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We study the quantum phase transitions in a two component Bose mixture in a one-dimensional optical
lattice. The calculations have been performed in the framework of the extended Bose-Hubbard model using the
finite size density matrix renormalization group method. We obtain different phase transitions for the system
for integer filling. When the interspecies on-site and the nearest-neighbor interactions are larger than the
intraspecies on-site and also the nearest-neighbor interaction, the system exhibits a phase separated charge-
density-wave order that is characterized by the two species being spatially separated and existing in the
density-wave phases.
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I. INTRODUCTION

Ultracold atoms in the optical lattices can provide new
insights into quantum phase transitions �1�. The remarkable
control of the interaction strengths between the atoms by
tuning the laser intensity �2� leads to the experimental real-
ization of the superfluid �SF� to Mott-insulator �MI� transi-
tion which was predicted by Jaksch et al. �3�. The observa-
tion of the SF to MI transition in the one-dimensional �1D�
optical lattice �4� has further enhanced the interest in the
search for new quantum phases in the low-dimensional
bosonic systems. Recent realization of Bose-Einstein con-
densation �BEC� in strongly dipolar 52Cr atoms �5� has en-
larged the domain of interaction space to investigate various
quantum phase transitions and other possible subtle charac-
ters of bosons at different limits that can be experimentally
observed. When atoms with large dipole moments are loaded
into the optical lattices, the long-range interaction between
the atoms plays a very important role, in addition to the
on-site interaction, in the determination of the ground state.
Such a system can be described by the extended Bose-
Hubbard model, which includes the nearest-neighbor interac-
tion along with the on-site repulsion, and gives rise to many
new phases such as charge-density wave �CDW� �sometime
known as mass-density wave �MDW�� �6,7�, Haldane insu-
lator order �8�, and exotic supersolid �9�.

On the other hand, the study of mixtures of atoms such as
Bose-Bose �10,11�, Bose-Fermi �12,13�, and Fermi-Fermi
�14,15� have attracted much attention in recent years because
of the successful realization of such systems in optical lat-
tices �16�. In the case of the Bose-Bose mixture, the theoret-
ical models take on-site intraspecies and interspecies interac-

tions into consideration to describe the system in a large
domain of system parameters and the competition between
them opens up many new possible quantum phases �17–20�.
Recent studies in the one-dimensional two species Bose mix-
tures have revealed a spatially phase separated �PS� phase
�21,22�, when the interspecies interaction is greater than the
intraspecies interaction. This phase separation can be either
of SF or MI type depending upon the strong interplay be-
tween the on-site intraspecies and interspecies interactions
�21�. In this context, it is very interesting and relevant to
study the Bose mixtures of dipolar atoms to investigate the
underlying influence of long-range interactions on these
phases. Prior theoretical studies of such systems will be help-
ful to guide the direction of experimental investigations. Our
aim of this work is to extend the search for new possible
phases by taking into account the nearest-neighbor interac-
tions along with the on-site intraspecies and interspecies in-
teractions in the two species Bose mixture which we have
studied earlier �21�. We employ the finite size �FS� density
matrix renormalization group �DMRG� method to study the
system.

We have organized the remaining part of the paper in the
following way. In Sec. II, we present the theoretical model
that we have considered, followed by the method of calcula-
tions. We have given brief discussions of the cases that we
have taken into account in this work and a detailed analysis
of the results in Secs. III and IV, respectively. Finally, we
conclude our findings in the last section.

II. MODEL HAMILTONIAN AND METHOD
OF CALCULATIONS

In this work, we consider Bose mixtures of dipolar atoms
in a 1D optical lattice. The corresponding effective Hamil-
tonian for such systems can be expressed as
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where ci and ci
† �with c=a ,b� represent the annihilation and

creation operators, respectively, for bosonic atoms of a or b
type on site i whose number operators are defined by ni

c

=ci
†ci. In the above equation, tc, Uc, and Vc are the ampli-

tudes for the hopping between nearest-neighboring sites, and
the on-site and nearest-neighbor intraspecies repulsive inter-
actions, respectively. The interspecies on-site and nearest-
neighbor interactions are represented by Uab and Vab, respec-
tively. It is obvious from Eq. �1� that there are at least eight
independent parameters in the model. Since it is not possible
to vary all these parameters at a time to grasp the underlying
physics of the above model, we restrict ourselves to some
special range of parameters which are guided by some cases
that have already been studied earlier �6,21�. We also keep
the symmetry between both the a and b types of bosons by
assuming ta= tb= t, Ua=Ub=U, and Va=Vb=V. We scale the
energy of the whole system with respect to t by setting its
value as unity; therefore, all the parameters considered above
are dimensionless.

In our earlier study in the absence of nearest-neighbor
interactions, i.e., V=Vab=0, many interesting phases had
been predicted. In particular, our work revealed the possible
existence of both the species being in SF phases, the system
as a whole existing as a MI and phase separated superfluid
�PSSF� and phase separated Mott insulator �PSMI� �21� by
varying the on-site interaction strengths of both a and b type
bosons. It was shown that a phase separation between SF
phases of a and b is possible when Uab is considered
�slightly� larger than U. When the total density of the system
was an integer ��=1� with density of each species equal to
half ��a=�b=1 /2�, we had predicted SF, PSSF, and PSMI
phases in the U and Uab phase space. Furthermore, in the
incommensurate densities with �a=1, �b=1 /2, and �=3 /2,
we had found only the SF and PSSF phases. In contrast to
this case, when Uab�U was considered, only the SF phase
was possible for the incommensurate densities while signa-
tures of both the SF and MI phases with continuous SF to MI
phase transitions were found for the commensurate densities.

The aim of this work is to investigate how these phases
evolve in the presence of intraspecies and interspecies
nearest-neighbor interactions. For a better analysis of a par-
ticular situation, we restrict ourselves to the commensurate
densities, especially the case when �a=�b=1 /2 with �=1.
This choice is governed by the knowledge that we have ac-
quired from the following studies in the phase diagram of �i�
the extended Bose-Hubbard model for density �=1 �6� for a
single-species boson and �ii� the two species Bose-Hubbard
model for densities �a=�b=1 /2 and �=1 �21�. Our analysis
of the results from the present study is based upon the find-
ings of the above two cases and conclusions are drawn with
respect to them.

Model �1� is a difficult problem to study analytically. We
have employed the FS-DMRG method with open-boundary

condition to determine the ground state. This method has
been proven to be one of the most powerful techniques for
1D systems �6,23,24�. We have considered a soft-core case
by keeping the number of bosonic states per site for each
species as 4. We allow up to 128 states in the density matrix
of the left and right blocks in each iteration of the FS-DMRG
calculations. The weight of the states neglected in the density
matrix of left and right blocks are less than 10−6. To get a
better convergence of the ground-state energies of various
phases, especially for larger values of intraspecies and inter-
species nearest-neighbor interactions, we have performed the
finite size sweeping procedure �6� twice in each iteration of
the FS-DMRG method.

To identify the ground states of various phases of the
model Hamiltonian given by Eq. �1�, we calculate the single-
particle excitation gap GL defined as the difference between
the energies needed to add and remove one atom from a
system of atoms, i.e.,

GL = EL�Na + 1,Nb� + EL�Na − 1,Nb� − 2EL�Na,Nb� . �2�

We also calculate the on-site number density as

�ni
c� = ��LNaNb


ni
c
�LNaNb

� . �3�

Here c, as mentioned before, is an index representing type a
or b bosons, with Na �Nb� corresponding to the total number
of a �b� bosons in the ground state 
�LNaNb

� of a system of
length L with the ground-state energy EL�Na ,Nb�.

In d=1 the appearance of the SF phase is signaled by
GL→0 for L→�. However, for a finite system GL is finite,
and we must extrapolate to L→� limit, which is best done
by finite size scaling of the gap �6,25�. In the critical region

GL � L−1f�L/�� , �4�

where � is the correlation length which diverges in the SF
phase. Thus plots of LGL versus interaction for different val-
ues of L coalesce in the SF phase. On the other hand, when
this trend does not follow then the system can be said to be
in the MI phase.

We also define the CDW order parameter for the bosons
as

OCDW
c =

1

L
�

i

��LNaNb

�
ni

c − �c
�
�LNaNb
� . �5�

So when the CDW order parameter of the system is finite
then the system is assumed to be in the CDW phase. Since �c
of the system is constant, it is clear from the above equation
that the density of the bosons will oscillate when they are in
the CDW phase.

To find whether the ground state is separated in the spa-
tial, we calculate the PS order parameter, which is given by

OPS =
1

L
�

i

��LNaNb

�
ni

a − ni
b
�
�LNaNb

� . �6�

When OPS is finite, the system is said to be in the PS
phase. Therefore, the system can be simultaneously in the PS
and one of the SF, MI, or CDW phases, which can be distin-
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guished by determining both OPS and one of the above prop-
erties to identify the other corresponding phase.

III. PREANALYSIS OF RESULTS

Before presenting the details of our results, we first sum-
marize the main features of our study here. In this study, our
main focus is to understand the effects of intraspecies and
interspecies nearest-neighbor interactions between the atoms
on the PSMI phase. As mentioned in the earlier, the PSMI
phase is possible only if �U�Uab /U�1, when V=Vab=0.
As we show below there is a stringent condition for the
PSMI phases when the nearest-neighbor interactions are fi-
nite. In the present work, we fix �U=1.05 and consider two
values of intra-species on-site interaction U=6 and 9. Our
previous study �21� had yielded that the ground state of
model �1� with �a=�b=1 /2 is in the PSMI phase for these
values of intraspecies and interspecies on-site interactions.
Similarly, the phase diagram of the single-species EBH
model �6� shows that the ground state for U=6 varies first
from MI to SF as the nearest-neighbor interaction V in-
creases from zero and then to the CDW phase for the larger
values of V. However, for U=9, there is no SF phase sand-
wiched between the MI and CDW phases and the transition
between them is direct. We present below the results ob-
tained from this investigation, where the nearest-neighbor
interactions are finite.

One feature which emerges from our study is that when
intraspecies and interspecies nearest-neighbor interactions
are finite, the PSCDW phase is possible only for Vab�V. We
find that for a fixed �V=Vab /V=1.25 and U=6, the ground
state evolves from PSMI to PSSF phases as V steadily in-
creases from an initial value of zero and at some critical
value it evolves into the PSCDW phase, where a and b spe-
cies of atoms reside in the opposite sides of the lattice and
each of them showing a density oscillation as expected in the
CDW phase. However, for U=9, the transition from the
PSMI to PSCDW phase is direct with no PSSF phase sand-
wiched between them. In other words, for �U�1 and �V
�1, each type of bosons is phase separated, thus minimizing
the energy corresponding to interspecies on-site and nearest-

neighbor interactions and the PS regions behave similar to a
single-species EBH model.

However, for Vab�V, a small value of V is sufficient to
destroy the PSMI phase and the system evolves into the MI
phase where the densities of a and b bosons are equal, but
with a finite gap in the single-particle energy spectrum. As V
increases further the system evolves into a CDW phase with
densities of both a and b type atoms exhibiting oscillations.
However, these oscillations are shifted by one lattice site.
This behavior is distinctly different from the single-species
EBH model.

IV. RESULTS AND DISCUSSIONS

We now present the details of our results. We begin with
the case �U=1.05, �V=0.5, U=9. Calculating the gap in the
energy spectrum using Eq. �2�, we observe that the system is
always gapped for the entire range of V. Figure 1 shows a
plot of gap GL versus 1 /L for few values of V. A finite gap is
a signature of the insulator phase in the system.

In order to investigate the nature of this insulator phase,
we further obtain the density distributions �ni

a� and �ni
b� of

both a and b species bosons using Eq. �3� and they are plot-
ted in Figs. 2 and 3. When V=0 �Fig. 2� or is very small, we

FIG. 1. Gap GL versus 1 /L for different values of V for U=9,
�U=1.05, and �V=0.5. GL→� converges to a finite valued signal-
ing Mott-insulator phase.

FIG. 2. Plots of �ni
a� and �ni

b� versus i for V=0 and 1, respec-
tively, showing PSMI and MI phases.

FIG. 3. Plots of �ni
a� and �ni

b� versus i for V=4 showing inter-
mingled CDW phases for a and b types of bosons.
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observe that the insulator phase has a and b atoms spatially
phase separated, i.e., it is in the PSMI phase. For very small
V, the system behaves similar to a two species BH model. As
V increases �see Fig. 2� further both the species distribute
themselves throughout the lattice, thereby destroying the
phase separation. Since there is a gap in the excitation spec-
trum, this corresponds to the MI phase. The critical value of
V for this PSMI to MI transition is 0.2 for �U=1.05, �V
=0.5, and U=9. Further increase of V drives the system to a
phase where the two like atoms cannot occupy the adjacent
sites because of large V. The competition between intraspe-
cies and interspecies interactions leads to an energetically
favored state where the atoms arrange themselves as shown
in Fig. 3. Both a and b type bosons exhibit CDW oscilla-
tions; however, they share adjacent sites to minimize the ef-
fect of on-site interspecies interactions. The oscillation in
�ni

a� and �ni
b� increases and then stabilizes at a higher V. This

is a CDW phase and the density oscillations of a and b
species atoms are shifted by one lattice site. The phase tran-
sition from MI to this intermingled CDW phase has a critical
value of VC�1.2, which is obtained by plotting the CDW
order parameter OCDW

a for different values of V ranging from
0.6 to 3.8 in steps of 0.2, versus 1 /L as shown in Fig. 4. We
notice that the OCDW

a goes to zero for V�VC1.2 where it is
finite for higher values of V. It should be noted that for the
single-species extended Bose–Hubbard model, the VC for the
MI to CDW transition was found to be approximately equal
to 4.7 �6�. Thus for �U=1.05, �V=0.5, and U=9, the
nearest-neighbor interaction between the species favors a
CDW over a MI phase. The similar behavior is also seen for
U=6, but the PS phase vanishes for small values of V as seen
from the density distributions for V=0.0 to V=0.15 as shown
in Fig. 5. From these analysis we arrive at the conclusion at
this juncture that for �U�1 and �V�1, the PSMI phase is
unstable in the presence of a small interspecies nearest-
neighbor interaction. The phase diagram will then consist of
PSMI �for very small values of V�, MI, and CDW phases.
However, it is interesting to note that the CDW phase is in
fact two intermingled CDW, one each for the two different
species.

We now proceed to discuss the other situation where
�V�1. Considering �=1.25, we obtain the gap GL, local
density distributions �ni

a�, �ni
b�, and the CDW order param-

eters for both U=6 and 9. The most important feature seen in
this case is that the phase separation survives for all the
considered values of V. a and b species of atoms are present
in the opposite sides of the lattice. Since the interspecies
�both on-site and nearest-neighbor� interactions are larger
than the intraspecies interactions, the PS phase is always
energetically favored compared to the uniform case since the
chances of a and b atoms sharing the same site or the
nearest-neighboring sites are minimized. In other words, the
importance of Uab and Vab in the present system is mini-
mized by the PS phase and only interactions left to compete
with each other are the on-site and nearest-neighbor intraspe-
cies interactions. That means both a and b atoms in the PS
phase behave similar to a single-species EBH model. We
establish these results below by analyzing the gap, local den-
sities, and CDW order parameters.

In Fig. 6, we plot the scaling of gap LGL as a function of
V for on-site interaction U=9. The curves for different
lengths L do not coalesce anywhere in the figure which is the
signature of the finite gap in the single-particle energy spec-
trum �6�. This implies that the phase will be either a PSMI or
a PSCDW. In contrast, different LGL curves coalesce for
3.4�V�3.9 for U=6 as shown in Fig. 7 suggesting the
existence of the SF phase �6� sandwiched between two
gapped phases. To understand the nature of these phases, we
plot, in Fig. 8, �ni

a� and �ni
b� for two specific values of V, one

each representing PSMI and PSCDW phases. Phase separa-
tion can be clearly seen in these figures. Plots of these kind
yield a PSMI phase for V�3.4. The phase separated phase
has the average density �a=�b=1 �see Fig. 8�a��. For 3.4
�V�3.8, the gap vanishes but the phase separation order
parameter remains finite, giving rise to a PSSF phase. And
finally for larger value of V, we have a clear PSCDW phase
�see Fig. 8�b��. The CDW order parameters plotted in Fig. 9

FIG. 4. Plot of CDW order parameter OCDW
a for a-type atoms as

a function of 1 /L for values of V ranging from 0.6 to 3.8 in steps of
0.2. The OCDW

a goes to zero for V�VC1.2 whereas it is nonzero
for higher values of V which shows the transition to CDW phase at
VC1.2.

FIG. 5. Density distributions for different values of V with �V
=0.5, U=6.0, and �U=1.05.
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remain nonzero for the PSCDW phase. It may be noted that
in the PS phase when calculating the CDW order parameter,
say OCDW

a for a bosons, only the spatially separated regions,
i.e., right-hand side of the lattice is considered since the den-
sity of a bosons is zero in the left part of the lattice. There-
fore, for U=6, we have a transition from PSMI to PSSF as V
increases. Further increase of V leads to a transition from the
PSSF to the PSCDW phase. However, the transition from
PSMI to PSCDW is direct for U=9 as seen from Fig. 6. So
we conclude here that for Uab�U and Vab�V, the system
has a PS phase for all values of V and it behaves similar to a
single-species BH model in this PS region.

V. CONCLUSIONS

We have investigated the ground-state properties of a two
species extended Bose-Hubbard model using the finite size
density matrix renormalization group method. We study the
system for integer filling, i.e., �=�a+�b=1 with �a=�b
=1 /2. Starting with a phase separated Mott-insulator phase
�i.e., keeping Uab�U� and varying the nearest-neighbor in-
teraction strengths, we predict a transition from phase sepa-

rated Mott insulator to Mott insulator and then to charge
density wave phase for Vab�V. The charge density wave
phase in this case is actually an intermingled charge density
wave phase, where both a and b species of atoms show den-
sity oscillations, but are shifted by one lattice site. For Vab

�V the phase separation breaks for a very small nearest-
neighbor interaction strength. However, when Vab�V, the
phase separation is robust. For large values of U, the ground
state evolves from the phase separated Mott-insulator phase
to the phase separated charge density wave phase with a

FIG. 6. Scaling of gap LGL is plotted as a function of V for
different system sizes for �U=1.05, �V=1.25, and U=9. The gaps
remain finite for all the values of V and shows the PSMI-PSCDW
transition with VC4.7.

FIG. 7. The scaling of gap LGL is plotted as a function of V for
different system sizes for �U=1.05, �V=1.25, and U=6. Coales-
cence of different plots between 3.4�V�3.9 shows a gapless
PSSF phase sandwiched between PSMI and PSCDW phases.

FIG. 8. Plots of �na� and �nb� versus L for U=6 and two differ-
ent values of V: �a� V=2 showing the PSMI phase and �b� V=4.6
showing the PSCDW phase.

FIG. 9. Plot of OCDW
a as a function of 1 /L for values of V

ranging from 0.4 to 4.4 in steps of 0.4.
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direct transition between them. This is expected to be a first-
order phase transition �6�. For smaller values of U, a phase
separated superfluid phase is sandwiched between phase
separated Mott-insulator and phase separated charge density
wave phases. This is similar to that of a single-species
extended Bose-Hubbard model except that the two species
are phase separated. We hope the present results will stimu-
late future experiments.
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