Tetrahedron Lett, 44, 2003, 7499.
12 Kolb K E \& Fleld K W, J Chem Edu, 67, 1990, 12.
13 Rani P, Srivastava V K \& Kumar A, Indian J Chem, 42, 2003, 1729.

14 Chen C, Milbury P E, Kwak H, Collins F W, Samuel P \& Blumberg J B, J Nutr, 134, 2004, 1459 and references cited therein.
15 Davidson D \& Bernhardt S A, J Am Chem Soc, 70, 1948, 3426.

[^0]: ${ }^{\dagger}$ Dedicated to Prof S K Paknikar on his $72{ }^{\text {nd }}$ birthday

