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Three-body on-site interactions in ultracold bosonic atoms in optical lattices and superlattices
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The Mott-insulator–superfluid transition for ultracold bosonic atoms in an optical lattice has been extensively
studied in the framework of the Bose-Hubbard model with two-body on-site interactions. In this paper, we
analyze the additional effect of the three-body on-site interactions on this phase transition in an optical lattice
and the transitions between the various phases that arise in an optical superlattice. Using the mean-field theory
and the density matrix renormalization group method, we find the phase diagrams depicting the relationships
between various physical quantities in an optical lattice and superlattice. We also propose a possible experimental
signature to observe the on-site three-body interactions.
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Studies of ultracold bosonic atoms in optical lattices offer
many opportunities for exploring a variety of quantum phases.
After the first theoretical prediction of superfluid (SF) to Mott
insulator (MI) transition in bosonic systems by Fisher et al. [1],
in three-dimensional optical lattice by Jaksch et al. [2] which
was followed by an experimental observation by Greiner
et al. [3], a number of quantum phases have been reported
in the literature [4,5]. The ability to fine tune the control
parameters in such experiments makes it possible to probe
these exotic quantum phases [6,7]. Apart from the hopping
and the on-site two-body interactions, the on-site three-body
interactions can also influence the onset of different phases.
Zhang et al. had earlier found the extension of the insulating
lobes in the presence of the on-site three-body interactions,
using the decoupling mean-field theory [8]. The generation
of effective three- and higher-body interactions by two-body
collisions of atoms confined in the lowest vibrational states
of a three-dimensional optical lattice has been reported by
Johnson et al. [9]. The effect of three-body interactions on
the insulating lobes in an optical lattice has been considered
using the mean-field and functional integral approaches in the
Bose-Hubbard approximation for optical lattices [2,10]. On
the other hand, studies on optical superlattices have revealed
the existence of phases other than the usual MI and SF phases;
namely, the superlattice induced Mott insulator (SLMI) phases
which have a density modulation in the system [11,12].

On the experimental side, Will et al. [13] have detected
and precisely measured the on-site three- and higher-body
interaction strengths by observing the collapse and revival
of the superfluid matter waves in a deep optical lattice.
Nägerl et al. [14] have been able to precisely determine the
on-site interaction energies including multibody interaction
shifts. In another work, Greiner et al. [15] have determined
the three-body interaction strengths by using occupation-
sensitive photon-assisted tunneling. However, the effect of
three-body interactions in optical superlattices has still not
been investigated to the best of our knowledge.

In this paper, we study the effect of the on-site repulsive
three-body interactions in addition to the on-site two-body
interactions on various phases exhibited by ultracold bosonic
atoms in an optical lattice and a superlattice. We use the

mean-field decoupling approximation and the finite-size den-
sity matrix renormalization group (FS-DMRG) method for
various densities and three-body interaction strengths and
then compare the results. The system of bosons in an optical
superlattice with a three-body interaction can be described by
the modified Bose-Hubbard model as follows:
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Here, â
†
i (âi) is the creation (annihilation) operator which

creates (destroys) an atom at site i, n̂i = â
†
i âi is the number

operator, t is the hopping amplitude between the adjacent sites
〈i,j 〉, U and W represent the on-site interatomic two-body
and three-body interactions, respectively, μ is the chemical
potential, and λ is the superlattice potential. We consider a
bipartite lattice with sublattices A and B with a periodicity
of two sites. We apply standard decoupling approximation
[12,16,17] to the hopping term in Eq. (1) to obtain the
mean-field Hamiltonian given by

H MF
i

zt
= −φi(â

†
i + âi) + φiψi + U

2
n̂i(n̂i − 1)

+ W

6
n̂i(n̂i − 1)(n̂i − 2) − μn̂i + λin̂i , (2)

where the superfluid order parameter ψi = 〈âi〉 is taken to
be real [17], φi = 1

z

∑
δ ψi+δ , the summation over δ is taken

over z nearest-neighboring sites, U = U/zt , W = W/zt , μ =
μ/zt , and λi = λi/zt are dimensionless parameters. For an
optical lattice, λi = 0 for all i, thus ψi = ψ . For our optical
superlattice, λi = 0 for sublattice A and λi = λ for sublattice
B, thus ψi = ψA (ψB) if i belongs to sublattice A (B). The
mean-field eigenvalue equation is solved self-consistently to
obtain the local superfluid density ρs

i = ψ2
i and density ρi =

〈n̂i〉 of the ground state of the system.
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FIG. 1. (Color online) Phase diagram of Eq. (2) for different
W for optical lattice. The lobes represent Mott-insulator phases for
densities ρ = 1,2,3,4.

To study the effect of W on MI phases in an optical lattice,
we first present the mean-field phase diagram for an optical
lattice (Fig. 1), in the U -μ plane obtained from the density ρ

and the superfluid density ρs , for various values of W . Figure 2
shows the μ-ρ,ρs plot for different W .

For an optical superlattice we show the effect of W on MI
and SLMI phases in the phase diagram plotted in the μ-λ
plane (Figs. 3 and 4). In Fig. 3 we present the phase diagram
for U = 10 and W = 0.0. Figure 4 is the phase diagram for
U = 10 and W = 5.0. Lobes Lρ represent the MI phase with
density ρ. Lobes R1–R6 represent SLMI phases with density
in sublattices A (B), respectively, given by 1 (0), 2 (0), 2 (1),
3 (1), 3 (2), and 4 (2).

The DMRG results obtained for the optical lattice are given
in Figs. 7 and 8, for ρ = 2 and 3, respectively. Figures 9(a)
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FIG. 2. (Color online) Variation of density ρ and superfluid
density ρs with μ for U = 10, for optical lattice. Top to bottom:
the first four curves represent density ρ and the next four curves
represent superfluid density ρs . The plateaus in the ρ plots represent
MI phases with vanishing ρs .
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FIG. 3. (Color online) λ-μ phase diagram for U = 10, W = 0.0,
for optical superlattice.

and 9(b) are the phase diagrams for the optical superlattice for
ρ = 3/2 and 2, respectively, with two values of W (=0.0,5.0).

For the calculations using the FS-DMRG method, we fix the
hopping matrix element t = 1 to fix the energy scale (so all the
quantities plotted, are in units of t) and to estimate the critical
points UC , we perform finite-size scaling of the single-particle
gap GL (defined by the difference between the energies needed
to add an atom and remove an atom from the system). The plots
of LGL for different system sizes L (see Fig. 5), assuming that
the SF to MI transitions belong to the Berezinskii-Kosterlitz-
Thouless (BKT) type [18,19], coalesce in the superfluid phase
below the UC . The value of UC is then estimated within an
error bar of 0.1 if the values of LGL, say for L = 140 and 200,
differ by less than 4%. At the BKT transition the gap closes
satisfying the relation GL ∼ exp[−a/|U − UC |1/2], where a is
a constant. The correlation length ξ is finite in the gapped phase
and diverges at the critical point as (1/GL) = exp[a/|U −
UC |1/2]. Near UC , the finite-size-scaling relation LGL[1 +
{1/(2 ln L + C)}] = F (ξ/L), is used to estimate the transition
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FIG. 4. (Color online) λ-μ phase diagram for U = 10 and W =
5.0, for optical superlattice.
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FIG. 5. (Color online) Scaling of gap LGL plotted as a function
of U for ρ = 2 and W = 0.0.

point as done in Ref. [20]. Therefore, if we plot ln(L/ξ ) vs
LGL × [1 + {1/(2 ln L + C)}], then the curves for different
lengths collapse in the vicinity of UC (scaled) (see Fig. 6,
main panel). Combining the scaling method described above
and DMRG results, we give an approximate value of UC in
various configurations.

From the mean-field results (Figs. 1 and 2) for the optical
lattice, we find that the ρ = 1 MI lobe remains unaltered
in the presence of W . However, for higher densities, the
critical value UC(W ) for SF-MI transition decreases as W

increases (e.g., UC for ρ = 2 lobe decreases from ∼10 to
∼7 when W increases from 0.0 to 4.0) and this is more
prominent as the density increases, as shown in Fig. 1. Also,
the MI lobes get enlarged as the W increases. This is further
confirmed by the DMRG results from Figs. 7 and 8. The
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FIG. 6. (Color online) Scaled gap GL plotted as a function of
scaled U for ρ = 2 and W = 0.0. The curves for different lengths
collapse in the vicinity of UC as the correlation length ξ diverges
exponentially near UC . (Inset) Scaled gap GL plotted as a function of
U . The curves for different lengths cross at UC (∼5.8) showing the
critical point for the SF-MI transition.
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FIG. 7. (Color online) Phase diagram for ρ = 2 for various values
of W , for optical lattice.

trend is the same for both the densities, ρ = 2 and 3, but the
effect of W is more when the density is large. For ρ = 2,
UC(W = 4.0) ≈ 1.6 compared to UC(W = 0.0) ≈ 5.7. For
ρ = 3, UC decreases steadily as W increases; UC(W = 0.0) ≈
8.6, UC(W = 1.0) ≈ 6.6, UC(W = 2.0) ≈ 4.6, for UC(W =
3.0) ≈ 2.6 and UC(W = 4.0) ≈ 0.8. The reason for this
behavior at higher densities is that there is a greater probability
of having three or more atoms at a site, which enhances the
three-body interaction and suppresses atom hopping from one
site to another.

From the mean-field results for the optical superlattice
(Figs. 3 and 4), we see that the lobes L1, R1, and R2
remain unaffected in the presence of a finite W . This is
expected because in such configurations, no two adjacent
sites have more than two atoms, and for an atom to hop
two sites is a second-order process, which is of much less
probability. However, the SLMI phase R3, which has sublattice
atomic densities ρA = 2 and ρB = 1 (and thus has average
density ρ = 3/2) gets enlarged in the presence of W . This
is understood from the following: When W = 0.0 and as
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FIG. 8. (Color online) Phase diagram for ρ = 3 for various values
of W , for optical lattice.
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FIG. 9. (Color online) (a) Phase diagram for ρ = 3/2 and (b)
phase diagram for ρ = 2, in an optical superlattice with W = 0.0 and
5.0.

we increase λ, keeping the average density ρ = 3/2, the
ground state goes from the superfluid to the SLMI phase
R3. With a further increase of λ > 15, the ground state is
again a superfluid which has 2 < ρA < 3 and 0 < ρB < 1.
However, when W is finite, the system does not prefer to have
sublattice densities above 2. Thus SLMI phase R3 has a lower
energy than superfluid with sublattice densities 2 < ρA < 3
and 0 < ρB < 1. DMRG results [Fig. 9(a)] show a similar
trend. When W = 0.0, the system undergoes a phase transition
from the SF phase to the SLMI phase R3 at a value of λ ∼ 0.3.
However, in the presence of a finite W , the transition occurs at
a lower λ(∼0.15), signifying the enlargement of the insulating
lobes.

The phase diagram for the system with a filling factor ρ = 2,
shows a marked difference in the presence of W . Comparing
Figs. 3 and 4, we find that the MI lobe L2 becomes large and
its tip shifts from λ ∼ 1 to λ ∼ 9. Also as λ increases to ∼17.5
(Fig. 3), the MI lobe L2 goes to the SLMI phase R4. However,
in the presence of W (Fig. 4), the tip of the R4 lobe gets shifted
to ∼20.5. As we have considered the maximum value of λ till
18.0, SLMI phase R4 does not appear in Fig. 4. Similar results
are also obtained by the DMRG analysis [Fig. 9(b)]. For finite
W = 5.0, the critical superlattice potential λC for transition
from the MI phase L2 to SF phase shifts from 9.4 to 14.8
and that for the SF phase to SLMI phase R4 shifts from 10.6
to 15.2. In the absence of W and for lower values of λ, the
superlattice initially stays in the MI phase L2, for U = 10.0.
As λ becomes comparable to U , the system goes from the MI
phase to the SF phase at λ ∼ 9.4. As λ is further increased,
the system goes from the SF phase to the SLMI phase R4, at a
value of λ ∼ 10.6. For W = 5.0, the system initially is in the
MI phase, L2. Now, due to the presence of W , the SF window
is shifted to a λ value which is comparable to U + W , as shown
in Fig. 9(b). The MI to SF transition takes place at λ ∼ 14.8,
and the second transition from SF to SLMI (R4) takes place
at λ ∼ 15.2. The SF window not only shifts for W = 5.0 but
also shrinks when compared to that of W = 0.0. This shifting
of the R4 lobe can be understood as follows: in the R4 phase
there are three atoms at every alternate site. As W increases,
it becomes difficult to confine three or more atoms at a single

site. Hence to suppress this effect due to the increase in W , we
need to increase λ.

The three-body interaction strength scales with the two-
body interaction strength as follows: W ∝ ln(Cη2)(V0/Er )3/4

e−2
√

V0/Er a2
s k

2U
2

[8,21–23]. The typical range of a2
s k

2 is 10−8

to 10−2, which supports the fact that the three-body interaction
is weaker than the two-body interaction [24]. Also, it can
be seen that three-body interaction is tunable and can be
adjusted by varying (V0/Er ). The three-body effects have been
experimentally observed before through various methods as
mentioned earlier [13–15]. We propose an alternate method
to observe these effects in an optical lattice and superlattice
that we have considered in our present work. The effect of
W is very small compared to the two-body interaction in
the system of bosons in an optical lattice. This is of course
true when the filling factor of the system is unity. From
Eq. (1) it is clear that the three-body energy scales as n3.
Therefore, in order to observe the effect of the three-body
interaction in the experiment it is important to study the SF-MI
transition at higher densities. In the seminal work of Greiner
et al. [3], the SF-MI transition was observed by probing the
excitation spectrum resulting from a particle-hole excitation.
Such an excitation was created by applying a potential gradient
to the system in the MI phase. By plotting the excitation
probability versus an applied vertical potential gradient, two
narrow resonance peaks were seen. The first peak was at the
potential gradient equal to the single-particle excitation gap,
and this corresponds to the MI shell at density equal to one.
One of the possible reasons for the appearance of the second
peak was the particle-hole excitation created in the MI shell
at a density equal to two. In the MI shell at a density equal to
two, the particle-hole excitation at a given site would populate
one of the neighboring sites with three atoms. In principle,
when there are three or more atoms in a lattice site, the atoms
will experience the effect of W along with that of U . In
general when there are n (> 1) atoms in each site the system
is in the MI phase with a density equal to n, the excitation
gap is 	 = U + (n − 1)W for the optical lattice, and 	 =
U + (n − 1)W + λ for the optical superlattice. Therefore,
by measuring the values of the potential gradients for the
higher-order peaks, and taking the difference between them for
different densities, it would be possible to determine the value
of W .

In conclusion, we have studied the effects of the on-site
three-body interactions in a system of neutral bosons in an
optical lattice and superlattice. We first use the mean-field
theory to understand the behavior of the system and then
confirm the results using the DMRG method. In the optical
lattice, and the superlattice as well, we find that the Mott-
insulator lobes get enlarged as the value of W increases.
When the density ρ = 1, the effect of W is not significant.
However, as the density of the system increases, the effect
of W becomes significantly large, which changes the SF-MI
critical point drastically. We obtain the phase diagrams for
different combinations of densities, strengths of the three-body
interaction, and the superlattice potential. Finally, we have
also suggested a possible experimental scenario by which
it may be possible to observe a signature of the three-body
interaction.
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