
Introduction

Arbuscular mycorrhizal (AM) fungi are soil organisms
with a worldwide distribution that form root symbiosis
with most plant families. Their functional importance in
natural and semi-natural ecosystems is commonly
accepted with regard to enhanced plant productivity and
diversity as well as increased plant resistance to biotic
and abiotic stresses (Smith and Read 2008). Nowadays,
these fungi are receiving attention because of their
increasing range of application in agriculture,
horticulture and forestry, as well as in environmental
reclamation, increasing crop yield and health, and
limiting the use of agrochemicals (Johansson et al 2004).

Arbuscular mycorrhizal fungal propagules exist
as spores, living hyphae, isolated vesicles, mycorrhizal
root segments or colonized soil (Diop et al 1994a). Root
segments and spores isolated from open-pot culture
(Gilmore 1968) of AM-inoculated plants have been the
usual source of AM inoculum for research purposes
(Ferguson and Woodhead 1982). However, this type of
inoculum occupies a large space in production and is
prone to contamination even with good phytosanitary
care (Ames and Linderman 1978). Production of
propagules under aseptic conditions remains one of the
most promising methods of obtaining high quality
pathogen-free inoculum that is required for research
purposes.

The conventional method used to study the life
cycle of AM fungi is to associate them with root
organ culture (ROC) (Fortin et al 2002). The

in situ

establishment of ROC has greatly increased our
understanding of various aspects of the AM symbiosis by
allowing non destructive observations throughout
the fungal life cycle and its potential for research and
inoculum production is gaining importance. The
cultivation of AM fungi in association with the Ri T-
DNA transformed roots has enabled new possibilities in
the study of the extra-radical mycelium of AM (Fortin et
al 2002). In this mini review, an effort has been made to
highlight various cultivation systems of AM
fungi along with different hosts, culture media and types
of AM fungal propagules used to initiate monoxenic
cultures. The use of mycorrhizal ROC has allowed the
elucidation of many aspects of this intimate symbiotic
plant-fungal association. Although the host plant is
replaced by Ri T-DNA transformed roots, the fungus is
able to colonize and sporulate. The development of
spores, morphologically and structurally similar to those
produced in pot cultures, and the ability of the
produced propagules to retain their viability to colonize
and initiate new mycorrhizal symbiosis indicates that the
fungus is able to complete its life cycle. Thus the success
achieved by culture of AM species using Ri T-
DNA transformed roots indicates that this technique can
be exploited for large scale inoculum production.

Since Mosse and Hepper (1975) first established cultures
of AM fungi using excised roots, tremendous
improvements have been made in the use of Ri T-DNA
transformed roots (Mugnier and Mosse 1987), in the
manipulation of the culture media to induce sporulation
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(Bécard and Piché 1992), and in the development of a bi-
compartment system that allowed the production of root-
free AM fungal mycelium and spores (St-Arnaud et al
1996). This improvement has enabled studies in
sporulation dynamics (Declerck et al 2001), spore
ontogeny (Pawlowska et al 1999), stimulation of
germination and hyphal growth by CO (Bécard and
Piché 1989a), regulation of hyphal growth and branching
by root exudates (Nagahashi et al 1996), reactions to
compounds from the host and non-host roots (Schreiner
and Koide 1993), uptake, transfer and metabolic fate of
C-labeled metabolites (Pfeffer and Shachar-Hill 1996),

response of AM fungi to cell wall-associated phenolics
(Douds et al 1996) and flavonoids (Morandi et al 1992),
lipid metabolism (Bago et al 2002), transport of mineral
nutrients to roots (Dupré de Boulois et al 2005) and
isolation of microbe free AM fungal mycelium and
spores for molecular analysis (Pawlowska and Taylor
2004).

Using the split-plate method, Douds (2002)
demonstrated that AM fungi continue to sporulate after
medium from the distal compartment has been partially
replaced, and glucose provided to the proximal
compartment, resulting in repeated harvests from the
same Petri plate culture. Different production systems
have been derived from the basic ROC in Petri plates.
Tiwari and Adholeya (2003) and Adholeya et al (2005)
cultured root organs and AM fungi in small containers,
by which large-scale production was obtained. Large-
scale cultivation of AM fungi has also been performed in
an airlift bioreactor (Jolicoeur et al 1999), in a mist
bioreactor with perlite as the substrate (Jolicoeur 1998),
and in a bioreactor containing solid medium (Fortin et al
1996). In the patented container-based hydroponic
culture system of Wang (2003), the root organs and AM
fungus were periodically exposed to a liquid culture
medium. Gadkar et al (2006) further developed a
container in which a Petri plate containing ROC was
used to initiate fungal proliferation in a separate
compartment filled with sterile expanded clay balls. In
parallel to the systems based on excised roots, Voets et al
(2005) and Dupré de Boulois et al (2006) developed two

culture systems based on autotrophic plants. In
the system developed by Voets et al (2005), the shoot
developed outside the Petri plate while the roots and AM
fungus were associated inside the Petri plates that were
filled with a suitable gelled medium, resulting in more
than 12,000 spores per Petri plate after 22 weeks of
culturing. In another system (Dupré de Boulois et al
2006), the shoot developed in a sterile tube vertically
connected to the top of a Petri plate in which the AM
fungus and roots developed. The cultures were then
placed in growth chambers to provide controlled
environmental conditions adequate for plant growth and
~1,600 spores were obtained in a period of 12 weeks in
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in vitro

the root compartment of a bi-compartmental Petri plate.
A derived plant production system has recently
been detailed in a patent proposal (Declerck et al 2009)
where each pre-inoculated produced plant (Voets
et al 2009) is individually introduced into a sterile
growth tube. A nutrient solution circulates in this closed
system flowing onto the mycorrhizal roots. These studies
have thus greatly improved our earlier understanding of
AM fungi propagation processes and life cycles (Strullu
et al 1997). Other potential uses for this system are the
production of pure, concentrated inoculum and sterile
fungal tissue for genetic and physiological studies.

Advances in the development of
systems have opened new prospects in the study of the
AM symbiosis. Research areas such as fungal colony
architecture, physiology, biochemistry, cytology and
molecular biology, traditionally affected by the intrinsic
problems presented by culturing AM in soil, have
especially benefited from this revolution
(Declerck et al 2005).

Up till now, several Glomaceae and a few Gigasporaceae
genera have been successfully cultivated on ROC
(Table 1) and are maintained in international culture
collections (Declerck and Dalpé 2001).

is the first Acaulosporaceae
representative to have been successfully cultivated

Given that the long-term goal of all such research
is the establishment of AM fungi in axenic culture, it is
essential to establish many individual species in dual
culture to enable investigation on particular aspects of
the symbiosis.

Two media frequently used to culture AM fungi on ROC
are the minimal (M) medium (Bécard and Fortin 1988)
and the modified Strullu Romand (MSR) medium
(Strullu and Romand 1986, modified by Declerck et al
1998). Both these media contain micro- and macro-
nutrients as well as vitamins and sucrose (Cranenbrouck
et al 2005). Both media are solidified with a gelling
agent such as PhytaGel and GelGro. The successful
development of fungal isolates into sustainable culture
has been achieved using minimal M medium (Bécard
and Fortin 1988). While this medium has been widely
used for the study of AM fungi , it appears
unsuitable for the culture of other AM fungal species
(Douds 1997). Manipulation of medium composition and
pH to suit new fungal isolates could lead to a better
understanding of factors affecting the complex biology
underlying the symbiosis. MSR medium lacking sucrose
promoted higher germination rates in

(D'Souza et al 2013). ROC systems in
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bioreactors (Jolicoeur et al 1999) and containers (Gadkar
et al 2006) were performed with liquid M medium. In
the compartmented culture system (Gadkar et al 2006),
glucose-soaked cotton rolls were supplied to the ROC
and AM fungus, while the compartment containing
expanded clay was filled with a layer of liquid M-
medium without sugars and vitamins. Similar to the

hydroponic culture systems, sufficient aeration of
the liquid medium is needed in the solution
culture techniques (Jolicoeur et al 1999). Whole-plant

culture systems were conducted on the MSR
medium lacking sucrose and vitamins (Dupré de Boulois
et al 2006) that were similarly solidified with either
Phytagel or GelGro. The addition of vitamins and
sucrose is not required in whole-plant culture
systems as the autotrophic plant provides sugars
obtained by photosynthesis and metabolizes the vitamins
required for plant growth.

Ri T-DNA transformed roots have been used effectively
in studying the interaction between various plant hosts
and AM fungi. ROC was first developed by White and
coworkers (White 1943; Butcher 1980) who used
excised roots on synthetic mineral media supplemented
with vitamins and a carbohydrate source. However,
profuse root growth, characterized by the formation of

in

vivo

in vitro

in

vitro

in vitro

AM Host Root

numerous lower order branches, has been obtained in
relatively few plant species. The formation of lower
order roots is essential for increase in root biomass and
the establishment of continuous cultures. ROC was first
performed successfully by Mosse and Hepper (1975)
using an system based on a dual culture of spores
and excised roots of (clover) species. Mugnier
and Mosse (1987) obtained similar results using

L. (carrot) roots genetically transformed by
Conn. Later, Strullu and

Romand (1986, 1987) showed that it was also possible to
re-establish mycorrhiza on excised roots of ×

Duchesne (strawberry), L.
(onion), and L. (tomato), using
the intra-radical phase (vesicles or entire mycorrhizal
root pieces) of several species as inoculum. The

large scale production of spores
was initially attempted on ROC (Declerck et al 2001)
and later extended to plant systems (Voets et al 2009).
This system of dual culture allowed abundant production
of spores of (Diop et al 1992). A natural
genetic transformation of plants by the ubiquitous soil
bacterium (Riker et al 1930) induces a
condition known as 'hairy roots'. This stable
transformation (Tepfer 1989) produces Ri T-DNA
transformed plant tissues that are morphogenetically
programmed to develop as roots. A modified hormonal
balance encourages vigour and allows profuse growth on

in vitro

Trifolium

Daucus
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Agrobacterium rhizogenes

Fragaria

Ananassa Allium cepa

Solanum lycopersicum

Glomus

in vitro R. irregularis

G. margarita

A. rhizogenes

Table 1. Arbuscular mycorrhizal (AM) species cultivated on Root Organ Culture_______________________________________________________________________________________________

AM species Reference_______________________________________________________________________________________________

Sieverd and Toro Dalpé and Declerck 2002
Nicolson & Schenck Bago et al 1998b

Becker & Hall Miller-Wideman and Watrud 1984; Diop et al 1992;
Gadkar and Adholeya 2000

(Nicolson & Gerd.) Gerd. & Trappe Gadkar et al 1997
Hall & Abbott Fernández Bidondo et al 2012

Becker & Gerd. Schreiner and Koide 1993
(Karst.) Berch Diop et al 1994a; Declerck et al 1996a

, Bloss & Menge Mathur and Vyas 1995
Skou & Jakobsen Nuutila et al 1995; Gryndler et al 1998

Nicolson & Smith De-Souza and Berbara 1999; Rodrigues and Rodrigues
2012

(Nicolson & Gerd.) Hepper 1981; Karandashov et al 2000
Walker & Schuessler

(Nicolson & Gerd.) Walker & Schü Declerck et al 1998
(Nicolson & Gerd.) Walker & Schuessler Douds 1997

(Blaszk., Wubet, Renker & Chabot et al 1992a; St-Arnaud et al 1996
Buscot) Walker & Schuessler

(Thaxter) Walker & Schü Declerck et al 1998
Dalpé & Declerck) Walker & Schuessler Declerck et al 2000

Gerd. & Bakshi Bi et al 2004_______________________________________________________________________________________________

Acaulospora rehmii

Gigaspora rosea

Gi. margarita

Gi. gigantea

Gi. decipiens

Glomus etunicatum

G. versiforme

G. deserticola Trappe

G. fistulosum

G. clarum

Funneliformis caledonius

F. geosporus

F. mosseae

Rhizophagus irregularis

R. fasciculatus

R. proliferus (

Sclerocystis sinuosa

βler

βler
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artificial media (Tepfer 1989). Carrot and
L. (bindweed) were among the earliest species to

be transformed using (Tepfer and Tempé
1981). These Ri T-DNA transformed roots have since
served in a wide range of fundamental and applied
studies on AM symbiosis. ROC is commonly initiated on
carrot root tissue and its use has permitted an increase in
spore production of (Mugnier and Mosse
1987). In recent years however, different excised roots,
notably of L. (chicory) (Fig. 1a) and

Gaertn. (barrel medic), have been
successfully used to culture AM fungi (Boisson-Dernier
et al 2001; Fontaine et al 2004). It has been revealed that
a change of root clone impacts AM fungal spore
production (Tiwari and Adholeya 2003). Voets et al
(2005) used L. (potato) and obtained
production of ~12,000 spores in 12 weeks of cultivation.
Fernández et al (2009) carried out monoxenic
symbiosis between and transformed

(L.) Merr. (soybean) roots (TSRs) and
showed that TSR cultures were able to support the
growth and characteristic development of the fungus.
Pratap Chandran et al (2011) co-cultivated transformed
roots species with Tul. &
Tul. in Petri plate and observed 60% AM colonization on
the 20th day. Other hosts, such as tissue cultured banana
( Colla) were found suitable for
association (Koffi et al 2009) but were less effective for
large scale production of spores.

Many species and strains of AM fungi have been
cultured in the ROC system. However, only a few
species are fast growers and colonizers, able to produce

Convolvulus

sepium

A. rhizogenes

F. mosseae

Cichorium intybus

Medicago truncatula

Solanum tuberosum

in vitro

R. irregularis

Glycine max

Canavalia G. microcarpum

Musa acuminata

AM Fungal Inocula

thousands of propagules in a few months and
thus have potential in large scale production. In most
cases, two types of fungal inocula viz. extra-radical
spores or propagules from the intra-radical phase
(mycorrhizal root fragments and isolated vesicles) of the
fungal ontogeny can be used to initiate monoxenic
cultures (Fig. 1b, c, & d). Cultures of AM fungal species
that do not produce vesicles ( and

species) are systematically produced using
spores, which are usually large and germinate
vigorously. Recently, sporocarps of have also
been used in an attempt to establish cultures
(Budi et al 1999). The intra-radical forms of AM fungi
have been less commonly used as starter material despite
being a potentially good source of inoculum. Strullu and
Romand (1987) demonstrated that intra-radical vesicles
and hyphae within root pieces or extracted from roots by
enzymatic maceration were able to regenerate vegetative
mycelium in species. When associated with
tomato roots, the mycelium formed new and typical
mycorrhizae. This system was successfully used by Diop
et al (1994a) for dual axenic culture of mycorrhizal root-
segments containing or
associated with non-transformed tomato roots. The
cultivation system was further improved by using
transformed carrot roots as host with several
species (Diop 1995). Diop et al (1994a) obtained
approximately 2000 spores per Petri dish over a period
of three months using a dual culture of leek ( sp.)
root-segments colonized by associated
with tomato roots. They further demonstrated that the
fungus both in tomato root segments and as spores,
produced in sterile conditions, germinated well and was
able to complete its life cycle in association with isolated

in vitro

Scutellospora

Gigaspora

F. mosseae

in vitro

Glomus

G. versiforme R. irregularis

Glomus

Allium

G. versiforme

Figure 1. a. Inoculation of Ri T-DNA transformed roots of L. using AM spores; b. Healthy

spores from pure culture (pot culture); c. hyphal growth in colonized root fragment; d. Intra-radical

vesicle as propagule; e. Spore germination in sp.; f. Spore germination in sp.

Cichorium intybus

In vitro

in vitro Glomus Acaulospora
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tomato roots. Inoculation of (Delile)
A. Chev. plantlets with the newly produced spores and
mycorrhizal root-segments were also successfully
demonstrated (Diop et al 1994a). Species from

clade/species complex are found among the
most productive so far. This species is the
most frequently cultured AM fungus .

Strullu and Plenchette (1990a, b) demonstrated
the ability of entrapped, disinfected mycorrhizal root
fragments to form new mycorrhizae, even after storage
for 1 month at 4C. Intra-radical vesicles separated from
roots and encapsulated were also shown to retain their
inoculum potential (Plenchette and Strullu 2003) and
hence represent another practical source of inoculum. In
a study by Declerck et al (1996a), produced
spores of were entrapped in alginate beads
and their inoculum potential was evaluated by a
biological assay. The results showed that the
encapsulated spores were able to germinate and the
regenerated mycelium retained its ability to colonize
roots under controlled conditions. Declerck and Angelo-
van Coppenolle (2000) developed a cryopreservation
technique based on the entrapment of monoxenically
produced spores of in alginate beads.
These studies indicate the feasibility of encapsulation of

produced spores and therefore represent a new
kind of high quality inoculum, free of pathogens.

For all AM propagules, appropriate selection
and efficiency of sterilization process are keys to the
success of axenic or monoxenic AM fungal cultures.
Isolated spores are often surface sterilized using the two-
steps procedure of Metz et al (1979) as modified by
Bécard and Fortin (1988). AM sheared inocula are
surface sterilized according to Diop et al's (1994a, b)
method. Vesicles are then easily isolated by enzymatic
digestion of the heavily colonized roots. Surface
sterilization involves baths in chloramine T (2%)
solution with traces of a surfactant (Tween 20/80) and
antibiotics, such as streptomycin or gentamycin. To
maintain spore dormancy, all steps from spore isolation
to rinsing should be done on ice. If spores are not to be
used immediately, they should be stored at 4C, either in
distilled water, on water agar, or on 0.1% MgSO ·7H O
solidified with 0.4% gellan gum. To limit the risk of
contamination by bacteria or fungi that were not
eliminated during the sterilization process, spore number
should be limited in each Petri plate.

Generally AM fungal spores do not need
specific conditions or the presence of a host root to
germinate. However, root exudates and 2% CO can
stimulate germination and/or post germination hyphal
growth (Buée 2000). Recalcitrant spores can be placed
alongside a growing root. If spores fail to germinate

Faidherbia albida

R.

irregularis

sensu lato

in vitro

in vitro

G. versiforme

R. irregularis

in vitro

4 2

2

within 20 days, either the sterilization treatment is
possibly strong or the spores are immature, dormant, or
dead. It is well known that spores of some AM fungal
species require cold stratification (4C) prior to
germination (Smith and Read 2008). This requirement
can vary within a genus. (Koske 1981) and

require cold treatment, whereas
did not (Bécard and Fortin 1988). The cold treatment
(14–21 days) is best applied prior to spore isolation,
when the spores are still attached to the extra-radical
mycelium (Fortin et al 2002).

The first continuous culture was achieved by Strullu and
Romand (1986) and is now commonly used for a wide
range of (Declerck et al 1998).
Continuous culture is obtained by transferring
mycorrhizal roots to fresh medium either with or without
spores (St-Arnaud et al 1996; Declerck et al 1996a).
Following this transfer, the pre-existing root-fungus
association continues to proliferate. While using older
mycorrhizal roots, it is preferable to transfer them to a
Petri plate containing an actively growing root (Declerck
et al 1998). In the method by St-Arnaud et al (1996),
apical segments of actively growing mycorrhizal roots
with or without extra-radical mycelium that are
supporting the spores are transferred to a fresh medium.
The root and associated fungus continues to grow across
successive transfers onto fresh medium. This procedure
requires the use of young, actively growing cultures, to
allow continuous growth of the host root. The method is
effective for species having a well-developed
intra-radical phase, such as . For AM
fungal species that do not produce intra-radical vesicles
( and species), direct sub-
culturing is possible but it is more difficult to achieve
(Fortin et al 2002). Alternatively, with older cultures,

produced spores can be used to inoculate new roots
(Bécard and Fortin 1988).

Diop (1995) established a bank of germplasm of
AM fungi monoxenically cultivated in association with
isolated tomato or transformed carrot roots. The
propagules produced (spores, hyphae, colonized roots)
germinated and re-colonized new plants efficiently.
Encapsulation stabilizes biological properties of
mycorrhizal roots and the isolated vesicles or spores
(Declerk et al 1996b). This also preserves infectivity of
AM propagules under or assays.

The use of ROC of AM enables the aseptic production of
spores of various AM fungal species. Germination of the
AM fungal propagules usually proceeds from the

G. gigantea

G. margarita G. rosea

Glomus species

Glomus
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Gigaspora Scutellospora
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Fungal Morphological Features in ROC

System
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pushing of the inner spore wall through the lumen of the
subtending hyphae (De-Souza and Berbara 1999),
directly through the spore wall (Tommerup and Kidby
1980), or the subtending hyphal wall (Giovannetti et al
1991). Spore germination gives rise either to straight,
thick-walled hyphae (De-Souza and Berbara 1999) or to
stunted hyphae, depending on the physiological status of
spore (Juge et al 2002) (Fig. 1e, f & 2a). The
germination of isolated intra-radical vesicles was clearly
demonstrated by Diop et al (1994a, b). Germination
occurred through the lumen of the subtending hyphal
attachment (Declerck et al 1998), the germ tubes
generating runner and ramified hyphae similar to those
of AM fungi spores. To date, no systematic investigation
has been conducted on factors influencing vesicle
germination. Among other fungal structures capable of
re-growth are hyphae from the peridium of
sporocarps which have the capability to elongate and
differentiate into vesicle-like structures (Budi et al
1999). Furthermore, the “germination” of colonized root
segments is currently used to replicate AM fungi
monoxenic cultures (Strullu et al 1991). The root
vesicles and eventually intra-radical spores are certainly
the fungal propagules involved in root segment
“germination” as colonized root segments, where
vesicles and spores were absent, remained unsuccessful
in propagation. Germ tube growth is dependent on the
availability of spore reserves (Sancholle et al 2001), and
the protoplasm contains all the organelles required to
ensure development (Meier and Charvat 1992). This
consists of a straight-growing hypha (runner hyphae,
RH) exploring the media by successive branching into
thinner-diameter filaments (Declerck et al 2000) (Fig.

F. mosseae

2b). In the case of no hyphal root contact or host signal
detection, germ tube growth stops within a few days
(Bécard and Piché 1989b). The protoplasm shrinks back
from the hyphal apex, and is sequestered from the empty
hyphae by repeated septation (Logi et al 1998). These
germination attempts resemble a well-orchestrated
survival scenario, providing repeated chances for the
fungus to establish symbiosis. Spore germination does
not generally require the presence of a host root (the
non-symbiotic stage). However, for further growth and
development, the AM fungus becomes dependent upon
the presence of, but not necessarily physical contact with
an adequate host (Giovannetti et al 1996). Using

it was shown that this activated physiological
stage (the pre-symbiotic stage) requires the simultaneous
presence of root exudates and CO (Poulin et al 1993).
Bécard and Piché (1989 ) suggested that was
capable of fixing CO as a mineral source of carbon.

labeling with CO and NMR spectroscopic
analysis has confirmed that substantial dark fixation of
CO occurs in during spore germination
(Bago et al 1999a).

In monoxenic cultures, root colonization levels
vary according to the host plant species and fungal
isolates (Elsen et al 2003). Acidification of the media
directly influences AM fungal development. The pH 5.5
value of standard monoxenic culture systems might limit
the growth of some isolates, but an increase in pH of the
nutritive media may alter the solubility and balance of
the media components. Buffered media may counteract
such imbalances. Most monoxenic culture plants support
the -type colonization (Glorian 2002). A contrary
situation occurs with carrot root culture, an Apiaceae

G.

rosea,

a G. rosea
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R. irregularis

Arum

2
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2
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Figure 2. a. Spore germination in sp.; b. Hyphal growth in ; c. Hyphal colonization in

transformed root; d. VLS in transformed root; e. Sporulation in ; f. Sporulation in

Scutellospora in vitro

Rhizophagus irregularis

Glomus clarum
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(Umbelliferae) recognized as supporting both - and
-type colonization (Smith and Smith 1997),

whereby -type colonization is differentiated more.
Only one isolate has differentiated -
type colonization with a carrot root culture
(Karandashov et al 2000), and one isolate
had mixed types, differentiating hyphal coils in the first
layer of cortical cells (Pawlowska et al 1999). and

morphotypes were long considered to be
determined by the plant genome (Smith and Smith
1997), but the typical anatomical type observed in
carrot root culture colonized by
emphasizes the impact of the fungal genome on the
regulation of fungal morphology (Cavagnaro et al 2001).
Budi et al (1999) reported that the hyphae from the
peridium of sporocarps have the capability to
elongate and differentiate into vesicle-like structures
(VLS). When differentiated, VLS occurred within 2–8
days after root contact and their size ranged between 20
and 100 μm, depending on the species (Declerck et al
2005). VLS are small, hyaline thin-walled swellings
resembling miniature spores (Strullu and Romand 1987).
Hypotheses about their role range from a survival
process during the pre-symbiotic stage to an aborted
sporulation tentative (Declerck et al 2005) (Fig. 2 c & d).

The basic structure of the mycelium is
composed of large, straight growing relatively un-
branched thick walled runner hyphae (RH) (Friese and
Allen 1991), small-diameter thin walled branched
hyphae called arbuscule-like structures (ALS) (Bago et
al 1998a) or fine branching (FB) (Juge et al 2009), and
spores. Runner hyphae are similar to pre-symbiotic
hyphae in their capacity to extend rapidly, to colonize the
substrates, and to establish root contact. Microscopical
cellular and subcellular observations allow detection of
protoplasmic streaming, nuclei migration and organelle
morphology (Bago et al 2001). Hyphae are either single-
walled, as with (Garriock et al 1989), or
double-walled as found through ultrastructure work on

(Bonfante-Fasolo and Grippiolo 1982).
The abundance of runner and branched hyphae
determines the mycelium architecture. Once a successful
symbiosis is established, numerous ALS are
differentiated along hyphae (Bago et al 1998a). Ultra-
structural investigations revealed that ALS (renamed as
branched absorbing structures or BAS; Bago et al 1998d)
are very similar to intra-radical arbuscules and, like
arbuscules, they are sites of intense metabolic activity.
Arbuscules and BAS are also similar in terms of their
gross morphology (thinner diameter with increased
dichotomous branching). The extent to which these
structures are functionally comparable remains to be
elucidated. However, prolific branching of the fungus to
form BAS results into an important increase in surface
area producing a structure better adapted for nutrient

Paris

Arum

Arum

F. caledonius Paris

G. etunicatum

Paris

Arum

Paris

F. caledonius

F. mosseae

G. versiforme

R. fasciculatus

uptake. It has also been shown that increased
acidification of the medium coincides with a higher
production of spore-associated BAS. This change in pH
could be a direct consequence of a greater phosphate
uptake, to provide storage products for the spores (Bago
et al 1998b, 1998c). It also appears that inorganic
nitrogen and phosphate absorption by extra-radical
mycelium is closely correlated with BAS development
(Bago et al 1998 ). BAS may adopt variable
morphologies, the most striking being the large and
stunted ramified structures of
(Karandashov et al 1999).

Spore differentiation occurs either apically or
intercalary along lateral branches of RH, often in
association with BAS (Bago et al 1998d). The outer
evanescent spore wall then originates from the hyphal
wall. The spore apical hyphae, even though collapsed,
remain attached to the spore during most of the
maturation process. Intra-radical spores have sometimes
been observed in monoxenic cultures (De-Souza and
Barbara 1999). Spore production differs considerably
between species and between isolates of a single species,
and seems to be related to spore size. With the small to
medium size spore species and

, an average of 7,800 and 8,200 spores were
differentiated in mono-compartment (Declerck et al
2001) and bi-compartment growth systems (St-Arnaud et
al 1996) respectively. Most species exhibit an
asynchronous mode of sporulation, with a lag, log
and plateau phase (Declerck et al 1996a, 2001) (Fig. 2 e
& f).

Research into major differences between AM
fungal cultures has dealt primarily with mycelium
architecture, hyphal network density, pattern of
ramification, spore abundance, and positioning and
clustering of spores. Large-spore species usually exhibit
a less dense mycelium and fewer anastomoses. Stunted
BAS, together with typical -type root colonization,
characterize isolates (Karandashov et al
2000). Spore maturation of monoxenic cultured AM
fungi follow similar ontogeny steps as those in pot-
culture. Differences reside essentially in the clean,
contaminant-free quality of monoxenic cultured spores,
with abundant fungal material available at precise age
and physiological stages. The comparison between
monoxenically cultured species shows ready segregation
between large- and small-spore species in terms of apical
mode of development, single spore differentiation, and
low sporulation levels. By contrast, smaller spore species
present a variable growth pattern, mainly with
intercalary sympodial spore growth, clustered spores,
and high sporulation levels. Spore wall morphology of
monoxenically differentiated spores does not differ
fundamentally from field-collected ones, apart from the

d
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lower mean spore diameter measured for some AM
fungal isolates (Pawlowska et al 1999). With monoxenic
cultures, all elements of spore wall architecture remain
observable throughout maturation, including the
evanescent outer wall, often absent in soil-propagated
AM fungal spores, due to abrasion and/or digestion by
soil micro-organisms.

Although culture is an artificial system, it may be
a valuable tool to study fundamental and practical
aspects of AM symbiosis, complementing experimental
approaches. The compartmentalized Petri dish system
(St-Arnaud et al 1996) is particularly suitable for the
study of nutrient uptake and translocation in AM fungi
under strictly controlled conditions. It also allows the
differentiation between intra-radical and extra-radical
fungal metabolism (Bago et al 2000). The compart-
mentalized system has been used for example, by Joner
et al (2000) to study P transport by the extra-radical
hyphae of , and in N nutrition, the
compartmentalized system was used to show that
the extra-radical hyphae of facilitate nitrate
(Bago et al 1996) and ammonium absorption (Villegas
2001).

The first report of interactions between soil
microbes and AM fungi under aseptic conditions
was by Mosse (1962), who observed that root
colonization could not be established without adding
either a suspension of species or various
types of bacterial filtrates. Following this pioneering
work, a wide range of soil bacteria and fungi has been
shown to enhance germination of spores and
hyphal growth of without direct contact
between the organisms. These results suggest
involvement of volatile ( CO ) or highly diffusible
substances (Azcón, 1989). Simultaneously, spore-
associated bacteria have been identified from the genera

and (Mayo et al 1986),
and that cell-free fractions from rhizosphere bacteria
cultures have the same stimulatory effect as complete
bacterial cultures (Azcón 1987). AM fungi can
contribute to root disease suppression through
mechanisms not well understood (Linderman 1994) but
the most obvious effect of AM fungi has been attributed
to amelioration of nutrient uptake (P and others),
resulting in more vigour in growing plants that are better
able to ward off or tolerate root disease. St-Arnaud et al
(1995a) proposed a compartmentalized system to
elucidate interactions between and the root
pathogen f. sp .
Significant negative correlations were found between
conidia production and hyphae or spore
concentrations. McAllister et al (1994) found no
interactions between spores of and

Fundamental and Practical Studies
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P. putida Serratia plymutica

P. aeruginosa P.
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in vitro

in vitro

in vitro

in vitro

Oudem or (Mart.)
Sacc. Life cycles of and the burrowing
nematode, (Cobb) Thorne, were
achieved in monoxenic cultures (Elsen et al 2001). The
AM fungus reduced the nematode population by 50%.
Also, AM root-organ cultures showed a synergistic
interaction between the extra-radical mycelium of

and soil bacteria in a study of rhizosphere
nutritional dynamics (Villegas 2001). In this study,
species-specific interactions were obtained between

and (Schröter)
Migula, Trevisan and
Lehman and Neumann. Although the inherent ability of
the fungus and the bacteria to solubilize a recalcitrant
form of calcium phosphate was low, and

interacting with the extra-radical mycelium
markedly increased P availability in the growth medium.
This increase was dependent on the N source, which
allowed a reduction of the pH (Villegas and Fortin
2001). Associations found between some bacterial
strains and AM fungal propagules may have a
promotional effect on short-term pre-symbiotic
mycelium development but little impact on AM
propagule germination (Fernández Bidondo et al 2011).

Although culture is an artificial system, it may be
a valuable tool to study fundamental and practical
aspects of AM symbiosis, complementing the
experimental approaches. The most evident advantage
shared by all cultivation systems is the absence
of undesirable microorganisms due to controlled
conditions, rendering greater suitability for large-scale
production of high-quality inoculum. Contamination by
other microorganisms may occur either at the
establishment of the cultivation process or at later stages
of culture. Therefore, it may be useful to control the
cultures visually, by standard plate-counting techniques
and by molecular techniques. The cultures may be placed
in a growth chamber requiring minimal space for
incubation with no light required in the case of ROCs.
Following sporulation dynamics during cultivation also
provides a means to control the level of spore production
and to determine the optimal harvesting time. Factors
that influence optimal production (e.g. nutrient
availability, presence of contaminants) can be more
easily detected and controlled in liquid cultures. As a
drawback, the diversity in terms of genera of AM fungi
that have been grown is lower than under pot
cultivation systems. Once successfully initiated, the
cultures may be maintained for periods exceeding 6 to
12 months without intervention. The harvesting method
of solid cultures involves solubilization of the
medium by citrate buffer i.e. the gelling agent may be

Advantages and Disadvantages of the Root

Organ Culture System
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removed from the culture medium so as to stimulate re-
growth of the fungus (Doner and Bécard 1991).
Monoxenic cultures provide access to abundant and
high-quality fungal material suitable for taxonomic and
evolutionary studies (Fortin et al 2002). In terms of
biodiversity, monoxenic cultures provide a tool for basic
comparative analyses of root populations and strain
potential, long-term propagation capabilities, and fungal
adaptation to environment.

The continued development of high quality and low-cost
methods for production of AM fungal spores under

systems may lead to new and advanced methods of
large-scale inoculum production of AM fungi in the near
future. The application of contaminant free inoculum can
be of great value for propagation of high-value
crops and ornamental plants (Kapoor et al 2008). In
addition, propagation in association with AM
fungi could reduce mortality rates and the transplantation
shock of re-introduced endangered plant species. It could
also be used to enhance the production of secondary
metabolites used in the pharmaceutical industry (Kapoor
et al 2008).

Intra-radical propagules can serve as a source of
high-quality inoculum. Techniques such as sonication
and gradient flotation as well as enzymatic methods,
may be developed to separate intra-radical spores and
vesicles from roots (Biermann and Linderman 1983).The
encapsulation of AM fungi produced monoxenically in
alginate beads offers an opportunity to diversify
inoculation process. It might be helpful to incorporate
stimulatory compounds such as flavonoids in beads
containing AM fungi (Gianinazzi-Pearson et al 1989) or
synergic microorganisms (Hildebrant et al 2002).

The development of arbuscule-like structures in
only a few dual cultures (Karandashov et al 2000) poses
the question of whether there is taxonomic significance
or whether they are produced in soils. The
compartmentalized system (St-Arnaud et al
1995b) may help to clarify the mechanisms involved in
interactions between AM fungi and pathogenic/
nonpathogenic rhizosphere microorganisms and also the
metabolism of AM fungi.

The production of AM fungi on plants under
conditions has recently been proposed (Voets et al

2005) and extended to hydroponic systems (Declerck et
al 2009). Following the pre-inoculation of a suitable
autotrophic host plant in the system developed by Voets
et al (2009), a culture is transferred in a hydroponic
cultivation system favouring production of large
quantities of propagules. However, the effectiveness of
the produced propagules under adverse

Conclusion

in

vitro

in vitro

in vitro

in vitro

in

vitro

in vitro

conditions remains uncertain. Some AM fungi lose their
colonization potential after several successive
subcultures (Plenchette et al 1996). Therefore, it will be
necessary to evaluate inoculum potential of different
generations of AM propagules in continuous monoxenic
cultures. In order to conserve permanent fungal
biodiversity, and collections must be
maintained consistently.
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