
UPM- An Eclipse Plug-in to Incorporate Performance
Requirements into UML Models

Ramrao Wagh
Department of Computer Science

& Technology
Goa University

SPO Goa University
918322451937, 919423882964

ramrao@unigoa.ac.in
ramrao@it.iitb.ac.in

ABSTRACT
In this paper, we describe the design and implementation of
UPM- an Eclipse Plug-in that enables specifying the performance
requirements directly within the UML design model. We have
successfully implemented the most often used diagrams of UML
in our editor and also discuss a case study on which the tool was
used upon. The limitations as well as future enhancements to
make it fully functional are also discussed.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques-
Object-oriented design methods

General Terms
Measurement, Performance, Design.

Keywords
Performance Model, Model Transformation.

1. INTRODUCTION
Performance requirements constitute a major source of
nonfunctional requirements that must be met by the final software
system that is to be delivered. Majority of the requirements and
design specification methodologies and techniques focus on
facilitating the representation of functional requirements and
ignoring nonfunctional requirements specification. As a result,
these requirements are either not represented or represented in a
separate document. This leads to problem such as difficulty to
modify the performance requirements when other requirements
change, difficulty in imposing quality assurance measures so that
these requirements are also ensured to be complied during the
software development lifecycle. Moreover, with performance
playing a major role in determining the success or failure of the
deployed system in the enterprise and web applications it is
pertinent that a systematic method is needed to carry performance
requirements as a part of functional requirements specifications
throughout the development lifecycle.

Our research work[10] is focusing on this issue of specifying the
performance requirements in the software architecture and design
models. We have based our approach on the MDA philosophy in
which all the design models carrying performance annotations are
transformed into performance models that can generate the
necessary data to work with the performance modeling tools.

The advantages of this approach are manifold. Firstly,
performance requirements are incorporated as part of the design
model thereby avoiding the inconsistency problem. Secondly, as
design is refined successively, we can also fine tune the
performance requirements and as a result the estimates also will
be more and more accurate. Thirdly, it would be possible for us to
convert the design model into any desired performance model of
our choice.

We have chosen UML to represent the design models and used
the standard extension mechanisms of UML to allow the design
models to hold the performance requirements.

2. RELATED WORK
Numerous tools [1][3] are present that permit to specify
performance requirements and then to estimate the desired
performance objective but all of them require that you follow the
modeling notation that is unique to these tools. Moreover,
automatic transformation is not available. The developer has to
leave the deign view and construct these models separately.
Developers are also not well-versed with the formalism that is the
basis of these tools.

In order to overcome these difficulties, we have developed UPM
as an Eclipse plug-in that aims to provide full functional UML
modeling capability with the added advantage of being able to
represent performance requirements.

3. DESIGN OF UPM
The UPM is developed using UML[4][5] and various model
driven development techniques based on OMG’s MDA[6]
initiative. We created the necessary metamodels for UML
diagrams and performance model and then generated the Editor
for each of these diagrams.

The UML 2.0 metamodel is described using a meta-metamodeling
language called MOF[7] by OMG. We have used Ecore model,
which is a popular implementation of MOF 2.0 specification to

Copyright is held by the author/owner(s).
ISEC’08, February 19–22, 2008, Hyderabad, India.
ACM 978-1-59593-917-3/08/02.

153

generate the metamodel of UML diagrams of interest to us.
Particularly, we used EMF(Eclipse Modeling Framework) plug-in
within Eclipse[2] which allows one to create Ecore models that
represent the metamodels for UML diagrams. The ability to
represent performance related information on each of these
diagrams was added by adding appropriate modeling elements
that have been described in UML Profile for SPT[8] to represent
performance models. Figure 1 shows a metamodel created by us
to represent class diagram structure.

Figure 1: UML Class Diagram Metamodel

Once these metamodels were created, we used GMF(Graphical
Modeling Framework) plug-in to create the basic graphical editor
that has the necessary capabilities to draw the UML diagrams as
well as specify the performance requirements.

4. USING UPM ON A CASE STUDY
We used the UPM Editor to represent a Web Video case study
that is used in UML Profile for SPT[9] to describe the use of
performance profile. It is seen that we have been successful in
representing all the performance modeling notations defined in
the performance profile. We show some of the snapshots of the
UPM Editor plug-in representing the various diagrams of Web
Video case study.

5. FUTURE WORK
The current version of UPM Editor supports five out of 13 UML
2.0 diagrams which are adequate for performance modeling.
Support for drawing other diagrams is being worked upon. The
major limitation of the present tool is that we have to manipulate
the entire five diagrams separately. Current version of GMF does
not allow us to integrate the five metamodels under one editor.
We are hopeful that future releases of GMF will solve this
problem. We are also working toward the mechanism to maintain
consistency among the information stored within these models as
they represent different views of the same underlying system. We
need a consistency mechanism to check the information among
the various diagrams as well as consistency among the various
refinements of the same diagrams as design proceeds ahead.
We are also building tools to represent various performance
models and transformation models to use the information

represented by the model created by UPM editor by applying the
proposed model transformation QVTP[9] specification of MDA.

Figure 2: Drawing Class Diagram in UPM

6. ACKNOWLEDGEMENTS
The author of the paper wishes to thank Jelissa Rodrigues,
Michelle Coutinho, and Veena Damle, for their help in
implementation of this editor.

7. REFERENCES
[1] Balsamo S, Di Marco A, Inverardi P, Simeoni M: Model-

Based Performance Prediction in Software Development: A
Survey. IEEE Transactions on Software Engineering, vol.
30, n. 5, pp. 295-310 (2004)

[2] Eclipse website: www.eclipse.org
[3] Petriu D, Woodside M: A Metamodel for Generating

Performance Models from UML Designs, Proc. of UML
Conference, LNCS 3273, pp 41-53 . (2004)

[4] Object Management Group: Unified Modeling Language
(UML) Specification: Infrastructure, Version 2.0, ptc/03-09-
15, (2003).

[5] Object Management Group: UML 2.0 Superstructure,ptc/03-
08-02, (2003)

[6] Object Management Group: MDA-Guide, V1.0.1, omg/03-
06-01, (2003).

[7] Object Management Group: Meta Object Facility (MOF)2.0
Core Specification, ptc/03-10-04, (2003).

[8] Object Management Group: UML profile for SPT, OMG
Document: ptc/04/02/01(2001)

[9] Object Management Group: QVT-Partners. MOF
Query/Views/Transformations, Revised Submission. OMG
Document: ad/2003-08-08 (2003)

[10] Ramrao Wagh, Umesh Bellur, Bernard Menezes:
Transformation of UML Design Model into Performance
Model - A Model-Driven Framework. ICEIS (3) 2006: 576-5

154

