
Global Journal of Computer Science and Technology P a g e | 44

YMA PINTO

Goa University , India

ymapinto@gmail.com

Abstract- It is currently the norm that relational database

designs should be based on a normalized logical data model.

The primary objective of this design technique is data integrity

and database extendibility. The Third Normal Form is

regarded by academicians and practitioners alike to be point at

which the database design is most efficient. Unfortunately, even

this lower level normalization form has a major drawback with

regards to query evaluation. Information retrievals from the

database can result in large number of joins which degrades

query performance. So you need to sometimes break

theoretical rules for real world performance gains. Most

existing Conceptual Level RDBMS data models provide a set of

constructs that only describes ―what data is used‖ and does

not capture ―how the data is being used‖. The question of ―how

data is used‖ gets embedded in the implementation level

details. As a result, every application built on the existing

database extracts the same or similar data in different ways. If

the functional use of the data is also captured, common query

evaluation techniques can be formulated and optimized at the

design phase, without affecting the normalized database

structure constructed at the Conceptual Design phase. This

paper looks at denormalization as an effort to improve the

performance in data retrievals made from the database

without compromising data integrity. A study on a hierarchical

database table shows the performance gain - with respect to

response time – using a denormalization technique.

Keywords: denormalization, database deign, performance tuning,

materialized views, query evaluation

I. INTRODUCTION

ost of the applications existing today have been built,

or are still being built using RDBMS or ORDBMS

technologies. The RDBMS is thus not dead, as stated by

Arnon-Roten [Roten_Gal, 2009]. Van Couver, a software

engineer with vast experience in databases at Sun

MicroSystems, emphasizes the fact that RDBMSs are here

to stay but do require improvements in scalability and

performance bottlenecks [Couver , 2009].

Normalization is the process of putting one fact and nothing

more than one fact in exactly one appropriate place. Related

facts about a single entity are stored together, and every

attribute of each entity is non-transitively associated to the

Primary Key of that entity. This design technique results in

enhanced data integrity and removes insert, update and

delete anomalies that would have otherwise been present in

a non-normalized database. Another goal of normalization is

to minimize redesign of the database structure. Admittedly,

it is impossible to predict every need that your database

design will have to fulfill and every issue that is likely to

arise, but it is important to mitigate against potential

problems as much as possible by a careful planning.

 Arguably, normalizing your data is essential to good

performance, and ease of development, but the question

always comes up: "How normalized is normalized enough?"

Many books on normalization, mention that 3NF is

essential, and many times BCNF, but 4NF and 5NF are

really useful and well worth the time required to implement

them [Davidson, 2007]. This optimization, however, results

in performance degradation in data retrievals from the

database as a large number of joins need to be done to solve

queries [Date, 1997] [Inmon, 1987] [Schkolnick and

Sorenson ,1980].

 "Third normal form seems to be regarded by many as the

points where your database will be most efficient ... If your

database is overnormalized you run the risk of excessive

table joins. So you denormalize and break theoretical rules

for real world performance gains." [Sql Forums, 2009].

There is thus a wide gap between the academicians and the

database application practitioners which needs to be

addressed. Normalization promotes an optimal design from

a logical perspective. Denormalization is a design level that

needs to be mitigated one step up from normalization. With

respective to performance of retrieval, denormalization is

not necessarily a bad decision if implemented following a

systematic approach to large scale databases where dozens

of relational tables are used.

Denormalization is an effort that seeks to optimize

performance while maintaining data integrity. A

denormalized database is thus not equivalent to a database

that has not been normalized. Instead, you only seek to

denormalize a data model that has already been normalized.

This distinction is important to understand, because you go

from normalized to denormalized, not from nothing to

denormalized. The mistake that some software developers

do is to directly build a denormalized database considering

only the performance aspect. This only optimizes one part of

the equation, which is database reads. Denormalization is a

design level that is one step up from normalization and

should not be treated naively. Framing denormalization

against normalization purely in the context of performance

A Framework for Systematic Database

Denormalization

M

P a g e | 45 Global Journal of Computer Science and Technology

is unserious and can result in major application problems

[Thought Clusters, 2009]. We need to understand how and

when to use denormalization

This paper is organized as follows: Section 1 introduces the

concept and current need for denormalization. Section 2

provides us a background of the related work in this area

from the academic and the practitioners‘ point of view.

Section 3 makes a strong case for denormalization while

Section 4 presents the framework for a systematic

denormalization. Section 5 elucidates some denormalization

techniques that can be followed during the database design

life cycle and shows the performance gain of this technique

over a Hierarchical Normalized Relation.

II. BACKGROUND AND RELATED WORK

Relational Databases can be roughly categorized into

Transaction Processing (OLTP) and Data Warehouse

(OLAP). As a general rule, OLTP databases use normalized

schema and ACID transactions to maintain database

integrity as the data needs to be continuously updated when

transactions occur. As a general rule, OLAP databases use

unnormalized schema (the ―star schema‖ is the paradigmatic

OLAP schema) and are accessed without transactions

because each table row is written exactly one time and then

never deleted nor updated. Often, new data is added to

OLAP databases in an overnight batch, with only queries

occurring during normal business hours [Lurie M.,IBM,

2009] [Microsoft SQL Server guide] [Wiseth ,Oracle].

Software developers and practitioners mention that database

design principles besides normalization, include building of

indices on the data and denormalization of some tables for

performance. Performance tuning methods like indices and

clustering data of multiple tables exist, but these methods

tend to optimize a subset of queries at the expense of the

others. Indices consume extra storage and are effective only

when they work on a single attribute or an entire key value

.The evaluation plans sometimes skip the secondary indexes

that are created by users if these indices are nonclustering

[Khaldtiance , 2008].

Materialized Views can also be used as a technique for

improving performance [Vincent et al,97] but these

consume vast amount of storage and their maintenance

results in additional runtime overheads. Blind application of

Materialized Views can actually result in worse query

evaluation plans and should be used carefully [Chaudhuri et

al, 1995]. View update techniques have been researched and

a relatively new method of updating using additional views

has been proposed [Ross et al, 1996].

In the real world, denormalization is sometimes necessary.

There have been two major trends in the approach to

demoralization. The first approach uses a ―non normalized

ERD‖ where the entities in the ERD are collapsed to

decrease the joins. In the second approach, denormalization

is done at the physical level by consolidating relations,

adding synthetic attributes and creating materialized views

to improve performance. The disadvantage of this approach

is the overheads required in view consistency maintenance.

Denormalization is not necessarily a bad decision if

implemented wisely [Mullins , 2009].

Some denormalization techniques have been researched and

implemented in many strategic applications to improve

query response times. These strategies are followed in the

creation of data warehouses and data marts [Shin and

Sanders, 2006] [Barquin and Edelstein] and are not directly

applicable to an OLTP system. Restructuring a monolithic

Web application composed of Web pages that address

queries to a single database into a group of independent

Web services querying each other also requires

denormalization for improved performance [Wei Z et al,

2008].

Several researches have developed a list of normalization

and denormalization types ,and have subsequently

mentioned that denormalization should be carefully

deployed according to how the data will be used [Hauns

,1994] [Rodgers, 1989].The primary methods that have been

identified are : combining tables, introducing redundant

data, storing derivable data, allowing repeating groups,

partitioning tables, creating report tables, mirroring tables.

These ―denormalization patterns‖ have been classified as

Collapsing Relations, Partitioning Relations, Adding

Redundant Attributes and Adding Derived Attributes [

Sanders and Shin ,2001]

III. A CASE FOR DENORMALIZATION

Four main arguments that have guided experienced

practitioners in database design have been listed here [26]

The Convenience Argument

The presence of calculated values in tables‘ aids the

evaluation of adhoc queries and report generation.

Programmers do not need to know anything about the API

to do the calculation.

The Stability Argument

As systems evolve, new functionality must be provided to

the users while retaining the original. History data may still

need to be retained in the database.

The Simple Queries Argument

Queries that involve join jungles are difficult to debug and

dangerous to change. Eliminating joins makes queries

simpler to write, debug and change

The Performance Argument

Denormalized databases require fewer joins in comparison

to normalized relations. Computing joins are expensive and

time consuming. Fewer joins directly translates to improved

performance.

Denormalization of Databases, ie, a systematic creation of a

database structure whose goal is performance improvement,

is thus needed for today‘s business processing requirements.

This should be an intermediate step in the DataBase Design

Life Cycle integrated between the Logical DataBase Design

Phase and the Physical DataBase Design Phase. Retrieval

performance needs dictate very quick retrieval capability for

Global Journal of Computer Science and Technology P a g e | 46

data stored in relational databases, especially since more

accesses to databases are being done through Internet. Users

are concerned with more prompt responses than an optimum

design of databases. To create a Denormalization Schema

the functional usage of the operational data must be

analyzed for optimal Information Retrieval.

Some of the benefits of denormalization can be listed:

 (a)Performance improvement by

 Precomputing derived data

 Minimizing joins

 Reducing Foreign Keys

 Reducing indices and saving storage

 Smaller search sets of data for partitioned tables

 Caching the Denormalized structures at the Client

for ease of access thereby reducing query/data

shipping cost.

(b)Since the Denormalized structures are primarily

designed keeping in mind the functional usage of the

application, users can directly access these structures rather

then the base tables for report generation. This also reduces

bottlenecks at the server.

A framework for denormalization needs to address the

following issues:

(i) Identify the stage in the DataBase Design Life Cycle

where Denormalization structures need to be created.

(ii) Identify situations and the corresponding candidate

base tables that cause performance degradation.

(iii) Provide strategies for boosting query response times.

(iv) Provide a method for performing the cost-benefit

analysis.

(v) Identify and strategize security and authorization

constraints on the denormalized structures.

Although (iv) and (v) above are important issues in

denormalization, they will not be considered in this paper

and will be researched on later.

IV. A DENORMALIZATION FRAMEWORK

The framework presented in this paper differs from the

papers surveyed above in the following respects:

It does not create denormalized tables with all contributing

attributes from the relevant entities, but instead creates a set

of Denormalized Structures over a set of Normalized tables.

This is an important and pertinent criteria as these structures

can be built over existing applications with no ―side effects

of denormalization‖ over the existing data.

The entire sets of attributes from the contributing entities are

not stored in the Denormalized structure. This greatly

reduces the storage requirements and redundancies.

The Insert, Update and Delete operations (IUDs) are not

done to the denormalized structures directly and thus do not

violate data integrity. The IUDs to data are done on the Base

Tables and the denormalized structures are kept in synch by

triggers on the base tables.

Since the denormalized structures are used for information

retrieval , they need to consider the authorization access that

users have over the base tables.

The construction of the ―Denormalization View‖ is not an

intermediate step between the Logical and the Physical

Design phases, but needs to be consolidated by considering

all 3 views of the SPARC ANSI architectural specifications.

Most existing Conceptual Level RDBMS data models

provide a set of constructs that describes the structure of the

database [Elmashree and Navathe]. This higher level of

conceptual modeling only informs the end user ―what data is

used‖ and does not capture ―how the data is being used‖.

The question of ―how data is used‖ gets embedded in the

implementation level details. As a result, every application

built on the existing database extracts the same or similar

data in different ways. If the functional use of the data is

also captured, common query evaluation techniques can be

formulated and optimized at the design phase, without

affecting the normalized database structure constructed at

the Conceptual Design phase. Business rules are descriptive

integrity constraints or functional (derivative or active) and

ensure a well functioning of the system. Common models

used during the modeling process of information systems do

not allow the high level specification of business rules

except a subset of ICs taken into account by the data model

[Amghar and Mezaine, 1997].

The ANSI 3 level architecture stipulates 3 levels – The

External Level and the Conceptual Level, which captures

data at rest, and the Physical Level which describes how the

data is stored and depends on the DBMS used. External

Schemas or subschemas relate to the user views. The

Conceptual Schema describes all the types of data that

appear in the database and the relationships between data

items. Integrity constraints are also specified in the

conceptual schema. The Internal Schema provides

definitions for stored records, methods of representation,

data fields, indexes, and hashing schemes. Although this

architecture provides the application development

environment with logical and physical data independence, it

does not provide an optimal query evaluation platform. The

DBA has to balance conflicting user requirements before

creating indices and consolidating the Physical schema.

The reason denormalization is at all possible in relational

databases is because, courtesy of the relational model, which

creates lossless decompositions of the original relation, no

Information is lost in the process. The Denormalized

structure can be reengineered and populated from the

existing Normalized database and vice-versa. In a

distributed application development environment the

Denormalization Views can be cached on the client resulting

in a major performance boost by saving run time shipping

P a g e | 47 Global Journal of Computer Science and Technology

costs. It would require only the Denormalization View

Manager to be installed on the Client.

A High Level Architecture that this framework considers is

defined as follows:

To realize the potential of the Denormalization View,

efficient solutions to the three encompassing issues are

required:

Denormalization View design: Determining what data and

how it is stored and accessed in the Denormalization

Schema

Denormalization View maintenance: Methods to

efficiently update the data in the Denormalized schema

when base tables are updated.

Denormalization View exploitation: Making efficient use

of denormalization views to speed up query processing

(either entire queries or sub queries)

Extensive research has been done on subquery evaluation on

materialized views [Afrati et al, 2001] [Chirkova et al, 2006]

[Halevy , 2001]

The inputs that are required for the construction of the

Denormalized schema can be identified as:

 the logical and external views schema design,

 the physical storage and access methods provided

by the DBMS,

 the authorization the users have on the

manipulation and access of the data within the

database,

 the interaction (inter and intra) between the entities,

 the number of entities the queries involve,

 the usage of the data (ie, the kind of attributes and

their frequency of extraction within queries and

reports),

 the volume of data being analyzed and extracted in

queries (cardinality and degree of relations,

number and frequency of tuples, blocking factor of

tuples, clustering of data, estimated size of a

relation),

 the frequency of occurrence and the priority of the

query,

 the time taken by the queries to execute(with and

without denormalization).

The problem can now be stated as ―Given a logical schema

with its corresponding database statistics and a set of queries

with their frequencies, arrive at a set of denormalized

structures that enhances query performance‖

A few definitions are required

Defn 1: A Relational Data Information Retrieval System

(RDIRS) has as its core components (i) a set of Normalized

Relations {R} (ii) a set of Integrity Constraints {ICs} (iii) a

set of data access methods {A} (iv) a set of Denormalization

Structures {DS} and (v) a set of queries and subqueries that

can be defined and evaluated on these relations.

Each component of the RDIRS, by definition, can have

dynamic elements resulting in a flexible and evolvable

system.

Defn 2: A ―Denormalized Structure‖ (DSM) is a relvar

[Date ,Kannan , Swamynathan] comprising of the

Denormalized Schema Design and the Denormalized

Structure Manager.

A system cannot enforce truth, only consistency. Internal

Predicates (IPs) are what the data means to the system and

External Predicates (EPs) are what data means to a user. The

EPs result in criterion for acceptability of IUD operations on

the data, which is an unachievable goal [Date, Kannan,

Swamynathan], especially when Materialized Views are

created. In the framework presented in this paper, IUDs on

the Denormalized Structures are never rejected as these are

automatically propagated to the base relations where the

Global Journal of Computer Science and Technology P a g e | 48

Domain and Table level ICs are enforced. Once the base

relations are updated, the Denormalized Schema Relation

triggers are invoked atomically to synchronize the data,

ensuring simultaneous consistency of Base and

Denormalized tables. Further, the primary reason for the

Denormalization Structures is faster information retrieval

and not data manipulation; hence no updates need be made

to the Denormalization Schema directly.

Every Normalized Relation requires a Primary Key which

satisfies the Key Integrity Constraint. This PK maintains

uniqueness of tuples in the database and is not necessarily

the search key value for users. For the RDIRS we define

Defn 3: An Information Retrieval Key (IRK) is a (set of)

attributes that the users most frequently extract from an

entity. The IRK is selected from amongst the mandatory

attribute values which gives the end user meaningful

information about the entity.

For ex, an employee table may have an Empid as its PK, but

the IRK could be EmpName and Contact No.

Defn 4: An Information Retrieval Tree (IRT) is a Query

Evaluation Tree which has as its components the operators

required to extract the information from the database and the

relvars that contribute to an optimized Data Extraction Plan.

The IRT consists of relational algebra operations along the

intermediate nodes and the relvars in the leaf nodes (base

relations, views, materialized views or denormalization

structures) and is a requisite for cost benefit analysis and

query rewrites.

Researchers and Practitioners [Inmon, 1987] [Shin and

Sanders, 2006] [Mullins, 2009] create the denormalized

tables by creating a schema with all the attributes from the

participating entities. This results in (i) additional storage

and redundancy (ii) slows down the system on updates to

data (iii) creates a scenario for data anomalies.

Defn 5: The Denormalization Schema (DS) in the RDIR

Model is a relation that has as its attributes only the PKs, the

IRKs and the URowIds (Universal Row Id) of the

participating or contributing Base Relations.

The storage of only the PK, IRKs and URowIds is justifiable

as most often, end users are interested in only the significant

attributes of an entity. If required, the remaining attributes

can be obtained from the base table using the RowId field

stored in the Denormalized Scheme. The URowIds are

chosen as they can even support row-ids on remote foreign

tables.

 It is interesting to note that even when a ―select * ―clause is

used in an adhoc query, it is either because the user is

unaware of the attributes of the entity or is uninterested in

the attribute per se, but is actually looking for other

information.

The Denormalization Schema Design is an input to the

Query Optimizer for collapsing access paths, resulting in the

IRT which is then submitted to the Query Evaluation

Engine.

Although the metadata tables are query able at the server,

the Denormalized Structure Manager can have its own

metadata stored locally (at the node where the DSs are

stored).

DS_Metadata_Scheme(DS_Name,DS_Trigger_Name,DS

_Procedure_Name, DS_BT1_Name,

Creator,DS_BT1_Trigger_Name,DS_BT2_Trigger_Nam

e,DS_BT1_Authorization,DS_BT2_Authorization)

V. DENORMALIZATION TECHNIQUES

Denormalization looks at normalized databases which have

operational data, but whose performance degrades during

query evaluation. There are several indicators which will

help to identify systems and tables which are potential

denormalization candidates.

The techniques that can be used are summarized below:

a. Pre joined Tables

Application: When two or more tables need to be joined on

a regular basis and the cost of joins is prohibitive.

This happens when Foreign Keys become a part of a relation

or when transitive dependencies are removed.

Denormalization Technique: Collapse the relations.

b. Report Tables

Application: When the application requires creation of

specialized reports that requires lot of formatting and data

manipulation.

Denormalization Technique: The report table must contain

the mandatory columns required for the report

c. Fragmenting Tables

Application: If separate pieces of a normalized table are

accessed by different and distinct groups of users or

applications, then the original relation can be split into two

(or more) denormalized tables; one for each distinct

processing group. The relation can be fragmented

horizontally or vertically by preserving losslessness.

Denormalization Technique: When horizontal

fragmentation is done, the predicate must be chosen such

that rows are not duplicated.

When vertical fragmentation is done, the primary key must

be included in the fragmented tables. Associations between
the attributes of the relation must be considered. Projections

that eliminate rows in the fragmented tables must be

avoided.

P a g e | 49 Global Journal of Computer Science and Technology

d. Redundant Data

Application: Sometimes one or more columns from one

table are accessed whenever data from another table is

accessed. If this happens frequently they could be stored as

redundant data in the tables.

Denormalization Technique: The columns that are

duplicated in the relation to avoid a lookup (join) should be

used by a large number of users but should not be
frequently updated.

e. Repeating Groups

 Application: When repeating groups are normalized they

are implemented as distinct rows instead of distinct columns

resulting in less efficient retrieval. These repeating groups

can be stored as a nested table within the original parent

table.

Before deciding to implement repeating groups, it is

important to consider if the data will be aggregated or

compared within the row or if the data would be accessed

collectively, otherwise SQL may slow down query

evaluation.

Denormalization Technique: Repeating groups can be

stored as ―setoff(values)‖ - SQL Extensions - within the

table removing the restriction on the number of values that

can repeat.

f. Derivable Data

Application: If the cost of deriving data using complicated

formulae is prohibitive then the derived data can be stored in

a column. It is imperative that the stored derived value needs

to be changed when the underlying values that comprise the

calculated value change.

Denormalization Technique: Frequently used aggregates

can be precomputed and materialized in an appropriate

relation.

g. Hierarchical Speed Tables

Application: A hierarchy or a recursive relation can be

easily supported in a normalized relational table but is

difficult to retrieve information from efficiently.

Denormalized ―Speed Tables‖ are often used for faster data

retrieval.

Denormalization Technique: Not only the immediate

parent of a node is stored, but all of the child nodes at every

level are stored.

Some of the major reports identified and that need to be

generated from this database:

 What are the current outstanding orders along with

their shipping and Billing details

 For a given order, find all the parts that are ordered

along with the subparts of that part.

 Prepare a voucher for a given order.

 For orders that were paid for on the same date that

the Shipment was received, give a 10% discount if

the amount exceeds a value ‗x‘ and a 20% discount

if the amount exceeds a value ‗y‘.

 Retrieve all sub items that item number 100

contains

 Find all subparts that have no subpart.

The Denormalized Schema thus constructed over the

Normalized Tables to improve performance and using the

techniques described above:

DN_Oust_Order (OrderNo, CustomerNo, OrderDate,

ShipToContactInfo_Name, ShipToContactPhone_PhNo,

BillToContactInfo_Name, BillToContactPhone_PhNo,

ShipToContactInfo_URowId, BillToContactInfo_URowId)

DN_Aggregate (OrderNo, OrderDate, TotalAmt, Discount)

DN_Voucher (OrderNo, OrderDate, ItemName, ItemPrice,

Quantity, DN_Aggregate_RowId)

DN_Item_Hierarchy (Main_ItemId, Sub_ItemId,

Child_Level, Is_Leaf, Item_URowId)

These tables can be created using the

5.1: An illustration of the above techniques

Consider the following Normalized database (3NF) relations:

(Primary Keys are in Red , Foreign keys are in Blue)

Customer (CustomerNo, CustomerName, ContactId)

Order OrderNo, CustomerNo, OrderDate, ShipRecdDate,

VATax, Local_Tax, ShiptoContactId, BillToContactId)

ContactInfo (ContactId, Name, Street, City, State Country,

Zip)

ContactPhone (ContactId PhoneNo)

Item (ItemNo, ItemName, ItemPrice, ItemPart, SubItemNo)

OrderItem (OrderNo, ItemSerialNo, ItemNo, Quantity)

PaymentInfo (OrderNo, PaymentNo, PaymentType,

PaymentDate)

PaymentType (PaymentType, Description)

Global Journal of Computer Science and Technology P a g e | 50

 create materialized view

 build immediate

 refresh fast on commit

 enable query rewrite

clauses provided by the DBMSs. The URowIds of the Base

Table rows can also be selected and inserted into the

Denormalized Schema Extensions.

The DN_Aggregate Tables need to be created using the

 withschemabinding

clause .

The Denormalized Hierarchy tables can be created using the

 connect by prior

 start with

 level

clauses.

The CONNECT BY prior clause can automatically handle

insertions.

5.2: A Performance Study on Hierarchical Queries

The Hierachical Technique for Denormalization needs to be

further illustrated.

Considering the Normalized Item Data consisting of data

shown below (partial view of the database)

The Normalized Relation for the Hierarchical Item Table

would be stored as

ItemNo ParentItemNo OtherItemDetails

100 …

101 100 …

105 100 …

108 101 …

200 101 …

203 101 …

204 101 …

109 108 …

110 108 …

111 108 …

112 108 …

209 204 …

Consider a query ―Find all items that are contained in

item 100‖ that requires to be run on the above table. This

involves finding the child nodes at every level of the

hierarchy.

A Solution to the above query:

 Select ItemNo from item where

ParentItemNo=‘100‘

 Union

 Select ItemNo from item where ParentItemNo

in

 (Select ItemNo from item

where ParentItemNo=‘100‘)

 Union

 Select ItemNo from item where ParentItemNo

in

 (Select ItemNo from item where

ParentItemNo in

 (Select ItemNo from item

where ParentItemNo=‘100‘))

This retrieval query, besides being extremely inefficient, one

needs to know the maximum depth of the hierarchy.

The Denormalized Schema for the Item Information in the

RDIRS :

DN_Item_Hierarchy (ParentItemNo, ChildItemNo,

ItemName, ChildLevel, IsLeaf, Item_URowId)

The ChildLevel ascertains the level in the hierarchy that the

child node is at; IsLeaf specifies if that node has further

child nodes and makes queries like ―Find all items that

have no subparts‖ solvable efficiently.

The (part) extension of the DN_Item_Hierarchy Schema
ParentItemNo ChildItemNo ItemName ChildLevel IsLeaf

ItemRowId

100

101

209

108 200 203
204

110

109

111

112

105

Figure 3: Partial Hierarchical Item Data

2.

select itemno,itemname,parentitem from item start with

parentitem=100 connect by prior itemno=parentitem ;

69 rows selected.

Elapsed: 00:00:00.17

3.

select parentitem,childitemno,itemname from dn_item_hier

where parentitem=100

69 rows selected.

Elapsed: 00:00:00.15

With an increased set of tuples, and a greater depth in the

hierarchy, the improvement will be substantial.

P a g e | 51 Global Journal of Computer Science and Technology

100 101 SubPart1

 1 N ….

100 105 SubPart2 1

 N ….

100 108 SubPart3 2

 N ….

100 200 SubPart4

 2 Y ….

100 203 SubPart5

 2 Y ….

100 204 SubPart6

 2 N

100 109 SubPart7

 3 Y ….

100 110 SubPart8

 3 Y ….

100 111 SubPart9

3 Y ….

100 112 SubPart10

 3 Y ….

100 209 SubPart11

 3 Y …

101 108 SubPart3

 2 N …

101 200 SubPart4

 2 N …

101 203 SubPart5

 2 N …

101 204 SubPart6

 2 N …

108 109 SubPart7

 3 Y …

108 110 SubPart8

 3 Y …

108 111 SubPart9

 3 Y …

108 112 SubPart10

 3 Y …

204 209 SubPart11

 3 Y …

…………….

……………

A Solution to the above query ―Find all items that are

contained in item 100‖ can now be written as:

 Select itemno from dn_item_hierarchy where

parentitemno=100;

To study the performance improvement using

denormalization, the normalized item table was created with

100 tuples, 70 tuples had the main root level as 100.The

maximum child level nodes was 4.

The results are as shown :

VI. CONCLUSIONS AND FUTURE WORK

Although each new RDBMS release usually brings

enhanced performance and improved access options that

may reduce the need for denormalization, there will be

many occasion where even these popular RDBMSs will

require denormalized data structures. Denormalizatio will

continue to remain an integral part of DataBase Design. A

detailed authorization and access matrix which is stored

along with the Denormalization view will further enhance

performance. This and a detailed strategy for cost benefit

analysis will be the next stage in the subject of my research.

REFERENCES

[1] Afrati F., Chen Li, and Ullman J D. ―Generating

efficient plans using views‖. In SIGMOD, pages 319–330,

2001.

[2] Amghar Y. and Mezaine M., ―Active database design‖

,Comad 97, Chennai, India.

[3] Chaudhuri, Krishnamurthy R, Potamianos S, and Shim

K,‖Optimizing Queries using materialized views‖, In

Proceedings of the 11th International Conference on Data

Engineering (Taipei, Taiwan, Mar.), ,1995,pp. 190--200.

1.

Set timing on;

select itemno,itemname,parentitem from item1 where

itemno in

 (select itemno from item1 where parentitem=100

 union

 select itemno from item1 where parentitem in

 (select itemno from item1 where parentitem=100)

 union

 select itemno from item1 where parentitem in

 (select itemno from item1 where parentitem in

 (select itemno from item1 where parentitem=100)));

69 rows selected.

Elapsed: 00:00:00.31

Global Journal of Computer Science and Technology P a g e | 52

 [4] Chirkova R., Chen Li, and J Li, ―Answering queries

using materialized views with minimum size‖ ,. Vldb

Journal 2006, 15 (3), pp. 191-210.

[5] Date C.J, ―The Normal is so …interesting‖, DataBase

programming and Design, Nov 1997,pp 23-25

 [6] Halevy A. ―Answering queries using views: A survey.‖

In VLDB, 2001.

 [7] Hauns M., ―To normalize or denormalize, that is the

question‖, Proceedings of 19
th

 Int.Conf for Management

and Performance Evaluation of Enterprise computing

Systems, San Diego,CA,1994,pp 416-423

[8] Inmon W.H, ―Denormalization for Efficiency,

―ComputerWorld‖, Vol 21 ,1987 pp 19-21

[9] Ross K., Srivastava D. and Sudarshan S., ‖Materialized

View Maintenace and integrity constraint checking : trading

space for time‖, ACM Sigmod Conference 1996,pp 447 -458

[10] Rodgers U., ‖Denormalization: why, what and how?‖

Database Programming and Design,1989 (12) ,pp 46-53

 [11] Sanders G. and Shin S.K, ―Denormalization Effects on

Performance of RDBMS‖, Proceedings of the 34
th

International Conference on Systems Sciences, 2001

 [12] Schkolnick M., Sorenson P. , ―Denormalization :A

performance Oriented database design technique‖ ,

Proceedings of the AICA 1980 Congress ,Italy.

[13] Shin S.K and Sanders G.L., ― Denormalization

strategies for data retrieval from data warehouses

―,Decision support Systems, VolVol. 42, No. 1, pp. 267-282,

2006

[14] Vincent M., Mohania M. and Kambayashi Y., ―A Self-

Maintainable View maintenance technique for data

warehouses‖ ,8
th

 Int. Conf on Management of Data,

Chennai,India

[15] Wei Z., Dejun J., Pierre G.,Chi C.H, Steen

M.,‖Service-Oriented Data Denormalization for Scalable

Web Applications‖ , Proceedings of the 17
th

 International

WWW Conference 2008, Beijing, China

[16] Barquin R., Edelstein H., ―Planning and Designing the

Data Warehouse‖, Prentice Hall

[17] Date C.J. ,Kannan A., Swamynathan S.,‖An

Introduction to Database Systems ―, ,8
th

 Ed.,Pearson

Education

 [18] Elmashree R. and Navathe S.,―Fundamentals of

Database Systems‖,3
rd

 Ed, Addison Weisley.

[19] Davidson L., ―Ten common design mistakes ―,

software engineers blog, Feb 2007

[20] Downs K.,‖The argument for Denormalization‖,The

Database Programmer,Oct 2008

[21] Khaldtiance S., ―Evaluate Index Usage in Databases‖,

SQL Server Magazine, October 2008

[22] Lurie M.,IBM, ‖Winning Database Configurations

[23] Mullins C, ―Denormalization Guidelines ―, Platinum

Tecnology Inc.,Data administration Newsletter, Accessed

June 2009.

[24] Microsoft - SQL Server 7.0 Resource Guide ‖Chapter

12 - Data Warehousing Framework‖

[25] Roten-Gal-Oz A. Cirrus minor in ―Making IT work‖

Musings of an Holistic Architect, Accessed June 2009

[26] Van Couver D. on his blog ―Van Couvering is not a

verb‖, Accessed June 2009

[27] Wiseth K, Editor-in-Chief of Oracle Technology News,

in ‖Find Meaning‖,Accessed June 2009

[28] Thought Clusters on software, development and

programming, website -– March 2009

[29] website – http://www.sqlteam.com/Forums/, Accessed

July 2009

http://www.sqlmag.com/Issues/IssueID/921/921.html
http://www.sqlmag.com/Issues/IssueID/921/921.html
http://www.oracle.com/oramag/oracle/01-sep/o51cov.html

