
Using Scrum for Software Engineering Class Projects

 Ramrao Wagh
DCST, Goa University

Goa, India
e-mail:ramrao@unigoa.ac.in

, India
rswagh@unigoa.ac.in

Abstract – Imparting industry relevant skills and knowledge
for the graduating students in the field of Software
Engineering is difficult but is necessary to make the students
employable and productive right from the joining. With
outdated curriculum and slow process of revision of syllabi it
is difficult to achieve this objective. This paper discusses how
one of the popular agile project management frameworks,
Scrum can be taught and used to teach basic concepts of
project management without necessitating revision of the
syllabus. It also discusses the rise in motivation and interest
level of students due to adoption of this approach. It also
shows the flexibility of this agile approach to adapt to a
situation different than a normal software development
scenario in an organization.

Keywords-Software Engineering Education, Agile, Scrum,
Projects

1. INTRODUCTION

It is a common cry of industry that the graduates coming
out of Computer science courses are not directly
employable and as such lot of time and resources are
wasted in (re) training them on the development concepts,
tools, as well as methodologies. On the other hand,
teaching institutes focus mainly on imparting theoretical
skills without much emphasis on practice and in majority
of the cases, whatever practical components are included
are also outdated and irrelevant. One common excuse often
cited by the institutes and faculty members is that it is
time-consuming to change or adapt the curriculum
according to the needs of the industry. In the Indian
context, the Bachelor in Engineering in Computer Science
Engineering or Information Technology(BE(CSE or IT)
and Master in Computer Applications (MCA) programmes
that are accredited by All India Council for Technical
Education(AICTE) are the mainstay for providing IT
manpower needed for the burgeoning IT Industry of India.
The standard curriculum of both these programmes
includes courses on Software Engineering in the later
semesters.

A typical Software Engineering (SE) curriculum that is
part of BE/MCA courses shows that it is highly theoretical.

It aims to teach lifecycle and process concepts,
requirements engineering, design, testing, maintenance,
quality assurance and control and project management
based on some standard text-books such as [1], [2], [3].
These books try to provide glimpses of each of this activity
but fail to give any clear-cut guidance on practicing the
principles that they explain nicely. Since the Software
Industry is project-driven it is very much essential to teach
project management in greater details but in reality, it is
paid a lip service. Moreover, students are also not provided
with opportunity to apply whatever little is taught to them
by not offering any practical/case study component for SE
courses. It is true that given the limited time available
within a semester, it is difficult to apply the traditional
project management approach to implement a course
project. What is needed is a lightweight, adaptive approach
that can be tailored to the limited time and resources
available as well as that provides enough flexibility to
define various project attributes and that clearly shows the
project progress, facilitates team work and provides an
exciting learning opportunity to the learners. This paper
describes an approach where the SE and project
management principles are taught using Scrum [4] as a
project management framework by applying it on type of
projects that are usually handled by software industry.

2. BACKGROUND
MCA programme of Goa University, Goa , India was

introduced in 1987 with an intake capacity of 30 students
by department of Computer Science and Technology.
Since then it has produced around 600 software
professionals with focus on developing business
applications. Its alumni work in almost all major global
and national software companies. MCA is a three year,
six-semester programme which was promoted all over
India by Department of Electronics (DoE) of Government
of India in order to fill the gap of software professionals by
allowing non-engineering graduates to pursue software
development. Our MCA programme offers basic problem
solving and programming courses as well as the other
fundamental computer science courses such as DBMS,
Networks in the first four semesters. Fifth semester has a

Agile India 2012

978-0-7695-4657-5/12 $26.00 © 2012 IEEE

DOI 10.1109/AgileIndia.2012.17

68

Agile India 2012

978-0-7695-4657-5/12 $26.00 © 2012 IEEE

DOI 10.1109/AgileIndia.2012.17

68

course on SE along with other courses. It has a separate
theory (CS51) and laboratory course (PL57). Both the
courses are taught by this author. The syllabus for these
courses were also designed by the author three years back
and has not been revised formally since then by University.
The Sixth semester of MCA programme involves full-time
project work as internship, preferably in an industry.

CS51 theory course syllabus is a typical SE curriculum
with requirements, design, architecture, HCI, Testing,
project management and configuration management as
major topics. One of the main prerequisite for this course is
theory and lab courses on OOAD (CS41 OOAD & PL46)
in the previous semester in which UML/Java is introduced
and use case based development approach [5] is taught.

 One of the best practices of our MCA programme is
that every CS course having a laboratory component has a
mini-project associated with it apart from individual lab
assignments. The mini-project is usually a group project
wherein students have to implement and demonstrate the
project working.

Since CS41 and CS51 are both taught by the author in
the successive semesters, we usually carry the same project
for both the semesters so that, design and sometimes a
bare-bone implementation is submitted by students at the
end of fourth semester and full-fledged implementation
with testing is carried out in fifth semester. Since earlier
the use case based approach was followed, it was observed
that the teams usually have a comprehensive analysis,
design and occasionally code and tests for each of the use
case but the overall selection of which use cases to include
in the implementation and how a team should carry out the
various tasks required to implement the functionality were
a grey area. As a result, it was difficult to monitor the
project progress as well as to ensure that the team as a
whole is involved.

3. DESIGNING THE COURSE WORK
This year the same practice was continued but the

approach was changed. In the fourth semester, we had five
groups composed of 5-6 students per group who were
assigned separate projects. They had worked on use case
modeling followed by analysis and design for a given
problem. Every group was given a different problem
related to business applications development. They were
told that project will be implemented in the forthcoming
semester. In the fifth semester course(CS51 and PL57),
initial focus was teaching basic SE topics in theory course
and advanced programming techniques and introducing
development and project management tools in the lab
course.

Accordingly, in theory classes, we started with
introduction to SE with a customary look at various
lifecycle paradigm from waterfall to agile, followed by
sessions on requirements engineering using [6]. With this
by using activities and exercises, various groups came up
with a vision statement outlining the problem and requisite

features to solve the problems. Simultaneously, in the lab,
pair programming was introduced and design problems
were given for which they have to submit the solutions
online through CMS tool Moodle [7]. The focus of these
lab sessions was on learning how to refactor the code [8],
use of design patterns [9] and writing test cases using Junit
[10]. Some of the most useful design patterns such as
strategy, observer, adapter, composite, decorator, proxy,
factory, singleton [9] were learnt by the students in
context. Faculty approach was to give a problem. For
which students will provide a solution which would be
then gradually enhanced using an appropriate design
pattern. They were also taught how to use Subversion [11]
to manage the team development and build projects using
Ant build [12] tool.

4. USING SCRUM FOR CLASS PROJECT
With these basic development abilities required for team

development and building on their OO knowledge by using
design patterns and refactoring they were introduced to
agile approach with the use of resources such as slides and
presentations on Scrum [4][13][14]. An excellent case
paper on introducing Scrum at Yahoo! [15] was also
provided to understand how scrum was introduced in the
practical setting. The other supporting material such as
[16], and scrum checklist [17] was also uploaded and
circulated through Moodle.

After around one month of teaching days spent on above
activities, the student groups were asked to come up with
user stories [18] and prioritize them using a requirement
workshop conducted in a two hour classroom session.
Different team members assumed the roles of Scrum
Coach, Customer and Product-owner and Scrum team
members. Customer role was taken up by doubling one of
the team members as Customer. The author served as a
manager for the teams. Each group used its previous
submission of earlier course and listed around ten user
stories each with priority and estimate in story points to
create a Product backlog.

The next task was to create a project wall to monitor the
project progress. The classroom walls were used to stick
project wall charts. Each group was given two chart-papers
each and other material and they were asked to prepare the
project chart boards. The first chart paper was used to
define the sprint in which they were asked to draw columns
for user stories planned, in progress and done [19] for a
sprint. The second chart was used to draw a sprint
burndown chart and to use remaining space to use for
stories planned but could not be taken up during the sprint.
Both these chart papers were pasted on classroom walls
close to each other. They were asked to use Post-it notes to
write user stories and tasks. Bigger sized post-it notes were
used to write the story in the standard format and smaller
post-it notes were used to define the tasks required to
complete the story. They were asked to estimate the stories
using story points. Planning poker was used to estimate the

6969

story points. Once this task was performed, they were
asked to define the first sprint by including stories in the
first column.

Here there was a major deviation from how scrum is
used in real world to that in classroom setting. In scrum a
sprint is about 2-4 weeks that includes all the working days
within that period. But since, apart from SE courses, our
students have to attend and do work related to many other
courses, a sprint was defined as follows. Considering the
remaining time of around two and half months for the
semester we divided that time to accommodate
approximately two sprints of one month each leaving out
the scheduled examination days. The number of lab
sessions available during this period was around 12
sessions of three hours each. So we defined a sprint as five
sessions amounting to 15 hours of laboratory time. It was
informed that they are free to work on the project at any
other extra time if possible. Each team was asked to
prioritize the user stories and then select user stories so that
not more than 15 story points are taken for first sprint. This
was done by equating 1 story point to 1 hour of lab work as
a guess because it is not possible to know the team velocity
in the first few sprints. The teams selected around 2-3
stories based on this criteria for the first sprint. They also
created the sprint burndown chart on the second chart
paper to draw with the ideal burndown rate drawn for 15
story points as sprint backlog total and five lab sessions as
sprint duration. The entire exercise lasting for around two
hours with intense group activity was thoroughly enjoyed
by the students and they learnt major aspects of Scrum by
doing this activity. All the concepts such as sprint, backlog,
story, story point, burndown rate, task of the stories were
understood by team members when they did this activity.
They also learnt one of the important requirements of
scrum i.e. self-organizing teams as everyone played their
role to complete this task of creating project wall chart by
contributing in whatever way they can without anyone
allocating a specific work to each one of them.

There was a marked change in the approach to project
from this moment onwards in all the teams. As the project
wall charts were mounted in classroom where they attend
their regular classes, it was a constant reminder to them to
think and work on the project.

The first lab session after this activity was devoted to
the first daily stand-up meeting of each team. Each team
conducted this meeting facing the project wall chart. They
moved the task of the selected stories as they took up that
task. They learnt how to volunteer and own responsibility
for the work. With this, teams set into pairs or worked
individually by sitting close to each other in laboratory to
start implementing the task of the user stories selected by
them in the first sprint. This practice of daily stand-up was
adhered for every lab session later.

The first sprint is usually characterized by creating and
configuring the necessary infrastructure and tools required
for the project. All the teams were asked to use Eclipse

[20] and implement a web-based implementation using
Java EE. The teams created the projects and checked in
Subversion repository and also worked upon other aspects
such as use of DBMS etc.

As the teams went on implementing the user stories in
the first sprint backlog, various issues- technical as well as
non-technical started interfering with the project
implementation. On the technical front, the teams were
asked to implement project using Eclipse as the basic IDE
and were encouraged to try frameworks such as Hibernate
and Spring. The project management aspects were taken
care of through Scrum although as mentioned earlier, a
vision document was prepared to serve as a guiding
document. Initially, the teams struggled to learn Spring
[21] and Hibernate [22] framework on Eclipse and spent
lot of time. But, due to lot of problems related to
configuration faced by the teams as there was no expertise
available to sort them out, all the teams finally abandoned
the idea of using Spring and Hibernate and adopted a plain
JSP based approach.

On the project management front, instead of earlier
planned two sprints, we had to focus on completion of only
one sprint as lot of sessions were cancelled due to some
other events and exams. Only one team reported that they
worked on two sprints by working extra hours outside
scheduled lab hours.

5. EVALUATING THE OUTCOME
An online feedback of the students was taken by

creating a feedback form to be filled anonymously by the
students. The objective of the feedback was to understand
the effectiveness of the approach and to know how much
they have learnt about Scrum. There were eight questions
to which the students were supposed to chose appropriate
responses. All the 29 students responded to the online
feedback made available on course page on university
moodle site. It is seen that around 85% students felt that
there were improvements in the way a project was
managed due to use of Scrum. 85% responded that they
were provided with adequate knowledge to use Scrum.
However, with regard to the allocation of scrum roles
within a team, the opinion were equally divided with 45%
saying roles were properly defined while 45% were not
sure of role allocation. Almost 80% felt that teamwork was
improved due to use of scrum. To the question about the
knowledge level of faculty about Scrum, all the students
felt that the faculty member has adequate knowledge of
scrum framework. To the question whether team members
will use Scrum in future projects, 46% responded that they
will always use it while 46% said that they will use Scrum
provided management asks them to use it. Out of the
various Scrum activities/artifacts, daily standup with 38%
was the most popular technique followed by project wall
chart (28%), sprint planning (19%) and user stories and
estimation (17%).

7070

The project demonstration was conducted by every team
as part of the end semester exam of the lab course. Each
team reflected upon how they used Scrum to manage the
project and demonstrated the working of the project as
completed as part of the sprint(s). The presentations were
jointly evaluated by the faculty and external examiner
appointed by university. The project demonstration clearly
showed that using Scrum, the features that were developed
by the team was complete and cohesive compared to
splintered development work that used to be accomplished
by following traditional approach. Although the number of
user stories that could be completed were very small (2~6)
but still students realized the importance of focusing on
achievable work within a sprint.

6. LESSONS LEARNT AND FUTURE WORK
Focus of this paper was on how to use Scrum by

adapting it to the classroom situation wherein such
difficulties and impediments come up regularly. Our earlier
approach of giving students a free hand in deciding on how
to complete the assigned task was not yielding good results
and most of the time, students used to do some last minute
work before the deadline and present the same. With
Scrum-based approach, they are now clear about what they
will achieve in a given time-frame and are able to achieve
better and visible progress. But the major gain was rather
than study project management in a theoretical ways, they
understood lot of important concepts related to project
management such as defining the scope of the project,
estimating project duration and outcome, managing project
though stand –up meetings.

One of the major purpose of this exercise was to show
how without officially revising the curriculum, how
modern approaches can be accommodated in the teaching-
learning process using the activity based approach.

We tried to use Scrum by following the bare essential
things and modifying and adopting it to suit the classroom
limitations but highlighting the best aspects of scrum. In
the future more quantitative data about how effective this
approach is will be collected and analyzed. We wish to
repeat and enhance the experiment by spreading this
exercise over two semesters instead of just one semester so
that we can accommodate more sprints. That will enable us
to measure the velocity properly, introduce the additional
Scrum techniques such as retrospectives and to manage the
Scrum roles much more effectively.

The students who participated in this exercise are in a
better position to appreciate and embrace agile
methodologies which are increasingly adopted by the
industry.

REFERENCES
[1] Pressman Roger, Software Engineering: A Practitioners

Approach, Sixth Edition. McGraw Hill, 2005
[2] Sommerville Ian, Software Engineering, 9th Edition. Addison

Wesley, 2007.

[3] Jalote Pankaj, An Integrated Approach to Software Engineering,
Third Edition. Springer 2008.

[4] Schwaber, Ken. Agile Project Management with Scrum.
Redmond, WA: Microsoft Press, 2004.

[5] Larman Craig, Applying UML and Patterns, Third Edition,
Prentice Hall, 2003.

[6] Leffinwell Dean, Widrig Don, Managing Software Requirements:
A use-case Approach. Second Edition.Addison Wesley.

[7] Moodle homepage www.moodle.org
[8] Fowler Martin, Beck Kent, Brant John, Opdyke William, Roberts

Don, Refactoring: Improving the Design of Existing Code.
Addison Wesley, 2003.

[9] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides,
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, 1994.

[10] Junit homepage: www.junit.org
[11] Subversion www.subversion.tigris.org
[12] Ant Build www.ant.apache.org
[13] Presentation on Scrum by Mike Cohn

http://www.mountaingoatsoftware.com/presentations
[14] Scrum guide www.scrum.org/scrumguides
[15] Benefield Gabrielle, Rolling Out Agile In a Large Enterprise,

Proceedings of the 41st Annual Hawaii International Conference
on System Sciences (HICSS 2008)

[16] Kniberg Henrik, Scrum and XP from the Trenches (Enterprise
Software Development), Addison Wesley.

[17] Scrum checklist available on
http://www.infoq.com/minibooks/scrum-checklists

[18] Mike Cohn, User stories User Stories Applied: For Agile
Software Development, Addison Wesley.

[19] Mike kohn, Agile Estimating and Planning, Addison Wesley.
[20] Eclipse www.eclipse.org
[21] Spring www.springsource.org
[22] Hibernate www.hibernate.org

7171

