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A new simple approach using environmentally benign, cheap, and easily recyclable graphite as a
heterogeneous catalyst for the synthesis of quinoxalines is described. A library of pharmacologically
interesting diphenylquinoxalines is prepared by the double condensation of substituted benzils,
phenanthrene-9,10-dione, and benzoin with aromatic diamines in 71–93% yields at room temperature
in ethanol. Aliphatic diamines gave corresponding dihydropyrazines from substituted benzils in
72–92% yields.

� 2012 Elsevier Ltd. All rights reserved.
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Figure 1. Biologically important quinoxalines.
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Quinoxalines are an important class of nitrogen containing het-
erocycles exhibiting diverse biological properties. They exhibit
antibacterial, antiviral, anthelmintic, anti-inflammatory, kinase
inhibitory, and anticancer activity.1 For example, NCG555879-
012a acts as BRCA1 inhibitor. Quinoxaline moiety is also present
in biologically active natural products like Izumiphenazine C2b

and Echinomycin2c (Fig. 1). In addition to their medicinal proper-
ties, they are also used in dyes and semiconductors.1

Over the years several catalysts and reagents are reported for
the synthesis of quinoxalines like CAN,3a sulfamic acid,3b IBX,3c

CuSO4�5H2O,3d polyaniline sulfate,3e amidosulfonic acid,3f PTSA,3g

Mn octahedral molecular sieves,3h ionic liquid (Hbim)BF4,3i

Ga(OTf)3,3j SnCl2,3k montmorillonite K-10,3l DMSO-PdI2,3m oxalic
acid,3n Bi(III),3o Zr(DS)4,3p ZrO2 mixed metal oxide,3q silica bonded
S-sulfonic acid,3r ZnI2,3s silica supported SbCl3,3t NbCl5,3u amber-
lyte-15,3v I2,3w Ru/C,3x etc.

Recently, many new methods are also reported like clayzic,4a

silica gel,4b Zr(IV) modified silica gel,4c alumina,4d DABCO,4e

Sm(OTf)2,4f PEG-400 in MW,4g PEG–water,4h glycerol,4i silica
sulfuric acid in PEG,4J CeCl3�7H2O in glycerin,4k FeCl3 with morpph-
oline,4l triethylamine/O2,4m Ga(ClO4)3,4n and PTSA/H2O.4o Catalyst-
free process like reactions using MW5a and grinding5b are also
reported. Many of these methods have disadvantages like using
strong acidic condition; require heating condition, or use of transi-
tion metals to obtain good yields. Presently, appreciated synthetic
methods are those using environmentally harmless reagents, recy-
clable catalysts, and energy efficient processes.

Continuing our interest in the synthesis of heterocycles using
tandem reaction,6a,b green catalyst,6c,d and solvent-free synthesis,6e
ll rights reserved.
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we herein report a highly efficient graphite catalyzed double con-
densation method for the synthesis of quinoxalines. The method
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Scheme 1. Graphite catalyzed synthesis of quinoxalines.
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Table 1
Optimization of graphite concentration

Entry Graphite (equiv) Time (min) Yielda (%)

1 20 30 86
2 10 60 89
3 5 60 90
4 2 60 92
5 0.5 300 42
6 0 900 Trace
7 20 24 h 51b

a Benzil (1 mmol), o-phenylenediamine (1 mmol), graphite, ethanol (10 mL),
stir, rt.

b Water (10 mL) was used as solvent.

Table 2
Synthesis of quinoxalines via Scheme 1a
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has advantages of ambient reaction condition, environmentally
acceptable solvent, high yields, simple work-up, and easy catalyst
recovery and reusability.

Graphite a form of carbon, though abundantly and cheaply
available benign chemical, has found very few applications in or-
ganic synthesis, for example, in Friedel–Crafts acylation,7a alkyl-
ation,7b and for conversion of aldehyde to nitriles.7c The benign
nature and abundant availability of it prompted us to explore its
potential use in organic synthesis. We visualized that it could be
used for the rapid double condensation of o-phenylenediamine
with 1,2-diketones to form quinoxalines.

As quinoxalines are medicinally important compounds, ethyl
alcohol was chosen as a solvent due to its lower toxicity. For initial
roductc 3 Time (h) Yieldb (%)
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Table 2 (continued)

Entry Diketone 1 Diamine 2 productc 3 Time (h) Yieldb (%)
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Table 2 (continued)

Entry Diketone 1 Diamine 2 productc 3 Time (h) Yieldb (%)
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a Reaction condition: diketone (1 mmol), diamine (1 mmol), graphite (2 mmol), ethanol (10 mL), stir rt.
b Isolate yield.
c Products confirmed based on their 1H NMR, 13C NMR, DEPT, and elemental analysis/LCMS (Supplementary data).
d Graphite (5 mmol), diamine (1.2 mmol), 80 �C.
e 2-(2-aminophenylimino)-1,2-diphenylethanol 3r.

Table 3
Reusability of catalysta

Cycle Time (min) Yieldb (%)

0 60 92
1 60 92
2 90 90
3 120 89
4 150 88
5 150 88
6 150 88

a Benzil (1 mmol), o-phenylenediamine (1 mmol), graphite (2 mmol), ethanol
(10 mL), stir, rt.

b Isolated yield.
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Scheme 2. Probable mechanism illustrating role of graphite in reaction.
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condensation studies between benzil 1a and o-phenylenediamine
2a (Scheme 1), excess of graphite (20 equiv) was used. This gave
quinoxaline 3a in 86% yield in 30 min. at room temperature. Hav-
ing observed the catalytic acceleration effect of graphite, we slowly
reduced the amount of graphite for optimization studies (Table 1).
It was observed that 2 equiv of graphite (entry 4) gave maximum
yield (92%) after 1 h. Hence, this condition was chosen for further
studies. Further decrease in graphite concentration resulted in
decreasing its efficacy.

Using this protocol,8 a library of quinoxalines (Table 2) was syn-
thesized. It was observed that electron rich diketones (1b–c) and
electron deficient diamines (2b–c) took a longer time to react
due to +I effect and �I effect, respectively. The method could also
be successfully extended to phenanthrene-9,10-dione 1d for syn-
thesizing corresponding dibenzophenazines (entry 10–12).

When isatin 1e was used as dicarbonyl compound, after pro-
longed heating (entry 13), only 12% of product formation was ob-
served. This may be due to the less reactive amide carbonyl
group in isatin. When aliphatic amines were used corresponding
dihydropyrazines were obtained (entries 14–17) in good yields.
Further scope of this graphite catalyzed condensation process
was tested with 2-hydroxyketone, benzoin (entry 18). Reasonable
formation of product 3a was observed along with 2-(2-aminophe-
nylimino)-1,2-diphenylethanol 3r, only under reflux condition
using 5 equiv of graphite.
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The separation of catalyst was very easy as mere filtration
through an ordinary filter paper and drying (100 �C) was sufficient
enough to quantitatively recover the catalyst in active form. Reus-
ability of recovered catalyst was studied for a fresh reaction cycle
and fairly reproducible yields were obtained up to 7 consecutive
cycles as summarized in Table 3.

Though the role of graphite has not been clearly understood, a
speculative mechanism for product formation is proposed
(Scheme 2).

In conclusion, an efficiently recoverable, environment friendly,
and cheap graphite catalyst is demonstrated for the condensation
of diketones with o-phenylenediamine to give quinoxalines in
excellent yield at ambient condition.
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(2,3-Bis(3-methoxyphenyl)quinoxalin-6-yl)(phenyl)methanone 3e: Pale yellow
solid; mp 138–139 �C; 1H NMR (400 MHz, CDCl3,d ppm): 3.71 (3H, s), 3.73
(3H, s), 6.94 (2H, t, J = 8.0 Hz), 7.07–7.14 (4H, m), 7.26 (2H, q, J = 8.0 Hz), 7.53
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(2 � CH), 129.46 (2 � CH), 129.75 (CH), 129.94 (CH), 130.17 (2 � CH), 132.48
(CH), 132.88 (CH), 137.15 (Cq), 138.34 (Cq), 139.81 (Cq), 139.85 (Cq), 140.15
(Cq), 142.95 (Cq), 154.42 (Cq), 154.96 (Cq), 159.50 (2 � Cq), 195.83 (Cq);
elemental analysis (calcd C = 78.01, H = 4.97, N = 6.27%) observed C = 77.65,
H = 4.75, N = 5.90%.
2,3-Bis(3-methoxyphenyl)-4a,5,6,7,8,8a-hexahydroquinoxaline 3q: White solid;
mp 136–137 �C; 1H NMR (400 MHz, CDCl3,d ppm): 1.42 (2H, t, J = 10.0 Hz),
1.62–1.64 (2H, m), 1.90 (2H, d, J = 8.0 Hz), 2.50 (2H, d, J = 14.0 Hz), 2.83 (2H, t,
J = 4.0 Hz), 3.69 (6H, s), 6.83 (2H, d, J = 8.0 Hz), 6.91 (2H, d, J = 8.0 Hz), 6.99 (2H,
s), 7.12 (2H, t, J = 8.0 Hz); 13C NMR (100 MHz, CDCl3,d ppm): 25.43 (CH2), 33.49
(CH2), 55.24 (CH3), 59.55 (CH), 112.59 (CH), 115.91 (CH), 120.64 (CH), 129.15
(CH), 139.13 (Cq), 159.34 (Cq), 159.56 (Cq); elemental analysis (calcd C = 75.83,
H = 6.94, N = 8.04%) observed C = 75.57, H = 7.10, N = 7.81%.
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