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Multivariate system spectroscopic model plays important role in understanding chemometrics of
ensemble under study. Here in this manuscript we discuss various approaches of modeling of
spectroscopic system and demonstrate how Lorentz oscillator can be used to model any general
spectroscopic system. Chemometric studies require customized templates design for the
corresponding variants participating in ensemble, which generates the characteristic matrix of the
ensemble under study. The typical biological system that resembles human blood tissue consisting
of five major constituents i.e., alanine, urea, lactate, glucose, ascorbate; has been tested on the
model. The model was validated using three approaches, namely, root mean square error �RMSE�
analysis in the range of �5% confidence interval, clerk gird error plot, and RMSE versus percent
noise level study. Also the model was tested across various template sizes �consisting of samples
ranging from 10 up to 1000� to ascertain the validity of partial least squares regression. The model
has potential in understanding the chemometrics of proteomics pathways. © 2010 American
Institute of Physics. �doi:10.1063/1.3499359�

Most of spectroscopic methods are differentiated as ei-
ther atomic �or molecular� based on whether or not they ap-
ply to atoms �or molecules�. Along with that distinction, they
can be classified on the nature of their interaction. Absorp-
tion spectroscopy is well expressed by Lambert–Bouguer
law I= I010−�cl where � is molar absorption coefficient, c a
concentration, and l the thickness of sample. Another attrac-
tive technique is the reflectance measurement where the re-
flectivity of an absorbing media in air is given by R= �n
−1�2+k2 / �n+1�2+k2 where k is extinction coefficient of the
sample and n is its refractive index. However, the mirror type
reflection is difficult for detection and is generally not used
in sensor-based instrumentation; hence most often diffuse re-
flectance is used in sensor-based instrumentation.1 The prob-
ing light is diffusely reflected and passed through the sensi-
tive analytes material. Hence the reflected light decreases
with the increase in the absorption coefficient. One widely
used model for diffuse light spectroscopy is that of
Kubelka–Munk2 and is expressed as F�R�= ��1−R�2 /2R�
=K /S where R is reflected light, S is the scattering coeffi-
cient, and K is the absorption coefficient.

Most of the spectroscopic techniques work with some
type of indicator X, which is changing following interaction
with the analyte A as �X�+ �A�↔ �X−A� which can be solved
as �A�� �X� / �X−A�. There are not many ratiometric indica-
tors. However, any intensity measurements can be converted
to ratiometric measurements if mixtures of two luminophores
are used. Most of these models are valid under certain lim-
ited conditions,3 as light entering the medium must be mono-
chromatic and perfectly collimated, and the medium itself
must be purely and uniformly absorbing. Therefore, certain
errors will arise when applying the law to practical spectro-

scopic measurements �for example, even lasers are not per-
fectly monochromatic�.

Understanding optical imaging of biological tissue is a
real challenge due to the predominance of light scattering as
incident photons propagate into the tissue.4 There are many
constituents in biological tissues which absorb light radia-
tion, collectively known as tissue chromophores, each of
which has its own unique spectrum. As expressed in Eq. �1�
the total extinction coefficient k of a mixture of compounds
is equal to the sum of their individual extinction coefficients,
weighted by their relative concentrations. Hence one can ap-
proximate a biological tissue as a homogeneous mixture of
compounds; the overall light absorption in tissue at a given
wavelength depends upon the type and concentration of
chromophores present thereby giving rise to multivariate
system.5 Thus in a ensemble containing a mixture of n ab-
sorbing constituents, the total absorption is the sum of the
individual extinction coefficients multiplied by the distance l
as given in Eq. �1�.

�cl = kl = ��1c1 + �2c2 + �3c3 + . . . . . . . . + �ncn�l . �1�
System identification is defined as problem of identify-

ing nonlinear model structure which involves diverse char-
acteristics as linearity, degree of nonlinearity, model struc-
ture, performance, and model validation, which has to be
considered. Measures of long-term prediction error, for ex-
ample, have been used in combination with genetic algo-
rithms for on-line parameter identification,6–9 as an alterna-
tive to recursive least-squares methods. More recently,
Koza10 have used a tree-structure representation, which is
based on an input-output model, to represent these systems.
Also a nonlinear difference equation model known as non-
linear autoregressive moving average with exogenous input
�NARMAX� model was introduced by Billings and Chen.11

Wide class of nonlinear systems has been represented using
NARMAX which is given in Eq. �2�.
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y�t� = F�y�t − 1�, . . . . . ,y�t − ny�,u�t − 1�, . . . . . ,u�t

− nu�,e�t − 1�, . . . . . ,e�t − ne�� + e�t� , �2�

where u�t�, y�t�, and e�t� represent input, output, and noise at
time t, respectively. In practice, the nonlinear function F of
Eq. �2� can be approximated,12 for example, by a polynomial
expansion of a given degree. Doing so, one obtains the rep-
resentation as given in Eq. �3�, where n=ny +nu+ne, all b
represent scalar coefficients, and all x�t� represent lagged
terms in u, y, or e.

y�t� = b0 + �
i1=1

i=n

bi1
xi1

�t� + �
i1=1

n

�
i2=i1

n

bi1i2
xi1

�t�xi2
�t� + . . . . . .

+ �
i=1

n

¯ �
il=il−1

n

bi1. . ...il
xi1

�t� . . . xi1
�t� + e�t� . �3�

Since significance of the higher order terms is negligible,
Eq. �3� can be simplified as Eq. �4�. Equation �4� clearly
belongs to linear regression model.

y�t� = �
i=1

M

bixi�t� + ��t�; t = 1, . . . . . . N , �4�

Modeling experiments are different in nature then optimizing
experiments, since quantitative parameters are required from
the experiments and also a good knowledge of the system.
Under such circumstances it might be correct to say that the
model is within 95% likelihood. In order to do this it is first
necessary to propose a model. For a three factor experiment
a quadratic model is given in Eq. �5�.

y = b0 + b1x1 + b2x2 + b3x3 + b1x1 + b11x1
2 + b22x2

2 + b33x3
2

+ b12x1x2 + b13x1x3 + b23x2x3. �5�

One sees three cross product terms in Eq. �5�, which corre-
sponds to interaction of variants. Further for five factors ex-
periment quadratic model has ten cross products interact
terms. The explosive growth of the number of possible mo-
nomial terms with the degree of nonlinearity and the order
�or maximum lag� assumed for the model implies that even
relatively small values of degree �say�3� and lag �say nu,
ny�5, and ne=0� would result in a model too complex to be
useful in practice �� 5+5+3

3
�=286 terms�. Normally regression

methods are used to determine the coefficient b from the
observed response y at different level of x. The form of
model is important and dictates the minimum number of ex-
periments required. If the model consists of too few terms,
then the experiments might not properly describe the system.
If the model consists of too many terms, many more experi-
ments than necessary would be performed. The situation can
be ameliorated if the total set contains a wide range of terms
but, it has been found that, if the number of terms is in-
creased, the identification process can become unnecessarily
time consuming. The genetic programming approach is ap-
plied to the identification of nonlinear system polynomial
model and provides a trade-off between the complexity and
the performance of the models. Even though the genetic pro-
gramming approach is also restricted by the number of nodes
permissible in a tree, the search space is still extremely large
and its variable size and dynamic representation provides
diversification in the population.8 Hence many times the sys-
tem is described by using Gaussian and Lorentz oscillators.

Beyond modeling glasses and other disordered materials,
the Gaussian can be applied to many different types of ma-
terials. The primary advantage of the Gaussian is that it rap-
idly approaches zero beyond En�Br. This extremely useful
characteristic makes the Gaussian an all-purpose oscillator
that can model materials which are transparent over a limited
portion of the measured spectral range. This behavior is quite
different from the Lorentz oscillator �LO�, where it decreases
slowly.13 The LO is a useful tool for modeling complex op-
tical properties.14 Using the quantum mechanical form of the
LO as expressed in Eq. �6�, and allowing for the construction
of models involving multiple oscillators, one can build mod-
els and determine complex optical properties. The spectra of

FIG. 1. �Color online� Spectra’s of various concentrations for variants �data
“1–10”�.

FIG. 2. �Color online� Template spectra for various strengths, central fre-
quencies, and width for ten oscillators.
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FIG. 3. Block diagram of the spectroscopic model.
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ten variant complex properties generated are shown in Fig. 1.

y = �n + i . k� = ��0 + �
j

Sj�j2

� j
2 − �2 − i��j�1/2

�6�

Where n is frequency of generated spectrum; i .k is imagi-
nary components of the frequency; Sj is strength of the os-
cillators; vj is central frequency; �j is width of oscillator all
in wavenumber �cm−1� unit, and �0 represents the electronic
contribution to the complex dielectric constant. Applying Eq.
�1� for these variants one can generate templates of samples
for range of concentrations as indicated in Fig. 2.

The four sets of templates �as shown in Fig. 2� generated
using spectroscopic model �as shown in Fig. 3�, for ten os-
cillators were studied. Here the concentrations of variants
were within the confidence interval, which are further multi-
plied with the strength of oscillators to give extinction coef-
ficients at particular wavelength of absorption. The templates
of spectra generated are solved through the SIMPLE algorithm
of partial least squares regression to obtain the features ma-
trix, which is characteristics matrix of the template under
study.

The root mean square error �RMSE� analysis was per-
formed for the five templates in and about �5% confidence
interval �CI� for 10–1000 samples template and the results
were satisfactory �i.e., within the one unit�. This model was
confirmed for template consisting of 13 experimental
samples.15 Human blood tissue was selected because the ch-
emometrics of this tissue is very important in design of com-
plex application such as noninvasive glucometer.16–18 These
analyses were performed using PARLES �Ref. 19� software. In
RMSE analysis the glitch in the graph �Fig. 4� at the 2.5
�corresponding to “log 13” at natural base� is due to an ex-
perimental samples error.

Further the “RMSE” versus “percent noise level” study
for each variant over 5 and 300 template samples �Fig. 5�,
indicate that the RMSE is within 0.2 and increases further to
0.5 for noise level of 50% and above. It is found that the
model behavior was uncertain for noise level above 50%.
The four variants concentrations �c1, c2, c4, and c6 as indi-
cated in italics in Fig. 5� selected were higher in the magni-

tude �almost first and second orders� hence their RMSE val-
ues were dominating the curve as indicated in Fig. 5, this
indicates that model has capability in predicting overlapped
signatures across the order of magnitude.
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FIG. 5. �Color online� RMSE analysis for each variant over noise level of
0.1% to 100% for four samples template.
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