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-Chatelin' has established, under assumptions on the unknown invariant subspace,
the quadratic convergence of Newton’s iterative refinements. We modify the pro-
cedure in line with Demmel’s® suggestions and obtain a criterion for quadratic con-

" vergence in terms of the known initial approximation. Qur procedure enables com-
putable error estimates to be obtained for the iterations.

Let A be an n X n matrix with entries in the complex field €. Our aim is to deter-
mine computationally one of the maximal invariant subspaces (or generalized
eigenspaces) M associated with a set of m eigenvalues of A, counting their algebraic
multiplicities, assuming that an m-dimensional initial approximation M, is available.
Let Xy = [u,,...,u,] be an nxm matrix the columns of which span M, and let
Z = |[z),...,2,;] be an n x m matrix of adjoint base {z,,...,2, ] to {uy,...,un}. Then

Ztu; = g 0r 2* Xy = 1,

where Z* denotes the conjugate transpose of Z and 71, the m x m identity matrix.

We seek to construct computationally an nxm matrix X = [xi,...,X,,] the col-
umns of which span one of the m-dimensional invariant subspaces M. It is therefore
necessary to introduce the following additional condition on X:

Z*X = 1,. ...(1)
Consequently, the invariance of M implies
AX = XB
where B = (by;) is the m X m matrix defined by
m
Ax; = ‘E byx, j=1,..m.
i=1

As a consequence of (1) it follows that B = Z*AX and hence that AX = _XB takes
the form

AX = X(Z*AX). ...(2)
To solve (2), Chatelin' proposed the use of Newton’s method; namely,
Xiv1 = X - F (X)) F(Xy) .(3)
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where

F: K~ AK - K(Z*AK)
and F"’ is the Frechét derivative of F:

F' (K)Y = (1 - KZ*) AY - Y (Z* AK).
The following is the main result of Chatelin'.

Theorem (Chatelin') — Let the columns of an 7 X m matrix X span a generaliz-
ed eigenspace of A associated with m non-zero eigenvalues of A, counting algebraic
multiplicities, and Z*X = I,,. Then there exists p > 0 such that for any n X m matrix
X, satisfying |.X - Xyl < p, the Newton’s iterations (3) are defined and converge
quadratically to X as & — oo.

The above theorem of Chatelin is essentially an existence result based on the
assumptions imposed on the unknown matrix X; and consequently the convergence
of the method cannot be verified for an initial approximation Xj,. The purpose of
this note is to remedy this by giving a criterion based on the known matrix X, which
guarantees the existence of an X satisfying (1) and (2) as well as convergence of (3)
to X. Moreover our procedure enables a computable estimate for the errors
IX - X, I. The motivation for the analysis is the work of Demmel?. He obtained
results similar to those obtained here by tranforming (2) into a Riccati equation. In
fact, Demmel? (p. 46) states that ‘‘the quadratic convergence criterion does not ap-
pear in Chatelin’s paper and seems to be stronger than her results’’. In this paper,
we wish how to fill this gap in Chatelin’s paper without requiring a transformation.

For this purpose we first rewrite (3) as

F (X)) (Xior - X)) = - F/(Xy)
which yields the Sylvester equation
(- X Z2*) AXy o1 - Xy (Z7AX}) = - Xy (27AX). - (4)

It is important to note that, if (X,) converges to X, say, then X satisfies (2).
For our analysis we recall the following result. It’s proof is given by Nair? in
a more general context. (c.f. Stewart?).

Theorem 1 — Let &, and X, be Banach spaces, and 4, : L; — X; and
A, - Xy — X, be bounded linear operators. Then we have the following :

(i) For any bounded linear operator H : X, — X,, the operator equation
A, K-KA, = H

has a unique (bounded linear operator) solution K : %, — X, if and only if
0(A) No(A) =0

(ii) Denoting
T (A, A;) - K = A, K - KA,

and

17(A4;, Ay)7" if o(A4))No(A4;) = ¢

s€p (A|, Az) s = { .
0 otherwise
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we have
Sep (Al + El’ Az + Ez) = Sep (A], Az) - "Elll - ﬂEzﬂ

for any bounded linear operators E; : X; — X5, E; : L5 — X,. Here o(K) denotes
the spectrum of the operator K and IKl denotes an operator norm induced by the
space norm.

Let X,y and Z be nx m matrices satisfying Z*X, = I,,. Then Py, = X, Z* is a
projection matrix of rank m. We introduce the following notation :

XLy

i

€™, the space of m - vectors
X, = the space spanned by the columns of I - P,
By : Xy — X, defined by By x = (Z*AX,)x, x € X,
Co: Xy — Xy defined by Gy y = (1 - Py)Ay, y € X,.
At the outset we assume that
o (By) N o (Cy) = ¢. ...(5)
Then by Theorem 1, it follows that
&6 = sep (By, Cp) > 0.
Let
a = —;— 1 - Xy Z*) AXGH, 8 = % 1Z*Al

(1-J1-4n/2t, 0<t =< Y%

€ = «f and g(1) ={
1, t=0.

It follows that s = g(#) satisfies the equation ts*> -5 + 1 = 0,and | < s < 2 and
g(t) < g(t;) whenever 0 < 1, < t, < Y,

Proposition 2 — If ¢ < Y, then there exists an # X m matrix X satisfying (1)
and (2). Morever
IX - Xl < agle).
Proor : Let Yy, = 0, and Y; be the unique solution of the equation
Co Y, -Y ., By=-(1-X32% AXy + Y,y Z‘Ayk_l.
Now, exactly as in Nair?, the following results can be proved by induction on k:
G WYl = ag(e)
(ii)) (Y,) is a Cauchy sequence in the space of nx m matrices.
Thus, (Y;) converges to an nx m matrix Y, say, which also satisfies
CoY-YBy = - (1-Xy2% AXy, + YZ* AY.
Now, taking X = X, + Y, we see that the above equation is the same as (2).
Moreover, since Y; is an operator from X, to X,, we have Z*Y, = 0 for all
k =1, 2,..., so that Y satisfies Z*Y = 0, equivalently, Z*X = I,,. Taking limit as
k — o in (i), we obtain the estimate in the proposition.
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Proposition 3 — If e < 1/12 then equation (4) is uniquely solvable for X}, and
IX -~ Xoll = ag (3e). ...(6)
Proor : Equation (4) can be written as
(1 - Xo Z*) A - Dy Z*A]l Dy 1 - Dyy1 [Z2*AXy + Z*ADy]
= - (1 - Xo Z*) AX, - D Z*AD, A7)
with D, = X; - Xy, 1 = 0, 1, 2,... . We prove the propositidn by induction on & -
Fork =0, (7)is
CoD, - D, By = - (1 - Xy Z*) AX,.

Since a(By) N o(Cy) = ¢, by Theorem 1 (i), this equation has a unique solution
Dy : X, — X,, and it satisfies

1
ID) < 5 1 - Xy Z2*) AXpl = o < a g(e).
Now, assume that D, : %, — X, exists uniquely and satisfies
1D < « g(3e).

By Theorem 1 (ii), we have

sep (By+Z*AD;, Co-D 2*A) = 8 -20Z* AW ID Il = 6 (1 -2€2(3¢)) > 0. ...(8)
Hence, again by Theorem 1 (ii), (7) has a unique solution D, ,,, and it satisfies
Il - Xy Z*) AX, b + 1Z*Al 1D, )2

1D, <
kel 5(1-2eg (3¢

- + o€ g(3e)?
N 1-2¢g(3¢)

Next we prove the main theorem of this paper.

= ag(3e).

Theorem 4 — 1f ¢ < 1/12, then the equation (4) is uniquely solvable for X, |,
and the sequence (X,;) converges quadratically to X satisfying (1) and (2). Moreover,
we have the following error estimates:

X, - X1 < nlX, - XI2 < ag(e)u® - e
and _

X1 - XV < — ‘;‘;”g(i?zx'ou W s ag(@p? ol (10)
where ‘

n = T——Z_fg—(_i«!:)_ and u = 1.3646, <  Ya.

Proor : By Proposition 2, there éxi,sts an nx m‘matri)i X ‘satisfying (1) and (2).
Now, using (2) the equations (4) can be written as
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(- Xy Z*) AE; | - By (Z°AXy) = - Ex (Z7A)E, -(11)

with £; = X;- X, i = 0, 1, 2,... . Using the relation (8) equation (11) is uniquely
solvable for E,, , and

1Z*Al BE,Ii?
AV 1E, = b IE N2, (12)
6 - 2Z*Al IDM (1 - 281D, 1)
Now, using the bound for ID,{ from (6), we obtain

Xe0: - X0 < plX, - XI2.

IE, I <

Now, the relation 1.X,; - Xl < ag(e) from Proposition 2 gives,

Xy - XU < nag(e) <

= < Vi
1-4 57

so that inequalities in (9) follow. Also, IE Il — 0 as k — 0. From (9) and (12), we
also have

B k
ix,.,, - Xl < 2-1h2
k41 (1~ 281X, — X0 (ag(e)u” )
2 k+1 k+1
xeg(c) 2 2 < ag(ap? !

(1 - 281X, - X,h) *
This completes the proof.
Remark 5 : Since columns of X span an invariant subspace of 4 we see that
o(A) = o(B)Ud(C)
where
Bx = (Z*AX)x for x e C™
and
Cy = (1 - XZ*) Ay for y € range of (1 - XZ*).
Note also that,
Bx = Byx + Z*A(X - Xo)x
and

Cy Gy - (X -Xy) Z*Ay.

Hence,
sep (B, C) = sep (By, Cp) - 1Z2*4 (X - X))l - 1(X - Xp)Z*All
= 6 -21Z*Al IX - Xl
= 6 - 20Bag(e) > 0

for ¢ < Y. Hence by Theorem 1, o(B)No(C) = ¢. Now, by a characterization
result for generalized eigenspaces (see Theorem 3.2 in Nair?), the columns of X span
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a generalized eigenspace of 4 associated with m eigenvalues, counting algebraic
multiplicities; and these eigenvalues are precisely the eigenvalues of B. Thus, the
assumption on X of Chatelin is a consequence of our result.
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