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We study a bosonic ladder with two coupled chains using the finite-size density-matrix renormalization
group method. We show that in a commensurate bosonic ladder the critical on-site interaction �UC� for the
superfluid to Mott insulator transition gets larger as the interchain hopping �t�� increases. We analyze this
quantum phase transition and obtain the phase diagram in the t�−U plane. We also consider the asymmetric
case where the on-site interactions are different in the two chains and have shown that the system as a whole
will not be in the Mott insulator phase unless both the chains have on-site interactions greater than the critical
value.
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I. INTRODUCTION

Quantum phase transitions in ultracold atoms provide im-
portant insights into the behavior of matter at very low
temperatures.1–3 An important example of this class of tran-
sitions is the transition from a superfluid �SF� to a Mott
insulator �MI� which has been studied theoretically in details
by a variety of methods4–13 and has been observed in cold
bosonic atoms in three-dimensional �3D� optical lattices14 as
predicted by Jaksch et al.15 Subsequently, this transition has
been observed in a one-dimensional �1D� optical lattice.16 An
important question to address is, how do the characteristics
of this transition alter in going from one to two dimensions?
In coupled bosonic chains, competition exists between the
ratio of on-site interactions to the intrachain hopping and the
interchain hopping. A large value of the former favors a Mott
insulator state overcoming the effect of the interchain hop-
ping while if the latter dominates it would tend to delocalize
the bosons and drive the system to a superfluid state. Re-
cently coupled chains17,18 and tubes19 for bosons in optical
lattices have been studied analytically using bosonization
techniques. It is desirable to investigate these systems by
using a rigorous many-body approach. However, it is not
practical to perform numerical studies using such an ap-
proach for the above mentioned transitions in a very large
number of coupled chains, so one must restrict to a finite
number of such chains. The aim of the present work is to
study the effect of the interchain hopping on the SF-MI tran-
sition for a bosonic ladder consisting of two coupled chains.
Although a substantial amount of theoretical and numerical
works has been done in this direction for the case of spinless
fermionic ladders and spin ladders,20–22 no work has been
reported to our knowledge for the bosonic ladders except the
recent work using the bosonization method.17,18

The Hamiltonian of the bosonic ladder �as shown in Fig.
1� is given by

H = − t�
i,�

�ai,�
† ai+1,� + H.c.� + �

i,�

U�

2
ni,��ni,� − 1�

− t��
i

�ai,1
† ai,2 + H.c.� . �1�

In this model �1� ai,�
† �ai,�� represents bosonic creation �an-

nihilation� operator for the site i of the chain with the index
�=1,2. t and U�, respectively, are the intrachain hopping
amplitude between the nearest neighboring sites and the on-

FIG. 1. Schematic picture of a two-leg bosonic ladder. t and t�

are, respectively, interchain and intrachain hopping amplitudes.

PHYSICAL REVIEW B 78, 165104 �2008�

1098-0121/2008/78�16�/165104�6� ©2008 The American Physical Society165104-1

http://dx.doi.org/10.1103/PhysRevB.78.165104


site interaction between the bosons of chain �. The last term
in this model �1� represents interchain hopping with an am-
plitude t� between corresponding sites on the two chains. We
set our energy scale by taking t=1.

This model has been studied using the bosonization
technique17,18 at or close to commensurate filling of one bo-
son per site. This study predicts a transition from a Mott
insulator to a superfluid phase when the interchain hopping is
increased and it is in the Beresenskii-Kosterlitz-Thouless
�BKT� universality class at commensurate filling. In the
present work we put these predictions to test and in addition
consider the various cases when the on-site interactions of
the two chains are different and thus complement the earlier
analytical results. For these purposes, we study the variation
of the critical on-site interaction UC for the superfluid to the
Mott insulator transition by changing the interchain hopping
amplitude t� in the framework of finite-size density-matrix
renormalization group �FSDMRG� method8,9,23–25 and obtain
the phase diagram in the �t�−U� plane. To the best of our
knowledge, the present work is the first application of FSD-
MRG method to bosonic ladders.

The remaining part of the paper is organized in the fol-
lowing manner. The FSDMRG method in the context of
bosonic ladders is briefly described in Sec. II. Our results are
described and discussed in Sec. III and our conclusions are
stated in Sec. IV.

II. FSDMRG METHOD

We use the FSDMRG technique to obtain the energies and
the correlation functions of the ground state. This method is
very efficient and has proven to give accurate results for 1D
quantum lattice systems and has been applied to low-
dimensional strongly correlated fermionic and bosonic
systems.8,9,23–25 To get accurate energies and correlation
functions one needs to use FSDMRG rather than infinite-size
DMRG. In the conventional FSDMRG, the lattice is built
first to the desired length using infinite-size DMRG and then
the sweeping is done. We have used a slightly modified ver-
sion of FSDMRG where we sweep at every length and not
just the final length.9 The calculated length dependence of
gap �see Eq. �2� below� for a typical value of parameters
�U1=U2=3.5, t�=0.4� is given in Fig. 2 to demonstrate the
improvement of gap using FSDMRG, where sweep is done
at every length, over the infinite-size DMRG. We give below
some pertinent details of this method adapted to the system
of two coupled chains that we have considered.

We begin with a superblock configuration
B�L/2�−1

l · ·B�L/2�−1
r of L rungs as shown in Fig. 3. The left

B�L/2�−1
l and the right block B�L/2�−1

r have �L /2�−1 rungs each
and the · represents one rung of two sites, one from each
chain. Thus in every iteration, the new left and right blocks
are B�L/2�

l =B�L/2�−1
l · and B�L/2�

r = ·B�L/2�−1
r , respectively. For

each length sweeping is done till we get the converged value
of the energy. The system size is then increased by adding
two rungs which increases the number of lattice sites by 4.
To keep the density �=1 fixed, we also increase the number
of bosons in the system by 4. The truncation of states of left

�right� block in each iterations corresponds to choosing M
highest weighted states out of 2�nmax�M of the left �right�
density matrix. Here nmax is the number of states kept at each
site, which is in general infinity, but we truncate it for a
feasible numerical calculation. We keep nmax=4 in this cal-
culation which is found to be sufficient for the values of U
considered here.9 The value of M is chosen such that the
truncation error in our calculation is always less than 10−5.

III. RESULTS AND DISCUSSION

First we discuss the symmetric two-leg ladder where U1
=U2=U. The Mott insulator phase has a finite gap in its
energy spectrum. The single-particle gap is defined as

GL = EL�N + 1� − EL�N� − �EL�N� − EL�N − 1�� , �2�

where EL�N� is the ground-state energy of two-leg bosonic
ladder with length L having N bosons. The MI phase is sig-
naled by the opening up of the gap GL→�. However, GL is
finite for finite systems and we must extrapolate to the L
→� limit, which is best done by using finite-size scaling.9 In
the critical region, i.e., SF region, the gap

FIG. 2. Comparison of gap obtained using infinite size DMRG
and FSDMRG methods for U1=U2=3.5 and t�=0.4.

FIG. 3. A scheme of superblock configuration for the FSDMRG
algorithm.
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GL � L−1f�L/�� , �3�

where the scaling function f�x��x , x→0 and � is the cor-
relation length. �→� in the SF region. Thus plots of LGL
versus U, for different system sizes L, consist of curves that
intersect at the critical point at which the correlation length
for L=� diverges and gap G� vanishes. In the SF phase we
expect the gap GL→�=0 so LGL=constant for all lengths.
Numerically we have a certain tolerance limit for the permis-
sible error and if we assume the allowed error in the value
GL→� is 0.05 �instead of 0�, i.e., our zero is scaled to 0.05,
the difference in the LGL value between two lengths differing
by 10 would be 0.5. Similarly if the zero is scaled to 0.01
then this difference should be 0.1. We determined the critical
values of U for the SF to MI transition when the values of
LGL for two lengths, L and L+10, differ by 0.1. The error in
the UC is obtained when we relax the tolerance in the value
of LGL to 0.5. The phase diagram, as discussed below, is
obtained from these critical values of U.

It is now well known that the single chain Bose-Hubbard
model with density �=1 shows a SF-MI transition with the
critical on-site interaction UC�3.4.8,9 In order to understand
the effect of the interchain hopping on this transition, we
varied t� from 0 to 20 and obtained the corresponding criti-
cal on-site interaction UC�t�� for the SF-MI transition. We

found that UC increases with t� and saturates in the limit
t�→�. These results are highlighted by the plots of scaling
of gap LGL versus U for different values of t� and lengths L.
For example, in the Fig. 4 we plot LGL versus U for t�

=0.4. The coalescence of LGL curves for different values of
L below U�6.6 demonstrates the SF-MI transition with
UC�t�=0.4��6.6 which is much larger than the correspond-
ing value for the single chain UC�t�=0��3.4. Figure 5 rep-
resents similar plots for t�=1. For this case the critical on-
site interaction increases further to UC�t�=1��7.9.

From similar plots of LGL versus U, we obtain the phase
diagram for model �1� in the t�−U plane and it can be seen
in Fig. 6. UC for the SF-MI transition initially increases
sharply as the interchain hopping t� increases. This phase
diagram verifies the prediction of MI-SF transition with re-
spect to increase in the interchain hopping t�.17 For higher
values of t�, UC tends to saturate. For t�� t ,U, each rung
has two one-particle states: corresponding to bonding or an-
tibonding. As predicted in the bosonization17 study, this
problem then maps onto a single chain Bose Hubbard model
with commensurate density �=2 and on-site interaction U /2.
To confirm this prediction we plot the variation of UC with
respect to t� in Fig. 7. Critical on-site interaction UC for
large t� converges to a value equal to 12.5�0.3. Plotting
LGL versus U for single chain Bose-Hubbard model for �
=2 in Fig. 8 we find that UC�6.3, which is one half the
converged value of UC�t�=���12.5 for the bosonic ladder

FIG. 4. Scaling of gap LGL as a function of U for t�=0.4 and
different lengths. The coalescence of curves for different lengths for
U�UC�6.6 shows a superfluid phase and a Mott insulator with
finite gap for U	UC.

FIG. 5. Scaling of gap LGL as a function of U for t�= t=1.0 and
different lengths. The coalescence of curves for different lengths for
U�UC�7.9 shows a superfluid phase and a Mott insulator with
finite gap for U	UC. Comparing this figure with Fig. 4, we observe
that the critical UC increases with t�.

FIG. 6. Phase diagram of model �1� as a function of interchain
hopping t� and on-site interaction U for density �=1. Note that we
have set intrachain hopping t=1.

FIG. 7. Variation of critical on-site interaction UC with respect
to interchain hopping t�. UC increases sharply for small values of
t� and saturates to 12.5�0.3 as t�→�.
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confirming the prediction made in bosonization study.17

The Mott insulator to superfluid transition is found to be
Beresinskii-Kosterlitz-Thouless universality class at com-
mensurate filling.17 The correlation function that character-
izes the superfluid phase is given by 
��r�= �ai,�

† ai+r,�	 which
decays as a power law in the limit r→�. Here the expecta-
tion value is taken with respect to the ground state. However,
in the Mott insulator phase it has an exponential decay due to
the finite gap in the energy spectrum. The power-law decay
of this correlation function has been obtained using the
bosonization method17 and it is predicted to go as


��r� �
1

r1/4Ks
, �4�

with the Luttinger liquid parameter Ks stated to be 1 at the
superfluid to Mott insulator transition point.

In order to obtain the Luttinger liquid parameter Ks we
have taken three values of U, U=5,6 ,7 and have varied
the interchain hopping t� and obtained the Mott insulator
to superfluid transition. The scaling of gap LGL as a function
of t� is given in Fig. 9. The critical interchain hopping

t�
C =0.24�0.05 for the MI to SF transition for U=6. Similar

calculation for U=5 and U=7 yields t�
C =0.07�0.05 and

t�
C =0.6�0.05, respectively. The correlation functions 
�r�

�=
1�r�=
2�r�, for symmetric two-leg ladder� for different
values of t� keeping U=6 are given in Fig. 10. The Luttinger
liquid parameter Ks which is obtained by fitting 
��r� with
the expression given in Eq. �4� is plotted as a function of t�

in Fig. 11 for U=5, 6, and 7. From these values the critical
t�
C for which Ks=1 is given by 0.3�0.03 for U=6,

0.1�0.02 for U=5, and 0.68�0.02 for U=7 which are con-
sistent with values obtained from the scaling of the gap.

The results we have obtained could have experimental
implications. It is now possible to prepare bosonic ladders by
growing optical superlattices in the form of double-well po-
tential along one direction.26 The tunneling between the
double-well potential will control the interchain hopping.26,27

By changing dynamically the optical lattice parameters one
can control all the interactions and hopping parameters of the
model �1�. In view of these recent developments, we have
generalized our analysis and considered cases where the on-
site interactions are different on the two chains. There are
three possibilities: in the first both the chains have on-site
interactions which are less than the critical value, i.e.,
U1 ,U2�UC. In this case it is obvious that the system of two
chains is in the superfluid phase. Similarly when U1	UC
and U2	UC then the system is in the Mott phase. Most

FIG. 8. Scaling of gap LGL as a function of U for the single
chain Bose-Hubbard model with density �=2. The coalescence of
curves for different lengths for U�UC�6.3 shows a superfluid to a
Mott insulator transition.

FIG. 9. Scaling of LGL as a function of t� for U=6.

FIG. 10. Power-law decay of 
�r� for various values of t� for
U=6.

FIG. 11. Variation of Luttinger liquid parameter Ks as a function
of t� near MI to SF transition for U=5,6 ,7.

LUTHRA et al. PHYSICAL REVIEW B 78, 165104 �2008�

165104-4



interesting case will be the third one when say, U1	UC and
U2�UC. A natural question that arises is whether the chain
with larger on-site interaction will be in the Mott insulator
phase and the other in the superfluid phase. We have an-
swered this question by calculating the gaps and the correla-
tion functions taking U1=8, U2=3 and 8 keeping t�=0.2. It
may be noted that the critical value for the SF to MI transi-
tion when U1=U2 and t�=0.2 is 5.5. In Fig. 12 we plot the
GL as a function of 1 /L which shows that for the case U2
=8 the system of two chain is in the Mott insulator phase.
However, when U2=3, which is less than UC=5.5, the gap
vanishes in the limit L→� and the system is in the SF phase.
The gap yields the nature of the phase of the system as a
whole. In order to check the phase of each chain separately,
we use the correlation function and the correlation length
defined by9

�L
� =
�r

r2
L
��r�

�r

L

��r�
. �5�


L
��r�= �ai,�

† ai+r,�	 was calculated using the wave function of
the system with length L. The correlation length diverges in
the superfluid phase. In Fig. 13 we have plotted the correla-
tion length calculated for each individual chain separately
keeping U1=8, U2=3, and t�=0.2. It is obvious from this
figure that both the chains have correlation lengths which
diverge in the limit L→�, i.e., both the chains are in the
superfluid phase. Though U1	UC=5.5, the chain 1 is in the
superfluid phase. From the calculation of the local density of
bosons ��= �ni

�	, we found that the average densities of the
bosons, �1 and �2 for chains 1 and 2, respectively, differ from
the average density of the bosons in the whole system, i.e.,
�=1 in our case, to minimize the effect of the on-site inter-
actions. If U1	U2 then �1��2. The bosons migrate from the
chain with the larger on-site interaction to that with smaller
on-site interaction. We find that the number of bosons which
migrate increases as the difference between the on-site inter-
actions gets larger �see Fig. 13 �inset��. From these studies

we conclude that, for an asymmetric chain, whenever one of
the chains has on-site interaction less that the critical value,
the system as a whole and each chain is in the superfluid
phase. The Mott insulator is possible only if both the chains
have on-site interactions greater than the critical value, such
a phase can have �1��2 if U1�U2. Whenever we have
coupled chains, a situation where one of the chains is a Mott
insulator and the other a superfluid will never arise.

IV. CONCLUSIONS

We have studied the ground-state properties of a two
chain bosonic ladder with commensurate filling of one boson
per site using the finite-size density-matrix renormalization
group method. The critical on-site interaction for the SF-MI
phase transition increases sharply for small values of inter-
chain hoping amplitude t�. However, it saturates for large
values of t�. Thus in the presence of large interchain hop-
ping, the system continues to be in the superfluid state even
though the individual chains �in the absence of interchain
hopping� are Mott insulators. We therefore rigorously estab-
lish the dependence of the superfluid to Mott insulator tran-
sition on t�. We have obtained the Luttinger liquid parameter
and it is in good agreement with the bosonization results. In
addition to verifying and complementing the predictions
made by the bosonization technique, we have extended our
study by considering asymmetric ladder case in our model.

The best experimental system to observe the quantum
phase transitions reported in this work is the double-well
optical lattices.26 Such a system can be described by the
model �1� with the inclusion of trap potential, which intro-
duces inhomogeneity in the system and as a result the aver-
age local density of bosons is no more uniform across the
lattice. The detailed description of the model �1� in the pres-
ence of trap potential is outside the scope of the present
study and will be reported elsewhere. However, studies28,29

FIG. 12. Gap GL as a function of 1 /L for U2=3,8 keeping U1

=8, t�=0.2 showing the system is in MI phase for U2=8 and in the
superfluid phase for U2=3.

FIG. 13. The inverse correlation lengths 1 /�L
1 and 1 /�L

2 for
chains 1 and 2, respectively, as a function of 1 /L for U2=3 keeping
U1=8, t�=0.2. In the limit L→� both �L

1 and �L
2 diverge which

show both the chains are in the superfluid phase. �inset� Variation of
average density of bosons �1 and �2 as function of U1 keeping U2

=3 fixed.
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in 3D optical lattices by treating this trap potential as an
effective local chemical potential have shown the existence
of alternative superfluid and Mott insulator shells in the sys-
tem and these predictions have been verified by recent
experiments.30,31 We hope that our analysis of the SF-MI
transition in the bosonic ladder will stimulate similar experi-
mental studies in this direction.
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