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Noninvasive glucometer model using partial least square regression
technique for human blood matrix
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In this article, we have highlighted the partial least square regression �PLSR� model to predict the
glucose level in human blood by considering only five variants. The PLSR model is experimentally
validated for the 13 templates samples. The root mean square error analysis of design model and
experimental sample is found to be satisfactory with the values of 3.459 and 5.543, respectively. In
PLSR templates design is a critical issue for the number of variants participating in the model.
Ensemble consisting of five major variants is simulated to replicate the signatures of these
constituents in the human blood, i.e., alanine, urea, lactate, glucose, and ascorbate. Multivariate
system using PLSR plays important role in understanding chemometrics of such ensemble. The
resultant spectra of all these constituents are generated to create templates for the PLSR model. This
model has potential scope in designing a near-infrared spectroscopy based noninvasive glucometer.
© 2010 American Institute of Physics. �doi:10.1063/1.3380850�

I. INTRODUCTION

In conventional methods of measuring blood glucose
concentration, biochemical reagents or enzyme are used to
react with blood or plasma to show concentration qualita-
tively or quantitatively. But these methods have disadvan-
tages such as the wastage of reagent, long measuring period,
painful, it might lead to infection and the possible pollution.

Although the noninvasive glucose measurement tech-
nique based on near-infrared �NIR� spectroscopy has been an
active research area for over twenty years, a reliable moni-
toring method has not been established yet.1 The key prob-
lem here is that the spectral variations due to glucose con-
centration are extremely small compared to that from other
biological components. In addition, there are also some time-
dependent physiological processes, which make the explana-
tion of the model more difficult, especially in the universal
calibration. In this paper, we have developed a partial least
square regression �PLSR� model to predict the glucose con-
tent in blood over a NIR range �2.0–2.5 �m�. NIR spectros-
copy offers several advantages over mid-infrared spectros-
copy in a noninvasive glucose monitoring system, e.g., less
background interference due to water absorption as shown in
Fig. 1, absorbance due to skin is negligible in that range and
penetration depths are greater at the shorter wavelengths,
which is necessary for monitoring blood glucose in capillar-
ies and glucose in interstitial fluid and tissue.

Here we have developed a baseline calibration model for
the NIR spectral data using PLSR regression technique.
PLSR technique which is generally used for analysis in
econometrics and social sciences has been found to be excel-
lent method for the determination of concentration of blood
analytes such as glucose, ascorbate, lactate, etc. The basic
problem is to fit a calibration model to empirical data and use
this model to predict certain quantities given a set of test data

as input to the calibration model after the training phase.
Applying these techniques to predict glucose concentrations
from NIR spectroscopic blood serum data, a set of calibra-
tion �training� data is formulated from the collected NIR
spectroscopic absorption data using the significant portion of
the spectra that contains absorption bands associated with
glucose.2 Another set of data is formulated as the reference
�target� data, which consists of reference glucose concentra-
tion values. In the PLS method, both the absorption data and
the concentration data are used at the outset to derive a cali-
bration model.3 An exhaustive explanation of PLSRwill not
be presented, however, an overview of the basic elements of
PLS. The details about PLS algorithm used is explained in
Sec. II.

II. PARTIAL REGRESSION ANALYSIS FOR
MULTIVARIATE SYSTEM

PLSR is an extension of the multiple linear regression
models. In its simplest form, a linear model specifies the
relationship between a dependent variable “Y�” and a set of
predictor variables, the “X�s,” so that

a�Electronic mail: jsparab@unigoa.ac.in. FIG. 1. �Color online� Water Absorbance in AU.
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Y = b0 + b1X1 + b2X2 + . . . . . . + bpXp. �1�

In Eq. �1�, “b0” is the intercept and the “bi” values are the
regression coefficients �for variants “X1” to “Xp”� computed
from the data sets with known constant concentrations. The
multiple linear regression model serves as the basis for a
number of multivariate methods such as discriminant analy-
sis �DA� �i.e., the prediction of group membership from the
levels of continuous predictor variables�, principal compo-
nents regression �PCR� �i.e., the prediction of responses on
the dependent variables from factors underlying the levels of
the predictor variables�, and canonical correlation �CC� �i.e.,
the prediction of factors contributing responses of the depen-
dent variables from factors underlying the levels of the pre-
dictor variables�. These multivariate methods have two im-
portant properties in common. These methods impose
restrictions such that �1� factors underlying the X and Y vari-
ables are extracted from the X�X and Y�Y matrices, respec-
tively, �where X� is a transpose of X and Y� is a transpose of
Y�, and never from cross-product matrices involving both the
X and Y variables and �2� the number of prediction functions
can never exceed the minimum of the number of X variables
and Y variables.4

PLSR extends multiple linear regressions without impos-
ing the restrictions imposes by DA, PCR, and CC. In PLSR,
prediction functions are represented by factors extracted
from the Y�XX�Y matrix.

PLSR has been used in various disciplines such as chem-
istry, economics, medicine, psychology, pharmaceutical, and
medical science where predictive linear modeling, especially
with a large number of predictors is necessary. PLSR has
become a standard tool for modeling linear relations between
multivariate measurements in chemometrics.5

A. Computational approach for basic PLSR model

As in multiple linear regression, the main purpose of
PLSR is to build a linear model, Y=XB+E, where Y is an
“n” cases by “m” variables response matrix, X is an “n”
cases by “p” variables

Y = XB + E, �2�

predictor matrix, B is a “p” by “m” regression coefficient
matrix and E is a noise term for the model which has the
same dimensions as that of Y. Usually, the variables in X and
Y are centered by subtracting their means and scaled by di-
viding by their standard deviations.6,7

Both PCR and PLSR produce factor scores as linear
combinations of the original predictor variables, so there is
no correlation between the factors score variables used in the
predictive regression model. Let us consider we have a data
set with response variables Y and a large number of predictor
variables X and some of which are highly correlated. A re-
gression using factor extraction method for this type of data,
generates the factor score matrix T=XW, where W is a
weight matrix with “p” by “c” weight.

T = XW. �3�

For regression technique it can be proved that B has the form
of

B = WQ, �4�

where Q is a matrix of regression coefficient for T of “n” by
“c.” Substituting Eqs. �3� and �4� in Eq. �2�, we get

Y = TQ + E. �5�

PCR and PLSR differ in the methods used in extracting fac-
tor scores. In short, PCR produces the weight matrix W re-
flecting the covariance structure between the predictor vari-
ables, whereas PLSR produces the weight matrix W,
reflecting the covariance structure between the predictor and
response variables.

One additional matrix which is necessary for a complete
description of PLSR procedures is the “p” by “c” factor
loading matrix P, which gives a factor model

X = TP + F, �6�

where F is the unexplained part of the X scores.
We can now describe the algorithms for computing

PLSR as given below. The PLSR algorithms we have used
for prediction are SIMPLE algorithm.

B. SIMPLE algorithm

The standard algorithms for computing PLSR compo-
nents �i.e., factors� is nonlinear iterative partial least-squares
and SIMPLE algorithm. We have used the SIMPLE algorithm
for the purpose of Multivariate analysis.

For each h=1, . . . ,c, where A0=X�Y, M0=X�X, C0=I,
and c given

�1� Compute qh, the dominant eigenvector of Ah�Ah.
�2� wh=Ahqh, ch=wh�Mhwh, wh=wh /sqrt�ch�, and store wh

into W as a column.
�3� ph=Mhwh and store ph into P as a column.
�4� qh=Ah�wh and store qh into Q as a column.
�5� vh=Chph and vh=vh / �vh�.
�6� Ch+1=Ch−vhvh� and Mh+1=Mh−phph�.
�7� Ah+1=ChAh.

Where Q� is transpose of Q. Hence using the B and Q
matrix obtained from above one can compute the Y or X
matrix to complete the model.

C. Generalized multivariate model of the system

We have generated required generalized response and
predictor matrix using Lorentz oscillator Eq. �7�, with re-
spective oscillator strength, width, and central frequency.

�n + ik� = ��� + �
j

Sj� j
2

� j
2 − �2 − i�� j

�1/2

, �7�

where “n” is response of spectrum for frequency “v,” “ik” is
imaginary components of the frequency response, “Sj” is a
strengths of the oscillators, “vj” is central frequency, “�j” is
width of oscillator all in wavenumber �cm−1� unit, and “��”
represents the electronic contribution to the complex dielec-
tric constant. From Eq. �7� one can collect only the real part
of the frequency components from RHS and generated spec-
tra over the region of interest. The flow chart of the same is
given in Fig. 2.
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III. MULTIVARIATE MODEL OF THE HUMAN WHOLE
BLOOD TISSUE FOR GLUCOSE

Methods of noninvasive optical diagnosis involves vari-
ous issues which is described above. The absorption spec-
trum depends on the type of predominant absorption center
and water content of tissue. Absolute value of absorption
coefficients for typical tissue lie in the range of 10−2 to
1014 cm−1.8–11 Glucose is one of the most important carbo-
hydrate nutrient sources and is fundamental to almost all
biological processes. Quantification of glucose concentration
is important in monitoring and analysis of control and regu-
lation of cell culture, and diagnosis and control of human

disease including diabetes. The NIR region of the optical
spectrum extend from 700–2500 nm which is used for quan-
titative measurement of organic functional groups, specially
CuH, OuH, NuH, and CvO. The absorption bands in
the NIR are composed primarily of overtones and combina-
tion bands of stretching and vibrational modes of organic
molecules. Major seven constituents interfering with glucose
in the region of 2000–2500 nm are serum alanine, serum
urea, bovine serum albumin �BSA�, high density lipoprotein
�HDL� lactate, glucose, ascorbate, and triacetin, interfere
with the whole blood glucose to generate a complex signa-
ture in the spectrum region.22 Also from the literature it is
found that tissue temperature and skin complexion due to
pigment variation over the globe population has influence on
the transmission characteristics. There are many other factor
influencing the signature of a spectrum but the analysis be-
comes complex as the physiology of the body is very sensi-
tive and dynamic over the catabolic processes involved. It
has been decided to model this complex ensemble over vari-
ous concentrations of five chemical constituents and two
physical components namely skin complexion and the body
temperature.12–21

The whole blood spectrum model for various concentra-
tions of the five variants has been generated. The model con-
sidered the following values of concentration for the human
blood chemometrics system well within the pathological
range. The concentrations of the five constituents were C1
=alanine �1–21 gm/dl�, C2=serum urea �7–18 g/dl�, C3
=HDL lactate �4.5–14.4 mgm/dl�, C4=glucose �70–110 mg/
dl�, C5=ascorbate �0.4–1.5 gm/dl�, and other two physical
parameters were C6=temperature �25–40 °C� and C7
=skin complexion �0.2–0.4�. Oscillator’s parameters as
shown in Table I were used to generate the signature of the
seven chromospheres as shown in Fig. 3.

The Lorentz model is so flexible that just by varying the

TABLE I. Various oscillators used in the Lorentz expression. �CF: Centre
frequency; OW Oscillator width; OS Oscillator strength.�

Variants Oscillator number 1 2 3 4 5

Alanine CF 2130 2242 2295 2320 2530
OW 150 25 30 30 50
SO 230 30 20 51 40

Urea CF 2080 2150 2200 2240 2550
OW 40 50 50 140 250
SO 1 3 10 16 12

HDL lactate CF 2050 2150 2198 2258 2350
OW 150 100 80 40 80
SO 1.5 10 10 10 12

Glucose CF 2100 2150 2250 2320 2480
OW 100 100 60 60 100
SO 1.4 0.6 0.5 0.5 0.6

Ascorbate CF 2125 2160 2280 2340 2490
OW 70 100 60 100 50
SO 48 90 30 40 40

TABLE II. RMSE analysis for glucose.

Sample RMSE +5% CI RMSE �5% CI RMSE

Theoretical �15 sample� 3.459 2.534 5.448
Experimental �13 sample� 5.543 3.981 9.120

FIG. 3. �Color online� Signature of five major components simulated using
Lorentz oscillators.

FIG. 2. Flow chart of the simulated spectra generated by Lorentz oscillator
model.
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strength, line width, and natural frequency any practical
spectrum can be generated with highly nonlinear behavior.
The unknown spectrum within the confidence interval of the
calibrated spectra can be generated adopting same principle
that of calibration spectral as shown in flow chart �Fig. 2�.
Model was validated with the PLSR software �PARLES

software�.23 A Root mean square error �RMSE� analysis was
performed over the prediction of the variants concentrations
as shown in Table II. The resultant spectra of all blood con-
stituents will have the form shown in Fig. 4. Samples tem-
plate where generated for different combinations of blood
constituents as shown in Fig. 5. We had taken five different
blood constituents like glucose, alanine, ascorbate, urea, and
lactate in different proportions and thirteen spectra’s in the
range 2.0–2.5 �m of were generated with the help of Schi-
matzu fourier transform infrared spectrophotometer �Fig. 6�.

IV. RESULTS AND DISCUSSIONS

Major challenges involved in calibrating the noninvasive
glucometer are weak signal in the transmission and reflec-
tance mode with the interferences from approximately 118
constituents from the blood, varied skin complexion over the

globe, temperature compensation, physiology dependent
calibration, dependence of wavelength, and width of the ab-
sorber on the local chemical environment surrounding the
bonds.

Most of the models of noninvasive glucose instrumenta-
tion have difficulty in satisfying the Clarke error grid24

shown in Fig. 7. This could be due to poor multivariate
model. The fine-tuning of the same multivariate model is
required by incorporating the various parameters influencing
glucose. With proper understanding of the dynamics of the
physiology of the human body and the catabolic processes
triggered by signal for the alternative path depending on the
situation therein the cell, a closer estimate of glucose is pos-
sible.

In general, there are three basic types of absorption pro-
cesses as follows: �1� electronic, �2� vibrational, and �3� ro-
tational. Electronic transition occurs in both atoms and mol-
ecules, whereas vibrational and rotational transitions occur
only in molecules. PLSR model is more difficult to build
because of variation in skin pigments, body temperature,
overlapping absorption spectra’s of other blood analytes, etc.
It may be noted that even a slight change in temperature, the

FIG. 4. �Color online� Resultant normalized signature of various compo-
nents simulated using Lorentz oscillator.

FIG. 5. �Color online� 1024 samples template for the PLSR model.

FIG. 6. �Color online� 13 solutions experimental template in nonhygro-
scopic mode for the PLSR model.

FIG. 7. Clarke error grid.
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absorption of the background water spectrum will shift, se-
verely impacting measurement of the glucose signal.25–29

The physiological ranges of glucose values seen in the
normal human body range is from 80–110 mg/dl and should
ideally remain around 100 mg/dl �5.5 mM�. Required accu-
racy of a useful glucometer is 10 mg/dl �0.55 mM�. For the
most identifiable NIR glucose peak at approximately
2.27 �m. Considering transmission measurement made
through 1 mm of body tissue. The background absorption
due to water will be about 1.6 and that due to glucose will be
about 1.26�10−4. Further for the accuracy requirement, we
must be able to discriminate an absorption change of about
1.26�10−4 on a background of 1.6. For this reason, high-
order multivariate models that incorporate analysis must use
entire spectra to extract NIR glucose information.30,31

Calibration of the multivariate model and validation of
the result by incorporating the samples obtained from differ-
ent patients population, i.e., different ages, sex type, ethnic
and racial origins, blood group, cultural variation, daily diet
habits, skin complexion corrections, etc. The model then
should be calibrated to individual user.

The above discussion opens the scope for extending the
low order multivariate model to high-order. The generalized
model using Lorentz oscillators can play major role in vali-
dating the model for the calibration purpose and satisfying
the Clarke error grid.

V. CONCLUSIONS

The designed glucometer chemometrics model has
around �5% error �refer Table II�, this error can be mini-
mized if the intraconstituents and interconstituents chemistry
is known by means of various pathways triggered by the
ambient conditions in the process of catabolism of glucose.

The RMSE analysis of design model and experimental
sample is found to be satisfactory with the values of 3.459
and 5.543, respectively, as shown in Fig. 8. This model has

potential scope in designing a NIR spectroscopy based non-
invasive glucometer. This model can be used to predict the
concentration of any blood constituents.
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