Note

An efficient synthesis of α-(alkylidene)-5, 5-dimethyl- δ-lactones

Sonia B Parsekar, Chandan P Amonkar, Vishnu S Nadkarni \& Santosh G Tilve*
Department of Chemistry, Goa University, Goa 403 206, India
E-mail: stilve@unigoa.ac.in

Received 15 September 2008; accepted (revised) 28 May 2009
2-(-Alkylidene substituted)-5,5-dimethyl- δ-lactones have been synthesized in two steps. The stable phosphorane carboethoxymethyledene (α-prenyl)-triphenylphosphorane is condensed with different carbonyl compounds to afford α, β-unsaturated esters which are cyclised using PPA to give title compounds.

Keywords: Phosphorane, δ-lactones, acid mediated cyclisation, domino, Wittig reaction

2-(Alkylidene substituted)-lactones are a target for developing synthetic methodologies ${ }^{1}$ due to the presence of this unit in natural products ${ }^{2}$ and the biological activities ${ }^{3-8}$ associated with these molecules. These activities are mainly attributed to the presence of unsaturation which acts as (Michael acceptor) alkylating agent.

Although there are various methods available for the synthesis of γ-substituted α-(alkylidene substituted) $-\gamma$-butyrolactones ${ }^{1 \text { 1a-h }}$, for the corresponding δ lactones there are only a few reports ${ }^{1 \mathrm{i} . \mathrm{j}}$. So, there is a need to develop a general approach for the synthesis of such compounds which should be useful in providing libraries for biological testing. In continuation of the interest ${ }^{9}$ in phosphorus chemistry, herein is reported a convenient and general route towards α -(alkylidene)-5,5-dimethyl- δ-lactones. Thus, stable phosphorane 1 prepared ${ }^{10}$ by prenylation of carbo-ethoxymethylene-triphenylphosphorane was condensed with benzaldehyde 2a to get unsaturated ester 3a in 92% yield. The downfield shift of the olefinic proton suggested E geometry for the double bond.

The ester was then cyclised to the benzylidene (E) lactone 4 a using conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ in 57% yield. The yield of cyclisation reaction was improved to 96% with PPA. No isomerisation of the E lactone to Z lactone was observed during acid mediated cyclisation. The Wittig reaction worked well for electron withdrawing
group on benzene ring $\mathbf{2 b}$ and $\mathbf{2 c}$, and also for electron donating group $\mathbf{2 d}$ and $\mathbf{2 e}$. For extending the protocol for aliphatic system, the domino oxidationWittig reaction approach ${ }^{9}$ was used to get ester $\mathbf{3 f}$ which was then successfully cyclised to lactone $\mathbf{4 f}$ (Scheme I). Attempted reaction on ketone (benzophenone and ethyl methyl ketone) failed to provide the corresponding unsaturated compound.

In conclusion, a convenient and efficient method has been developed using Wittig reaction for the synthesis of $\mathbf{4 a - f}$ lactones.

Experimental Section

IR spectra were recorded on Shimadzu FT-IR spectrophotometer (KBr pellet). ${ }^{1} \mathrm{H}$ NMR (300 MHz) and ${ }^{13} \mathrm{C}$ NMR (75 MHz) were recorded on a Bruker instrument. The multiplicities of carbon signals were obtained from Distortionless Enhancement by Polarization Transfer (DEPT) experiments. Chemical shift (ppm) are relative to the internal standard $\mathrm{Me}_{4} \mathrm{Si}$ (0 ppm). Thin layer chromatography was performed on silica gel $\mathrm{G}\left(13 \% \mathrm{CaSO}_{4}\right.$ as binder $)$

(E) Ethyl -2-benzylidene-5-methyl-4-ene-hexano-

 ates, 3a-eA solution of aldehyde (1 mmole) 2a-e in chloroform (10 mL) was refluxed with phosphorane ${ }^{10}$ 1 (1 mmole) for 3 hr . The solvent was removed under reduced pressure to give a residue that was purified by column chromatography (silica gel, hexanes-EtOAc, $9: 1$) to give pure 3a-e as a viscous liquid. The spectral data of the compounds 3a-e is given below.

3a: Thick viscous liquid, yield 92%. b.p. 134$39^{\circ} \mathrm{C} / 0.06 \mathrm{~mm} \mathrm{Hg}$ (Bath temp.). IR (KBr): $1709 \mathrm{~cm}^{-1}$ $(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.35(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz})$, $1.67(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~d}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz})$, $4.20(\mathrm{q}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 5.18(\mathrm{~m}, 1 \mathrm{H}), 7.38(\mathrm{~m}, 5 \mathrm{H})$, $7.71(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.29\left(\mathrm{CH}_{3}\right), 17.95$ $\left(\mathrm{CH}_{3}\right), 25.74\left(\mathrm{CH}_{3}\right), 26.84\left(\mathrm{CH}_{2}\right), 60.77\left(\mathrm{OCH}_{2}\right)$, $121.68(\mathrm{CH}), 128.26(\mathrm{CH}), 128.36(2 \times \mathrm{CH}), 129.35$ $(2 \times \mathrm{CH}), 132.62(\mathrm{CH}), 132.93$ (C), 135.81 (C), 138.74 $(\mathrm{CH}), 168.34(\mathrm{C}=\mathrm{O})$; GC-MS: $m / z 244\left(\mathrm{M}^{+}\right)$.

3b: Thick viscous liquid, yield 93%. b.p. 180$85^{\circ} \mathrm{C} / 0.07 \mathrm{~mm} \mathrm{Hg}$ (Bath temp.). IR (KBr): $1713 \mathrm{~cm}^{-1}$ $(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.28(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz})$,

Scheme I

$1.54(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 3.03(\mathrm{~d}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz})$, $4.23(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 5.07(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{~m}, 3 \mathrm{H})$, $7.36(\mathrm{~m}, 1 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $14.24\left(\mathrm{CH}_{3}\right), 17.79\left(\mathrm{CH}_{3}\right), 25.70\left(\mathrm{CH}_{3}\right), 27.04\left(\mathrm{CH}_{2}\right)$, $60.88\left(\mathrm{OCH}_{2}\right), 121.32(\mathrm{CH}), 126.44(\mathrm{CH}), 129.35$ (CH), 129.45 (CH), 130.33 (CH), 132.87 (C), 134.02 (C), 134.35 (C), 134.51 (C), 135.79 (CH), 167.73 (C=O); GC-MS: $m / z 278\left(\mathrm{M}^{+}\right)$.

3c: Thick viscous liquid, yield 90%. b.p. 205$10^{\circ} \mathrm{C} / 0.11 \mathrm{~mm} \mathrm{Hg}$ (Bath temp.). IR (KBr): $1725 \mathrm{~cm}^{-1}$ $(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.35(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz})$, $1.62(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{~d}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz})$, $4.23(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 5.12(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.34$ $(\mathrm{m}, 4 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 14.26$ $\left(\mathrm{CH}_{3}\right), 17.97\left(\mathrm{CH}_{3}\right), 25.70\left(\mathrm{CH}_{3}\right), 26.81\left(\mathrm{CH}_{2}\right), 60.87$ $\left(\mathrm{OCH}_{2}\right), 121.33(\mathrm{CH}), 128.60(2 \times \mathrm{CH}), 130.41(\mathrm{C})$, $130.64(2 \times \mathrm{CH}), 133.20(\mathrm{C}), 134.21$ (C), 136.87 (C), $137.35(\mathrm{CH}), 168.03(\mathrm{C}=\mathrm{O})$; GC-MS: $\mathrm{m} / \mathrm{z} 278\left(\mathrm{M}^{+}\right)$.

3d: Thick viscous liquid, yield 88%. b.p. 188$95^{\circ} \mathrm{C} / 0.07 \mathrm{~mm} \mathrm{Hg}$ (Bath temp.). IR (KBr): $1711 \mathrm{~cm}^{-1}$ $(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.30(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz})$, $1.64(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{~d}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz})$, $3.78(\mathrm{~s}, 3 \mathrm{H}), 4.21(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 5.1(\mathrm{~m}, 1 \mathrm{H}), 6.84$ $(\mathrm{d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.31(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.59(\mathrm{~s}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.31\left(\mathrm{CH}_{3}\right), 18.01\left(\mathrm{CH}_{3}\right)$, $25.73\left(\mathrm{CH}_{3}\right), 26.80\left(\mathrm{CH}_{2}\right), 55.26\left(\mathrm{OCH}_{3}\right), 60.65$ $\left(\mathrm{OCH}_{2}\right), 113.86(2 \times \mathrm{CH}), 121.84(\mathrm{CH}), 130.41(\mathrm{C})$, $128.30(\mathrm{C}), 130.51(\mathrm{C}), 131.16(2 \times \mathrm{CH})$, $132.90(\mathrm{C})$, $138.50(\mathrm{CH}), 159.73(\mathrm{C}), 168.58(\mathrm{C}=\mathrm{O})$; GC-MS: m / z $274\left(\mathrm{M}^{+}\right)$.

3e: Thick viscous liquid, yield 84%. b.p. 175$80^{\circ} \mathrm{C} / 0.06 \mathrm{~mm} \mathrm{Hg}$ (Bath temp.). IR (KBr): $1705 \mathrm{~cm}^{-1}$ $(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.33(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz})$,
1.70 (s, 3H), 1.75 (s, 3H), 3.23 (br.d, $2 \mathrm{H}, J=6.0 \mathrm{~Hz}$), 4.27 (q, 2H, J=7.2 Hz), $5.15(\mathrm{~m}, 1 \mathrm{H}), 6.00(\mathrm{~s}, 2 \mathrm{H})$, 6.81-6.92 (m, 3H), $7.60(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $14.29\left(\mathrm{CH}_{3}\right)$, $17.98\left(\mathrm{CH}_{3}\right), 25.71\left(\mathrm{CH}_{3}\right), 26.84\left(\mathrm{CH}_{2}\right)$, $60.72\left(\mathrm{OCH}_{2}\right), 101.24\left(\mathrm{CH}_{2}\right), 108.31(\mathrm{CH}), 109.4$ $(\mathrm{CH}), 121.67(\mathrm{CH}), 124.34(\mathrm{CH}), 129.77(\mathrm{C}), 131.01$ (C), 132.97 (C), $147.72(2 \times C), 168.43(\mathrm{C}=\mathrm{O})$; GCMS: $m / z 288\left(\mathrm{M}^{+}\right)$.

(E) Ethyl -2-(3-methylbut-2-enyl)non-2-enoate, $3 f$

To a magnetically stirred suspension of PCC (1.5 mmole) and NaOAc (1.5 mmole) in anhyd. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$, alcohol $\mathbf{2 f}$ (1 mmole) in anhyd. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) was added followed by phosphorane ${ }^{10} \mathbf{1}$ (1 mmole) in one portion. After $3 \mathrm{hr}, \mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added and the supernatant solution was decanted from the black granular solid. The combined organic layers were filtered through a short pad of celite. The residue obtained after evaporation of the solvent was further purified by column chromatography (silica gel, hexanes) to afford pure $\mathbf{3 f}$ as a thick viscous liquid. The spectral data of the compound $\mathbf{3 f}$ is given below.

3f: Thick viscous liquid, yield 95%. b.p. 178$85^{\circ} \mathrm{C} / 0.07 \mathrm{~mm} \mathrm{Hg}$ (Bath temp.).

IR (KBr): $1715 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ 0.91 (skewd t, $3 \mathrm{H}, J=6.9 \mathrm{~Hz}$), $1.28-1.71(\mathrm{~m}, 17 \mathrm{H})$, $2.21(\mathrm{~m}, 2 \mathrm{H}), 3.02(\mathrm{~d}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 4.20(\mathrm{q}, 2 \mathrm{H}$, $J=7.2 \mathrm{~Hz}), 5.03(\mathrm{~m}, 1 \mathrm{H}), 6.76(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.01\left(2 \times \mathrm{CH}_{3}\right), 14.23\left(\mathrm{CH}_{3}\right), 22.53$ $\left(\mathrm{CH}_{2}\right), 23.98\left(\mathrm{CH}_{3}\right), 28.59\left(\mathrm{CH}_{2}\right), 28.71\left(\mathrm{CH}_{2}\right), 28.78$ $\left(\mathrm{CH}_{2}\right), 28.97\left(\mathrm{CH}_{2}\right), 31.62\left(\mathrm{CH}_{2}\right), 60.35\left(\mathrm{OCH}_{2}\right)$, $121.95(\mathrm{CH}), 131.58(\mathrm{C}), 131.79(\mathrm{C}), 142.63(\mathrm{CH})$, $168.05(\mathrm{C}=\mathrm{O})$; GC-MS: $m / z 252\left(\mathrm{M}^{+}\right)$.

(E) α-Benzylidene- δ-dimethyl- δ-lactones, 4a-e and (E) α-heptylidene- δ-dimethyl- δ-lactone, 4 f

Compound 3a-f (1 mmole) were added to the stirred solution of polyphosphoric acid (2 mL). The reaction mixture was warmed on water bath for 5 min . Chilled water (15 mL) was added to the reaction mixture and it was subsequently extracted with diethyl ether ($3 \times 10 \mathrm{~mL}$). The organic layer was washed twice with saturated NaHCO_{3} solution and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vaccum pump and the residue was purified by column chromatography (silica gel, hexanes-EtOAc, 9:1) to give pure 4a-f. The spectral data of the compounds $\mathbf{4 a - f}$ is given below.

4a: Thick colourless viscous liquid, yield 96%. b.p. $140-45^{\circ} \mathrm{C} / 0.09 \mathrm{~mm} \mathrm{Hg}$ (Bath temp.). IR (KBr): 1703 $\mathrm{cm}^{-1}(\mathrm{C}=\mathrm{O})$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.46(\mathrm{~s}, 6 \mathrm{H}), 1.90(\mathrm{t}$, $2 \mathrm{H}, J=6.9 \mathrm{~Hz}$), 2.92 (dt, 2H, $J=6.9$ and 2.1 Hz), 7.38$7.51(\mathrm{~m}, 5 \mathrm{H}), 7.96$ (br.s, 1 H$) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $22.69\left(\mathrm{CH}_{2}\right), 27.80\left(2 \times \mathrm{CH}_{3}\right), 33.16\left(\mathrm{CH}_{2}\right), 80.19(\mathrm{C})$, 124.42 (C), $128.55(2 \times \mathrm{CH}), 129.14(\mathrm{CH}), 130.33$ $(2 \times \mathrm{CH}), 135.13$ (C), $141.51(\mathrm{CH}), 167.10(\mathrm{C}=\mathrm{O})$; HRMS: m / z Found 239.1049. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2}$, [M+Na] ${ }^{+} 239.1048$.

4b: White solid, yield 83%. m.p. $104-09^{\circ} \mathrm{C}$. IR (KBr): $1691 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}\right): \delta 1.41$ (s, 6 H), $1.80(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}$), $2.66(\mathrm{dt}, 2 \mathrm{H}, J=6.9$ and $2.4 \mathrm{~Hz}), 7.24(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{~m}, 1 \mathrm{H}), 8.0$ (br.s, 1H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 21.98\left(\mathrm{CH}_{2}\right), 27.93\left(2 \times \mathrm{CH}_{3}\right)$, $33.24\left(\mathrm{CH}_{2}\right), 80.60(\mathrm{C}), 126.31(\mathrm{CH}), 126.98(\mathrm{C})$, $129.79(2 \times \mathrm{CH}), 129.82(\mathrm{CH}), 133.62(\mathrm{C}), 134.48(\mathrm{C})$, 138.31 (CH), 166.12 (C=O); HRMS: m / z Found 251.0821. Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{Cl},[\mathrm{M}+\mathrm{H}]^{+} 251.0839$.

4c: White solid, yield 79%. m.p. $103-07^{\circ} \mathrm{C}$. IR (KBr): $1698 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 1.40(\mathrm{~s}$, $6 \mathrm{H}), 1.84(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 2.81(\mathrm{dt}, 2 \mathrm{H}, J=6.9$ and $2.1 \mathrm{~Hz}), 7.30(\mathrm{~s}, 4 \mathrm{H}), 7.83$ (br. s, 1 H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 22.62\left(\mathrm{CH}_{2}\right), 27.72\left(2 \times \mathrm{CH}_{3}\right), 33.02\left(\mathrm{CH}_{2}\right)$, 80.11 (C), 124.95 (C), $128.77(2 \times \mathrm{CH}), 131.43$ ($2 \times \mathrm{CH}$), 133.50 (C), 135.07 (C), 139.07 (C), 139.97 $(\mathrm{CH}), 166.62(\mathrm{C}=\mathrm{O})$; HRMS: m / z Found 273.0673. Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{Cl},[\mathrm{M}+\mathrm{Na}]^{+} 273.0658$.

4d: White solid, yield 91%. m.p. $75-79^{\circ} \mathrm{C}$. IR (KBr): $1695 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 1.39(\mathrm{~s}$, 6 H), $1.84(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}$), 2.83 (dt, $2 \mathrm{H}, J=6.9$ and $2.4 \mathrm{~Hz}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 6.89(\mathrm{~d}, 2 \mathrm{H}, J=9 \mathrm{~Hz}), 7.41$ (d, $2 \mathrm{H}, J=9 \mathrm{~Hz}), 7.84$ (br. s, 1 H$) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$
$22.78\left(\mathrm{CH}_{2}\right), 27.67\left(2 \times \mathrm{CH}_{3}\right), 33.08\left(\mathrm{CH}_{2}\right), 55.27$ $\left(\mathrm{OCH}_{3}\right), 79.71(\mathrm{C}), 113.99(2 \times \mathrm{CH}), 121.72(\mathrm{C})$, 127.87 (C), $132.26(2 \times \mathrm{CH}), 141.16(\mathrm{CH}), 160.27(\mathrm{C})$, $167.32(\mathrm{C}=\mathrm{O})$; HRMS: m / z Found 269.1146. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3},[\mathrm{M}+\mathrm{Na}]^{+}$269.1154.

4e: White solid, yield 78%. m.p. $129-33^{\circ} \mathrm{C}$. IR (KBr): $1686 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 1.46(\mathrm{~s}$, 6 H), $1.91(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}$), 2.88 (dt, $2 \mathrm{H}, J=6.6$ and $2.1 \mathrm{~Hz}), 6.02(\mathrm{~s}, 2 \mathrm{H}), 6.88(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.026-$ $7.094(\mathrm{~m}, 2 \mathrm{H}), 7.87($ br.s, 1 H$) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $22.86\left(\mathrm{CH}_{2}\right), 27.76\left(2 \times \mathrm{CH}_{3}\right), 33.13\left(\mathrm{CH}_{2}\right), 79.85(\mathrm{C})$, $101.5\left(\mathrm{OCH}_{2} \mathrm{O}\right), 108.53(\mathrm{CH}), 109.87(\mathrm{CH}), 126.17$ (CH), 141.29 (CH), 122.35 (C), 129.39 (C), 147.88 (C), 148.45 (C), 167.25 (C=O); HRMS: m / z Found 283.0945. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{4},[\mathrm{M}+\mathrm{Na}]^{+}$283.0946.

4f: Thick colourless viscous liquid, yield 81%. b.p. $210-12^{\circ} \mathrm{C} / 0.07 \mathrm{~mm} \mathrm{Hg}$ (Bath temp.). IR (KBr): 1722 $\mathrm{cm}^{-1}(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.90$ (skewd $\mathrm{t}, 3 \mathrm{H}$, $J=6.6 \mathrm{~Hz}), 1.31-1.58(\mathrm{~m}, 14 \mathrm{H}), 1.85(\mathrm{t}, 2 \mathrm{H}, J=6.9$ Hz), 2.17 (q, 2H, $J=7.2 \mathrm{~Hz}$), 2.54 (br.t, $2 \mathrm{H}, J=6.9 \mathrm{~Hz}$), $7.0(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 13.98$ $\left(\mathrm{CH}_{3}\right), 22.42\left(\mathrm{CH}_{2}\right), 24.63\left(\mathrm{CH}_{2}\right), 27.58\left(\mathrm{CH}_{3}\right), 27.71$ $\left(\mathrm{CH}_{3}\right), 28.69\left(\mathrm{CH}_{2}\right), 29.37\left(\mathrm{CH}_{2}\right), 30.28\left(\mathrm{CH}_{2}\right), 33.80$ $\left(\mathrm{CH}_{2}\right), 34.66\left(\mathrm{CH}_{2}\right), 80.4(\mathrm{C}), 126(\mathrm{C}), 138(\mathrm{CH})$, 178.61 (C=O); HRMS: m / z Found 225.1850. Calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2},[\mathrm{M}+\mathrm{H}]^{+} 225.1854$.

Acknowledgement

The authors thank the UGC, New Delhi for financial assistance, NIO, Goa for spectral analysis and Department of Organic Chemistry, IISc, Bangalore for HRMS.

References

1 (a) Grieco P A, Synthesis, 1975, 67; (b) Petragnani N, Ferraz H M C \& Silva G V J, Synthesis, 1986, 157; (c) Rao Y S, Chem Rev, 64, 1964, 353; (d) ibid, 76, 1976, 625; (e) Knight D W, Contemporary Organic Synthesis, 1994, 287; (f) Carter N B, Nadany A E \& Sweeny J B, J Chem Soc Perkin Trans 1, 2002, 2324; (g) Savic V \& Grigg R, J Chem Soc Chem Commun, 2000, 2381; (h) Datta A, Ila H \& Junjappa H, Tetrahedron, 43, 1987, 5367; (i) Krawczyk E, Synthesis, 2006, 716; (j) Harakat H, Weibel J M \& Pale Patrick, Tetrahedron Lett, 47(35), 2006, 6273.
2 (a) Kano S, Shibuya S \& Ebata T, Heterocycles, 14, 1980, 661; (b) Mori K, Tetrahedron, 45, 1988, 3233; (c) Dubs P \& Stussi R, Helv Chim Acta, 61, 1978, 990.
3 Smith C H, Larner J, Thomas A M \& Kupchan S M, Biochim Biophys Acta, 276, 1972, 94.
4 Hartwell J L \& Abott B J, Adv Pharmcol Chemother, 7, 1969, 117.

5 Lee K H, Ibuka T, Wu R Y \& Geissman T A, Phytochemistry, 16, 1977, 1177.
6 Garciduenas M R, Dominguez X A, Fernandez J \& Alaniz G, Rev Latinoam Quim, 3, 1972, 52.
7 Sanemitsu Y, Uematsu T, Inoue S \& Tanaka K, Agric Biol Chem, 48, 1984, 1927.

8 Schlewer G, Stampf J L \& Benezra C, J Med Chem, 23, 1980, 1031.

9 Amonkar C P, Tilve S G \& Parameswaran P S, Synthesis, 14, 2005, 2341.
10 Mali R S, Joshi P P, Sandhu P K \& Manekar-Tilve A, J Chem Soc, Perkin Trans 1, 2002, 371.

