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Abstract 

The spatial and temporal distribution of absorption of chromophoric dissolved organic matter at 440 

nm (aCDOM (440)) in Mandovi and Zuari estuaries situated along the west coast of India, has been 

analyzed. The study was carried out using remotely sensed data, obtained from the Ocean Colour 

Monitor (OCM) on board the Indian Remote Sensing satellite – P4, together with in situ data during 

the period January to December 2005. Satellite retrieval of CDOM absorption was carried out by 

applying an algorithm developed for the site. A good correlation (R = 0.98) was obtained between 

satellite derived CDOM and in situ data.  Time series analysis revealed that spatial distribution of 

CDOM has a direct link with the seasonal hydrodynamics of the estuaries.  The effect of remnant 

fresh water on CDOM distribution could be analyzed by delineating a plume in the offshore region 

of Zuari estuary. Though fresh water flux from terrestrial input plays a major role in the distribution 

of CDOM through out Mandovi estuary, its role in Zuari estuary is significant up to the middle zone. 

Other processes responsible for feeding CDOM in both the estuaries are coastal advection, in situ 

production and resuspension of bottom settled sediments. The highest value of aCDOM (440) was 

observed in the middle zone of Mandovi estuary during post-monsoon season. The relation between 

aCDOM (440) and S (spectral slope coefficient of CDOM) could differentiate CDOM introduced in to 

estuaries through multiple sources. The algorithm developed for Mandovi estuary is S = 0.003 

[aCDOM (440)-0.7091] while for Zuari estuary, S = 0.0031[aCDOM (440)-0.777], respectively. 
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1. Introduction 

Chromophoric dissolved organic matter (CDOM), commonly referred to as yellow substance, 

is one of the optically active substances responsible for the absorption of light and thus affecting the 

bio-optical properties of the coastal and estuarine waters (Bricaud, 1981; Hojerslev and Åas, 2001; 

Menon et al., 2005., Foden et al., 2008). Having been introduced into the coastal environment 

through in situ production (decomposition of aquatic plants) and land drainage, CDOM significantly 

attenuates Photosynthetically Available Radiation (PAR) and thus affects the productivity of the area 

(Carder et al., 1989; Arenz et al., 1996; Vodacek et al., 1997; Magnuson et al., 2004; Odriozolaa et 

al., 2007).  The effect of CDOM concentration can prevail up to 650 nm of the optical spectrum of 

electromagnetic radiation, if it exists in high concentration (Menon et al., 2005). Interest in the study 

of CDOM in coastal and estuarine waters has increased substantially in the recent past due to  the 

role of CDOM as an indicator of the area which is a perennial source of CO2 (Muller-Karger et al., 

2005; Menon et al., 2006 b). In the present context, this point is valid as the waters of western Indian 

coast are identified as a region of hypoxia (Naqvi et al., 2000). Since the estuaries discharge to the 

western margin of the Indian subcontinent, it is pertinent to understand the spatial and temporal 

variation of CDOM in these estuaries. Data generated onboard trawlers in these estuaries were used 

for decades to characterize the phytoplankton and inorganic suspended matter dynamics (Singbal, 

1973; Devassy and Goes, 1989; Padmavati and Goswami, 1996; Krishnakumari et al., 2002). But 

these studies were often limited to specific season with limited spatial coverage. A solution to this 

under-sampling is optical remote sensing of the estuarine waters. Menon et al. (2006a) were 

successful in developing algorithms to retrieve estuarine colour components, such as chlorophyll_a, 

sediment, and CDOM, from Ocean Colour Monitor (OCM) data.  Though it is known that seasonal 

rainfall is the major contributor of CDOM to Mandovi and Zuari estuaries, as the dynamics of the 

estuarine waters differs from season to season, it is imperative to know the augmented effect of these 

dynamics on the CDOM distribution. Nevertheless, no rigorous efforts were made in this direction 

until now. The present study is carried out with the following objectives: 

1) to analyze the temporal and spatial variability of CDOM in Mandovi and Zuari estuaries based on 

satellite and in situ data over a year. 

2) to characterize CDOM optical properties in water end-members in the study area through relations 

between CDOM absorption at 440 nm (aCDOM (440)) and slope coefficient (S). 
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2. Data and methods 

2. 1. Study area. 

Mandovi and Zuari estuaries in the state of Goa are complex ecosystems joining the Arabian 

Sea at the central west coast of India (Fig. 1). Estuarine hydrodynamics along the Indian coast is 

controlled by both river runoff and tides during monsoon (June – September) season. After the 

withdrawal of monsoon, runoff decreases rapidly and by November it reaches negligible levels. 

Subsequently, the flow propagated  by the tide (semi-diurnal with a range 0.2 – 2 m), at the mouth, 

becomes the sole driving force of transport into the estuarine network. This initiates different 

hydrodynamic processes between dry (non-monsoon) and wet (monsoon) seasons, resulting in the 

formation of homogenous, salt-wedge and partially mixed estuaries during pre-monsoon (February – 

May), monsoon (June – September) and post-monsoon (October – January) seasons, respectively 

(Qasim, 2003). The cross-sectional area of both the estuaries decreases up-stream, classifying them 

under converging category.  This results in the influence of tides up to a distance of 50 km upstream 

(Shetye et al., 1995). As the catchment area of Mandovi estuary is 1150 km2, twice the area of Zuari 

estuary (550 km2), the annual average fresh water discharge in Mandovi is almost double that in 

Zuari. Though the estuaries are interconnected by Cumbarjua canal, its cross sectional area is too 

small to have any impact on the estuarine characteristics (Shetye et al., 1995). 

2.2. In situ observations 

 Observations were carried out on 22 hydrographic stations on 12th February, 18th March, 13th 

April and 11th May (pre-monsoon), 15th August and 17th September (monsoon), on 11th November 

and 9th December ( post-monsoon ) seasons during the year 2005 (Fig 1).  Two water samples of 5 

liters each were collected from the subsurface of each station along the axis of the estuaries.  Among 

these samples, one was used for the analysis of suspended matters such as chlorophyll_a and 

sediment and the other for CDOM.  Along with the collection of water samples, observations were 

also carried out using a secchi disk, Conductivity, Temperature and Depth (CTD) instrument, 

Microtops II sunphotometer, temperature and humidity meter at each station. The sampling details, 

selection of stations and the precautions taken in the field are discussed in Menon et al. (2005, 

2006a). 

2.3. Water sample analysis 

Coefficient of CDOM absorption was determined by analyzing the water samples as per the 

method used by Kowalczuk and Kaczmarek (1996). The samples were filtered through 0.2 µm 

Whatman cellulose membrane filters and the sample transparency was measured using Perkin Elmer 
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Lambda 35 UV/VIS spectrophotometer over the spectral range 400 to 700 nm with an interval of 1 

nm against distilled water as blank. Absorption coefficients were corrected for backscattering of 

small particles and colloids which pass through filters, as per Green and Blough (1994): 

acorr(λ) = a(λ) – a700 (λ/700)                                                                   (Eq. 1) 

where acorr (λ) is the corrected absorption at a given wavelength λ and a700 is the measured absorption 

at 700 nm. The reference wavelength used to calculate aCDOM (λ) was 440 nm: 

aCDOM (λ) =  aCDOM(440) exp (-S (λ - 440)) (m-1)                                          (Eq. 2)  

where S is the slope coefficient, calculated as the slope of the curve resulting by plotting logarithm of 

aCDOM (λ) against wavelengths in the range 400 – 550 nm. The magnitude of aCDOM (440) was used as 

a proxy to the concentration of CDOM. 

For estimating chlorophyll_a concentration, one sample from each station was filtered 

through glass fiber filter of 0.45μm pore size. The pigment was extracted using 90% acetone in dark 

at low temperature. The Optical Density (OD) was then measured through spectrophotometer, using 

a 1 cm cell, in the spectral range of 400 to 700 nm, with an interval of 1 nm, against the cell 

containing 90% acetone as blank. The chlorophyll_a concentration was then calculated using 

trichometric equations as per Strickland and Parsons (1972). 

Suspended sediment concentration was calculated using the method suggested by Strickland and 

Parsons (1972). Samples for estimating suspended sediments were filtered in the laboratory through 

pre-weighed 0.45μm Whatman membrane filter. The filters were dried in hot air oven at 700 C for 6 

hours and weighed again. Subsequently the concentrations were estimated. 

2.4. Zonation of the estuaries 

Spatial variability of salinity in the estuaries is the rationale behind the zonation.  A haline front 

formed due to the convergence of sea water and river water is a permanent feature in the estuarine 

hydrodynamics. Hence, the characteristics and source of CDOM on the seaward side and riverward 

side of the front are different. Since the fronts migrate forward and backward directions during 

monsoon and non-monsoon seasons, an average position of the frontal zone is considered as the 

middle zone. In short, the seaward side of the front is the lower zone and riverward side of the front 

is upper zone while the frontal zone itself is the middle zone (Fig.1).    
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2.5. Satellite data processing 

Synoptic analysis of CDOM was carried out using the data obtained from the Ocean Colour 

Monitor (OCM) on board Indian Remote Sensing satellite–P4 (IRS – P4).  OCM has six visible and 

two NIR bands in the range 402 nm – 885 nm centered at 412 nm, 443 nm, 490 nm, 510 nm, 555 nm, 

670 nm, 765 nm and 865 nm. The spatial resolution and band-width of the visible bands of OCM are 

360 m and 20 nm respectively. The images were geo-referenced using ground control points and the 

study area was extracted from the full scene through ERDAS Imagine 8.4. Atmospheric correction of 

remotely sensed data involves elimination of Rayleigh and aerosol components. Rayleigh component 

was computed and removed from each pixel using Doerffer’s method (1992). As water in the study 

area was turbid, pixels of NIR bands of OCM could not be used to remove aerosol path radiance. 

Hence, aerosol radiance was computed by deriving aerosol optical depth (AOD) using a 

sunphotometer (Chylek et al., 2003) having filters at 380, 440, 500, 675 and 870 nm.  Subsequently, 

aerosol correction was carried out on each pixel of OCM and water leaving radiance was derived for 

selected bands. Then the algorithm developed by Menon et al. (2006a) was applied to retrieve aCDOM 

(440) from OCM. This was carried out  through a calibrated radiative transfer model (Menon, 2004 

and Menon et al., 2005) . The algorithm developed to extract CDOM  from the area of study was: 

aCDOM (440) = 2.9393 (Lw412/Lw670)-2.2486                                                          (Eq. 3) 

where, Lw412 and Lw670 are the water leaving radiances at 412 nm and 670 nm, respectively. Pixels 

from the upper zones of both the estuaries were contaminated by land radiance (widths of the 

estuaries are less than three times the spatial resolution of OCM sensor). To analyze CDOM from 

this zone, in situ data supplemented satellite data. Similarly, in situ data were used to derive CDOM 

variability during monsoon season. Cloud free scenes of OCM on 8th January, 12th February, 18th 

March, 13th April, 11th May, 23rd September , 6th October, 11th November and 9th December of the 

year 2005 were used to study the spatial and temporal variability of CDOM absorption. 

3. Results 

3.1 Seasonal distribution of salinity in Mandovi and Zuari estuaries. 

3.1.1 Pre-monsoon season 

Orientation of isohalines revealed that both Mandovi and Zuari estuaries are vertically 

homogeneous.  Salinity encountered at the lower zone of Mandovi estuary was 34.5 while that  at the 

corresponding zone of Zuari estuary is 35.5 PSU (Fig. 2a and Fig. 2b), indicating the dominance of 

sea water flux due to tide. Notable difference between the two estuaries is the gradient in salinity 
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between middle and lower zones of the estuaries. The magnitudes of these gradients are 8 PSU and 4 

PSU in Mandovi and Zuari estuaries respectively. 

3.1.2 Monsoon season. 

Fig. 2c clearly indicates the dominance of fresh water in Mandovi estuary during this season. 

Fresh water is present between lower and upper zones of Mandovi estuary and the salinity prevailing 

at the lower zone is 5 PSU. A wedge of sea water is seen intruding in to the lower zone and exchange 

of water is restricted to the wedge.  Salinity distribution at the bottom of the middle zone (4 km 

upstream from mouth) shows stratification with a vertical gradient 10 PSU. 

Salinity profiles in Zuari estuary are distinctly different from those in Mandovi estuary. At 

the lower zone, the surface salinity is around 25 PSU (Fig. 2d). Saline water intrusion is up to the 

middle zone of the Zuari estuary.  A vertical gradient of salinity with magnitude 8 is observed below 

1 m from the surface and 10 km upstream from the lower zone. 

Thus the changes in seasonal hydrodynamics of the estuaries are clear from their 

transformation from homogeneous into salt-wedge estuaries. Also, circulation in Mandovi estuary is 

more fresh water dominant than that in Zuari estuary. 

3.2. OCM – in situ comparison. 

In order to validate satellite retrieved CDOM, in situ data were chosen in such a way that 

widths of the stations were more than three times 360 m, the spatial resolution of OCM. This 

precaution was taken to avoid overlapping of water pixels with land pixels. Along with the 

correlation analysis, root mean square (RMS) and bias of the data were also calculated. The data sets 

were logarithmically transformed (base 10) to calculate RMS and bias. The RMS log error is 14.25 

% and log difference bias is 3.89 %. A good correlation, R equals 0.98 (Fig.3), less error and bias 

further explained the ability of the algorithm in retrieving the sequential variation of CDOM 

concentration in association with the seasonally varying hydrodynamics of the estuaries. 

3.3. CDOM optical properties. 

Mean values of aCDOM (440) in the upper, middle and lower zones of both the estuaries along 

with the corresponding standard deviations are given in table 1. From the table, it is apparent that 

middle zones of both the estuaries encountered maximum CDOM absorption with highest standard 

deviations during post – monsoon season. But during pre-monsoon season, maximum absorption was 

seen at lower zones of both the estuaries and the standard deviation encountered at the lower zone of 
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Mandovi was three times more than that in the respective zone of Zuari estuary.  In short, Mandovi 

estuary encounters more CDOM absorption than Zuari estuary during all the seasons. 

3.4. Spatial and temporal variability of CDOM through OCM data. 

An Algorithm (equation.3) to analyze CDOM from OCM, was developed for typical CDOM 

absorption variability range in the study area (0.1 to 2.2 m-1). It worked well in this study except in 

December 2005, when exceptionally high values of aCDOM (440) were recorded in the middle zone of 

both the estuaries (5.5 m-1 and 3.37 m-1 at stations M07 and Z05). 

3.4.1. Pre-monsoon 

The pre-monsoon distribution of CDOM is explained through OCM data of February, March, 

April and May (Fig. 4). By the end of the season (May), the lower zones of both the estuaries and 

coastal inshore region, north of Mandovi and south of Zuari estuaries, encountered high CDOM. At 

the middle zone of Mandovi estuary, CDOM decreased between March and May and absorption was 

around 0.6 m-1 in May. But the same was not observed in Zuari estuary. Moreover CDOM retrieved 

during May was found to be an overestimation in the Zuari estuary. 

An important feature of the geometry of fairway channels of the estuaries is that their cross-

sectional area and depth decreases rapidly in the upstream direction (Unnikrishnan et al., 1997). 

Hence, in a tidally controlled estuary during pre-monsoon, shoaling across the fairway channel 

(navigation channel) generates more turbulence and mixing, resulting  in a homogenous estuary, as 

seen in Fig. 2a and Fig. 2b.  An overlapping of radiance from shoaling and those from the bottom of 

fairway channel might have resulted in an overestimation. 

3.4.2 Post- Monsoon 

To study the effect of remnant fresh water on CDOM distribution, OCM data, during the 

period of receding phase of monsoon (September), were analyzed. Fig. 4 depicts a uniform CDOM 

distribution between upper and middle zone of Mandovi estuary and thereafter decreases towards the 

lower zone. Though a similar pattern was exhibited between upper and middle zones of Zuari 

estuary, the distribution was different beyond middle zone. Depiction of a sharp gradient in 

aCDOM(440) at the middle zone and a secluded plume in the offshore region were the two distinct 

features. 

During October, lower zone of Zuari estuary encountered high CDOM absorption but in the 

respective zone of Mandovi estuary it is low. It is also worth mentioning the CDOM build up at the 

coastal inshore waters south of Zuari estuary during this month. 
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In November, there was a clear depiction of increase in CDOM at the middle zones of both 

the estuaries. It also increased at the southern bank of Mandovi estuary. But in the lower zone of 

Zuari estuary, CDOM concentration is reduced considerably compared to earlier months. The plume 

observed at the offshore region of the Zuari estuary during September had diffused in November.  In 

December, CDOM distribution showed highs and lows along Mandovi estuary with clear depiction 

of CDOM rich waters at the middle zone. Though CDOM concentration in the lower zones of both 

the estuaries increased compared to the previous month, the rate of increase was more in Mandovi 

than in Zuari estuary. During January, CDOM concentration in the lower zones decreased and 

showed uniform distribution at middle and upper zones. 

Overall, a distinct well defined variation in CDOM was not observed in Zuari estuary and it 

was not possible to distinguish CDOM between upper and middle zones of Zuari estuary in 

December and January. 

4. DISCUSSION 

The analysis revealed an intra-seasonal and inter-seasonal variability in the spatial 

distribution of CDOM between the two estuaries. Though situated adjacently in the same latitudinal 

belt, a discrepancy was seen in the absorption of CDOM between the two estuaries. To investigate 

this further, it is necessary to identify different processes (river input, advection and in situ 

production) acting as mechanisms to feed CDOM in to each estuary. This was carried out by 

examining the relation between S, a proxy to the composition of CDOM, and aCDOM(440), an index 

of concentration of CDOM. The relation is found to be different and the respective algorithm in each 

estuary is as follows: 

In Mandovi estuary, S = 0.003(aCDOM (440)) -0.7091                                               (Eq. 4) 

While in Zuari estuary, S = 0.0031 (aCDOM (440)) -0.777                                        (Eq. 5) 

The relation between S and CDOM absorption at 440 nm  is inverse and exponential in both the 

estuaries (R = -0.78 in Zuari and R = -0.78 in Mandovi), (Fig. 5a, 5b). 

Maximum S observed in Mandovi estuary is 0.022 nm-1 while in Zuari estuary it is 0.044 nm-

1. An increase in S is due to transformation of terrestrially derived CDOM and/or its replacement by 

in situ production of CDOM (Carder et al., 1989; Vodacek et al., 1997). Further they pointed out that 

a change in the stratification of the area, during the period of field survey, could also change S.  

Vodacek et al. (1997) explained that when terrestrially derived CDOM is present in surface waters 

under conservative mixing condition, S is less than or equal to 0.02 nm-1. 
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4.1 Pre-monsoon 

Analysis of aCDOM(440) through satellite and in situ observations indicates  an increase in its 

concentration in the lower zone of both the estuaries by the end of pre-monsoon season (May). Also, 

during this season, CDOM encountered at different zones of both the estuaries was less than that 

depicted during post-monsoon season. Table 2 gives the mean concentrations of chlorophyll_a and 

sediment encountered at lower, middle and upper zones during different seasons. 

An examination of the contribution of chlorophyll_a and sediment to CDOM revealed that  

though  aCDOM (440) has a positive relation with  chlorophyll_a and sediment  in Mandovi estuary, 

the respective coefficients  are poor (Table 3). This is  clear from the weak negative relation of S 

with chlorophyll_a (R=-0.37) and sediment (-0.29). But the scenario prevailing in Zuari estuary is 

different. Here aCDOM(440) has a negative relation with  chlorophyll_a  (R = -0.42) and a weak 

positive relation with sediment (R = +0.38).  The effect of sediment on CDOM could be ascertained 

from its strong negative linear relation with S (R= -0.69). This is also evident from the concentration 

of sediment prevailing in different zones of the estuaries during this season (table 2).  

The salinity pattern along the axis of the estuaries categorizes them under homogeneous 

estuaries during this season (Fig 2a and Fig 2b). In a well mixed estuary, CDOM should have been 

more than in a partially mixed estuary developed during post-monsoon season (table 1). But this is 

not true in the present case.  Pre-monsoon season being a period of clear sky, the area receives 

maximum irradiance and hence highest sea surface temperature during April and May (Qasim, 

2003). Therefore, photo bleaching during this season might have reduced CDOM concentration in 

both the estuaries. 

An entirely different relation is seen between the estuaries with respect to the relation of S 

with salinity. In Mandovi, the regression is linear and negative (R=-0.83) but in Zuari, though the 

relation is linear, it is positive (R = 0.69). This means advection of coastal saline waters brings  

CDOM in to the lower zone of Mandovi to a greater degree, but in Zuari estuary this contribution is 

not significant. This might be the reason for high mean CDOM in the lower zone of Mandovi than in 

the respective zone of Zuari estuary. This is also evident from the large standard deviation in the 

lower zone of Mandovi estuary during this period. 

Devassy et al. (1979) reported trichodesmium blooms along the coastal waters of Goa 

(around 160 N) during April. In their studies, Madhupratap et al. (2001) reported that along the west 

coast of India (north of 15 0 N) algal blooms are formed during pre-monsoon season. Hence CDOM 

pool builds up as the bloom senescence in May.  A reversal in the direction of the current, from 
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poleward to equatorward, might have advected CDOM rich waters to Mandovi to a greater degree.  

Bhargava and Dwivedi (1974) showed that influx of neritic waters in the lower zone of both the 

estuaries make the region more productive during pre-monsoon season. Hence the advection of 

CDOM from coastal region might be responsible for its greater  incidence in the lower zones of the 

estuaries. 

The advection of neritic waters  is  the sole source of CDOM in the lower zone of Zuari 

estuary while  terrestrial input along with the  advection of neritic waters are the sources of CDOM 

in the lower zone of Mandovi. In their observations on CDOM dispersion over the Florida shelf, Del 

Castillo et al. (2000) had indicated the role of mixing in the distribution of CDOM. The above 

discussion has clearly revealed that the spatial and temporal variations of CDOM in these estuaries 

are controlled by the mixing process. 

4.2 Monsoon 

During monsoon, the whole basin of the Mandovi is filled with fresh water and mixing with 

sea water takes place at the lower zone (salinity is 5 PSU). But in Zuari estuary, mixing is at the 

middle zone and the salinity is 19 PSU (Fig. 2c, 2d). Researchers found that limit of sea ward extent 

of terrestrially originated CDOM vary seasonally depending upon the magnitude of the fresh water 

(Vodaceck et al., 1997; Rochelle-Newall and Fisher, 2002b).  Uniform aCDOM(440)  through out  

Mandovi estuary   and a non-uniform distribution in  Zuari estuary is a clear indication that river 

discharge is the major mechanism to distribute terrestrially originated CDOM throughout Mandovi 

estuary and up to middle zone of Zuari estuary. 

An inverse linear relation between aCDOM(440) and salinity, with correlation coefficients -

0.83 and -0.77  in  Mandovi and Zuari estuaries respectively, further confirms the role of terrestrial 

input of CDOM to both the estuaries (Fig. 6a, 6b). 

4.3. Post-monsoon 

An elevated concentration of CDOM in the middle zone, compared to that in the lower and 

upper zones of both the estuaries, revealed that fresh water discharge is not the only source of 

CDOM during post-monsoon. The secondary mechanism to increase CDOM could be in situ 

production through disintegration of chlorophyll_a, resuspension of sediments or due to both the 

processes. 

A good relation of aCDOM (440) with chlorophyll_a (R=0.72) and sediment (R=0.81) in 

Mandovi estuary and a strong linear relation with both chlorophyll_a (R=0.85) and sediment 

(R=0.81) in Zuari estuary explicitly explains that both chlorophyll_a and sediment could contribute 
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to CDOM absorption in both these estuaries (Table 3).  Further, analysis revealed a negative linear 

relation between S and chlorophyll_a in Mandovi (R= -0.74) and Zuari (R=-0.84) estuaries. Better 

regression of S with sediment (R= -0.59) in Zuari than in Mandovi (R=-0.44) is also observed. This 

indicates  that sediment can act as an additional source of CDOM in Zuari estuary. 

On local scales, in situ production from phytoplankton decomposition and extraction from 

bottom sediments may be an important source of CDOM (Twardowski and Donaghay, 2001; Boss et 

al., 2001). However, in their studies, Rochelle-Newall and Fisher (2002 a) showed that CDOM 

absorption doesn’t correlate with chlorophyll_a content. Hence it has been proposed that 

phytoplankton does not produce CDOM directly but acts as a source of biomass which is 

transformed to CDOM via microbially - meditated process. This is also vivid from table 2. If the 

aforementioned processes are responsible for the increase of CDOM in the middle zones of both the 

estuaries, it is important to know the physical processes augmenting resuspension of bottom settled 

sediments at this zone 

Since the estuaries converge in the upstream, they are  narrow and shallow at  the upper zone 

(Unnikrishnan et al., 1997). But the degree of decrease of depth and width of the estuaries from 

lower to middle zone are different. At the lower zone, Mandovi estuary is 5.8m deep and 3.2 km 

wide. It decreases to 4.0 m and 0.8 km at the middle zone. Similarly, depth and width of Zuari 

estuary decreases to 3.0 m and 1 km at the middle zone from 8.0 m depth and 5.5 km width at the 

lower zone. The momentum balance in a shallow estuary is pressure gradient and friction. In the case 

of funnel shaped (converging type) estuaries like Mandovi and Zuari, where the cross sectional area 

decreases upstream,  the amplification due to convergence of the channel cancels decay due to 

friction,  leaving the amplitude unchanged over long distances along the channels (Friedrichs and 

Aubrey, 1994). In such estuaries when the fresh water discharge decreases, as monsoon recedes, the 

effect of tide (sea water flux) becomes significant and the frictional effect at the bottom of the 

estuaries generates turbulence which is sufficient to break the monsoonal (salt-wedge) characteristics 

of the estuaries and convert them into partially mixed during post-monsoon.  This mixing  helps in 

resuspension of the bottom settled sediments which in turn induce CDOM in the middle zone of both 

the estuaries and augments the concentration during this season. 

      This might also be responsible for the shedding of CDOM rich water from the middle zone of 

Zuari estuary (Fig. 4) towards the offshore region (salt-wedge extends up to middle zone in Zuari 

estuary). But this type of a secluded plume is not seen at the mouth of Mandovi estuary. As the salt-

wedge is formed at the lower zone (depth 5.8 m) of Mandovi estuary, a momentum balance exists 

between the fresh water (pressure gradient) and friction. Hence the tide generated bottom turbulence 
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is not sufficient  to break the wedge and that results in the gradual diffusion of CDOM from the 

lower zone of Mandovi to the offshore region . 

In their studies, Boss et al. (2001) suggested that sediment resuspension events driven by 

storms have also been observed to contribute to CDOM in  bottom waters. In their attempt to analyze 

estuarine colour components during pre-monsoon season, Menon et al. (2006a) had observed high 

incidence of CDOM in the region of sediment plumes. 

It is interesting to note an opposite relation of S with salinity between Mandovi and Zuari 

estuaries during this season. In Mandovi, the relation is negative and the regression coefficient is -

0.75 while in Zuari it is positive and the coefficient is 0.48. This means coastal advection of saline 

waters is yet another source of CDOM contributing significantly to the lower zone of Mandovi 

estuary. Hence the combined effect of coastal advection, terrestrial input and in situ production 

caused the lower zone of Mandovi estuary to have more CDOM than the respective zone of the Zuari 

estuary during this season. 

4.4. Reversal of current direction 

Apart from the estuarine region, OCM data also revealed the CDOM build up at the coastal 

inshore waters south of Zuari estuary during October (Fig 4). It was reported that the area between 80 

N and 150 N (south of 150 N), along the eastern Arabian sea, is productive during southwest 

monsoon (Madhupratap et al., 2001). During the fall inter-monsoon (October and November) period, 

CDOM concentration increases due to the disintegration of chlorophyll_a.  Moreover, the current 

reverses from equatorward to poleward during October. This might have acted as an agent to 

transport CDOM rich waters along the coastal inshore region south of Zuari estuary. 

In their studies, Keith et al. (2002) indicated that phytoplankton utilizes accessory pigments 

at longer wavelengths when the CDOM absorption is high and values of S less than or equal to 0.02. 

This criterion holds well in the present case wherein Mandovi estuary has more CDOM 

concentration than Zuari estuary. It was reported that Mandovi estuary is less productive than Zuari 

estuary (Krishna Kumari et al., 2002). 

5. Conclusion 

Remote analysis of CDOM using OCM data revealed that temporal and spatial variability of 

CDOM in Mandovi and Zuari estuaries is controlled by seasonal hydrodynamics. This is  evident 

from the presence of more CDOM-rich waters in the lower zone and coastal inshore region of the 

estuaries by the end of pre-monsoon and accumulation of high CDOM waters in the middle zone of 

both the estuaries by the end of post-monsoon season. This is  the first time that CDOM in these 
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estuaries has been remotely analyzed for an entire year through an optical sensor having spatial 

resolution of 360 m.  Of  the two estuaries, Mandovi experiences  higher CDOM concentration and   

maximum variability. The study could also assess the fate of secluded CDOM rich water (plume) in 

the offshore region during the initial phase of post-monsoon.  Though monsoonal fresh water flux is  

the major source of CDOM in both the estuaries, its contribution is more predominant in Mandovi 

estuary than in Zuari estuary. The study revealed that it is possible to analyze the fate of CDOM 

synoptically through an optical sensor, if equipped with a good site- specific algorithm. Success in 

mapping CDOM and studying its temporal variation in estuaries will help in developing a basic tool 

to understand and monitor the discharge of dissolved organic matter from non-point sources which is 

responsible to make a coastal region hypoxic. 
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Legends to figures 

Figure 1 Map of the study area showing hydrographic stations in different zones of Mandovi-Zuari 

estuaries of Goa. 

Figure 2 Vertical sections of salinity along the axis of a) Mandovi and b) Zuari estuary during Pre-

monsoon and c) Mandovi and  d) Zuari estuary during Monsoon season. 

Figure 3 Correlation between in situ and satellite derived aCDOM (440) (the dotted line in the figure 

show 95% confidence level). 

Figure 4 Synoptic distribution of aCDOM (440) in Mandovi and Zuari estuaries from January to May 

and  September to December 2005. 

Figure 5  Regression between aCDOM (440) and slope coefficient ( S ) in a) Mandovi and b) Zuari 

estuary. 

Figure 6 Regression between aCDOM (440) and salinity in a) Mandovi and b) Zuari estuary. 
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Table 1. Mean and Standard deviation of aCDOM(440) at upper, middle and lower zones of  Mandovi 
and Zuari estuaries. 24 data points, derived seasonally for each zone of the two estuaries were used 
for the analysis. 
 
 
             

  Mandovi E.  Zuari E. 
             
  Upper  Middle  Lower  Upper  Middle  Lower 
             
 
Pre- 

 
Mean 0.67  0.67  1.02  0.71  0.67  0.86 

Monsoon Stdev 0.44  0.48  1.00  0.26  0.26  0.47 
             
Monsoon Mean 0.66  0.66  0.66  0.38  0.53  0.11 
 Stdev 0.19  0.19  0.49  0.07  0.49  0.08 
             
Post- Mean 0.71  2.00  1.40  0.73  1.69  0.49 
Monsoon Stdev 0.43  1.80  0.85  0.45  0.60  0.45 
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Table 2 Mean and Standard deviation of chlorophyll_a and sediment concentrations at upper, middle and lower zones of Mandovi and Zuari estuaries 
during different seasons. 24 data points, derived seasonally for each zone of the two estuaries were used for the analysis. 
 

                         
  Mandovi E.  Zuari E. 
  Chlorophyll (ug/l)  Sediment (mg/l)  Chlorophyll (ug/l)  Sediment (mg/l) 
                         
  Upper  Middle  Lower  Upper  Middle  Lower  Upper  Middle  Lower  Upper  Middle  Lower 
                         
 
Pre- 

 
Mean 9.70  6.32  3.72  13.95  20.37  16.03  6.68  5.95  3.63  22.82  22.72  14.45 

Monsoon Stdev 6.07  2.35  1.08  3.30  4.11  6.44  3.33  2.55  1.68  7.41  10.71  3.85 
                         
Monsoon Mean 7.00  2.45  4.59  18.63  18.13  14.00  6.61  3.68  4.88  18.20  18.00  12.00 
 Stdev 0.14  1.03  0.08  2.11  0.35  0.18  1.48  2.80  0.18  5.83  0.20  0.80 
                         
 
Post- 

 
Mean 3.13  2.90  1.50  5.48  8.41  10.15  2.37  2.14  1.41  10.21  16.74  8.27 

Monsoon Stdev 2.51  1.13  0.95  2.49  1.35  1.56  2.01  0.97  1.01  3.63  6.30  3.67 
                         
                         

 
 
 



 19

Table 3. Regression coefficients, (R), between different parameters derived during 
pre-monsoon and post-monsoon seasons. Regression of aCDOM(440) with          
sediment and chlorophyll_a  and  regression of slope coefficient (S) with salinity, 
sediment and chlorophyll_a. 
 
 

Parameters 

 

Pre-monsoon                        Post-monsoon 

Mandovi         Zuari              Mandovi         Zuari 

aCDOM(440) vs. sediment 

 

 

aCDOM(440) vs. chlorophyll a 

 

 

slope vs. salinity 

 

 

slope vs. sediment 

 

 

slope vs. chlorophyll a 

R= 0.12 

n=20 

Linear 

R= 0.23 

n=20 

Linear 

R= -0.83 

n=20 

Linear 

R= -0.29 

n=20 

Linear 

R= -0.37 

n=20 

Linear 

R= 0.38 

n=20 

Linear 

R= -0.42 

n=20 

Linear 

R= 0.69 

n=17 

Linear 

R= -0.69 

n=20 

Linear 

R= 0.10 

n=20 

Linear 

R= 0.81 

n=14 

Power 

R= 0.72 

n=14 

Power 

R= -0.75 

n=14 

Linear 

R= -0.44 

n=14 

Linear 

R= -0.74 

n=14 

Linear 

R= 0.81 

n=14 

Linear 

R= 0.85 

n=14 

Linear 

R= 0.48 

n=14 

Linear 

R= -0.59 

n=14 

Linear 

R= -0.84 

n=14 

Linear 
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