
Journal of Electrical and Electronics Engineering Research Vol. 1(1) pp. 023-029, November, 2009
Available online http://www.academicjournals.org/JEEER
©2009 Academic Journals

Full Length Research Paper

Implementation of DSP algorithms on reconfigurable
embedded platform

J. S. Parab*, R. S. Gad and G. M. Naik

Electronics Section, Department of Physics, Goa University, Goa, India.

Accepted 9 September, 2009

Field programmable PLD’s are becoming a standard in hardware technologies, as application demands
have out placed the conventional processor's ability to deliver. The right combination of price,
performance, ease-of use, along with significant power savings, can be achieved by using a Field
Programmable Gate Array (FPGA). The versatility of these devices with the EDA tools such as Quartus,
ISE, and Mentor Graphics integrated with MATLAB-Simulink gives upper hand for designer in any
complex Digital signal processing (DSP) designs. Altera and Xilinx has DSP generator and System
generator as target specific tools which support various IP cores libraries for such designs. We have
designed an embedded system with Xilinx Spartan III based FPGA for real time audio processing.
Various audio effects such as Echo, Reverberation, Fading, Flanging etc. can be demonstrated for real
time performance. The designed system has 12-bit ADC tuned for the base-band signal unto 500 KHz.
Also, the system can be configured as a DSP processor with IP cores like FFT, convolution etc. The
reconstruction of analog signal is achieved with the help of 12-bit DAC converter module. Designed
board has many applications in the field of biomedical, consumer, industrial and military. The same
audio effects were tested on Altera CYCLONE II based DSP development kit.

Key words: DSP, ASP, ECHO, embedded system, Spartan -III, FPGA, altera.

INTRODUCTION

Signals play an important role in our daily life. Signals
that we encounter frequently are speech, music, picture
and video signals (Richard, 2004). Often, signal is spatio-
temporal in nature. Speech and music signals represent
air pressure as functions of time at a point in space. Most
signals we encounters are generated naturally, however,
signal can be generated synthetically or by computer.
The objective of signal processing is to extract the
information carried by the signal and this extraction of
information depends on the type and nature of signal
carried by it. There are four methods of digital sound
synthesis such as wavetable, spectral, non-linear and
synthesis by physical modeling. Wavetable synthesis
produces recorded or synthesized musical events stored
in the digital memory and played back on demand.
Spectral synthesis produce sound from frequency domain

*Corresponding author. E-mail. jsparab@unigoa.ac.in. Tel:
0832-6519342. Fax: +091-0832-2451184.

model basically by superposition of basis functions with
time-varying amplitudes. Non-linear synthesis is a
frequency modulation technique of time dependent phase
term in the sinusoidal basis function. Physical modeling
models the sound production methods of the vibrating
physical structures by partial differential equations (Alles,
1980). We have implemented wavetable analysis in our
design. The highest sampling frequency reported
presently is around 1GHz. Such high frequencies are not
usually used in practice since the achievable resolution of
the A/D converter given by the word length decreases
with an increase in the speed of the converters. For
example, the reported resolution of an A/D converter
operating at 1GHz is 6 bits (Poulton et al., 1987). On the
other hand in most applications, the required resolution of
an A/D converter is from 12 - 16 bits. Consequently, the
sampling frequency of at most 10 MHz is presently a
practical upper limit. Upper limit is becoming larger and
larger with advances in technology. We have designed
system having 12-bit ADC, having 1MHz sampling
frequency.

024 J. Electrical Electron. Eng. Res.

Figure 1a. FPGA block diagram.

PROCESSORS PLATFORMS: FPGA AND DSP

Two types of programmable platforms are used in the
Embedded and VLSI design application domain that is
DSP and FPGAs.

DSP are a specialized form of microprocessor, while
FPGAs are a form of highly configurable hardware. DSP
processors have conventionally moved to higher levels of
performance through a combination techniques such as
increasing clock cycle speeds, increasing the number of
operations performed per clock cycle, adding optimized
hardware co-processing functionality (such as a Viterbi
decoder), implementing more complex instruction sets,
minimizing sequential loop cycle counts, adding high
performance memory resources, implementing
modifications including deeper pipelines and superscalar
architectural elements. However, ultimately, each of
these design enhancements seeks to increase the pa-
rallel processing capability of an inherently serial process.

The following factors make FPGAs promising,
particularly for high performance computing applications:

(i) The potential for thousand-fold parallelism (ii) The
embedding of control logic (iii) Presence of on-board
memory in FPGA also has significant performance
benefits. For one, having memory on-chip means that the
processor logic's memory access bandwidth is not
constrained by the number of I/O pins on device (iv)
FPGA with greater capacity can occupy the same board
footprint as an older device, allowing performance
upgrades without board changes. Advantages of FPGAs
for high performance computing are discussed in depth in
one of the latest references (Kamat et al., 2009).

Diagram in the Figure 1a shows the how FPGA
resources assigned can be tailored to the task
requirements, which can be broken up along logical
partitions. This makes a well-defined interface between
tasks and largely eliminates unexpected interaction
between tasks, because each task runs continuously,
much less memory is required than in the digital signal
processor, which must buffer the data and process in
batches. As FPGAs distribute memory throughout the
device, each task is permanently allocated the dedicated

Parab et al. 025

Figure 1b. FPGAs are a better solution in the region above the curve.

memory it needs. This provides a high degree of isolation
between tasks and results in modification of one task
being unlikely to cause unexpected behavior in another
task. This, in turn, allows developers to easily isolate and
fix bugs in a logical and predictable fashion. In the past,
the use of digital signal processors was nearly ubiquitous,
but with the needs of many applications outstripping the
processing capabilities of digital signal processors
(measured in millions of instructions per second (MIPS)),
the use of FPGAs is growing rapidly (Figure 1b). The
comparison between digital signal processors and
FPGAs focuses on MIPS comparison, which, while
certainly important, is not the only advantage of an
FPGA. Equally important, and often overlooked, is the
FPGA’s inherent advantage in product reliability and
maintainability.

Higher performance implementations of specific DSP
algorithms are increasingly available through
implementation within FPGAs (http://www.andraka.com
/dsp.htm.). Ongoing architectural enhancements, advan-
cement in development tool, speed increases and cost
reductions are making FPGA implementation attractive
for an increasing range of DSP-dependent applications.
FPGA technology advances have increased clock speeds
and available logic resources and beyond the range
required to implement many DSP algorithms effectively at
an attractive price. FPGA implementation provides the
added benefits of reducing costs along with design
flexibility and future design modification options.

EMBEDDED SYSTEM IMPLEMENTATION FOR DSP
USING XILINX SYSGEN

Objectives were to design a low cost, high speed and
reliable DSP system which includes a digital signal
processing with real time I/O control. FPGA is used to

process the digitized data sampled by the ADC and then
output the same to the DAC module.
The aims and objectives of the design are summarized
as follows:

(1) To design a general purpose embedded system using
FPGA for real time digital signal processing.
(2) Configuring the FPGA as a customized digital signal
processor.
(3) Port the soft processor IP core like NIOS II interface
with the above design as a co-processor.

The diagram in Figure 2 shows the detailed implemen-
tation of the hardware using Spartan III FPGA. A digital
signal is applied as an input to the operational amplifier
LM324 which acts as a buffer and is then given to the 12-
bit ADC AD7891 module. This ADC converts the analog
signal into the digital domain. The digitized data is then
fed to the FPGA XC3S200 Spartan-III for further
processing. The FPGA is programmed using Xilinx ISE
webpack over JTAG interface. The FPGA is programmed
through IDE Xilinx ISE Webpack 6.3i. The processed
data from FPGA is then converted back to analog form
using a 12-bit DAC AD7541. The reconstructed analog
signal is then given to LM324 for amplification.
 The design hardware has several handshaking signals
as shown in the Figure 3 for external on board ADC and
DAC interface. The data from the ADC after conversion is
routed over 12-bit data bus known as ‘db’. The processed
data over a user’s logic is output to DAC over ‘dac_out’
(12-bit). The DAC output is reconstructed to analog form
for representation to external world. The logic in the
FPGA can be manually written using HDL for any
computation in digital signal domain. With increasing
complexities of systems and varied levels of expertise of
embedded designers, there is an increasing need for tools
that provide a higher level of abstraction, empowering the

026 J. Electrical Electron. Eng. Res.

Signal
Source� �

12-bit
A/D

AD7891�

 �

Spartan III
FPGA

12-bit
D/A

�������

�

 �

Reconstructive
filter and signal

amplifier�

Channel sel
and LM324�

Figure 2. Block diagram of embedded system.

FPGA
SPARTAN

III

db; 12

dac_out; 12

 mode_ad

 eoc_ad

 wr_ad

 convst_ad

 cs_ad

 rd_ad

 adc_clk

en; 4

bit_trun; 8

ch_adc; 2

dac_sel; 2

D
A
C

A
D
C

Figure 3. Higher level schematic.

empowering the domain experts to use DSPs in building
embedded systems rather than spending precious time at
the prototyping stage. Graphical programming paradigms
have continually evolved to address this problem. There
are number of tools that allow a mixture of visual and
textual programming such as Signal (Benveniste and
Guernic, 1990), Lustre (Halbwachs et al., 1991) and
Silage (Hilfinger, 1985).

Completely graphical programming environments such
as Ptolemy (http://ptolemy.eecs.berkeley.edu/.) from
University of California, Berkeley and National

Instruments LabVIEW have evolved to encompass
different application domains.

System generator (Xilinx) (http://xilinx.com/products
/design_resources/dsp_central/grouping/index.htm) or
DSP generator (ALTERA) (http://altera.com/technology
/dsp/dsp-index.jsp.) provides libraries with Simulink
customized for respective vendor’s targets which gene-
rates the HDL code for variety of DSP functionality. The
proper EDA interface of the automatic code generator is
shown in Figure 4.

Here, the required logic code of user is generated by

Parab et al. 027

System generator
(Xilinx)

ISE 6.0i

MATLAB 7.2 (SIMULINK)

Figure 4. Xilinx EDA interface for DSP application.

DSP BUILDER
(ALTERA)

QUARTUS II

MATLAB 7.2
(SIMULINK)

EDS NIOS II IDE

SOPC BUILDER

LIGHT WEIGHT IP
µCOS RTOS

HTML & JSP

Figure 5. ALTERA EDA interface.

the system generator. The generated system generator
compiles the intermediate code in form of HDL and the
same is available as component of HDL. The component
is then mapped with the entity of HDL code of the ADC
and DAC interface as shown in figure 3. The ‘bit’ file after
compilation is programmed over FPGA for required
performance (http://www.edu.org/comp.lang.vhdl/). The
VHDL architecture of the above described mapping
required major four processes which will monitor the
overall handshake that is conversion of data over ADC,
reading ADC, writing ADC data to DAC, selection of DAC
channel.

EMBEDDED SYSTEM IMPLEMENTATION FOR DSP
USING ALTERA DSP GENERATOR

The Altera EDA interface of the automatic code generator
for DSP application is shown in Figure 5. ALTERA DSP
generator is more users friendly, as the input and output
port ADC/ DAC are available in the block form compared
to XILINX HDL code. The audio signal is given to 12- bit
ADC ADS55001, digitized data is then passed through
the different audio synthesis blocks like Echo,
Revberation, Flaging etc. This effect are selected based
on Logic at DIP switches. The synthesized output is then

passed through 14-bit D/A converter DAC904. The
analog output of a D/A converter is connected to
speakers to hear desired audio effect.
This parallelism can be extended to complex form, to
other effect like chorus as shown in the Figure 6.

AUDIO SYNTHESIS CASE STUDY

The system has been demonstrated to process the audio
signal. Various effects like echo, chorus, reverberation,
flanging, fading and equalization can be implemented.
Echo effect (If the delay is more than 50 - 70 ms, it is
perceptible to human ear as an echo.) was tested for
satisfactory performance and the effect of change in 50 -
70 ms delay over superimposed ensemble of signal was
studied.

Echo effect

Echo is the repetition of a sound by reflection of sound
waves from a surface. It arises in communication sys-
tems, when signals encounter a mismatch in impedance
(Messerschmitt, 1984). The same has been modeled
using Simulink Signal generator as shown in Figure 6.

028 J. Electrical Electron. Eng. Res.

Figure 6. Block diagram of the echo in the DSP generator of Xilinx IDE.

Figure 7. Block diagram of the chorus effect.

Figure 6. DELAY, FIFO, ADDER, SUBTRATOR etc are
the basic building block for a number of effects in audio
signal processing. The running data signal is captured
and stored in the FIFO block. Total 2k data samples are
captured and stored at any given time. Past signals
stored are fed one at a time (after required delay of 50 -
70 ms) to adder block along with running signal. The
effects can be understood by varying the ‘delay’ and ‘gain’

of the system described.

Chorus effect

More complex example illustrating parallelism is the
chorus effect, shown in Figure 7. The chorus effect is
often used to alter the sound of an instrument to make it

Parab et al. 029

Table 1. Altera cyclone II resources.

Resource Available Used
Logic elements 68416 2374 (3%)
Registers 1183 0
Pins 422 35 (1%)
Total memory bits 1,152,000 5,780 (1%)
Embedded multiplier 9-bit elements 300 1
PLL 4 0

Table 2. Xilinx Spartan III resources.

Resource Available Used
System gate 200 k 25 K
Logic cells 4320 3135
Dedicated multipliers 12 4
User I/O 173 35
Block RAM 216K 30K

sound as if multiple instruments are playing. If the
instrument where a human voice, then this effect would
tend to make the single voice sound like a choir. We
perceive the multiple voices or instruments, since there is
always imprecise synchronization and slight pitch
variation when multiple voices or instruments are playing
at the same time. These are the principal characteristics
of a chorus effect.

Similar way can be used in implementing the parallel
computing for complex block-like design (shown in Figure
7) for 32 or more channels. Such implementation can
have potential application for the Audio analysis and
synthesis Tomography, ECG, EEG etc.

RESOURCES USED BY ALTERA AND XILINX PLAT-
FORM TO IMPLEMENT AUDIO SYNTHESIS
ALGORITHMS

The compared resources used by Altera and Xilinx
platform to implement audio synthesis algorithms are
given in Table 1 and 2 respectively. After analyzing the
compilation report of both platforms, it was found that
Altera platform is more versatile and their designs are
more optimized than the Xilinx.

DISCUSSION AND CONCLUSION

The system designed can be upgraded to incorporate
Soft core processor like NIOS II (Altera), Micoblaze,
Picoblaze (Xilinx) for improving the flexibility of the
system. The real time operating system (RTOS)
component can also be incorporate to involve the
multitasking of the process for real time performance. We

have tested audio effects on both Altera and Xilinx
platform. We have concluded that implementing the audio
synthesis algorithms like Echo, Reverberation, and
Flanging etc. on Altera Platform is easier, user friendly
and also provides design flexibility and less compilation
and development time than implementing the same on
Xilinx Platform.

REFERENCES

Alles HG (1980). Music synthesis using real time digital techniques.

Proc. IEEE, 68: 436-499,
Benveniste A, Le Guernic (1990). P Hybrid Dynamical Systems Theory

and the SIGNAL Language,” IEEE Tr. Automatic Control, 35 (5): 525-
546.

Halbwachs N, Caspi P, Raymond P, Pilaud D (1991). The Synchronous
Data Flow Programming Language LUS-TRE,”Proc. IEEE,
79(9):1305-1319.

Hilfinger P (1985). A High-Level Language and Silicon Compiler for
Digital Signal Processing”, Proceedings of the Custom Integrated
Circuits Conference, IEEE Computer Society Press, Los Alamitos,
CA, pp. 213-216 .

http://altera.com/technology/dsp/dsp-index.jsp.
http://www.andraka.com/dsp.htm.
http://www.edu.org/comp.lang.vhdl/.
http://xilinx.com/products/design_resources/dsp_central/grouping/index.

html
Messerschmitt DG (1984).Echo cancellation in speech and data

transmission’ IEEE, J. on selected areas in communication, SAC-
2:283-297, March [6]

Poulton K, Corcoran JJ, Horna T (1987). A 1-GHz 6-bit ADC system’,
IEEE J. Solid-State Circuits, SC-22 : 962-970.

Rajanish KK, Santosh SA, Vinod SG (2009). Unleash the System On
Chip using FPGAs and Handel C”, Springer, , XXIV, Hardcover.
176p.

Richard GL (2004). Understanding Digital Signal Processing’, Prentice
Hall, ISBN 0131089897. pp.121-125.

The Ptolemy Project http://ptolemy.eecs.berkeley.edu/.

