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Supersolid in a one-dimensional model of hard-core bosons
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We study a system of hard-core boson on a one-dimensional lattice with frustrated next-nearest-neighbor
hopping and nearest-neighbor interaction. At half filling, for equal magnitude of nearest- and next-nearest-
neighbor hopping, the ground state of this system exhibits a first-order phase transition from a bond-ordered solid
to a charge-density-wave solid as a function of the nearest-neighbor interaction. Moving away from half filling
we investigate the system at incommensurate densities, where we find a supersolid phase which has concurrent
off-diagonal long-range order and density-wave order which is unusual in a system of hard-core bosons in one
dimension. Using the finite-size density-matrix renormalization group method, we obtain the complete phase
diagram for this model.
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I. INTRODUCTION

Supersolid phases of matter which feature both off-diagonal
superfluid order and long-range crystalline order have been a
subject of intense research in the last decade. While there is
still no clear evidence for the occurrence of this phase in solid
helium [1], there are proposals for creating such a state in
optical lattices of cold atoms [2]. Model Hamiltonians which
describe supersolid phases exist, of which one of the most
rigorously studied is that of hard-core bosons on a lattice
with further neighbor interactions [3–8]. Supersolid phases
have also been predicted in models of soft-core bosons and
binary mixtures [9–12] and quantum spin systems [13,14].
It has been proposed that a system of polar gases in optical
lattices is a suitable test bed to observe this exotic phase of
matter. Pioneering experiments on chromium Bose-Einstein
condensates (BECs) [15] have been recently followed by
the realization of quantum gases in other highly magnetic
species, including dysprosium Bose and Fermi gases [16]
and erbium condensates [17]. Significantly more dipolar gases
may be realized by means of polar molecules, which have
large electric dipole moments of the order of a debye or
larger. Seminal experiments on KRb molecules at the Joint
Institute for Laboratory Astrophysics [18] have opened the
door towards achieving a quantum degenerate gas of polar
molecules, and various experimental groups worldwide are
currently involved in this enterprise [19,20]. Rydberg gases
constitute yet another possible realization of highly dipolar
gases [21]. The successful manipulation of polar lattice gases
in optical lattice experiments could lead to the observation of
supersolid phases.

On the other hand, the ability to produce frustration in
optical lattices of cold atoms has opened up possibilities
to realize interesting superfluid and Mott states which have
additional kinds of order arising from the kinetic frustration
[22–24]. Kinetic frustration in these systems is produced by
the competition of two different hopping processes from a
site to different sites with different signs of the hopping
amplitude. The two different hopping processes could be to a
nearest-neighbor site and a next-nearest-neighbor site. It is thus

interesting to study the interplay between nearest-neighbor
interaction and kinetic frustration away from commensurate
densities, which can potentially stabilize a supersolid phase.

In this paper, we study such a model of hard-core bosons
hopping on a one-dimensional lattice with nearest-neighbor
hopping and interaction and next-nearest-neighbor hopping
that induces kinetic frustration as shown in Fig. 1(a). This
model is equivalent to a system of a triangular ladder as
shown in Fig. 1(b). The model describing such a system can
be described by the Hamiltonian

H = −t
∑

i

(a†
i ai+1 + H.c.) − t ′

∑
i

(a†
i ai+2 + H.c.)

+
∑

i

V

(
ni − 1

2

)(
ni+1 − 1

2

)
, (1)

where a
†
i and ai are creation and annihilation operators for

hard-core bosons at site i, and ni = a
†
i ai is the boson number

operator at site i; t and t ′ are the nearest- and next-nearest-
neighbor hopping amplitudes; and V represents the nearest-
neighbor repulsion. Frustration in this model is introduced by
choosing t > 0 and t ′ < 0. The model described by Eq. (1)
can also be thought of as a triangular ladder where the nearest-
neighbor hopping and interaction are along the rungs and the
next-nearest-neighbor hopping is along the legs. In this work
we scale the energies with respect to t by considering t = 1;
therefore, all the parameters considered are dimensionless.
As discussed in Ref. [25], this model does not have a simple
representation in terms of spinless fermions due to the presence
of the next-nearest-neighbor hopping term. At half filling and
for V = 0, apart from the trivial point t ′ = 0, there exists
one more point corresponding to t ′ = −t/2, where the exact
ground state can be obtained [25].

The model of Eq. (1) has been studied recently by us at
half filling [25]. The ground-state phase diagram has three
different phases, a uniform superfluid (SF), an insulating
charge-density-wave (CDW) crystal, and a bond-ordered (BO)
insulator. When t = |t ′|, only the insulating (gapped) phases
occur and there is a first-order transition between them as a

1050-2947/2014/89(1)/013615(5) 013615-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.89.013615


TAPAN MISHRA, RAMESH V. PAI, AND SUBROTO MUKERJEE PHYSICAL REVIEW A 89, 013615 (2014)

FIG. 1. (Color online) (a) One-dimensional lattice with nearest-
and next-nearest-neighbor hopping. (b) Equivalent triangular ladder
geometry. The arrows indicate the hopping directions.

function of V . In this paper we study the system by doping it
away from half filling to see what types of gapless phases might
arise. By performing a detailed analysis using the finite-size
density-matrix renormalization group (DMRG) method, we
obtain a complete ground-state phase diagram for this model.
Our main result is that in addition to the gapped CDW and
BO phases, the phase diagram contains a gapless supersolid
(SS) phase, which is a phase with concurrent superfluid and
charge-density-wave order. This is summarized in the phase
diagram of Fig. 2, which is plotted as a function of the chemical
potential μ and interaction V . In the following sections, we
present details of our calculations.
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FIG. 2. (Color online) Phase diagram of the t-t ′-V model com-
mensurate and incommensurate with t ′ = −t in the chemical poten-
tial and interaction (μ,V ) plane. Both μ and V are in units of t and
μ = 0 corresponds to the case of half filling where only the CDW
and BO phases occur. For other values of μ, we obtain the additional
supersolid phase (SS). The phase boundaries marked with (green)
circles are those between gapped and gapless phases and are obtained
by calculating the charge gap. The phase boundaries marked with
(red) triangles and (blue) squares with error bars for some values of
V are between the gapless superfluid and the supersolid phases and
are determined by looking at the diverging compressibility and the
structure factor, respectively, as explained in the text.

II. DETAILS OF THE DMRG METHOD

We study the model described by Eq. (1) using the finite-size
DMRG method with open boundary conditions [26,27]. This
method is best suited for (quasi-)one-dimensional problems
[27]. For most of our calculations we study system sizes of
up to 200 sites and retain up to 256 density matrix eigenstates
with the weight of the discarded states in the density matrix
less than 1 × 10−6. We compute various physical quantities to
characterize the different phases. Some of these quantities have
been calculated by us using the DMRG method to study related
models [25,28]. We describe below the quantities which are
most important for the characterization of the different phases.

In order to distinguish between gapped and gapless phases,
we calculate the chemical potentials

μ = (μ+ + μ−)/2, (2)

where μ+ = E(N + 1,L) − E(N,L) and μ− = E(N,L) −
E(N − 1,L). In Eq. (2), E(L,N ) is the ground-state energy of
the system with L sites and N bosons.

The CDW order in the system can be quantified by
calculating the structure factor, which is the Fourier transform
of the density-density correlation function

S(k) = 1

L2

∑
i,j

eik(i−j )〈ninj 〉. (3)

The BO phase is characterized by a nonzero value of the
bond-order parameter

OBO = 1

L

∑
i

(−1)iBi, (4)

where

Bi = 〈a†
i ai+1 + a

†
i+1ai 〉. (5)
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FIG. 3. (Color online) Plots of ρ vs μ for different values of V .
The appearance of a plateau indicates an incompressible (gapped)
phase. The length of the plateau measured along the μ direction gives
the size of the gapped region in the phase diagram at a given V .
At V = 3.0, which is where the direct transition from CDW to BO
occurs at μ = 0, the gap exists only very close to the transition point
and hence there is no plateau.
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III. RESULTS AND DISCUSSION

We first discuss how to obtain the signature of the gapless
and gapped phases at incommensurate and commensurate
densities, respectively. This is done by computing the chemical
potential μ defined in Eq. (2) for various densities ρ. We start
at a value of ρ far away from half filling and then dope the
system to increase ρ gradually. Since the model considered
is particle-hole symmetric, the signatures at densities above
half filling are mirror reflections of those below half filling.
The gapless-to-gapped transition can be seen in the ρ-μ plot
as shown in Fig. 3. It can be seen that there exists a jump in
μ as a function of ρ at ρ = 0.5 for different values of V . The
corresponding length of the plateau in ρ decreases as V ∼ 3.0,
where the gap exists only very close to the transition between
CDW and BO phases at μ = 0 and again increases. The end
points of the plateaus trace out the BO and CDW phases which
are shown in Fig. 2. The BO and CDW phases are characterized
by the finite bond-order parameter and density-wave structure
factor as defined in Eqs. (4) and (3), respectively.

It is obvious from Fig. 3 that the compressibility ∂ρ/∂μ is
zero along the plateau and is finite on the shoulders around
the plateau. However, it should be noted that there is a kink
in the ρ vs μ plot for V � 2.0, where the chemical potential
tends to saturate with respect to ρ and therefore the com-
pressibility diverges. These kinks appear for all the values of
V � 2.0 considered in our calculation. The divergent com-
pressibility can be regarded as the signature of a phase
transition which can be located from the kink position. This
phase transition corresponds to the transition among the
gapless phases, the SS, and the SF. Once, ρ is increased
beyond the position of the kink, μ increases monotonically
with ρ indicating a finite compressibility in the gapless SS
phase. The kink positions which give us the phase boundaries
between the gapless phases are shown in Fig. 2. Note that we
cannot characterize the nature of these gapless phases (i.e.,
say whether they are SS or SF) from the above analysis. For

0
0.5
1

0
0.5
1

0
0.5
1

<n
i>

0
0.5
1

0 50 100 150 200
i

0
0.5
1

(a)

(b)

(c)

(d)

(e)

FIG. 4. (Color online) On-site number density 〈ni〉 plotted as a
function of site index i for different values of ρ with (a) ρ = 0.50,
(b) ρ = 0.49, (c) ρ = 0.48, (d) ρ = 0.47, and (e) ρ = 0.46 for V =
4.0. It can be seen that while there is perfect CDW order at ρ = 0.5,
there is a modulation over at a wave vector km that appears as one
moves away from ρ = 0.5.
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FIG. 5. (Color online) S(k) vs k for different densities for V =
4.0. It can be seen that the location of the peak shifts away from
k = π as the filling ρ decreases for ρ = 0.5. The shift is found to be
linear in ρ such that the modulation vector km = 2πρ.

that we require calculation of the correct order parameters as
well, which we discuss in the following sections. The CDW
and BO phases which occur at μ = 0 are gapped and thus one
would expect them to remain robust to small changes in μ.
Thus, we would expect the CDW and BO phases to appear as
lobes (as seen in Fig. 2). To understand what happens as we
move away from half filling, we calculate the density-density
structure factor as defined in Eq. (3) and also look at the
local density ni as a function of lattice site i. It can be seen
from Fig. 4 that there is a modulation of the density with
wave vector km superimposed on the CDW order as the filling
is changed from ρ = 0.5. We can quantify the dependence
of km on ρ by plotting the density-density structure factor
S(k) as in Fig. 5. With a modulation km in the density, S(k)
has a peak at k = π − km, which can be seen as the peak
shifts away from k = π as ρ changes. Tracking the positions
of the peaks yields km = 2πρ. A similar feature has been
studied before in a system of hard-core bosons in a zigzag
ladder [29]. From Fig. 3, it can be seen that the state one
obtains for ρ �= 0.5, where the density modulation occurs, is
a compressible (gapless) state and thus corresponds to a SS.
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FIG. 6. (Color online) S(k = 2πρ) is plotted as a function of
V for different ρ. The peak position drifts linearly with the filling
fraction ρ. The modulation wave vector km = 2πρ.
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FIG. 7. (Color online) Plot of S(π − km) vs V for ρ = 0.46 for
different system sizes shows that there is a fairly steep jump at a
particular value of V which does not appear to drift appreciably with
increasing system size. However, the jump seems to become more
gradual with increasing system size.

However, it is a supersolid, where the charge ordering wave
vector is dependent on the filling ρ.

The SS phase shares phase boundaries with the CDW,
BO, and SF phases as can be seen from Fig. 2. The phase
boundary between the SS and gapped CDW and BO phases
is obtained by measuring the charge gap, which is zero in
the SS phase but finite in the gapped phases. The other phase
boundary between the SS and the SF phases cannot be obtained
in this way since they are all gapless. To obtain this boundary
we plot the peak value of the structure factor S(π − km) as
a function of V for different values of ρ as shown in Fig. 6.
The value of S(π − km) at each density as a function of V

shows a fairly steep increase at a particular value of V . The
value of V at which this happens does not drift appreciably
with increasing system as shown in Fig. 7 although it appears
steeper for smaller system sizes. The phase boundary obtained
this way coincides with the one obtained from the positions
of the kinks in the plots of Fig. 3 as discussed earlier. This
validates this particular way of obtaining the phase boundary.
The lines of constant density in the SS and SF phases of the
phase diagram can be seen in Fig. 8.

The SF phase might be stabilized over a larger part of the
phase diagram and be easier to detect if we choose a different
set of parameters, say |t ′| < t . As we have seen in our previous
work, for such a choice of parameters, it is possible to obtain
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FIG. 8. (Color online) An enlarged view of the SS lobe and
regions around it of the phase diagram of Fig. 2, with the lines of
constant density marked.

a regular superfluid phase even exactly at half filling [25] and
it is quite likely that this phase will remain over a fairly large
part of the phase diagram even when we move away from half
filling. However, for these parameters, it is likely that the SS
phase will occupy a smaller region of the phase diagram (see
Fig. 8).

IV. CONCLUSIONS

We have studied a system of hard-core bosons in a
one-dimensional optical lattice with frustrated next-nearest-
neighbor hopping and nearest-neighbor interaction. Using
the finite-size DMRG method we have obtained the ground-
state phase diagram of this model and have shown that in
addition to gapped CDW and BO phases, it also displays the
regular SS phase, which has concurrent superfluid and CDW
order.
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