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Abstract

We considered a procedure for solving an ill-posed Hammerstein type
operator equation KF (x) = y, by solving the linear equation Kz = y
first for z and then solving the nonlinear equation F (x) = z. Conver-
gence analysis is carried out by means of suitably constructed majorizing
sequences. The derived error estimate using an adaptive method pro-
posed by Perverzev and Schock (2005) in relation to the noise level and
a stopping rule based on the majorizing sequences are shown to be of
optimal order with respect to certain assumptions on F (x̂), where x̂ is
the solution of KF (x) = y.
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1 Introduction

In this paper we consider the problem of approximately solving a nonlinear ill-
posed operator equation of the Hammerstein type with a monotone nonlinear
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part. Recall that a Hammerstein type operator (see [6, 7, 8, 10]) is an operator
of the form KF, where F : D(F ) ⊂ X �→ Z is nonlinear and K : Z �→ Y is a
bounded linear operator and X, Y, Z are taken to be Hilbert spaces. We are
interested in the case when Z = X and F is a monotone operator (cf. [15]).
i.e.,F : D(F ) ⊂ X �→ X satisfies

〈F (x1) − F (x2), x1 − x2〉 ≥ 0, ∀x1, x2 ∈ D(F ).

So we consider an equation of form

KF (x) = y (1)

where F : D(F ) ⊂ X �→ X is monotone and K : X �→ Y is linear. It is
assumed that (1) has a solution x̂ ∈ D(F ).

We assume throughout that yδ ∈ Y are the available noisy data with

‖y − yδ‖ ≤ δ. (2)

Observe that (cf. [10]) the solution x̂ of (1) can be obtained by first solving
the linear equation

Kz = y (3)

for z and then solving the nonlinear equation

F (x) = z. (4)

For the treatment of nonlinear ill-posed problems the standard regulariza-
tion method is the method of Tikhonov regularization. But if the nonlinear
operator is monotone then a simpler regularization strategy available is the
Lavrentiev regularization. Note that KF need not be monotone even if F is
monotone. So in the straight forward approach one has to consider Tihkonov
regularization method for approximately solving (1).

What we show in this paper is that for the special case when K is linear
and F is monotone, by splitting the equation (1) into (3) and (4), one can
simplify the procedure by specifying a regularization strategy for linear part
(3) and an iterative method for nonlinear part (4). More precisely , for fixed
α > 0, δ > 0 we consider the regularized solution of (3) with yδ in place of y
as

zδ
α = (K + αI)−1yδ (5)

if the operator K in (3) is positive self adjoint and X = Y , otherwise we
consider

zδ
α = (K∗K + αI)−1K∗yδ. (6)

Note that (5) is the simplified or Lavrentiev regularization (see [5]) of the
equation (3) and (6) is the Tikhonov regularization (see [2, 3, 4, 9, 12, 14]) of
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(3). The regularization parameter is chosen according to an adaptive method
proposed by Pereverzev and Schock in [11]. Also one can see that the iterative
method we considered in section 3 and section 4 for the nonlinear equation (4)
do not involve any regularization parameter explicitly.

In [10], it is assumed that the bounded inverse of F ′(x0) exist and consid-
ered the sequence

xδ
n+1,α = xδ

n,α − F ′(x0)
−1(F (xδ

n,α) − zδ
α), (7)

with xδ
0,α = x0 and proved that (xδ

n,α) converges linearly to the solution xδ
α of

F (x) = zδ
α. (8)

Later in [8], George and Kunhanadan considered the sequence (xδ
n,α) de-

fined iteratively as

xδ
n+1,α = xδ

n,α − F ′(xδ
n,α)−1(F (xδ

n,α) − zδ
α), (9)

with xδ
0,α = x0 and proved that (xδ

n,α) converges quadratically to the solution
xδ

α of (8) under the assumption that the bounded inverse of F ′(x) exist in a
neighborhood of x0.

Recall that a sequence (xn) is X with limxn = x∗ is said to converge
quadratically, if there exists positive number M, not necessarily less than 1,
such that for all n sufficiently large

‖xn+1 − x∗‖ ≤ M‖xn − x∗‖2. (10)

If the sequence (xn) has the property that

‖xn+1 − x∗‖ ≤ q‖xn − x∗‖, 0 < q < 1

then (xn) is said to be linearly convergent. For an extensive discussion of
convergence rate, see Ortega and Rheinboldt [13].

Note that the ill-posedness of equation (1) in [10] and in [8] is due to the
ill-posedness of the linear equation (3). In the present paper we assume that
(1) is ill-posed in both the linear part (3) and the nonlinear part (4). Using the
monotonicity of F, we carry out the convergence analysis by means of suitably
constructed majorizing sequences, deviating from the methods used in [10] and
[8]. An advantage of this approach is that the majorizing sequence gives an a
priori error estimate which can be used to determine the number of iterations
needed to achieve a prescribed solution accuracy before actual computation
takes place.

Organization of this paper is as follows. We collected some preparatory
results in section 2. Convergence analysis of an iterated sequence converging
quadratically is given in section 3 and in section 4 we consider another se-
quence which converges linearly. In section 5 we give error analysis and derive
optimal order error bounds. Finally in section 6 we consider an algorithm for
implementing method considered in this paper.
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2 Preparatory Results

Throughout this paper we assume that the operator F satisfies the following
assumptions.

Assumption 2.1 There exists r > 0 such that Br(x̂) ⊆ D(F ) and F is
Fréchet differentiable at all x ∈ Br(x̂).

Assumption 2.2 There exists a constant k0 > 0 such that for every x, u ∈
Br(x̂) and v ∈ X, there exists an element Φ(x, u, v) ∈ X satisfying

[F ′(x) − F ′(u)]v = F ′(u)Φ(x, u, v), ‖Φ(x, u, v)‖ ≤ k0‖v‖‖x− u‖
for all x, u ∈ Br(x̂) and v ∈ X.

The next assumption on source condition is based on a source function ϕ
and a property of the source function ϕ. We will be using this assumption to
obtain an error estimate for ‖F (x̂) − zδ

α‖.
Assumption 2.3 There exists a continuous, strictly monotonically increasing
function ϕ : (0, a] → (0,∞) with a ≥ ‖K∗K‖ satisfying;

• lim
λ→0

ϕ(λ) = 0

•
sup

λ ≥ 0

αϕ(λ)

λ+ α
≤ cϕϕ(α), ∀α ∈ (0, a].

• there exists v ∈ X such that

F (x̂) = ϕ(K∗K)v (11)

Let
zα := (K∗K + αI)−1K∗y.

Hereafter we consider zδ
α as in (6). We observe that

‖F (x̂) − zδ
α‖ ≤ ‖F (x̂) − zα‖ + ‖zα − zδ

α‖
≤ ‖F (x̂) − zα‖ +

δ√
α
, (12)

and

F (x̂) − zα = F (x̂) − (K∗K + αI)−1K∗KF (x̂)

= [I − (K∗K + αI)−1K∗K]F (x̂)

= α(K∗K + αI)−1F (x̂). (13)

So by Assumption 2.3,

‖F (x̂) − zα‖ ≤ ‖v‖cϕϕ(α). (14)

Thus we have the following theorem.
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THEOREM 2.4 Let zδ
α be as in (6) and the Assumption 2.3 holds. Then

‖F (x̂) − zδ
α‖ ≤ max{‖v‖cϕ, 1}(ϕ(α) +

δ√
α

). (15)

2.1 A priori choice of the parameter

Note that the estimate ϕ(α) + δ√
α

in (15) attains minimum for the choice

α := αδ which satisfies ϕ(αδ) = δ√
αδ
. Let ψ(λ) := λ

√
ϕ−1(λ), 0 < λ ≤ ‖K‖2.

Then we have δ =
√
αδϕ(αδ) = ψ(ϕ(αδ)), and

αδ = ϕ−1(ψ−1(δ)). (16)

So Theorem 2.4 and the above observation lead to the following.

THEOREM 2.5 Let ψ(λ) := λ
√
ϕ−1(λ), 0 < λ ≤ ‖K‖2 and the assumptions

of Theorem 2.4 are satisfied. For δ > 0, let αδ = ϕ−1(ψ−1(δ)). Then

‖F (x̂) − zδ
α‖ ≤ ©(ψ−1(δ)).

2.2 An adaptive choice of the parameter

The error estimate in the above Theorem has optimal order with respect to
δ. Unfortunately, an a priori parameter choice (16) cannot be used in prac-
tice since the smoothness properties of the unknown solution x̂ reflected in
the function ϕ are generally unknown. There exist many parameter choice
strategies in the literature (cf. [5], [8], [11], [15], etc.).

In [11], Pereverzev and Schock considered an adaptive selection of the pa-
rameter which does not involve even the regularization method in an explicit
manner. In this method the regularization parameter αi are selected from
some finite set {αi : 0 < α0 < α1 < · · · < αN} and the corresponding regular-
ized solution, say zδ

αi
are studied on-line. In this paper also, we consider the

adaptive method for selecting the parameter α in zδ
α.

Let i ∈ {0, 1, 2, · · · , N} and αi = μ2iα0 where μ > 1 and α0 = δ2. Let

l := max{i : ϕ(αi) ≤ δ√
αi

} (17)

and

k := max{i : ‖zδ
αi
− zδ

αj
‖ ≤ 4δ√

αj
, j = 0, 1, 2, · · · , i}. (18)

We will be using the following theorem from [8]

THEOREM 2.6 (cf. [8], Theorem 4.2) Let l be as in (17), k be as in (18)
and zδ

αk
be as in (6) with α = αk. Then l ≤ k and

‖F (x̂) − zδ
αk
‖ ≤ (2 +

4μ

μ− 1
)μψ−1(δ).
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3 Quadratic Convergence

Now consider the nonlinear equation (4) with zδ
αk

in place of z. It can be seen
as in [15], Theorem 1.1, that for monotone operator F, the equation

F (x) + (x− x0) = zδ
αk
. (19)

has a unique solution xδ
αk
. It is interesting to note that the camouflaged pres-

ence of regularization parameter in αk, in (19) relieves us of the labour of
Lavrentiev regularization in the nonlinear part.

We propose the following iterative method for computing the solution xδ
αk
.

For n ≥ 0, let

xδ
n+1,αk

= xδ
n,αk

− (F ′(xδ
n,αk

) + I)−1(F (xδ
n,αk

) − zδ
αk

+ (xδ
n,αk

− x0)), (20)

where x0 is a starting point of the iteration. The main goal of this section is
to provide sufficient conditions for the quadratic convergence of method (20)
to xδ

αk
and obtain an error estimate for ‖xδ

αk
− xδ

n,αk
‖. We use a majorizing

sequence for proving our results. Recall (see [1], Definition 1.3.11) that a
nonnegative sequence (tn) is said to be a majorizing sequence of a sequence
(xn) in X if

‖xn+1 − xn‖ ≤ tn+1 − tn, ∀n ≥ 0.

During the convergence analysis we will be using the following Lemma on
majorization, which is a reformulation of Lemma 1.3.12 in [1].

LEMMA 3.1 Let (tn) be a majorizing sequence for (xn) in X. If lim
n−→∞tn = t∗,

then x∗ = lim
n−→∞xn exists and

‖x∗ − xn‖ ≤ t∗ − tn, ∀n ≥ 0. (21)

The next Lemma on majorizing sequence is used to prove the convergence
of the method (20).

LEMMA 3.2 Assume there exist nonnegative numbers q ∈ [0, 1) and κ0, η
nonnegative such that for all n ≥ 0,

3κ0

2
qnη ≤ q. (22)

Then the iteration (tn), n ≥ 0, given by t0 = 0, t1 = η,

tn+1 = tn +
3κ0

2
(tn − tn−1)

2 (23)

is increasing, bounded above by t∗∗ := η
1−q

, and converges to some t∗ such that
0 < t∗ ≤ η

1−q
. Moreover, for n ≥ 0;

0 ≤ tn+1 − tn ≤ q(tn − tn−1) ≤ qnη, (24)
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and

t∗ − tn ≤ qn

1 − q
η. (25)

Proof. Since the result holds for η = 0, κ0 = 0 or q = 0, we assume that
κ0 �= 0, η �= 0 and q �= 0. Observe that ti+1 − ti ≥ 0 for all i ≥ 0. If

3κ0

2
(ti+1 − ti) ≤ q, (26)

then the estimate (25) follows from (23). So we shall prove (26) by induction
on i ≥ 0.

For i = 0, (26) holds by (22). Suppose (26) holds for all i ≤ k for some k.
Then by (23) we have

3κ0

2
(tk+2 − tk+1) ≤ (

3κ0

2
(tk+1 − tk))

2 ≤ q2 < q.

Thus by induction (26) holds for all i ≥ 0. Also, for k ≥ 0,

tk+1 ≤ tk + q(tk − tk−1) ≤ · · · ≤ η + qη + · · · + qkη

=
1 − qk+1

1 − q
η <

η

1 − q
.

Hence the sequence (tn), n ≥ 0 is bounded above by η
1−q

and is nondecreas-
ing. So it converges to some t∗ ≤ η

1−q
. Further,

t∗ − tn =
lim

i→ ∞tn+i − tn ≤ lim

i→ ∞
i−1∑
j=0

(tn+1+j − tn+j) ≤ qn

1 − q
η.

This completes the proof of the lemma.
To prove the convergence of the sequence (xδ

n,αk
) defined in (20) we intro-

duce the following notations:
Let R(x) := F ′(x) + I and

G(x) := x−R(x)−1[F (x) − zδ
αk

+ (x− x0)]. (27)

Note that with the above notation G(xδ
n,αk

) = xδ
n+1,αk

.

THEOREM 3.3 Let q ≥ t∗. Under the assumption 2.2 and the assumptions
in the Lemma 3.2 the sequence (xδ

n,αk
) defined in (20) is well defined and

xδ
n,αk

∈ Bt∗(x0) for all n ≥ 0. Further (xδ
n,αk

) is a Cauchy sequence in Bt∗(x0)

and hence converges to xδ
αk

∈ Bt∗(x0) ⊂ Bt∗∗(x0) and F (xδ
αk

) = zδ
αk

+(x0−xδ
αk

).
Moreover, the following estimates hold for all n ≥ 0,

‖xδ
n+1,αk

− xδ
n,αk

‖ ≤ tn+1 − tn, (28)
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‖xδ
n,αk

− xδ
αk
‖ ≤ t∗ − tn ≤ qnη

1 − q
, (29)

and

‖xδ
n+1,αk

− xδ
αk
‖ ≤ k0

2
‖xδ

n,αk
− xδ

αk
‖2. (30)

Proof. First we shall prove that

‖xδ
n+1,αk

− xδ
n,αk

‖ ≤ 3κ0

2
‖xδ

n,αk
− xδ

n−1,αk
‖2. (31)

With G as in (27), we have for u, v ∈ Bt∗(x0),

G(u) −G(v) = u− v − R(u)−1[F (u) − zδ
αk

+ (u− x0)]

+R(v)−1[F (v) − zδ
αk

+ (v − x0)]

= u− v − [R(u)−1 −R(v)−1](F (v) − zδ
αk

+ (v − x0))

−R(u)−1(F (u) − F (v) + (u− v))

= R(u)−1[F ′(u)(u− v) − (F (u) − F (v)]

−R(u)−1[F ′(v) − F ′(u)]R(v)−1(F (v) − zδ
αk

+ (v − x0))

= R(u)−1[F ′(u)(u− v) − (F (u) − F (v))]

+R(u)−1[F ′(v) − F ′(u)](v −G(v))

= R(u)−1[F ′(u)(u− v) +
∫ 1

0
(F ′(u+ t(v − u))(v − u)dt]

+R(u)−1[F ′(v) − F ′(u)](v −G(v))

=
∫ 1

0
R(u)−1[(F ′(u+ t(v − u)) − F ′(u))(v − u)dt]

+R(u)−1[F ′(v) − F ′(u)](v −G(v))

The last but one step follows from the Fundamental Theorem of Integral
Calculus. So by the Assumption 2.2 and the estimate ‖R(u)−1F ′(u)‖ ≤ 1, we
have

‖G(u) −G(v)‖ ≤ κ0

2
‖u− v‖2 + κ0‖u− v‖‖v −G(v)‖. (32)

Now taking u = xδ
n,αk

and v = xδ
n−1,αk

in (32), we obtain (31).
Next we shall prove that the sequence (tn) defined in Lemma 3.2 is a

majorizing sequence of the sequence (xδ
n,αk

).
Note that ‖xδ

1,αk
− x0‖ = ‖R(x0)

−1(F (x0) − zδ
αk

)‖ ≤ η = t1 − t0. Assume
that ‖xδ

i+1,αk
− xδ

i,αk
‖ ≤ ti+1 − ti for all i ≤ k for some k. Then by (31),

‖xδ
k+2,αk

− xδ
k+1,αk

‖ ≤ 3κ0

2
‖xδ

k+1,αk
− xδ

k,αk
‖2 ≤ 3κ0

2
(tk+1 − tk)

2 = tk+2 − tk+1.



Iterative regularization methods 1681

Thus by induction ‖xδ
n+1,αk

− xδ
n,αk

‖ ≤ tn+1 − tn for all n ≥ 0 and hence
(tn), n ≥ 0 is a majorizing sequence of the sequence (xδ

n,αk
). So by Lemma 3.1

(xδ
n,αk

), n ≥ 0 is a Cauchy sequence and converges to some xδ
αk

∈ Bt∗(x0) ⊂
Bt∗∗(x0) and

‖xδ
αk

− xδ
n,αk

‖ ≤ t∗ − tn ≤ qnη

1 − q
.

To prove (30), we observe that G(xδ
αk

) = xδ
αk
, so (30) follows from (32), by

taking u = xδ
n,αk

and v = xδ
αk

in (32). Now by letting n→ ∞ in (19) we obtain
F (xδ

αk
) = zδ

αk
+ (x0 − xδ

αk
). This completes the proof of the Theorem.

REMARK 3.4 Note that (30) implies (xδ
n,αk

) converges quadratically to xδ
αk
.

4 Linear Convergence

In this section, we consider the sequence (x̃δ
n) defined iteratively by

x̃δ
n+1 := x̃δ

n − (F ′(x0) + I)−1(F (x̃δ
n) − zδ

αk
+ (x̃δ

n − x0)), (33)

where x0 is a starting point of the iteration. We prove that the sequence (x̃δ
n)

converge to the unique solution xδ
αk

of (19) and obtain an error estimate for
‖xδ

αk
− x̃δ

n‖. The proof of the following lemma is analogous to the proof of
Lemma 3.2.

LEMMA 4.1 Assume there exist r̃ ∈ [0, 1) and nonnegative numbers κ0, η, α
such that

κ0

(1 − r̃)
η ≤ r̃. (34)

Then the sequence (t̃n) defined by

t̃n+1 = t̃n +
κ0

(1 − r̃)
η(t̃n − t̃n−1) (35)

is increasing, bounded above by t̃∗∗ := η
1−r̃

, and converges to some t̃∗ such that

0 < t̃∗ ≤ η
1−r̃

. Moreover, for n ≥ 0;

0 ≤ t̃n+1 − t̃n ≤ r̃(t̃n − t̃n−1) ≤ r̃nη, (36)

and

t̃∗ − t̃n ≤ r̃n

1 − r̃
η. (37)

Let
R̃(x0) := F ′(x0) + I

and
G̃(x) := x− R̃(x0)

−1[F (x) − zδ
αk

+ (x− x0)]. (38)

Note that with the above notation, G̃(x̃δ
n) = x̃δ

n+1 and ‖R̃(x0)
−1‖ ≤ 1.
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THEOREM 4.2 Suppose Assumptions 2.1 and 2.2 hold. Let the assumptions
in Lemma 4.1 are satisfied with t̃∗ ≤ r̃. Then the sequence (x̃δ

n) defined in
(33) is well defined and x̃δ

n ∈ Bt̃∗(x0) for all n ≥ 0. Further (x̃δ
n) is Cauchy

sequence in Bt̃∗(x0) and hence converges to xδ
αk

∈ Bt̃∗(x0) ⊂ Bt̃∗∗(x0) and
F (xδ

αk
) + (xδ

αk
− x0) = zδ

αk
.

Moreover, the following estimates hold for all n ≥ 0,

‖x̃δ
n+1 − x̃δ

n‖ ≤ t̃n+1 − t̃n, (39)

and

‖x̃δ
n − xδ

αk
‖ ≤ t̃∗ − t̃n ≤ r̃nη

1 − r̃
. (40)

Proof.
Let G be as in (38). Then for u, v ∈ Bt̃∗(x0),

G̃(u) − G̃(v) = u− v − R̃(x0)
−1[F (u) − zδ

αk
+ (u− x0)]

+R̃(x0)
−1[F (v) − zδ

αk
+ (v − x0)]

= R̃(x0)
−1[R̃(x0)(u− v) − (F (u) − F (v))] + R̃(x0)

−1(v − u)

= R̃(x0)
−1[F ′(x0)(u− v) − (F (u) − F (v)) + (u− v)]

+R̃(x0)
−1(v − u)

= R̃(x0)
−1[F ′(x0)(u− v) − (F (u) − F (v))]

Thus by Assumption 2.2 we have

‖G̃(u) − G̃(v)‖ ≤ κ0t̃
∗‖u− v‖. (41)

The rest of the proof is analogous to the proof of Theorem 3.3.

REMARK 4.3 Now by taking u = xδ
αk

and v = x̃n−1 in (41), we obtain
linear convergence of x̃n−1 to xδ

αk
.

REMARK 4.4 For the remainder of the paper we shall consider only the
quadratically convergent sequence (xδ

n,αk
) defined in (20) for detailed analysis.

The results verbatim hold good in the case of linearly convergent sequence (x̃δ
n)

defined in (33).

5 Error Bounds Under Source Conditions

The main objective of this section is to obtain an error estimate for ‖xδ
n,αk

− x̂‖
under the assumption

‖x0 − x̂‖ ≤ c
1

μk
(42)
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for some constant c and source condition (11) on F (x̂). Note that F (xδ
αk

) +
(xδ

αk
− x0) = zδ

αk
. So that F (xδ

αk
)−F (x̂) + (xδ

αk
− x0) = zδ

αk
−F (x̂). Therefore

by monotonicity of F, by taking inner product with xδ
αk

− x̂ we obtain the
following:

THEOREM 5.1 Under the assumption 2.2,

‖xδ
αk

− x̂‖ ≤ ‖F (x̂) − zδ
αk
‖ + ‖x0 − x̂‖.

Combining the estimates in Theorem 2.4 Theorem 3.3, Theorem 5.1, (42)
and the relation 1

μk = 1
μk−lμl = 1

μk−l
δ√
αl
. Now since

√
αδ ≤ √

αl+1 = μ
√
αl we

have 1
μk ≤ 1

μk−l−1
δ√
αδ

= 1
μk−l−1ψ

−1(δ), so we obtain the following

THEOREM 5.2 Let xδ
αk

be the unique solution of (19) and xδ
n,αk

be as in
(20). Let the assumptions in Theorem 2.4, Assumption 2.1, Assumption 2.2
and Assumption 2.3 be satisfied. Then we have

‖xδ
n,αk

− x̂‖ ≤ qnη

1 − q
+ ©(ψ−1(δ)). (43)

5.1 Stopping index

Let

nk = min{n : qn ≤ 1

μk
}. (44)

Then we have the following

THEOREM 5.3 Let xδ
αk

be the unique solution of (19) and xδ
n,αk

be as in
(20). Let the assumptions in Theorem 2.4, Assumption 2.1, Assumption 2.2
and Assumption 2.3 be satisfied. Let nk be as in (44). Then we have

‖xδ
nk,αk

− x̂‖ = ©(ψ−1(δ)). (45)

6 Implementation of adaptive choice rule

The main goal of this section is to provide a starting point for the iteration
approximating the unique solution xδ

α of (19)and then to provide an algorithm
for the determination of a parameter fulfilling the balancing principle (18).
Hereafter we assume without loss of generality that k0 ≤ 1

4η
(if not replace F

by cF where c ≤ 1
4k0η

).

For i, j ∈ {0, 1, 2, · · · , N}, we have

zδ
αi
− zδ

αj
= (αj − αi)(K

∗K + αiI)
−1(K∗K + αjI)

−1K∗yδ.

The implementation of our method involves the following steps:
Step I



1684 S. George and M. Kunhanandan

• i=1

• Solve for wi : (K∗K + αiI)wi = K∗yδ

• Solve for zi,j : (K∗K + αiI)
−1zi,j = (αj − αi)wi, j ≤ i

• If ‖zi,j‖ > 4
μj , then take k = i− 1.

• Otherwise, repeat with i+ 1 in place of i.

Step II

• choose x0 ∈ D(F ) such that ‖x0 − x̂‖ < c
μk for some constant c.

• Choose η > 0 such that ‖F (x0) − zδ
αk
‖ ≤ η.

• Choose q ≤ 1−
√

1−4k0η

2

Step III

• n = 1

• If qn ≤ 1
μk , then take nk := n

• Otherwise , repeat with n+ 1 in place of n

Step IV

• Solve xδ
j,αk

: (F ′(xδ
j−1,αk

)+I)(xδ
j,αk

−xδ
j−1,αk

) = F (xδ
j−1,αk

)−wk+xδ
j−1,αk

−
x0 for j = 1, 2, · · · , nk.
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