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Abstract: Tunas of the genus Auxis are cosmopolitan species and the smallest 
members of the tribe Thunnini, the true tunas. In the present study, COI 
sequences of mtDNA were employed to examine the evolutionary history and 
phylogenetic relationship between A. thazard and A. rochei. A total of 29 COI 
sequences were retrieved from NCBI. Historic demographic analyses of 
sequence data showed that A. thazard has undergone sudden population 
expansion in the past while population size of A. rochei has been remain 
constant for long period. Non-significant value of Tajimas’s D (P = 0.22400) 
and Fu’s FS (P = 0.21400) test fail to reject the null hypothesis of neutral 
evolution for A. rochei. Phylogenetic analyses of nucleotide sequences 
demonstrated separate clusters for both species and are strongly supported by 
98% bootstrap value. The results of the present study suggest the recent 
founding of A. thazard in world ocean while A. rochei represents the ancestral 
species. 
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1 Introduction 

Tuna is an important commercial fish in the family Scombridae, spending their entire 
lives relatively near the surface of tropical, subtropical and temperate seas and oceans 
(Collette and Nauen, 1983). The word tuna refers to any of the 14 species of the tribe 
Thunnini in 4 genera: Thunnus (8 species); Katsuwonus (1 species); Euthynnus (3 
species); Auxis (2 species).  

Tunas of the genus Auxis are currently recognised as two distinct species, the narrow-
corseleted Auxis thazard (Lacepe’de 1800) and the wide-corseleted Auxis rochei (Risso 
1810) Collette and Aadland, 1996; Collette et al., 2001). Morphologically, they are 
differentiated primarily by the width of the corselet under the origin of the second dorsal 
fin and by the anterior extent of the dorsal scale-less area above the pectoral fin. In A. 
thazard, the corselet has five or fewer scales under the second dorsal fin, and the dorsal 
scale-less area extends anterior to the tip of the pectoral fin. On the contrary, A. rochei 
has six or more scales and the dorsal scale-less area does not reach the tip of the pectoral 
fin (Collette and Aadland, 1996). 

However, morphological identification at early life stages is problematic because they 
are too small to have developed distinguishing morphological characteristics. Proper 
specific identification is essential for early life history studies. Molecular markers can 
provide a means for positive identification when morphological identification is 
uncertain or impossible (Morgan, 1975; Graves et al., 1988; Bartlett and Davidson, 1991; 
McDowell and Graves, 2002; Hyde et al., 2005; Perez et al., 2005). Techniques such as 
polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) 
analysis have been used to identify species of the scombrid tribes Thunnini and Sardini 
(Chow et al., 2003) as well as the species of the genus Thunnus (Chow and Inoue, 1993; 
Takeyama et al., 2001). In addition, sequencing of a mitochondrial gene region has been 
used to identify Thunnus species (Bartlett and Davidson, 1991; Ram et al., 1996; 
Quintero et al., 1998; Terol et al., 2002).  

Mitochondrial DNA (mtDNA) is commonly used in population genetic surveys and 
molecular phylogenetic studies due to its high abundance in the cell, high mutation rate, 
and maternal inheritance (Curole and Kocher, 1999). A considerable progress in the 
sequencing of complete mtDNA genomes (mitogenomes) has been observed during past 
couple of years, making it useful genetic tools in resolving persistent controversies over 
higher-level relationships of teleosts (Inoue et al., 2001; Miya et al., 2001; Lavoue et al., 
2005). MtDNA has also been used to study the evolutionary history in many tuna species 
(Ely et al., 2002; Chiang et al., 2006; Boustany et al., 2008). Although whole mtDNA  
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sequence is available for both A. thazard and A. rochei (Catanese et al., 2007), no attempt 
has been made to study the evolutionary history of two species. Present study provides 
the first attempt to study the historic demography of two species based on cytochrome 
oxidase subunit I (COI) sequences of mtDNA.  

In present study, COI sequences have been employed as diagnostic DNA markers in 
Auxis spp. identification and to infer phylogenetic relationship and evolutionary history 
of the two species in world ocean.  

2 Material and methods 

2.1 Data source  

A total of 29 COI sequences, A. thazard (18) and A. rochei (11) were retrieved from 
National Centre for Biotechnology Information (NCBI). Sequences of both the species 
were aligned separately as well as together using the ClustalW algorithm (Thompson  
et al., 1994) as implemented in MEGA5 (Tamura et al., 2011).  

2.2 Nucleotide sequence analyses  

The aligned sequences were imported into software program DnaSP 4.0 (Rozas et al., 
2003) to calculate number of haplotypes and polymorphic sites. In addition, conserved 
DNA sequences were obtained by invoking the conserved DNA region option of DnaSP. 
Nucleotide composition of sequence data was calculated using program MEGA5 
(Tamura et al., 2011). Nucleotide and haplotype diversity, molecular diversity indices, 
such as transitions, transversions, substitutions, and indels were obtained by software 
program Arlequin 3.11 (Excoffier et al., 2005).  

2.3 Evolutionary divergence analyses  

The estimates of evolutionary divergence were inferred from the sequence data by 
calculating the overall genetic distance between and within species. Analyses were 
conducted using the Maximum Composite Likelihood model (Tamura et al., 2004). For 
the analyses, all positions containing gaps and missing data were eliminated. 
Evolutionary analyses were conducted in software program MEGA5 (Tamura et al., 
2011).  

2.4 Evolutionary history  

Arlequin 3.11 (Excoffier et al., 2005) was used to calculate the historic demographic 
parameters θ0 (population before expansion), θ1 (population after expansion) and τ 
(relative time since population expansion). Tau (τ) value can be transformed to estimate 
the actual time (T) since population expansion using formula T = τ/2µ where µ is the 
mutation rate per site per generation. In the present study, the mutation rate of 3.6 × 10−8 
mutations per site and year was applied for the COI sequences as this rate has been 
reported for the mtDNA sequences in teleosts (Donaldson and Wilson, 1999). Tajima’s D 
statistical test (Tajima, 1989) and FS test of Fu (Fu, 1997) were carried out to examine  
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whether two species are at genetic equilibrium. Furthermore, Harpending’s raggedness 
index (Hri) (Harpending, 1994) and sum of squared deviations (SSD) was calculated 
using Arlequin to test whether the sequence data deviate significantly from the 
expectations of population expansion model.  

2.5 Phylogenetic relationship  

Phylogenetic relationships among COI sequences were assessed using the neighbour-
joining tree (Saitou and Nei, 1987) based on the Kimura two-parameter model (Kimura, 
1980) using program MEGA5 (Tamura et al., 2011). All positions containing alignment 
gaps and missing data were eliminated by invoking the pairwise-deletion option for 
indels. The robustness of statistical support for the tree branch was determined by 1000 
bootstrap replicates (Felsenstein, 1985). Only nodes with bootstrap support of greater 
than 50% are shown in the final tree.  

3 Results and discussion  

3.1 COI sequence characteristics  

Final data set of aligned COI sequences after excluding the gap and missing data 
contained 455 sites for A. thazard while 419 sites were present in A. rochei (Table 1). 
There were no insertions or deletions of nucleotides in the alignment of COI sequences 
from the two species. Overall 35 variable sites (21, parsimony informative), constituting 
18 haplotypes were detected among COI sequences (Table 1). Multiple sequence 
alignments of both the data sets as well as overall polymorphic sites from the aligned 
COI sequence were presented in supplementary material. Nucleotide sequence variation 
within species was low (A. thazard = 0.006, A. rochei = 0.009) whereas interspecific 
sequence variation was 0.021. The mean nucleotide composition of the sequences in both 
species was almost identical (A. thazard: A, 23.8%; C, 28.7%; G, 18.7%; and T, 28.8%; 
A. rochei: A, 24%; C, 27.8%; G, 18.7%; and T, 29.5%). The observed transitions 
outnumbered transversions in both the species (A. thazard and A. rochei) by a mean ratio 
of 2.60 and 3.33 respectively (Table 2). A stretch of 84bp conserved DNA sequences 
from A. thazard and 89bp from A. rochei were obtained from the sequence analysis 
(Table 3). These conserved sequences can be used as species specific diagnostic marker. 
Both nucleotide and haplotype diversity was high in A. rochei as compared to A. thazard 
(Table 2). Nucleotide and haplotype diversity are generally higher in older populations. 
Thus, the present study indicates that A. rochei is ancestral species of genus Auxis. 
Table 1 Sequence polymorphism in A. thazard and A. rochei: number of sites excluding gap 

and missing data (n); monomorphic sites (m); variable sites (v); singleton sites (s); 
parsimony informative sites (pi)  

Species  (n) (m) (v) (s) (pi) 

A. thazard  455 436 19 17 2 
A. rochei  419 406 13 8 5 
Total 419 384 35 14 21 
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Table 2 Estimates of genetic diversity between COI sequences of A. thazard and A. rochei: 
number of sequences (n); number of haplotypes (nh); haplotype diversity (h); and 
nucleotide diversity (π); number of transitions (ti); number of transversions (tv); 
number of substitutions (sbs)  

Species  (n) (nh) (h) (π) (ti) (tv) (sbs) 

A. thazard  18 11 0.8562 0.08288 13 5 18 
A. rochei  11 7 0.8727 0.13816 10 3 13 

Table 3 Conserved COI sequences in A. thazard and A. rochei  

Species  Position Conserved sequences 

A. thazard  102 to 185 ACCAAATCTACAATGTAATCGTTACGGCCCATGCCTTCGTAA 
TGATTTTCTTTATAGTAATGCCAATTATGATTGGAGGGTTCG 

A. rochei  542 to 630 GCTGTCCTTCTCCTTCTATCACTCCCAGTTCTTGCCGCTGGCATT 
ACAATGCTCCTAACAGACCGAAACCTAAATACAACCTTCTTCGA 

3.2 Evolutionary history  

The observed mismatch distributions of A. thazard for COI sequences were unimodal 
(Figure 1). Tajima’s D test of selective neutrality and Fu’s FS test was highly negative 
and significant (Table 4), suggesting a sudden population expansion, which is supported 
by the non-significant sum of squared deviation (P = 0.3873) and Harpending’s 
raggedness index (P = 0.6453). Rapid population expansion was also supported by large 
differences in θ0 and θ1 of A. thazard (Table 4). In contrast, mismatch analyses for  
A. rochei was characterised by a multimodal pattern (Figure 2), which is not congruent 
with the sudden growth expansion model. Both Tajima’s D and Fu’s FS tests failed to 
reject neutrality for this species (Table 4) suggesting that the effective population size of 
A. rochei has been large and stable for a long period. The tau (τ) value of sequence data 
for A. thazard and A. rochei was estimated to be 2.5098 and 9.3848 (95% confidence 
interval) respectively. Following the equation T = τ/2µ and mutation rate 3.6 × 10−8 per 
site and year, it was estimated that the time since the expansion occurred was 
approximately 311,085 years ago for A. rochei whereas corresponding to τ  = 2.5098, the 
estimated time for population expansion for A. thazard was 76,612 years ago, which 
reflects the recent founding of A. thazard in world ocean. 
Table 4 Demographic parameters of A. thazard and A. rochei based on mtDNA COI sequence 

data. Mismatch distribution parameters τ, θ0, θ1, Tajima’s D test and Fu’s FS values, 
Harpending’s Raggedness index (Hri), and sum of squared differences (SDD)  

Species  (τ) (θ0) (θ1) Tajima’s D Fu’s FS (Hri) (SSD) 
A. thazard 2.5098 0.27070 99,999 –2.1789** –5.9464*** 0.1038 0.0161 
A. rochei  9.3848 1.07754 99,999 –0.7909 –1.1524 0.0783 0.0295 

Notes: *, **, *** Significant at P < 0.05, P < 0.01, and P < 0.001 respectively. 
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Figure 1 Mismatch distribution based on mtDNA COI sequences of A. thazard. Exp, expected 
distribution; Obs, observed distribution under a model of population expansion  

 

Figure 2 Mismatch distribution based on mtDNA COI sequences of A. rochei. Exp, expected 
distribution; Obs, observed distribution under a model of population expansion  

 

3.3 Phylogenetic relationship  

Phylogenetic analysis of nucleotide sequences demonstrated that COI sequences can be 
grouped into two distinct clusters (Figure 3). Cluster one represent the A. thazard while 
second cluster belongs to A. rochei. The two clusters are strongly supported by 98% 
bootstrap value. A. rochei represents the ancestral species and overall genetic distance 
between two species is 0.021. 
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Figure 3 Neighbour-Joining tree of mtDNA COI sequences of A. thazard and A. rochei. 
Bootstrap supports of >50% in 1000 replicates are shown 
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4 Conclusion 

In conclusion, present study provides the first evidence of phylogenetic relationship and 
evolutionary history of A. thazard and A. rochei based on COI sequences of mtDNA. The 
results of this study demonstrate that A. rochei represent the ancestral species of genus 
Auxis. In addition, conserved DNA sequences obtained from sequence information of 
COI allowed the generation of species specific diagnostic marker for identification of  
A. thazard and A. rochei.  
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