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Signatures of the superfluid—to—Mott-insulator transition in cold bosonic atoms
in a one-dimensional optical lattice
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We study the Bose-Hubbard model using the finite size density matrix renormalization group method. We
obtain a complete phase diagram for a system in the presence of a harmonic trap and compare it with that of
the homogeneous system. The superfluid to the Mott-insulator phase transition is investigated using different
experimental signatures of these phases in quantities such as momentum distribution, visibility, condensate
fraction, and the total number of bosons at a particular density. The relationships between the various experi-

mental signatures and the phase diagram are highlighted.
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I. INTRODUCTION

In recent years many theoretical and experimental inves-
tigations have been carried out in the field of ultracold atoms
in optical lattices [1-3]. The interest in bosonic systems be-
gan with the seminal paper by Fisher er al. [4], where a phase
transition from a superfluid (SF) to a Mott insulator (MI) in
a lattice of bosons was predicted when the on-site Coulomb
repulsion between the atoms dominates the nearest neighbor
hopping amplitude. Since then, a variety of theoretical ap-
proaches [5—-15] have been used to study the Bose-Hubbard
model (BHM) [4]. There is good agreement between the
phase diagrams obtained from the different techniques.
While the BHM was originally developed in the context of
*He [4], its potential to describe ultracold bosons trapped in
an optical lattice was soon realized by Jaksch et al. [16]. This
paper has had a great impact on the condensed matter com-
munity because high-precision experiments on cold atoms in
traps can now be used as a powerful and reliable tool to
study a variety of quantum phase transitions [1-3]. The ex-
perimental realization of the quantum phase transition from
the superfluid to the Mott insulator in three dimensions [17],
two dimensions [18], as well as in one dimension [19] soon
followed. The bosons in an optical lattice are well described
by the Bose-Hubbard model modified to include a trap po-
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tential [16], which is normally harmonic. In the presence of a
trap, the density profile exhibits a rich structure as the SF and
the MI phases coexist. A variety of numerical methods have
been applied to understand the model [20-26]. The most
important aspect that has emerged is the lack of a global
phase in these systems. As an analogy, in three dimensions
the superfluid and the Mott-insulator phases coexist as shells
in an onion. The unprecedented control over the system pa-
rameters by tuning the laser intensity has paved the path for
the experimental realization of these predictions [27,28].

In this paper, we revisit the one-dimensional Bose-
Hubbard model using the density matrix renormalization
group method. Our main motivation is to obtain the phase
diagram, given the experimental realization of the shell
structure and their signatures. The Bose-Hubbard model, de-
scribing bosons in an optical lattice, is given by

H=-1t>, (aj'aj+ Hc)+ l—jz nin;— 1)+ V>, rin;, (1)
(i) 25 i

where ¢ is the hopping amplitude, U is the on-site repulsion
between the atoms, V; is the depth of the external trapping
potential, af (a;) is the bosonic creation (annihilation) opera-
tor, nizajai is the number operator, and 7; is the position of
the ith lattice site from the trap center. For simplicity, the
energy is scaled in units of the hopping amplitude, which is
set to one. As a result the Hamiltonian and the related ob-
servables are dimensionless.

In experiments, the optical lattice potential (V. ), formed
by the superposition of three counterpropagating laser beams
[2,29], can be written as
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A; is the laser wavelength. Increasing the intensity of the
beam in two directions restricts the hopping to one dimen-
sion and this results in a one-dimensional lattice. The on-site
interaction U and the hopping amplitude ¢ are related to V,
and Ej as follows:

U
" x exp(2Vy/Eg)"?. (3)

Therefore, by varying the lattice depth the ratio of U/t can
be tuned.

Earlier studies of the homogeneous system show that
when the on-site interaction strength U is small compared to
the hopping amplitude ¢, the system remains in the SF phase
characterized by long range coherence. When U increases
and becomes much larger than ¢, a transition from the SF to
the MI phase occurs at some critical value of U=U.~ 3.4 (in
units of 7) [8—10]. This transition belongs to the Kosterlitz-
Thouless universality class [30,31]. The SF-MI transition
gets more interesting in the presence of a trap [32-35]. In
this case, the entire system remains in the SF phase for small
U values, but as U increases, a MI phase develops around a
central SF phase, followed by a SF shoulder. A further in-
crease in U ultimately results in a MI phase throughout the
lattice with the exception of the trap edges, which we refer to
as a central MI phase. This alternating occurrence of the SF
and the MI phases can be observed in the number density
profile. The system exhibits a plateau at integer densities
(MI phase) surrounded by a region of noninteger densities
(SF phase) [20-26,32-35] and this has been recently ob-
served in experiments [27,28] in three-dimensional (3D) op-
tical lattices.

In this paper, we first obtain the phase diagram of the
model, given by Eq. (1), in the homogeneous (V,=0) limit.
We then extend our analysis to the inhomogeneous case and
compare it with the homogeneous case. Finally, we obtain
experimentally measurable quantities such as condensate
fraction, visibility, and density profile and deduce the inho-
mogeneous phase diagram. We also discuss how the shell
structure in the optical lattice can be observed from conden-
sate fraction and visibility.

This paper is structured as follows: Sec. II contains a brief
discussion on the finite size density matrix renormalization
group (FS-DMRG) technique. Section III discusses the phase
diagram obtained from the number density profile, while
Sec. IV analyzes the experimental signature for the phase
transition and we summarize our results in Sec. V.

II. METHOD OF CALCULATION

We have employed the FS-DMRG method [36,37] with
an open-boundary condition to determine the ground state
energy and the wave function of the system. This method is
one of the most powerful techniques in one dimension and
has been widely used to study the Bose-Hubbard model
[8-10,33,34]. We have considered a soft-core case by retain-
ing four bosonic states per site and the weight of the states
neglected in the density matrix formed from the left or right
blocks is less than 107°. For better convergence of the
ground state energies of various phases, we have performed a
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finite size sweeping procedure [9,36], twice in each iteration
of the FS-DMRG method.

Our FS-DMRG method consists of two steps: (i) a
DMRG iteration where the length of the system L is in-
creased to L+2 and (ii) finite size sweeping to achieve better
convergence of the ground state energy E;(N) [9,36]. We
consider a system with an initial length L=4 and the number
of bosons N=4. The FS-DMRG procedure is then employed,
keeping the density of bosons fixed at p=1, until we have a
desired number of bosons in the system, say N=30. Then
onward, in the FS-DMRG iteration, only the length of the
system is increased keeping N fixed, until the system grows
to a desired size, for example, L=100. At this point we have
a system of length L=100 with N=30 bosons. Now keeping
the length fixed, we increase N in steps of 1 at the end of
each FS-DMRG sweep. In our example, N is varied from 30
to 150. Thus at the end of the FS-DMRG calculation, for a
given set of parameter values, we have ground state energies
E;(N) and wave functions |¢;,) for a system of length L
=100 with N varying from 30 to 150. From E;(N), we obtain
the chemical potential u of the system

OE,(N)
h=——.

pY (4)

The on-site local number density (n;) is defined as

() = Wlnil ) - (5)

The compressibility « for a homogeneous system can be de-
fined as

=2, ©
op

where n=N/L. The number density is uniform throughout
the system except at the edges due to boundary effects. How-
ever, for finite V, the lattice is inhomogeneous and as a result
the local density (n;) attains its maximum value at the center
of the trap where the potential is minimum and decreases as
we move away from the center, eventually going to zero. For
this case, the local compressibility is relevant and can be
defined as

_ o

Ki= S (7)

In most of our calculations, we have taken V,=0.004 and
0.008, length L up to 200, with N ranging between 30 and
150 and U between 2 and 20.

III. RESULTS AND DISCUSSIONS
A. Homogeneous case

We begin our discussions with the homogeneous case.
The density of the system (n) as a function of the chemical
potential p for three values of U=3, 4, and 7 are shown in
the top panels of Fig. 1. The formation of a plateau in the (n)
versus u plots, for U=4 and 7 at {(n)=1, in contrast to U
=3, signals the onset of the p=1 MI phase, where p denotes
the density per site. The lower panels in Fig. 1 show the
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FIG. 1. (Color online) Variation of the compressibility x (lower
panels) and the density (n) (upper panels) as a function of w for the
homogeneous case (V,=0). The plateau region at (n)=1 and k=0
signals the incompressible (p=1) MI phase.

compressibility « [calculated using Eq. (6)] as a function of
. It is clear that the MI phase is incompressible, i.e., k=0.
The cusp in k as {n) approaches 1, shown in Fig. 1, is due to
quantum criticality. The phase diagram for the homogeneous
system is obtained by picking out the values of u at the
knees where (n)=1 and =0 and plotting them in the u-U
plane. This is shown in Fig. 2 and is in agreement with
earlier results [8-10,13]. The cusp in the compressibility re-
flects the Kosterlitz-Thouless-type behavior of the SF-MI
transition.

B. Inhomogeneous case

We now analyze the case when there is a finite trapping
potential V, in the Bose-Hubbard Hamiltonian. Taking the
depth of the trap V;=0.004, the number of bosons N=100,
and the length L=200, we obtain the local density profile (n;)
as a function of the distance from the center of the trap r;, as
shown in Fig. 3. In contrast to the homogeneous case, (n;) is
not uniform when the trap is finite. It decreases monotoni-
cally as we move from the center of the trap toward the
edges. For larger values of U (U>6) the density profile de-
velops a well defined plateau at {(n;)=1 and the length of the
plateau grows as U is increased further. A simple way to
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FIG. 2. (Color online) Phase diagram for the homogeneous
Bose-Hubbard model. The MI phase has density p=1.
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FIG. 3. (Color online) Density profile as a function of r; for
Vi=0.004 and N=100 for a range of U. Note that as the on-site
repulsion increases, a MI phase forms around the central SF phase,
finally leading to a central MI phase for higher values of U.

understand the behavior of (n;) is through the local density
approximation (LDA) [23,35] where the local density at site
i in the trapped case is given by the density of a homoge-
neous system with a chemical potential

pi=p— Vs (8)

Here u refers to the chemical potential at the center of the
lattice where the trap potential is zero. Using Eq. (8) we can
rescale the x axis of Fig. 3, so that we get the local density as
a function of the local chemical potential, as shown in Fig. 4
for U=3 and 9, where the homogeneous case is also docu-
mented for comparison. Here we use a trap of depth V,
=0.004 with length L=200 and a trap of depth V,=0.008
with length L=100. The number of bosons in the system are
N=100 and 70 for V,=0.004 and 0.008, respectively. The
density profile as a function of the distance from the center
of the lattice is shown in the inset. The local density as a
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FIG. 4. (Color online) Density as a function of chemical poten-
tial for the homogeneous and inhomogeneous cases. The solid line
represents the homogeneous system; the dashed lines and dashed-
dotted lines represent the inhomogeneous case (V,=0.004, N=100
and V,=0.008, N=70, respectively). The inset shows the density
profile as a function of the distance from the center of the trap. The
homogeneous case has sharp transitions compared to the finite trap
case.

013625-3



RAMANAN et al.

AN
}

AN

I iy
r \ A SR
L4 1

PR O I i B | |
4-3-2-1012-4-20
W ¥ i

0

FIG. 5. (Color online) Local density and local compressibility as
a function of the local chemical potential for V,=0.004, L=200, and
N=100.

function of the local chemical potential exhibits trends simi-
lar to the homogeneous system; that is, the value of (n;)
increases smoothly as w; increases for lower values of U,
where the entire system is in the compressible superfluid
phase. However, as U increases further, a clear plateau
emerges at (n;)=1 indicating the onset of the p=1 MI phase.

The local compressibility can be obtained from the local
density using Eq. (7). Figure 5 shows the local density and
the local compressibility in the upper and the lower panels,
respectively. The plateau region at {(n;)=1 (upper panels) has
the corresponding local compressibility equal to zero. This
verifies that the plateau present in the number density profile
represents the MI phase. Furthermore, this confirms the co-
existence of the SF and the MI phases in the presence of a
trap. Though there is an overall agreement between the ho-
mogeneous and the inhomogeneous cases, we note that there
are slight discrepancies. The sharp SF-MI transition observed
in the homogeneous system is smoothened out in the pres-
ence of a trap. The cusplike behavior observed in « for the
homogeneous case is also lost. The agreement between the
homogeneous and the inhomogeneous cases prompted us to
obtain the phase diagram for the inhomogeneous system, by
analogously picking out the values of wu at the knees where
(n;)=1, and plotting them in the w-U plane. The resultant
phase diagram is compared with the homogeneous result in
Fig. 6. It is interesting to note that the MI lobe for the inho-
mogeneous system lies within that of the homogeneous sys-
tem. However, the MI lobe retains its cusplike shape. Thus
the SF-MI transition for density p=1 and V,>0 does have
the Kosterlitz-Thouless universality class behavior.

IV. EXPERIMENTAL SIGNATURES

In the earlier section we have established that the ground
state phases for the Bose-Hubbard Hamiltonian given by Eq.
(1) are either the superfluid or the Mott insulator depending
on the ratio of U/t and the local chemical potential w;. Since
M; 1s uniform for the homogeneous system, the ground state
is global in nature. However, for inhomogeneous systems, u;
being nonuniform, both the SF and the MI phases coexist, as
already discussed. It would be worthwhile to explore the
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FIG. 6. (Color online) Homogeneous and inhomogeneous phase
diagram. The error bars are obtained by varying the tolerance used
to pick out the p=1 Mott plateau by 10%.

signatures of these coexisting phases in experimentally de-
termined quantities.

It is now possible in experiments to record the spatial
distribution of the lattice with different filling factors using
spatially selective microwave transitions and spin-changing
collisions as shown by Folling et al. [27]. Similar experi-
ments in one-dimensional optical lattices can yield density
profiles from which the phase diagram can be obtained, as
discussed in the previous section. Another way to obtain di-
rect information about the Mott plateaus (shells in 3D) is
through the atomic clock shift experiment [28]. By using
density dependent transition frequency shifts, sites with dif-
ferent occupations can be spectroscopically distinguished,
thus giving us the information about the number of sites with
a given density p, defined as N(p). In Fig. 7 we plot N(p)
versus p for several values of U for a system with V;
=0.004 and N=100. The peak in N(p) at p=1 for U>6.0 is
a direct signature of a well developed Mott insulator plateau
in the inhomogeneous system. The size of this peak increases
with U and is consistent with the increase in the length of the
MI plateau as shown in the phase diagram (see Fig. 6). From
N(p) we obtain the following quantities: Nyg/ N, the fraction
of the number of bosons in the Mott plateau and Ngg/N, the

2 T

N(p)
T

| . | . | . | . |
0 0.6 0.8 1 1.2 14

FIG. 7. (Color online) N(p) versus p for V;=0.004 and N=100.
A small offset is added to the Y axis for clarity. The peak in N(p) at
p=1 signals the MI plateau in density profile (Fig. 3) and thus
confirms the coexistence of SF and MI phases.
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FIG. 8. (Color online) Nyy/N and Ngg/N as a function of U for
V¢=0.004 and N=100. The critical on-site interaction U-~ 6.0 for
the SF-MI transition for p=1 can be easily read off.

fraction of bosons in the SF region. Here Ny, and Ngg are the
number of bosons in the MI and the SF phases, respectively.
Figure 8 shows both Ny;/N and Ngg/N for several values of
U keeping V,;=0.004. For U< 6.0, we observe that Ngg/N is
close to one, while Ny;/N is close to zero. This is because
the entire system is in the SF phase. However, for U>6.0,
the increase in Ny /N signals the formation of a MI plateau
in the system. The critical value of U, marking the transition
to the MI phase (p=1), can be read off from Fig. 8 and is
given by U-~6. The small plateaus seen in Nyy/N and
Ngp/N are indicative of the detailed distribution of the
bosons as U increases in the presence of a trap. For U=13,
our inhomogeneous system has a central MI phase and the
SF exist only at the edges. This is reflected in Fig. 8§ where
we see both Ny;/N and Ngp/N remain constant.

In other experiments, the cold atom gas trapped in an
optical lattice is allowed to expand and the interference pat-
tern in the density of the expanding gas is recorded. The
density distribution is mirrored in the momentum distribution
defined as

L
wa)=1 S Galapexplialk -], ©)
k=1

where k,[ are the lattice sites. Figure 9 shows the momentum
distribution for different U values. The superfluid phase that
has long-range coherence exhibits sharp interference peaks,
while the Mott-insulator phase, where the local density is
pinned to integer values per site, breaks this coherence and
hence no sharp peaks are observed [17]. Although the pres-
ence of the interference peaks in the density distribution (or
analogously momentum distribution) was originally used to
signal the formation of a SF phase, recently it has been es-
tablished that the visibility of the interference fringes
[29,38-40] provides a clear signature of the transition. The
fringe visibility is defined as

V_Nmax_Nmin (]0)

N, max T N, min
where N, and N, are the maximum and the minimum of
the momentum distribution measured at g=*27 and ¢

PHYSICAL REVIEW A 79, 013625 (2009)

20— A RE— I
r,u=20 i U=6.0
15- + .
Sl 1 J
=2 107
57 4 -
07 JL ..... [T S el
67 4 -
| lUu=80 ; L u=100 ]
o I R Bt :
= P {: :| 4 % i ||| J
20 ' P i i
;’,\‘r—ﬂ—- \‘————\-"\—i"".\‘r ————— "\\ ''''''' n
-5 0 5 -5 0 5
q q

FIG. 9. (Color online) Momentum distribution as a function of ¢
in units of the lattice spacing for a trap of V,=0.004 and N=100.
Note that at smaller U values there are three prominent interference
peaks at g=0 and g= *=2a. As U increases, the peaks get smaller,
indicating a transition from SF to MIL.

= * 1, respectively, in one dimension. The condensate frac-
tion, that is, the number of bosons in the condensate with
respect to the total number of bosons, is defined as the largest
eigenvalue of the matrix (a]a ;) divided by the total number
of bosons [42]. The fringe visibility and the corresponding
condensate fraction for V,=0.004, N=100 and V,=0.008, N
=50 are given in Figs. 10 and 11, respectively.

For a system in uniform SF phase, the fringe visibility is
1 [39]. In the homogeneous case, when the system undergoes
a quantum phase transition from SF to MI, the visibility falls
monotonously [29,41]. In the presence of a trap, however,
the visibility as a function of U has a rich structure due to the
formation of alternating SF and MI shells [38]. From Figs.
10 and 11, we note the following for the trap case: (1) the
visibility remains finite even at high U values (i.e., deep
inside the MI lobes) compared to the homogeneous case, (2)
kinks develop over a certain range of U, and (3) the visibility
drops drastically for particular values of U and for a further
increase in U, the variation is slow. Similar behavior is also
noted in the condensate fraction.

For a given value of U and number of bosons N, the
homogeneous system is represented by a point (u,U) in the
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FIG. 10. (Color online) Condensate fraction (left) and visibility
(right) as a function of U for a trap of depth V,=0.004 and N
=100. The inset zooms in on the kinks observed in the visibility
corresponding to the formation of Mott shoulders.
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FIG. 11. (Color online) Condensate fraction (left) and visibility
(right) as a function of U for a trap of depth V;=0.008 and N=50.

phase diagram given in Fig. 6. However, for an inhomoge-
neous system the chemical potential varies across the lattice
and is represented by a vertical line (see Fig. 12), originating
at uo for a given U in the (w-U) plane, where u, is the
chemical potential at the center of the trap. The values of
as a function of U are shown in Fig. 12. The behavior of the
condensate fraction and the visibility (shown in Figs. 10 and
11) are then easily understood by tracing the u, trajectory as
a function of U. For U< 6.0, a vertical line starting at ),
representing possible values of the local chemical potential
for a given U, does not intersect the MI lobe and no Mott
plateau forms in the density profile. As U increases, the sys-
tem begins to favor the MI phase, and as a result the con-
densate fraction and the visibility decreases monotonically.
However, for U>6.0, the vertical line intersects the Mott
lobe, resulting in a well-developed Mott plateau in the den-
sity profile. All the kinks in the condensate fraction and the
visibility are observed for U> 6.0, indicating the formation
and broadening of the Mott plateau in the system, as the
bosons redistribute themselves between the two phases
across the lattice. Finally, for larger values of U, the u, tra-
jectory enters the Mott lobe and the central SF region van-
ishes completely. The entire system is in the Mott phase

FIG. 12. (Color online) Variation of u, the local chemical po-
tential at the center of the trap, as a function of U. Here we use two
sets of parameters: V;=0.004, N=100 and V,=0.008, N=50. For a
given value of U, the inhomogeneous system can be represented by
a vertical line originating at .
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FIG. 13. (Color online) Condensate fraction (left) and visibility
(right) as a function of N, the total number of bosons in a trap of
depth V,=0.008 and U=10. Both the condensate fraction and vis-
ibility show local minima for particular ranges of N, indicating the
formation of MI phases. The subsequent increase in these quantities
indicates the formation of SF phases.

except for the edges. As a result, the condensate fraction and
the visibility drops drastically. Further increase in U results
in smooth variations of both these quantities as the SF phases
exist only at the edges and the number of bosons in the SF
phases do not vary much as shown in Fig. 8.

In the experiments, the chemical potential is usually
changed by changing the number of bosons N. We plot, in
Fig. 13, the variation of the condensate fraction and the vis-
ibility as a function of N, for V;=0.008 and U=10. We see
that when the MI plateau forms, both the visibility and con-
densate fractions dip. The first of these correspond to the
formation of a p=1 Mott plateau and occurs around N ~40.
This can be observed in the density profile (see Fig. 14). The
plateau in Fig. 13, in the condensate fraction, indicates the
range of N for which the center of the system has the p=1
MI phase for the given U value. We note that beyond N
~56, a 1 =p=<2 SF forms, marked by an increase in the
visibility and the condensate fraction. The second minimum
occurs around N~ 140 and signals the formation of the sec-
ond Mott plateau (p=2), as shown in Fig. 14. A further in-
crease in N, beyond N~ 150, results in another SF phase,

3 T T
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2.5+ -
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V . -
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0.5+ ol _
g ! NG ]

0 40

-20 0 20 40
T

FIG. 14. (Color online) Density profile for a different total num-
ber of bosons N. Note that the minima in visibility and condensate
fraction in Fig. 13 correspond to the formation of MI plateaus.
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with the on-site density ranging between 2 < p=<23. There-
fore, for a fixed value of U, the minima in the condensate
fraction and the visibility as a function of N are good indi-
cators for the formation of Mott plateaus.

V. CONCLUSION

This paper demonstrates a way of extracting the phase
diagram for the Bose-Hubbard model in the presence of a
trap from the number density profile. Signatures of these
phases in experimentally observed quantities such as visibil-
ity, condensate fraction, and N(p) have been documented.
We have also obtained the density profile as a function of the
chemical potential for the homogeneous case, using
FS-DMRG.

Future directions are immense. As a first step, the ex-
tended Bose-Hubbard model can be investigated and the
phase diagram, together with the experimental signatures for
the various phases, can be extracted in an analogous way,

PHYSICAL REVIEW A 79, 013625 (2009)

which is in progress. The influence of a three-body term for
the Bose-Hubbard and the extended Bose-Hubbard can be
investigated, which is also in progress.

The presence of a trap makes the system interesting due to
the simultaneous existence of different phases (such as the
SF and MI phase in this work) and gets the theoretical pre-
dictions closer to experiments. It would also be interesting to
study the Bose-Hubbard model for two boson species and
Bose-Fermi mixtures in the presence of a trap. This paper
serves more as a benchmark to extract the phase diagram in
a straightforward and transparent way from the density pro-
file. This technique can now be extended to other problems.
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