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CHAPTER 1. General introduction 

Living organisms utilise nitrogen for the synthesis of organic molecules particularly 

amino acids, proteins, and nucleic acids. Though the nitrogen gas makes up almost 78% 

of the earth's atmosphere, it cannot be directly incorporated unless taken up by nitrogen 

fixing organisms. This fixed nitrogen is converted into more utilisable form (nitrate) for 

use by plants. Of the various processes in the nitrogen cycle, denitrification converts 

available NO3 -  to inert gases making it unavailable for uptake. Nitrogen gas is released 

into the atmosphere following the reduction of nitrate mostly under anoxic conditions. 

Thus, the production of gaseous nitrogen by microbial reduction of nitrogenous oxides is 

known as biological denitrification (Tiedje, 1982). Denitrification can be distinguished as 

either assimilative or dissimilative. In assimilative metabolism, nitrate is reduced as a 

source of nutrient for growth e.g. plants, fungi, bacteria. This process functions under 

aerobic conditions. 

NO3 -  4 NO2 -  4 NH2OH 4 NH3  4 R-NH2  

In dissimilative metabolism, nitrate is used as an electron acceptor for energy e.g. 

bacteria. 

NO3-  4 NO2 .  4 NO 4 N20 4 N2 

It occurs in terrestrial as well as marine environments mainly in regions where oxygen 

depletion results in nitrate being used as a terminal electron acceptor. Nitrate respiration 

is kinetically and thermodynamically favorable (Aivasidis et al., 2005) and is preferred 

over other electron acceptors following the order: 02 > NO3 -  > Mn02  > Fe0(OH) >SO42-

> CO2 (Canfield et al., 2005). The oxidation of organic matter during denitrification 

coupled to nitrate reduction results in a higher ATP yield (Tiedje, 1982). 

Denitrification is mediated by facultative anaerobes (Tiedje, 1988; Rich and 

Myrold, 2004). Many heterotrophic bacteria are involved to some extent in 

denitrification, most of which are found to be incomplete denitrifiers capable of only 

reducing nitrates to nitrites with no further reduction of the nitrites produced (Drysdale et 

al., 1999). True denitrifiers complete denitrification by the formation of byproducts such 

as nitric oxide, nitrous oxide and di-nitrogen. Some of the major denitrifiers are 

Paracoccus denitrificans, Thiobacillus denitrificans and various Pseudomonads. The 
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process has also been reported to be carried out by lithotrophs (Betlach, 1982; 

Trouve and Chazal, 1999) and phototrophs (Hiraishi et al., 1995). Many fungi have 

denitrifying abilities (Shoun and Tanimoto 1991; Shoun et al., 1992). However, fungi 

evolve nitrous oxide (N20) instead of di-nitrogen (N2) as the final product as they lack 

N20 reductase thus differing from bacterial denitrification (Kubota et al., 1999). Most 

denitrifiers are unable to survive in the absence of nitrogenous oxides as they do not 

possess the ability to ferment (Tiedje, 1982). Later studies by Jorgensen and Tiedje 

(1993) have shown that denitrifying organisms have the capacity for long-term survival 

without 02 or NO 3 -  and appear to survive by carrying on a low level of fermentation. 

Kennedy and Lawless (1985) propose that chemotaxis may be one mechanism by which 

naturally occurring populations of denitrifiers survive by successfully utilising available 

NO3 and NO". 

Denitrifying microbial communities have been detected in marine and terrestrial 

habitats. In terrestrial ecosystems, denitrifier density ranges between 10 56  cells g-i  dry 

soil (Cheneby et al., 2000). In coastal sediments, culture based techniques have shown up 

to 102-4  cells/g of denitrifier abundance (Michotey et al., 2000; Nogales et al., 2002; Fan 

et al., 2006) whereas molecular techniques have detected up to 10 6  cytochrome cdl type 

denitrifiers in marine samples (Michotey et al., 2000). Denitrification is spread among 

phylogenetically diverse microbial groups (Falk et al., 2007) and is present in many 

prokaryotic families like Thermoproteaceae, Cytophagaceae, Corynebacteriaceae, 

Streptomycineae, Bacillaceae, Rhodospirillaceae, Rhodobacteraceae, Rhizobiaceae, 

Burkholderiaceae, Nitrosomonadaceae, Neisseraceae, Pseudomonaceae (Philippot and 

Germon, 2005). In agricultural soils, denitrifiers are more diverse belonging to the genera 

Burkholderia-Ralstonia, Pseudomonas, Xanthomonas-Frateuria, Bacillus, Streptomyces 

(Cheneby et al., 2000). The genus Pseudomonas includes the most commonly isolated 

denitrifying bacteria from both soils and aquatic sediments (Gamble et al., 1977; 

Okereke, 1984; Kariminiaae-Hamedaani et al., 2004) and may represent the most active 

denitrifiers in natural environments (Knowles, 1982). Other dominant denitrifiers are 

representative ofAlcaligenes (Jorgensen and Tiedje, 1993; Guynot et al., 1998) and genus 

Flavobacterium (Gamble et al., 1977). Bacillus jeotgali, Bacillus sphaericus, Bacillus 

firmus and Bacillus bataviensis related strains have been isolated by Fan et al. (2006) 
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from estuarine sediments. Phylogenetic analysis of denitrifier communities by targeting 

functional genes mediating the denitrification process indicate that the marine 

environment is dominated by diverse and novel denitrifiers that are not yet cultured (Falk 

et al., 2007). nirS gene sequences from estuarine sediments have shown close 

relationship to Psuedomonas stutzeri, Roseobacter denitrificans (Nogales et al., 2002) 

while majority of the nosZ genes have similarity to nosZ genes from isolates affiliated 

with alpha-subclass of the class Proteobacteria (Magatildes et al., 2008). Sequence 

analysis of the nirS clones from continental margin sediments have been found to relate 

closely to the nirS genes of Alcaligenes faecalis and Pseudomonas stutzeri whereas nirK 

clones closely related to the nirK genes of Pseudomonas sp. strain G-179, 

Bradyrhizobium japonicum, Blastobacter denitrificans and Alcaligenes xylosoxidans (Liu 

et al., 2003). Differences in denitrifier community composition can potentially influence 

in situ N20 production in soils indicating that the taxonomic diversity present among 

denitrifiers is functionally significant (Cavigelli and Robertson, 2001). 

Many denitrifiers are metabolically versatile. They are capable of degrading 

aromatic hydrocarbons like toluene (Evans et al., 1991; Schocher et al., 1991; Fries et al., 

1994; Zhou et al., 1995), ethylbenzene (Rabus and Widdel, 1995), naphthalene, 

phenanthrene and biphenyl (Rockne and Stuart, 2001). Other compounds that can be 

degraded by denitrifiers include phenol (Tschech and Fuchs, 1987; Van Schie and 

Young, 1998) and dimethyl phthalate (Liang et al., 2007). Bonin et al. (1994) have 

measured denitrifying activity in marine sediments heavily contaminated by petroleum 

hydrocarbons indicating that denitrifying activity remained unaffected. Their potential as 

competent bioremediators has been highlighted in a number of investigations. Rakhimova 

et al. (2004) have demonstrated the efficiency of an oil-oxidizing denitrifying community 

which was capable of degrading up to 60% oil on nitrate application. Ehrenreich et al. 

(2000) have revealed the capacity of denitrifying bacteria to completely oxidise alkanes 

and reduce nitrate under anoxic conditions. Denitrifiers have been effectively used in 

sewage treatment (Satoshi et al., 2005) to convert organic nitrogen to nitrogen gas thus 

preventing nitrogenous pollutants from being released into the ambient seawater avoiding 

eutrophication. Some novel denitrifiers mainly relating to Azoarcus are able to derive 

energy from the oxidation of arsenite to arsenate coupled to the reduction of nitrate 
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whereas inorganic C is used as the carbon source under aerobic conditions (Rhine et al., 

2006);  Denitrifying strains like Thiobacillus denitrificans and Pseudomonas stutzeri can 

oxidize ferrous iron under autotrophic conditions suggesting widespread occurrence of 

anaerobic ferrous iron oxidation in sub-oxic zones of aquatic sediments with active 

denitrification (Straub et al., 1996). Some denitrifiers isolated from tannery wastewaters 

have been shown to possess high denitrifying potential and can tolerate toxic compounds 

like chromium and sulphide (Leta et al., 2004). 

Denitrification plays a significant role in sediment ecology. Coastal ecosystems 

are often subjected to eutrophication resulting from run-off from agricultural systems and 

sewage discharge. Studies have shown that nitrogen is the critical limiting factor to algal 

growth and eutrophication in coastal marine waters (Ryther and Dunstan, 1971). 

Denitrification helps to mitigate the excess nitrate by converting it to nitrogen gas, 

making it unavailable for algal uptake thus maintaining a balance in the ecosystem. In 

freshwater, high nitrate content is toxic. Denitrification helps to maintain potability of the 

water. In agricultural systems, dissimilative denitrification is regarded as the major 

mechanism for N loss. Over irrigated or waterlogged soils develop anoxic conditions 

promoting denitrification. This affects the fertility of soil and consequently agricultural 

productivity. Some of the factors promoting the process are high soil moisture conditions, 

high soil temperature, a low rate of oxygen diffusion, presence of soluble organic matter 

and nitrate concentration (Luo et al., 1999). 

Denitrification is also regarded as a major source of nitrous oxide, a potent green 

house gas. Though N20 is responsible for 5-6% of the greenhouse effect (Houghton et 

al., 1996), its lifetime of about 150 years makes the greenhouse warming potential of this 

biogenic gas 310 times greater than that of CO2 (Albritton et al., 1996). N20 contributes 

to the destruction of the stratospheric ozone layer (Yamagishi et al., 2007) which protects 

the earth from harmful ultraviolet radiations from the sun. Estuaries and coastal regions 

account for approximately 60% of the total oceanic N20 flux (Bange et al., 1996). Nitric 

oxide (NO) and nitrous oxide (N20) are assumed to be obligatory gaseous intermediates 

of denitrification. However, there is evidence to show that nitric oxide can be also be 

emitted during nitrification (Jousset et al., 2001; Steven and Eberhard, 2001; 

Kampschreur et al., 2007). Similarly, nitrous oxide is released in high quantities under 
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low oxygen conditions (Bonin et al., 2002) and could also be released to the atmosphere 

during nitrification of ammonium (Bremner and Blackmer, 1978). Experiments by 

Itokawa et al. (1996) have shown that nitrification accounted for more than 99.5% of the 

total emissions whereas 60-98% of N 20 was reduced under anoxic conditions. The ability 

of denitrifiers to evolve N2 as a denitrification product varies as many of the pre-

dominant isolates are not able to reduce N 20 (Cheneby et al., 2004). 

In ecosystems with high inputs of nitrogen, such as estuaries, denitrification 

mediates nitrogen load reduction and therefore contributes to eutrophication control 

(Nogales et al., 2002). One such ecosystem is mangroves which constitute nearly 75% of 

tidal vegetation in tropical regions (Alongi et al., 1989). Mangroves play an important 

role in the biogeochemical cycles of coastal ecosystems (Thorsten and Jose, 2001). The 

proximity of mangroves to human inhabitation, aquaculture farms, waste discharge from 

industrial units, domestic sewage discharge-points, etc.. make them vulnerable to high 

nutrient inputs. They protect the coast from tidal erosion, storm surges and trap sediment 

for land accretion (Pernetta, 1993). Nitrogen is the critical limiting factor to algal growth 

and eutrophication in coastal waters (Ryther and Dunstan, 1971). The nitrogen cycle 

within mangrove forests is mediated predominantly by microbial rather than chemical 

processes (Alongi et al., 1992). A substantial loss of N in mangrove sediment has been 

attributed to denitrification (Chiu et al., 1996). High litter fall, it's degradation and re-

mineralization is one of the factors contributing to high nitrogen concentrations in 

mangrove forests (Ramos E Silva et al., 2007). Mangrove sediments are largely 

anaerobic and nitrate availability is the factor controlling denitrification rates (Seitzinger, 

1990). Nitrate can either be generated through intrinsic nitrification (Krishnan et al., 

2008) or supplied extraneously through runoff from land (Naqvi et al., 2000). 

Denitrification could therefore play a significant role in sediment ecology by mitigating 

excess nitrate in the system. 

Marine ecological studies aim to understand the interactions of organisms with 

their surrounding environment which could be either biotic or abiotic in nature. Most of 

the present knowledge on mechanisms and ecological role of denitrification have been 

obtained from studies estimating denitrification activity (Bianchi et al., 1994; Vance-

Harris and Ingall, 2005; Naqvi et al., 2006) and the factors affecting the process (Yoon 
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and Benner, 1992; Tuominen et al., 1998). These studies have highlighted the 

importance of denitrification as a significant sink of fixed/anthropogenically derived 

nitrogen. At a cellular level, attempts have been made to characterize denitrifiers (Yoshie 

et al., 2006) and to improve denitrification efficiency or to isolate (Shieh et al., 2004) 

and assess their diversity in marine sediments (Liu et al., 2003; Santoro et al., 2006). 

Many studies have dealt with ecological aspects of denitrification in marine habitats but 

relatively few studies have been undertaken in potential denitrifying sites such as 

mangrove swamps where active denitrification has been reported to occur (Rivera-

Monroy et al., 1995; Chiu et al., 2004; Meyer et al., 2005). Further, mangrove sediments 

are known to harbour novel denitrifiers (Lin and Shieh, 2006). Molecular studies 

targeting functional genes like nirK and nirS have shown rhizosphere associated strains 

belonging to a-, 13-, and y-Proteobacteria (Flores-Mireles et al., 2007). Relatively little 

research has been carried out to understand the factors that influence denitrifiers in 

mangrove swamps. 

The present study represents the first attempt to examine the extent of 

denitrification in mangrove sediments of Goa and the bacteria that mediate the process. 

Their inter-relationships with other physico-chemical and biological parameters have 

been probed to gain deeper insights into the importance of benthic denitrification. This 

benthic denitrification is also compared to pertinent oxidative and reductive phases of the 

cycle particularly nitrification, N2 fixation, anammox and dissimilatory nitrate reduction 

to ammonium (DNRA). Interestingly, the study projects the importance of DNRA as an 

important mechanism that minimizes nutrient loss thereby contributing to the modulation 

of N20, a green house gas to the atmosphere. 
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Aim 

To understand the environmental factors affecting denitrification rates in mangrove 

ecosystems and to delineate the physiology and taxonomy of the denitrifying population. 

Objectives of the present study 

)=. To quantify the abundance and activity of denitrifying bacteria 

)=. To understand the influence of environmental parameters on denitrification 

➢ To identify the denitrifiers at cellular and molecular level 

➢ To delineate the influence of bioturbating organisms on denitrification 
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Literature review 



CHAPTER 2. Literature review 

2.1 The marine nitrogen cycle 

Nitrogen (N 2) occurs in the oxidation states ranging from —3 to +5. It is an essential 

macronutrient limiting biological productivity in aquatic as well as terrestrial ecosystems. 

Only a few organisms are capable of utilising free N2 and converting it into other 

utilizable forms. This conversion involves a series of processes mainly facilitated by a 

consortium of microbes e.g. nitrogen fixers, nitrifiers and denitrifiers producing a number 

of intermediate products like ammonium (NH4 +), nitrate (NO 3 "), nitrite (NO2 -) and nitrous 

oxide (N20) as by-products. Among these, NO3 -  is the most oxidized nitrogenous 

compound and serves as an easily utilizable substrate to primary producers in aquatic 

systems. Enrichment experiments have shown an increase in phytoplankton standing 

stock and bacterial production indicating that N is the main limiting nutrient in oceans 

(Dufour et al., 1999). Nitrogen in the oceans is cycled (Fig. 1) through the following key 

processes: 

Nitrogen fixation 

Nitrogen enters the marine environment through deposition and solution. 

N2 + 8H+  + 8e-  + 16ATP 	►  2NH 3  + H2 + 16 ADP + 16 Pi 

Fixed nitrogen is generally considered to limit primary production (Capone, 2001) in 

many parts of the oceans and serves to relieve nitrogen stress to phytoplankton 

assemblages (Kustka et al., 2002). Gruber and Sarmiento (1997) have estimated a global 

nitrogen fixation rate of 28 Tg N y -1  (Tg = terragrams / 10 12  g). Extensive blooms of the 

cyanobacteria Trichodesmium spp. have largely been attributed to fix bulk of nitrogen in 

the oceans (Capone et al., 1997; Capone and Carpenter, 1982). These cyanobacteria 

account for annual inputs of 4.8 Tg nitrogen to the world's oceans while benthic 

environments such as seagrass beds or coral reef flats contribute 15 Tg (Capone and 

Carpenter, 1982). Other potential nitrogen fixers are populations of picocyanobacteria 

comprising mainly Synechococcus sp. (Spiller and Shanmugam, 1987; Ohlendieck et al., 

2000). Molecular studies have revealed a high diversity of heterotrophic nitrogen-fixing 

organisms in marine cyanobacterial mats represented by Firmicutes, Deltaproteobacteria, 
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Fig. 1: Key processes in the marine microbial nitrogen cycle (Francis et al., 2007). 
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Gammaproteobacteria and anaerobic bacteria (Zehr et al., 1995). Nitrogenase, the 

enzyme catalyzing nitrogen fixation has also been reported in archaea (Zehr et al., 2000), 

but is not encoded in any eukaryotic genome (Berman-Frank et al., 2003). The total 

amount of fixed nitrogen in the ocean can be changed substantially by the denitrification 

processes (Altabet et al., 1995, 2002; Devol, 2002). 

Ammonification 

Ammonification or mineralization refers to any chemical reaction that generates 

ammonia as an end product or its ionic form, ammonium. Ammonification occurs 

through various inorganic reactions or as a result of the metabolic function of 

microorganism, plants and animals. Nitrogen, in organic form, is converted into 

ammonium (NH4+) by microorganisms. Because it has a positive charge, ammonium can 

be adsorbed and fixed on to the negatively charged sediment particles or be taken by 

plants (Brady and Weil, 2002). Nitrates are the forms of nitrogen most commonly 

assimilated by plant species, which, in turn are consumed by heterotrophs for use in 

compounds such as amino and nucleic acids. The remains of heterotrophs are then 

decomposed into nutrient rich organic material. Bacteria or in some cases, fungi, will 

convert the nitrates within the remains back into ammonia (Smil, 2000). 

In aquatic ecosystems, plankton play an important part in the transfer of organic 

matter to the bottom, and microbial activity in the surficial sediment leads to 

mineralization of a great part of the organic nitrogen quickly after its deposition (Fernex, 

et al., 1996). In coastal estuarine surficial sediments, ammonification rates range between 

5.8-220 ng N-atoms gl  sediment hi  (Sumi and Koike, 1990). 

Nitrification 

During nitrification, biological oxidation of ammonia to nitrite is followed by the 

oxidation of these nitrites into nitrates. 

Organic N ---> NH 4 —+ -> N20T--› NO2-  NO3- 

This important step in the nitrogen cycle was discovered by the Russian microbiologist, 

Sergei Winogradsky (Waksman, 1946). The oxidation of ammonia into nitrite, and the 
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subsequent oxidation to nitrate is performed by two nitrifying bacteria. The first step is 

done by bacteria of the genus Nitrosomonas and Nitrosococcus. 

NH3 ± 02 -+ NO2--  + 3H+  + 2e- 

The second step of oxidizing nitrite into nitrate is mainly done by bacteria of the genus 

Nitrobacter, with both steps producing energy to be coupled to ATP synthesis. 

NO2  + H2 O —+ NO3  + 2H+  + 2e 

In most environments, both organisms are found together, yielding nitrate as the final 

product (Mosquera-Corral et al., 2005). Together with ammonification, nitrification 

forms a mineralization process which refers to the complete decomposition of organic 

material, with the release of available nitrogen compounds. This replenishes the nitrogen 

cycle. 

In sediments, the extent of nitrification is limited to the zone of oxygen 

penetration though nitrifying bacteria are found within the anoxic layer (Henriksen et al., 

1981). Strauss et al. (2002) suggest that NH4 +  availability and pH are the most important 

variables regulating nitrification in aquatic sediments in addition to organic C availability 

which plays a significant role only under high environmental C:N conditions and if most 

available C is relatively labile. Koike and Hattori (1978) have demonstrated the co-

occurrence of nitrification and nitrate reduction in coastal sediments indicating that the 

nitrate reduction rate was 11 to 17 times higher than the nitrification rate, and nitrogenous 

oxides derived from ammonium accounted for only 6 to 9% of the N2 evolution by 

denitrification. Rysgaard et al. (1993) state that in anoxic environments, nitrification is 

generally coupled to denitrification as the NO 3  produced during nitrification is reduced to 

N2 by denitrifying bacteria and lost from the environment or it can be reduced to NH4 +  by 

fermentative bacteria or diffuse out of the sediment. 

Autotrophic nitrification rates in estuarine sediments have been found to share a 

marked seasonality with highest rates of 0.92 pg N d -1  g-1  dry wt. sediment occurring 

during the summer (Herbert, 1986). Significant rates of nitrification have also been 

measured in the surficial oligotrophic oceanic waters, with rates of ammonium and nitrite 

oxidation generally within the range of 10-500 pmol kg' 11' (Clarke et al., 2007). In 

estuarine regions, wide variation in nitrification rates occurring between 0 to 1712 ± 666 

limo' NH4+  m-2  II I  have been reported (Magalhaes et al., 2005). 
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Anammox 

Anaerobic ammonium oxidation (anammox) was discovered by researchers in 

Netherlands while working on NH4+  oxidation in a denitrifying fluidized bed reactor 

(Mulder et al., 1995). Van de Graaf et al. (1995) have shown it to be a biologically 

mediated process. It has been now considered as an important process in the marine 

nitrogen cycle (Devol, 2003; Dalsgaard et al., 2005; Nakajima et al., 2008). 

NH4+  + NO2 	 N2 + 2H20 

During anammox, NH4+  is oxidized at the expense of NO 2  (Meyer et al., 2005) 

produced by either heterotrophic NO 3 -  reduction (Dalsgaard et al., 2003) or aerobic 

ammonium oxidation (Francis et al., 2005). Van Dongen et al. (2001) have proposed the 

following stoichiometry for anammox: 

NH4+  + 1.32NO2-  + 0.066HCO3 -  + 0.13H+  --1.1.02N2  + 0.26NO 3-  + 0.066CH 20o 5 

N0 15  + 2.03H20 

Dalsgaard and Thamdrup (2002) ascribe the dependence of anammox on elevated nitrite 

concentrations. Experiments by Trimmer et al. (2005) have shown that decreasing the 

concentration of NO3 -  but holding NO2 at 5 .tmol decreased the significance of 

anammox as a sink for NO2 suggesting that anammox is likely to be regulated by the 

availability of NO 3-  and NO2 and the relative size or activity of the anammox 

population. 

Kuypers et al. (2005) have shown massive N loss in the pelagic oxygen minimum 

zones (OMZs) attributing it to anaerobic ammonium oxidation. Up to 67% of the N2 

formation in continental shelf sediments has been attributed to anammox while only 33% 

of the N2 formation was due to denitrification (Thamdrup and Dalsgaard, 2002). 

However, Dalsgaard et al. (2003) have shown that anammox accounts for only 19-35% 

of the total N2 formation in the anoxic water column in coastal areas. The process could 

be responsible for up to 50% of the global removal of fixed nitrogen from the oceans 

(Dalsgaard et al., 2005). Anammox bacteria generally live under ammonium limitation 

and could be mediating dissimilatory nitrate reduction to ammonium (DNRA) in natural 

ecosystems (Kartal et al., 2007). Candidatus Brocadia anammoxidans (Strous et al., 

1999), Candidatus Kuenenia stutgartiensis, Candidatus Scalindua wagneri and 
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Candidatus Scalindua brodae (Kuypers et al., 2003) are some of the Planctomycetes 

responsible for anaerobic ammonium oxidation. 

Denitrification 

Denitrification is largely a bacterially-mediated anaerobic process wherein the oxides of 

nitrogen (NO3 - , NO2-, N20) are used as alternative electron acceptors in the absence of 

oxygen. Organic compounds serve as hydrogen donors. The pathway of denitrification is: 

NO3 -  4 NO2 4 NO 4 N20 4 N2 

When nitrate is used as a source of electron acceptors, there is a net loss of nitrogen from 

the sediment. This process is therefore called dissimilatory nitrate reduction. The 

oxidation of organic matter during denitrification coupled to nitrate reduction results in a 

higher ATP yield (Tiedje, 1982). Heterotrophic denitrification follows the stoichiometry 

(Vance-Harris and Ingall, 2005): 

5CH20 (organic matter) + 4NO3 -  + 	 2N2  + 5CO2 + 7H20 

In terrestrial ecosystems, denitrification is harmful to crops as nitrogenous fertilizers 

added to soil are lost resulting in low nutrient availability to the plants. The process is 

carried out by a variety of facultative anaerobic bacteria like Pseudomonas, Alcaligenes, 

Flavobacterium, Bacillus, etc.... 

Denitrifying activity is also known to release nitrous oxide, a potent greenhouse 

gas in the atmosphere. The trace gas plays an important role in the destruction of 

stratospheric ozone which protects the earth from ultraviolet radiation from the sun. This 

trace gas with a lifetime of approximately 150 years accounts for 2 to 4% of total 

greenhouse warming potential (Watson et al., 1992). The atmospheric concentrations of 

N20 have increased from 280-290 ppbv before industrial revolution to 350 ppbv at 

present (Pathak, 1999). Sediment is considered to be one of the major contributors with 

65% of the total global emission. In terrestrial ecosystems, 6 to 21% of the annual N 20 

flux occurs in agricultural land during thawing of top soil (Bremner et al., 1980). In India, 

it is estimated that 0.19 and 0.27 Tg yr --1  of N20 is contributed by rice and wheat fields 

alone (Parashar et al., 1998). 

A number of factors are known to influence denitrification. Some of the important 

factors affecting denitrification rates include variation in oxygen concentrations (Bonin 
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and Raymond, 1990), trace metals (Labbe et al., 2003), sediment temperature (Holtan-

Hartwig et al., 2002; El-Sayed, 2003), sediment pH (Rust et al., 2000; Simek et al., 2002) 

and bioturbation (Gilbert et al., 1995). Substrate availability limits microbial activity and 

may alter rates of N2 fixation and denitrification (Lee and Joye, 2006). Experimental 

manipulation have shown that denitrification rates are generally limited by the supply of 

NO3, either from nitrification or diffusion from the overlying water (Seitzinger, 1990; 

Morell and Corredor, 1993; Corredor and Morell, 1994; Rivera-Monroy and Twilley, 

1996; Kana et al., 1998). The quantity and quality of organic matter is also known to 

influence denitrification (McCarty and Bremner, 2003; Hill and Cardaci, 2004; Qin et al., 

2005). Studies have shown that N 20 production rates are affected by the type of organic 

carbon available as an electron donor and increased organic carbon concentration, 

indicating that the denitrification potential is organic carbon limited (Pfenning and 

McMahon, 1997). Denitrification studies in domestic wastewater indicate that whenever 

the carbon/nitrogen ratio is low, full denitrification is difficult to obtain (Marsili-Libelli 

and Manzini, 2000). In sediment, denitrifying activity is highly correlated with water-

extractable organic carbon and is frequently stimulated by the addition of exogenous 

carbon (Knowles, 1982; Hahndel and Isermann, 1993). 

Though denitrification is regarded mainly as an anaerobic process, it has also 

been shown to occur aerobically. Reports on aerobic denitrification have shown the 

denitrification enzymes to be active under aerobic conditions (Robertson and Kuenen, 

1984). Robertson et al. (1988) have demonstrated the ability of a heterotroph 

Thiosphaera pantotropha to simultaneously carry out nitrification and denitrification 

under aerobic conditions. 

Dissimilatory nitrate reduction to ammonium (DNRA) 

Alternate respiratory pathways like DNRA lead to N conservation in the system. Rapid 

and direct transformation of NO3 -  to NH4+  via DNRA plays an important role in N 

conservation in the ecosystem as NH 4 +  is generally favoured for assimilation by plants 

and microbes (Silver et al., 2001). 

NO3 + 2H+  + 4H2 	NH4+  + 3H20 
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Dissimilatory nitrate reduction has been reported to occur in coastal and estuarine 

systems (Koike and Hattori, 1978; Buresh and Patrick, 1981, Kaspar, 1983, Gardner et 

al., 2006). Jorgensen (1989) has shown that NH4 +  production accounted for 4 to 21% of 

the total NO 3" reduced in estuarine sediments. The significance of DNRA varies from one 

ecosystem to another (Tomaszek and Gruca-Rokosz, 2007). In systems having high 

sulfide concentrations, nitrification and denitrification is inhibited but DNRA is enhanced 

by providing an electron donor (An and Gardner, 2002). In freshwater sediments the 

importance of DNRA appears to be minor relative to denitrification (Scott et al., 2008). 

Labile carbon is the key factor influencing the partitioning of nitrate reduction between 

denitrification and DNRA (Yin et al., 2002). DNRA is favoured when NO3" is limiting, 

while denitrification is favoured when carbon is in limited supply (Kelso et al., 1997). 

2.2. Measuring denitrification in marine ecosystems 
A range of methods are available for measuring denitrification in marine ecosystems. 

However, the accuracy, cost, scale and design of the experiments to be undertaken are 

some of the factors that need to be considered while selecting the most appropriate 

technique (Greatorex, 2000). Some different methods to measure denitrification and their 

limitations have been listed in Table 1. 

Among the different methods available to measure denitrification, the acetylene 

inhibition technique is a simple, reliable, rapid and cost effective widely used method to 

determine near in situ denitrification rates (Yoshinari et al., 1977; Sorensen, 1978; Chan, 

and Knowles, 1979; Lohse et al., 1993; Bonin et al., 2002). Acetylene at concentrations 

of 0.3 to 4 mmol (0.7 to 10 kPa) inhibits the enzyme nitrous oxide reductase which 

catalyzes the conversion of nitrous oxide to nitrogen leading to the accumulation of 

nitrous oxide (Sorensen, 1978). However, studies have shown the technique to 

underestimate denitrification (Mengis et al., 1997) due to (i) incomplete blockage of N20 

reductase at low nitrate concentrations (Kaspar, 1982, Binnerup et al., 1992) (ii) 

incomplete blockage of nitrous oxide by acetylene in the presence of inorganic sulphide 

(Tam and Knowles, 1979) (iii) diffusion of N20 to deeper sediment layers and reduction 

to N2 (Seitzinger et al., 1993) (iv) catalytic oxidation of NO into NO 2  (Bollmann and 

Conrad, 1997) and (v) inhibition of coupled nitrification-denitrification by acetylene 

(Lohse et al., 1996). Nitrous oxide can be produced during nitrification and the acetylene 
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Table 1: Some different approaches to measuring denitrification (modified from 

Cornwell et al., 1999). 

Sr. No. 
	Technique 	

Approach 
	

Limitations 
	

References 

Blocks N 20 conversion to N2, used 
	Incomplete block; blocks 

Acetylene 	
to measure 
	 nitrification; diffusion of 

	
Sorensen, 1978, 

1 
	inhibition 	

N20 accumulation 
	 N 2 0 to deeper sediment 

	
Lohse et al., 1993 

layers 

Difference between C or 02 -  

Stoichiometry 	based N remineralization and 

2 	 net DIN flux 

Not direct, imprecision, 

problem with 'chemical' 

oxygen demand or storage 

of reducing species (S(11), 

Fe(I1) when 0 2  is used 

Nixon, 1981 ; 

Joye et al., 1996 ; 

Giblin et al., 1997 

3 

Pore water 

modeling 

Model rates from pore water 

chemistry 

In shallow environments, 

need mmscale profiles and 

transport coefficients 

Jahnke et at, 1982 

Measure all DIN fluxes and 
Nitrification-N 

nitrification, make a mass 
	

Indirect 
	

Kemp et al., 1990 

4 
	balance 	

balance 

5 
Direct N2 

Degassing step, long-term 

incubation, high 

Time course change in N2 	 background, gas 

measured by gas chromatography 	disequilibria 

from changing 

temperature 

Seitzinger, 1987; 

Devol, 1991; Nowicki, 

1994; La Montagne 

and Valiela, 1995 

6 

Membrane inlet 

mass spectrometry 

(MIMS) 

Measure time-course 

changes N2/Ar ratio via mass 

spectrometry, continuous 

flow gas stripping 

Gas disequilibria from 

changing temperatures or 

from CH, ebullition 

Kana et al , 1994, 

1998 



Table I contd.. 

Technique 
Sr. No. 	 Approach 	 Limitations 	 References 

Label NO," or Nl-L4 , follow 
Isotope pairing 	

incorporation in 
	 Potential enhancement by 

	
Nielsen, 1992; 

7 
	method (IPM) 

	
NO; additions 
	

Lohse et al., 1996 

Imprecise, major error 

Whole-system 	 associated with 
Measure all N fluxes, calculate 	 Nielsen et al., 1995; 

mass 	 measurement 
denitrification by difference 	 Nixon et al., 1996 8 	balance 	 of other terms in the 

budget 

Need information on 

Sediment 	Using labile organic matter 	organic 	 Soetaert et al., 1996; 

diagenetic 	inputs and bottom water 02, 	loading, water column 	M iddelburg et al., 

9 	modeling 	 the nitrogen cycle is modeled. 	chemistry. May be 	 1996 

difficult to validate. 

10 
Molecular 	Targeting functional genes 

approach 	 involved in denitrification 

Allows quantification of 

bacteria capable of 

performing a single step of 

the denitrification cascade, 

interference of tannins, 

polyphenols and 

polysaccharides in DNA 

isolation, efficiency of 

bacterial cell wall lysis and 

the non-specific adsorption 

of DNA to sediment 

influence yield, variability 

in clonal composition, 

presence of gene does not 

guarantee function 

Goregues et al., 2005 



Fig. 2: Schematic representation of the transformation rates during a 15NO3  tracer experiment 

(Steingruber et al., 2001) where 

D tht  = Total denitrification of nitrate from the water column 

13,„ = Denitrification of nitrate from the water column without tracer addition 

Dn. Coupled nitrification-denitrification 

D. Total denitrification rate during the tracer experiment 

D15 and D14= Specific denitrification rates of 15N and I N nitrate respectively 

P28, P29 and P30 = Production rates of N2 with masses of 28, 29 and 30 respectively. 



can inhibit the process as it blocks nitrification (Walter et al., 1979) thereby affecting 

nitrate,supply to denitrification. 

Acetylene methods have given a large number of denitrification rate estimates 

which are reasonably robust, especially for systems with moderate or high NO3 -  levels 

(Groffrnan et al., 2006). This method is still being used in denitrification assays in 

conjunction with chloramphenicol (Murray and Knowles, 1999) and allythiourea 

(Ginestet et al., 1998) amendments to measure in situ profiles (Castro-Gonzalez and 

Farias, 2004) in the marine environment. The C2H2 inhibition method with 

chloramphenicol addition, conducted over short incubation intervals, provides a cost-

effective method for estimating denitrification and rate estimates are comparable to those 

obtained by the membrane inlet mass spectrometry (MIMS) (Bernot et al., 2003). 

Another method for measuring denitrification used in the present study is the 15N 

Isotope Pairing method (IPM). This method was developed by Nielsen (1992) to quantify 

denitrification of both NO 3-  diffusing from the overlaying water (D w) and NO 3 -  from 

nitrification within the sediment (Do). A representation of the transformation rates during a 

15NO3-  tracer experiment (Steingruber et al., 2001) is shown in Fig. 2. Reduction of 

14NO3-  (naturally occurring) and 15NO3 -  (tracer added) results in the formation of 15N 

labelled N2 molecules (29N2= i4N+ 15N,  30N2=1 — 
5N+ 15 N) which can be measured by mass 

spectrometry after a few hours incubation. Some of the assumptions employed in this 

technique are that (i) the rate of coupled nitrification-denitrification is not influenced by 

the addition of labelled nitrate and (ii) the 15NO3 -  added to the overlying water mixes 

homogeneously with the 14NO3-  pool down to the zone where denitrification occurs 

(Lohse et al., 1996). 

The main shortcoming of the IPM is that the formation of N 20 is ignored 

resulting in an underestimation of sediment denitrification. Another limitation is the 

inability to account for a possible influx of nitrate through the hyporheic zone (region 

beneath and lateral to a stream bed, where there is mixing of shallow groundwater and 

surface water) into the anoxic sediment layer (Master et al., 2005). Herrman and White 

(2008) state that artificial mixing of 15NO 3 -  tracer into the sediment disrupts the natural 

redox processes near the sediment-water interface resulting in yields that are not true 

representative of the field conditions. Further, the technique cannot distinguish anammox 
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from denitrification as sources of N2 and may lead to large errors where anammox is 

significant (Trimmer et al., 2006). Thus, the original IPM has been modified (An et al., 

2001; Master et al., 2005) to improve the estimation of sediment denitrification capacity 

and account for N20 formation mechanism(s) and fluxes. 

The use of the isotope pairing technique in conjunction with other techniques like 

I5N dilution of the NO3 -  provides a powerful tool to evaluate in the same experimental 

setup, the rate of denitrification and the co-occurring processes such as nitrification, 

mineralization and dissimilatory nitrate reduction to ammonium (Rysgaard et al., 1993, 

Master et al., 2005).The technique being sensitive and robust (Nielsen 1992, 1993, 

Rysgaard et al., 1993, 1995, Risgaard-Petersen et al., 1994) has been widely used to 

quantify denitrification in a variety of marine environments like streams (Mulholland et 

al., 2004), rivers (Whalen et al., 2008), estuaries (Tuominen et al., 1998; Gran and 

Pitkanen, 1999; Cabrita and Brotas, 2000; Wang et al., 2003; Dong et al., 2006), 

mangroves (Kristensen et al., 1998), coastal waters (Sundback et al., 2000, Welsh et al., 

2000), fjords (Kristiansen and Schaanning, 2002) and continental shelf sediments (Lohse 

et al., 1996). 

2.3. Denitrification in the marine environment 

Oxygen minimum zones (OMZ) in the oceans are known to be major centres for 

denitrifying activity contributing to 30-50% of the total nitrogen loss commonly 

attributed to heterotrophic denitrification (Gruber and Sarmiento, 1997; Codispoti et al., 

2001). These zones are known to occur along regions of intense upwelling. In the 

Atlantic and Pacific oceans, OMZs in the depth range 100 to 900 m cover the eastern 

tropical regions (Karstensen et al., 2008). 

In the Eastern Tropical Pacific, water column denitrification occurs at a rate of 

48±5 Tg N yr-I  while sedimentary denitrification amounts to 15±3 Tg N yr I  (Deutsch et 

al., 2001). However, in the oxygen-deficient water column of the eastern tropical south 

Pacific off Chile, Thamdrup et al. (2006) have shown that anaerobic ammonium 

oxidation is the dominant process which is more responsible for nitrogen loss than 

denitrification with highest rates of up to 0.7 nmol N2 L- ' h- ' justbelow the oxycline. 
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In the eastern tropical south Atlantic, anammox has been shown to occur in the 

Benguela upwelling system during in situ experiments (Kuypers et al., 2005) indicating 

that nitrate is not directly converted to N2 by heterotrophic denitrification in the sub-oxic 

zone. Earlier studies had suggested denitrification to occur close to the shore in the region 

(Tyrrell and Lucas, 2002). 

In the Indian Ocean, seasonal oxygen deficient conditions are known to be 

prevalent within a large part of the central and north-eastern Arabian Sea. Though the 

Arabian Sea makes up —2% of the oceanic regime, it is considered to be one of the most 

productive ecosystems and contains one of the three major open-ocean denitrification 

zones in the world (Naqvi et al., 2006). Severe anoxia over the western Indian continental 

shelf develops during late summer and autumn (Naqvi et al., 2000). These anoxic 

conditions favour alternate respiratory pathways viz., denitrification and sulfate 

reduction. Intense water column denitrification at a rate of 30 Tg N y' has been found to 

occur within the OMZ (Naqvi, 1994). Naqvi et al. (2000) have also reported 

accumulation of N20 (nitrous oxide) along the western Indian continental shelf during the 

anoxic period. Bange et al. (2001) state that the emission of N20 due to vigorous 

denitrification in the Arabian Sea ranges from 0.33 to 0.70 Tg N20 yr -1 . On a global 

scale, it has been speculated that the Arabian Sea represents a hot spot for N20 emissions 

and could contribute significantly to the global budget of atmospheric N 20 thereby 

adding up to the increase in the earth's climate. Naqvi et al. (2006) have cited differences 

between open-ocean and coastal denitrification in the Arabian Sea stating that the former 

occupies two orders of magnitude larger volume wherein an accumulation of secondary 

nitrite is invariably accompanied by depletion of N 20. However, in the seasonal coastal 

system, greater nitrate consumption leading to complete anoxia is observed. High NO2 

and very high N 20 have been recorded by Naqvi et al. (2006) within the sub-oxic zone 

indicative of net consumption and net production of N20 by denitrifiers. 

In coastal marine sediments, the range of denitrification rates measured is greater 

than that measured in lake or river sediments ranging commonly between 50 and 250 

pmol N m-2  hi' with extremes from 0 to 1.067 pmol N m -2  h-1  (Seitzinger, 1988). The 

author suggests that the major source of nitrate for denitrification in most rivers, lakes 

and coastal marine sediments underlying an aerobic water column is nitrate produced in 
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the sediments and not from nitrate diffusing into the sediments from the overlying water. 

Very often, coastal ecosystems are subject to eutrophication due to increase in nutrients 

(carbon, nitrogen and phosphorous) by human activities (Valiela, 1995; Richardson and 

Jorgenson, 1996). These induce hypoxia as a consequence of seasonal stratification of the 

water column combined with the decomposition of organic matter derived from 

accelerated rates of primary production (Childs et al., 2002). Potential denitrification 

rates in the affected surficial sediments range between 39.8 and 108.1 pmol m' 2  

Denitrifying bacteria 

A potential for denitrification exists in most habitats (Knowles, 1982). Denitrification, 

which is carried out solely by denitrifying bacteria, can have a direct impact on sediment 

nitrogen availability and is also a major source of the greenhouse gas N20 (Firestone and 

Davidson, 1989) responsible for stratospheric ozone decay. The modern era of studies of 

denitrification began in 1886 with Gayon and Dupetit's report revealing the isolation of 

two strains of denitrifying bacteria (Payne, 1986). Denitrifiers have now been isolated 

from different areas ranging from soil to freshwater and marine environs. Denitrifiers 

have also been detected gut contents of earthworms averaging 10 6'7  (dry weight) of 

gut material producing N20 at rates exceeding that of soil homogenates (Karsten and 

Drake, 1997). A number of novel denitrifiers have been reported like Bacillus 

thermodenitrificans (Manachini et al. 2000), Comamonas nitrativorans (Etchebehere et 

al., 2001), Thioalkalivibrio denitrificans (Sorokin et al., 2001), Pseudovibrio 

denitrificans (Shieh et al., 2004), Denitratisoma oestradiolicum (Fahrbach et al., 2006), 

etc. Denitrifies have also been reported from extremely halophilic habitats (Hochstein 

and Tomlinson, 1985; Mancinelli and Hochstein, 1986). 

Denitrifiers are among the most diverse groups of bacteria in terrestrial 

ecosystems (Zumft, 1992). Denitrification has been reported in more than 50 bacterial 

genera (Zumft, 1997), archaebacteria and fungi (Tiedje, 1988). In marine ecosystems, a 

variety of taxonomically unrelated bacterial groups are capable of denitrification. Of 

these, 96% of cultured denitrifiers belong to the gamma-Proteobacteria (Brettar et al., 

2001). Denitrifying bacteria isolated from the marine environment are heterotrophic, 

gram-negative, motile, facultatively anaerobic cells predominantly straight or curved rods 
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exhibiting optimal growth at about 30°C, pH 8 and 3% NaCI (Shieh et al., 2004). They 

gain energy by oxygen-dependent respiration under aerobic conditions (Knowles, 1982). 

They are capable of anaerobic growth by carrying out denitrifying metabolism using 

nitrate, nitrite or nitrous oxide as terminal electron acceptors (Shieh et al., 2004). Betlach 

(1982) suggests that denitrifiers have evolved from a common ancestor within the purple 

photosynthetic bacterial group but not from a nitrate-reducing organism such as those 

found today. 

The most-probable number (MPN) technique has been widely used for the 

enumeration of denitrifiers (Davidson et al., 1985; Mancino and Torello, 1986; Jones and 

Knowles, 1991; Hou et al., 2000; Bigelow et al., 2002; Horiba et al., 2005) instead of 

plate counts. The technique is based the presence or absence of microorganisms in 

several individual aliquots of each of several consecutive dilutions of sediment. Upon 

incubation, change in characteristic of the nitrate medium (e.g. presence of gas bubble, 

NO3 depletion in the MPN cultures) is noted as positive for the presence of denitrifiers. 

Denitrifiers in sediment dilutions have also been identified by depletion of both NO 3" and 

NO2 by a negative spot test with diphenylamine (Martin et al., 1988). Allievi et al. 

(1987) devised an MPN method for the determination of denitrifiers, based on the 

qualitative gas-chromatographic detection of N20 produced during incubation in the 

presence of acetylene. In this method, tubes with sediment extract medium containing 

glucose, nitrate and ammonium sulfate were sealed with rubber stoppers and fitted with 

taps for air extraction. Air in the tubes was replaced with helium/acetylene 90:10 v/v. The 

tubes were incubated at 28°C for 15 days and tubes testing positive for nitrous oxide 

production were scored. Allievi and Moller (1992) developed and tested a plate-count 

based method to evaluate sediment denitrifiers. Saitoh et al. (2003) have improvised the 

MPN method using less equipment, labor and time to give more precise results than the 

conventional test tube method. They used a 96-well microtiter plates to add dilutions of 

samples with a medium and incubated them anaerobically using the AnaeroPouch culture 

system. 

Conventional denitrifier cultivation techniques in natural samples yield only 0.1 

to 10% of the denitrifying population. Using molecular techniques, every bacterium that 

contains the target DNA can be counted compared to MPN culture techniques that may 
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give varying results due to differences in the physiological state of the bacteria, 

depending on the sample and the composition of the culture medium (Michotey et al., 

2000). Therefore, molecular techniques are being increasingly used to replace time-

consuming MPN-based approaches to quantify denitrifiers. Molecular methods like real-

time Polymerase Chain Reaction (PCR) targeting functional genes like nirK have shown 

their densities to range between 10 46  copies per gram of sediment (Henry et al., 2004). 

Michotey et al. (2000) quantified denitrifiers by targeting the cytochrome cdi  denitrifiers 

by MPN-PCR and competitive PCR techniques. Their results have shown 10 2-3  copies per 

millilitre of water and 106  copies per gram of dry sediment. For high-throughput 

quantification of the denitrifying community, the microarray technique is promising but 

the method is countered by its low-sensitivity (Philippot, 2006). 

Quantification of microorganisms by cultivation based techniques are generally 

biased as it is generally believed that only a small fraction of environmental bacteria are 

recovered (Michotey et al., 2000). Molecular approaches are being widely applied to 

identify and enumerate denitrifying bacteria in environmental samples. These methods 

target functional genes (Smith and Tiedje, 1992) to give an indication of the presence of 

the bacterial group which is capable of that function for e.g. using nitrite reductase gene 

as a probe for denitrifying bacteria. The use of a functional gene requires sufficient 

genetic homology of the structural genes and the availability of multiple sequences in 

order to reliably design primers (Michotey et al., 2000). Specific metalloenzymes (Table 

2) catalyze each step (Payne, 1983) of the dqnitrification process (Fig. 3) of which two 

contain copper. 

The first step of the pathway is catalyzed by either the nap gene encoding 

periplasmic nitrate reductase synthesized during aerobic growth or the membrane-bound 

nar gene synthesized during anaerobic growth (Bell et al., 1990). The second step can be 

catalyzed by a cytochrome cd i -containing nitrite reductase (nirS) or a copper nitrite 

reductase (nirK) in some species. The third step catalyses the conversion of nitrite oxide 

to nitrous oxide by two different types of nitric oxide reductases (norB, norC) whereas 

the final step of converting nitrous oxide into di-nitrogen gas is carried out by the enzyme 

nosZ. Expression of nitrate reductase, nitrite reductase and N20 reductase is controlled b ∎  

discrete oxygen levels and by the nature of the nitrogenous oxide available for respiratio 



Table 2: Metalloenzymes of the denitrification pathway 

Sr. 

No. 
Enzyme Gene 

Associated 

metal 
Location Reference 

Nitrate 

reductase 
narG Molybdenum 

Membrane- 

bound 

Lanciano et al., 

2007 

2 
Nitrate 
reductase napA Molybdenum Periplasmic 

Hettmann et al., 

2004 

Nitrate Membrane- Richardson et 
3 reductase narH Iron 

bound al., 2001 

4 
Nitrate 
reductase narI Molybdenum 

Membrane- 

bound 

Watts et al., 

2005 

5 
Nitrate 
reductase nan Molybdenum 

Membrane- 

bound 

Blasco et al., 

1998 

Cytochrome 

6 cd 1  nitrite nirS Iron Periplasmic 
Saunders et al., 

reductase 
2000 

Nitrite Beaumont et 
7 

reductase 
nirK Copper Periplasmic 

al., 2002 

8 
Nitric oxide 

reductase 
norB Iron 

Membrane- 

bound 

Cramm et al., 

1999 

9 
Nitric oxide 

reductase 
norC Iron 

Membrane- 

bound 

Matsuda et al., 

2002 

10 
Nitrous oxide 

reductase 
nosZ Copper Periplasmic 

Zumft et al., 

1990 



Nitrate (NO 3 -) 

Nitrite reductase (napA, narG, narH, narl, narJ) 

Nitrite (NO2) 

Nitrite reductase (nirS, nirK) 

Nitric oxide (NO) 

Nitric oxide reductase (norB, norC) 

Nitrous oxide (N20) 

Nitrous oxide reductase (nosZ) 

Di-nitrogen (N 2) 

Fig. 3: Enzymes catalyzing the denitrification process and genes involved 



(Korner and Zumft, 1989). Denitrification enzyme activity could be used as a useful 

index, for comparing relative N exposure and potential denitrification activity (Wigand, 

2004). Smith and Parsons (1985) have found significant increase in enzyme activity in 

waterlogged cores which was always greater than denitrification rates. However, 

denitrification enzyme assay cannot be used as a reliable estimate of actual N gas 

production or seasonal patterns of denitrification in sediment due to the persistence of 

inactive denitrification enzymes (Groffman, 1986). 

Researchers have been able to probe the diversity of denitrifying genes by using 

culture-independent approaches (Ward, 1995, Braker et al., 2000, 2001; Jayakumar et al., 

2004, Prieme et al., 2002, Liu et al., 2003). Though a variety of functional genes have 

been used to study denitrifier communities in the environment, the most deeply 

investigated at present are those involved in nitrite reduction (Ward, 2005) and encoded 

by nirS and nirK genes that are unique to denitrification pathway. Of these, nirS has so 

far has been reported only within Proteobacteria (Jayakumar et al., 2004; Ward, 2005). A 

study by Jayakumar et al. (2004) in the water column of the coastal Arabian Sea has 

indicated the highest nirS diversity related to relatively high nitrite concentrations 

implying the presence of active denitrification. 

The nosZ gene encoding for nitrous oxide reductase, an enzyme catalyzing the 

final step of denitrification is largely unique to denitrifying bacteria (Scala and Kerkhof, 

1999). It represents the process leading to the loss of biologically available nitrogen from 

the sediment (Mills et al., 2008) and has been used for determining the diversity of 

denitrifiers (Scala and kerkhof, 2000; Horn et al., 2006; Yuguang et al., 2006). 

Investigations in continental shelf sediments have shown nosZ genes relating closely to 

the nosZ genes of Paracoccus denitrificans or Rhizobium meliloti (Scala and kerkhof, 

1998). Magalhaes et al. (2008) suggest that denitrifiers with specific nosZ genotypes 

have competitive advantage over others when NO 3 -  fluctuates in the system thereby 

affecting denitrification rates. 

Molecular studies to investigate denitrifying communities have extensively used 

the Denaturing Gradient Gel electrophoresis (DGGE) technique (Noda et al., 2002; 

Tadashi et al., 2003; Enwall et al., 2005; Hallin et al., 2006; Desnues et al., 2007; Ma et 

al., 2008). Denaturing gradient gel electrophoresis separates PCR generated DNA 
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products (200-700 by genomic restriction fragments) when run on a low to high 

denaturant gradient acrylamide gel. As the products migrate, they encounter increasingly 

higher concentrations of chemical denaturant. Weaker melting domains of the double-

stranded PCR product denature retarding the progress of the molecule in the gel. 

Sequence differences from different bacteria denature at different denaturant 

concentrations resulting in a pattern of bands wherein each band represents a different 

bacterial community. The fingerprints can be uploaded into databases and the similarity 

can be assessed to determine microbial structural differences between environments or 

among treatments. This method is efficient for PCR fragments shorter than 500 base pairs 

(Myers et al., 1985) providing high resolution and allowing bands of interest to be 

excised from the gel for straightforward sequencing to gain insight into the identities of 

the pre-dominant bacteria present. The major drawback of DGGE is that sequences 

amplified from different organisms may have the same melting temperature and migrate 

to the same position on the gel meaning that a single band can contain a mixture of 

genotypes (Enwall, 2008). Sequence divergence in the ribosomal genes can be obtained 

using restriction fragment length polymorphism (RFLP) analysis (Ward, 1995; Scala and 

Kerkhof, 2000) to account for variations in phenotype. 

2.5. Denitrification in mangrove ecosystems 
Mangrove ecosystems are known to provide coastal protection from tidal erosion, storm 

surges and trap sediment for land accretion (Pernetta, 1993). They play a major socio-

economic role to human communities in developing countries having traditionally used 

mangroves for wood and tannin products on a sustainable level (Tomlinson, 1994). Until 

recently mangrove forests had been considered wastelands. Large tracts of mangrove 

forest are now being 'reclaimed' for aquaculture and industrial development (Ong et al., 

1995). Juvenile fish and prawns use mangroves as habitats (Robertson and Duke, 1987; 

Robertson and Blaber, 1992). The Indian coastline extends 7516.6 km of which 5% 

comprises of a luxuriant mangrove cover. Mangrove swamps are located along the west 

coast of India along Saurashtra, Karnataka and Goa (Jagtap 1985; Jagtap et al., 1993, 

1994) while dense vegetation is found in the Sundarbans of West Bengal on the east 

coast. Extensive deforestation of mangroves for firewood, cattle grazing intense sewage 

and industrial pollution have threatened the mangroves along Bombay and southern 
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Kerala coast. According to a survey on forest by the Government of India (1997), Goa 

region has mangrove vegetation amounting to approximately 500 hectares. The major 

mangrove zones extend along swampy banks of Zuari and Mandovi estuaries. There are 

other sporadic mangrove patches distributed in the other 4 estuaries and along the 

Cumbharjua canal connecting the two estuaries. 

The denitrifying ability of mangroves make them effective sewage 'filters', 

converting dissolved inorganic nutrients to particulate matter (Robertson, 1992) make 

them plausible sites for denitrifying activity. The nitrogen cycle within mangrove forests 

(Fig. 4) is mediated predominantly by microbial rather than chemical processes (Alongi 

et al., 1992). The sediment N pool is composed largely of the organic N form which is 

not readily available for plant uptake (Clarke, 1985). Studies by Clarke (1985) and 

Alongi et al., (1992) have revealed concentrations of dissolved inorganic forms, 

particularly nitrate to be low compared to concentrations in other marine sediments. 

Denitrification in the sediments occurs in close proximity to the oxygenated surface of 

sediments and is dependent on the diffusion of nitrate into the sediments (Tomaszek, 

1995). Mangrove sediments are largely anaerobic and NO3 " availability is the factor 

controlling denitrification rates (Seitzinger, 1990). Kristensen et al. (1998) have indicated 

that more than 90% of the NO 3" needed by denitrifiers originates from nitrification 

(coupled nitrification-denitrification) while only 1 to 2% of the measured NO3 .  influx 

from the overlying water was consumed by the process. Denitrification results in 

emission of nitrous oxide, a potent green house gas. As mangroves lie in close proximity 

to areas prone to anthropogenic activity, there is growing concern towards their 

contribution to increased nitrous oxide fluxes to the atmosphere. Munoz-Hincapie et al. 

(2002) have demonstrated enhanced nitrous oxide fluxes on nitrate enrichment to 

mangrove sediments resulting in maximal mean flux of 36.7 ptmol m -2  h H . Corredor et 

al. (1999) have encountered rates ranging between 0.12 and 7.8 [Imo! N20 m -2  h-1  along 

the Southwest coast of Puerto Rico. The Muthupet mangrove system in South India emits 

nitrous oxide at a rate of 0.41 and 0.77 iimol 111-2  h 1  (Krithika et al., 2008). 

Research on denitrification in mangrove ecosystems has focussed on the 

measurement of direct rates of denitrification (Rivera-Monroy et al., 1995; Kristensen et 

al., 1998; Meyer et al., 2005). Denitrification rates reported in mangroves are generally 
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much lower than estuarine sediments (Rivera-Monroy and Twilley, 1996). These rates 

have,been estimated directly by experimental procedures using different techniques like 

gas chromatography, N2-gas flux technique, 15N isotope techniques in intact sediment 

cores, etc. Chiu et al. (2004) state that as much as 55% of the N loss in mangrove 

sediments occurs through denitrification and the process is limited by carbon availability. 

Little has been understood on the ecology of the organisms mediating the process. So far, 

attempts have been made to assess the denitrifiers associated with mangrove roots at a 

molecular level (Flores-Mireles et al., 2007) using functional marker genes (nirS and 

nirK) indicating that they belong to a-, p-, and y-Proteobacteria. Mangrove sediments are 

also known to harbour novel denitrifiers (Lin and Shieh, 2006) like Zobellella 

denitrificans and Zobellella taiwanensi. Therefore, it would be interesting to explore the 

taxonomic and functional diversity of microbes capable of denitrification from other 

mangrove habitats. The physico-chemical parameters that influence their distribution and 

abundance would help gain further insights on benthic denitrification in mangrove 

ecosystems. 
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Chapter 3. Materials and methods 

SECTION I — Field observations 

3.1. Study Area 

Investigations were carried out at mangrove forests located along the Mandovi and 

Chapora rivers in Goa, west coast of India (Fig. 5). The locations were fixed using a 

hand-held Magellan Global Positioning System. 

3.1.1. Location and description of mangroves 

Mangrove forests are one of the most productive and biodiverse ecosystems. The Indian 

coastline extends up to 7516.6 km of which 8% comprise of a luxuriant mangrove cover 

(Jagtap and Komarpant, 2003). Mangrove swamps are located along the west coast of 

India along Saurashtra, Karnataka and Goa (Jagtap, 1985) while 80% of the vegetation is 

found on the east coast (Untawale, 1984). Some of the major mangrove zones in Goa are 

located along the banks of the Mandovi and Zuari estuarine systems. 

The mangroves are subjected to an annual average rainfall of up to 325 cm. The 

fresh water input into the riverine systems during the rainy season lowers the salinity 

from approximately 32 ppt during the pre-monsoon to 0 ppt at the peak of the monsoon. 

3.1.2. Tuvem mangrove ecosystem 

The control site was located at Tuvem (15°39'09"N and 073°47'71" E). The site is located 

across the picturesque village of Camurlim (approx. 7 Kms from Mapusa town, North 

Goa) along the river Chapora which meanders through palm-lined banks. The site is 

linked by ferry. This serene ecosystem is set amidst lush green hills, banana and coconut 

plantations and is comparatively less influenced by anthropogenic activities (Krishnan et 

al., 2007). 

The Island is fringed by lush mangroves (Plate 1). The dominant species of 

mangroves found here are mainly represented by Acanthus illicifolius, Excoecaria 

agallocha, Caesalpinia spp., Avicennia officinalis and Clerodendrum inerme. 
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3.1.3. Divar mangrove ecosystem 

The experimental site was located at Divar island (15°30'35"N and 73°52'28"E; Plate 2) 

which is situated at a distance of approximately 10 km from the capital, Panjim. It is 

separated from the mainland by the Mandovi estuary and is accessible by ferry. The 

adjoining Mandovi estuary is important for the economy of the territory as it is heavily 

used for transportation of iron ore from mines located upstream. These iron ore 

beneficiation plants situated on the riverbank, discharge effluents directly into the 

estuary. This discharge contains high quantities of sediment rich in iron and also 

NH4NO3 used as explosive in the mining operations (De Sousa, 1999). High nutrient 

concentrations in the Mandovi especially during the monsoon (Divya et al., 2009) have 

been attributed to extraneous sources (De Souza, 1983). The Divar sediments are 

enriched with metals due to ferromanganese mining upstream of the Mandovi (Krishnan 

et al., 2007). These metals mainly Fe has been shown to influence N transformations in 

mangrove sediments (Krishnan and Loka Bharathi, 2009). 

The Divar Island is also fringed by luxuriant mangroves. These mangroves consist 

mainly of species like Acanthus illicifolius, Pongamia pinnata, Cyperus spp., Bruguiera 

gymnorrhiza, Avicennia officinalis, Caesalpinia spp., Sonneratia caseolaris and 

Rhizophora mucronata. These mangroves support the livelihood of many islanders and 

are of immense ecological and economic value. A variety of birds particularly pin tailed 

ducks, Cormorants, Common Sandpiper, etc. have made this mangrove swamps their 

abode. Oysters and fish are also found. Fiddler crabs of the genus Uca comprise one of 

the dominant macro benthic communities in this ecosystem. 

3.2. Sampling 

3.2.1. Sampling period 

Monthly sampling was carried out at low tide for a period of one year (April 2005 to 

March 2006) in the Divar and Tuvem mangroves swamps. The sampling covered the 

three seasons i.e. Pre-monsoon (February-May), Monsoon (June-September) and Post-

monsoon (October-January). 
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3.2.2. Sample collection 

Cores up to 15 cm length were obtained, capped immediately, transferred to an insulated 

box and transported to the laboratory for further physico-chemical and microbiological 

analyses. The cores were stored at 4°C until analyses. Water from the sampling sites was 

collected in clean, well-rinsed carbuoys and used for media preparation during 

microbiological analyses. 

3.3. Measurement of physico -chemical parameters 

Upon arrival to the laboratory, representative cores from each site were sectioned at 0-2, 

2-4, 4-6, 6-8 and 8-10 cm. The following physico-chemical parameters were immediately 

analyzed in the sediment: temperature, pH and redox potential. Samples for total organic 

carbon, grain size and metals (Fe and Mn) at each depth layer were analyzed only for the 

three representative seasons. Down-core variation in pore water concentration of 

inorganic nitrogenous species (nitrate and nitrite) was determined. Samples for the 

analyses of dissolved oxygen concentration in the ambient water were fixed at site. 

Salinity of surrounding water was also measured. 

3.3.1. Temperature 
Temperature at each section of the core (0-2, 2-4, 4-6, 6-8 and 8-10 cm) was measured 

using a digital thermometer (Fisher Scientific). 

3.3.2. Salinity 
Salinity of overlying water was measured using a hand held refractometer (model: 

S/Mill-E, ATAGO, Japan). The zero setting (calibration) was done using distilled water as 

per the manufacturers instructions. 

3.3.3. Hydrogen ion concentration (pH) 
Hydrogen ion concentration at each section was measured using an Orion 4-Star Plus 

Benchtop pH/ISE Meter after calibration with standard buffers (pH 4, 6.9 and 9; Merck). 

3.3.4. Redox potential (Eh) 
An intact sediment core was carefully taken out from the PVC core. Sediment oxidation- 

reduction potential (Eh) was measured immediately at each section of the core with the 

help of an Orion platinum redox in combination with a silver/silver chloride reference 
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electrode. The electrode was dipped until the reading stabilized and the values were 

recorded. 

The redox electrode was calibrated using solutions A and B (Appendix I). The 

electrode was dipped in solution A, and the reading was allowed to stabilize. The 

potential was around 192±2 mV. The electrode was then rinsed, wiped dry with a tissue 

and dipped in a beaker containing solution B. The reading was allowed to stabilize until 

the potential was 258±5 mV (the difference potential of solutions B and A was about 66 

mV). 

3.3.5. Dissolved oxygen (ambient water) 

Dissolved oxygen (DO) content in the ambient water was determined using the traditional 

Winkler's titration (Winkler, 1888) method as described by Grasshoff (1983). Water 

samples were collected at the sites in acid-washed (10% HCI) 300 ml glass stoppered 

bottles. The samples were immediately fixed using 2.4 ml of Winkler's A and B reagents 

(Appendix II). The DO bottles were gently shaken to mix the reagents and the precipitate 

formed was allowed to settle. 

In the laboratory, the precipitate was acidified by adding 2.4 ml of sulphuric acid 

(50% v/v) and titrated against 0.01N sodium thiosulphate using starch as an indicator. 

End point was noted by observing colour change from pale yellow to colourless. A blank 

was maintained using milliQ water. Potassium iodide (0.01N) was used as a standard. 

The dissolved oxygen concentration of seawater was expressed as the number of millilitres of 

dioxygen gas (0 
2
) per litre of seawater (ml I ). 

33.6. Pore water NH4 ,+  NO2 and NO3 

Sub-samples were taken at every 2 cm intervals from surface to 10 cm by carefully 

sectioning the core. Each section (7.5 cm diameter and 2 cm thick) was transferred to 100 

ml of sterile saline and homogenised using a glass rod. The slurry was centrifuged at 4°C 

for 10 minutes at 5000 rpm with a REMI CPR-24 centrifuge. Low spin was maintained 

during centrifugation to ensure minimal change in nutrient concentrations due to lysis of 

benthic infauna. The supernatant was filtered through a 0.2 p.m filter and stored at -20°C 

until analysis. Ammonium (Appendix III), nitrite (Appendix IV) and nitrate (Appendix 

V) were measured colorimetrically (Shimadzu UV/VIS spectrophotometer; precision: ± 
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0.01 gmol 1') as described by Koroleff (1969), Bendschneider and Robinson (1952) and 

Wood et al. (1967). Weight of the sediment used in the extraction was estimated by 

drying in a hot air oven at 60°C for 48 hours. 

3.3.7. Total organic carbon 

Total organic carbon was determined by wet oxidation method (El Wakeel and Riley, 

1957) with a precision of 0.01%. Dried sediment was ground using a mortar and pestle. It 

was sieved through a 200 gm mesh. About 0.5 grams sample from 0-2, 2-4, 4-6, 6-8 and 

8-10 cm sections were taken and transferred to a conical flask. Organic matter present in 

sediment samples was oxidized by adding 25 ml of acid dichromate and the tubes were 

incubated at 60°C in a water bath for 1 hour. Then, 100 ml of distilled water was added 

and subsequently titrated against ferrous ammonium sulphate using diphenylamine as an 

indicator. A colour change from dark blue to green indicated the end point. A blank was 

run without sediment. The standard curve was plotted using glucose at varying 

concentrations. 

3.3.8. Iron and manganese 

Sub samples for metal analyses were dried at 60(±2) °C for 48 hours and disaggregated in 

an agate mortar, before chemical treatment for Fe and Mn analysis. For each sample, a 

known quantity ('-M.2 g) of sediment was digested in a teflon vessel with a solution (10 

ml) of concentrated HF (48% GR; Merck), HNO3 (69% GR; Merck) and HCIO4 (35% 

GR; Merck) in a ratio of 7:3:1. The sediment was then dried on a hot plate in a fume hood 

chamber for an hour. 

An aliquot of 5 ml of the above acid mixture was added and dried on the hot plate 

for one hour. Further, 2 ml of concentrated HCl (35% GR; Merck) was added followed 

by 10 ml of HNO3 (69% GR; Merck) The residue was warmed and then transferred to a 

clean, dry standard flask to make up final volume to 100 ml with double distilled water. 

Detailed procedure of sediment digestion is given in Balaram et al. (1995). Trace metal 

concentrations (Fe and Mn) were measured using a flame atomic absorption 

spectrophotometer (AAS, Perkin Elmer Model 5000). The accuracy of the analytical 

procedures was assessed using the certified reference material MAG-I (USGS) that 

yielded results within the reference value range (Flanagan, 1967; 1976). 
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3.4. Bacteriological studies 

3.4.h Total bacterial counts 
The sediment core was thawed and sectioned at 2 cm intervals using a sterile core cutter 

to obtain representative samples at 0-2 cm, 2-4 cm, 4-6 cm, 6-8 cm and 8-10 cm. Sub-

samples of z5 gm wet weight sediment was extruded using syringe cores. The sub-

samples were transferred to 45 ml of filter sterilized full strength seawater (10 .1  dilution). 

Tween 80 (50 1.11) was added and the mixture was sonicated at 40 mHz for 15 secs. The 

next set of dilution (10 -2) for each section of the core was prepared by transferring 5 ml of 

10" I  dilutions to 45 ml filter sterilized seawater. 

The method of Hobbie et al. (1977) was used for the enumeration of total 

bacterial counts (TC) by epifluorescence microscopy. An aliquot of 5 ml sample from 10" 

2  dilution was fixed using 250 1.1.1 of buffered formalin (2% final concentration). Two 

millilitres of sub-sample was filtered over a 0.2 [tm black lsopore polycarbonate filter 

paper (Millipore) and stained with acridine orange (final concentration 0.01% w/v). The 

sample was then incubated for 2 minutes and then filtered. Bacterial cells retained on the 

filter paper were counted using Nikon 50i epifluorescence microscope equipped with a 

100X oil immersion objective. Cells were counted from 10-100 microscopic fields and 

the total counts (TC) were expressed as number of cells g -1  (dry sediment). 

3.4.2. Heterotro ph ic counts 
Total heterotrophic bacteria (THB) were enumerated using medium prepared in aged 

seawater. The seawater was amended with 0.01 % nutrient broth (HiMedia, India) at 

concentrations. The pH of the medium was adjusted to 8.2 before adding agar at a final 

concentration of 1.5%. A 50 1.1.1 innoculum from 10 -2  dilution was used to spread plate on 

to the nutrient agar plates. The plates were incubated at room temperature (28±2°C) for 7 

days before and bacterial counts were taken as colony forming units (CFU) g" 1 . Initial 

weight of the sediment used in the dilutions was determined by drying the filtered 

sediment at 60°C. 

3.4.3. Nitrate reducing bacteria 
Nitrate reducing bacteria (NRB) were cultured in agar shake tubes. Media for isolation 

(Appendix VI) was prepared using aged seawater amended with lmmol KNO 3  and half- 
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strength nutrient broth (HiMedia laboratories Ltd., India). About 500 III from 10 -2 

 dilution of the sediment was used. The medium was gently poured and mixed with the 

innoculum. The tubes were overlaid with a paraffin-paraffin oil mixture in the ration 1:2 

to induce anaerobic conditions. The culture tubes were incubated at 28°C ±2 for 30 days. 

Gas production was observed in the tubes towards the end of the incubation period. NRB 

counts were taken in the form of colony forming units. Initial weight of the sediment used 

in the dilutions was determined by drying the filtered sediment at 60°C. The counts have 

been expressed as CFU g -I  (dry sediment). 

3.4.4. Denitrifier abundance 

Denitrifiers were enumerated seasonally by the N20-most probable number (MPN) 

technique as described by Michotey et al. (2000). The sediment core was thawed and 

sectioned at 2 cm intervals using a sterile core cutter to obtain representative samples at 

0-2, 2-4, 4-6, 6-8 and 8-10 cm. Sediment from each depth was homogenised by mixing. 

Sub-samples of approximately 1 g wet weight from each depth layer were sub-sampled 

using sterile syringes. The sub-samples were transferred to sterile 9 ml of culture medium 

(Appendix VII) to give a 10 - ' dilution. The vials were purged with high purity N2 for 10 

minutes to induce anaerobic conditions and supplemented with 20 kPa acetylene (Bonin 

et al., 1994). Tween 80 (20 [II) was added and the mixture was sonicated at 40 MHz for 

15 seconds. Dilutions up to 10-12  for each section of the core were prepared in triplicates. 

The vials were incubated at room temperature in the dark for 10 days, and the positive 

tubes were scored based on the accumulation of nitrous oxide. Subsequent quantification 

could be made using standard Mc Cready's table (Rodina, 1972). Denitrifier abundance 

has been expressed as MPN cells g -I  of dry sediment. 

3.5. Denitrification rates 

Denitrification rates were measured using sediment slurries by the acetylene inhibition 

technique based on the inhibition of the conversion of N 20 to N2 (Sorensen, 1978). The 

slurry method was opted over the intact core method (Lowrance and Hubbard, 2001; 

Bernot et al., 2003) due to low permeability of mangrove sediments (Marchand et al., 

2004; Schwendenmann et al., 2006) as uneven penetration of acetylene in compact 

sediments would lead to an underestimation of denitrification rates. Sampling for 
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denitrification activity was carried out during April representing pre-monsoon period 

(February—May), September (monsoon: June—September) and January (post-monsoon: 

October—January). 

Sediment cores were demarcated into five sections (0-2, 2-4, 4-6, 6-8 and 8-10 

cm). About 1 cm 3  of sediment was extruded from each section using a syringe core and 

transferred aseptically to sterile 20 ml headspace vials. Three ml of sterilized ambient sea 

water from the sampling site was added to the sediment. This seawater was amended with 

chloramphenicol at a final concentration of 1 g (Gilbert et al., 1998; Simek, 2000; 

Bonin et al., 2002; Desnues et al., 2007) to inhibit novo synthesis of denitrifying enzymes 

and reflecting in situ activity at the time of sampling (Brooks et al., 1992). No additional 

carbon or nitrate was amended to the seawater. The vials were capped with butyl stoppers 

and the slurry was vortexed for 5 seconds. The vials were purged with high purity N2 for 

10 minutes to induce anaerobic conditions. Acetylene gas at 20 kPa (Bonin et al., 2002) 

was injected into the headspace to avoid N20 production by nitrification and its reduction 

by denitrification (Castro-Gonzalez and Farias, 2004). Triplicates (three cores; five 

depths; n=15) were maintained and the vials were incubated in the dark for 0, 0.5, 1.0, 

1.5, 2.0, 2.5 and 3.0 hours. At the end of the incubation period, bacterial activity in all 

incubations was terminated using 0.1 ml of 1M HgC12. 

Nitrous oxide in the headspace was analyzed using a Shimadzu 2010 gas 

chromatograph fitted with a electron capture detector and Porapak Q column (Porapak Q 

1/8" SS column, 3.05 m length, 80/100 mesh). The oven and detector temperatures were 

40°C and 300°C, respectively. High purity nitrogen at a flow rate of 35 ml min e  was used 

as a carrier gas. The gas chromatograph was calibrated using a secondary standard 44.16 

±0.38 nmol N20 in nitrogen (1.11 ± 0.009 ppm v, courtesy: National Physical Laboratory 

(NPL), New Delhi). Total N20 was calculated based on the equation stated by Tiedje 

(1982): M=Cg  (Vg+Via) 

where, M = the total amount of N20 in the water plus gas phases 

Cg = concentration of N 20 in the gas phase 

Vg = volume of gas phase 

Vi = volume of liquid phase 

a = Bunsen absorption coefficient 
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The solubility coefficients of N 20 were used to correct for dissolved N20 in the 

equilibrations (Weiss and Price, 1980). As the experiment was carried out in microcosms, 

it is necessary to minimize error likely to be caused by variability during sediment 

transfer. Hence, sediment used in each microcosm was filtered through a laboratory grade 

filter paper and dried at 60°C for —48 hours. Activity was considered as the linear 

accumulation of N20 over time. Denitrification rates were calculated as *nmol N20-N g 

h-i  of dry sediment, extrapolated to a unit area basis as described below and expressed as 

N20-N m-2  h - '. 

Calculations for conversion on area basis (m -2) were done as follows: 

A= Bxkx 10000 

where, 

A= denitrification rate (nmol N20-N m -2  h-i ) 

B= denitrification rate (nmol N 20-N g-1  h -1 ) 

k**= 1.13 
** 

Constant k was calculated by converting volume of sample to area: 

lcc wet sediment has following dimensions in syringe 

Diameter = 1.2 cm 

Height = 1 cm 

Volume of sediment used = FIr 2 h 

=3.14x0.6x0.6x1 

= 1.13 cm2  

Thus, 1.13 cm2  represents volume of sample. 

*For back conversion of DNT activity in Ilmol N20-N m -2 	to nmol N20-N g-i  h-i : 

(DNT activity in Ilmol N 20-N m-2  h -1  x 10 3 ) / (1.13 x 10 4 ) 

3.6. Statistical analyses 

Significant differences among physico-chemical and bacteriological parameters were 

analysed using two-factor analysis of variance (ANOVA) without replication in Analysis 

tool pack (Microsoft Excel). Bacterial numbers were login transformed before analyses. 

Pearson's correlation coefficients were used to assess inter-relationship between 

denitrifiers and environmental parameters. The correlation values were plotted using 
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Cytoscape 2.6.3 software which enabled to build an open-source network visualization. 

Multiple regression analysis was performed using Statistica 6 software to predict the 

combination of factors controlling denitrification and denitrifier abundance. 

SECTION II — Laboratory experiments 

3.7. Quantification of nitrous oxide production and its origin 

3.7.1. Experimental procedure 

3.7.1.1. Sampling 
Sediment cores were collected at low tide and transported in an ice box. Cores for pore 

water nutrient and rate measurements were maintained at 4°C until analysis. Water from 

sampling sites was collected in carbuoys for media preparation. 

In the present study, down-core variation in net N 2 0 production was examined at 

the relatively pristine site Tuvem and the Divar mangrove ecosystem which is influenced 

by extraneous nutrient input. Detailed studies on N 20 production mechanisms have been 

restricted to Tuvem. 

3.7.1.2. Physico-chemical parameters 
Hydrogen ion concentration (pH) was measured upon arrival using an Orion 4-Star Plus 

Benchtop pH/ISE Meter. Sediment oxidation-reduction potential (Eh) was measured with 

the help of an Orion platinum redox in combination with a silver/silver chloride reference 

electrode. 

For nutrient analyses, triplicate sub-samples from thawed cores were taken at 

every 2 cm intervals from surface to 10 cm by careful sectioning of sediment. Each 

section (7.5 cm diameter and 2 cm thick) was transferred to 100 ml of sterile saline and 

gently homogenized using a glass rod. The slurry was centrifuged at 4°C for 10 minutes 

at 5000 rpm (x 1803 g) with a REMI CPR-24 centrifuge. Low spin was maintained during 

centrifugation to ensure minimal change in nutrient concentrations due to lysis of benthic 

infauna. The supernatant was filtered through a 0.2 nm filter and stored at -20°C until 

analysis. Ammonium, nitrite and nitrate were measured colorimetrically (Shimadzu 

UV/VIS spectrophotometer; precision: ± 0.01 nmol 1 1 ) as described by Koroleff (1969), 
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Bendschneider and Robinson (1952) and Wood et al., (1967). Weight of the sediment 

used in the extraction was estimated by drying in a hot air oven at 60°C for 48 hours. 

Total organic carbon (TOC) was determined by wet oxidation method with a precision of 

0.01% (El Wakeel and Riley, 1957). 

3.7.1.3. Net nitrous oxide production and its origin 

Sediment cores were demarcated into five sections (0-2, 2-4, 4-6, 6-8 and 8-10 cm). 

About 1 cm3  of sediment was extruded from each section using a syringe core and 

transferred aseptically to sterile 20 ml headspace vials. Three ml of sterilized ambient sea 

water from the sampling site (containing 4.5 jtmol NO 3 --N 1 -1 ) was added. Further, 

sample preparations were amended with chloramphenicol (1 g 1 1 ) to prevent de novo 

enzyme synthesis during the incubations (Gilbert et al., 1998; Simek, 2000; Bonin et al., 

2002; Desnues et al., 2007). No additional carbon or nitrate was added as substrate. The 

vials were capped with butyl stoppers and were briefly vortexed to form slurry. To 

determine the denitrification (DNT) rate, some of the tubes were put under anaerobic 

conditions by flushing with N2 for 15 min. The headspace over these slurries was 

assigned with 20 kPa acetylene (Bonin et al., 2002) and the tubes were vortexed. To 

determine net N20 production (from nitrification plus denitrification) and for N 20 

produced by incomplete denitrification ( DN2O), aerobic conditions were maintained and 

the headspace over slurries was assigned respectively with 0 or 10 Pa acetylene to inhibit 

nitrification (Bonin et al., 2002). Triplicates were maintained at each depth and the vials 

were incubated in the dark for 0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 hours. Following 

incubation, each tube was treated with 0.1 ml of 1M HgC12 solution, and vigorously 

shaken for 2 min to stop the reaction. 

Nitrous oxide in the headspace was analyzed using a Shimadzu 2010 gas 

chromatograph fitted with a electron capture detector and Porapak Q column (Porapak Q 

1/8" SS column, 3.05 m length, 80/100 mesh). The oven and detector temperatures were 

40°C and 300°C respectively. High purity nitrogen at a flow rate of 35 ml min -1  was used 

as a carrier gas. The gas chromatograph was calibrated using a secondary standard 44 

±0.38 nmol N20 in nitrogen (NPL, New Delhi). The rate of N20 production was 

determined based on its linear accumulation over time (Tiedje, 1982). The Bunsen 
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solubility coefficient for the measured salinity and temperature in the microcosms was 

used to correct for dissolved N20 (Weiss and Price, 1980). As the experiment was carried 

out in microcosms, it is necessary to minimize error likely to be caused by variability 

during sediment transfer. Hence, sediment used in each microcosm was filtered through a 

laboratory grade filter paper and dried at 60°C for approximately 48 hours. Average N20 

production was calculated as nmol N20-N g '  h- ' of dry sediment, extrapolated to a unit 

area basis (m -2) and converted to Imo' N20-N m -2  If'. 

Nitrous oxide produced through nitrification ( NN20) was calculated as: 

N  N 2 0= Net N 2 0 production - DN20 

Percentage of N20 through incomplete denitrification ('N 20) was calculated as: 

N 2  
%11\120 D —  DNT0 x 100 

3.7.1.4. Quantification of denitrifiers 
Denitrifiers were enumerated by the N 20-most probable number (MPN) technique. The 

sediment core was thawed and sectioned at 2 cm intervals using a sterile core cutter to 

obtain representative samples at 0-2, 2-4, 4-6, 6-8 and 8-10 cm. Sediment from each 

depth was homogenised by mixing. Approximately 1 g wet weight sediment from each 

depth was sub-sampled using sterile syringes. The sub-samples were transferred to 9 ml 

of sterile culture medium to give a 10 - ' dilution. The culture medium was prepared as 

described by Michotey et al., (2000). Tween 80 (20 R1) was added and the mixture was 

sonicated at 40 MHz for 15 seconds. Serial dilutions for each section of the core were 

prepared in triplicates. The vials were purged with high purity N2 for 10 minutes to 

induce anaerobic conditions and supplemented with 20 kPa acetylene (Bonin et al., 

1994). The vials were incubated at room temperature in the dark for 10 days and the 

positive tubes were scored based on the accumulation of N20. Subsequent quantification 

was made using standard McCready's table (Rodina, 1972). Denitrifier abundance has 

been expressed as MPN cells g '  of dry sediment. 
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3.7.1.5. Statistical analyses 
All analyses have been carried out using Statistica version 6. Bacterial numbers were 

log i n transformed before analysis. Nitrous oxide production rates were checked for 

normal distribution using the Kolmogorov-Smirnov test. As the data was normally 

distributed (p>0.2), t-Test was used to check for statistically significant differences in 

mean value of nitrous oxide production between the two sites. Pearson's correlation 

coefficients were used to assess inter-relationship between biotic and abiotic parameters. 

Principal component analysis (PCA) was used to examine the combined influence of 

environmental parameters on N20 production. Depth was not included in the matrix since 

maximum N20 production was restricted between 0-4 cm. 

3.8. Down-core profiling of denitrification along with other co-occurring 
processes in the N cycle 

3.8.1. Experimental procedure 

3.8.1.1. Sampling 
Sediments were collected from each sampling site at low tide during pre-monsoon (May, 

2008). Undisturbed sediment cores (six cores per site) were sampled by hand using PVC 

cores (inner diameter 7.5 cm, 20 cm depth). The top 10 cm of sediment cores were 

sectioned into 2 cm thick segments. For each sampling site, sediment corresponding to 

the same depth were pooled and homogenized. Each homogenized sample was further 

sub-divided into (i) 3 replicates (1 ml) stored at -20°C for molecular biology experiments, 

(ii) duplicates (10 ml) for immediate pore water analyses and (iii) duplicate laboratory 

replicates to determine an average value of microbial activities in each homogenized 

sample were maintained at every incubation interval (n= 12). The coefficient of variation 

was consistently lower for laboratory replicates than for homogenized samples from any 

given sample location. Therefore, the level of replication reported here is for the 

homogenized samples obtained at each site (Rich et al., 2008). 

3.8.1.2. Grain size analysis 

De-ionized water was used for desalination of 15g sediment sub-samples by repeated 

washing followed by oven-drying at 45°C. Samples were then treated overnight by 

adding 20 ml of 10% Na-Hexa metaphosphate solution. The sand contents were 
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determined after 'wet-sieving' on 63 µm sieve and subsequent weighing. The remaining 

mud fraction was made up to 1000 ml in a measuring cylinder. Silt (63 to 2 mm) and clay 

(<2 mm) content were determined by the standard pipette analysis (Folk, 1968). The 

separated fractions were oven dried and weighed to calculate silt and clay ratios. 

3.8.1.3. Nutrient and total organic carbon analyses 
For extractable ammonium analyses, 2 ml solution of 2M KCl were added to 1 ml 

sediment sub sample for extraction of easily exchangeable ammonium (Mackin and 

Aller, 1984). The tubes were vortexed and the samples were incubated at 4°C for about 2 

hours with brief vortexing every 15 minutes. The samples were then centrifuged at 8000 

rpm for 10 minutes using a Beckman GS-15R centrifuge. The supernatant was stored at -

20°C until analysis. Ammonium was subsequently measured using the 

phenol/hypochlorite method (Koroleff, 1969). 

For nitrate and nitrite analysis, 5 ml sediment sub-sample retrieved using syringe 

core was diluted with 5 ml nitrate-free distilled water, centrifuged at 8000 rpm for 10 

minutes and the supernatant was transferred to a clean tube. Nutrient analysis was 

performed using the Technicon auto analyser as described by Treger and Le Cone 

(1975). Weight of the sediment used in the nutrient analyses was estimated by drying in a 

hot air oven at 60°C for 48 hours. 

Total organic carbon (TOC) was determined by the wet oxidation method with a 

precision of 0.01% (El Wakeel and Riley, 1957). 

3.8.1.4. Di-nitrogen fixation 
Di-nitrogen fixation rates were measured in sediment by acetylene reduction assays 

following the procedure of Bebout et al. (1987). Two millilitres of the headspace gas was 

replaced by acetylene in the rubber-stopper-sealed flasks containing the sediment as 

previously described by Bonin and Michotey (2006). The ethylene concentration was 

measured using a mass spectrometer (Anagaz 100 MKS) by monitoring the signal at 

miz=27 and by taking into account the cracking pattern to avoid m/z=28, where the 

ethylene peak would have been masked by N2 (m/z=28) (Lloyd and Scott 1983). 

Considering the salinity and the ratio of liquid/gas phases in the incubation flask, we 

assumed that the amount of soluble ethylene was negligible. Ethylene production rates 
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were transformed to N2 production rates using a theoretical conversion factor of 3 (3 

C2H4 per N2) found applicable to the sediment communities (Hardy et al., 1968, Joye 

and Paerl, 1994). Di-nitrogen was determined from the linear accumulation of N2 over 

time and has been expressed on a dry weight basis as nmol g l  11 1 . 

3.8.1.5. Net nitrification rate 

To measure nitrification rates, 10 mmol sodium chlorate was added to sediment slurries 

(4 ml sediment sample + 4 ml seawater) to inhibit oxidation of nitrite (Gilbert et al., 

1997). The slurries were prepared in triplicates and incubated for up to 10 hours. 

Incubations were terminated using HgC12 (10 mmol final concentration) and stored at 

room temperature. At the end of the incubation period, the vials were briefly vortexed 

and samples were centrifuged at 5000 rpm for 15 min. Nitrification rate was determined 

from the linear production of nitrite during the incubation period using the Technicon 

auto analyser (Treger and Le Corre, 1975) and has been expressed on a dry weight basis 

as nmol gl  h-1 . 

3.8.1.6. Nitrate reduction activity 

Approximately 1 g wet weight sediment obtained from each representative section was 

transferred to 60 ml serum bottles. Sterile ambient seawater collected from site for media 

preparation. This seawater contained approximately 4.5 umol 1 1  nitrate. The seawater 

was amended with allythiourea (ATU) at a pre-standardized concentration of 125 umol I 

to inhibit nitrification (Ginestet et al., 1998). The sediment slurry was briefly vortexed 

and the bottles were then filled with seawater up to the brim. The bottles were capped 

with butyl stoppers and the slurry was gently mixed and incubated in triplicates under 

static conditions for 3 hours as the nitrification inhibitor used became ineffective beyond 

this period. 

At the end of the sampling period, the bottles were gently swirled. The contents 

were transferred 100 ml centrifuge tubes and centrifuged (REMI Compufuge CPR-24) at 

5000 rpm and 4°C for 10 minutes. Nitrate in the supernatant was measured 

spectrophotometrically (SHIMADZU UV/VIS) as described by Wood et al. (1967). 

Nitrate reduction activity (NRA) was determined from the fall in nitrate level over time 

and the rate has been expressed on a dry weight basis as umol NO3-N g' h -1 . 
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3.8.1.7. Denitrification and anammox 

Experiments for anammox and denitrification activities followed the procedure of 

Thamdrup and Dalsgaard (2002) and Risgaard-Petersen et al. (2003) with some 

modifications as described by Minjeaud et al. (2008). The isotope pairing method 

involves the use of stable nitrogen isotope ( 15NO3-) and the production of single-labelled 

( 14N 1 5N) 5N) and double-labelled ( 15N I5N) di-nitrogen by a mass spectrometer (Nielsen 

1992). 

Four ml of homogenised sediment from each section was transferred into 22 ml 

headspace vials containing 4 ml of filter sterilized seawater amended with 10 Rmol NO 3

-N. The vials were sealed with butyl rubbers stoppers, purged with He and pre-incubated 

for about an hour before addition stock solution of 15NO3- (97.4 atom%, Isotech 

Mathesson, USA) (Rich et al., 2008) to obtain a final concentration of 50, 80 and 150 

gmol 15NO3- . The production of single-labelled ( 14N I5N) and double-labelled ( 15N I5N) di-

nitrogen was followed during an incubation period of up to 10 hours in the dark. Two or 

three vials were sacrificed by adding HgCl 2  (final concentration of 10 mmol) at each 

point of the time series (0, 2, 4, 6, 8 and 10 hours). 

The amount of 29N2 and 3°1\12 produced in the incubation vials during the 

incubations was measured with a quadrupole mass spectrometer (Anagaz 100, MKS, 

England) (Minjeaud et al., 2008). Argon was used as an internal standard. Signals at 5 

m/z values were collected every 0.5 seconds and stored onto a computer for later 

analyses. N2 was measured at tn/z=28, 29 and 30 corresponding to 28N2, 29N2 and 30N2 

respectively while 02 or Ar were measured at m/z=32 and m/z=40 respectively. The raw 

value collected at m/z=30 was corrected according to Minjeaud et al. (2008) in order to 

take into account interference due to NO ions formation from N2 and 0+  inside the mass 

spectrometer (MS). The natural abundance of nitrogen isotopes is 99.64% of I4N and 

0.36% of 15N (Steingruber et al., 2001). The measured ratio in the present study was very 

close to the theoretical value and calculated to account small variability between 

measurements. The concentration of 29N2 and 30N2  were plotted against time and fitted to 

the linear model (A(0=A0±m*t) using the least squares method where: t= incubation time; 

Ao=concentration at t=0; m= slope of linear curve. Rate uncertainties were calculated 

from the errors in the linear regressions. 
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Total denitrification (D tot) and anammox were calculated from the production of 

N2 molecules of different isotopic compositions upon enrichment with stable isotope 

tracer ( 15NO3 —). The values of 29N2 and 30N2  production were used in the equation 

described by Thamdrup and Dalsgaard (2002) with some modifications ( mod_IPM) as 

described by Minjeaud et al. (2008) to calculate anammox (Anx) and total denitrification 

(Dt00 rates. The production rates of N2 with masses of 28, 29 (29N2_1 4N+ 15N) and 

30 (30N2= 15N+ 15N) have been represented as P28, P29, and P30 respectively. The original 

IPM developed by Nielsen (1992) estimates denitrification by monitoring changes in di-

nitrogen gas with different isotope compositions (29N2, 3°1\12) after enrichment with 

15NO3 . However, if anammox is present, the traditional IPM (Nielsen, 1992) is erroneous 

and cannot be used. In the presence of 15NO3, the production of N2 from anammox 

modifies the proportion of 28N2, 29N2 and 3°N2 productions compared to the case where 

denitrification alone is implied (Risgaard-Petersen et al., 2003, Trimmer et al., 2006, 

Minjeaud et al., 2008). The total production of 28N2 and 29N2 depends on the ratio of 

intensities between the reactions of denitrification and anammox. The relative 

contribution of anammox and denitrification in the total N2 fluxes was calculated 

according to the equations described by Minjeaud et al. (2008) as indicated below: 

The percentage of anammox is represented by R a . 

A„ R  _ 	 

a 	P14 

A28 is the production of 28N2 coming from anammox. P14 can be expressed as function of 

P15 and R14. 

P14 = R14 xP15= RI4 X (P29  + 2P30 ) 

The calculation of R14 is thus essential for the calculation of P14. R14 is the ratio between 

the quantities 14NO3  and 15NO3  in the zone of expression of the activities, this ratio is 

different from the initial percentage of labelling 

2D28  = A28 =  D29  
'`14 

D29 	A29  2D30  

where, 
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D29 and D30 represent the productions of the 29N2 and 36 1\12 coming from denitrification 

respectively. 

A29 is the production of 29N2 coming from anammox. 

According to Risgaard Petersen et al. (2003) R14 can be experimentally 

determined from measurements of P29 and P30 in the presence of different 15NO3 

concentrations as it allows the calculation of R14 and consequently the determination of 

the production of N2 formed from 14NO3. 

P29(1) — V x P29(2)  
R14 v  = 

2 x (P300, — V2 x  P30(2)) 

where, 

['WO:  

	

= 	C1  
[ 15NO3L, 

c 1 = nitrate at concentration 1 

c2= nitrate at concentration 2 

If Ra  equals zero, no anammox occurs and denitrification rates can be determined 

according to the original procedure of Nielsen (1992). The total denitrification rate 

	

= DW  + DO 	in the sediment 	is therefore 	calculated as: 

Dtot= Di4 + 	 Eqn (1) 

Denitrification from 15NO3 -  (D15) and from 14NO3 (D14) can be calculated from the 

production rate of 29N2 (P29) and 3121\12 (P30) as follows: 

D15 = P29+ 2 P30 
	 Eqn (2) 

D14 = P 29+ 2 P 28 
	 Eqn (3) *  

* Derivation of equation as described by Minjeaud et al., (2008). 

When denitrification is the sole process producing D14 and D15, D14 can be expressed as: 
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D14 	" 	X (P20  2P30 ) 
2P30  

Eqn (4) 

The part of D14 that is based on NO3 -  from the water phase (D,,) is calculated from D15 

and the 14N: 15N ratio of the water column NO3 -  : 

[ 14 1\10 3 1,, 
Dw  Di , 	 

- [15  A10 31. 

where: 

[ 14NO3 1., = concentration of 141\103 -  in the water column 

[ 15NO3 1., = concentration of 15NO3 -  in the water column 

In situ denitrification of NO3 -  produced by nitrification (D o) is calculated as: 

Dn = D14 - 

All rates have been expressed as nmol N2 g-1  h-1 . 

3.8.1.8. Dissimilatory nitrate reduction to ammonium (DNRA) 

For each sampling site, sediment corresponding to the same depth were pooled and 

homogenized. Four ml of homogenised sediment from each section was transferred into 

22 ml headspace vials. Four ml of filter sterilized seawater containing NO3 --N at a final 

concentration of 10 ilmol 1-1  was added. The vials were sealed with butyl stoppers, 

purged with He and pre-incubated for about an hour before addition of stock solution of 

15NO3 - (97.4 atom%, Isotech Mathesson, USA) (Rich et al., 2008) to obtain a final 

concentrations of 50, 80 and 150 ilmol 15NO 3 - . Nitrate ammonification was measured by 

monitoring the progressive increase in isotopic enrichment of I5NH4+  over time. NH4+  in 

pore water and sediment was extracted by microdiffusion (Gilbert et al., 1997) and the 

nitrogen was analyzed by mass spectrometry. Unlabelled ammonium (1 Imo]) was added 

before microdiffusion and this quantity was taken into account when calculating the 

DNRA activity. The samples were treated with a mild-alkali (MgO) to convert NH4 +  to 

NH3 , which was trapped on acidified (50 1.11, 0.5 N H250 4) pre-combusted Whatman 

GF/C filters. To calculate the rate of flux from dissolved nitrate to dissolved ammonium, 

equations derived by analogy with that of Dugdale and Goering (1967) were used. DNRA 
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was caculated as described by Gilbert et al. (1997) and the rate has been expressed at 

[imol NH4-N g' h-I . 

3.8.1.9. Net nitrous oxide production 
About 1 cm3  of sediment was extruded from each section using a syringe core and 

transferred aseptically to sterile 20 ml headspace vials. Three ml of sterilized ambient sea 

water from the sampling site was added. This seawater contained chloramphenicol at a 

final concentration of 1 g r' (Gilbert et al., 1998; Simek, 2000; Bonin et al., 2002; 

Desnues et al., 2007) to inhibit de novo synthesis of denitrifying enzymes thus reflecting 

in situ activity at the time of sampling (Brooks et al., 1992). The vials were capped with 

butyl stoppers and were briefly vortexed to form slurry. Triplicates were maintained at 

each depth and the vials were incubated in the dark for 0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 

hours. At the end of the incubation period, bacterial activity was terminated using 0.1 ml 

of 1M HgC12. Nitrous oxide in the headspace was analyzed using a Shimadzu 2010 gas 

chromatograph fitted with an electron capture detector. Net  nitrous oxide production was 

calculated based on its linear accumulation over time (Tiedje, 1982). The solubility 

coefficients of N20 were used to correct for dissolved N20 in the equilibrations (Weiss 

and Price, 1980). Sediment used in each microcosm was filtered through a laboratory 

grade filter paper and dried at 60°C for approximately 48 hours. Average N20 production 

rate was calculated as nmol N20-N of dry sediment. 

3.8.1.10. Macrofaunal abundance 
Macro benthic samples were sampled using a box quadrant having an area of 15x15x10 

cm. Sediment was scooped and transferred to clean plastic bags. Samples were 

immediately fixed at site using 10% seawater formalin with Rose Bengal solution. 

Samples were then transferred to laboratory and sieved through a 500 µm sieve. The 

stained organisms were sorted and preserved in 5% buffered seawater formalin + Rose 

Bengal solution (10%). The sorted samples were enumerated for macrofaunal density and 

identified to the group level with stereo zoom microscope (4X magnification). 
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3.8.1.11. Quantification of nosZ genes 

Genomic DNA was extracted in triplicates for each layer from 0.25 g (dry weight) 

sediment using a MOBIO PowerSoil TM  DNA isolation kit (MoBio Laboratories, 

California) according to the manufacturer's protocol (Refer 3.12.1. for detailed 

procedure). Dilutions of genomic DNA (1/5, 1/10, 1/50 and 1/100) were made in sterile 

water and stored at -20°C. 

Each PCR reaction (25 pl) reaction tube contained the following: Mg free buffer 

(2.5 ml) (Promega, USA); dNTPs (2.5 ill of 10mM Promega, USA); MgCl 2  (1.5 ill of 25 

mM Promega, USA); nosZ Primer 0.5 pi of each nosZ 1211F and nosZ 1897R (100 pmol 

pf l ) (Rosch et al., 2002); Taq polymerase: 0.2 pi (5 units/p1; Promega, USA). The PCR 

conditions for nosZ were maintained as follows: an initial 3 min denaturation at 94°C 

followed by 30 cycles of denaturation at 94°C for 30 seconds, annealing at 55°C for 30 

seconds, elongation at 72°C for 1 minute. The amplified products were analyzed by 

electrophoresis on a 1.5% (wt/vol) agarose gel and visualized using an UV 

transilluminator (GelDoc 2000, gel documentation system, Bio-Rad). Detailed procedure 

for amplification of nosZ by PCR has been given in 3.12.2. 

The competitive PCR method was used to create standard curve for the 

quantification of nosZ genes in the DNA sample. A competitor internal standard was co-

amplified with the target DNA. The standard was shortened artificially to 120 bp. 

Standards for nosZ quantification (6.8x10' 4  to 6.8x10'2) were prepared as a mixture of 

cloned nosZ fragments of Pseudomomas, Marinobacter and Achromobacter spp. Each 

replicate of DNA extract for a layer (n=3) were subject to PCR reactions in 25 pl 

mixtures as follows: 

nosZ 10 -6  : 4 pi 

nosZ 10 -6  : 2 pi + 2 pi sterile H 2O 

nosZ 10"
6 
 : 1 	+ 3 pi sterile H2O 

nosZ 10 -7  : 4 pi 

nosZ 10 -7  : 2 pi + 2 pi sterile H2O 

nosZ 10 -7  : 1 + 3 pi sterile H2O 

where, 

10-6  dilution of standard contained 6.8x10 3  

45 



10-7  dilution of standard contained 6.8x 10 2  nosZ/µl 

The extracted DNA was diluted to 1/10 concentration. PCR reactions were carried out in 

triplicates in 25 ml mixtures. Each reaction tube contained the following: 

Mg free buffer: 2.5 ill (Promega, USA) 

dNTPs: 2.5 p.1 (Promega, USA; 10 mM) 

MgC12: 1.5 m.1 (Promega, USA; 25 mM) 

nosZ Primer 1211F: 0.5 p,1 

nosZ Primer 1897R: 0.5 ill 

Distilled water: 15.3 ptl 

Taq polymerise: 0.2 ptl (5 units/µ1; Promega, USA) 

Standard (10 -7): 1 m.1 (1.3x 10 6  molecules of nosZ) 

DNA: 2 ml 

The pooled products were subjected to gel electrophoresis on a 1.5% agarose gel. 

The intensity of each band was measured using Quantity One software. The ratio between 

the two bands (one from nosZ and the other of the internal standard) was plotted against 

the number of nosZ in the PCR tube (Fig. 6). PCR were run with each DNA extract from 

mangrove sediments having the same quantity of internal standard (3x10 3  nosZ) and 

quantification of nosZ per gram dry sediment was calculated from the standard curve. 

3.8.1.12. Statistical analysis 

Principal component analysis was performed on the data matrix (bacterial 

activities and chemical parameters) using Pearson rank correlation. This method provided 

an ordination of sampling sites and of bacterial activities which were plotted in two 

dimensions based on the scores in the first two principal components. 

PCA test were performed using the XLSTAT software 2009 (Addinsoft, Paris, France). 

The results of the ordination analyses have been visualized as a bi-plot (Cattell 1966, 

Gabriel, 1971). Only significant relationships have been discussed. Depth was included in 

the biplot analysis as the N cycle processes in this study are depth dependent. 
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Fig. 6: Standard graph for nosZ quantification 

where log (ratio intensity)= corrected nosZ volume/corrected volume of nosZ standard 



3.9. Influence of nitrate and organic C amendments on denitrification 

3.9.1."Experimental procedure 

3.9.1. 1. Sampling 
The anthropogenically influenced site Divar was selected for detailed investigations. 

Sediment cores were collected at low tide and transported in an insulated box. Cores for 

activity measurements were maintained at 4°C. FOr measurement of labile organic matter, 

cores were immediately sectioned at 0-2, 2-4, 4-6, 6-8 and 8-10 cm interval. The sections 

were dried at 60°C ±2, powdered and sieved through a 200 !um sieve and stored in clean 

PVC vials until analysis. 

3.9.1. 2. Pore water nitrate 
For the estimation of pore water nitrate concentration, sub-samples were taken at every 2 

cm intervals from surface to 10 cm by carefully sectioning the core. Each section (7.5 cm 

diameter and 2 cm thick) was transferred to 100 ml of sterile saline and homogenized 

using a glass rod. The slurry was centrifuged at 5000 rpm for 10 mins and 4°C. Low spin 

was maintained during centrifugation to ensure minimal change in nutrient concentration 

due to lysis of benthic infauna. The supernatant was filtered through a 0.2 !um filter and 

stored at"-20°C until analysis. Nitrate was measured colorimetrically (Shimadzu UV/VIS 

spectrophotometer; precision: ± 0.01 limo' I -1 ) as described by Wood et al. (1967). 

Weight of the sediment used in the extraction was estimated by drying in a hot air oven at 

60°C for 48 hours. 

3.9.1. 3. Total organic carbon 
Total organic carbon (TOC) was determined by wet oxidation method with a precision of 

0.01% (El Wakeel and Riley 1957). 

3.9.1. 4. Labile organic matter 

The labile organic matter (LOM) was measured as a sum of proteins, carbohydrate and 

lipid content in the sediments. Proteins were estimated as described by Lowry et al. 

(1951). Carbohydrate was estimated by phenol-sulphuric acid method (Dubois et al., 

1956) using glucose as standard. Lipid content was extracted from sediment as described 

by Bligh et al. (1959) and estimated by using the method outlined by (Parsons et al., 

1984). 
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3.9.1. 5. Effect of NO3 addition on denitrification 

Sediment cores were demarcated into five sections (0-2, 2-4, 4-6, 6-8 and 8-10 cm). 

About 1 cm3  of sediment was extruded from each section using a syringe core and 

transferred aseptically to sterile 20 ml headspace vials. Three ml of sterilized ambient 

seawater from the sampling site was added to the sediment. This seawater used for slurry 

preparation was spiked with a KNO 3  solution to give final concentrations of 0 

(unamended to reflect in situ denitrification activity), 5, 10, 20, 40 and 60 umol NO3-N 

1 . This seawater was also (Gilbert et al., 1998; Simek, 2000; Bonin et al., 2002; Desnues 

et al., 2007) to inhibit de novo synthesis of denitrifying enzymes thus reflecting in situ 

activity at the time of sampling (Brooks et al., 1992). No additional carbon substrates 

were added. The vials were capped with butyl stoppers and were briefly vortexed to form 

slurry. The vials were purged with high purity N2 for 10 minutes to induce anaerobic 

conditions. Acetylene gas at 20 kPa (Bonin et al., 2002) was injected into the headspace 

to inhibit N20 production by nitrification and its reduction by denitrification (Castro-

Gonzalez and Farias, 2004). Triplicates were maintained at each depth and the vials were 

incubated in the dark for 0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 hours. At the end of the 

incubation period, bacterial activity was terminated using 0.1 ml of 1M HgC12. 

Nitrous oxide in the headspace was analyzed using a Shimadzu 2010 gas 

chromatograph fitted with a electron capture detector and Porapak Q column (1/8" SS 

column, 3.05 m length, 80/100 mesh). The oven and detector temperatures were 40°C and 

300°C respectively. High purity nitrogen at a flow rate of 35 ml min - ' was used as a 

carrier gas. The gas chromatograph was calibrated using a secondary standard 44 ±0.38 

nmol N20 in nitrogen (NPL, New Delhi). Denitrification activity was calculated based on 

the linear accumulation of N20 over time. The solubility coefficients of N20 were used to 

correct for dissolved N20 in the equilibrations (Weiss and Price, 1980). Sediment used in 

each microcosm was filtered through a laboratory grade filter paper and dried at 60°C for 

approximately 48 hours and weighed. Denitrification activity was calculated as nmol 

N20-N g' h -1  of dry sediment, extrapolated to a unit area basis (m -2) and expressed as 

umol N20-N 
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3.9.1. 6. Effect of organic C addition on denitrification 

Sterilized seawater used for slurry preparation was amended with 1 g 1 -1  chloramphenicol 

and glucose solution at a final concentration of 0, 0.1, 0.3, 0.5, 0.75 and 1%. Samples 

were prepared and analyzed as described above. No additional nitrate was added. 

3.9.1. 7. Potential denitrification rates 
Samples were prepared and analyzed as described above except that the seawater used for 

slurry preparation was amended with KNO3 and glucose at a final concentration of 1 

mmol 1-1  in addition to chloramphenicol. 

3.9.1. 8. Statistical analyses 

Statistical analyses have been carried out using analysis tool pack in Microsoft Excel. 

Significant differences in denitrification rates have been determined using analysis of 

variance (ANOVA). 

3.10. Influence of bioturbation on denitrification 

3.10.1. Experimental procedure 

3.10.1.1. Study area and sampling 

The Divar mangrove ecosystem was selected to examine the influence of bioturbation on 

denitrification. The Divar sediments are sandy in nature and organically rich with organic 

carbon levels varying between 0.1 to 6.5% (Krishnan and Loka Bharathi, 2009). During 

high tide most of the mangrove area is inundated with seawater while at low tide, a large 

area of the mangroves get exposed due to the receding tide. A large number of crabs of 

the Uca spp. can be seen surfacing out from burrows during low tide (Plate 3). 

Sediment cores for de-faunation were collected at low tide and transported to the 

laboratory (May, 2009). De-faunation was achieved by freezing (Gerino, 1990) the cores 

at -70°C. The de-faunated cores were thawed and covered at both ends using a 200 pm 

mesh to prevent entry of macrofauna. The cores were then transplanted back to the 

experimental site and left undisturbed for 7 days. After a week, the de-faunated cores 

were retrieved. Additional cores of natural sediment containing autochthonous infauna 

(faunated cores) were also collected for measuring physico-chemical and biological 

parameters. All cores were transferred to an insulated box and transported to the 
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Plate 3: Crabs of Lica spp. seen burrowing/emerging out from the sediment at Divar 



laboratory. Upon arrival, faunated and de-faunated cores were maintained at 4°C for 

activity measurements. Down-core nutrient profiles, denitrification activity and 

abundance of macrofauna were estimated and compared between faunated and de-

faunated cores. All analysis was completed within 36 hours of sample collection. 

3.10.1.2. Physico-chemical analyses 
Hydrogen ion concentration at each section was measured using an Orion 4-Star Plus 

Benchtop pH/ISE Meter after calibration with standard buffers (pH 4, 6.9 and 9; Merck). 

Sediment oxidation-reduction potential (Eh) was measured at each section of the core 

with the help of an Orion platinum redox in combination with a silver/silver chloride 

reference electrode. 

For the estimation of N compounds (nitrate and nitrite) in pore water, sub-samples 

were taken at every 2 cm intervals from surface to 10 cm by carefully sectioning the core 

after thawing. Each section (7.5 cm diameter and 2 cm thick) was transferred to 100 ml of 

sterile saline and homogenized using a glass rod. Low spin was maintained during 

centrifugation to ensure minimal change in nutrient concentrations due to lysis of benthic 

infauna. The supernatant was filtered through a 0.2 µm filter and stored at -20°C until 

analysis. Nitrate was measured colorimetrically as described by Wood et al. (1967) using 

a Shimadzu UV/VIS spectrophotometer. Nitrite was measured as described by 

Bendschneider and Robinson (1952). Weight of the sediment used in the extraction was 

estimated by drying in a hot air oven at 60°C for 48 hours. 

For measuring denitrification in faunated and de-faunated cores, thawed cores 

were demarcated into five sections (0-2, 2-4, 4-6, 6-8 and 8-10 cm). About 1 cm 3  of 

sediment was extruded from each section using a syringe core and transferred aseptically 

to sterile 20 ml headspace vials. Sterilized ambient sea water from the sampling site was 

added to the sediment. This seawater was also amended with chloramphenicol at a final 

concentration of 1 g r' (Gilbert et al., 1998; Simek, 2000; Bonin et al., 2002; Desnues et 

al., 2007) to inhibit de novo synthesis of denitrifying enzymes thus reflecting in situ 

activity at the time of sampling (Brooks et al., 1992). The vials were capped with butyl 

stoppers and were briefly vortexed to form slurry. The vials were purged with high purity 

N2 for 10 minutes to induce anaerobic conditions. Acetylene gas at 20 kPa (Bonin et al., 

2002) was injected into the headspace to inhibit N20 production by nitrification and its 
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reduction by denitrification (Castro-Gonzalez and Farias, 2004). Triplicates were 

maintained at each depth and the vials were incubated in the dark for 0, 0.5, 1.0, 1.5, 2.0, 

2.5 and 3.0 hours. At the end of the incubation period, bacterial activity was terminated 

using 0.1 ml of 1M HgC1 2 . 

Nitrous oxide in the headspace was analyzed using a Shimadzu 2010 gas 

chromatograph fitted with a electron capture detector and Porapak Q column (Porapak Q 

1/8" SS column, 3.05 m length, 80/100 mesh). The oven and detector temperatures were 

40°C and 300°C respectively. High purity nitrogen at a flow rate of 35 ml min -I  was used 

as a carrier gas. The gas chromatograph was calibrated using a secondary standard 44 

±0.38 nM N20 in nitrogen (NPL, New Delhi). Denitrification (DNT) activity was 

calculated based on the linear accumulation of N 20 over time. The solubility coefficients 

of N20 were used to correct for dissolved N 20 in the equilibrations (Weiss and Price, 

1980). Sediment used in each microcosm was filtered through a laboratory grade filter 

paper and dried at 60°C for approximately 48 hours. DNT was calculated as nmol N20-N 

g-1  il l  of dry sediment, extrapolated to a unit area basis (m -2 ) and expressed as 1.tmol N20- 

N I/1-2  

3.10.1.3. Denitrifier abundance 
Denitrifiers were enumerated by the N20- most probable number (MPN) technique. The 

sediment core was thawed and sectioned at 2 cm intervals using a sterile core cutter to 

obtain representative samples at 0-2, 2-4, 4-6, 6-8 and 8-10 cm. Sediment from each 

depth was homogenised by mixing. Approximately 1 g wet weight sediment from each 

depth was sub-sampled using sterile syringes. The sub-samples were transferred to 9 ml 

of sterile culture medium to give a 10 -I  dilution. The culture medium was prepared as 

described by Michotey et al. (2000). Tween 80 (20 pi) was added and the mixture was 

sonicated at 40 MHz for 15 seconds. Serial dilutions for each section of the core were 

prepared in triplicates. The vials were purged with high purity N2 for 10 minutes to 

induce anaerobic conditions and supplemented with 20 kPa acetylene (Bonin et al., 

1994). The vials were incubated at room temperature in the dark for 10 days and the 

positive tubes were scored based on the accumulation of N 2 0. Subsequent quantification 

was made using standard McCready's table (Rodina, 1972). Denitrifier abundance has 

been expressed as MPN cells gl  of dry sediment. 
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3.10.1.4. Macrofaunal abundance 
Cores containing natural sediment were sectioned at every 2 cm intervals from surface to 

10 cm. The sections were transferred to clean plastic bags. The samples were preserved 

by adding 10% seawater formalin Rose Bengal solution. Samples were then sieved using 

a 500 p.m sieve, sorted, identified and enumerated identified to the lowest taxa possible 

with stereo zoom microscope (4X magnification). The density of organisms was 

calculated as: 

Area of section= flr2  

where radius=0.0375 m 

Therefore, area of section=0.0044 m 2  

Area (m-2)— 1 

= 226 

Organisms (m-2) = Count * 226 

3.10.1.5. Statistical analysis 
Data analysis was carried out using Statistica version 6. Differences in denitrification 

activity between faunated and de-faunated cores were analyzed using analysis of variance 

(ANOVA). 

SECTION III —Diversity of denitrifying bacteria 

The diversity of denitrifiers in mangrove sediments was assessed using three different 

approaches. At a cellular level, the culturable denitrifiers isolated from MPN tubes were 

subjected to biochemical characterization. The isolates were then identified up to the 

generic level using pertinent taxonomic keys. At the community level, whole DNA from 

sediments was analyzed to understand both taxonomic and functional diversity of 

denitrifiers. For functional diversity, the nosZ gene catalyzing the reduction of nitrous 

oxide to di-nitrogen was probed. A more recent technique viz., the 454 pyrosequencing 

technology involving sequencing of the V6 region of 16S rRNA gene was used to 

delineate the community diversity up to the species level. 

0.0044 
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3.11. Taxonomic diversity of denitrifiers: a biochemical approach 

3.11.1. Isolation 

The most-probable number method has been widely used for the culture and enumeration 

of denitrifiers (Shieh et al., 2004; Fan et al., 2006). Pure isolates of facultatively 

anaerobic denitrifiers from mangrove sediments were obtained from MPN culture tubes 

which were amended with nitrate. A 100 [tI innoculum from every dilution was surface 

plated on solid media prepared using the MPN denitrifier culture medium (Appendix VII) 

supplemented with 1.5% agar. The plates were incubated at room temperature in aerobic 

conditions. Colonies of 1-3 pre-dominant types appearing on each plate were isolated, 

transferred to liquid MPN culture medium tubes having medium filled up to the brim. A 

total of 126 denitrifier strains (Divar n=76; Tuvem n=50) were isolated. 

3.11.2. Characterization and identification 

Pure denitrifier isolates were characterized and identified up to the generic level (Oliver, 

1982; Holt et al., 1994). Identification was done based on morphological and 

physiological (Appendix VIII) tests. Biochemical characterization was done using the 

following tests: 

1. Citrate utilization 

2. Lysine utilization 

3. Ornithine decarboxylation 

4. Urease detection 

5. Phenylalanine deamination (TDA) 

6. Nitrate reduction 

7. H2S production 

8. Glucose utilization 

9. Adonitol utilization 

10. Lactose utilization 

11. Arabinose utilization 

12. Sorbitol utilization 

Test cultures were grown overnight in liquid denitrifier medium. The cell suspension 

was washed with sterile saline. Each test vials from the biochemical test kit (Microxpress, 
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India) was inoculated with 100 p1 of culture suspension (0D 600 :1.0) and incubated at 

room temperature for approximately 48 hours. Qualitative results were recorded based on 

the presence of by-products. Results were interpreted according to the specifications 

provided by the manufacturer. 

3.12. Functional diversity: probing the nosZ gene 

3.12.1. DNA extraction 

Sediment samples were lyophilized overnight and genomic DNA was extracted using a 

MO BIO PowerSoil DNA isolation kit (CA, USA). The kit eliminates humic 

substances/brown colour permitting high level of purity for successful amplification by 

the PCR. The DNA was isolated as follows: 

1. Freezed sediment samples from respective depth layer were thawed and 

homogenised using a sterile rod. 

2. A sub-sample weighing 0.25 gm each was weighed and added to the PowerBead 

tubes provided. 

3. The tubes were briefly vortexed and 60 1.1.1 of Solution Cl containing sodium 

dodecyl sulfate (SDS) was added. The tubes were inverted several times and then 

fastened onto a horizontal vortexer. They were vortexed at maximum speed for 10 

minutes. This step helps to disperse the soil particles, dissolves humic acids and 

protects nucleic acids from degradation. 

4. The bead tubes were centrifuged on Thermo Heraus Fresco 17 centrifuge at 

13,000 x g for 1 minute at room temperature. 

5. The supernatant was transferred to a clean 2 ml collection tube and 250 ill of 

Solution C2 was added. The tubes were vortexed for 5 seconds and incubated at 

4°C for 5 minutes. Solution C2 contains a reagent to precipitate non-DNA organic 

and inorganic material including humic substances, cell debris, and proteins. 

6. The tubes were centrifuged at room temperature for 1 minute at 13,000 x g. 

7. Avoiding the pellet, 600 ill of supernatant was transferred to a clean 2 ml 

collection tube. 

8. To the supernatant, 200 pi of Solution C3 was added. The solution precipitates 

additional non-DNA organic and inorganic material including humic acid, cell 
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debris and proteins. The tubes were vortexed briefly and incubated at 4°C for 5 

minutes. 

9. The tubes were centrifuged at room temperature for 1 minute at 13,000 x g. 

10. Avoiding the pellet, 750 111 of supernatant was transferred into a clean 2 ml 

collection tube. 

11. To the supernatant collected, 1200 111 of Solution C4 was added and vortexed for 

5 seconds. Solution C4 is a high concentration salt solution. Since DNA binds 

tightly to silica at high salt concentrations, this will adjust the DNA solutions salt 

concentration to allow binding of DNA, but not non-DNA organic and inorganic 

material that may still be present at low levels, to the spin filters. 

12. Approximately 675 111 was loaded onto a spin filter and centrifuge at 13,000 x g 

for 1 minute at room temperature. The flow through was discarded, an additional 

675 1.11 of supernatant was added to the spin filter and centrifuge at 13,000 x g for 

1 minute at room temperature. A total of three loads for each sample were 

processed. 

13. To the spin filters, 500 111 of Solution C5 was added and centrifuged at room 

temperature for 1 minute at 13,000 x g. Solution C5 is an ethanol based wash 

solution used to further clean the DNA that is bound to the silica filter membrane 

in the spin filter. This wash solution removes residual salt, humic acid, and other 

contaminants while allowing the DNA to stay bound to the silica membrane. 

14. The flow through was discarded and the tubes were centrifuged again at room 

temperature for 1 minute at 13,000 x g. 

15. The spin filters were carefully placed in a clean 2 ml collection tube avoiding 

splashing of any Solution C5 onto the spin filter. 

16. A 100 ill volume of Solution C6 was added to the centre of the white filter 

membrane. As Solution C6 (elution buffer) passes through the silica membrane, 

DNA that was bound in the presence of high salt is selectively released by 

Solution C6 (10 mmol Tris) which lacks salt. 

17. The tubes were centrifuged at room temperature for 1 minute at 13,000 x g. 

18. The spin filter was discarded and the DNA in the tube was used for PCR 

amplification. 
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19. Samples were checked for purity (0D260/0D280 —1.8). 

3.12.2:Amplification of nosZ genes by PCR 

The extracted DNA was diluted to 1/10 concentration. PCR reactions were carried out in 

25 ml mixtures. Each reaction tube contained the following: 

Mg free buffer: 2.5 pi (Promega, USA) 

dNTPs: 2.5 p.1 (10 mM; Promega, USA) 

MgC12: 1.5 p.1 (25 mM; Promega, USA) 

nosZ Primer 1211F: 0.5 pi (Rosch et al., 2002) 

nosZ Primer 1897R: 0.5 p.1 

Sterile distilled water: 15.3 p.1 

Taq polymerise: 0.2 pi (5 units/W; Promega, USA) 

DNA: 2 Rl 

The PCR runs were made as follows: 

An initial 3 min denaturation at 94°C 

Denaturation at 94°C for 30 seconds 

Annealing at 55°C for 30 seconds 	 30 cycles 

Elongation at 72°C during for 1 minute 

Final elongation at 72°C during for 3 minutes 

A negative control tube (2 pi of sterile distilled water + PCR mix) and a positive 

tube containing (2 p.1 DNA from Marinobacter hydrocarbonoclasticus + PCR mix) were 

also prepared. About 10 pi of PCR product was mixed with 2 pi of loading dye, mixed, 

loaded onto a 1% (wt/vol) agarose gel (Appendix IX) containing 0.5 mg ml - ' ethidium 

bromide and subjected to electrophoresis in TBE 1X buffer (Appendix X). A 2 pl volume 

of DNA molecular weight marker III (0.25 p.g/p.1; Roche Diagnostics, Germany) was 

loaded along with the samples. The separated products were visualized using an UV 

transilluminator (GelDoc 2000, gel documentation system, Bio-Rad). Each PCR was 

performed thrice and the PCR products were pooled prior to Denaturing Gradient Gel 

Electrophoresis (DGGE) analysis. 
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3.12.3. Denaturing gradient gel electrophoresis 

Denaturing Gradient Gel electrophoresis (DGGE) was performed using a D-code 

Universal Mutation Detection System (Bio-Rad Laboratories Inc.). Samples containing 

approximately equal amounts of PCR products (600 ng) were loaded onto 1 mm thick, 

6% (wt/vol) polyacrylamide gel (Appendix XI) with a denaturation gradient from 20% to 

80% (100% of denaturation corresponds to 7M urea and 40% formamide). 

Electrophoresis was run at 60°C for 280 minutes at 150V in 1X TAE (Appendix XII). 

Following electrophoresis, the gel was incubated for 30 minutes in IX TAE buffer 

containing ethidium bromide (0.5 mg m1 -1 ) and photographed on a UV transilluminator 

(GelDoc 2000, gel documentation system, Bio-Rad). A 10 III volume of the following 

mixture of markers were used- 

• nosZ of Pseudomonas sp NBP39 

• nosZ of Marinobacter sp BC38 

• nosZ of Achromobacter cycloclastes ATCC 21921 

• 16S Micrococcus sp SR283 

• 16S Clostridium sp. 

Representative bands were excised from the polyacrylamide gel using sterile 

toothpicks and transferred into clean eppendorf tubes. The gel fragments were rinsed with 

50 ti of sterile distilled water. Another 50 III volume of sterile distilled water was added 

and the tubes were stored at 4°C overnight for allowing diffusion of the DNA into the 

water. The following day, the gel pieces were agitated using sterile tips and centrifuges at 

13,000 x for 1 minute. The supernatant was transferred to a clean 1.5 ml eppendorf tube. 

A 5 11.1 volume of these samples were used for amplification of nosZ by PCR. The 

products were observed by electrophoresis. Amplified nosZ bands were cut and 

transferred to clean 1.5 ml eppendorf tubes. The DNA in the agarose gel (approx. 100 mg 

or 100 ill vol) was purified using the QIAGEN MinElute Gel Extraction Kit as follows: 

1. A 300 p.1 volume of buffer QG was added to the gel. 

2. The tubes were incubated at 50C for 10 minutes until the gel slice had completely 

dissolved. To help the dissolution, the tubes were vortexed briefly for a few 

seconds every 3 minutes. 
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3. After the gel had dissolved completely, 100 ul of isopropanol was added to the 

samples and the contents were mixed by inverting the tubes several times. 

4. The MinElute column was placed in a clean 2 ml collection tube. The samples 

were transferred to the column and allowed to stand for a minute. 

5. The samples were centrifuged at 13,000 x for 1 minute. 

6. The flow-through was discarded from the collection tube and the MinElute 

column was placed back into the collection tube. 

7. A 500 ul volume of buffer QG was added to the spin column and centrifuged at 

13,000 x for 1 minute. 

8. The flow-through was discarded and the column was placed back into the 

collection tube. 

9. To wash, 750 IA of buffer PE was added to the MinElute column and centrifuged 

for 1 minute. 

10. The flow-through was discarded and the column was centrifuged for an additional 

1 minute. 

11. The MinElute column was placed in a clean 1.5 ml collection tube. 

12. To elute the DNA, 10 IA of buffer EB (10mM Tris Cl; pH 8.5) was added to the 

centre of the membrane. The column was allowed to stand for a minute and then 

centrifuged for 1 minute. 

13. The purified DNA was used for downstream application i.e. cloning. 

3.12.4. Cloning of PCR fragments 

Cloning of PCR products was performed using the pGEM-T and pGEM-T Easy Vector 

Systems. The vectors are prepared by cutting Promega 's pGEM-5Zft+)(b)  and pGEM-T 

Easy vectors with EcoR V and adding a 3' terminal thymidine to both ends. These single 

3' - T overhangs at the insertion site greatly improve the efficiency of ligation of a PCR 

product into the plasmids by preventing re-circularization of the vector and providing a 

compatible overhang for PCR products (Fig. 7). 

The high copy number pGEM-T and pGEM-T Easy Vectors contain T7 and SP3 

RNA polymerase promoters flanking a multiple cloning region within the a-peptide 

coding region of the enzyme 13-galactosidase. Successful cloning of an insert into the 
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vectors interrupts the coding sequence of 13-galactosidase. Insertional inactivation of the 

a-peptide and allows recombinant clones to be directly identified by colour screening on 

indicator plates. Clones that contain PCR products produce white colonies, but blue 

colonies can result from PCR fragments that are cloned in-frame with the lacZ gene. 

3.12.5. Ligation of PCR products 

Ligation of PCR products was performed using Promega's pGEM®-T and pGEM®-T 

Easy Vectors and the 2X Rapid Ligation Buffer. The pGEM ®-T or pGEM®-T Easy 

Vector and control insert DNA tubes were briefly centrifuged to collect contents at the 

bottom of the tubes. 

Ligation reactions were set up as described below: 

2X Rapid Ligation Buffer, T4 DNA Ligase: 	5 / reaction 

pGEM®-T or pGEM®-T Easy Vector (50 ng): 	1 / reaction 

T4 DNA Ligase (3 Weiss units/p.1): 	 1111/ reaction 

PCR product: 	 1.5 Ill/ reaction 

The reactions were mixed by pipetting and incubated overnight at 4°C for obtaining 

maximum number of transformants. 

3.12.6. Transformation of ligation reactions into competent cells 

Transformations was performed using Promega's pGEM®T and  pGEM®T  Easy Vector 

Ligation Reactions 

1. Two LB/ampicillin/IPTG/X-Gal plates (Appendix XIII) were prepared for each 

ligation reaction. The plates were equilibrated to room temperature prior to plating. 

• Ampicillin sodium salt: A b-lactam antibiotic with an amino group side chain 

attached to the penicillin structure. Penicillin derivative that inhibits bacterial cell 

wall synthesis (peptidoglycan cross-linking) by inactivating transpeptidases on the 

inner surface of the bacterial cell membrane. Bactericidal only to growing E. coli. 

• Isopropyl b-D-1-thiogalactopyranoside (IPTG) functions by binding to the lad 

repressor and altering its conformation, which prevents the repression of the b-

galactosidase coding gene lacZ. 

• X-Gal (Bromo-4-chloro-3-indolyl b-D-galactoside) is a chromogenic substrate for 

b-galactosidase that produces a rich blue color that can easily be detected visually 
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over background. X-Gal is a substrate for blue-white selection of recombinant 

bacterial colonies with the lac+ genotype. 

2. Tubes containing the ligation reactions were centrifuged at 10,000 x g for 10 minutes 

to collect contents at the bottom of the tube. About 3 i..L1 of each ligation reaction was 

transferred to a sterile 1.5 ml micro centrifuge tube on ice. 

3. Tubes containing frozen JM109 High Efficiency Competent Cells were removed from 

storage (liquid nitrogen) and placed in an ice bath until just thawed (about 5 minutes). 

The cells were mixed by gently flicking the tube. 

4. 50 pi of cells were carefully transferred into each tube prepared in Step 2. 

5. The contents were mixed by gently flicking the tubes and placed on ice for 20 minutes. 

6. The cells were subjected to heat-shock for 45-50 seconds in a water bath at exactly 

42°C. 

7. The tubes were immediately returned to ice for 2 minutes. 

8. A 950 p1 innoculum of SOC medium at room temperature was added to the tubes 

containing cells transformed with ligation reactions. 

9. The tubes were incubated for 1.5 hours at 37°C. 

10. A 100 pl innoculum of each transformation culture was plated onto 

LB/ampicillin/IPTG/X-Gal plates. For a higher number of colonies, the cells were 

pelleted by centrifugation at 10,000 x g for 10 minutes, re-suspended in 200 p.1 of SOC 

medium, and 100 p.1 plated on each of two plates. 

11. The plates were incubated overnight (16-24 hours) at 37°C. 

3.12.7. Analysis of clones 

Whitish colonies (containing insert) from LB/ampicillin/IPTG/X-Gal plates (Plate 4) 

were transferred in 2 ml liquid LB medium amended with ampicillin (10 mg/ml). The 

culture tubes were incubated for 24 hours on a shaker at 22°C until the cells (plasmid 

culture) were grown to a density of A6 00=2.0 or higher. 

3.12.8. Purification of plasmid culture 

Plasmid culture was purified using the MO BIO UltraCleanTM 6 Minute Mini Plasmid 

Prep Kit. In this method cells are lysed using alkaline lysis reagents. Plasmid DNA is 

bound to a silica spin filter, washed once, and recovered in Tris buffer or water. The 
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DNA retrieved can be directly used for automated sequencing or other downstream 

applications. The plasmid culture was purified as per the method described by the 

manufacturer as follows: 

1. Overnight grown cells were transferred into sterile labelled micro centrifuge tubes and 

centrifuged for 1 minute at 13,000 x g. 

2. The supernatant was discarded. Any remaining liquid from tube was removed with a 

pipette tip. 

5. The cell pellet was re-suspended cell in 50 ul of Solution 1 by bump vortexing for 1 

minute to yield a homogenous suspension. The buffer in the solution prevents the 

bacterial cells from lysing. 

8. A 100 p1 volume of Solution 2 was added. Solution 2 contains a detergent SDS the 

addition of which causes the bacterial cells to lyse due to denaturation of proteins in the 

cell membrane. All DNA becomes denatured to its single stranded form at this point. The 

bacterial chromosomal DNA is long and is attached to broken pieces of the cell 

membrane. Plasmid DNA is linked so it forms two attached circles like two links of a 

chain. All RNA is digested during this very short step because RNase A is active even in 

very alkaline conditions. 

10. The tubes were inverted once to mix. 

11. A 325 µl volume of Solution 3 was added and the tubes were inverted just once to 

mix. Solution 3 contains potassium acetate and salt. The potassium acetate forms a 

precipitate when it interacts with SDS. At the same time denatured proteins co-precipitate 

with the SDS. Solution 3 neutralizes the alkaline pH to a more neutral pH 7. All DNA 

tries to re-nature. Plasmid can easily re-form to its double stranded form. Bacterial 

chromosomal DNA finds it difficult to re-nature because it has no reference point and 

homologous pieces of DNA may be blocked from finding each other by the cell debris 

present. 

12. The tubes were centrifuged for 1 minute at 13,000 x g. 

14. The supernatant was transferred into a spin filter by decanting. 

15. The spin filters were centrifuged for 1 minute. 

16. The liquid in the collection tube was discarded. 
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17. A volume of 300 ul of Solution 4 was added. Solution 4 washes the DNA that is 

bound,to the spin filter. Solution 4 is about 50% ethanol. The ethanol keeps the plasmid 

DNA bound to the filter as impurities are washed away. 

18. The tubes were centrifuged for 1 minute. 

19. The flow through was discarded and the tubes were centrifuged again for another 1 

minute. 

20. The spin filter baskets were carefully transferred to new micro centrifuge tubes. 

21. A 50 µl volume of Solution 5 was added to the middle of spin filter membrane. 

Solution 5 is 10 mM Tris. As it passes through the spin filter, the plasmid DNA is 

released (eluted) off the filter and it passes into the collection tube. The plasmid DNA is 

released because it will not stay bound to the spin filter when there is no salt present. 

22. The tubes were centrifuged for 1 minute. 

23. The spin filter baskets were removed. The Plasmid DNA in the micro centrifuge tube 

was stored at -20°C until sequencing. 

3.12.9. Sequencing of cloned products and analysis of nosZ sequences 

Sequencing was performed by GATC Biotech SARL (Germany). The partial sequences 

were aligned with the same region of the closest relative strains available in the GenBank 

database by using the BLAST facility (http://blast.ncbi.nlm.nih.gov/Blast.cgi) . Sequence 

alignment was achieved using ClustalX (Thompson et al., 1997). A phylogenetic tree was 

constructed in Tree View using the neighbor-joining method (Saitou and Nei, 1987). 

Sequences obtained in this study (Table 3) are available from European Molecular 

Biology Laboratory (EMBL) nucleotide sequence database under the accession numbers 

FN356193, FN356194, FN356195 and FN356196. 

3.13. Bacterial diversity in mangrove sediments: A 454 pyrosequencing 

approach 

Massively parallel tag sequencing of the V6 region of 16S rRNA gene is a cost-effective 

(Huse et al., 2008) and more superior alternative to examine the phylogenetic diversity of 

microbial populations (Galand et al., 2009). It is fast replacing conventional 16S rRNA 

gene sequencing which underestimates the full extent of microbial diversity (Huber et al., 
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2007). It generates hundreds of thousands of short (100-200 nucleotide) DNA sequence 

reads in a short time period (few hours) eliminating the need for preparing sequence 

templates by conventional cloning (Huse et al., 2007). 

Low abundance populations accounting for most of the observed phylogenetic 

diversity in marine samples (Sogin et al., 2006) demand high resolution surveys like the 

pyrosequencing technology which is based upon sequencing-by-synthesis protocol 

(Ronaghi et al., 1996). Parallel processing of large numbers of samples can be easily 

carried out by using high-density PicoTiterPlateTm (Huse et al., 2007) and microinjector 

technology (Ronaghi et al., 1998). 

Light + (ay itscikcin 

Pic: www 454.com  

Fig. 8: Sequencing reaction of the Genome Sequencer System wherein millions of copies of a single clonal 

fragment are contained on each DNA Capture Bead. 

In this method, nucleotides are flowed sequentially in a fixed order across the 

PicoTiterPlateTM device during a sequencing run. During the nucleotide flow, hundreds of 

thousands of beads each carrying millions of copies of a unique single-stranded DNA 

molecule are sequenced in parallel. If a nucleotide complementary to the template strand 

is flowed into a well, the polymerase extends the existing DNA strand by adding 

nucelotide(s). Addition of one (or more) nucleotide(s) results in a reaction that generates 

a light signal that is recorded by the CCD camera in the Genome Sequencer System (Fig. 
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Table 3: nosZ sequence identification 

Accession 
number 

Base pairs 
(bp) Sequence Description 

FN356193 
589 

agtatcagcc cggccacaat catacctcca tgggggagac caaggatgcc 
gacggcaagt ggctggtgtc actgaacaag ttctccaagg acagatttat 
caatgtcggt ccactcaagc ctgaaaacga gcagctcatc gacatcaccg 
gtgataagat gaagctcctg catgatgggc ctaccttcgc ggagccccat 
gactgcatca ttgtgcgtgc ggacatcgtc aatcccaact ctgtatggac 
gcggggcgat ccgatgtggg cagacgtgcg tgagtgggcc agcaaggacg 
gcatcaacct ggactctgac agcaaggtgg tccgcgacgg taatgaggtg 
cgcgtctaca tggtatccat cgcacccaac ttcagcatgc agaagtttac 
agtgaaggag ggcgatgaag tcacggtgat tgtgaccaac atggatcgca 
ttgatgacct gacccatggc ttcaccctcg ccaactatgg tatcgccgta 
gagatcggac cgcaggcgac ctcctctgtg acctttgtcg ctgatcgacc 
gggcgtacac tggttttact gtcagtggtt ctgccacgc 

Uncultured marine 
bacterium partial nosZ 

gene for nitrous oxide 
reductase, isolate DGGE 
band BD1 

FN356194 

tgttcatcga cagccagatg gtgaagtgga acatccagaa ggcgatcgac 
ctctacgcga accccgtcga gggagagacg cccgtcctcg atcgtctcga 
catccactat caagtaggac acaccatggc ctcgatggcg gagacgaagg 
aggcggacgg gaaatacctc atttccctca acaagatctc caaggatcgc 
ttcctcaacg tagaacccct caaaccggag aacgatcagc tcatcgacat 
ctccggagaa gagatggtcc tgctcgaaga cgagcccgcg tatatcgagc 
ctcatgactg catcatcgtc cgcagggaca tcatcgagga caaggttcag 

666 	catcgtgcgg ttctcgaaga gcatcccgac gcggtgaccc agagctcagt 
ggagcgaaac ggacgaagag tcacggcccg gatcaccgct tccgcgcccg 
tctacggcct acaggaggtc gtggtcaatc agggtgacga ggtgaccttc 
atcgtgacca ataccgatga gatccccgat ctcgcgcacg ggttcgcgat 
ctcgaactac ggcatccagt tcgtcgtggg accgtttcag acgaagtcgg 
tcacgttcgt cgcggacaag ccgggggtcc actggatcta ctgcacgaac 
ttctgccacg cactgc 

Uncultured marine 
bacterium partial nosZ 

gene for nitrous oxide 
reductase, isolate DGGE 
band BD2 
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8). The signal strength is proportional to the number of nucleotides incorporated in a 

single nucelotide flow (www.454.com ). 

3.13.1. DNA extraction 

Genomic DNA was extracted from the surface sediment (0-2 cm) using a MO BIO 

PowerSoil DNA isolation kit as described above (Refer 3.12.1). 

3.13.2. Concentration of DNA 

The final volume of eluted DNA (100 pl) was concentrated by adding 4 1.t1 of 5M NaCI 

and inverting 3-5 times to mix. Next, 200 pi of 100% cold ethanol was added and the 

tubes were inverted 3-5 times to mix. Samples were centrifuged at 10,000 x g for 5 

minutes at room temperature. All liquid was decanted. Residual ethanol was removed by 

drying overnight in a dessicator. 

3.13.3. High-throughput pyrosequencing 

Precipitated DNA was re-suspended in sterile water. The hypervariable region of rRNA 

genes (BV6-rRNA tags) were amplified and subjected to high-throughput 

pyrosequencing using the 454 technology as described by Sogin et al. (2006) and Huber 

et al. (2007). The following sequence adaptors and primers were used (vamps.mbl.edu ): 

Roche amplicon sequencing adaptors: 
A-adaptor 5'-GCCTCCCTCGCGCCATCAG-3' 
B-adaptor 5'-GCCTTGCCAGCCCGCTCAG-3' 

Forward Primers (967F)  
CNACGCGAAGAACCTTANC 
CAACGCGAAAAACCTTACC 
CAACGCGCAGAACCTTACC 
ATACGCGARGAACCTTACC 
CTAACCGANGAACCTYACC 

Reverse Primers (1046R)  
CGACAGCCATGCANCACCT 
CGACAACCATGCANCACCT 
CGACGGCCATGCANCACCT 
CGACGACCATGCANCACCT 
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Thus, to amplify the V6 hypervariable region of bacterial 16S rRNAs (Escherichia coli 

positions 967-1046) (Sogin et al., 2006) and sequence it in the forward direction (relative 

to the 5'—>3' orientation of the gene) using the Roche A primer, the forward primer 

consisted of the A—adaptor, 5—base key, and sequence designed to bind to the 967F 

region of the SSU: 

5 1 -GCCTCCCTCGCGCCATCAGgatctCNACGCGAAGAACCTTANC-3' 

The reverse primer would consist of the B-adaptor and a sequence designed to bind to 
1046R: 

5'-GCCTTGCCAGCCCGCTCAG CGACAGCCATGCANCACCT-3' 

3.13.4. Data analysis 

The sequence reads (tags) were trimmed as described by Sogin et al. (2006) and Huber et 

al. (2007). Sequences likely to be of low-quality were identified based on previous 

assessment of pyrosequencing error rates (Huse et al, 2007) and were removed. The 454 

tags served as query to identify its closest match in a reference database (V6RefDB) 

containing ,=,40,000 unique V6 sequences (Sogin et al., 2006). Taxonomic counts from 

the VAMPS database (vamps.mbl.edu ) were then downloaded and imported into 

Microsoft Excel. Sequence characteristics like average length and tag aggregates were 

estimated using R package (R Development Core Team, 2007). Multiple sequence 

alignment was done using ClustalX 1.83. Distance matrices were calculated using 

DNAdist from PHYLIP 3.69 (Felsenstein, 2005). These pairwise distances served as 

input to DOTUR (Schloss and Handelsman, 2005) for clustering tags that ranged from 

unique sequences (no variation) to 20% dissimilarity. These clusters served as operational 

taxonomic units (OTUs) for generating rarefaction curves, calculating two indices of 

diversity- Chao 1 (Chao, 1987) and ACE (abundance-based coverage estimator (Chao and 

Lee 1992)) and the Simpson evenness index. 
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Chapter 4. Results 

SECTION I — Field observations 

4.1. Physical parameters 

4.1.1. Temperature 
Sediment temperature was found to decrease with increasing depth at both the sites. At 

the control site Tuvem, temperature varied from 25.9°C in January to 31.6°C in March. 

Average temperature values (n=4) varied from 29.60 (±1.82) to 30.00 01.31), 27.58 

(±0.84) to 27.60 (±0.74) and 26.68 00.80) to 26.93 00.75) during the pre-monsoon 

(Feb-May), monsoon (June-Sept) and post-monsoon (Oct-Jan) seasons respectively (Fig. 

9a). 

At the experimental site Divar, sediment temperature fluctuated from 23.6°C in 

December to 31.1°C in March. Average temperature during pre-monsoon varied between 

28.65 (±2.07) to 29.30 (±1.98) whereas in the monsoon it fluctuated from 28.00 (±0.74) 

to 28.18 (±0.85). In the post-monsoon season, lower average values varying from 25.95 

(±1.64) to 26.20 (±1.49) were recorded (Fig. 9b). Seasonal fluctuation of temperature was 

highly significant (p> 0.001) at both the sites. 

4.1.2. Salinity , 
Annual salinity variations of overlying seawater varied from 0-30 psu and 1-32 psu at 

Tuvem and Divar respectively. The lowest salinity values were recorded during the 

monsoon with an average value of 1.25 (±0.96) psu at the control site and 3.25 (±3.20) 

psu at the experimental site (Fig. 10). During the non-monsoon seasons, salinity values at 

the control site were lower with a pre-monsoon average of 23.75 (±6.13) psu and 18.50 

(±8.50) at post-monsoon. Average values of 28.75 (±2.22) psu and 26.75 (±9.18) psu 

were recorded at pre and post-monsoon at the experimental site. 

4.1.3. pH 
Hydrogen ion concentration in Tuvem sediments showed a wider variation from 5.57- 

7.32 in comparison to the Divar sediments where the fluctuation was relatively less 

varying between 6.08-7.32 within the 0-10 cm depth range. The control site exhibited a 

decrease in pH with depth. Average values (Fig. 11a) of 6.52 (±0.65) to 6.71 (±0.35), 
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6.95 (±0.18) to 7.11 (±0.17) and 5.83 (±0.17) to 5.95 (±0.13) were recorded during the 

pre-monsoon, monsoon and post-monsoon respectively. 

At the experimental site (Fig. 11b), average pH values of 6.79 (±2.07) to 6.99 

(±0.27), 6.78 (±0.43) to 7.13 (±0.43) and 6.39 (±0.19) to 6.83 (±0.32) were recorded 

during the pre-monsoon, monsoon and post-monsoon respectively. 

4.1.4. Redox potential 
The redox potential differed markedly during the different seasons (Fig. 12a). The values 

were lowest in July at the control site with comparatively less reducing conditions 

prevalent during pre and post monsoon. 

The Divar sediments were (Fig. 12b) relatively more oxidizing in nature at depth 

<6 cm prior to the commencement of rainfall in the region. Reducing conditions 

prevailed through the monsoon with the lowest value of -248.4 mV at 2-4 cm depth in the 

month of June. 

4.2. Chemical parameters 

4.2.1. Dissolved oxygen 

At the control site, dissolved oxygen in the ambient water varied from 0.12-4.79 ml r' 
through the year. The seasonal pattern was distinct with the monsoon season showing the 

highest average value of 3.63 (±1.24) ml 1 - '(Fig. 13).The post-monsoon dissolved oxygen 

content was lower at 0.87 (±1.36) ml 1 1  compared to the pre-monsoon where the average 

value for this season was 1.36 (±1.59) m11 -1 . 

At the experimental site Divar, similar annual variation in oxygen concentrations 

were observed with values ranging between 0.19-4.75 ml I -I . The highest average value 

of 3.85 (±1.32) ml 1 -I  was also recorded during the monsoon. Between the non-monsoon 

periods, the pre-monsoon value was lower at 1.11 (±1.18) ml 1 -1  while the post-monsoon 

value was marginally higher at 1.29 (±1.97) ml I -1 . 

4.2.2. Pore water N114 +, NO2-  and NO3-  

Monthly variation in pore water ammonium at both the control and experimental sites 

showed generally higher values at depths >4 cm. At the control site, the highest seasonal 

average of 28.43 (±5.03) NH4 +-N 1 1  (Fig. 14a) was recorded at 4-6 cm depth during the 
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post-monsoon. Similarly at the experimental site, higher concentrations were recorded 

during the post-monsoon season with average values ranging between 20.56 (±3.07) at 6-

8  cm to 32.05 (±4.63) at 8-10 cm (Fig. 14b). NH 4+  showed significant seasonal 

variability at the experimental site (p<0.001, df=2) while there was no significant 

variability at the control site. Between the two sites, a significant variation (p<0.05, df=1) 

was observed only during the monsoon and could be attributed to the variability observed 

at 0-2 cm (p<0.01, df=1). 

Monthly variation in nitrite concentrations at both the sites varied widely with 

depth (Figs. 14c-d). At the control site the lowest concentration of 0.41 prnol NO2-N 1 -1 

 was recorded at the surface during the post-monsoon while the highest concentration of 

5.35 Rmol NO2-N 1 1  was recorded at 4-6 cm during the same season. At the 

experimental site, similar nitrite concentrations varying between 0.41-6.42 Rmol NO2-N 

1 -1  within the 0-10 cm depth range were observed. Seasonal averages have shown 

relatively higher nitrite concentration during the monsoon at the experimental site with up 

to 3.77 (±1.80) Imo( NO2-N 1 -1  at 2-4 cm. Average nitrite concentrations in the surficial 

sediments at the control site were relatively lower through the seasons as compared to the 

deeper layers. Inter-seasonal variability in NO2 concentration was observed only at the 

experimental site (p<0.001, df=2). Between the two sites, significant variation was 

observed only during the post-monsoon (p<0.04, df=1) caused due to variation in the 

nutrient concentration at 4-6 cm (p<0.01, df=4). 

Nitrate concentration in mangrove sediments also varied with depth (Figs. 14e-f). 

Average values at the control site showed low nitrate concentration at all depths. At pre-

monsoon, the concentration decreased with depth with an average value of 15.32 

(±12.65) Rmol NO 3 -N I -1  at 0-2 cm to 7.66 (±4.85) Rrnol NO 3 -N 1-1  at 8-10 cm. The 

highest average pre-monsoon value of 13.35 (±6.07) pniol NO 3-N I-1  was recorded at 4-6 

cm. The monsoon season significantly increased nitrate levels at the experimental site as 

compared to the non-monsoon seasons. Seasonal variability in nitrate concentrations 

were observed at the control (p<0.05, df=2) and experimental sites (p<0.001, df=2) sites. 

The monsoon season showed significant variation (p<0.001, df=1) between both the 

sampling locations. 
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4.2.3. Total organic carbon 
Down-core variability in TOC for the different seasons are illustrated in figures 15a and 

b. TOC at the control site varied from 1(+0.05) % during the monsoon to 4.52 (±3.13) % 

at post-monsoon. These values were recorded at 4-6 cm depth. Similar trend was 

observed at the experimental site where TOC varied from 1.65(±1.37) at 4-6 cm during 

monsoon to 4.88 (±2.76) % at 2-4 cm during the post-monsoon. Seasonal variation in 

TOC was observed at the control (p<0.01, df=2) and experimental (p<0.01, df=2) sites. 

The monsoon season showed variability in TOC (p<0.01, df=1) content between both 

sites. 

4.2.4. Iron and manganese concentration 
The down-core variation of Fe and Mn during pre-monsoon, monsoon and post-monsoon 

seasons have been shown in Figs. 16a-d. Sediment Fe values at the control site ranged 

from 4.5% at 0-2 cm to 9.3% at 4-6 cm during the post-monsoon. Seasonal variation in 

Fe was observed only at the experimental site (p<0.001, df=2) with highest Fe content of 

up to 30% at 8-10 cm during the pre-monsoon. Variation in Fe between both sampling 

locations was observed during all the three seasons i.e. pre-monsoon (p<0.001, df=1), 

monsoon (p<0.001, df=1) and post-monsoon (p<0.001, df=1). 

Highest Mn content of 0.9 (±1.0) % was recorded at 4-6 cm at the control site 

during the post-monsoon. At the experimental site, a maximum of 2.5 (±1.9) % was 

recorded at 6-8 cm during the monsoon. Seasonal variation in Mn content was observed 

at only the experimental site (p<0.01, df=2). Between the two sites, variation in Mn was 

observed only during the pre-monsoon (p<0.0001, df=1) and monsoon (p<0.01, df=1). 

4.3. Bacteriological parameters 

4.3.1. Total bacterial counts 

Total bacterial cells (TC) in the Tuvem sediments ranged from 3.35x10 9  to 3.37x10 10  

cells g-1  while at Divar it varied from 3.16x10 9  to 5.82x10 10  cells g 1 .Generally, the cell 

number was marginally higher at 4-6 cm as compared to the surface. Irrespective of the 

depth, the abundance pattern showed considerable monthly variation. At Tuvem, cells 

number was high during April, June, July and September. However at Divar, high cell 

count was recorded during the months of May, June and July. Inter-seasonal variation in 
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bacterial cells was observed at the control (p<0.001, df=2) and experimental site (p<0.05, 

df=2);  Cell number was maximum during the monsoon at both the sites with higher 

density at 4-6 cm depth (Figs. 17a-b). No significant seasonal variation in cell abundance 

was observed between the two sites. 

4.3.2. Heterotrophic counts 
The abundance of total heterotrophic bacteria . (THB) in mangrove sediments varied from 

1025  CFU g'. At the control site, their abundance averaged between 10 45  CFU g-I  with a 

maximum at 2-4 cm. Their abundance was non-detectable at depth >4 cm during 

December. A maximum abundance of 8.48x10 5  CFU g-1  was recorded at 2-4 cm depth 

during February. Though THB abundance was higher during the post-monsoon (Fig. 

18a), no inter-seasonal variability in their abundance was observed at either location. 

At the experimental site, heterotrophic abundance averaged between 10 3-5  CFU g' 

decreasing steadily with depth. On a monthly basis, their abundance varied from 

3.77x102  CFU g' at 6-8 cm in November to 3.83x10 5  CFU g-1  at 2-4 cm in January. 

Lower abundance was observed during the monsoon as compared to the non-monsoon 

period (Fig. 18b). Between the two sites, variation in THB abundance was observed 

during the monsoon (p<0.03, df=1). 

4.3.3. Nitrate reducing bacteria 
The nitrate reducers (NRB) were one order lower than the heterotrophs averaging 

between 1024  CFU g'. Their abundance was higher between 2-6 cm at both the study 

sites. Average NRB abundance at the control site varied from 1.37x10 3  CFU g' at 8-10 

cm during the post-monsoon to 1.38x10 4  CFU g' at 0-2 cm during the pre-monsoon. 

Inter-seasonal variation in NRB abundance was observed at the control (p<0.001, df=2) 

and experimental (p<0.001, d --2) site. Their abundance at the experimental site Divar 

was one order higher during the pre-monsoon as compared to the monsoon and post-

monsoon seasons. NRB showed a sub-surface maxima during the pre-monsoon season at 

both study sites (Figs. 19a-b). Between the sites, NRB abundance varied significantly 

during the monsoon (p<0.01, df=1 ). 
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Fig. 17b: Seasonal variation in total bacterial counts at Divar. SD values have been shown below. 

Depth 
(cm) 

Tuvem 
Pre-monsoon 

SD 
Monsoon 

SD 
Post-monsoon 

SD 

Divar 
Pre-monsoon 

SD 
Monsoon 

SD 
Post-monsoon 

SD 

0-2 0.65 0.76 0.40 1.41 1.16 0.22 

2-4 0.92 0.57 0.28 0.43 0.65 0.30 

4-6 0.77 0.77 0.46 0.34 2.33 0.19 

6-8 1.27 0.96 0.69 0.50 1.23 2.00 

8-10 0.51 0.40 0.59 1.58 1.51 2.32 
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Fig. 18a: Seasonal variation in heterotrophic abundance at Tuvem. SD values have been shown below. 
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Fig. 18b: Seasonal variation in heterotrophic abundance at Divar. SD values have been shown below. 

Depth 
(cm) 

Tuvem 
Pre-monsoon 

SD 
Monsoon 

SD 
Post-monsoon 

SD 

Divar 
Pre-monsoon 

SD 
Monsoon 

SD 
Post-monsoon 

SD 

0-2 0.94 0.34 0.89 0.66 0.30 1.20 

2-4 4.09 0.58 2.99 0.92 0.35 1.85 

4-6 1.04 0.72 0.30 0.96 0.39 0.13 

6-8 2.25 0.57 0.34 0.15 0.23 0.31 

8-10 2.33 1.07 2.18 0.54 0.38 0.03 
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Fig. 19a: Seasonal variation in abundance of heterotrophic nitrate reducing bacteria (NRB) at Tuvem. SD 

values have been shown below. 
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Fig. 19b: Seasonal variation in abundance of heterotrophic nitrate reducing bacteria (NRB) at Divar. SD 

values have been shown below. 

Depth 
(cm) 

Tuvem 
Pre-monsoon 

SD 
Monsoon 

SD 
Post-monsoon 

SD 

Divar 
Pre-monsoon 

SD 
Monsoon 

SD 
Post-monsoon 

SD 

0-2 0.95 0.43 0.27 1.51 0.03 0.41 

2-4 2.37 0.26 0.25 1.20 0.04 0.18 

4-6 1.27 1.73 0.23 1.30 0.31 0.12 

6-8 1.82 0.29 0.43 0.66 0.03 0.07 

8-10 1.02 0.41 0.10 0.97 0.22 0.11 



4.3.4. Denitrifier abundance 
The denitrifiers were most abundant at 4-6 cm at both the sites investigated. Their 

abundance at the control site varied from 6.17x10 4  cells g -1  at 2-4 cm to 1.87x10 8  cells g' 

at 4-6 cm during the monsoon. Their abundance was stable during the pre and post-

monsoon varying from 10 6-7  cells g' while it increased to 10 8  cells g' (at 4-8 cm) during 

the monsoon (Fig. 20a). However, no significant inter-seasonal variation in denitrifier 

abundance was observed. 

At the experimental site too, no seasonal variation in denitrifier abundance was 

observed. Their abundance varied from 2.34 x10 5  cells g' at 6-8 cm during the monsoon 

to 8.96 x10 8  cells g -1  at 4-6 cm during the post-monsoon. Maximum denitrifier counts 

were recorded at 4-6 cm at all seasons (Fig. 20b). Comparative analysis between the two 

study sites showed no significant variation in denitrifier abundance during any of the 3 

seasons. 

4.4. Seasonal denitrification rates 
DNT was higher at depths 5_4 cm at both the study sites (Figs. 2 la-b). The activity was 

the highest at pre-monsoon at both the study sites. Between seasons, denitrification 

activity was significantly different at the control (p<0.001, df=2) and experimental sites 

(p<0.001, df=2). However, the maximum denitrification rate of 237.29 (±145.07) tmol 

N20-N tlf2  11-1  at the control site was recorded at the surface while at the experimental 

site, a maximum of 235.21 (±87.57) gmol N20-N m -2 11 1  was recorded at the sub-surface 

(2-4 cm) during the pre-monsoon season. On the onset of the monsoon, DNT at the 

control and experimental site decreased to a maximum of 22.01 (±9.55) mmol N20-N m -2 

 11-1  and 23.86 (±1.45) !mot N20-N m -2  h-1  respectively. At post-monsoon, DNT at the 

experimental site showed increased to 130.35 (±7.62) gmol N20-N m -2  h-1  compared to 

the control site where the rate remained steady at a maximum of 25.23 (±3.80) !Arno! 

N20-N m-2  h-1 . DNT at the control and experimental sites differed in the monsoon 

(p<0.001, df=1) and post-monsoon (p<0.001, df=1). The difference observed during the 

monsoon between the two sites could be attributed to the variability in activity observed 

at 4-6 (p<0.05, df=1), 6-8 (p<0.001, df=1) and 8-10 (p<0.05, df=1) cm. The difference 

observed during the post-monsoon between the two sites could be attributed to the 
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Fig. 20a: Seasonal variation in abundance of denitrifiers at Tuvem. SD values have been shown below. 
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Fig. 20b: Seasonal variation in abundance of denitrifiers at Divar. SD values have been shown below. 

Depth 
(cm) 

Tuvem 
Pre-monsoon 

SD 
Monsoon 

SD 
Post-monsoon 

SD 

Divar 
Pre-monsoon 

SD 
Monsoon 

SD 
Post-monsoon 

SD 

0-2 0.34 0.59 0.72 0.11 0.28 0.34 

2-4 0.23 0.25 1.73 1.00 0.09 0.14 

4-6 1.20 1.37 0.33 0.95 0.23 0.10 

6-8 1.08 0.21 0.37 0.77 0.03 0.05 

8-10 0.98 0.44 0.10 0.81 0.32 0.17 
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Fig. 21a: Seasonal down-core variation in denitrification activity (±SD) at Tuvem where n=4 at each season. 

Only negative SD bar for pre-monsoon value at 0-2 cm has been shown due to large variability. 
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Fig. 21b: Seasonal down-core variation in denitrification activity (+SD) at Divar where n=4 at each season. 

Only negative SD bar for pre-monsoon value at 2-4 cm has been shown due to large variability. 



variability in activity observed at 0-2 cm (p<0.01, df=1), 2-4 (p<0.001, df=1), 4-6 

(p<0.01, df=1) and 8-10 (p<0.05, df=1) cm. 

4.5. Statistical analysis 

4.5.1. Factors controlling denitrification 
The collective effect of different environmental factors on denitrification at the control 

(Table 4a) and experimental sites (Table 4b) were evaluated by multiple linear regression 

analyses. A predictive model to determine denitrification rates was done using 13 

essential parameters which gave the best regression equation (Table 5). The regression 

equation has been derived on the assumption that the observed values would repeat for 

two annual cycles without variation for purpose of multiple regression analysis. 

4.5.2. Factors controlling denitrifier abundance 
Pearson's correlation coefficients were used to examine the relationships of 

environmental variables on denitrifiers in mangrove sediments. Generally, denitrifier 

abundance decreased with depth mainly at the experimental site as evident from an 

inverse relationship with depth. At the control site, their abundance was found to increase 

with depth only during the monsoon (Figs. 22a-c). 

At the experimental site, metals (Fe and Mn) were negatively correlated to 

denitrifiers especially during the monsoon season (Figs. 23a-c). However, this 

relationship with Fe was not evident during the pre-monsoon and post-monsoon. About 

22% of the variation in denitrifiers were brought about due to the variation in NRB 

(n=15; r=0.46; p<0.05) during the pre-monsoon. 

Multiple regression analysis was also used to assess the combined effect of 

environmental variables on denitrifier abundance in mangrove sediments. Metals mainly 

Mn was an important parameter influencing denitrifiers at the both the locations (Tables 

6a-b). The influence of manganese on denitrifier abundance was persistent throughout the 

year except during the monsoon where NO2 -  was seen to influence the bacterial forms at 

Tuvem. 
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Table 4a: Results of multiple regression analysis of selected parameters which influence 

denitrification at the control site Tuvem 

Pre-monsoon 

R= .96085115 R2= .92323494, F(8,21)=31.570, p<.00000, Std. Error of estimate: 44.261 
Std. Err. of 	 Semi part. 	 Order of influence

BCoefficient B 	 p-level 
Cor. 

Intercept 1847.487 471.386 7.88E-04 

Fe -126.500 11.719 5.00E-10 -0.653 

NO2 -  72.023 15.614 1.50E-04 0.279 

Eh -1.114 0.190 7.96E-06 -0.355 

NH4*  13.142 2.208 6.59E-06 0.360 Fe> NH4 '>Eh> NO3 --> NO2 -->Mn>TC 

NO2" 19.744 3.655 2.33E-05 0.327 

Mn -455.996 132.941 2.51E-03 -0.207 

TC -113.697 46.829 2.43E-02 -0.147 

TOC -16.342 12.126 1.92E-01 -0.081 

Monsoon 

R= .99623967, R 2= .99249347, 
Coefficient 

B 

F(11,18)=216.36, p<.00000, Std. Error of estimate 	93926 
Std. Err. of 	 Semi part. 	 Order of influence 

B 	
p-level 

Cor. 

Intercept -53.995 19.162 1.14E-02 

Denitrffiers -1.270 0.290 3.63E-04 -0.089 

NH4.  1.106 0.050 1.90E-14 0.449 

THB -19.393 1.208 4.10E-12 -0.328 

NO2-  -8.719 0.696 2.53E-10 -0.256 NH4 +>THB> NO2->TC>TOC> NO2 -  
>Mn>Eh>Denitrifiers>NRB>pH 

NO3" 1.014 0.129 3.13E-07 0.161 

TC 15.288 1.700 4.46E-08 0.184 

TOC 13.134 1.635 2.31E-07 0.164 

Mn -23.602 3.205 7.80E-07 -0.150 

Eh -0.025 0.005 5.18E-05 -0.108 

Post-monsoon 
R= .83669268, R2= .70005463, F(5,24)=I 1.203, p<.00001, Std. Error of estimate: 4.9938 

Std. Err
' 	p-level 	

Semi part 
Coefficient B 	 Order of influence 

of B 	 Cor. 

Intercept 	24.785 	74.969 	7.44E-01 

NO3 - 	 -0.806 	0.250 	3.65E-03 	-0.360 

pH 	 -35.157 	6.803 	2.72E-05 	-0.578 

THB 	 2.644 	0.697 	8.83E-04 	0.424 

TC 	 18.232 	6.959 	1.50E-02 	0.293 

NRB 	 5.439 	2.369 	3.07E-02 	0.257 

pH>THB> NO3 ->TC >NRB 



Table 4b: Results of multiple regression analysis of selected parameters which influence 

denitrification at the experimental site Divar 

Pre-monsoon 
R= .93130013, R2= .86731993, F(11,18)=10.697, p<.00001, Std. Error of estimate: 35.464 

B 
Std. Err. of 

B 
p-level 

Semi part 
Cor , 

Order of influence 

Intercept 423.273 1053.619 6.93E-01 

Fe 8.763 7.198 2.39E-01 0.105 

TOC 142.330 21.445 3.14E-06 0.570 

NRB 186.567 38.600 1.33E-04 0.415 

Mn 766.597 249.908 6.63E-03 0.263 

Denitrifiers 96.937 69.154 1.78E-01 0.120 TOC>NRB>pH>TC>Mn> NO2  

pH -221.613 62.063 2.18E-03 -0.307 

Eh 0.026 0.153 8.68E-01 0.014 

TC -193.410 60.675 5.10E-03 -0.274 

NO2 -53.917 20.712 1.80E-02 -0.223 

NH. 4.383 2.706 1.23E-01 0.139 

Monsoon 

R= .95596427, R2= .91386769, F(10,19)=20.159, p<.00000, Std. Error of estimate: 2.4820 
B 	Std. Err. 	 Semi part 

p-level 	 Order of influence 
of B 	 Cor. 

Intercept -356.771 182.682 6.57E-02 

NO3" 1.407 0.256 2.64E-05 0.370 

Eh 0.073 0.067 2.92E-01 0.073 

Mn -11.599 4.324 1.47E-02 -0.181 

THB -10.583 2.153 9.61E-05 -0.331 

NRB 30.941 7.053 3.17E-04 0.295 NO;>THB>NRB>TC>Mn>Denitrifiers> NO 2  

TC 23.191 8.413 1.26E-02 0.186 

NO2" -1.566 0.724 4.36E-02 -0.146 

Denitrifiers -8.399 3.537 2.82E-02 -0.160 

PH 24.485 14.569 1.09E-01 0.113 

TOC -3.157 3.043 3.13E-01 -0.070 

Post-monsoon 

.99339908, R2-= .98684173, F(12,17)=106.25, p<.00000, Std. Error of estimate: 6.7716 
B 	Std. Err. 	 Semi part 

p-level 	 Order of influence 
of B 	 Cor. 

Intercept -173.057 155.370 181E-01 

Mn -122.250 13.707 8.06E-08 -0.248 

Fe 15,066 2.415 9.01E-06 0.174 

TOC -2.630 8.816 7.69E-01 -0.008 

THB -12.518 6.194 5.93E-02 -0.056 

TC 35.736 5.238 2.97E-06 0.190 
Mn>Eh>TC>Fe>NRB> NH 4.> NO 

Eh -0.377 0.045 2.21E-07 -0.231 >Denitrifiers>THB 
NRB 55.079 9.037 1.19E-05 0 170 

NO2 3.562 2.205 1.25E-01 0.045 

NH4+  -3.666 0.962 1.40E-03 -0.106 

NO3" 1.338 0.452 8.78E-03 0.082 

Denitrifiers -24,570 9.428 1.85E-02 -0.073 

PH -12.603 12.024 3.09E-01 -0.029 



Table 5: The best multiple regression models obtained were: 

Location 	Season 	 Multiple regression model 

Control site: Pre-monsoon 

Tuvem 

Monsoon 

DNT = 1847.487 - 126.50 * Fe + 72.02 *NO2 --1.114 * 

Eh + 13.142 * NH4+  + 19.744 * NO 3 -  - 455.996 * Mn 

113.697 * TC - 16.342 * TOC 

DNT = -53.994 - 1.27 * Denitrifiers + 1.106 *N1-14+ -

19.393 * THB - 8.719 *NO2 -  + 1.014 *NO3 -  + 15.287 * 

TC + 13.133 * TOC - 23.601 * Mn - 0.025 * Eh + 8.594 

*NRB - 4.621 * pH 

Post- 	DNT = 24.785 - 0.805 *NO3 -  - 35.156 * pH + 2.644 * 

monsoon 	THB + 18.232 * TC + 5.439 * NRB 

DNT = 423.27 + 8.763 * Fe + 142.330 * TOC + 186.567 

Experimental Pre-monsoon * NRB + 766.597 * Mn + 96.937 * Denitrifiers - 221.613 

site: Divar 	 * pH + 0.026 * Eh - 193.410 * TC - 53.917 *NO 2" + 

4.383 * NH4+  + 45.427 * THB 

Monsoon 

Post- 

monsoon 

DNT = -356.771 + 1.407 *NO3-  + 0.073 * Eh -11.599 * 

Mn - 10,583 * THB + 30.941 * NRB + 23.191 * TC -

1.566 *NO2-  - 8.399 * Denitrifiers + 24.458 * pH - 3.157 

* TOC 

DNT = -173.057 - 122.250 * Mn + 15.066 * Fe - 2.630 * 
TOC -12.518 * THB + 35.736 * TC - 0.377 * Eh + 
55.079 * NRB + 3.562 * NO2-  - 3.666 *NH4+  + 1.338 * 
NO3 -  - 24.570 * Denitrifiers - 12.603 * pH 

where DNT = denitrification rate (umol N 20-N r11-2  W I ); NH4 +-N, NO2-N & NO3-N= concentration in 
umol 1: 1 ; Fe & Mn = concentration in %; TC= total bacterial cells; THB = total heterotrophic bacteria; 
NRB -= nitrate reducing bacteria. All bacterial parameters have been log o  transformed. 



Significance level: • p<0.001 • p<0.01 • p<0.05; n=15 

Fig. 22a 

Fig. 22b 

Fig. 22c 

Figures 22a-c: Factors influencing denitrifiers during pre-monsoon (Fig. 22a), monsoon (Fig. 22b) and post-

monsoon (Fig. 22c) at the control site. Corresponding r values have been shown at each 

node. Significant correlations have been highlighted in the key denoted above. Variables 

DNT = denitrification activity; TC= total bacterial cells; TIC = total heterotrophic bacteria; 

NRB = nitrate reducing bacteria. All bacterial parameters have been log lo  transformed 

before analysis. 



Significance level: • p<0.001 • p<0.01 • p<0.05; n=15 

Fig. 23a 

Fig. 23b 

Fig. 23c 

Figures 23a-c: Factors influencing denitrifiers during pre-monsoon (Fig. 23a), monsoon (Fig. 23b) and post-

monsoon (Fig. 23c) at the experimental site. 



Table 6a: Results of multiple regression analysis of selected parameters which influence 

denitrifier abundance at the control site Tuvem: 

Pre-monsoon: Tuvem 

R.= .37305279, R2= .13916839, F(1,28)=4.5267, p‹.04231, Std. Error of estimate: .57084 
Std. Err. Of 	Semi part. 

Coefficient B 	 p-level 	 Order of influence B 	 Cor. 

Intercept 	8.451 	0.677 	5.75E-13 	
Mn 

Mn 	 -2.963 	1.393 	4.23E-02 	-0'373 

Monsoon: Tuvem 

R= .87966533, 12.2= .77381109, F(6,23)=13.114, p<.00000, Std. Error of estimate .  .77607 
Coefficient 	Std. Err. Of 	Semi part. 

p-level 	 Order of influence B 	 B 	 Cor. 

Intercept 47.474 8.772 1,69E-05 

NO2-  2.099 0.277 1.09E-07 0.751 

TOC -2.420 0.590 4.33E-04 -0.407 

PH -5.338 1.163 1.29E-04 -0.455 NO2>pH>TOC>Eh> NO,'>Fe 

Fe -0.452 0.176 1.71E-02 -0.255 

Eh 0.005 0.002 3.49E-03 0.323 

NO -0.159 0.060 1.47E-02 -0.261 

Post-monsoon: Tuvem 

R= .94692978, R2= .89667600, F(6,23)=33.267, p<.00000, Std. Error of estimate; .22288 
Coefficient 	Std. Err. Of 	Semi part. Cor. 	p-level 	 Order of influence 

B 	 B 
Intercept 7.077 0.321 5.58E-17 

Mn 2.076 0.181 5.37E-11 0.769 

Fe -0.214 0.049 2.11E-04 -0.295 

NH4' 0.029 0.008 1.10E-03 0.250 Mn>Fe> NH4-'> NO2> NO3 - >Eh 

NO2-  -0.171 0.061 9.85E-03 -0.189 

NO3" 0.047 0.020 2.49E-02 0.161 

Eh -0.002 0.001 3.68E-02 -0.149 



Table 6b: Results of multiple regression analysis of selected parameters which influence 

denitrifier abundance at the experimental site Divar: 

Pre-monsoon: Divar 

R= .98741413, R2= .97498666, F(6,23)=149.42, p<.00000, Std. Error of estimate. .14357 
Coefficient B 	Std. Err. 	Semi part. 	p-level 	 Order of influence 

Of B 	Cor. 

Intercept 11.171 1.344 2.21E-08 

Mn -3.633 0.136 8.51E-19 -0.879 , 

Fe -0.106 0.010 4.22E-10 -0.340 

PH 0.583 0.186 4.68E-03 0.103 Mn>Fe>pH>Eh> NO 2-> NH4 * 

Eh -0.001 0.000 2.97E-02 -0.076 

NO2-  -0.084 0.043 6.16E-02 -0.065 

NH4' 0.010 0.007 1.89E-01 0.045 

Monsoon: Divar 

.99983274, R2= .99966550, F(7,22)=-9392.7, p<0.0000, Std. Error of est mate: .02114 
Coefficient B Std. Err. Of 

B 
Semi part. 

Cor. 
p-level Order of influence 

intercept 8.149 0.274 2.94E-19 

Mn -2.005 0.009 4.64E-38 -0.839 

Fe 0.162 0.003 1.60E-24 0.203 

NO3' 0.011 0.002 3.45E-05 0.020 
Mn>Fe> NO2 . >Eh> N04 . >pH 

NO2 -0.046 0.006 1.93E-07 -0.029 

Eh -0.001 0.000 1.60E-06 -0.025 

pH 0.088 0.039 3.64E-02 0.009 

NH4' -0.003 0.002 1,15E-01 -0.006 

Post-monsoon: Divar 

R= .98449229, R2= .96922507, F(7,22)-98.981, p<.00000, Std. Error of estimate: .16884 
Coefficient B Std. Err. Of B Semi part. Cor. p-level Order of influence 

Intercept 12.080 0.981 2.43E-11 

Mn -1.475 0.083 1.48E-14 -0.666 

pH -0,124 0.161 4.46E-01 -0.029 

NH4* -0.089 0.009 1.46E-09 -0.370 
Mn>TOC> NI-14*->Fe> NOi > NO2' 

TOC 0.855 0.080 3.30E-10 0.401 

Fe -0.187 0.025 2.13E-07 -0.277 

NO; 0.021 0.007 7.39E-03 0.110 

NO2 -  -0.083 0.037 3.57E-02 -0,084 



SECTION II — Laboratory experiments 

4.6. Nitrous oxide production 

4.6. 1. Physico-chemical characteristics 
The mangrove sediments were acidic in nature with pH ranging from 5.80-6.16 (Table 7). 

Sediment redox potentials were consistently low, in the range of -27.8(±0.9) to -

6(±16.45) mV at Tuvem while the Divar sediments exhibited the lowest redox potential 

of -5.7(±25.10) at a depth of 8-10 cm. 

Pore water had a measurable nutrient content which varied widely with depth. Up 

to 15.15(±3.43) gmol NH4+-N 1-1  was recorded at 8-10 cm at Tuvem while 31.34(±1.83) 

was recorded at Divar at a depth of 6-8 cm. Nitrite and nitrate concentration generally 

increased with depth with up to 11.69(0.83) umol NO2 - -N 11  and 14.17(±0.43) umol 

NO3-N 1-1  at Tuvem. Low nitrate levels and increase in nitrite concentration were 

observed at Divar. Up to 14.20(±0.08) umol NO2 --N 1 -1  was recorded at a depth of 6-8 

cm. Total organic carbon at Tuvem varied from 2.13-4.54% while at Divar it ranged 

between 2.45-3.99%. 

4.6. 2. Net  nitrous oxide production, denitrification rate and N20 production by 
denitrifiers 

Nitrous oxide production was significantly different (two-tailed t-test, P = 0.003, n = 15) 

at both the locations and varied with depth. At Tuvem, a steady decrease in N20 

production with depth was observed. Highest production of 7.98 (±1.23) umol N20-N m -
2 11-I was recorded at 0-2 cm (Fig. 24). At the deepest layer investigated (8-10 cm), net 

N20 production decreased to a minimum of 1.39 (±0.23) umol N20-N m -2  h-1 . At Divar, 

the 2-4 cm layer showed maximum N20 production at a rate of 22.00 (±13.53) umol 

N20-N r/1-2  

A denitrification maxima of 25.23 (±3.80) gmol N20-N m -2  h-1  was observed at 2-

4 cm (Fig. 25). DNT was otherwise relatively homogenous up to a depth of 8 cm with a 

rate of 15.27(±2.15) umol N 20-N m-2  h-1  at the surface to 13.61(±0.41) umol N20-N fr1 -2 

 WI  at 6-8 cm. At the deepest layer, DNT decreased to 9.61(±2.85) gmol N20-N m -2  h-1 . 

In presence of a nitrification inhibitor, denitrifiers produced a maximum of 

14.25(±8.34) umol N20-N m -2  hi  at 0-2 cm (Fig. 26). Incomplete denitrification ('N20) 
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Table 7: Variation in the average values of physico-chemical parameters (n=15) at 

Tuvem and Divar 

Location: Tuvem 

Depth 	pH 	Eh 	NH4+-N 	NO2-N 	NO3"-N 	TOC 

(cm) 	 (mV) 	(umol 	(mot 1 -1 ) 	(moll- ') 	(%) 
0-2 5.84(+0.2) -27.8(+0.9) 14.73(+4.42) 4.53(+0.13) 10.44(±0.42) 2.13(±0.71) 
2-4 5.97(±0.2) -23.2(±7.39) 15.02(+1.36) 8.59(+0.33) 9.86(±0.37) 2.85(±1.44) 
4-6 6.06(±0.6) -9.5(±15.06) 7.82(+1.45) 8.12(±0.12) 10.94(±0.61) 4.54(±2.86) 
6-8 6.04(+0.6) -6(±16.45) 12.03(+0.82) 10.89(±0.64) 14.17(±0.43) 4.43(±2.82) 
8-10 6.16(±0.5) -6.3(±14.54) 15.15(+3.43) 11.69(±0.83) 11.45(±0.01) 3.97(+2.72) 

Location: Divar 
0-2 5.88(+0.3) 115(+64.7) 15.69 (±3.40) 7.18(±0.01) 4.62(±0.67) 2.94(±1.57) 
2-4 5.80(+0.1) 94.3(±62.6) 15.96 (+2.01) 4.08(±0.19) 4.25(±0.20) 3.99(±2.15) 
4-6 5.99(±0.1) 93.5(±45.18) 23.82(+2.27) 6.63(+0.65) 9.31(+0.16) 2.45(±1.04) 
6-8 6.03(+0.1) 50.8(±61.38) 31.34(±1.83) 14.20(±0.08) 10.08(±0.16) 3.29(+1.70) 
8-10  6.05(+0.04) -5.7(±25.10) 22.10(±3.97) 8.07(±0.28) 10.01(+0.26) 3.07(±1.77) 



was responsible for 43-93% (Fig. 27) of the N 20 production of which about 13-52% (net 

N20/DNT* 100) of the N20 produced through denitrification. N20 production through 

nitrification (NN2O) was below detection. 

4.6. 3. Denitrifier abundance 
The cultivation based technique yielded up to 10 7  denitrifiers g sediment. Their 

abundance was maximum at 4-6 cm (7.14x10 7  cells g-I ) as compared to the other sections 

of the core where their number was relatively stable. The denitrifiers significantly 

influenced (Table 8) nitrous oxide production in these sediments (r= 0.55; p<0.05). They 

also showed an inverse relationship with pore water ammonium (r= -0.57; p<0.05) and 

nitrite (r= -0.55; p<0.05) concentrations. 

4.6. 4. Environmental factors influencing N20 production 
Inter-relationships of nitrous oxide production rates with physico-chemical 

parameters at Tuvem showed an inverse relationship between N 20 production and pore 

water nitrite concentration (n=15; r= -0.47; p<0.05). Up to 32% variation in gas 

production was negatively influenced by sediment pH (r= -0.57; p<0.05). Even though 

the relationship between nitrous oxide concentration and total organic carbon was poor, a 

positive relationship existed between these parameters. 

Principal component analysis (PCA) on sediment variables resulted in four main 

components explaining nearly 80% of the total variance (Table 9). The first component in 

the correlation plot (Fig. 28) explained 29% of the observed variance. A forward 

regression of the reductive processes in the N cycle (DNT and N20 production) was 

observed in the first component. Sediment pH, denitrifier abundance and nitrite 

significantly influenced this component (Table 10). The second component explained 

about 22% of the variance with pore water nitrate and organic carbon concentrations 

correlating strongly with this component. The third component correlated with pore water 

ammonium and denitrification activity and explained 16% of the variation. The only most 

significant variable in the fourth component was sediment redox potential and explained 

12% of the variation. 
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Table 8: Correlation between sediment variables at Tuvem 

Variable 1 	Variable 2 	r value*  

N20 production 	pH 	 -0.57 

N20 production 	Nitrite 	 -0.47 

N20 production 	Denitrifiers 	0.55 

Correlation significant at 0.05 probability level 



Table 9: Eigenvalues of correlation matrix and related statistics 

Eigenvalue % Total 
variance 

Cumulative 
Eigenvalue 

Cumulative 

2.64 29.31 2.64 29.31 

2.02 22.48 4.66 51.79 

1.46 16.27 6.12 68.05 

1.05 11.71 7.18 79.76 

Table 10: Results of principal component analysis of sediment variables and nitrous 

oxide production 

Variable Component 1 Component 2 Component 3 Component 4 
N20 
production 0.856*  0.124 0.206 0.266 
pH -0.597 *  -0.391 -0.541 0.134 
Eh -0.215 0.438 0.106 0.828 *  
Ammonium -0.453 -0.420 0.640*  0.164 
Nitrite -0.687 *  0.649 0.093 -0.004 
Nitrate -0.395 0.665 *  -0.367 0.027 
Denitrifiers 0.730*  -0.023 -0.496 0.326 
TOC 0.369 0.779 *  0.286 -0.330 
DNT 0.021 0.133 -0.487 *  -0.189 
'Correlation significant at 0.05 probability level; TOC= Total organic carbon, DNT=Denitrification rate 
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Fig. 24: Net nitrous oxide production (±SD) in the Tuvem and Divar mangrove sediments 
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Fig. 25: Denitrification rate (±SD) at Tuvem 
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Fig.26: Nitrous oxide production (±SD) by denitrifiers under nitrification inhibited conditions at Tuvem 
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Fig.27: Percentage of nitrous oxide produced through incomplete denitrification 
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Fig. 28: Correlation plot from standardized principal component analysis (PCA) on sediment variables. 

Variables DNT= denitrification rate measured by C 2H2  inhibition technique, N 20 production= Net 

N20 produced from nitrification + denitrification, TOC=total organic carbon. Eigenvalues of 

correlation matrix and related statistics are as follows: 

Eigenvalue % Total 

variance 

Cumulative 

Eigenvalue 

Cumulative 

% 

2.64 29.31 2.64 29.31 

2.02 22.48 4.66 51.79 

1.46 16.27 6.12 68.05 

1.05 11.71 7.18 79.76 



4.7. Denitrification and other co-occurring processes 

4.7.1. Grain size 

Analysis of sand, silt and clay percentage in mangrove sediments (0-10 cm depth) depicts 

sediment texture dominated by sand which contributes to the extent of 43-79%. A 

comparison between the two mangrove ecosystems indicates that at Divar (Table 11) 

sand forms a major component (>70%) of the sediment with percentage of silt and clay 

composing only up to 28%. At Tuvem, the percentage of silt and clay was higher at 32% 

and 22% respectively. 

4.7.2. Total organic carbon and nutrient analyses 
Down-core total organic carbon (TOC) profiles at Divar and Tuvem showed 2 

patterns corresponding to the 6 first centimeters (0-6 cm) and the remaining 4 cm (6-10 

cm). For Divar, a general increase of TOC with depth appeared for the first 6 cm whereas 

in Tuvem TOC content was relatively stable (1.19-1.23%) for these layers at Tuvem. 

TOC content at 6-10 cm was similar at both sites, i.e. a decrease with depth (Fig. 29). 

Down-core nutrient profiles at Divar exhibited an overall decreasing trend with 

depth. Sediment extractable ammonium concentration at the surface was about 2.22 

mmol which steadily decreased to 1.21 mmol at 8-10 cm depth (Fig. 30). Ammonium 

concentrations at Tuvem however showed an opposite trend, starting with 1.1 mmol and 

increasing with depth. A maximum of 1.60 mmol was observed at 8-10 cm. 

At Tuvem, nitrite and nitrate concentrations decreased with depth and a maxima 

was observed at 2-4 cm with 7.55 p.mol and 36.62 limo! (Fig. 31a) respectively. Similarly 

at Divar, nitrite concentrations in the pore water decreased from 14.45 at the surface to 

4.961.1mol at the deeper layer while nitrate varied from 19.90 at 0-2 cm to 2.63 limo! at 8-

10 cm (Fig. 31b). 

4.7.3. Di-nitrogen fixation 
Di-nitrogen fixing activity (Fig. 32) was detected only at Tuvem with maximum activity 

of 12.47 nmol N2 g-1  h-1  occurring at 6-8 cm depth. At Divar, it was below detection 

limits. 
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Table 11: Fractions of sand, silt and clay at various depths in mangrove sediment 

Location: Tuvem Location: Divar 
Depth 
(cm) 

Sand 
(%) 

Silt 
(%) 

Clay 
(%) 

Sand 	Silt 	Clay 
(%) 	(%) 	(%) 

0-2 48.42 32.02 16.31 70.14 16.69 11.59 
2-4 44.56 32.36 20.05 69.88 14.32 13.60 
4-6 43.07 32.45 20.10 72.88 12.37 12.71 
6-8 47.93 30.71 19.62 70.03 13.16 15.62 

8-10 44.16 3L86 22.54 79.31 8.68 10.50 
Texture Silty sand Sandy 
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4.7.4. Net nitrification 
Though nitrification is assumed to be maximal under aerobic conditions, it was 

interesting to note that the deeper layers of mangrove sediments exhibited higher 

nitrification potential (Fig. 33). At Tuvem, nitrification rates were relatively higher at 

most depth layers tested varying between 4.05 nmol g -I  1-1 -I  at 6-8 cm to 13.78 nmol g 1 11-1 

 at 8-10 cm. Net potential nitrification rates at Divar were homogenous from the surface 

up to 8 cm depth varying between 4.62-6.06 nmol g' h -1 . The activity at the deepest layer 

(8-10 cm) doubled to 13.43 nmol 

4.7.5. Nitrate reduction 
Nitrate reducing activity (NRA) in mangrove sediments determined in sediment slurry 

incubation under micro aerophilic conditions revealed maximum NRA of 3.52 gmol g' 

h-1  at 2-4 cm depth at Divar which consequently decreased with increasing depth (Fig. 

34). At Tuvem, the trend was opposite with the deeper layers showing maximum activity. 

A maximum of 2.01 1..trnol g' h -1  was observed in Tuvem sediment at 8-10 cm depth. 

This rate however was comparatively lower than that observed at Divar. 

4.7.6. N2 production through anammox and denitrification 

Di-nitrogen production through anammox and denitrification was concomitantly 

determined. There was wide and statistically significant variation in denitrification 

activity between sampling stations (a=0.05, p<0.01, n= 30) and sampling depth (cc=0.05, 

p<0.01, n= 30). The total N2 production rates including denitrification and anammox 

were higher within the first 4 cm, and then decreased with depth except at Divar where 

the activity was slightly higher in the deeper layer. At Tuvem, the observed rate (Fig. 

35a) in the upper layer was three fold lower (81 nmol N g' h -1 ) than that found for the 

same layer at Divar where N2 production occurred at a rate of 224 nmol N g -1  hi  (Fig. 

35b). For both sampling stations denitrification was the main process leading to N2 

production and highest denitrification rates were observed in the two first layers. 

The contribution of anammox was calculated according to mod_IPM. Anammox 

(Anx) activity was detected in mangrove sediments. Though the process was negligible in 

the upper layers (up to 8 cm) at Divar, it was found to be the major source of N2 in the 

deeper layer (8-10 cm) accounting for up to 101.15 nmol N2 g '  II I  (67% of total N2 
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production at this layer). At Tuvem, although the process was detected at all depths 

investigated, it was relatively weaker (1.48-18.31 nmol N2 g -1  Denitrification was the 

dominant process responsible for N-loss in mangrove sediments and correlated negatively 

with depth (n=9; r---0.65; p<0.05). 

We calculated a net nitrogen balance by differences between N2-production via 

denitrification plus anammox and N 2-fixation (Fig. 36). Thus, there was a net N2 

production from the sediments, leading to the loss of nitrogen from the mangrove 

ecosystem which is not compensated by the process of N-fixation. 

4.7.7. Dissimilatory nitrate reduction to ammonium (DNRA) 
15N labelling to measure DNRA showed a steady increase in 15NH4+  over time at all 

depths investigated (Fig. 37) at both the sites. This process was responsible for 39% 

nitrate removal (100% NRA= 6.91 Rmol) at Divar with values varying from 0.38-0.67 

g-1  11-1 . At Tuvem, DNRA accounted for up to 65% NO3 -  removal (100% 

NRA=6.97 pump with a maximum rate of 1.25 Rmol g -1  h-1  at 2-4 cm. 

4.7.8. Net nitrous oxide production 
N20 production in the Divar sediments decreased with depth from a maximum of 2.71 

nmol N20-N g-1  h-I  at the surface to 0.33 nmol N 20-N g-1  11-1  at 8-10 cm (Fig. 38). At the 

control site Tuvem, maximum N20 production occurred at 2-4 cm at a rate of 4.18 nmol 

N20-N g-1  

4.7.9. Macrofaunal abundance 
The mangrove sediments at Divar harbored a substantial macrofaunal population (Table 

12) with a dominance of polychaetes (94%; 1376 no. m -2). The gastropods, oligochaetes 

and crustaceans formed the minor fraction of the community. Though less in abundance, 

the polychaetes were the dominant macrofauna (87%; 224 no. m -2) at Tuvem. 

Crustaceans were absent while the minor fraction of the community were represented by 

oligochaetes and crustaceans. 

4.7.10. Abundance of denitrifying genes (nosZ) 
Abundance of nosZ genes ranged from 0.1 to 2 x 10 7  target copies C I  of dry sediment. At 

Divar, the nosZ genes were well dispersed within the 0-10 cm core as compared to 

Tuvem where their abundance was maximum at 6-8 cm (Fig. 39). 
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Table 12: Abundance of major macrofaunal groups in mangrove sediments 

Macrofaunal group 	Density at Tuvem 	Density at Divar 
(nos. m-2) 
	

(nos. m' 2) 

Polychaeta 224 1376 
Oligochaeta 16 32 
Crustacea 16 32 
Gastropoda 16 
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Fig. 39: Down-core variation in the abundance of nosZ genes (±SD) at Tuvem and Divar 



4.7.11. Environmental controls on denitrification 
The Principal Component Analysis (PCA) was applied to the matrix of correlation 

coefficient between biotic and abiotic parameters (Fig. 40). The first three factors were 

taken into account which corresponded to 82.2% of total data variability. Factor 1 (PC 1) 

explains 38.2% of total data variability. D tot , N2 production as well as nitrite were 

positively correlated to the axis while N2 fixation was negatively correlated. The 

differences between sampling depths were clearly discriminated within the axis. Factor 2 

(PC 2) explained 22.6% of data variability. The 4 top centimeters of Divar seems 

characterized by higher content in nitrate and higher N2 production that was mainly 

explained by denitrification rates. Anammox was negatively correlated to this axis. The 

deeper sampling depths (D3= 2-4 cm, D5=4-6 cm, D7=6-8 cm, D9=8-10 cm) at Divar 

were seen to cluster along with anammox activity. 

4.8. Influence of nitrate and organic C amendments on denitrification 

4.8.1. Chemical analyses 
The Divar sediments harbored a measurable pore water nitrate content which increased 

with depth (Fig. 41) ranging from 4.15 (+0.21) to 18.71 (+0.28) [tmol. Down-core 

profiling of denitrification showed a sub-surface maxima at 2-4 cm with a rate of 20.08 

N20-N m 2  11-1  (1.43+0.66 nmol g '  If). High denitrification activity at 2-4 cm 

coincided with increased organic carbon availability at this depth which varied from 

2.88% at 4-6 cm to 4.95% at 2-4 cm (Fig. 42). Labile organic matter also showed a 

similar distribution like TOC with maximum concentration at the sub-surface (2-4 cm) 

containing 0.68% LOM (Fig. 43). 

Denitrification activity in mangrove sediments was monitored when subjected to a 

wide range of nitrate amendments (three times higher than ambient). Nitrate addition 

stimulated denitrification activity in all microcosms. Higher rates were observed 

especially at depth <4 cm. Highest activity of 129.22 (±31.94) p.mol N20 -N m-2 11 1  at 0-2 

cm was observed at nitrate amendment of 40 !Limo] (Fig. 44). At depths >4 cm, the 

activity was less pronounced. Up to 46.54 (+4.77) µmot N20-N m-2 11 1  was recorded at a 

nitrate amendment of 20 p.mol NO 3 -N1-1 at 4-6 cm. 

Organic carbon addition stimulated denitrification activity mostly at depths >4 cm 

(Fig. 45). However, maximum activity of only 35.24 (±9.93) [tmol N20-N m -2  11 -1  was 
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sampling levels- Dl/T1-2 cm, D3/T3=2-4 cm, D5/T5=4-6 cm, D7/T7=6-8 cm, D9/T9= 8-10 cm) 

based on the biogeochemical parameters (nitrate, nitrite, ammonium, total organic carbon (TOC) and 

bacterial activities associated with nitrogen cycle: di-nitrogen fixation (Nif), denitrification (D tot), 

anammox (Anx). Eigenvalues for PCA are as follows: 

Factor 1 Factor 2 Factor 3 
Eigenvalue 3.439 2.031 1.931 
Variability 
(%) 38.2 22.6 21.5 
Cumulative 

38.215 60.777 82.236 
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recorded at 4-6 cm depth. A 0.5% amendment of labile organic carbon (glucose) was 

found to effectively stimulate denitrification activity at all depths. Statistical analyses did 

not show significant increase in denitrification activity on organic carbon addition as 

compared to amendments with nitrate which showed significant increase (one way 

ANOVA; n=15; p<0.001) at all depths. 

Potential denitrification rates decreased with depth and were 15-38 times higher 

(within 0-10 cm core) than the ambient when both nitrate and organic carbon were in 

excess. Highest activity of up to 304.09 (±47.6) [Imo' N20-N m -2  h-1  (Fig. 46) was 

recorded at 2-4 cm. At 8-10 cm the activity decreased to 81.25 (±22.58) Knol N 20-N m-2 

 h-1 . 

4.9. Influence of bioturbation on denitrification 

4.9.1. Physico-chemical characteristics 
The pH of the non-bioturbated core varied from 7.19 to 7.5 and decreased with depth 

(Fig. 47). The pH in bioturbated sediments was relatively lower varying from 6.54 at 4-6 

cm to 7.02 at the surface. Though the redox potential in both the cores was similar at the 

surface (-58.6 mV), the non-bioturbated core was comparatively more reducing in nature 

than the faunated core at depth >6 cm (Fig. 48). A redox potential of -120.9 mV was 

recorded at 8-10 cm in the de-faunated core. 

Nitrate content in the faunated core was generally higher as compared to the de-

faunated core and its concentration was found to increase with depth (Fig. 49) from 

9.41(±0.17) Rmol at the surface to 22.85(±1.28) [tmol at 8-10 cm. In the de-faunated core, 

surficial nitrate content was 4 times lower than the faunated core with a maximum nitrate 

concentration of 17.41 (±4.81) [tmol at 8-10 cm. Nitrite accumulation was observed in 

non-bioturbated conditions with up to 15.55 (±3.66) i.tmol at 2-4 cm (Fig 50). Nitrite 

concentration in the bioturbated core decreased with depth with a maximum of 4.49 

(±0.54) tmol at the surface. 

Denitrification activity was generally higher in the top few centimeters of the de-

faunated sediment reaching to a maximum of 0.37 (±0.01) µcool N20-N 111-2  h-1  at 2-4 cm 

(Fig. 51). In the bioturbated core, high DNT was observed to occur from 2-6 cm with a 

similar rate as observed at 2-4 cm in the de-faunated core. Statistical analysis showed that 
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Fig. 48: Down-core variation in sediment redox potential 
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bioturbation influenced DNT only at depth >4 cm (ANOVA, p<0.05, df=1). However, a 

linear regression showed that macrofauna accounted for only 18% of the variation in the 

denitriiication activity (R2=0.18). 

4.9.2. Biological analyses 
In natural sediment, denitrifier abundance ranged between 10 6-8  MPN cells g-1  with 

maximum numbers at 4-6 cm (Fig. 52) which also exhibited elevated DNT activity at this 

depth. In de-faunated conditions, their abundance at the surface (0-2 cm) was same as 

that of the faunated core and decreased rapidly by up to two orders with increasing depth. 

Down-core profile of macrofaunal abundance showed that they varied from 375 

ind. tn -2  at the surface to non-detectable levels at 8-10 cm. About 88% of the infauna 

were present up to a depth of 6 cm beyond which their density declined (Table 13). 

Polychaetes (Neries spp.) and oligochaetes represented the dominant macrofauna in the 

Divar sediments. The density of polychaetes was highest at the surface (0-2 cm) while the 

oligochaetes were most abundant at 4-6 cm with a density of 300 ind. m -2 . Crabs of Lica 

spp. were retrieved from a depth of 6-8 cm. Some of the macrofaunal forms have been 

shown in Figs. 53a-c. 
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Table 13: Down-core variation in macrofaunal abundance at Divar 

Depth 	p 	
Density 

Secies 
(cm) 	 (nos. m -2) 

	

0-2 	Nereis 	 150 
Oligochaeta 	 150 
Uca spp. 	 75 

	

2-4 	Nereis 	 75 
Jasminera spp. 	 75 
Nemertina spp. 	 75 
Uca spp. 	 75 

	

4-6 	Oligochaeta 
	

300 
Polychaeta 
(Family:Euricidae ) 
	

75 

	

6-8 	Nemertina spp. 	 75 
Uca spp. 	 75 

	

8-10 	 Not detected 



Fig. 53a 	 Fig. 53b 
	

Fig. 53c 

Figs. 53a-c: Anterior portion of Jasminera spp. (a), Neries spp. (b) (5X magnification on Zeiss Axioskop 2 Plus microscope) 
and Uca spp. (c) from the Divar sediments. 



SECTION III — Denitrifier diversity 

4.101. Taxonomic identification of culturable denitrifiers 
At the control site Tuvem, gram negative denitrifiers comprised majority (68%) of the 

denitrifying bacteria. Of the 50 denitrifier strains isolated, only 32% were gram positive 

(Table 14a). All the isolates were opaque, had smooth surfaces and were generally 0.5-1 

mm in size. All strains tested positive for nitrate,reduction and N 20 production while H2S 

production was not detected. About 88% of the isolates were catalase positive while only 

26% tested positive for oxidase. The cell morphologically varied from short to curved 

rods. A number of cocci were also recorded. A total of 21 different genera were identified 

based on physiological and biochemical tests. Culturable denitrifiers isolated from the 

control site showed close taxonomic affinities to Acinetobacter, Paracoccus belonging to 

Alphaproteobacteria, Bordetella of Betaproteobacteria, E. coli, Serratia, Alteromonas, 

Shigella, Pseudomonas, Aeromonas, Vibrio, Halomonas, Klebsiella, Pantoea, 

Enterogenes, Ewingella all belonging to class Gammaproteobacteria, Micrococcus and 

Corynebacterium of Actinobacteria, Salinicoccus, Staphylococcus, Bacillus and 

Marinococcus of class Bacilli (Table 14b). 

At the experimental site Divar, colonies of all 76 isolates had smooth surfaces 

(Table 15a) and were about 0.5-2.5 mm in size. Except for 3 translucent strains, the rest 

were opaque. N20 production was detected in all isolates while only 3 isolates tested 

positive for H2S production. A total of 19 different genera were identified (Table 15b). 

Denitrifiers at the experimental site were represented by the genera Acinetobacter of class 

Alphaproteobacteria, Alcaligenes of Betaproteobacteria, Aeromonas, Alteromonas, 

Enterobacter, Halomonas, Kluyvera, Proteus, Serratia, Vibrio, Yersinia of class 

Gammaproteobacteria, Bacillus, Marinococcus, Planococcus, Salinococcus, 

Staphylococcus, Streptococcus belonging to class Bacilli and Micrococcus belonging to 

class Actinobacteria. Up to 43% of culturable denitrifiers belonged to 

Gammaproteobacteria. 
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Table 14a: Tests for identification of denitrifiers at the control site Tuvem 

Depth  ID no.  Size Colour Gram character Cell shape Catalase Oxidase 
OF 
test Motility 

N20 
production 

0-2 Tuv_1 Medium Cream - Rods + + + + + 

0-2 Tuv_2 Small Cream Rods + + + + + 

0-2 Tuv_3 Small White Cocci + + + 

0-2 Tuv_4 Medium White - Rods + + + + + 

0-2 Tuv_5 Small White Rods + + + + + 

0-2 Tuv_6 Small Cream - Rods + + + + + 

0-2 Tuv_7 Medium Cream Rods + + + 

0-2 Tuv_8 Medium Cream + Cocci + - + + 

0-2 Tuv_9 Medium White Short rods + - + + 

0-2 Tuv_10 Small White Cocci + + + 

0-2 Tuv_11 Small White + Cocci + - + + + 

0-2 Tuv_12 Medium Yellow + Cocci + - + + 

0-2 Tuv_13 Small Yellow + Cocci + + + + 

0-2 Tuv_14 Small Yellow + Cocci + + 

2-4 Tuv_15 Large Cream + Rods + + 

2-4 Tuv_16 Small Cream Rods - + + + 

2-4 Tuv_17 Small Cream + Rods + - + + 

2-4 Tuv_18 Medium Yellow Short rods + + + + 

2-4 Tuv_19 Small Yellow Curved rod + + + + 

2-4 Tuv_20 Large Orange Rods + + + + 

2-4 Tuv_21 Medium Orange Rods + - + + + 

2-4 Tuv_22 Medium Yellow + Rods + + + + 

2-4 Tuv_23 Small Yellow Rods + + + + + 

4-6 Tuv_24 Large Cream Curved rod + + + + 

4-6 Tuv_25 Medium Cream Cocci + + + + + 

4-6 Tuv_26 Small Cream - Rods + + + + 

4-6 Tuv_27 Large Cream Rods + + + + + 

4-6 Tuv_28 Large Cream - Rods + + + 

4-6 Tuv_29 Medium Cream Short rods + + + + + 

4-6 Tuv 30 Small Cream + Cocci  + + + 



Table 14a contd... 

Depth ID no. Size Colour Gram character Cell shape Catalase Oxidase 
OF 
test Motility 

N20 
production 

4-6 Tuv_31 Small Cream Cocci + + - + + 

4-6 Tuv _32 Small Cream + Cocci + - + 

8-10 Tuv_33 Medium White Rods - + + + 

8-10 Tuv_34 Small White Cocci - + + + 

8-10 Tuv_35 Small White Cocci - + + + 

8-10 Tuv_36 Small White + Cocci + + + + 

8-10 Tuv_37 Small Sma White + Cocci + _ + + 

8-10 Tuv_38 Medium Yellow Rods + - + + 

8-10 Tuv_39 Small Sma Yellow Rods + - - + + 

8-10 Tuv_40 Small Sma Cream Rods + + + + 

8-10 Tuv_41 Small Sma White + Cocci + _ + + + 

8-10 Tuv_42 Small Sma White + Cocci + + + + 

8-10 Tuv 43 Small White _ Rods + + + + 

8-10 Tuv_44 Small Sma Cream Rods + + + 

8-10 Tuv _45 Small Cream Rods + + + 

8-10 Tuv_46 Medium Pink Cocci + + + + 

8-10 Tuv_47 Small Sma Pink + Cocci + + + + 

8-10 Tuv _48 Small Pink + Cocci + + + + 

8-10 Tuv49 Medium Yellow Rods + + + + 

8-10 Tuv 50 Small White Curved rod + + + + 

Note: Size classification of colonies: 0.5-1 mm= small; 1-1.5 mm= medium and 1.5-2 mm= large. 
Surface of all isolates smooth and the colonies were opaque. 



Table 14b: Biochemical tests for identification of denitrifiers at the control site Tuvem 

ID no. 
Citrate 

utilization 
Lysine 	Orninthine Urease TDA Glucose Adonitol 	Lactose 	Arab in ose Sorb itol 

NO3 - 
reduction 

H2S 
production  Genus Class 

+ 

Tuvi 

Tuv_2 

Tuv_3 

Tuv 4 

Tuv_5 

Tuv 6 

Tuv 7 

Tuv 8 

Tuv 9 

Tuv_10 

Tuv_11 

Tuv_l 2 

Tuv_13 

Tuv l4 

Tuv_15 

Tuv_16 

Tuv_l 7 

Tuv_l 8 

Tuv_19 

Tuv_20 

Tuv_21 

Tuv_22 

Tuv_23 

Tuv 24 

Tuv_25 

Tuv_26 

Tuv_27 

Tuv_28 

Tuv_29 

Tuv 30 

E. coli 

Serratia 

Alteromonas 

Serratia 

Serratia 

Serratia 

Shigella 

Staphylococcus 

Acinetobacter 

Paracoccus 

Marinococcus 

Staphylococcus 

Marinococcus 

Micrococcus 

Corynebacterium 

Serratia 

Corynebacterium 

Pseudomonas 

Pseudomonas 

Aeromonas 

Serratia 

Bacillus 

Vibrio 

Serratia 

Halomonas 

Acinetobacter 

Enterogenes 

Klebsiella 

Halomonas 

Salinicoccus 

y - Proteobacteria 

y - Proteobacteria 

y - Proteobacteria 

y - Proteobacteria 

y - Proteobacteria 

y - Proteobacteria 

y - Proteobacteria 

Bacilli 

a - Proteobacteria 

a - Proteobacteria 

Bacilli 

Bacilli 

Bacilli 

Actinobacteria 

Actinobacteria 

y - Proteobacteria 

Actinobacteria 

y - Proteobacteria 

y - Proteobacteria 

y - Proteobacteria 

y - Proteobacteria 

Bacilli 

y - Proteobacteria 

y - Proteobacteria 

y - Proteobacteria 

a - Proteobacteria 

y - Proteobacteria 

y - Proteobacteria 

y - Proteobacteria 

Bacilli 



 

Table 14b contd... 

 

 

Citrate 	 NO3 - 	H2 S 
ID no. 	 Lysine 	Ominthine Urease TDA Glucose Adonitol Lactose Arabinose Sorbitol 	 Genus 

utilization 	 reduction 	production  

Tuv_3 1 	 + 	 + 	+ 	+ 	+ 	+ 	 + 	 Bordetella 

Tuv_32 	 + 	 - 	+ 	- 	+ 	+ 	-I- 	+ 	+ 	+ 	 - 	Staphylococcus 

Tuv_3 3 	+ 	 - 	 + 	 + 	 + 	 Pantoea 

Tuv 34 	+ 	 - 	+ 	- 	 + 	- 	 + 	 Pantoea 

Tuv_35 	+ 	 - 	+ 	- 	 + 	- 	 + 	 Pantoea 

Tuv_36 	 + 	 + 	 + 	+ 	-I- 	+ 	+ 	+ 	 Staphylococcus 

Tuv_37 	 + 	 - 	+ 	- 	+ 	+ 	+ 	+ 	+ 	 + 	 Staphylococcus 

Tuv_38 	 - 	 - 	 + 	 + 	+ 	 + 	 + 	 + 	 Bordetella 

Tuv3 9 	 + 	+ 	+ 	+ 	+ 	 + 	 - 	Bordetella 

Tuv 40 	 - 	 - 	 - 	+ 	+ 	+ 	+ 	 Acinetobacter 

Tuv_4 1 	 + 	 + 	 + 	+ 	+ 	+ 	+ 	 + 	 Staphylococcus 

Tu v_42 	 + 	 + 	 + 	+ 	+ 	+ 	+ 	 + 	 Staphylococcus 

Tuv43 	 + 	 + 	+ 	+ 	+ 	+ 	 + 	 E coli 

Tuv 44 	+ 	 + 	 - 	 + 	 + 	 + 	 Ewingella 

Tuv_45 	+ 	 + 	 + 	 + 	 + 	 Ewingella 

Tuv 46 	+ 	 + 	+ 	+ 	 + 	 + 	 Serratia 

Tuv 47 	+ 	 + 	+ 	+ 	+ 	+ 	 + 	 Staphylococcus 

Tuv_48 	 + 	+ 	 + 	+ 	 + 	 Staphylococcus 

Tuv 49 	+ 	 + 	 + 	+ 	 + 	+ 	+ 	+ 	+ 	 + 	 Serratia 

Tuv 50 	 + 	 + 	 + 	 + 	 Vibrio 

Class 

0- Proteobacteria 

Bacilli 

y - Proteobacteria 

y - Proteobacteria 

y - Proteobacteria 

Bacilli 

Bacilli 

0- Proteobacteria 

0- Proteobacteria 

a - Proteobacteria 

Bacilli 

Bacilli 

y - Proteobacteria 

y - Proteobacteria 

y - Proteobacteria 

y - Proteobacteria 

Bacilli 

Bacilli 

y - Proteobacteria 

y - Proteobacteria 

  

   

     



Table 15a contd.. 

ID no. Depth Size Colour 
G 

character 
Cell shape Oxidase Catalase 

OF 
test 

Motility 
N2 

production 

DIV_35 4-6 Small Cream Short rods + + + + + 

DIV_36 4-6 Small Cream Rods + - + + + 

DIV_37 4-6 Small Cream Cocci + + + + 

DIV_38 4-6 Small Cream Cocci + + + + + 

DIV_39 4-6 Small White Rods + + + + + 

DIV_40 4-6 Small White Rods + + + + + 

DIV_4 1 4-6 Small White Rods + + + + 

DIV_42 4-6 Small White Rods + + + + 

DIV 43 4-6 Small White + Cocci + + + + 

DIV_44 4-6 Medium White Rods + + + + 

DIV_45 4-6 Small White Rods + + + + 

DIV_46 4-6 Small White Cocci + + + + + 

DIV 47 4-6 Small White + Cocci + + + + + 

DIV48 4-6 Small Cream + Cocci + + + + + 

DIV 49 4-6 Small Cream + Cocci + + + + + 

DIV50 4-6 Small Yellow + Cocci + + + + + 

DIV51 4-6 Small Cream + Cocci + + + + + 

DIV_52 4-6 Small Cream Cocci + + + + + 

DIV_53 6-8 Large Yellow Curved rods + + + + + 

DIV_54 6-8 Small Cream Cocci - + + + + 

DIV55 6-8 Small Cream Cocci + + + + + 

DIV56 6-8 Small Cream Rods + + + + 

DIV57 6-8 Medium Cream Rods + + + + + 

DIV58 6-8 Small Yellow Rods + + + + + 

D1V59 6-8 Small Yellow Rods + + + + + 

DIV_60 6-8 Small Cream + Cocci + + + + 

DIV_61 6-8 Small White + Cocci + - + 

DIV_62 6-8 Small White + Cocci + 

DIV_63 8-10 Small Cream Cocci + + + + + 

DIV_64 8-10 Medium Cream Rods + + + + + 

DIV_65 8-10 Small Cream Cocci + 

DIV_66 8-10 Small Cream - Cocci + + + 

DIV_67 8-10 Small Cream + Cocci + + + + 

DIV 68 8-10 Small White + Cocci - + + + + 



Table 15a contd.. 

ID no. Depth Size Colour Gram 
character 

Cell shape Oxidase Catalase 
OF 
test 

Motility N2 
 production 

DIV_69 8-10 Small White + Cocci + + + + 

DIV_70 8-10 Small White + Cocci + + + + 

DIV_7l 8-10 Small White + Cocci + + + + 

DIV_72 8-10 Small White + Cocci + + + + 

DIV_73 8-10 Small White + Cocci + + + + 

DIV_74 8-10 Medium White Cocci + + + 

DIV _75 8-10 Small Yellow Cocci + + + + 

DIV 76 8-10 Small Yellow Rods + + + + 

Note: Size classification of colonies: 0.5-1 mm--- small; 1-1.5 mm= medium and 1.5-2 mm= large. 
Surface of all isolates were smooth. Except for isolate numbers DIV_10, 11 and 12 all the rest were opaque. 



Table 15b: Biochemical tests for identification of denitrifiers at the experimental site Divar 

ID no. 
Citrate 

utilization 
Lysine Ominthine Urease TDA Glucose Ad onitol Lactose Arabinose Sorbitol 

NO3' 
reduction 

HiS 
production 

Genus 

DIV_ I + + + Vibrio 

DIV_2 + + + V + + + + + + Serratia 

DIV_3 V V - + V + + + Aeromonas 

DIV_4 V + V V + V + Vibrio 

DIV_S + + + V + V + + Serratia 

DIV_6 + + + + + + + + + Enterobacter 

DIV_7 + + + + + + + + Marinococcus 

DIV_8 + + + V - + V + + Serratia 

DIV_9 + - + + Vibrio 

DIV_10 + + - + + + + + v Marinococcus 

DIV_11 + + + + + + + + + + - Micrococcus 

DIV_12 + + + + + + + + + Micrococcus 

DIV_13 + + + + + + Serratia 

D1V_14 + + + + + + Serratia 

DIV_15 - + + + + + + Serratia 

DIV_16 + + + + + + + + + Micrococcus 

DIV_1 7 + + + + + + + + Micrococcus 

DI V_18 + - + + Bacillus 

DI V_19 + - + + + + ,Proteus 

DI V_20 + + + - V + - + - Aeromonas 

DI V_21 + + + - + - V + Vibrio 

DI V22 + - ND V V + Vibrio 

D1 V_23 + V + - + + Vibrio 

DIV_24 + + - + Planococcus 

DIV_25 + - - + + - Vibrio 

DI V_26 + + + + + + + + + + + + Serratia 

DIV27 + + + + + + + + + - Micrococcus 

DI V_28 + + + + + + + + + + Serratia 

DIV_29 + + + + + + + + + Serratia 

DIV_30 + + + + + + + + + Serratia 

DIV_31 + + + + + Vibrio 

DIV_32 + + + V + V + + Serratia 

DIV_33 + V - + + + Vibrio 

DIV 34 + + - + Aeromonas 

Class 

y - Proteobacteria 

y - Proteobacteria 

y - Proteobacteria 

y - Proteobacteria 

y - Proteobacteria 

y - Proteobacteria 

Bacilli 

y - Proteobacteria 

y - Proteobacteria 

Bacilli 

Actinobacteria 

Actinobacteria 

y - Proteobacteria 

y - Proteobacteria 

y - Proteobacteria 

Actinobacteria 

Actinobacteria 

Bacilli 

y - Proteobacteria 

y - Proteobacteria 

y - Proteobacteria 

y - Proteobacteria 

y - Proteobacteria 

Bacilli 

y - Proteobacteria 

-y - Proteobacteria 

Actinobacteria 

y - Proteobacteria 

y - Proteobacteria 

y - Proteobacteria 

y - Proteobacteria 

y - Proteobacteria 

y - Proteobacteria 

y - Proteobacteria 



Table 15b contd.. 

Citrate 	 NO3- 	fl2S 

	

ID no. 	 Lysine Ominthine 	Urease 	TDA Glucose Adonitol Lactose Arabinose Sorbitol 	 Genus 	 , Class 
utilization 	 reduction production  

	

DIV_35 	 + 	+ 	 - 	 + 	 Aeromonas 	y - Proteobacteria 

	

DIV_36 	+ 	+ 	+ 	 + 	 + 	+ 	V 	+ 	 Kluyvera 	 y - Proteobacteria 

	

DIV_37 	+ 	+ 	+ 	- 	 + 	 - 	- 	 + 	 Vibrio 	 y - Proteobacteria 

	

DIV_38 	 + 	+ 	+ 	+ 	+ 	+ 	 Halomonas 	y - Proteobacteria 

	

DIV_39 	 + 	- 	 + 	+ 	+ 	+ 	+ 	+ 	 Serratia 	 y - Proteobacteria 

	

DIV_40 	 + 	 + 	+ 	- 	+ 	 + 	 Vibrio 	 y - Proteobacteria 

	

DIV_4 I 	+ 	- 	 + 	 + 	+ 	+ 	+ 	+ 	+ 	 Serratia 	 y - Proteobacteria 

	

DI V_42 	 + 	 - 	+ 	 + 	 Aeromonas 	y - Proteobacteria 

	

DIV_43 	 + 	+ 	+ 	+ 	 Staphylococcus 	Bacilli 

	

DIV 44 	 + 	 - 	 - 	- 	 + 	 Vibrio 	 y - Proteobacteria 

	

DIV45 	+ 	+ 	+ 	 + 	+ 	+ 	+ 	+ 	+ 	 Vibrio 	 y - Proteobacteria 

	

DIV_46 	+ 	+ 	+ 	+ 	 - 	- 	- 	+ 	 Halomonas 	y - Proteobacteria 

	

DIV_47 	 + 	+ 	+ 	+ 	+ 	+ 	 Staphylococcus 	Bacilli 

	

DIV218 	 + 	+ 	+ 	+ 	+ 	+ 	 Staphylococcus 	Bacilli 

	

DI V_49 	 + 	+ 	+ 	+ 	+ 	+ 	 Staphylococcus 	Bacilli 

	

DIV50 	 + 	+ 	+ 	+ 	+ 	+ 	 Staphylococcus 	Bacilli 

	

DIV51 	 + 	+ 	+ 	+ 	+ 	+ 	 Staphylococcus 	Bacilli 

	

DI V52 	+ 	 + 	+ 	- 	+ 	+ 	+ 	- 	+ 	+ 	 Halomonas 	y - Proteobacteria 

	

D1V53 	 + 	 ND 	V 	 - 	 - 	+ 	 Vibrio 	 y - Proteobacteria 

	

DIV54 	+ 	 + 	+ 	- 	 + 	+ 	 + 	+ 	 Acinetobacter 	a - Proteobacteria 

	

DIV_55 	+ 	 + 	 + 	+ 	- 	+ 	 Alcaligenes 	p - Proteobacteria 

	

DIV56 	 + 	 + 	+ 	+ 	+ 	+ 	+ 	 Aeromonas 	y - Proteobacteria 

	

DIV57 	 + 	+ 	+ 	+ 	+ 	+ 	 Serratia 	 y - Proteobacteria 

	

DIV58 	 - 	 - 	- 	 Vibrio 	 y - Proteobacteria 

	

DIV_59 	+ 	 + 	+ 	+ 	+ 	+ 	+ 	 Serratia 	 y - Proteobacteria 

	

DIV_60 	 + 	+ 	+ 	+ 	+ 	+ 	 Staphylococcus 	Bacilli 

	

DIV_61 	+ 	+ 	+ 	 - 	+ 	+ 	+ 	+ 	+ 	+ 	 Micrococcus 	Actinobacteria 

	

DIV_62 	+ 	+ 	+ 	 ND 	+ 	+ 	+ 	+ 	+ 	+ 	 Streptococcus 	Bacilli 

	

DIV_63 	+ 	 ND 	- 	+ 	 + 	+ 	 + 	 Alcaligenes 	P - Proteobacteria 

	

DI V_64 	+ 	+ 	+ 	 + 	 - 	+ 	 Aeromonas 	y - Proteobacteria 

Acinetobacter 	a - Proteobacteria 

	

D1V_65 	 + 	 + 	 + 	 Moraxella grp I 

	

DIV_66 	 + 	+ 	 - 	 + 	 Alteromonas 	y - Proteobacteria 

	

DIV 67 	 + 	+ 	+ 	+ 	+ 	+ 	 Salinicoccus 	Bacilli 



Table 15b contd.. 

Citrate 	 NO3 ' 	H 2S 
ID no. 	 Lysine Orninthine 	Urease 	TDA Glucose Adonitol Lactose Arabinose Sorbitol 	 Genus 	 Class 

utilization 	 reduction 	production  

DIV_68 	 + 	+ 	+ 	+ 	+ 	+ 	- 	Staphylococcus Bacilli 

DIV_69 	 + 	+ 	+ 	+ 	+ 	+ 	 Staphylococcus Bacilli 

DIV_70 	 - 	 + 	+ 	+ 	+ 	+ 	+ 	 Staphylococcus Bacilli 

DIV_71 	 + 	+ 	+ 	+ 	+ 	+ 	 Staphylococcus Bacilli 

DIV_72 	 + 	 + 	 + 	 Staphylococcus Bacilli 

DIV_73 	 + 	+ 	 + 	 + 	+ 	 Staphylococcus 	Bacilli 

DIV_74 	 + 	 + 	+ 	+ 	+ 	+ 	+ 	 Alteromonas 	y - Proteobacteria 

DIV_75 	 - 	+ 	 - 	+ 	 + 	+ 	+ 	+ 	 Yersinia 	y - Proteobacteria 

DIV 76 	 + 	+ 	+ 	+ 	+ 	 Serratia 	y- Proteobacteria 

Note: V= variable; ND= No data 



4.10.2. Functional diversity of denitrifiers 

The main component of the nosZ community was analysed by DGGE. Clear difference 

in DGGE banding pattern was visible between sediment retrieved from Divar and Tuvem 

(Fig. 54). Partial nosZ gene sequences for nitrous oxide reductase from the present study 

belonged to uncultured marine bacteria. Although some of the bands have been observed 

at both the sites, a prominent band BT1 was observed at Tuvem at all depths investigated. 

This band was also found to be in the Divar sediment mainly within 0-6 cm. Its sequence 

fell within the Gammaproteobacteria nosZ cluster and showed 96.5% similarity with 

Shewanella loihica nosZ (Fig. 55). Three more major bands were observed at Divar, 

BD1, BD2 and BD3. Band BD1 was more prominent until 6 cm depth while the other 

two bands BD2 and BD3 were observed at all depths. BD2 and BD3 could be seen at 

Tuvem. From comparison with nosZ of cultured strains, BD2 was clustered within the 

Betaproteobacterial nosZ and showed 62% similarity to Ralstonia eutropha nosZ. BD3 

and BD1 were grouped within Alphaproteobacterial nosZ cluster and showed 77% and 

74% similarity to Silicibacter pomeroyi nosZ and Azospirillum brasilense nosZ 

respectively. 

4.10.3. Bacterial diversity in mangrove sediments 
More than 23,000 bacterial V6 amplicons were sequenced from the two sites-Tuvem and 

Divar. The average read length of the sequences were 60.73 (±2.63) bp. Taxonomic 

analysis revealed differences in community composition between the two sites. Among 

the 32 phyla identified, phylum Proteobacteria was the most dominant contributing z46% 

of the total V6 tags. Up to 22 and 18% of the bacterial community at Tuvem and Divar 

respectively remained unidentified at a class level. Deltaproteobacteria was the next most 

dominant class in the Tuvem sediments forming 21% of the total tags. At Divar the 

Gammaproteobacteria were the dominant forms at 18% followed by Deltaproteobacteria 

and Actinobacteria at 15%. The order Desulfobacterales dominated (Fig. 56a) the Tuvem 

sediments at 10% whereas at Divar they formed only 8% (Fig. 56b). Percentage wise 

Phylum_Class_Order distribution for taxonomically assigned tags that occurred <100 

times (minor orders) has been tabulated in Tables (16a-b). 
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Fig. 54: nosZDGGE profiles for mangrove sediments. Lanes 1-5 represent samples retrieved at 

every 2 cm interval within the 0-10 cm depth range at Divar while lane 6-10 represent 

samples from Tuvem. a= band BD1, b=BD2; c=BD3; d=BT1. 
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Fig. 55: Neighbor-joining phylogenetic tree incorporating nosZ genes from BD1, BD2, BD3 & BT1. 

Bootstrap analyses (1000 replications) were conducted and values greater than 700 are indicated 

in the nodes. Bar, 0.05 change per nucleotide position. 



Bacterial taxonomy at Tuvem 
Total tags: 8030 

■ 852 Proteobacteria Deltaproteobacteria Desulfobacterales 

o 495 Actinobacteria Actinobacteria unknow n 

■ 384 Acidobacteria Acidobacteria Acidobacteriales 

■ 339 Proteobacteria Deltaproteobacteria unknow n 

■ 236 Proteobacteria Deltaproteobacteria Desutfuromonadales 

o 204 Firmicutes Clostridia Clostridiales 

■ 182 Proteobacteria Deltaproteobacteria Myxococcales 

■ 165 Thermomicrobia unknow n unknow n 

■ 148 Proteobacteria unknow n unknow n 

o 131 Acidobacteria unknow n unknow n 

0 118 Chloroflexi Caldilineae Caldilineales 

■ 117 Firrnicutes Bacilli Bacillales 

■ 102 Chloroflexi unknow n unknow n 

■ 100 Proteobacteria Deltaproteobacteria Syntrophobacterales 

■ 840 Bacteria unknow n unknow n 

o 444 Proteobacteria Gammaproteobacteria unknow n 

■ 356 Actinobacteria Actinobacteria Actinomycetales 

o 319 Proteobacteria Alphaproteobacteria Rhizobiales 

■ 224 Proteobacteria Alphaproteobacteria Rhodobacterales 

■ 203 Actinobacteria Actinobacteria Rubrobacterales 

■ 165 Proteobacteria Gammaproteobacteria Chromatiales 

■ 163 Bacteroidetes unknow n unknow n 

o 132 Planctomycetes Planctomycetacia Planctomycetales 

o 125 Bacteroidetes Bacteroidia Bacteroidales 

■ 117 Bacteroidetes Flavobacteria Flavobacteriales 

o 110 Chloroflexi Anaerohneae unknow n 

■ 102 Proteobacteria Alphaproteobacteria Sphingomonadales 

■ 1157 Other 

Fig. 56a: Taxonomic breakdown of bacterial V6 tags at Tuvem. Pie charts show the Phylum_Class_Order distribution for taxonomically assigned tags that 
occurred more than 100 times; the remaining tag sequences are grouped into "Other." Numbers denote total tags recorded. 



Bacterial taxonomy at Divar 
Total tags: 15326 

■ 1541 Proteobacteria Garrrraproteobacteria unknow n ■ 
o 1260 Proteobacteria Deltaproteobacteria Desulfobacterales 0 

■ 1013 Bacteria unknow n unknow n ■ 
■ 637 Proteobacteria Alphaproteobacteria Rhizobiales • 

■ 526 Actinobacteria Actinobacteria Actinomycetales ■ 
■ 448 Proteobacteria Deltaproteobacteria unknow n 

■ 336 Planctomycetes Planctomycetacia Planctomycetales 

■ 304 Thermorricrobia unknow n unknow n 

■ 294 Proteobacteria Deltaproteobacteria Myxococcales 

0 266 Chloroflexi Caldilineae Caldilineales 

■ 209 Proteobacteria Alphaproteobacteria Sphingomonadales 

■ 176 Firrricutes Clostridia Clostridiales 

■ 169 Firrricutes Bacilli Bacillales 

■ 167 Proteobacteria Deltaproteobacteria Syntrophobacterales 

■ 140 Proteobacteria Alphaproteobacteria unknow n 

■ 1342 Other  

1347 Actinobacteria Actinobacteria unknow n 

1131 Acidobacteria Acidobacteria Acidobacteriales 

681 Proteobacteria Garrrraproteobacteria Chromatiales 

565 Proteobacteria Alphaproteobacteria Rhodobacterales 

476 Proteobacteria unknow n unknow n 

■ 358 Bacteroidetes Sphingobacteria Sphingobacteriales 

■ 314 Chloroflexi Anaerolineae unknow n 

■ 303 Bacteroidetes Flavobacteria Flavobacteriales 

o 279 Acidobacteria unknow n unknow n 

o 231 Actinobacteria Actinobacteria Rubrobacterales 

■ 198 Gerrrratimonadetes unknow n unknow n 

a 173 Proteobacteria Deltaproteobacteria Desulfuromonadales 

■ 167 Bacteroidetes unknow n unknow n 

■ 147 Verrucomicrobia Verrucornicrobiae Verrucornicrobiales 

■ 128 Chloroflexi unknow n unknow n 

Fig. 56b: Taxonomic breakdown of bacterial V6 tags at Divar. Pie charts show the Phylum_Class_Order distribution for taxonomically assigned tags that 
occurred more than 100 times; the remaining tag sequences are grouped into "Other." Numbers denote total tags recorded. 



Table 16a: Taxonomic breakdown of bacterial V6 tags at Tuvem showing the 
Phylum_Class_Order percentage wise distribution (100%--  8030) for 
taxonomically assigned tags that occurred <100 times. 

Phylum_Class_Order Tag occurrence 
(%) 

Deferribacteres Deferribacteres Deferribacterales 	 1.00 
Verrucomicrobia Verrucomicrobiae Verrucomicrobiales 	 0.98 
Bacteroidetes Sphingobacteria Sphingobacteriales 	 0.90 
Chloroflexi Anaerolineae Anaerolineales 	 0.83 
Proteobacteria Alphaproteobacteria unknown , 	 0.78 
Gemmatimonadetes unknown unknown 	 0.76 
Proteobacteria Gammaproteobacteria Alteromonadales 	 0.75 
Proteobacteria Betaproteobacteria Burkholderiales 	 0.61 
Actinobacteria Actinobacteria Acidimicrobiales 	 0.61 
Proteobacteria Betaproteobacteria unknown 	 0.56 
Chlorobi unknown unknown 	 0.54 
WS3 unknown unknown 	 0.45 
Proteobacteria Epsilonproteobacteria Campylobacterales 	 0.44 
Nitrospira Nitrospira Nitro spirales 	 0.37 
Proteobacteria Alphaproteobacteria Rhodospirillales 	 0.35 
Proteobacteria Gammaproteobacteria Oceanospirillales 	 0.31 
Actinobacteria Actinobacteria Coriobacteriales 	 0.27 
Proteobacteria Gammaproteobacteria Legionellales 	 0.26 
Gemmatimonadetes Gemmatimonadetes Gemmatimonadales 	 0.24 
Planctomycetes unknown unknown 	 0.24 
Spirochaetes Spirochaetes Spirochaetales 	 0.24 
Actinobacteria Actinobacteria Rubrobacterales 	 0.22 
Proteobacteria Gammaproteobacteria Methylococcales 	 0.20 
Chlamydiae Chlamydiae Chlamydiales 	 0.19 
Verrucomicrobia Spartobacteria Chthoniobacterales 	 0.17 
Proteobacteria Betaproteobacteria Rhodocyclales 	 0.14 
Proteobacteria Gammaproteobacteria Pseudomonadales 	 0.14 
OD1 unknown unknown 	 0.12 
Chloroflexi Anaerolineae Caldilineaceae 	 0.11 
Cyanobacteria True Cyanobacteria Unassigned 	 0.11 
Cyanobacteria True Cyanobacteria unknown 	 0.10 
Lentisphaerae unknown unknown 	 0.10 
OP8 unknown unknown 	 0.10 
Proteobacteria Gammaproteobacteria Enterobacteriales 	 <0.1 
Nitrospira unknown unknown 	 <0.1 
Lentisphaerae Lentisphaeria Victivallales 	 <0.1 
Proteobacteria Betaproteobacteria Hydrogenophilales 	 <0.1 
Proteobacteria Gammaproteobacteria Xanthomonadales 	 <0.1 
Fusobacteria Fusobacteria Fusobacteriales 	 <0.1 
Proteobacteria Gammaproteobacteria Thiotrichales 	 <0.1 
Spirochaetes unknown unknown 	 <0.1 
Acidobacteria TM 1 unknown 	 <0.1 
Chloroflexi Dehalococcoidetes unknown 	 <0.1 
Cyanobacteria unknown unknown 	 <0.1 



Table 16a contd... 

Phylum_Class_Order 

OP 1 1 unknown unknown 
Profeobacteria Betaproteobacteria Neisseriales 
TM7 unknown unknown 
Unassigned Ktedonobacteria unknown 
Verrucomicrobia Opitutae Opitutales 
BRC 1 unknown unknown 
Firmicutes Bacilli Lactobacillales 
Firmicutes unknown unknown 
OP3 unknown unknown 
Proteobacteria Betaproteobacteria Nitrosomonadales 
Proteobacteria Deltaproteobacteria Desulfarculales 
Acidobacteria Acidobacteria unknown 
Actinobacteria Actinobacteria Bifidobacteriales 
Deinococcus-Thermus Deinococci Deinococcales 
Fibrobacteres unknown unknown 
Firmicutes Bacilli unknown 
Firmicutes Erysipelotrichi Erysipelotrichales 
OP 10 unknown unknown 
Proteobacteria Deltaproteobacteria Bdellovibrionales 
Proteobacteria Gammaproteobacteria Pasteurellales 
Proteobacteria Gammaproteobacteria Vibrionales 

Tag occurrence 
(%) 

 <0.1 
<0.1 
<0.1 
<0.1 
<0.1 
<0.1 
<0.1 
<0.1 
<0.1 
<0.1 
<0.1 
<0.1 
<0.1 
<0.1 
<0.1 
<0.1 
<0.1 
<0.1 
<0.1 
<0.1 
<0.1 



Table 16b: Taxonomic breakdown of bacterial V6 tags at Divar showing the 
Phylum_ Class_ percentage wise distribution (100%= 15326) for 
taxonomically assigned tags that occurred <100 times. 

Phylum_ClassOrder Tag occurrence 
(%) 

WS3 unknown unknown 
	

0.59 
Proteobacteria Gammaproteobacteria Oceanospirillales 

	
0.57 

Deferribacteres Deferribacteres Deferribacterales 	 0.54 
Proteobacteria Gammaproteobacteria Alteromonadales 

	
0.51 

Chloroflexi Anaerolineae Anaerolineales 
	

0.49 
Bacteroidetes Bacteroidia Bacteroidales 

	
0.45 

Actinobacteria Actinobacteria Acidimicrobiales 
	

0.40 
Chlamydiae Chlamydiae Chlamydiales 

	
0.40 

Lentisphaerae unknown unknown 
	

0.39 
Proteobacteria Gammaproteobacteria Methylococcales 

	
0.38 

Proteobacteria Epsilonproteobacteria Campylobacterales 
	

0.37 
Nitrospira Nitrospira Nitrospirales 

	
0.29 

Proteobacteria Betaproteobacteria Burkholderiales 
	

0.27 
Chlorobi unknown unknown 

	
0.26 

OD 1 unknown unknown 
	

0.25 
Proteobacteria Betaproteobacteria unknown 

	
0.25 

Gemmatimonadetes Gemmatimonadetes Gemmatimonadales 
	

0.23 
Proteobacteria Gammaproteobacteria Legionellales 

	
0.20 

Spirochaetes Spirochaetes Spirochaetales 
	 0.20 

Cyanobacteria True Cyanobacteria unknown 
	

0.16 
Proteobacteria Gammaproteobacteria Enterobacteriales 

	
0.14 

Actinobacteria Actinobacteria Coriobacteriales 
	

0.11 
Proteobacteria Gammaproteobacteria Vibrionales 

	
0.11 

OP 11 unknown unknown 	 <0.1 
Chloroflexi Anaerolineae Caldilineaceae 	 <0.1 
Cyanobacteria True Cyanobacteria Unassigned 

	
<0.1 

Proteobacteria Gammaproteobacteria Thiotrichales 	 <0.1 
Planctomycetes unknown unknown 	 <0.1 
Proteobacteria Alphaproteobacteria Rhodospirillales 	 <0.1 
Cyanobacteria unknown unknown 	 <0.1 
Fusobacteria Fusobacteria Fusobacteriales 	 <0.1 
Proteobacteria Gammaproteobacteria Pseudomonadales 	<0.1 
Verrucomicrobia Spartobacteria Chthoniobacterales 	 <0.1 
Firmicutes unknown unknown 

	 <0.1 
Proteobacteria Deltaproteobacteria Bdellovibrionales 	 <0.1 
TM7 unknown unknown 	 <0.1 
Verrucomicrobia Opitutae Opitutales 	 <0.1 
Acidobacteria Acidobacteria unknown 	 <0.1 
Cyanobacteria True Cyanobacteria Pleurocapsales 	 <0.1 
Firmicutes Bacilli Lactobacillales 	 <0.1 
OP8 unknown unknown 	 <0.1 
Proteobacteria Betaproteobacteria Neisseriales 	 <0.1 
Proteobacteria Betaproteobacteria Rhodocyclales 	 <0.1 
Proteobacteria Deltaproteobacteria Desulfovibrionales 

	
<0.1 



Table 16b contd... 

Phylum_Class_Order Tag occurrence 
(%) 

Actinobacteria Actinobacteria Bifidobacteriales 	 <0.1 
Lentisphaerae Lentisphaeria Victivallales 	 <0.1 
Proteobacteria Gammaproteobacteria Pasteurellales 	 <0.1 
Proteobacteria Gammaproteobacteria Salinisphaerales 	 <0.1 
Cyanobacteria True Cyanobacteria Chroococcales 	 <0. 1 
Deinococcus-Thermus Deinococci Deinococcales 	 <0. 1 
Lentisphaerae Lentisphaeria unknown 	 <0. 1 
Proteobacteria Alphaproteobacteria Caulobacterales 	 <0. 1 
Thermomicrobia Thermomicrobia unknown 	 <0.1 
Actinobacteria Actinobacteria Rubrobacterales 	 <0.1 
Nitrospira unknown unknown 

	
<0. 1 



Using the furthest neighbor assignment algorithm implemented in DOTUR, more 

than 2000 unique V6 tag sequences were recorded forming 1561 phylotypes at a distance 

of 3% (Table 17) at the control site Tuvem. Non-parametric statistical analysis estimates 

predicted the presence of 2166 phylotypes at Tuvem. At Divar, 24% of the total trimmed 

sequences were unique with 2198 operational taxonomic units (OTUs) while the 

predicted phylotypes were estimated to be —3300. Similarly, species richness estimated 

by the Chaol estimator was higher at Divar as compared to Tuvem. Phylogenetic 

classification of twenty most abundant clusters (>97% similarity) at both the locations 

has been tabulated in (Table 18a-b). Rarefaction curves generated did not reach a 

curvilinear phase (Fig. 57). 
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Table 17: Sequencing information and diversity estimates for all bacteria at the two sites 

Tuvem Divar 
DNA recovered from 0.25g dry 

sediment (ng4t1) 
10.8 15.2 

Total number of bacterial V6 tag 

sequences 
12954 21433 

Total number of trimmed 

bacterial V6 tag sequences 
8030 15326 

Total number of unique sequences 2661 3707  

Total OTUs at 3% difference 1561 2198 

Chaol estimator of richness at 3% 

difference, min, max 
1988, 1914, 2076 3092, 2968, 3237 

ACE estimator of richness at 3% 

difference, min, max 
2166, 2136, 2196 3342, 3261, 3429 

Simpson evenness index 0.0004 0.0004 

Note: Value under trimmed tags are the numbers of reads remaining after the removal of low-quality data. 
Values under unique sequences are the numbers of discrete sequences. Average read length of 
sequences was 60.73 (±2.63) bp. 



Table 18a: Phylogenetic classification of twenty most abundant clusters (>97% similarity) at Tuvem where total number of OTUs = 1561. 

Domain Phylum Class Order Family 
Occurrence per 

cluster (%) 
Proteobacteria Deltaproteobacteria Desulfobacterales Desulfobacteraceae 0.96 
Bacteroidetes Bacteroidia Bacteroidales 0.51 
Proteobacteria 0.45 
Proteobacteria Deltaproteobacteria Desulfobacterales Desulfobacteraceae 0-.38 
Proteobacteria 0.38 

Bacteria 0.32 
Proteobacteria Deltaproteobacteria Desulfobacterales Desulfobacteraceae 0.32 

Bacteria 0.32 
Proteobacteria Deltaproteobacteria Desulfobacterales Desulfobacteraceae 0.32 
Proteobacteria Deltaproteobacteria Desulfobacterales Desulfobacteraceae 0.32 
Proteobacteria 0.32 

Bacteria 0.32 
Proteobacteria Deltaproteobacteria Desulfobacterales Desulfobacteraceae 0.32 
Proteobacteria Deltaproteobacteria Desulfobacterales Desulfobacteraceae 0.32 
Bacteroidetes Sphingobacteria Sphingobacteriales 0.32 
Proteobacteria Deltaproteobacteria Desulfobacterales Desulfobacteraceae 0.32 
Proteobacteria Deltaproteobacteria Desulfobacterales Desulfobacteraceae 0.26 
Bacteroidetes 0.26 
Proteobacteria Deltaproteobacteria Desulfobacterales Desulfobacteraceae 0.26 
Proteobacteria Deltaproteobacteria Desulfobacterales Desulfobacteraceae 0.26 



Table 18b: Phylogenetic classification of twenty most abundant clusters (>97% similarity) at Divar where total number of OTUs = 2198. 

Phylum Class Order Family Occurrence per 
cluster (%) 

Proteobacteria Gammaproteobacteria 0.68 
Proteobacteria 0.50 
Acidobacteria Acidobacteria Acidobacteriales Acidobacteriaceae 0.36 
Proteobacteria Gammaproteobacteria 0.36 
Proteobacteria 0.36 
Proteobacteria Gammaproteobacteria 0.36 
Acidobacteria Acidobacteria Acidobacteriales Acidobacteriaceae 0.32 
Proteobacteria Gammaproteobacteria 0.32 
Bacteroidetes 0.32 
Proteobacteria Gammaproteobacteria 0.32 
Bacteroidetes 0.32 
Proteobacteria Gammaproteobacteria 0.32 
Bacteroidetes 0.27 
Proteobacteria Gammaproteobacteria 0.27 
Bacteroidetes Bacteroidia Bacteroidales 0.27 
Proteobacteri a Gammaproteobacteria 0.27 
Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae 0.27 
Proteobacteria Gammaproteobacteria 0.27 
Bacteroidetes 0.27 
Proteobacteri a Gammaproteobacteria 0.27 
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Fig. 57: Rarefaction curves based on 95 and 97% sequence similarity of sediment bacterial community at 

Tuvem (T) and Divar (D). 



Chapter 5 
Discussion 



Chapter 5. Discussion 

5.1. Denitrification: process and controls 

Estuarine sediments are locations for bacterially-mediated removal of anthropogenically 

derived inorganic nitrogen from the aquatic environment (Dong et al., 2009). Nitrate in 

particular serves as an electron acceptor for anaerobic oxidation of organic matter and is 

reduced to gaseous compounds like N20 or N 2  through the denitrification pathway. 

Denitrification is favorable under oxygen deficient conditions and is mediated by 

facultatively anaerobic bacteria. However, denitrification rates vary in different 

ecosystems and could be affected by the prevailing environmental conditions. There is a 

general lack of information on the environmental parameters affecting benthic 

denitrification in near-shore coastal ecosystems such as mangroves. Currently, data 

available on denitrification dynamics and the factors influencing the process in mangrove 

ecosystems are relatively few. Most of the studies in mangroves have focused on 

quantifying benthic denitrification rates (Rivera-Monroy et al., 1995; Meyer et al., 2005) 

to understand the potential use of mangroves in nitrate depuration (Corredor and More11, 

1994) or wastewater treatment (Nedwell, 1975). Chiu et al. (2004) have quantified 

denitrification and assessed the factors affecting the process in temperate mangrove 

sediment. In the present study, the seasonal down-core variation of denitrification (DNT) 

in sediments was investigated in two tropical mangrove ecosystems of Goa. Benthic DNT 

in these habitats was pre-dominant within 0-4 cm at all seasons and decreased further 

with depth at both the control site Tuvem and the experimental site Divar. This 

observation is in accordance to observations made by Chiu et al. (2004) who state that the 

N loss occurs primarily in the surface rather than in the rhizosphere sediment. Gas 

chromatographic measurements of DNT rates showed distinct seasonality with highest 

activity during the pre-monsoon season at both the study sites. Highest DNT activity of 

237 limo! N20-N m -2  II I  at 0-2 cm was recorded at the control site Tuvem. A similar rate 

was recorded at 2-4 cm during the same season at Divar. Denitrification rates assayed by 

the acetylene block technique in other mangrove sediments have yielded average rates of 

75 urnol N20-N m-2  h-1  (Corredor and Morell, 1994) which are 3 times lower than 

observed in the present study. 
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The progressive increase in DNT activity from monsoon to pre-monsoon could be 

caused due to the variation in associated environmental parameters. In this investigation, 

multiple regression analysis was used to examine the biotic and abiotic parameters 

influencing DNT. The complexity of the process increased during the monsoon with a 

larger number of variables affecting DNT at the control site. The multiple regression 

model obtained is capable of describing about 99% of the overall variation in DNT rates 

(R2  = 0.99) during the monsoon at the control site. The model was obtained on a seasonal 

basis for both the sites. The advent of the south-west monsoon results in a large input of 

fresh water into the estuaries causing considerable changes in the chemical characteristics 

of the aquatic system. A marked decrease in ambient salinity has been observed during 

this season. Runoff also results in addition of land-derived nutrients into the estuarine 

system as evident from the elevated pore water ammonium concentration in the surficial 

(0-4 cm) mangrove sediments. Among the variables positively influencing DNT during 

the monsoon, NH4+  availability highly influenced DNT (p<0.0000, n=30) at the control 

site. As nitrate availability is relatively low at the control site during monsoon, DNT 

could be more closely linked to nitrification which oxidizes NH 4+  and thus serves as a 

major source of NO3 -  (Wang et al., 2003). At the experimental site Divar, DNT was 

influenced by the concentration of pore water NO 3 -  (p<0.001, n=30) and NRB (p<0.0001, 

n=30). In anaerobic environments, availability of electron acceptor often limits DNT 

(Seitzinger, 1990). The experimental site, receives high extraneous nitrate input during 

the monsoon. Recently Divya et al., (2009) have shown that limno-tolerant bacteria are 

more actively involved reducing nitrate concentrations entering the Mandovi estuary 

particularly during the monsoon. In the present study, the heterotrophs and nitrate 

reducers influenced DNT during the monsoon suggesting that they could be important in 

reducing elevated nutrient levels in the system thereby counteracting eutrophication. 

The post-monsoon marks a transition phase from highly dynamic conditions 

towards a period of stability. At the control site, a significant increase in pore water NO3 -

concentration is observed during the post-monsoon. A shift in DNT regulation from NH4 + 

 modulated to NO3-  dependent is observed during this season. Sediment pH negatively 

influenced DNT while bacterial parameters like heterotrophic bacteria and NRB were 

some of the prominent variables which positively govern DNT. During the post- 
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monsoon, organic carbon content was higher at depth >4 cm. Its degradation could result 

in acidic pH at these depths. Generally, the optimum pH for DNT is 7.0-7.5 (Thomas et 

al., 1994). In mangrove sediments, maximum DNT occurs towards more neutral pH 

which explains the inverse relationship of DNT with pH. As heterotrophs and NRB 

influence DNT, a heterotrophic mode of NO 3 -  respiration could be prevailing at Tuvem 

during the post-monsoon. At the experimental site, DNT activity increased approximately 

5 times during the post-monsoon as compared to the monsoon season. Though NO3 - , 

NRB and denitrifiers influenced DNT, the process is largely controlled by metals i.e. Mn 

and Fe. Up to 24% Fe has been recorded at 2-4 cm during this season. The Divar 

ecosystem lies along the Mandovi estuary which has ferro-manganese mines located 

upstream. Runoff during the monsoon and subsequent mining activities (input of rejects, 

movement of Fe ore transporting barges, etc..) on the onset of the post-monsoon could be 

responsible for high Fe content in the sediments. Earlier studies by Krishnan et al. (2007) 

at the same location have shown that the 0-4 cm remains moderately contaminated by 

iron during the post-monsoon while it falls in the 'uncontaminated to moderately 

contaminated by iron' category during the pre-monsoon and monsoon season. Addition of 

Ferric ion (Fe3 +) has been shown to significantly accelerate nitrate utilization in the 

denitrifying strain Paracoccus pantotrophus P16 (Pintathong et al., 2009). Another 

denitrifying strain Pseudomonas denitrificans, can reduce nitrate and grow in the 

presence of Fe(0) (Till et al., 1998). Further, denitrification-based remediation studies on 

contaminated marine sediment samples have shown that autotrophic denitrification 

results in an increase of reducible fractions of metals (Shao et al., 2009). Mn2+  oxidation 

by NO 3  has also been reported to occur by Luther et al. (1997). Thus, nitrate respiration 

by denitrifiers using various potentials electron donors like metal ions could be important 

in reducing environmental pollution as the mangrove ecosystem shifts from heterotrophic 

to autotrophic based respiration. 

More stable conditions were observed during the pre-monsoon with a fewer 

factors influencing DNT. The influence of metals (mainly Fe) on DNT was persistent 

during this season at both the study sites albeit negatively correlated. Iron concentration 

was found to increase with depth while DNT was maximum within 0-4 cm during this 

season. Bioturbating organisms viz., Uca crabs, polychaetes, etc.. are abundant in the 
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Divar region. Their burrowing action could be responsible for the downward advection of 

metals. Co-occurring processes like anoxic nitrification result in metal reduction (Hu1th et 

al., 1999). The lower metal content in the surficial mangrove sediments could be 

attributed to reduction of Fe and Mn oxides and oxidation of NH 4+. Krishnan and Loka 

Bharathi (2009) suggest that autotrophic nitrification could be important in mangrove 

sediments with higher metal content. As &nitrification and nitrification operate in 

tandem (Rysgaard et al., 1993; Nielsen et al., 1996), metal immobilization could occur 

through the reductive phase of the N cycle while autotrophic nitrification could be 

responsible for an increase in reduced metal ions. Thus, a close coupling between metals 

and nitrogen redox cycle in mangrove sediments could be prevalent. The pre-monsoon is 

also marked by highest DNT activity compared to other seasons. The activity is 

positively influenced by the availability of inorganic nitrogenous compounds at the 

control site. At the experimental site, heterotrophic denitrification could be pre-dominant 

as organic carbon (p<0.05) and NRB (p<0.05) were some of the factors influencing the 

process. Organic C has significant effect in regulating DNT (Dodla et al., 2008) as 

denitrifying organisms oxidize organic matter under sub-oxic or anoxic conditions 

(Vance-Harris and Ingall, 2005). The mangrove sediments investigated have considerable 

organic carbon loading throughout the year. Thus, availability of substrates like organic 

C, NO3", oxygen-deficiency, etc. provide ideal conditions for heterotrophic denitrification 

to occur. 

The present study reveals distinct seasonal DNT variability in the mangrove 

sediments of Goa with highest activity during the pre-monsoon. This variation is brought 

about by changes in the sediment chemistry and physiological groups of bacteria capable 

of denitrification. A large number of parameters influence DNT during the monsoon 

season especially at Tuvem. The complexity decreases progressively towards the non-

monsoon period. The availability of inorganic nitrogenous substrates were also seen to 

limit DNT in these sediments. Generally, heterotrophic DNT prevails at the sites 

examined. However, during the post-monsoon, DNT at the experimental site is largely 

influenced by Mn and autotrophic mode of nitrate respiration could possibly exceed 

heterotrophy. 

87 



5.2. Factors influencing denitrifier abundance 

Though maximum denitrification activity in mangrove sediments occurred within 0-4 cm, 

bacteria mediating the process were maximum at 4-6 cm indicating that activity is not a 

function of bacterial biomass. A similar trend in denitrifier distribution has been reported 

by Fan et al. (2006) in estuarine sediments with higher denitrifier aggregation of up to 

3.64 x 104  cells g-i  at 5-7 cm whereas the activity was maximum at the surface. In the 

present study, up to 10 8  denitrifiers g-1  have been recorded. The culturable fraction of this 

physiological group thus form up to 1% total bacterial population (10 10  cells g-1 ) 

indicating that a large number of non-culturable forms from mangrove sediments could 

be actively involved in N transformations. 

Some of the factors influencing the abundance and activity of denitrifiers are 

sediment nitrification (Stockenberg and Johnstone, 1997), nitrate availability (Seitzinger, 

1990; Corredor and More11, 1994; Kana et al., 1998), organic carbon (Pfenning and Mc 

Mahon 1997; Mc Carty and Bremner, 1993; Ward et al., 2008), sediment pH (Rust et al., 

2000; Simek et al., 2002), oxygen concentration (Bonin and Raymond, 1990) and redox 

conditions (Lee and Joye, 2006). In the present study, statistical analysis revealed the 

influence of metals especially Mn on denitrifier abundance at both the sites investigated. 

Manganese and nitrate transformations appear to be linked in mangrove sediments. The 

correlation between denitrifiers and Mn was strongest during the post-monsoon at the 

control site and was responsible for bringing about 43% variation (r=0.66, p<0.01, n=15) 

in denitrifier population. This could be indicative of the beneficial effect of denitrifiers on 

Mn removal. Nitrate or nitrite can couple their reduction to oxidants like Mn (II) (Oguz et 

al., 2001) as described by Luther et al. (1997): 

5Mn2 + 2NO3 -  + 80H- 	►  5Mn02  + N2 + 4H20 

Experiments using denitrifying cultures by Vandenabeele et al. (1995) have shown that 

Mn removal rate was 38% higher in the presence of nitrate and was accompanied by 

nitrite accumulation. In anaerobic sediments containing Mn or Fe oxides denitrifying 

organism (e.g. Shewanella putrefaciens MR-1) would will have a distinct advantage over 

other organisms by gaining energy from the use of Mn (IV) or Fe (III) as an electron 

acceptor (Myers and Nealson, 1990). Total bacterial counts also showed a positive 
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relationship with denitrifiers (r=0.45; p<0.05; n=15) indicating that a large fraction of the 

bacterial population could be involved in DNT and consequently play and important role 

in altering the sediment chemistry. 

At Divar, a strong negative relationship (r=-0.97, p<0.001, n=15) was observed 

between Mn and denitrifiers during the monsoon. During monsoon, Mn accumulation is 

observed at depths >6 cm whereas higher denitrifier abundance is seen at depths S6 cm. 

The adjoining Mandovi estuary receives higher extraneously derived nitrate 

concentrations (Divya et al., 2009) during this season. Thus, nitrate could be more 

important in governing denitrification during this period. Iron also showed a negative 

influence on denitrifiers during the monsoon. Though multiple regression analysis has 

indicated TOC as an important factor for denitrification (heterotrophic denitrification), 

the negative influence of metals on denitrifiers is suggestive of autotrophic denitrification 

to co-occur. Among the microbiological parameters, denitrifiers were significantly 

related to NRB (r=0.46; p<0.05; n=15) suggesting that heterotrophic nitrate reducers have 

the potential to completely denitrify NO3' at Divar. 

Among the various factors governing denitrifier abundance during the monsoon, 

nitrite (r=0.60; p<0.01; n=15) is the most important factor influencing the group at the 

control site whereas metals (Fe and Mn) were more important at the experimental site. 

During the monsoon, terrestrially-derived nutrient input increases in the estuaries and 

denitrifiers could be important in reducing elevated nitrate levels in the aquatic system. 

Nitrate reduction results in a formation of nitrite which is further reduced to N2 through 

the denitrification pathway. Thus, Pearson's correlation as well as multiple regression 

analyses employed in the present study indicate that denitrifier abundance in mangrove 

sediments is largely influenced by metals mainly Mn at both the study sites. Nitrate 

reduction at the expense of metal ions could thus be a principal mode of respiration 

during this period. 
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5.3. Nitrous oxide production and it's origin 

The marine environment is recognized as a net source of nitrous oxide to the atmosphere 

(Corredor et al., 1999). In the Indian Ocean region, high nitrous oxide emission has so far 

been reported within the oxygen minimum zones in the Arabian Sea (Naqvi et al., 2000; 

Bange et al., 2001). Estuarine sediments also play a significant role in the transformation 

of nitrogenous compounds leading to N20 production. In coastal ecosystems like 

mangroves, a substantial flux of nitrous oxide has been observed (Corredor et al., 1999; 

Munoz-Hincapie et al. 2002; Kreuzwieser et al., 2003). Although Krithika et al., 2008 

have reported benthic N 20 flux to vary between 0.41 and 0.77 umol m-2  W I  in a South 

Indian mangrove system, not much is known on the net production or origin of the gas. 

Natural N20 production rates in estuarine sediments have been found to range from 0.1 to 

8.5 p.mol m 2  W I  (Wang et al., 2007). N20 production rates estimated from sediment 

slurry experiments in the present study revealed higher production of the gas especially in 

sediments prone to elevated nutrient supply. Benthic N20 production rates in the Divar 

sediments was up to 3 times higher than at the relatively pristine Tuvem varying between 

6.41-22 !mot m 2  h-1 . At nitrate concentration of —10-15 iimol (in situ + ambient seawater 

used in medium), N20 production values observed in this study are in close range to 

those reported by Dong et al., (2002) from the anthropogenically influenced Colne 

estuary at similar NO3 -  concentration. Intertidal rocky biofilms have also shown N 20 

production to occur at rate of up to 17+6 umol 1T1-2  (Magalhaes et al., 2005) which is 

close to values recorded in the present study. In mangrove sediments, microbial 

communities are capable of taking up large amounts of nitrate added to water system by 

sewage effluents (Corredor and Morell, 1994). Nutrient depuration occurs through the 

denitrification pathway and could possibly lead to evolution of greater amounts of nitrous 

oxide to the atmosphere. Pore water profiles have shown that the organically-rich Divar 

sediments are characterized by higher ammonium and nitrite content. Nitrite is an 

intermediate of both nitrification and denitrification and its concentration could be high 

when both the processes co-occur. Low nitrate concentration within 0-4 cm layer in the 

Divar sediments coincided with higher production of nitrous oxide and is indicative of 

elevated denitrification activity. Jorgensen (1989) has also shown that the denitrification 

capacity in estuarine sediments was always highest at the surface and declined with 

90 



depth. Denitrification depends on the supply of nitrate by nitrification and the two 

processes are coupled (Klingensmith and Alexander, 1983). Denitrification activity could 

also be dependent on nitrate supply from the ambient water. The Divar mangrove 

ecosystem fringes the Mandovi estuary which receives high nutrient input through 

anthropogenic activities. This ecosystem could act as a buffer zone by reducing nutrient 

levels and maintaining the water quality of the , estuary through the denitrification process. 

The percentage of nitrous oxide produced in the Divar sediments is much higher than at 

Tuvem highlighting that in ecosystems prone to extraneous nutrient input, denitrification 

could be an important process to counteract eutrophication. However, higher N loading 

could also have a detrimental effect on the environment through increased N20 

production and its consequent flux to the atmosphere. 

Experiments to examine the major pathway for N 2 0 production in the present 

study indicates that reducing habitats like mangroves are potential sites for denitrifying 

activity and incomplete denitrification (up to 93% at the surface) could contribute 

substantially to an increase in atmospheric N20. Studies by Robinson et al., (1998) in 

hypernutrified estuarine sediments have also shown higher N20 concentrations in the 

surface layer (<2 cm) attributing it to denitrification fuelled by NO3 -  availability. 

Similarly, Koike and Terauchi (1996) have also reported highest concentration of nitrous 

oxide at the top 1 cm in marine sediments. In this study, stratified sampling showed that 

benthic N20 production was found to generally decrease with depth. The flux of the 

radiative gas to the atmosphere would however be dependent on the diffusion coefficient 

and N20 consumption rates in the sediment layers it passes. A microsensor approach by 

Meyer et al., (2008) has shown that in sub-tropical mangrove sediments, N 20 is produced 

through nitrification close to the surface while denitrification is responsible for its 

production in the deeper layers. In this study, measurements were carried out at every 2 

cm intervals and not on a sub-millimeter scale unlike Meyer et al., (2008). Perhaps close 

grid sampling could have provided evidence on the contribution of nitrification to N20 

production very close to the surface. 

A number of factors are known to influence the production of nitrous oxide in 

marine sediments. Physical, chemical, biological and environmental factors like 

temperature, pH, sediment redox potential (Van Cleemput and Samater, 1996), organic C 
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availability (Rosswell et al., 1989), nitrite concentration (Dong et al., 2002) and 

denitrifying communities play an important role in N20 production. Statistical analysis 

showed that pore water nutrient concentrations, organic carbon availability and 

denitrifiers were some of the important factors influencing the production of nitrous 

oxide in mangrove sediments. Degradation of sediment organic matter results in acidic 

conditions (pH=4.7-7.2). Sediments at Tuvem contain organic carbon varying between 

2.13-4.54%. Though the relationship between nitrous oxide production and total organic 

carbon content in these sediments was not highly significant, a positive relationship 

existed and is indicative of its influence on the gas. N 20 production rates are by affected 

by levels of organic carbon which can be used as electron donor during denitrification 

(Pfenning and McMahon, 1997). Though the water soluble fraction of organic C was not 

estimated during the study, it is possible that it stimulated denitrifier activity and 

consequently N20 production. Both denitrification rate and N20 production followed a 

decreasing trend with depth, however no significant relationship was observed between 

the two parameters. The production of N 20 could be thus be governed by the availability 

of electron donors and acceptors like NH 4+, NO3 -, organic C rather than the rate of 

denitrification (Usui et al., 2001; Mathieu et al., 2006). The denitrifier community was 

also found influence nitrous oxide production in mangrove sediments. They numbered up 

to 107  cells g-1  and their abundance could be regulated by the amount of organic matter 

available for their growth. This can be easily explained by the fact that the denitrifiers are 

facultative aerobic microorganisms and their denitrifying activity is limited by the 

amount of nitrate available. 

Estuaries are generally heterotrophic systems, with bacterial respiration exceeding 

primary production (Heip et al., 1995, Gattuso et al., 1998). Consequently, removal of 

dissolved inorganic nitrogen from estuaries occurs through sedimentary denitrification 

and/or burial in the sediment (Middelburg and Nieuwenhuize, 2000). An inverse 

relationship observed between denitrifiers and pore water nutrient concentrations in the 

present study suggests that denitrification could play an important role in mitigating 

excess nutrients within the system preventing eutrophication. In sulfidic sediments, the 

denitrification end product is known to shift from N2 to partially reduced ones such as 

nitrite and N 20 (Ebrahimipour et al., 2000). This could explain the high nitrite pool in the 
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largely anaerobic mangrove sediments. In this study, about 22% variation in nitrous oxide 

production was caused by the variation in nitrite concentrations suggesting that it was one 

of the important and statistically significant parameters regulating the production of the 

gas in mangrove sediments. Many studies have shown a correlation to exist between N20 

production and nitrite concentration (He et al., 2001; Dong et al., 2004; Alinsafi et al., 

2008). Denitrification activity in estuarine sediments is dependent on nitrate availability 

(Kam et al., 1998) consequently leading to NO2 -  and N20 production. Dong et al., (2002) 

state that formation of N20 from nitrite is thermodynamically favourable compared to 

nitrate and may be a critical factor regulating N 20 formation. Bauza et al., (2002) have 

reported N20 production mainly through nitrification in red mangrove forests which are 

characterized by oxic conditions and higher ammonium concentration. In the present 

study, ammonium concentration did not appear to assert a strong influence on N 20 

production suggesting that nitrification was not a significant source of N20. Low redox 

potentials (<115 mV) at the sampling sites are indicative of anaerobic conditions in the 

sediment which are conducive for alternate respiratory pathways like denitrification, 

sulphate reduction, etc. to occur. When nitrate and nitrite pre-dominate, nitrous oxide 

arises from microbial denitrification (Corredor et al., 1999). Experimental results also 

reveal that denitrification was the major pathway for N20 production in the mangrove 

ecosystems of Goa, India. Nitrous oxide production through nitrification could be more 

prominent when the oxidative process is more pronounced. However, N20 production 

through nitrification was not detected indicating that the reductive phase of the N cycle 

was pre-dominant (at post-monsoon). Recently, Krishnan and Loka Bharathi (2009) have 

reported highest rates of benthic nitrification during the pre-monsoon at the same 

sampling locations. Seasonal trends in N20 flux and production mechanisms would 

provide further insights on contribution of nitrification if any. 

Observations in the present study demonstrate that estuarine ecosystems like 

mangroves are potential sites for denitrifying activity. Incomplete denitrification leads to 

nitrous oxide production which could be responsible for flux of the radiative gas to the 

atmosphere. Though mangroves have the ability to efficiently moderate elevated nutrient 

concentrations in the estuarine system through the denitrification pathway, they also pose 

a threat by increasing green house gas production. Thus, adequate measures could be 
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Table 19: Denitrification rates in mangrove sediments 

Sr. 
No. 

Area Denitrification rates Method Reference 

Terminos Lagoon, 
1 	Mexico 

Mangrove forest, 
Phuket, Thailand 

Logan/Albert River, 
Queensland, Australia 
Matang Mangrove 
Forest Reserve, 
Malaysia 

Jiulongjiang Estuary, 
China 

Southwest coast 
6 	of Puerto Rico 

Fringe mangrove: 9.4 j.tmol 
m

-2 
h

-1 

Basin mangrove: 1.9 to 4.5 
Imot m -2  h -1  
Vegetated sediments: 
1.91umol m -2  h -I  

Unvegetated sediments: 0.54 
umol ttl -2  11 -1  

85 nmol N cm -3  h -I  or 38 
nmol N g h -1  
16-458 j.tmol N2 m-2  

46.08 to 157.5 j.tmol N2 m -2  h -
i 

0.12 and 7.8 gmol N 20 m 2  

Tuvem: 
0.03-74.88 nmol 	or 
0.339-846.14 j.tmol N2 111 2  h -1  

I 	• 
"N isotope 
technique 

I 
 5N isotope 
technique 

I5N isotope 	Meyer et al., 
technique 	2005 
N 2-gas 
flux technique 

N 2 -gas 
flux technique 

Gas 	 Corredor et al., 
chromatography 	1999 

3 

4 

5 

Rivera-Monroy 
et al., 1995 

Kristensen 
et al., 1998 

Alongi et al., 
2004 

Alongi et al., 
2005 

7 	Goa, India Divar: 
1.47-222.59 nmol 	or 
16.61-2515.26 j.tmol N2 ttl -2 11 -  

I • 
5N isotope 

technique 
Present study 

Note: * For conversion of DNT activity in nmol N2 g-1  11 -1  to 1.11n01 N2 111 -2  

(DNT activity in nmol N 2  g' 	x 1.13 x 104 ) / 



initiated to minimize N loading in adjoining estuarine systems in order to lower 

environmental pollution but also simultaneously result in decreased N20 emission to the 

atmosphere. 

5.4. Denitrification and other co -occurring processes 
Coastal marine ecosystems are susceptible to high nitrogen inputs through anthropogenic 

activities. In these regions, coupled nitrification/denitrification serves as an important 

mechanism for nitrogen depuration (Corredor et al., 1999). Investigations carried out in 

the present study affirm the potential of nearshore tropical mangrove ecosystems in 

mitigating inorganic nitrogenous compounds mainly through denitrification. 

Denitrification served as a major mechanism for N loss in mangrove sediments 

accounting for 75-85% of the total N2 production. Highest denitrification activity was 

observed at the surface at both the sites- Divar and Tuvem. Total denitrification rates of 

up to 222.59 nmol N2 g '  h-1  (2.51 mmol N2 m2  11-1 ) have been measured in the Divar 

sediments. In sub-tropical mangrove sediments, denitrification has been reported to occur 

at a maximum rate of approximately 85 nmol N cm -3  h-1  (-7-, 38 nmol N g' hi ) (Meyer et 

al., 2005) which is about five times less than observed in the present measurements. 

Benthic denitrification rates recorded in other mangrove areas (Table 19) are relatively 

less than those observed in the present study. 

The Divar mangrove ecosystem lies along the Mandovi estuary. This estuary 

receives about 10 tonnes/month of ammonium nitrate used in explosives for mining 

activities upstream which eventually acts as a source of nitrate (De Souza, 1999). 

Experiments have shown that nitrate availability is one of the major factors controlling 

benthic denitrification (Seitzinger, 1990; Morell and Corredor, 1993; Rivera-Monroy and 

Twilley, 1996; Kana et al., 1998). In the present study, the higher nitrate concentration 

recorded in the superficial sediments could be due to the continuous replenishment of the 

nutrient from the ambient water in addition to its in situ production through nitrification. 

Consequently, nitrate availability could be accountable for the high denitrification rates 

observed especially at depth <4 cm. Principal component analysis also revealed that 

nitrate and nitrite availability were important factors limiting denitrification in mangrove 

ecosystems. A positive relationship between nitrite, nitrate concentration and 
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denitrification (Dic)  confirms that this process could be a major sink for nitrate in 

mangrove sediments. The PCA bi-plot also shows that ammonium, nitrite and nitrate 

clustered together suggesting a link between ammonium, nitrate and nitrite probably 

through nitrification. 

Molecular investigations carried out in the present study reveal that the abundance 

of denitrifier genes in mangrove sediments numbered up to 10 7  target copies C I  of dry 

sediment. The result was comparable to those recorded in other marine environments. 

Michotey et al. (2000) have reported up to 10 6  cytochrome cdl type denitrifiers in marine 

samples. No statistical correlation between nosZ gene abundance and denitrifying activity 

could be observed indicating that denitrification activity is not limited by the presence of 

the population able to denitrify but by the availability of nitrate as substrate. Though 

denitrification at Tuvem was maximum within the 0-4 cm depth range, the nosZ were 

most abundant at 6-8 cm. Experiments using the bacterial strain Pseudomonas mandelii 

has shown that nosZ gene expression did not respond to increasing NO 3 -  concentration 

indicating that there is no relationship between gene expression and denitrification 

activity (Saleh-Lakha et al., 2009). Boetius (1995) examined the potential hydrolysis 

rates of five different hydrolytic enzymes in deep-sea sediments and found that the 

activity of the enzymes most likely reflects the availability of their respective substrates 

and is not a function of bacterial biomass. It is possible that the expression of nosZ genes 

in mangrove sediments could be linked to the prevailing environmental conditions. 

Recently, Sumathi and Raghukumar (2009) have demonstrated the denitrification 

potential in several species of fungi isolated from the Arabian Sea sediments. Fungi 

commonly occur in coastal and offshore marine environments (Raghukumar, 1989). 

Mangrove ecosystems are known to harbour about 10 4  colonies g-1  of fungal flora 

(Prabhakaran et al., 1987). Fungi are actively involved in the decomposition of mangrove 

leaves/wood and very little is known on their involvement in mangrove nutrient cycling 

(Hyde and Lee, 1995). It is uncertain whether denitrifying activity of fungi in mangrove 

sediments if any, is partially responsible for N loss. 

At the experimental site, the denitrifying genes were found from the surface till a 

depth of 10 cm indicating that the organisms were well dispersed. It is possible that sandy 

nature of the mangrove sediment and the bioturbating activity of the infauna (crabs, 
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polychaetes, etc..) could aid in the dispersion of the microbes. The mangrove sediments 

are seen to harbour a substantially high macrofaunal assemblage. Macrofauna are known 

to modify nutrient fluxes in marine sediments (Mortimer et al., 1999). Burrowing 

activities by macrofaunal communities enhances oxygen availability and creates non-

local mixing between nutrient rich pore water and overlying water (Graf and Rosenberg, 

1997). Studies by Pennifold and Davis (2001), have also shown that nutrient fluxes were 

significantly correlated with increased faunal biomass. Further, the authors state that 

macrofauna increased the release of ammonium into the water column but decreased the 

release or resulted in uptake of nitrate by the sediments. Macrofauna stimulate 

denitrification by providing nitrate to bacteria from the overlying water and also through 

in situ nitrification strengthening the proximity and exchanges between the two processes 

(Gilbert et al., 1998). In contrast to the control site, the experimental site is dominated 

mainly by sand. The sandy nature of the sediments could be responsible for facilitating 

percolation of nutrients to deeper depths. In this study, we can envisage that the physical 

perturbation of sediments ascribed to the high density of macrofauna especially in the 

Divar sediments may have resulted in a stronger nitrification-denitrification coupling by 

enhancing the exchange of solutes between water and sediment. 

Anammox is known to co-occur along with denitrification in marine sediments 

(Rysgaard et al., 2004). In some marine environments, anammox is a major pathway for 

the removal of fixed inorganic nitrogen (Kuypers et al., 2003; Engstrom et al., 

2005). The co-occurrence of anammox in mangrove sediments has been detected in the 

current study. Slurry incubations, as employed in this study, can be useful for quantifying 

mechanisms of N2 production, but this approach perturbs the natural gradient and spatial 

arrangements of organisms carrying out N cycling process in situ. Whether slurry 

measurements yield high activity at low ra% (percentage of anammox) values is thus a 

concern. Trimmer et al. (2006) compared rates of anammox and denitrification in slurries 

and intact cores. In sediments with low anammox activity (ra<1%), slurries and intact 

core yielded similar results, but when anammox was more significant (ra>5%), ra% was 

about 10-15% higher in intact core than in slurries (Trimmer et al., 2006). Consequently 

the slurry measurement used in this study probably accurately assessed the presence or 

absence of anammox activity, but the actual ra% in some layers with high activity may 
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have been underestimated. Maximum anammox rates of up to 101.15 nmol N2 g '  h-1 

 (1.14 mmol N2 TT1-2  h-1 ) have been observed in the present study. In sub-tropical 

mangrove sediment, Meyer et al. (2005) have reported anammox rates varying between 

0.5 to 8 nmol N cm -3  If '  (0.22 to 3.6 nmol N g '  11-1 ) which is approximately 25 times 

lower than those encountered in the present study. Reports by Rysgaard et al. (2004) in 

arctic marine sediments indicate anammox to ,occur at about 3 orders lower while in the 

north sea sediments, anammox rates were also relatively lower (Dalsgaard et al., 2005). 

The present observations show that anammox served as an important mechanism for N2 

production mainly at deeper depths (8-10 cm) where it accounted for 67-96% of the total 

N2 production. High rates of anammox occur in estuarine sediments with permanently 

high concentrations of NO2 (Risgaard-Petersen et al., 2005). Dalsgaard and Thamdrup 

(2002) have attributed the 1:1 stoichiometry for the reaction between nitrite and 

ammonium to the anammox process. At pre-monsoon, nitrification occurs at a rate of up 

to —18 nmol g - ' h-1  at a depth of 8-10 cm at Divar (Krishnan and Loka Bharathi, 2009) 

which co-incidentally shows the highest anammox activity in this study. Thus, nitrite 

production through nitrification at this depth could fuel the anammox process. High NO3 -

concentrations (Rich et al., 2008) are also known to favour anammox rates. The 

mangrove sediments harbored fairly high concentrations of nitrate which could be 

favorable for anaerobic oxidation of ammonium to occur. At the control site, anammox 

was detected at all depths investigated in comparison to the experimental site where it 

was more restricted. It interesting to observe that anammox activity is more prominent at 

deeper depths and occurs at a rather low rate in ecosystems where denitrification is much 

higher. Dalsgaard et al. (2005) explain that in organic-rich sediments, denitrification is 

more responsive to organic carbon loading than anammox. Dalsgaard et al. (2005) also 

suggest that high organic matter content creates a higher demand for electron acceptor 

(i.e., NO2- and NO3) and a smaller fraction of the reduced NO3 -  is liberated as NO2. In 

such circumstances, anammox may not be able to keep up with denitrification when 

electron donor availability is high. Such a phenomenon might be occurring in mangrove 

sediments which have considerable organic carbon content. Dalsgaard et al. (2005) also 

state that denitrifiers have a much higher growth rate which gives them a competitive 

advantage over anammox bacteria in fluctuating environments. Reports from the 
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Benguela upwelling system indicate that anammox bacteria are metabolically versatile 

and can function as nitrate reducers (Kartal et al., 2007). Thus, it is possible that these 

microbes could be mediating dissimilatory nitrate reduction to ammonium in mangrove 

ecosystems. 

In mangrove sediments, denitrification and anammox operate concurrently 

leading to N2 production. However, the anammox,process is restrained in organically rich 

mangrove sediments and denitrification becomes the major mechanism of N loss. Most of 

the N loss in these sediments occurs in the superficial layers and a coupling between 

nitrification and denitrification is suggested. Thus, in coastal ecosystems like mangroves 

which are prone to high input of inorganic nitrogenous compounds through 

anthropogenic activities, denitrification helps to counteract eutrophication. Consequently, 

di-nitrogen fixation in these ecosystems is minimal as compared to the N2 production 

from denitrification and anammox together. 

Though denitrification is a major mechanism for NO 3-  removal in coastal 

sediments (Tuerk and Aelion, 2005), N2 produced through complete denitrification of 

nitrate accounted for 1% of the total pore water nitrate reduced. The overall low 

contribution of denitrification in NO 3 -  depuration suggests that removal of the macro 

nutrient could proceed through other significant pathways. Nutrient re-generation could 

be important in N limited ecosystems like mangroves (Lovelock et al., 2006) wherein the 

microbial community could be competing with the vegetation for inorganic N 

requirements. Internal re-generation could therefore act as an efficient mechanism to 

meet the nitrogen demand from both the microbial and plant communities. Investigations 

carried out in the present study show that the anthropogenically influenced Divar 

sediments are characterized by higher nitrate reduction activity, nitrous oxide and N2 

production within 0-4 cm which are fuelled by nitrate availability. Nitrate can be 

produced intrinsically through nitrification (Krishnan et al., 2008) or supplied through 

extraneous input (Naqvi et al., 2000). The Divar ecosystem fringes the Mandovi estuary 

which is prone to NH4NO 3  input from Fe-Mn mining rejects (De Sousa, 1999). 

Colorimetric measurements revealed that nitrate reduction in Divar sediments occurs at a 

rate of up to 3.52 [tmol 11 -1  [tmol cm-3  h-I ) which is in range to reports from 
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other coastal sediments where NRA is found to range from 0.662-2.4 pmol cm -3 

 (Lawman et al., 2006). 

DNRA showed a steady increase in 15NH4+  at all depths investigated at both the 

sites. This process was responsible for 39% nitrate removal (100% NRA= 6.91 !mot; 

integrated for whole core) at Divar. In anoxic estuarine sediments, degradation of organic 

matter results in sulfide enrichment (Burton, et al., 2006; Laurent et al., 2009). 

Chemolithoautotrophic DNRA couples the reduction of NO3 -  to H2S/S2-  to generate 

ammonium which is a more readily utilisable form than nitrate. High concentrations of 

hydrogen sulfide in marine sediments can be lethal to marine organisms (Phillips et al., 

1997). As DNRA provides an electron donor (An and Gardner, 2002) the process could 

be linked to lowering levels of reduced sulfur forms in the system. Sulfide is also known 

to inhibit the last two steps of the denitrification pathway (Burgin and Hamilton, 2007). It 

is observed that N loss through the denitrification pathway (N20 and N 2) in mangrove 

sediments was almost 3 times lower than DNRA (Fig. 58). Estuaries and coastal regions 

account for approximately 60% of the total oceanic N20 flux (Bange et al., 1996). The 

present observations reveal that N20 production in mangrove sediments is relatively 

small highlighting the capacity of mangroves to buffer the climate against the green 

house gas. 

Though the control site Tuvem is relatively free from extraneous nutrient input, it 

is characterized by nitrate accumulation at depth >2 cm which could be attributed to 

anoxic nitrification. As a result, NRA is more pronounced at depths >6 cm. The relatively 

higher nitrous oxide production at 2-4 cm in Tuvem could be attributed to nitrate 

accumulation at this depth. In this ecosystem, DNRA accounts for up to 65% NO3 -

removal (100% NRA=6.97 N retention is about 15 times higher as compared to N 

loss through the denitrification pathway. DNRA is an important mechanism that adds or 

retains available N in the system (Gardner et al., 2006). Studies by Scott et al. (2008) 

have shown that in some areas, DNRA can remove more nitrate than denitrification. The 

present observations show that DNRA is important in reducing ecosystems and probably 

responsible for not only nitrite accumulation and removal but also for a non-neglectable 

part of ammonium production. Ammonium is known to adsorb easily onto clay particles 

(Laima et al., 1999). In organically rich mangrove sediments (Krishnan and Loka 
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Fig. 58: Nitrogen cycling in mangrove sediments (T=Tuvem; D=Divar; ND= Not detected; activity has 

been expressed as nmol g' W I ). Pore water nutrient profiles during above activity measurements 

have been given in Figs. 30 and 31a-b. 



Bharathi, 2009), ammonium released through degradation of organic compounds could 

easily get bound to clay particles making it unavailable for biological uptake. The larger 

contribution of DNRA in pristine habitats like Tuvem indicates that this ecosystem 

efficiently re-circulates available N and conserves it to overcome limitation. A similar 

scenario could be expected at Divar. However, this ecosystem receives additional 

nutrients from external sources. As a result, the contribution of DNRA is relatively less as 

compared to ecosystems that need to conserve N. 

Until now, mangroves have been known to function as efficient buffer zones 

mitigating large amounts of intrinsically produced nutrients as well as extraneously 

derived anthropogenic inputs (Corredor and Morel!, 1994). This buffering capacity could 

be mainly attributed to the efficient functioning of the autochthonous microbial flora 

especially bacteria. However, mangroves have also been shown to emit a substantial flux 

of the green house gas N20 to the atmosphere (Krithika et al., 2008). On the contrary, the 

present study has shown that the microbial population in the mangrove swamps could 

contribute to considerably decreasing the N20 emission for the first time. This is 

achieved in exchange for ammonium that gets retained in the system perhaps within 

biologically acceptable limits. 

5.5. Influence of nitrate and organic C amendments on denitrification 
Estuarine sediments are known to have considerable nutrient loading mostly derived from 

extraneous inputs like sewage outfall (King and Nedwell, 1987). The present study 

showed that the Divar sediments harbored a measurable pore water nitrate content which 

increased with depth. Down-core profiling of denitrification showed a sub-surface 

maxima at 2-4 cm with a rate of 20.08 pmol N20-N IT1-2  11-1  (1.43±0.66 nmol g -1  h-1 ). 

Isotopic measurements by Chiu et al. (2004) have shown much higher denitrification 

activity in surficial mangrove sediments as compared to the deeper non-rhizosphere soil 

with rates of up to 120 nmol h . '. Thomas and Lloyd (1994) have also reported 

maximum denitrification to occur at the surface in estuarine sediment. The process is 

known to be dependent on nitrate availability (Seitzinger, 1990). Low nitrate values 

encountered at the surface could thus be attributed to higher nitrate removal in the upper 

few centimeters of the sediment. 
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High denitrification activity at 2-4 cm coincided with increased organic carbon 

availability at this depth. Naturally occurring organic carbon in sediments is critical 

because it can influence nutrient availability (Moore, 1989), enhance biological activity 

and can increase acidity of ambient waters through organic acids (Eshleman and 

Hemond, 1985; Kerekes et al., 1986). The primary source of TOC in mangrove swamps 

is plant material which is decomposed by sediment organisms and converted to organic 

compounds viz., carbohydrates, proteins and lipids. A sizeable fraction of organic matter 

could be transported to deeper depths by bioturbating infauna and retained within the 

system. Natural processes and human activities can also result in elevated content of TOC 

in the area. Sardessai (1993) have shown that decomposition of mangrove litter and 

influx of fresh water during monsoons contributes to organic matter derived from humic 

acids. In the present investigation, labile organic matter showed a similar depth-wise 

distribution like TOC with a maximum concentration of 0.68% LOM at 2-4 cm. Labile 

organic matter is known to limit denitrification (McCutchan and Lewis, 2008). In the 

reductive phase of the N cycle, NO3" ions are reduced to N20 or N2 whereas organic C 

gets oxidized to CO2 and H2O. In the Divar sediments, about 11-19% of the TOC is 

present in readily utilizable form (LOM) and could be important for heterotrophic 

metabolism. 

Denitrification activity was stimulated in microcosms containing seawater with all 

combinations of nitrate amendments i.e. 5, 10, 20, 40 and 60 [tmol NO 3-N 1'. In estuarine 

sediments prone to high nitrate inputs, the bacterial communities adapt to changes in the 

concentration exhibiting higher rates of nitrate reduction and also increasing the 

proportion of nitrate reduced to gaseous products (King and Nedwell, 1987). Laverman et 

al. (2007) have shown that denitrification in estuarine sediments is nitrate limited and the 

resident denitrifying community rapidly adjusts its level of activity to increased nitrate 

availability. Denitrification accounts for 27 to 57% of the nitrate consumption in estuarine 

and coastal sediments (Nishio et al., 1982). The Divar mangrove ecosystem is prone to 

high nutrient input from mining rejects, land runoff and domestic sewage discharge. The 

increase in denitrification activity especially in the first few centimeters is indicative of 

the high nitrate removal capacity of these sediments. Corredor and Morel! (1994) have 

confirmed that mangrove sediment-microbial communities are capable of depurating up 

101 



to 10-15 times the nitrate added. Recently, Krishnan and Loka Bharathi (2009) have 

shown that nitrification rates in the Divar sediments vary between 2.7 to 18.2 nmol g -1  

t . A strong coupling between redox processes of the N cycle could exist in these 

sediments wherein nitrate supplied continuously through the nitrification process could 

be fuelling denitrification especially in the upper few centimeters. 

Organic carbon addition stimulated denitrification activity in mangrove sediments 

mostly at depths >4 cm. A 0.5% amendment of labile organic carbon (glucose) was found 

to effectively stimulate denitrification activity at all depths suggesting that the process is 

optimal at this concentration. Statistical analyses did not show significant increase in 

denitrification activity on organic carbon addition as compared to amendments with 

nitrate (one way ANOVA; n=15; p<0.001) at all depths indicating that organic carbon 

was not a limiting factor for denitrification in mangrove sediments. Denitrification in 

oxygen minimum zones is known to be fuelled almost entirely by organic matter supplied 

by particles sinking vertically from the euphotic zone (Anderson et al., 2007; Ward et al., 

2008). In these environs, organic carbon is the main limiting factor controlling 

denitrification. In contrast, estuarine systems have considerable organic C loading and 

labile organic matter is readily available for metabolic activity. In such circumstances, 

denitrification is more dependent on nitrate availability. Similar observations have been 

made by Davidsson and Leonardson (1996) using peaty and sandy sediment in which 

NO3-  has been shown to be a stronger regulator of denitrification than organic carbon. 

Potential benthic denitrification rates at Divar were 15-38 times higher (within 0-

10 cm core) than the in situ denitrification activity when both nitrate and organic carbon 

were in excess with highest activity of up to 304.09 (±47.6) [mot N20-N 111-2  at the 

surface. Flemer et al. (1998) have reported relatively high potential denitrification rates in 

estuarine sediments ranging between 500 to 1000 umol N m -2  which were also limited 

by nitrate availability. Laverman et al. (2007) have encountered maximum in situ rates 

two fold lower than the maximum potential rate in surficial sediment indicating that in 

situ denitrification was nitrate limited. These observations indicate that the surficial 

sediments have a comparatively higher denitrifying potential. This could be possible 

since the denitrifying communities at depths cm get a continuous availability of 

electron acceptors through lateral supply from the ambient waters in addition to relatively 
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intense nitrification in the surficial sediments. Thus, these microbes are able to eliminate 

elevated nitrate concentration through the denitrification pathway. 

The Divar mangrove sediments harbored sufficient amount of labile organic 

matter to support denitrification activity. Microcosm experiments have indicated that 

nitrate addition enhanced denitrification at in situ organic carbon concentration. The 

benthic denitrifying community in these habitats respond rapidly to episodic events of 

elevated nutrient supply by increasing the rate of nitrate removal through the 

denitrification pathway. Thus, these sediments could act as a sink for nitrate and this 

nutrient is more crucial in controlling denitrification activity. Potential denitrification 

rates were up to 38 times higher than in situ denitrification activity indicating that 

denitrification was an important process maintaining low concentration of nitrate and 

helping to maintain the water quality of the adjoining aquatic system. 

5.6. Influence of bioturbation on denitrification 
Nutrient-rich reducing habitats like mangroves are excellent locations for denitrification 

to occur. Though a few studies have quantified denitrification rates in mangrove 

sediments (Meyer et al., 2005; Alongi et al., 2005) and identified some of the factors 

limiting the process (Chiu et al., 2004), the influence of bioturbation on denitrification in 

these regions is poorly understood. Benthic denitrification in coastal habitats is largely 

dependent on nitrate availability (Laverman et al., 2007). The exchange of nutrients and 

oxygen is known to be facilitated by the feeding and burrowing activities of benthic 

macrofauna (Aller, 1980, Huttel 1990, Binnerup et al., 1992; Sasaki et al., 2003). In the 

present study, differences in sediment physical, chemical and biological parameters have 

been compared between faunated and de-faunated cores to ascertain the effect of 

bioturbation at different strata. Marked differences in the physico-chemical and 

biological characteristics of bioturbated and non-bioturbated sediment were observed. 

Firstly, the de-faunated core showed relatively lower redox potential as compared to 

natural sediments indicating reduced oxygenation. Recently, Pischedda et al. (2008) 

have shown increased sediment oxygen heterogeneity particularly in the presence of 

polychaetes which construct complex burrows. Stratified enumeration of macrofaunal 

abundance in the present study has shown a well dispersed macrofaunal community 
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represented by oligochaetes forming the dominant forms followed by polychaetes. 

Further, crabs belonging to Uca spp. were retrieved from 6-8 cm depth indicating that 

their burrowing activity creates channels that could facilitate the exchange of solutes 

between overlying water and sediments. The bioturbated sediments were also 

characterized by decrease in pH with depth. The Divar sediments have a considerable 

organic and metal content (Krishnan et al., 2007; Krishnan and Loka Bharathi, 2009). In 

the absence of oxygen, alternate electron acceptors like Fe(III) and Mn(IV) support 

degradation of organic compounds (Lovley et al., 2004) consequently leading to acidic 

condition (Ogner et al., 2001) in the sediment. This explains the lower pH encountered in 

the bioturbated core. 

Denitrification in particular is mainly affected by nitrate concentration (More11 

and Corredor 1993; Corredor and Morell 1994; Rivera-Monroy and Twilley 1996; Kana 

et al. 1998). Earlier studies have shown that bioturbation enhances nitrate supply 

(Kristensen et al. 1991) and stimulates coupling of nitrification-denitrification (Aller et 

al., 1983, Pelegri et al., 1994). In the present investigation, pore water nitrate 

concentration in the bioturbated core was relatively higher as compared to the de-

faunated core and is indicative of elevated nutrient supply in irrigated sediments. Nitrate 

can be supplied either from the ambient seawater or result from intrinsic nitrification 

(Krishnan et al., 2008). Experiments by Svensson (1997) have shown that bioturbation 

mobilizes the ammonium to the water and stimulates denitrification by reducing the 

diffusive barrier blocking nitrate from reaching anoxic zones in the sediment. Downward 

movement of crabs and polychaetes in the sediments could induce sediment re-working 

facilitating the transfer of NO3 from the water column and also penetration of 0 2 , which 

in turn stimulates nitrification (Gilbert et al., 1997). Unlike the de-faunated core, overall 

low nitrite levels in the bioturbated core especially at 4-6 cm coincided with high DNT 

activity. In the denitrification pathway, nitrite is further reduced to gaseous products like 

N20 and N2. Thus, high DNT enhances NO2 -  uptake preventing its accumulation to toxic 

levels. Autochthonous infauna can stimulate denitrification activity significantly by up to 

160% in coastal sediments (Gilbert et al., 1998) indicating that denitrification is directly 

dependent on macrofaunal activity. In this study, significant influence of macrofaunal 

abundance on DNT was evident at depth >4 cm (p<0.05) and was responsible for about 
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18% of the variation in the activity. Gilbert et al., (1998) have reported benthic 

macrofaunal density varying from 2580 to 3160 ind. m-2  in the Gulf of Fos sediments. In 

this investigation, higher faunal density of organisms were observed at 0-2 and 4-6 cm 

(375 ind. m-2). Lower contribution of the mangrove macrofauna in enhancing 

denitrification could be attributed to their overall low density and patchy distribution 

pattern in the sediment. 

The exclusion of macrofauna in mangrove sediment was also seen to influence the 

distribution and abundance of the denitrifying community. Though denitrifier abundance 

in both the cores was same at the surface, their number decreased rapidly by up to two 

orders in de-faunated conditions especially between 2-6 cm. The 2-6 cm layers has a 

sizable fraction of polychaetes and Uca crabs. Bioturbating activity of these forms could 

be responsible for enhancing nitrate concentration at these depths which in turn 

stimulates denitrifier abundance as they are dependent on substrate availability. The 

presence of the marine polychaetes favour the development of bacteria which may play 

an active role in natural bioremediation processes (Cuny et al., 2007). Further, sediment 

re-working of macrofauna also aids in the dispersion of denitrifiers to deeper depths as 

evident from higher number of cells at 8-10 cm in the bioturbated core. It can be 

concluded that bioturbating activity of autochthonous infauna in the Divar sediments 

could be one of the important factors influencing denitrification activity. Relatively 

higher redox potential, elevated nitrate supply, low nitrite accumulation and higher 

denitrifier abundance in natural sediments further substantiate the findings in the present 

study. 

5.7. Taxonomic and functional diversity of denitrifiers 
Very little is known about benthic bacterial diversity in productive coastal habitats like 

mangroves. So far, 16S rRNA gene analysis based studies have been used to assess their 

diversity in these regions (Sjoling et al., 2005; Liang et al., 2007; Gomes et al., 2008) 

providing some knowledge of the bacteria therein. The technologically advanced 454 

pyrosequencing approach was used to examine bacterial diversity in two mangrove 

ecosystems of Goa- the anthropogenically influenced Divar and the relatively pristine 

Tuvem. The present study showed that the surficial mangrove sediments (0-2 cm) 
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harbour all major sediment bacterial groups affiliated with the phyla Proteobacteria 

(classes Alpha, Beta, Gamma, Delta and Epsilonproteobacteria), Bacteroidetes, 

Firmicutes, Cyanobacteria, Planctomycetes, Actinobacteria, etc. Early studies in 

mangrove swamps have also shown predominant bacterial phylotypes to cluster within 

Proteobacteria, Bacteroidetes, Gemmatimonadetes, Actinobacteria and Firmicutes (Zhang 

et al., 2009). Interestingly, this study reveals the existence of bacteria belonging to the 

newly devised phylum like Acidobacteria and Gemmatimonadetes and members of the 

candidate divisions OD1, OP3, OP8, OPIO and OP I 1 in mangrove sediments. According 

to the frequency of V6 tag occurrence, the Proteobacterial community at Tuvem was 

dominated by members of the class Deltaproteobacteria (21% of total V6 tags; up to 

0.96% total OTUs), in particular Desulfobacterales and to a lesser extent by 

Actinobacteria (14% of total V6 tags). The identities of organisms provide clues on the 

bacterially-mediated processes likely to occur in these habitats. At Tuvem redox-

potential of <-150 mV have been observed at the surface implying that the sediments are 

largely anaerobic as compared to Divar. Anoxic environments are known to be 

dominated by Deltaproteobacteria (Schwarz et al., 2007). This class of bacteria have been 

reported to occur in coastal (Paisse et al., 2008; Zhang et al., 2008), continental shelf 

(Hunter et al., 2006) as well as cold-seep sediments (Reed et al., 2009). The 

Desulfobacterales have implications in sulfur cycling (Vrionis et al., 2005; Bonin et al., 

2009) as they are primarily involved in sulfate-reduction (Reed et al., 2009) which is an 

important electron-accepting process for mineralization of carbon (Asami et al., 2005; 

Scholten et al., 2005). Earlier studies by Loka Bharathi et al., (1991) have also shown the 

occurrence of SRB representing the orders Desulfovibrionales, Desulfobacterales, 

Desulfococcus and Clostridiales in mangrove swamps of the Zuari estuarine system in 

Goa. Other SRB sequences within the class Deltaproteobacteria found at Tuvem 

belonged to the orders Desulfuromonadales, Myxococcales and Synthrophobacterales. 

Some Desulfuromonadales can obtained energy from the reduction of Fe(III), Mn(IV), 

nitrate, elemental sulfur using a variety of electron donors like organic acids, alcohols, 

biological extracts and hydrogen (Greene et al., 2009). Investigations in the present 

study have shown that the Tuvem sediments have a considerable organic carbon, Fe, Mn 

and nutrient (N compounds) content. It is possible that Deltaproteobacteria in this anoxic 
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habitat could not only participate in sulfur cycling but also prevent accumulation of metal 

and inorganic nitrogenous compounds. Members of the phylum Actinobacteria are 

ubiquitously found in estuarine and oceanic environments (Crump et al., 2004; Piza et 

al., 2004; Stach and Bull, 2005). Most Actinobacteria are of economic importance (Ward 

and Bora, 2006) as they are as a source of antibiotics (Ellaiah and Zeeck, 2006; 

Adinarayana et al., 2006; Kim et al., 2006; Manivasagan et al., 2009). Like 

Deltaproteobacteria, they play multiple roles in the environment that includes degradation 

of cellulose (Pankratov et al., 2006) and hydrocarbons (Harwati et al., 2007; Kim et al., 

2008), metal oxidation (Bryan and Johnson, 2008; Johnson et al., 2009), nitrate reduction 

(Van Keulen et al., 2005), etc.. Their presence and activity in mangrove sediments could 

be vital in altering the benthic chemistry. 

Rarefaction curves at both locations did not reach an asymptotic stage as the 

bacterial richness was not fully covered. Diversity estimates suggest that the bacterial 

community at the anthropogenically influenced site Divar is relatively more diverse than 

at Tuvem with —3300 phylotypes which are an order of magnitude higher than previously 

reported (Zhang et al., 2008) in marine sediments. A large number of low-abundance 

OTUs of the so called "rare biosphere" (Sogin et al., 2006) were responsible for the high 

diversity observed in mangrove sediments and indicate that they have the potential to 

become dominant when favorable environmental conditions arise. The Divar ecosystem 

receives comparatively higher extraneously derived organic and inorganic compounds of 

different types. Consequently, availability of a wide variety of substrates could result in a 

higher taxonomic and metabolic bacterial diversity. The frequency of Proteobacterial tags 

at Divar formed >40% of total V6 tag sequences as in Tuvem. However, the 

Gammaproteobacteria dominated (2% higher tag occurrence than Deltaproteobacteria) at 

Divar as compared to Deltaproteobacteria at Tuvem. Molecular investigations by Liang et 

al., (2007) in a Chinese mangrove ecosystem have also shown that the 

Gammaproteobacteria affiliated sequences constituted the largest portion in their clone 

library. The Gammaproteobacteria are active mediators of the N and S cycles. 

Gammaproteobacteria are also involved in methane oxidation (Sorokin et al., 2000). 

Some of the Gammaproteobacteria recorded at Divar are classified under the order 

Alteromonadales, Chromatiales, Pseudomonadales, Vibrionales, Enterobacteriales, 
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Salinisphaerales etc.. Species belonging to the genus Marinobacter, Shewanella, 

Alteromonas of order Alteromonadales have been commonly found in the marine 

environment (Rontani et al., 1999; Zhuang et al., 2009). Marinobacter spp. use a variety 

of hydrocarbons as the sole source of carbon and energy (Gauthier et al., 1992). These 

halophilic bacteria also have a high capacity for denitrification (Yoshie et al., 2006). 

Similarly, Shewanella (Brettar et al., 2002; Zhao et al., 2006) and Alteromonas (Haijun, 

2002) are known to mediate reductive phase of the N cycle. Facultatively anaerobic 

species of the order Pseudomonadales (Carlson and Ingraham, 1983; Castignetti and 

Hollocher, 1984; Rezaee et al., 2008), Vibrionales (Yoshinari, 1980; Bianchi et al., 1992; 

Kim et al., 2000), Enterobacteriales (Bezbaruah 1983, Calmels et al., 1996; Herbert, 

1999) etc.. have been reported to participate in both oxidative and reductive phases of the 

N cycle. The Divar ecosystem is prone to high nutrient input from mining rejects (De 

Souza, 1999) predominantly during the monsoon (Divya et al., 2009). Pore water analysis 

in the present study have shown measurable concentrations of inorganic nitrogenous 

compounds. However, pore water ammonium was <50 gmol l throughout the year at 

Tuvem and Divar indicating close coupling between synthetic and degradative processes. 

The existence of metabolically versatile bacteria could indicate their contribution to the C 

and N cycle. The presence of a large number of enteric Gammaproteobacteria reflect their 

terrestrial origin in the Divar mangrove ecosystem. The micro-aerophilic purple sulfur 

bacteria (order Chromatiales) capable of photosynthesis (Antony and Philip, 2006) have 

also been recorded at Divar suggesting their importance in the microbial food web. A 

significant fraction of bacteria in this habitat have not been identified up to the class level 

indicating that the mangrove sediments harbour novel bacterial species of scientific value 

that might play a more dominant role than believed hitherto. 

Denitrification is mediated by heterotrophic anaerobic facultative bacteria which 

can use nitrate or nitrite as a terminal electron acceptor for respiration and reduce it to 

nitrous oxide or nitrogen (Desnues et al., 2007). In marine ecosystems, a variety of 

taxonomically unrelated bacterial groups are capable of denitrification. Of these, 96% of 

cultured denitrifiers belong to the Gammaproteobacteria (Brettar et al., 2001). 

Biochemical characterization of denitrifier strains carried out in the present study have 

shown that in addition to Firmicutes (class Bacilli) and Actinobacteria, the denitrifies 
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belonged to the classes Alpha, Beta and Gammaproteobacteria establishing that 

denitrifiers in mangrove systems are polyphyletic. Bacteria belonging to these classes are 

known to catalyze carbon and nitrogen cycling as discussed above. The 

Gammaproteobacteria constituted nearly 50% of all the denitrifying strains at Divar. The 

pyrosequencing approach too has shown the occurrence of high Gammaproteobacteria 

tags in this region suggesting that they could be primarily contributing to the reductive 

phase of the N cycle. Undoubtedly, the pyrosequencing approach reveals that a vast 

majority of the denitrifiers from mangrove sediments remain unculturable. Only a few 

viable phylotypes make their appearance in enriched medium and can be cultured under 

laboratory conditions. 

The functional gene nosZ encoding for nitrous oxide reductase, an enzyme 

catalyzing the final step of denitrification (Scala and Kerkhof, 1999) was used for 

determining the diversity of denitrifiers (Horn et al., 2006). The nosZ derived clones in 

marine sediments are affiliated to the class Alphaproteobacteria (Hunter et al., 2006; 

Magalhaes et al., 2008). At the two sites investigated, the nosZ community was found to 

be resilient and was represented by members belonging to class Alpha, Beta and 

Gammaproteobacteria. The dominant denitrifiers at the control site were represented by 

strains showing close similarity to Shewanella spp. which are known to show 

considerable respiratory versatility. Shewanella spp. can use a wide range of compounds 

as electron acceptors (Tiedje, 2002, Munn, 2004). Oxygen fluctuation during tidal cycles 

and diffusion of nutrients from overlying water could favor proliferation of versatile 

bacteria capable of using alternate electron acceptors. 

The present study shows that both biochemical characterization of denitrifiers and 

the functional gene phylogeny give a fair understanding of the major bacterial groups 

involved in N transformations in mangrove sediments as they have also been encountered 

in the 454 pyrosequencing approach. For the first time, this study provides insights on the 

yet uncultured and ecologically significant bacterial communities in mangrove sediments. 

Overall, diversity in anthropogenically influenced estuarine zones is higher than in 

relatively pristine locations. Prevailing environmental conditions could be crucial in 

influencing the composition of sediment bacterial communities. Large physico-chemical 

gradients in these systems can lead to the formation of complex microbial communities 
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which play a vital role in ecosystem functioning. Both culturable and molecular 

approaches adopted to reveal the taxonomy of dominant denitrifying communities in 

tropical mangrove sediments indicates that the process is mainly carried out by members 

belonging to different classes of the phylum Proteobacteria. 
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Chapter 6. Summary and conclusion 

The study on the "Ecology of denitrifiers in mangrove sediments" elucidates the role of 

environmental parameters in governing the reductive phase of the N cycle in two 

mangrove ecosystems of Goa, India- the anthropogenically influenced Divar and the 

relatively pristine site Tuvem. Field and lab based experiments were carried out to meet 

the following objectives: 

➢ To quantify the abundance and activity of denitrifying bacteria 

➢ To understand the influence of environmental parameters on denitrification 

➢ To identify the denitrifiers at cellular and molecular level 

➢ To delineate the influence of bioturbating organisms on denitrification 

Down-core investigations were carried out at 2 cm intervals within 0-10 cm depth range 

at both the locations. Some of the salient findings from this study are as follows: 

1. Denitrifier abundance in mangrove sediments varied from 10 5-8  cells g1  and 

constituted an important fraction of the total bacterial community (10 91°  cells g1 ) 

in mangrove sediments. Maximum denitrifier abundance by both culturable and 

molecular methods showed higher abundance at deeper depths (within 4-8 cm) at 

both the sites. 

2. Denitrification activity (DNT) was found to be maximum within 0-4 cm at both 

the sites suggesting that the activity depends on the prevailing environmental 

conditions and is not a function of bacterial biomass. 

3. DNT at Divar was nearly 3 times the value at Tuvem with maximum activity of 

224.51 nmol g1  111  observed at 0-2 cm. Other co-occurring processes in the N 

cycle were also measured in conjunction with denitrification. Highest anammox 

activity of 101.15 nmol N2 	II I  at Divar was recorded at 8-10 cm and was 5 

times higher than at Tuvem. Di-nitrogen fixation was minimal in estuarine 

habitats prone to high nitrate inputs and denitrification rather than anammox 

served as an important mechanism for counteracting N loading. 

4. Alternate respiratory pathways like dissimilatory nitrate reduction to ammonium 

(DNRA) removes up to 3 times more nitrate than DNT resulting in N retention. 
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5. DNT results in a significant flux of nitrous oxide (N 20), a potent green house gas. 

Microcosm studies showed that net nitrous oxide production at Divar occurred at 

a maximum rate of 22 1.1.mol N20-N m-2  11 1  which was 3 times higher than at 

Tuvem and is indicative of higher emission of the radiative gas in 

anthropogenically influenced regions. 

6. Among the environmental factors influencing DNT, nitrate had a larger influence 

(n=15; p<0.001) than organic carbon suggesting that mangrove sediments are 

NO3-  limited and these regions could act as a sink for nitrate. Multiple regression 

analysis showed that Fe and Mn also influenced DNT which is indicative of DNT 

coupled to metal oxidation. 

7. Bioturbating infauna were responsible for only 18% of the variation in DNT. The 

little influence on the process is attributed to the low and patchy distribution of 

macrofauna in the sediments. 

8. Culturable methods have shown that up to 43% of culturable denitrifiers belonged 

to Gammaproteobacteria. 

9. The dominant denitrifier community probed based on the functional gene (nosZ) 

phylogeny showed that they belonged to the sequences of uncultured organisms 

and were clustered within phylum Proteobacteria. However, it is possible that 

some of these genes belong to the culturable counterparts. 

10. Analysis of bacterial diversity using the 454 pyrosequencing technology revealed 

a complex and rich bacterial community in mangrove sediments with —3300 

phylotypes recorded at Divar. The phylum Proteobacteria was the most dominant 

phylum at both the locations. The class Deltaproteobacteria dominated the Tuvem 

sediments while the Gammaproteobacteria were more dominant at Divar. 

Deltaproteobacteria include most of the sulfur cycle bacteria whereas the Gamma 

and Alphaproteobacteria are involved in N cycling. The existence of these 

bacteria in mangrove sediments reflects their ability to thrive on reduced 

substrates and could therefore play an important role in altering the chemistry of 

inorganic N compounds in coastal ecosystems. 
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11. Though benthic DNT in mangrove ecosystems serves as an important mechanism 

for counteracting N loading, it can be concluded that these habitats effectively 

conserve N through the DNRA pathway thereby minimizing nutrient loss that 

would otherwise occur through DNT. Most importantly DNRA contributes to 

minimizing the flux of green house gas.N20 to the atmosphere. 
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Chapter 7. Implication, application and future scope 

Implication and application 

• Mangrove systems overcome N limitation by effectively conserving N through 

the dissimilatory nitrate reduction to ammonium (DNRA) pathway thereby 

minimizing nutrient loss that would otherwise occur through denitrification 

(DNT). As the reduction of nitrate through the DNRA pathway in anoxic 

sediments could be coupled to the oxidation of reduced forms of sulfur, the 

process contributes to lowering levels of toxic ions in the system. Most 

importantly this process contributes to minimizing the emission of the potent 

radiative gas N20 to the atmosphere. 

• In estuarine habitats prone to high nitrate inputs, DNT overrides other co-

occurring processes like anammox. Consequently, the process serves as an 

important mechanism for counteracting N loading. 

Future scope 

1. Examination of oxidizing and reducing processes of N cycle could be carried out 

in tandem to elucidate spatial/temporal coupling at the genetic, cellular and 

community level. 

2. Mn/Fe coupled denitrification in mangrove sediments could be examined to gain 

deeper understanding of their contribution to the reductive phase of the N cycle. 

3. Nitrous oxide flux across the sediment - atmosphere interface could be quantified 

to enhance the contribution of mangrove ecosystem to N20 inventory from the 

Indian Ocean region. 

4. Contrary to our understanding that pristine mangrove habitats have a higher 

bacterial diversity, taxonomic investigations in the present study have shown 
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anthropogenically influenced mangrove sediments to contain more complex and 

diverse bacterial communities. It would also be interesting to examine if the 

metabolic diversity also follows a similar trend. 
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AoPENDIX 



Appendix 

APPENDIX I 

The redox electrode was calibrated using solutions A and B. 

Solution A: 

Potassium ferrocyanide K4Fe(CN)6.3H20; 4.22 g: 	0.1M 

Potassium ferricyanide K 3 Fe(CN) 6; 1.65 g: 	 0.05M 

Add 50 ml d/w in volumetric flask. Transfer weighed chemicals and stir to dissolve. 

Dilute to volume with d/w. 

Solution B: 

Potassium ferrocyanide K4Fe(CN)6.3H20; 0.42 g: 	0.01M 

Potassium ferricyanide K3Fe(CN)6; 1.65 g: 	 0.05M 

Potassium fluoride KF.2H 20; 3.39g 	 0.36M 

Add 50 ml d/w in volumetric flask. Transfer weighed chemicals and stir to dissolve. 

Dilute to volume with d/w. 

Transfer solutions to beaker. Place the electrode in the solution and wait until reading 

stabilizes. The potential should be about 192 mV (solution A) while for solution B it is 

about 256 mV. Thus, B-A=66 mV. 

APPENDIX II 

1. Winkler's A: Manganese (II) chloride (3M: reagent grade): Dissolve 100 g of 

MnC124H20 in 100 ml distilled water. After complete dissolution, make the 

solution up to a final volume of 1 litre with distilled water and then filtered into an 

amber plastic bottle for storage. 

2. Winkler's B: Sodium iodide (4M: reagent grade) and sodium hydroxide (8M: 

reagent grade): Dissolve 600 g Na! in 600 rill of distilled water. If the color of 

solution becomes yellowish brown, discard and repeat preparation with fresh 

reagent. While cooling the mixture, add 320 g NaOH to the solution, and make up 



the volume to I liter with distilled water. The solution is then filtered and stored 

in an amber glass bottle. 

3. Sulfuric Acid (50% v/v): Slowly add 500 ml of reagent grade concentrated 

H2SO4 to 500 ml distilled water. Cool the mixture during addition of acid. 

4. Starch indicator solution: Place 1.0 g of soluble starch in a 100 ml beaker, and 

add a little distilled water to make a thick paste. Pour this paste into 1000 ml of 

boiling distilled water and stir for I minute. The indicator should be stored in a 

refrigerator. 

5. Sodium Thiosulfate Stock solution (0.18 M: reagent grade): Dissolve 45 g 

Na2S203 *5H20 and 2.5g sodium borate, Na2B407 (reagent grade) for a 

preservative, in 1 liter of distilled water. This solution is stored in a refrigerator 

and used to make the working thiosulfate solution. Some variation on the method 

call for a 0.1N solution, which can be purchased ready-made. 

6. Sodium Thiosulfate working solution (0.018 M: reagent grade): Bring 100 ml 

of the sodium thiosulfate stock solution to 1000 ml with distilled water in a 1 liter 

volumetric flask. This solution is stored in a refrigerator and used for titrations. If 

a ready-made 0.1 N solution was used for the stock, a working solution of 0.01 N 

will be fine. 

7. Potassium Iodate Standard (0.00167 M = 0.01 N: analytical grade): Dry the 

reagent in a desiccator under vacuum. Weigh out exactly 0.3567 g K10 3  and make 

up to 1.0 liter with distilled water. It is important to note the temperature of the 

solution so that a precise molarity can be calculated. 



APPENDIX III 

Reagents, for ammonium estimation: 

Phenol nitroprusside: 

Solution A: 10 gm of phenol in 100 ml of 95% ethanol. 

Solution B: 0.6 gm of sodium nitroprusside dehydrate in 100 ml of distilled water. 

Mix both 100 ml of Solution A and 100 ml of Solution B. (light sensitive, should be 

freshly prepared) 

Sodium hypochlorite: 

4 ml of hypochlorite in 100 ml of 0.5 N NaOH. 

Trisodium citrate: 

Dissolve 120 gm of trisodium citrate in 250 ml of distilled water. Add 5 ml of 0.8 N 

NaOH (stable indefinitely). 

Ammonium standard: 

NI-14C1 sock solution (1 mM): 0.05349 g of NH4C1 dissolved in 1000 ml of distilled water. 

Working standard: prepare the standard up to 50 ml of different concentration. 

Ammonium standard y = 0.0136x + 0.0458 
R2 = 0.9906 0.8 
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Determination of ammonium in sample: 

For 5 ml of sample, add 200 1.11 of phenol nitroprusside solution and mix it well, 

then add 100 !al of trisodium citrate, mix it and 200 pi of hypochlorite reagent. Incubate 

in dark for 6 hr and measure the Optical density (OD) at 630 nm. 



APPENDIX IV 

Nitrite standards 

Sodium nitrite stock solution: 0.0345 gm of sodium nitrite is dissolve in 100 ml of 

distilled water. 

Working standard: from the stock solution 1 ml is taken and the volume made up to 100 

ml with distilled water. Prepare standard solutions containing 0, 0.1, 0.5, 1, 1.5 and 2 1.1g 

at. NO2- N 1 -1 . 
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Determination of nitrite 

For 5 ml of nitrite sample, add 100 1.11 of sulphanilamide solution. Incubate for 2 — 8 min 

then add 100 121 of N — (1 - Napthyl) — ethylene diamine dihydrochloride. Appearance of 

pink colour is conformation of nitrite in sample. Calculate the nitrite concentration by 

checking the OD at 543 nm by spectrophotometer. 

APPENDIX V 

Reagents for determination of nitrate 

1% sulphanilamide: 

lg sulphanilamide in 10 ml concentrated HO, made upto 100 ml with distilled water. 
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 @
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Nitrite standard y = 0.0429x + 0.0041 

R2  = 0.9963 



N(1-naphthyl)ethylenediamine dihydrochloride: 

100mg N(1-naphthyl)ethylenediamine dihydrochloride in 100 ml distilled water. 

Preparation of cadmium column 

Mercuric chloride solution: 

Add 2.5 gm of mercuric chloride in 250 ml of distilled water. 

Cadmium fillings: 

Cadmium fillings cut into 3 mm size. 

Preparation: 

Weigh about 50 fillings and stir with mercuric chloride solution until clear solution 

changes black. Wash fillings with distilled water. Push glass wool at bottom of the 

column. Fill column with distilled water, add filling by tapping gently, pack without air 

bubble and spaces should be minimum. Put glass woo] plug at the top. Wash column with 

distilled water. Adjust flow rate such that 100 ml passes through 8 — 12 min. column 

should be left completely covered with distilled water. 

Nitrate standard 

Potassium nitrate stock solution: (1mM NO3 -  N I i ): 5.05 gm of potassium nitrate in 50 

ml of distilled water (1 M KNO 3). Pipette 50111 of 1M solution and make up volume with 

distilled water to 50 ml. 

Working standard: From the stock solution 0 1.11, 250 1.11, 500 	1 ml, 1.5 ml and 2 ml is 

taken and volume is made up to 50 ml of distilled water to prepare standard solutions 

containing 0, 5, 10, 20, 30, 40 and 5011g at. NO3 -  N 

Reduction: 

Pass 10 ml through the cadmium column twice. Then pour the rest 30 ml. Discard the 

initial 15 ml and collect approx. 15 ml sample required for nitrate analysis. Add 200 Ill of 
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sulphanilamide in 5 ml of sample, wait for 5 min, and then add 200 !AI of N 	(1 - 

napthyl)- ethylene diamine dihydrochloride. Take OD between 10 min to 2 hrs at 543 nm. 

Nitrate standard 

5 	10 	15 	20 	25 	30 	35 	40 

Conc. (prnol NO3-- NI 1 ) 

Determination of nitrate in sample 

Pass 10 ml through the cadmium column twice. Then pour the rest 30 ml. Discard the 

initial 15 ml and collect — 15 ml sample required for nitrate analysis. Add 200 tl of 

sulphanilamide in 5 ml of sample wait for 5min and then add 200 !Al of N- (1-napthyl)- 

ethylene diamine dihydrochloride. Take OD between 10 min to 2 hrs at 543 nm. 

APPENDIX VI: 

Culture medium for nitrate reducers: 

KNO3 	 0.101 g (1 mmol) 

Nutrient Broth (HiMedia laboratories) 	 6.5 g 

Phenol red 	 0.01 g 

Agar 	 5 g 

Aged seawater 	 1000 ml 



APPENDIX VII: 

Culture medium for denitrifiers: 

KNO3 

NH4C1 

Sodium acetate 

Sodium succinate 

Bacto Tryptone 

Aged seawater 

Adjust pH to 8. 

0.101 g 

0.05 g 

0.1 g 

0.1 g 

1g 

1000 ml 

APPENDIX VIII: 

Morphological tests: 

Gram staining (Gram, 1884) 

A Smear of the isolates was prepared on clean dry grease free slides. 

A. The smears were air-dried and heat fixed. 

A They were then treated with crystal violet for 1 min followed by Gram's iodine 

for 1 min. 

A. The slide was then washed with decolorizing solution (ethyl alcohol) till the blue 

color disappears. 

A Counter stained with safranine for 30 sec. The slide was then washed with water. 

A Dried and observed under oil-immersion 

Oxidase test (Kovacs, 1956) 

Oxidase discs (HiMedia, India) were used to detect the presence of cytochrome oxidase 

in the isolates. 

Observation 
	

Report 

1. Deep violet color developed 
	

Oxidase positive 

Immediately after smearing. 

2. Deep violet color developed 
	

Delayed positiveness 

after 30 sec. 



3. No color change. 	 Oxidase negative 

Catalase test 

➢ This test was performed using 3 % hydrogen peroxide on a glass slide. 

➢ Scrape the growth from a slant or plate with a non- metallic instrument. 

➢ Suspend it in 3 % hydrogen peroxide on a slide. 

➢ Examine for effervescence, presence of effervescence denotes catalase positive 

and absence denotes negative reaction. 

Marine Oxidation /Fermentation (MOF) test: - 

Test medium was prepared as follows: 

Sea water- 100 ml 

Dextrose- 1 g 

Peptone- 0.2 g 

Agar- 1.5 g 

K2HPO4- 0.03 g 

Bromothymol blue- 0.002 g 

Combine Peptone, K2HPO4, Bromothymol blue. Adjust pH of medium to 7.2. Then add 

agar and boil to melt. Add Dextrose, pour into tubes, autoclave and allow to cool and 

solidify. Inoculate the tubes with test culture using a nichrome stab and incubate. 

Observe for color change of the medium and interpret results as follows: 

1. Bottom to top yellow/bottom yellow Fermentative (with or w/o gas) 

2. Yellow only on top Oxidative 

3. Blue colour Alkaline 

4. Growth, no colour change Growth only 

5. No growth 	 Inert 

Motility test 

Prepare wet smear of the culture on slide and observe under microscope (100X). 



APPENDIX IX: 

Agarose gel (1%): 

Agarose 

1 X TBE 

Ethidium bromide 

0.5 g 

49.5 ml 

1111 

APPENDIX X: 

Preparation of 1X TBE buffer: 

Add 10.8 g Tris-(hydroxymethyl) aminomethane in 500 ml distilled water. Add 5.5 g 

boric acid, 4 ml sodium ethylenediamine tetraacetic acid (Na2EDTA; 0.5 M). Make up 

volume to 1000 ml. The solution is stable for a maximum of 3 months. 

APPENDIX XI: 

PREPARATION of 0% and 80% acrylamide solutions 

0% solution (100 ml): 

40% acrylamide/bis 37.5 solution 

TAE 50 X 

Distilled water 

15 ml 

2 ml 

83 ml 

Blend the above with a magnetic stirrer for 5 - 10 minutes. Using a syringe, filter contents 

through a 0.2 um filter. Refrigerate filtrate at (4°C) in a plastic bottle protected from light 

(covered with aluminium foil). The product is stable for a maximum of 3 months. 

80% solution (100 ml): 

- 	40% acrylamide/bis 37.5 solution 	 15 ml 

TAE 50 X 	 2 ml 

Formamide de-ionized 	 32 ml 

Urea 	 33.6 g 

Distilled water 	 18 ml 



Blend the above with a magnetic stirrer for 5 - 10 minutes. Using a syringe, filter contents 

through a,0.2 p.m filter. Refrigerate filtrate at (4°C) in a plastic bottle protected from light 

(covered with aluminium foil). The product is stable for a maximum of 3 months. 

Preparation of gel for Denaturing Gel Gradient Electrophoresis (DGGE): 

Bottom gel: 

o 1 ml acrylamide 0% 

o 30 pi Ammonium Per Sulfate (APS) 10% 	 1 hour polymerisation 

o 2.5 pl TEMED(N,N,N',N' -tetramethylenediamine) 

Introduce the gel between the glass plates with the help of a 1 ml pipette. See that the gel 

spreads evenly and overlay it immediately with 2 - 3 ml of distilled water so that the gel 

is set uniformly. Before casting the gradient gel, invert the DGGE gel unit and soak the 

water onto a tissue paper. 

Gradient migration gel 20-80%: 

o 20% Solution 

■ 8.2 ml acrylamide 0% 

■ 2.8 ml acrylamide 80% 

■ 30 pl Ammonium Per Sulfate (APS) 10% 

■ 7 pi de TEMED 

3 hours polymerisation 

o 80% Solution 

■ 11 ml acrylamide 80% 

■ 30 p.I Ammonium Per Sulfate (APS) 10% 

■ 7µl de TEMED 

Mix the contents of the 20% solution in a beaker using a magnetic stirrer. Similarly, mix 

the contents of the 80% solution in another separate beaker. Transfer the contents from 

the two beakers into the gel unit using a mechanical pump. Overlay the gel with distilled 



water for uniform alignment. Before adding the topmost gel, remove the water by 

soaking it onto a tissue paper. 

Top gel: 

o 5 ml acrylamide 0% 

o 30 gl Ammonium Per Sulfate (APS) 10% 	I hour polymensahon 

o 5 gl de TEMED 

Introduce the gel with the aid of a 5 ml pipette. Before arriving absolutely in the top of 

the glass, introduce the comb and add the remaining gel. Restrict the formation of air 

bubbles. 

NOTE: 

• Store TEMED (Bio-Rad) solution at 4°C. 

• Store sub-samples of 10% APS in eppendorf tubes at -20°C. 

APPENDIX XII: 

Preparation of 50X TAE buffer (stock solution): 

Add 242 g Iris base and dissolve in approximately 750 mi deionised water. Carefully add 

57.1 ml glacial acid and 100 ml of 0.5 M EDTA (pH 8.0) and adjust the solution to a final 

volume of 1 litre. This stock solution can be stored at room temperature. The pH of this 

buffer is not adjusted and should be about 8.5. 

Preparation of 1X TAE buffer (working solution): 

The working solution of lx TAE buffer is made by diluting the stock solution by 50x in 

de-ionized water. Final solute concentrations are 40 mM Tris acetate and 1 mM EDTA. 

The solution is stable for a maximum of 3 months. 



APPENDIX XIII: 

Composition of Buffers and Solutions for cloning 

Isopropyl b-D-1-thiogalactopyranoside (IPTG) stock solution (0.1M) 

1.2 g IPTG 

Add water to 50 ml final volume. Filter sterilize and store at 4°C. 

X-Gal (2 ml) 

100 mg 5-bromo-4-chloro-3- 

Indoly1-13-D-galactoside 

Dissolve in 2 ml N, N'-dimethylformamide. 

Cover with aluminum foil and store at —20°C. 

LB medium (per liter) 

10 g Bacte-tryptone 

5 g Bacte-yeast extract 

5 g NaC1 

Adjust pH to 7.0 with NaOH 

LB plates with ampicillin 

Add 15 g agar to 1 liter of LB medium. Autoclave. Allow the medium to cool to 50°C 

before adding ampicillin to a final concentration of 100 Itg m1 -1 . Pour 30-35 ml of 

medium into 85 mm Petri dishes. Let the agar harden. The plates can be stored at 4°C for 

up to 1 month or at room temperature for up to 1 week. 

LB plates with ampicillin/IPTG/X-Gat 

LB plates with ampicillin were made as above then supplement with 0.5 mM IPTG and 

80 tig m1 .1  X-Gal and the plates were poured. Alternatively, 100 µl of 100 mM IPTG and 

20 of 50 mg m1 -1  X-Gal may be spread over the surface of an LB ampicillin plate and 

allowed to absorb for 30 minutes at 37°C prior to use. 



SOC medium (100 ml) 

2.0 g Bacte-tryptone 

0.5 g Bacte-yeast extract 

1 ml 1M NaC1 

0.25 ml 1M KCI 

I ml 2M .Mg2+  stock, filter sterilized 

1 ml 2M glucose, filter-sterilized 

Add Bacto ®-tryptone, Bacti?)-yeast extract, NaCI and KCI to 97 ml distilled water. Stir to 

dissolve. Autoclave and cool to room temperature. Add 2M Mg 2  stock and 2M glucose, 

each to a final concentration of 20 mM. Bring to 100 ml with sterile, distilled water. The 

final pH should be 7.0. 

2M Mg2+  stock 

20.33 g MgCl2 • 6H20 

24.65 g MgSO4 • 7H20 

Add distilled water to 100 ml. Filter sterilize. 

2X Rapid Ligation Buffer, T4 DNA 

Ligase (provided) 

60 mM Tris-HCI (pH 7.8) 

20 mM MgC12 

20 mM DTT 

2 mM ATP 

10% polyethylene glycol 

(MW8000, ACS Grade) 

Store in single-use aliquots at —20°C. Avoid multiple freeze-thaw cycles. 
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Bacterial contribution to mitigation of iron and manganese 
in mangrove sediments 
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Abstract 

The Mandovi and Chapora are two tropical estuaries lying in close geographic proximity on the west coast of India. Seasonal changes 
in down core variation of Fe, Mn and Total Organic Carbon (TOC) in the mangrove sediments adjoining these estuaries were studied to 
assess their influence on some of the representative benthic bacteria belonging to heterotrophic and autotrophic groups. Heterotrophic 
bacteria (HB) cultured on different nutrient concentrations (0.0M, 0.1 11/.. and 25%) together with nitrifiers (NtB, representating auto-
troph) were chosen to assess the influence of the above-mentioned abiotic parameters On the former. The experimental site located along 
the Mandovi is under the influence of extensive ferromanganese ore mining, while the control site at Chapora is relatively free from such 
influences. Geoaccumulation index computed for Mandovi showed that sediments 10- 10 cm) were 'uncontaminated to moderately con-
taminated' by Fe during the pre monsoon and monsoon seasons. while in the post monsoon season the 4 10 cm fraction was almost 
completely restored from contamination. Similar computations for Mn showed that in pre monsoon, sediments fell in the 'moderately 
contaminated' and 'moderately to strongly contaminated' categories, while in the monsoon and post monsoon seasons all the sections 
were 'Uncontaminated'. The difference observed in correlation between Fe and Mn with the various fractions of heterotrophs and nit-
rifiers indicated that though these two elements shared a similar chemistry in the environment, microbes involved in biogeochemical pro-
cesses might prefer them differentially. The relationship between TOC and FIB enumerated on 0.01% dilute nutrient agar remained at 
r = 0.50, p C 0.05 throughout the year. Hence, it could be apparently linked to their preferred concentration of organic carbon require-
ment. A relationship of r= 0.61, p < 0.01 between manganese concentration and heterotrophs recovered on different strengths of nutri-
ent agar is suggestive of their response to the metal enrichment. They could thus contribute towards maintaining the level of Mn at par 
with reference levels at Chapora. A positive correlation between Mn with Nt B 	=10, p 0.05, r = 0.58) at the experimental site during 
the non-monsoon months is suggestive of the latter's contribution to regulation of the metal concentration in the sediment probably 
through anaerobic nitrification at the expense of manganese. The study therefore supports our hypothesis that both autochthonous auto-
trophs and heterotrophs work in tandem to mitigate concentration of Mn and related metals in mangrove sediments. 
© 2007 Published by Elsevier Ltd. 

Ke vords: Iron: Manganese; Mangroves; Heterotrophs: Nitriners: Geoaccumulation 

1. Introduction 	 from pollution. The hydrological characteristics of these 
two estuarine systems are governed by the monsoon 

The Mandovi and Chapora are two tropical estuaries 	regime. The physical characteristics of the Mandovi and 
lying in close geographic proximity to each other on the 	Chapora estuaries have been described earlier (Varma 
west coast of India, but the latter is relatively distanced 	and Rao. 1975; Varma and Cherian, 1975; Murthy et al., 

1976). The estuarine channel of the Mandovi is used to 
transport large quantities of ferromanganese ores from Corresponding author. Tel +91 () 832 2450281; fax: . 91 0 832 

2450606. 	 mines located upstream to the Marmagao harbour 
Eanail address: loka@nio.org  (P.A. Loka Bharathi). 	 (Arabian Sea), while the Chapora is free from movement 

0025-326X1$ - see front matter C.7) 2007 Published by Elsevier Ltd. 
doi:10.1016/imarpolbul.2007.05.023 



1428 	 K. P. Krishnan ci u1. I +forme PoHum, Bulletin 54 i 2007i 1127 l433 

of ferromanganese ore bearing barges. Lush mangrove veg-
etation fringes both of the estuarine systems. Though the 
impacts of iron ore processing on the surface sediments 
of the Mandovi estuary have been documented earlier by 
Alagarsarny (2006), its influence on the benthic bacterial 
flora is sparsely understood. 

In this study, an attempt has been made to understand 
the downcore distributory patterns of heterotrophic and 
autotrophic bacteria together with total Fe and Mn during 
monsoon and non-monsoon periods. Retrievable heterotro-
pliic bacteria were enumerated on various nutrient strengths 
to estimate the various fractions requiring different carbon 
and nitrogen requirements. Nitrifiers were enumerated as 
a representative autotrophic community as they are one 
of the most important physiological groups in this ecosys-
tem responsible for converting ammonia to its oxidized 
forms. 

Geoaccumulation index (igeo , Muller, 1979) was used to 
assess the impact of mining on the mangrove sediments. 
Although h et, was originally devised for use with global 
standard shale values as background metal levels, Rubio 
et al. (2000) have shown the use of regional background 
values to give more appropriate results. In this study, /,„ 
has been calculated using regional metal concentrations 

Chapora mangrove sediments. A comparison between 
the Mandovi and Chapora mangrove sediments was there-
fore made to assess the probable influence of mining on 
bacterial groups in this region. We hypothesize that bacte-
rial populations in the mangrove sediments could play an 
important role in preventing the concentration of the metal 
species from accumulating. 

2. Materials and methods 

2.1. Site description and sampling procedure 

Sediment cores were collected from fringing mangrove 
forests along the Chapora and Mandovi estuaries. The con-
trol site in the Chapora estuary was located at Tuvem, 
whereas the Divar mangrove ecosystem was selected as 
the experimental site along the Mandovi estuary (Fig. 1). 
The experimental site is under the influence of ferromanga-
nese ore mining. Samples were collected during the months 
of April (Pre Monsoon), July (Monsoon) and October 
(Post Monsoon) of 2005 using a PVC hand-held sediment 
corer. Sub samples were taken at 2 cm intervals from the 
surface to 10 cm by carefully sectioning the core in the lab. 

2.2. C7ie»iira1 analyses 

Organic carbon was determined by the wet oxidation 
n:zthod with a precision of 0.01% (El Wakeel and Riley, 
1957). Sub samples for metal analyses were dried at 
60(±2) "Cfor 48 h and disaggregated in an agate mortar 
before chemical treatment for Fe and Mn analysis. For 
each sample, a known quantity (-0.2 g) of sediment was  

digested in a teflon vessel with a solution (10 ml) of concen-
trated HF (48% GR: Merck), HNO, (69% GR, Merck) & 
HCIO4  (35A GR: Merck) in a ratio of 7:3:1. The sediment 
was then dried on a hot plate in a fume hood chamber. 

An aliquot of 5 nil of the above acid mixture was added 
and dried on the hot plate for I h. Further, 2 ml of concen-
trated HCl (35% GR; Merck) was added, followed by 
10 ml of HNC);  (69% GR; Merck). The residue was 
warmed and then transferred to a clean, dry standard flask 
to make a final volume of 100 ml with double distilled 
water. The detailed procedure of sediment digestion is 
given in Balaram et al. (1995). Trace metal concentrations 
(Fe and Mn) were measured using a flame atomic absorp-
tion spectrophotometer (AAS. PerkineElmer Model 5000). 
The accuracy of the analytical procedures was assessed 
using the certified reference material MAG- I (USGS) that 
yielded results within the reference value range (Flanagan, 
1967, 1976). 

2.3. illicrobial analyses 

Sediment core was sectioned at 2 cm intervals in sterile 
conditions to obtain representative samples at 0-2. 2-4, 
4-6, 6-8 and 8-10 cm depths. Sub samples of approxi-
mately 5 g wet weight sediment were sampled using sterile 
syringe cores. The sub samples were transferred to 45 ml 
of full strength sterile seawater (10 -1  dilution). Tween80 
(50 4) was added and the mixture was sonicated at 
40 mHz for 10 s. Serial dilutions of the sediment samples 
were made in autoclaved seawater to yield dilutions from 
10 -I  to 10 -c/7  

Medium for the isolation of heterotrophic bacteria (HB) 
was prepared using various nutrient strengths of 0.01, 0.1 
and 25%. which correspond to 0.01%, 0.1% and 25% 
nutrient broth + 2% agar, respectively. A concentration 
of 100r;, corresponds to 8 g nutrient broth (HiMedia 
Laboratories Pvt. Ltd., Bombay, India) per 1000 ml seawa-
ter. About 100 pl from 10 2  dilution was plated onto the 
medium. The plates were incubated for 15 days at room 
temperature. Bacterial counts in the form of colony form-
ing units (CFU) formed on the medium were recorded after 
a 15-day incubation period at 28) +1) C. Dry weight of the 
sediment used for the dilutions was determined by drying 
the filtered sediment in an oven at 60 °C for 48 h. 

Nitrifiers (NtB) were enumerated by the most probable 
number (MPN) method of Alexander and Clark (1965). 
Nitrifying media (seawater amended with NH 4CI of 2 mM 
final concentration) was distributed in S ml quantities in 
15 nil screw capped tubes. From each dilution ranging 
from 10 I  to 10`/7 , 500 pl was inoculated in triplicate in 
the nitrifying media until the inoculation from the highest 
dilution into the culture tubes yielded negative results. 
The culture tubes were incubated in the dark for a period 
—60 days at 28(711) 'C. After incubation, the tubes were 
tested for the presence of N(X and/or NO . The combina-
tions of positive and negative tubes were scored and MPN 
was assessed from McCready's table (Rodina, 1972). 
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in the present study are comparatively higher to those 
reported by Ray et al. (2006) from the Godavari estuarine 
mangrove ecosystem on the eastern coastline of India. 
These authors reported that the average sedimentary Fe 
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Fig. 1. Location of sampling sites in the Chapora and Mandovi estuary. 

Statistical analysis was carried out using Pearson's Cor-
relation Coefficient in order to explore the possible associ-
ations existing between different variables. The analysis 
was done using Microsoft Excel 2000. The bacterial param-
eters were normalized by log transformation before 
analyses. 

3. Results and discussion 

3.1. Down core variation and index of geoaccumulation 
jar iron and manganese 

Figs. 2a, b and 3a, b show the down core variation of Fe 
and Mn during pre monsoon, monsoon and post monsoon 
seasons. The overall range in sedimentary Fe values ranged 
between 8% and 12.6% at the experimental site, while it 
ranged between 4.7% and 9.3% at the control site. The 
Mn values varied from 0.06% to 0.52% at the experimental 
site and 0.05-0.48% at the control site. The values reported 



1430 	 K. P. KrisIlium ei al. I Alurnc PoMellon BillIcrio 54 	007! 1427 /433 

0 	0.2 	0.4 
	

0.6 	 0 	0.2 	0.4 	0.6 

Mn (%) 
	

M n (Y.) 

Fig. 3. Down core variation in Mn. (a) refers to the control site while (b) 
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Monsoon). 

and Mn values were 0.004% and 0.001%, respectively. 
Studies by Alagarsamy (2006) showed that the concentra-
tions of Fe varied from 2.2% to 49,7% on the surface sed-
iments of the Mandovi estuary, while the concentration of 
Mn ranged below detection limit to 1.61%. Though reports 
from the Mandovi estuary (Alagarsamy, 2006) showed that 
metal concentrations were generally low during monsoon, 
compared to the pre and post monsoon seasons, at the 
adjoining mangrove sediments, they were found to vary. 
In the present study, the highest accumulation of Fe was 
observed during pre monsoon, while the values in the mon-
soon and post monsoon seasons were lower and compara-
ble. The variation of Mn values was similar to observations 
made by Alagarsamy (2006) in the surface sediments of the 
adjoining Mandovi estuary. 

Irrespective of the depth, the experimental site showed 
an enrichment of Fe > 100% of the control site during 
pre monsoon. Percentage of enrichment has been calcu-
lated using the formula: 

If a > h: 

Percentage of enrichment = 	1)0) * 100 

If h > a under washout conditions: 

Percentage of enrichment = (b a)/ a * 100 

wnere a is the concentration of Fe/Mn at experimental site 
and b is the concentration of Fe/Mn at control site. 

In general, enrichment increases with depth to reach val-
ues >165% at an 8-10 cm interval during pre monsoon. 
During monsoon, the general enrichment pattern is 
reversed with the highest enrichment (85.6%) at 0-2 cm. 
Moreover, observations from statistical analysis indicate 
that there is no significant correlation between Fe and 
Mn in the monsoon months, neither at the control nor at 
the experimental site. However, a direction is suggested 
in the relationship. It is negative at the experimental site 
and positive at the control site, perhaps suggesting that 
under a lower concentration of iron, manganese concentra-
tion tends to increase. With a higher concentration of iron 
up to 12-13%, this trend changes, suggesting that the  

increase of both of the elements do not get coupled after 
a threshold. 

During post monsoon, it could be observed that, though 
the trend in down core variation fairly resembled the mon-
soon season, the magnitude fell sharply to show negative 
enrichment. It was interesting to note that, although the 
control site was free from the influence of mining, the 
experimental site showed negative Mn enrichment in all 
sections during monsoon and post monsoon. This could 
be due to enhanced fresh water supply to the Mandovi 
compared to the Chapora. These observations are con-
trasted by very high enrichment (393-773%) of Mn at the 
experimental site during the pre monsoon season, espe-
cially in the depth range of 4-6 cm. A positive relation 
between Fe and Mn during, the non-monsoon months 

-= 0.64, p 0.02, if — 10) at the control site and the 
absence of such a relation at the experimental site showed 
that, though the chemistry of Fe and Mn are closely 
related, they could be differentially preferred by organisms, 
which in turn is influenced by the prevailing environment. 
Alternatively, the concentration of iron is too high to war-
rant any bacterial dependance. 

The geoaccumulation index (4„ ) ) was originally defined 
by Muller (1979) for metal concentrations in the <2 IA frac-
tion and developed for global standard shale values, which 
is expressed as follows: 

= log2(C,/l. 5 B, ) 

where C„ is the measured concentration of metal 'n' in the 
sediment and B„ is the background value for metal 'n'. 

The factor 1.5 is used for the possible variations of the 
background data due to lithological variations. 

The choice of the background value plays an important 
role in the interpretation of geological data. /,,,„ has been 
widely utilized as a measure of pollution in freshwater 
(e.g. Midler, 1980; Singh et al., 1997; Kralik, 1999) and 
marine sediments (e.g. Stoners at al., 1986; Bryan and 
Langston. 1992; Dickinson et al., 1996). Geoaccumulation 
index (1„, o ) of Fe and Mn in the experimental site (control 
site metal values were taken as reference values) was com-
puted based on Willer (1979) for all the depths and sea-
sons. The results are plotted in Fig. 4a and b. 

According to the Ivo  classification (Table 1), it could be 
inferred that the sediments in the depth range 0-10 cm fall 
in the 'uncontaminated to moderately contaminated by 
iron' category during the pre monsoon and monsoon sea-
son. While, in the post monsoon season, though the 
0--4 cm still remains 'uncontaminated to moderately con-
taminated by iron, the 4--10 cm layer has recovered from 
Fe contamination and could be termed as 'Uncontami-
nated'. The contamination due to Mn is more acute than 
Fe during the pre monsoon season. During the pre mon-
soon, the 0-8 cm section falls under the 'Moderately to 
strongly contaminated' category, while the 8-10 cm section 
falls under the 'Moderately contaminated category'. All the 
depths fall in the 'Uncontaminated' group during the mon-
soon and post monsoon and hence could be assessed as free 
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Table 

Description of sediment quality by geoaccumulation index (Willer. 1979) 

1„„ Value 1,0  Class Description of sediment quality 

5  
6 Extremely contaminated 

4-5 5 Strongly to extremely strongly contaminated 

3-4 4 Strongly contaminatcd 

2-3 3 Moderately to strongly contaminated 

1-7 2 Moderately contaminated 

0-1 Uncontaminated to moderately contaminated 

0 Uncontaminated 

from the Mn pollution. These observations could again 
suggest that, though the elements are closely related, the 
biogeochemical cycling of Mn could be more efficient and 
rapid when compared to Fe in the mangrove sediments. 
Moreover, the mangrove ecosystems play a buffering role 
by reducing the enrichment levels of Fe and Mn in the sed-
iments. The overall assessment could be that, though the 
Mandovi estuary is under the influence of ferromanganese 
ore mining with significant impact on the estuarine 
sediments, the sediments of the adjoining mangroves are 
comparatively less contaminated, but when strongly con-
taminated, could be self-regulatory and recover in the time 
scale tested. 

3.2. Total organic carbon (TOC) anti bacterial trophic 
state tare 

Down core variability in TOC for the different seasons 
are illustrated in Fig. 5a and b. TOC varied from 0.02 to 
1.8% in the control site, whereas at the experimental site, 
it varied from 0.12 to 2.74%. Lowest TOC values were 
recorded during the post monsoon season at the control  

b 0  
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10 	
I  

0 
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TOG (%) 

Fig. 5. a ) Control site and (.ts) Experimental site show the down core 

variation in Total Organic Carbon (TOO in sediments, (0 Pre 

Monsoon. + Monsoon and 1111 Post Monsoon). 

site and the highest values were recorded during the pre 
monsoon at the experimental site. 

TOC varied with different fractions of retrievable het-
erotrophic bacteria (Figs. 6 and 7). In the pre monsoon sea-
son, TOC and HB retrieved on all three strengths of 
nutrient agar showed a positive relationship at the control 
site. However, only on 0.01% HB was the correlation sig-
nificant at r -= 0.80, p < 0.05. Despite the season, it could 
be observed that at the control site the abundance of HB 
retrieved on 0.01% dNA is limited (r = 0.50. p < 0.05, 
n = 5) by the availability of organic carbon. The extent 
of limitation due to carbon availability for HB retrieved 
on 0.01% (r = 0.89, p < 0.01, a = 5) and 0.1% dNA 
(r = 0.96, p 0.001. a = 5) is maximum during the mon-
soon. Though there is a heavy organic flux into the estuary 
during the monsoon, the higher dependency of HB on TOC 
could he due to the lower lability of the organic carbon. 
Reduced residence time during monsoon could be respon-
sible for the delayed degradation of complex organic mat-
ter into simpler labile forms. Short residence time could 
also be due to the large seasonal influx of freshwater into 
the estuary, with unchanged tidal amplitude over large dis-
tances iUnnikrishnan et al., 1997). As in the control site, as 
well as at the experimental site, TOC showed a positive 
relation with 0.01'V, HB (r = 0.72. p < 0.1) during pre mon-
soon. There does not exist any significant relationship 
between the 25 and fraction of HB with TOC at the 
experimental site during the pre monsoon and monsoon 
seasons. 

The scenario in post monsoon is very different from the 
preceding seasons at both the control and experimental 
sites. It was observed that the 0.01% dNA fraction of HB 
had a positive relationship of r = 0.889 (p < 0.02) and 
r 0.79 (p <0.05), respectively. with TOC. The other frac-
tions bore an insignificant, negative relationship. However, 
it is suggestive of enhanced utilization compared to pro-
duction of organic carbon. Though the estuarine environ-
ment is eutrophic with considerable organic loading, a 
persistent relationship between TOC and the 0.01% dNA 
fraction of HB could be due to a dominant fraction of het-
erotrophs, which constantly require an optimal organic 
carbon concentration of 0.01%. Similar observations have 
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Fig. 6. Control site shows the down core variation of bacterial groups with different nutritional requirements (C) Pre Monsoon. + - Monsoon and ■ -
Post Monsoon). 

Fig. 7. Experimental site shows the down core variation of bacterial groups with different nutritional requirements (0 Pre Monsoon. 	- Monsoon and 

■ - Post Monsoon). 

been made earlier by Goltekar et al. (2006) in the Mandovi 
estuary, which indicate that bacteria from relatively more 
dynamic estuarine systems seemed less resilient compared 
to the coastal and offshore populations. as they were best 
retrieved only on I% nutrient strength. 

3.3. Relation of .  sediment geochemistry with bacterial trophic 
status 

It was interesting to note that TOC related positively to 
Fe (r = 0.67, p < 0.01, n = 15) and Mn (r = 0.92,p < 0.001, 

= 15) at the experimental site, whereas the relationships 
were negative at the control site (r = —0.72, p < 0.001, 
n = 15 for Fe and r = p < 0.05, n= 15 for Mn). 
These relationships could imply that at the experimental 
site there is considerable extraneous input of TOC favoring 
the accumulation of Fe and Mn. Wangersky (1986) has 
reported that coatings of organic matter prevalent in fine-
grained sediments bind a variety of trace elements. Enrich-
ment of Mn in the pre monsoon and its subsequent 
removal in the monsoon indicate that Mn turnover time 
could be much less, as it is actively removed both by phys-
ical processes and biogeochemical sequestration. It could 
be observed that at the experimental site NtB are higher 
at the depth ranges of 2-4 cm and 8-10 cm. Irrespective  

of the season, a positive correlation between Mn and 
NtB (r = 0.61, p < 0.01. n = 15) at the experimental site 
suggests that Mn could be used actively as a co-factor for 
the ammonia monoxygenase enzyme. More importantly, 
it could also serve as an alternate terminal electron accep-
tor in anaerobic respiration (Hulth et al., 1999). This rela-
tionship disappeared when the Mn levels decreased during 
the monsoon season and was re-established during the post 
monsoon season = 0.62, p < 0.02, n 10) when the Mn 
levels increased. Absence of a significant relationship 
between Fe with various fractions of heterotrophs and nit-
rifiers at both the control and experimental sites suggested 
that Fe is present in excess and perhaps non-limiting. 
Moreover, Mn(IV) reduction preceeds that of Fe(III) 
because of reduction energetics of the solid phases (Burdige 
et al., 1992). 

The relationship between Mn and various fractions of 
HB indicate that the latter has a considerable influence in 
regulating the levels of Mn. At the experimental site, HB 
cultured on 0.01`V) dNA related to Mn during pre monsoon 
(r = 0.826,p < 0.05, ri 5) and further strengthened during 
the monsoon (r 0.968, p < 0.001, n = 5). HB on 0.1% 
dNA also showed a relationship to Mn concentrations 
(r — 0.951. p 0.001, n = 5) during the monsoon. How-
ever, during post monsoon, the variation in HB on a higher 
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strength of 25% nutrient agar affected the variation in Mn 
concentration up to 90% (r = 0.949, p < 0.001, n = 5). All 
these observations show that the different fractions of HB 
could respond in sequence to the Mn enrichment taking 
place in the pre monsoon season. These relationships dem-
onstrate that HB are actively involved in maintaining the 
level of Mn on par with reference levels at the Chapora 
estuary. 

A very strong positive correlation between NtB and 
TOC in the pre monsoon season (r = 0.987, p < 0.001, 
a = 5) showed that heterotrophic nitrification could be a 
dominant process controlling the cycling of ammonia in 
sediments. The potential of heterotrophic nitrification in 
sediments has been previously reported by Schimel et al. 
(1984). Furthermore, the absence of a relationship in mon-
soon and a negative relationship in post monsoon 
(r = -0.673, p < 0.1, 11 = 5) could indicate a shift from a 
relatively heterotrophic to relatively autotrophic mode of 
nitrification. 

4. Conclusion 

The present study shows that the heterotrophs respond 
to the Mn enrichment and could be active in maintaining 
its level and the other associated metal concentrations like 
that of Fe on par with the reference site. A positive correla-
tion between Mn with NtB at the experimental site during 
the non-monsoon months is indicative of the latter's contri-
bution to regulation of the metal concentration, especially 
of Mn in the sediment, probably through its use as a termi-
nal electron acceptor in respiration at the expense of man-
ganese oxide. The study therefore lends support to our 
hypothesis that both autochthonous autotrophs and 
heterotrophs work in tandem to mitigate manganese and 
perhaps related metals like iron in mangrove swamps. 
Though the Mandovi estuary is under the influence of ferro-
manganese ore mining with relatively higher sediment metal 
concentrations, the adjoining mangroves are comparatively 
less contaminated due to the self-regulation facilitated by 
the native bacterial flora. 
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The spatial and temporal abundances of limno-tolerant and halo-tolerant bacteria were investigated in 

the tide-dominated Mandovi estuary along the west coast of India. These investigations were carried out 

in relation to various environmental parameters on a monthly basis at three fixed stations for a year. On 

an annual basis, the estuary showed an average salinity of 28.2, 17.4, and 12.6 at the mouth, midstream 

and upstream region. Halo-tolerant retrievable count (HTRC) and limno-tolerant retrievable count (LTRC) 

of bacteria were in the order of 10 6 1:1 . Among the environmental parameters, a strong negative rela -- 

tionship between salinity and nitrate (r = —0.806. p < 0.001) suggested that 64% of the variation could be 

due to fresh water influence in the estuary. The limno-tolerant retrievable count (LTRC) brought about 

23% variations in nitrate concentration. This influence was maximum during the monsoon (r = 0.522; 
p < 0.05) especially in the surface waters (r = 0.624; p 0.001) suggesting nitrate reduction by LTRC. 

Measurements of nitrate reducing activity (NRA) in whole-water samples along the salinity gradient in 

the estuary also revealed higher reduction rates at lower salinity upstream. This was further confirmed 

by culture experiments where the hi -lino-tolerant bacteria showed higher NRA than halo-tolerant forms. 

It is therefore suggested that LTRC is more actively involved in the variation of nitrate that enters the 

Mandovi estuary particularly during the monsoon. 
2008 Elsevier Ltd. All rights reserved. 

1. Introduction 

An estuary, as the meeting point of fresh and saline waters, is 
a dynamic environment which is subjected to a wide variation in 
physical and chemical parameters. In the estuary, the bacterial 
community may comprise physiologically versatile species 
belonging to the autochthonous estuarine bacterial population 
and/or the allochthonous fresh water or terrestrial populations. 
Although the fresh water bacteria are introduced with the nutrient 
rich waters, they could be adversely affected by an increase in 
salinity in the estuary (Hyun et al., 1999) compared to the 
autochthonous estuarine bacteria. Estuarine microorganisms thus 
require the capacity for adaptation to the continuous mixing of 
waters, the different residence times and transportation of mate-
rials from diverse sources (Igeno et al., 1995: Almeida et al., 2001). 
The adaptive response of the bacteria may be either by changing, 
their abundance and/or their activity. 
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The Mandovi is a tide-dominated tropical estuary, located 
between 15°25' to I5 - 31'N and 73'45' to 73 - 59'E on the west coast 
of India and is well mixed throughout the year. Due to its location in 
the south-eastern Arabian Sea, it is subjected to wind-forcing 
resulting from the annual reversal of monsoon winds (Wiggert 
et al., 2005). The estuary receives an annual rainfall of the order 
250-300 cm yr - I  during the southwest monsoon (June-
September) and less than 10 crn yr -1  during the rest of the year 
(Shetye and Murthy, 1987). It shows a characteristic shift from an 
autotrophic phase during the non-monsoon period to heterotro-
phic mode during the monsoon (Ram et al., 2003). 

The nitrate concentration is high (Sardessai and Sundar, 2007) in 
this estuary and the sources of nitrate are from terrestrial influx, the 
mangrove swamps (Qasirn and Sengupta, 1981) and from the iron 
ore extraction-plant discharge (De Souza, 1983) located upstream. 
Do bacteria from these estuarine waters govern the level of nitrate? 
To address this question, we examined both autochthonous halo-
tolerant and allochthonous limno-tolerant community along with 
nitrate concentrations in the Mandovi estuary. We hypothesize that 
the allochthonous limno-tolerant bacteria are responsible for 
governing the concentration of nitrate in the Mandovi estuary. Our 
hypothesis is further developed by laboratory experiments with 
whole-water sample and isolates of limno-tolerant and halo-
tolerant forms on nitrate reducing activity at different salinities. 
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2. Materials and methods 

Surface and bottom waters were collected from the mouth (Lat 
15°29'35.81"N; Long 73'4}8'35.33"E), midstream (Lat 15'30' 
Long 73°54'00.83"E) and upstream (Lat 15'32'35.21"N; Long 
73'57'24.43"E) of the estuary at monthly intervals for a period of one 
year using Zobell water samplers (Fig. 1). 

2.1. Physico-chemical parameters 

Water temperature was measured immediately after collection 
of sample onboard using a field thermometer. All the other 
physico-chemical variables were estimated in triplicate in the 
laboratory after the transport of water samples in refrigerated 
conditions. pH was determined using pH meter (Elico LI 614 pH 
Analyser). Salinity, nitrate, and nitrite were estimated as described 
by Strickland and Parsons (1968). For oxygen estimation, the water 
samples that were fixed immediately on board and were then 
analyzed using Winkler's titrimetric method (Carpenter, 1965). 
Chlorophyll was estimated based on the fluorimetry method of 
Yentsch and Menzel (1963). Suspended load was determined 
gravimetrically on pre-weighed GF/F (Whatman) filters as 
described by Krey (1964). 

2.2. Microbiological parameters 

Total bacterial numbers were enumerated by the acridine 
orange direct count (AODC) method (Hobbie et al., 1977). Samples 
were fixed immediately with formaldehyde (2% final concentra-
tion). A fixed amount was filtered through 0.2 pm pore size black 
polycarbonate membrane filters (Nucleopore), stained with 0.01% 
acridine orange and enumerated using an epifluorescence 
microscope (Olympus BH). Total viable counts were estimated 
(Kogure et al., 1979) by incubating the sample with yeast extract 
for 6 h with subsequent filtration, staining, and enumeration as 
above. Abundance of limno-tolerant and halo-tolerant bacteria 
was estimated from the CFU (Colony Forming Units) retrieved on 
nutrient agar prepared in distilled water (salinity 0) and aged 
estuarine water (salinity - 30) respectively (Krumbein, 1971). 
Enumeration was carried out after 48 h of incubation at 28 ± 2 °C 
and counts were expressed in numbers per liter. Interrelation-
ships between bacterial and environmental parameters were 
statistically examined using Statistica and Analysis Tool Pack in 
Microsoft Excel. The microbial variables were log transformed 
before analyses. 

2.3. Nitrate reduction along salinity gradients 

Surface water samples were collected in sterile polypropylene 
bottles for the determination of nitrate reducing activity (NRA) 

15'30' 

N 

along salinity gradients in the Mandovi estuary i.e. towards the 
upstream (salinity 5), midstream (salinity - 17) and mouth 
(salinity 34). Water samples were transferred to sterile conical 
flasks. Allylthiourea (ATU) at a final concentration of 86 pM was 
added to inhibit additional nitrate input through ammonium 
oxidation (Cinestet et al., 1998). Triplicates were maintained 
throughout the experiment and the flasks were incubated in the 
dark at room temperature in a static condition. The fall in nitrate 
content from each test flask was estimated at 0-1.5 and 3 h as 
described above. Cell counts were also done using a cell counting 
chamber under a bright field microscope (Nikon Eclipse 50i). 

Nitrate reducing activity was estimated with representative 
halo-tolerant and limno-tolerant isolates. These isolates were 
grown on respective media. Pure cells harvested from culture plates 
were used. Cell suspension was vortexed and centrifuged at 
8000 rpm for 10 min using a REM/ R-24 centrifuge. The supernatant 
was discarded and washing procedure was repeated. The cell 

with 0.1 0D600  suspension was then added to 500 ml of test 
medium amended with ATU. Nitrate reducing ability in low (5) and 
high (34) sal: ne conditions was determined as described above and 
are expressed as aM cell - 1  h 1 . Data of only representative cultures 
are presented. 

3. Results 

3.1. Variation in physico-chemical parameters 

The temperature variation throughout the year was negligible 
with slight drop during cold seasons and rainy months. Annual 
average temperature of the estuary was 27.2 (±2.8) °C. The annual 
average salinity was 20.3 ( 112.3) for the whole estuary. The average 
salinity varied from 12.6 ( +11.2) in the upstream through 17.4 ( 12) 
in the midstream to 28.2 (±9.25) in the mouth. During the 
monsoon period the salinity dropped to a low of 0.11, 0.11, and 12.7 
at upstream, midstream and mouth respectively. The average 
concentration of nitrate during the monsoon was 6.2 (±3.1) tM 
NO3-N whereas the value decreased drastically to 1.7 (±1.4) p.M 
NO3-N in the non-monsoon. Salinity and nitrate showed opposite 
trend (Fig. 2). In general, variation was more pronounced when 
data was analyzed seasonally (Table 1). In the surface waters 
salinity varied from 0.11 to 18.7 in the monsoon and from 0.9 to 34.7 
in the non-monsoon. However, in the bottom waters the salinity 
ranged from 0.09 to 31.7 and from 13.6 to 34.9 during the monsoon 

Non monsoon Monsoon 	Non monsoon 

Fig. 1. Sampling locations along the Mandovi estuary (Stn 1: mouth; Stn 2: midstream; 	rig. 2. Annual variation of :salinity and nitrate in the estuary. Mouth ( ), midstream 

Sin 3: upstream). 	 and upstream ( 
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Table 1 
Physico-chemical variables in surface and bottom waters during monsoon and non-monsoon periods. Values in parenthesis - meant SD. 

31 

Variables Monsoon Non-monsoon 

Surface Bottom Surface Bottom 

Temperature ( -C) 25-31' (28 3_ 2.05) 24-30.5 (27 ± 2.1) 20.5-32.5 (26.5 , 3) 19.5-32(25 ± 3.5) 
pH 6,8-7.8 (7 ± 0.31) 6.7-7.8 (7.3 	0.3) 7.2-8.2 (7.7 it 0.26) 7.4-8.3 (7.87 ± 0.2) 
Salinity 0.11-18.7 (9.4 t 9.9) 0.09-31.7 (15 ± 12) 0.9-34.7 (17.8 ± 10.3) 13.6-34.9 (24 ± 6.2) 
Dissolved oxygen saturation (x) 94-73 (84 ± 7.8) 104-53,7 (78.9 ± 15.4) 106-61 (83 ± 10) 111-62 (87± 133) 
Nitrate (04) 3.6-14.1 (8.8 ± 2.9) 1.17-13.3 (7.2 ± 3.4) 0.05-6.44 (3.2 t 1.6) 0.09-3.6 (1.8 ± 1.1) 
Nitrite (pM) 0.6-6.84 (3.7 ±- 2.3) 0.72-8.9 (4,8= 2.8) 0.001 22.3 (1.1 ± 0.6) 0.001-2,2 (1.14 ± 0.6) 
Suspended load (g 0,01-0.1 (0.06 ± 0.04) 0.008-0.17 (0.09 ± 0. 06) (1.008-0.29 (0.14 t 0.08) 0 .05-0.32 (0.18 ± 0.07) 
Chlorophyll (gg L 2.6-004 (1.3 ± 0.86) 0 04-3 7 (1.8 3- 1.1) 0.04-10.59 (5 3 ± 2.8) 0.1-5.1 (2.6 ± 1.32) 

Range 

and non-monsoon respectively. The percentage of mean dissolved 
oxygen saturation during monsoon and non-monsoon were 
(84 ± 7.8) and (83 ± 10) respectively in the surface waters. At the 
surface, nitrate concentration ranged from 3.6 to 14.1 pM with an 
average value of 8.8 (±2.9) µM in the monsoon. The distribution in 
nitrite concentration followed similar trend. The suspended load 
was more during the monsoon compared to the non-monsoon 
period. Chlorophyll a concentration was higher during the 
monsoon period both at the surface and bottom. 

3.2. Bacterial parameters 

The variations in total count (TC), total viable count (TVC), 
limno-tolerant retrievable count (LTRC), and halo-tolerant retriev-
able count (HTRC) are shown in Table 2. The total count of bacteria 
ranged from 108  to 109  L-1. The mean annual value of TC showed 
the maximum in the bottom waters during the non-monsoon 
season. The direct viable counts comprised 25% of the total bacterial 
abundance. These varied from the lowest 19.5% at the bottom in the 
non-monsoon season to the highest 51.7% at the surface in the 
monsoon season. The densities of LTRC and HTRC formed 0.008% 
and 0,014% respectively of the viable bacterial population in the 
estuary. On an average, the retrievability of halo-tolerant bacteria 
was double that of limno-tolerant bacteria at 10 6  CFU L " 1 

 throughout the year (Fig. 3). The retrievability of LTRC during 
monsoon was of the order 106  CFU L -1 . while during the non-
monsoon their abundance decreased by an order. The highest 
abundance of HTRC and LTRC was detected in the non-monsoon 
and monsoon season respectively .The LTRC/HTRC ratios were high 
in midstream. The highest value of 14.2 (±66.9) was recorded 
during the monsoon season (Table 3). The halo-tolerant forms did 
not show any significant relation to the variation in physico-
chemical parameters. The variation in the limno-tolerant counts 
related significantly to the variation in nitrate by 23% (p < 0.001) on 
an annual basis. During monsoon, nitrate related negatively to 
salinity (r = 0.536; p < 0.05). Variation in the LTRC was found to be 
responsible for 27% (p < 0.05) of the variation in nitrate during this 
season particularly in the surface waters (r 0.624; p < 0.001). 
During the non-monsoon. LTRC caused 27% variation in nitrite 
(Table 4).  

3.3. Nitrate reducing activity 

The initial concentrations of nitrate were 4.31 (.±.0.2)1.1M NO3 -N 
at 5, 3.5 (±0.02) NO3--N at 17, and 3.0 (±0.06) pM NO3-N at 34 
salinities (Fig. 4). Nitrification inhibited incubations with water 
collected along salinity gradients in the estuary revealed higher 
NRA in low saline waters upstream as compared to the higher 
salinity waters towards the mouth. Though increasing salinity 
generally inhibits the NRA activity, our observations show highest 
NRA of up to 8.72 (±0.1) aM cell -1  h 1  in midstream (salinity = 17) 
where the ambient nitrate concentration was 3.5 (±0.02) pM. At 
salinity 5 specific NRA of limno-tolerant isolate was 
55 aM cell -1  h " 1  whereas for halo-tolerant it was 9.87 aM NO3- 
N cell 1 1-1 I . Specific NRA in the estuarine isolate showed 11-92% 
repression of nitrate reduction at higher salinity (Table 5). 

4. Discussion 

4.1. Physico-chemical parameters 

Mandovi is a fresh water dominated estuary, considerably 
influenced by tides. Even during the pre-monsoon period there is 
enough fresh water influx to keep salinity close to zero upstream to 
about 40 km which prevents high salinity waters from intruding 
upstream (Shetye et al., 1995). In the present study, the average 
salinity of the estuary was 12.6 (111.2) and 28.2 (±9.25) in the head 
and mouth respectively. The upstream and mid stations close to 
lower region of the estuary (Fig. 1 ) were selected to evaluate the 
effect of salinity on nitrate concentration and also to enumerate 
LTRC and HTRC. 

The low salinity observed during the monsoon season in all the 
3 stations was due to a considerable amount of run off from a larger 
tributary system and also because of its versatile topography 
(Qasim and Sengupta, 1981). During the season, the estuary is 
known to be stratified 2-3 m below surface depending on the 
depth. Two salt wedges are formed which extends 10 km from the 
mouth of the estuary (Qasim and Sengupta, 1981) though it 
remains well mixed during the non-monsoon (Varma et al., 1975). 
Therefore, the presence of lighter fresher water above and the 
denser saline water below leads to a lesser extent of mixing. The 

Table 2 
Total count (TC), total viable count (TVC), halo-tolerant retrievable count (HTRC) and limno-tolerart retrievable count (MC) of bacteria in surface and bottom waters during 

monsoon and non-monsoon periods. Values in parenthesis mean t SD. 

Variables (L 	 Monsoon 

 

Non-monsoon 

    

Surface 
	

Bottom 	 Surface 	 Bottom 

TC (109 ) 
WC (109 ) 
HTRC (106) 
LTRC (106 ) 

Range. 

4.05-0.9" (2 4 ± 0 9) 
1.8-0.2 (1 ± 0 5) 
9.2-0.3 (4.7 ± 2.5) 
3.3-0.1 (1.7 ± 1 05) 

12-0.6 (6.3 it 3.3) 

2.2-0.19 (1.2 ± 0.4) 
5.1-0.06 (2.6 ± 1.5) 
20-0.12 (10± 5.5) 

13.2-0.7 (7 ± 3) 
2.8-0.3 (1.6±0.6) 
13-0.06 (6.6 ± 3.2) 
1.5-0.06 (0.75 ± 0.35) 

41.4-0.74 (21 ± 13.7) 
6.7-0.4 (3.6 ± 1,8) 
13.2-0.01 (6.6 ± 3.5) 
4.08-0.03 (2 ± 1.1) 
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an Surface LTRC Nat Surface HTRC 	Bottom LTRC 	Bottom HTRC 

Fig. 3. Annual variation of halo-tolerant retrievable count (H-tRC) and limo-tolerant 

upstream. 

present study also indicates that nitrate concentrations decreased 
from the head towards the mouth of the estuary as has been 
reported elsewhere (Dong et al., 2000, 2002). Nitrate and nitrite 
concentrations in the estuary were higher during the monsoon 
compared to the non-monsoon period with surface water recording 
higher concentration than the bottom water. This is because the 
estuary is also a receptacle for continuous nutrient and terrigenous 
organic inputs from riverine run off and mixing of fresh water and 
seawater leading to chemical precipitation (Eckert and Sholkovitz, 
1976; Karbassi et al., 2008) particularly during monsoons. The 
higher level of suspended load in the monsoon (0,14 gL 1 ) 
compared to non-monsoon (0.068 gL-1 ) would have contributed to 
the high level of nitrate. A similar observation was made in the 
Zuari estuary (De Souza, 1977) where nitrate levels were high in the 
surface waters and was correlated to the influence of fresh water 
influx following precipitation. The negative relationship between 
salinity and nitrate in the surface waters observed in the present 
study could be attributed to extraneous input of nitrate into the 
system by fresh water run off. The influx of fresh water in the head 
region throughout the year, especially during the monsoon would 
bring relatively high concentration of inorganic nitrogenous species 
into the estuary (Bhunia and Choudhary, 1982; Chandran and 
Ramamoorthy, 1984; Vijayakumar et al., 2000). The percent oxygen 
saturation in the estuary ranged from 53 to 111% annually with the 
least values during the monsoon which suggests a predominance of 
heterotrophic respiration. Increased allochthonous inputs have 
been shown to result in enhanced heterotrophic respiration and 
reduced primary production in the estuary (Ram et al., 2003). 
Intrinsic nitrification could also have a role in augmenting the 
levels of this parameter. In the non-monsoon season the variation 
in chlorophyll accounted for about 15% (p < 0.001) variation in 

nitrate concentration, while this relationship did not prevail during 
the monsoon. As there was no relationship between chlorophyll 
and nitrate it is suggested that excess of nitrate in the water did not 
limit the primary production during monsoon. Further, the signif-
icant relationship between chlorophyll and nitrate during the 

. rievable come (LTRC) at the surface and bottom waters. A-mouth. 8-midstream, C- 

non-monsoon as observed in the present study suggests nitrate 
removal from the estuary could be largely due to phytoplankton 
uptake. Earlier studies by Dham et al. (2002) have also demon-
strated that the nitrate uptake by phytoplankton was more during 
the non-monsoon than the monsoon. In addition, chlorophyll 
concentration was low during monsoon as compared to non-
monsoon season suggesting reduced primary production due to 
increased turbidity during the monsoon as reported for Schelde 
estuary (Soetaert and Herman, 1995). However, the nitrate and 
nitrite concentrations in these waters are generally high due to 
enrichment caused by the discharge from extraneous sources like 
the iron ore screening plants throughout the year (De Souza, 1983). 

4.2. Microbiological parameters 

The bacterial abundance in this estuary is comparable to that of 
the earlier reports by De Souza et al. (2003) and Ram et al. (2003). 
About 25% of the total bacteria were viable in the whole of the 
estuary. This study also finds that the culturable forms of HTRC and 
LTRC are also high. The high amount of suspended load could 
provide the required microenvironments (Fletcher, 1991; Kirch-
man, 1993). Previous reports show that LTRC is known to be 
abundant when fresh water inflow is high (Nair and Bharathi, 
1982). Interestingly, the present study reveals that the HTRC and 
LTRC were of similar magnitude. The culturability is different with 
the halo-tolerant forms being marginally higher than and limno-
tolerant. This was in contrast to what has been reported in Gironde 
estuary where halo-tolerant far out-numbered limno-tolerant 
bacteria (Priem et al., 1987), Thus, the limno-tolerant forms in the - 
lower estuary seem to have adapted themselves to salinity fluctu-
ations as the estuary maintained a salinity close 20 throughout the 
year except during monsoon thereby deriving the benefit of 
nutrients. Seasonal precipitation and salinity-induced stratification 

Table 4 
Pearson's correlation of variables with r-values in the estuary. 

Table 3 
Spatial and seasonal variation in LTRC/HTRC ratio. 

Variables Correlation -r 

Estuary whole 
Estuary surface 

Monsoon 

Non-monsoon 

Nitrate 

Nitrate 

Nitrate 

Nitrate 

Nitrate 
Nitrate 

Nitrite 

LTRC 
Salinity 

LTRC 
Salinity 

LTRC 
Chlorophyll 

LTRC 

0.479b  
-0806b 
0.624°  
-0.536' 

0.522' 
0.383b 

 0.524° 

Location 	 Estuary 	 Season 

Monsoon Non-monsoon 

Mouth 	 0.62 (±0.54) 	0.8 (±0.4) 
Midstream 	14.2 (±66.9) 	41.8 (J...-115.8) 

Upstream 	 0.61 (±0A) 	 0.6 (I0.31) 

0.53 (±0.57) 

0.49 (±0.4) 

0.58 (10.55) 
p 	0.05. 
p 	0.001 . 
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17 	 34 

Salinity 

Fig. 4. Variation in nitrate concentration and specific nitrate reducing activity (NRA) 

along salinity gradients in the Mandovi estuary. Ambient nitrate: vertical bars: Specific 

nitrate reducing activity: smooth line. 

apparently control the availability of the major nutrients in the 
water column of the estuary as elsewhere (Vareethiah et al., 1998). 

Nitrate levels may be influenced by microbially driven processes 
(Smith et al., 2007) mediated by a diverse polyphyletic group of 
bacteria (Zumft, 1997). Nitrate in the Mandovi estuary could be 
removed through the reductive cycle by both halo-tolerant and 
limno-tolerant bacterial communities. LTRC was found to be 
responsible for the variation in nitrate during the monsoon season 
particularly in the surface waters. Even during the non-monsoon 
season, [FRC caused variation in nitrite. The significant relationship 
between LTRC and nitrite concentration observed in the present 
study emphasizes that the limno-tolerant bacteria could also be 
responsible for nitrite reduction in the estuary. Yoshie et al. (2004) 
have shown that salinity decreases the nitrite reductase gene 
diversity in denitrifiers. Quantification of nitrate/nitrite reducing 
phylotypes has shown that the gene copy numbers were detected 
the highest at the head of estuary where denitrification dominated 
(Smith et al., 2007). Consequently, this high nitrate input could 
trigger higher population of nitrate reducers and therefore nitrate 
reductase activity. 

Experiments to determine nitrate reducing activity in ambient 
water samples have shown higher NRA to occur in low saline 
waters where nitrate concentrations were relatively high. Studies 
by Rysgaard et al. (1999) in estuarine sediments have shown that in 
situ nitrification and denitrification decreased with increasing 
salinities, with the most pronounced reduction of approximately 
50% occurring when the salinity was raised from 0 to 10. Our study 
demonstrated that an increase in salinity up to 10 showed an 
increase of NRA by about 33% and this trend was observed up to 17. 
Nevertheless our experiments also indicated that when there was 

Table 5 

Specific nitrate reducing activity (NRA) of limno-tolerant and halo-tolerant bacteria  

at salinity 5 and 34. 

Isolate NRA (aM cell N 	1 ) Percentage reduction in NRA 

Salinity 

5 34 

Linino-tolerant 

Halo-tolerant 

55.09 (±3.3) 

9.87 (±0.08) 

4.40 

8.72 

(±3.12) 

(±0.91) 

92.01 

11.65 

a 100% increase in salinity from 17 to 35 there was a decrease in 
NRA by 50%. Recently, Miranda et al. (2008) have also shown that 
nitrification rates are higher at intermediate salinities than in either 
fresh water or seawater. Moreover, the ratio of the distribution of 
LTRC/HTRC clearly shows that estuary is dominated by the limno-
tolerant forms especially at the midstream and during the 
monsoon. Thus the higher NRA at the midstream is attributed to 
the higher ratio. Further, the tighter coupling of LTRC to nitrate 
concentration as revealed by lowered NRA in estuarine isolates 
under halo-tolerant conditions could he ascribed to repression of 
nitrate reductase at higher salinity. Igeno et al. (1995) have 
demonstrated that increase in salinity led to inhibition of nitrate 
uptake resulting in a drop in intracellular nitrate, thus repressing 
the nitrate reductase gene. Studies on the activity of nitrate 
reductase enzyme in a halo-tolerant cyanobacterium Aphanothece 
halophytica by Thaivanich and Incharoensakdi (2007), have also 
shown decline in NRA when sodium chloride concentrations were 

mM. Though it is generally known that salinity can have 
a significant effect on inorganic nitrogen cycling in estuarine 
ecosystems, the differential inhibition in the reducing potential of 
estuarine bacteria observed in the present study is suggestive of 
optimal salinity favoring nitrate reduction. Although the nitrate 
reductase gene is known to be constitutive and widespread, the 
extent of influence of nitrate concentration on LTRC demonstrates 
that the environment could govern the degree of phenotypic 
expression in the LTRC community. Moreover, the nitrate reducing 
activity was found to be more widely expressed in LTRC especially 
during the monsoon during which the nitrate flux is pre-dominant. 
Thus, nitrogen cycling in estuarine waters could be maximal at 
optimal salinity levels. LTRC could therefore play a significant role 
in the variation of nitrate particularly in the surface waters where 
its concentration is greater. 

5. Conclusion 

Limno-tolerant bacteria, though less in abundance, are actively 
involved in the variation of nitrate that enters the Mandovi estuary 
particularly during the monsoon. Nitrate reduction in the estuary is 
enhanced at optimal salinity levels. Though the NRA activity is 
generally inhibited by increasing salinity, our observations show 
that different microbes exhibit different levels of inhibition varying 
between 11 and 95%. The Mandovi estuary could therefore act as 
a major sink of nitrogen throughout the year especially during the 
monsoon. 
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Denitrification: An Important Pathway for Nitrous Oxide Production 
in Tropical Mangrove Sediments (Goa, India) 

Sheryl Oliveira Fernandes and P.A. Loka Bharathi* National Institute of Oreancgraphy 

Patricia C. Bonin and Valerie D. Michotey Centre d'Oreanologie de Marseille, 

Net nitrous oxide production and denitrification activity 
were measured in two mangrove ecosystemi of Goa, India. 
The relatively pristine site Tuvem was compared w Divan 
which is prone to high nutrient input. Stratified sampling at 
2-cm intervals within the 0- to 10-cm depth range showed 
that N20 production at both the locations decreased with 
depth. Elevated denitrification activity at Divar resulted in 
maximum production of up to 1,95 nmol g ' 11 -1  at 2 
to 4 cm, which was three times higher than at Tuvem. Detailed 
investigations to understand the major pathway contributing to 
N,O production performed at Tuvem showed that incomplete 
denitrification was responsible for up to 43 to 93% of N,O 
production. Nitrous oXide.pnAluction rates t..1‘..)sely correlated 
to nitrite concentration (n = 15; r = —0.47; p < 0.05) and 
denitrifier abundance (r. = 0.55; p 01)5), suggesting that nitrite 
utilization by microbial activity Lll, to N 20 production. 
Nitrous oxide production through nitrification was below 
detection, affirming that denitrification is the major pathway 
responsible for production of the greenhouse gas. Net  N20 

production in these mangrove systems are comparatively higher 
than those reported from other natural estuarine sediments and 
therefore warrant mitigation measures. 

T IE MARINE CNVIRoNimEN is recognized 'as a net source of 
nitrous oxide (N,O) to the atmosphere (Corredor et al., 

1999). Estuaries and coastal regions account for approximately 
60% of the total oceanic N,O flux (Bange et al., 1996). The N 20 
molecule is a precursor to compounds involved in the destruction 
of the stratospheric ozone layer (Yamagishi et al., 2007), which 
protects the Earth from harmful ultraviolet radiation. Since about 
1750 onward, industrialization has increased the global atmo-
spheric N,O concentration from —270 to 319 p.L (IPCC, 
2007). Although N 2 0 is responsible for 5 to 6% of the green-
house effect (Houghton et al., 1996), its lifetime of about 114 yr 
makes the global warming potential of this biogenic gas 298 times 
greater than that of CO, over a 100-yr time frame (Forster et al., 
2007). Nitrous oxide is produced as a by-product during several 
microbiological processes including nitrification, denitrification, 
and dissimilatory nitrate reduction to ammonium (De Wilde and 
De Bie, 2000). However, denitrification and chemolithotrophi 
nitrification appear to he the main biological sources of N 20 emis-
sion in natural systems (Bremner and Blackmer, 1978; Firestone 
and Davidson, 1989; Bonin et al., 2002). 

In ecosystems with high inputs of nitrogen (N) such as estuar-
ies, denitrification mediates reduction of N loadings and therefore 
contributes to control of eutrophication (Nogales et al., 2002). 
Mangroves ecosystems constitute nearly 75% of tidal vegeta-
tion in tropical regions (Alongi et al., 1989), and they play an 
important role in the biogeochemical cycles of coastal and marine 
CCOSyS RATS ('ihorsR:n and lose, 2001). the N cycle within man-
grove forests is mediated predominantly by microbial rather than 
chemical processes (Alongi et al., 1992). Inorganic N and other 
parameters important for N turnover can fluctuate widely due 
to the position of mangroves in the intertidal zone (Meyer et al., 
20m). An thropogenic inputs such as effluents from sewage treat-
ment plants (Corrector and Morell, 1994) increase the rate of N 
loading to mangroves (Mu noi- aph: et al., 2()02).'1 hey func-
tion as efficient buffer zones mitigating large amounts of nutri-
ents (Corredor and Morel!, 1994) in the estuarine system and 
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reduce water pollution. Chiu et al. (2004) stated that as much 
as 55% of the N loss in mangrove sediments occurs through 
the denitrification pathway. Earlier studies recorded a sub-
stantial benthic flux of N 20 in mangroves (Corredor et al., 
1999; Munoz-Hincapie et al., 2002; Kreuzwieser et al., 2003). 
Mangrove sediments are largely anaerobic and rich in organic 
matter, providing favorable conditions for denitrification. 
However, redox processes in the N cycle operate in tandem, 
stressing the importance of considering total N 20 production 
rates from nitrification and denitrification (Meyer et al., 2008). 
Further, N.,0 production is dependent on a number of envi-
ronmental factors, such as inorganic N concentrations (Doug 
et al., 2002), sediment redox potential (Van Cleemput and 
Samater, 1996), and organic carbon availability (Rosswall et 
al., 1989). 'therefore, assessment of environmental parameters 
and their interrelationships with net N 2 0 production in man-
grove sediments is crucial in determining the key parameters 
governing its formation. 

In the Indian Ocean region, high N,O emission has so far 
been reported within the oxygen minimum zones in the Arabian 
Sea (Naqvi et al., 2000; Bange et al., 2001). Recently, investi-
gations by Krithika et al. (2008) in a South Indian mangrove 
system have shown that the benthic N 2 0 flux varies between 
0.41 and 0.77 umol rn -2 11- ', indicating that these wetlands are 
significant contributors of the radiative gas to the atmosphere. 
However, little is known about the net production or origin 
of N2 0 in these environments. In the present study, we quan-
tified down-core variation in denitrification activity and net 
N 20 production in two mangrove ecosystems of Goa, India— 

one relatively pristine and the other influenced by extraneous 
nutrient input. Detailed studies to assess the major pathway 
For N0 production and environmental factors responsible 
for its generation have been restricted to the relatively undis-
turbed site. Because there is growing concern over the role of 
mangrove ecosystems with respect to increased N 20 fluxes to 
the atmosphere, the study will enhance our knowledge on the 
contribution of the N cycle processes in N,O production. In 
addition, our study can help initiate the formulation of mitiga-
tory measures to minimize N 20 production and its emission 
from estuarine zones of the Indian Ocean region. 

Materials and Methods 

Study Area and Sampling 

Investigations were performed at mangrove forests located 
at Tuvem and Divar along the rivers Chapora and Mandovi, 
respectively, in Goa on uhc west coast of India (Fig. ). The site at 
Tuvem (15'39'94" N; 73'47'65" E) is set amid coconut (Cocos 
nucifira L.), cashew (Anacardium occidentale L.), and banana 
(Musa L.) plantations and is comparatively less influenced by 
anthropogenic activities. The dominant species of mangroves 
found at Tuvem are mainly represented by Acanthus 

acoecoria agallocha, Caesalpinia spp., Avicennia officina-
lis, and Clerodendrum inerrne. The Divar mangrove ecosystem 
(1S°30'35" N; 73'52'63" F.) is separated from the mainland 
by the river Mandovi. Here, the mangroves consist mainly of 
species like Acanthus IiiItIfoIius, Pongamia pinnata, Cyperus spp., 
Bruguiera gymnorrhiza, Avicennia officinalis, Caesalpinia spp., 
Sonneratia caseolaris, and Rhizophora mucronata. The Mandovi 

Fig. 1. Location of sampling sites along the Chapora and Mandovi estuary. 
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is prone to high nutrient concentrations, especially during the 
monsoon season, which has been attributed to riverine and 
land runoff (Divya et al., 2009) and anthropogenic sources (De 
Sousa, 1983). Approximately 10 Mg mo - ' of NH 4NO 3  is used as 
explosive in ferromanganese mining operations upstream of the 
Mandovi (De Sousa, 1999). Iron ore beneficiation plants situ-
ated on the riverbanks carry out treatment and upgradation of 
low grade ore fines. These plants use river water to wash the iron 
ore and discharge effluents directly into the ic system. 'I his 
wastewater contains -80 ismol NO,-N L ', forming a major 
source of the nutrient to the estuary (De Sousa, 1999). Annual 
variation of NO 3  -N concentrations along the Mandovi estuary 
has been reported by Divya et al. (2009). Further, Krishnan et 
al. (2007) showed that the Divar mangrove sediments are also 
enriched with metals (primarily Fe and Mn) as a result of fer-
romanganese mining upstream of the Mandovi. These metals, 
mainly Fe, have been shown to influence N transformations 
(Krishnan and Loka Bharathi, 2009). 

Sediment samples were collected at low tide during January 
2008 (postmonsoon season) using hand-held polyvinyl chlo-
ride push cores (7.5 cm i.d., 15 crn length). The cores were 
immediately capped at both ends and transported to the labo-
ratory in an ice box. Cores for pore water nutrient and deni-
trification activity measurements were maintained at 4°C until 
analysis. Water from the sampling sites was collected in car-
buoys for media preparation. 

Physicochemical Parameters 
Hydrogen ion concentration (pH) was measured on sample 
arrival at the laboratory using an Orion 4-Star Plus benchtop 
pFl/ISE meter (Thermo Fisher Scientific Inc., Waltham, MA). 
Sediment oxidation-reduction potential (Eh) was measured 
using an Orion platinum redox in combination with a Ag/ 
AgCl 2  reference electrode (Thermo Fisher Scientific Inc.). 

For nutrient analyses, triplicate subsamples from sediment 
cores were taken at 2 cm increments from 0- to 10-cm depth by 
careful sectioning of sediment. Each section (7.5 cm diam. and 
2 cm thick) was transferred to 100 mL of sterile saline (8.5 g 
NaCI) and gently homogenized using a glass rod. The slurry was 
centrifuged at 4°C for 10 min at 5000 rpm (x1803 g) with a high 
speed cooling centrifuge (Model CPR-24; Remi Instrument 
Ltd., Mumbai, India). A low spin speed was maintained during 
centrifugation to ensure minimal change in nutrient concentra-
tions due to lysis of bcnthic infauna, lhe supernatant was fil-
tered through a 0.2-p.m filter and stored at -20°C until analysis. 
Ammonium, NO 2  -N and NO 3  -N were measured colori-
metrically (UV mini 1240 spectrophotometer; Shimadzu Corp., 
Tokyo, Japan) as described by Koroletf (1969), Bendschneider 
and Robinson (1952), and Wood et al. (1967). 'lhe weight of 
the sediment used in the extraction was estimated by drying the 
wet samples at 60°C for 48 h. Total organic carbon (TOC) was 
determined by wet oxidation method with a precision of 0.01% 
(El Wakeel and Riley, 1957). 

Denitrification, Net Nitrous Oxide Production, 

and Its Origin 
Sediment cores were demarcated into five sections (0-2, 2-4, 
4-6, 6-8 and 8-10 cm). Then 1 mL of se diment was extruded 

from each section using a syringe core and transferred asepti-
cally to sterile headspace vials. -Three milliliters of steril-
ized ambient sea water from the sampling site (containing 4.5 
p.mol NO, -N L ') was added. Sample preparations were also 
amended with chloramphenicol (1 g to prevent de novo 
enzyme synthesis during the incubations (Bonin et al., 2002). 
No additional C or NO 1  -N was added as substrate. The vials 
were capped with butyl stoppers, sealed with Al crimps, and 
then briefly vortexed to form a slurry. 

Denitrification activity (DNT) was measured by the acety-
lene inhibition technique based on the inhibition of the con-
version of N 20 to N, (Sorensen, 1978). Over short incubation 
intervals, it is a cost-effective method for estimating denitrifi-
cation, and rate estimates are comparable to those obtained by 
the membrane inlet mass spectrometry (Bernot et al., 2003). 
Thus, to measure DNT, some of the vials were made anaerobic 
by flushing with N, for 15 min. The headspace over these slur-
ries was amended with acetylene at 20 kPa (Bonin et al., 2002) 
and the tubes were briefly vortexed. 

To determine net N,O production, aerobic conditions 
were maintained in the vials and no acetylene was added to 
the headspace. However, to measure 1\1 20 produced by deni-
trifiers ("N 2 0), aerobic conditions were maintained and the 
headspace was adjusted to an acetylene concentration of 10 Pa 
to inhibit nitrification (Berg et al., 1982; Bonin et al., 2002). 
Triplicate measurements were performed at each depth, and 
the vials were incubated in the dark for 0.5, 1.0, L.5, 2.0, 2.5, 
and 3.0 h. Following incubation, each vial was treated with 0.1 
ml of I M Hga 2 solution and vigorously shaken for 2 min to 
stop the reaction. 

Nitrous oxide in the headspace was analyzed using a gas 
chromatograph (Model 2010; Shimadzu Corp.) fitted with 
an elecaion capture detector and Poropak Q column (L/8" SS 
colunui, 3.05 01 length, 80/100 mesh; Chromatopak Analytical 
Instrumentation, Mumbai, India). 'lire oven and detector tem-
peratures were 40 and 300°C, respectively. High purity nitro-
gen at a flow rate of 35 ml, min -' was used as a carrier gas. The 
gas chromatograph was calibrated using a secondary standard 
44 ± 0.38 nmol N,O in N, (National Physical Laboratory, New 
I)eihi). the rate of N,O production was determined based on 
its linear accumulation over time (Tiedje, 1982). The Bunsen 
solubility coefficient for the measured salinity and temperature 
in the microcosms was used to correct for dissolved N 2 0 (Weiss 
and Price, 1980). As the experiment was performed in micro-
cosms, it was necessary to minimize error likely to be caused by 
variability during sediment transfer. Hence, sediment used in 
each microcosm was filtered through a laboratory grade filter 
paper and dried at 60°C for approximately 48 h. Average N,O 
production and WI were calculated as nmol g' h' 
of dry sediment. 

Nitrous oxide produced through nitrification ("N 20) was 
calculated as 

NN 2 0 = net N 20 production - °N1 20 

where net N 2 0 production = N,O production from denitrifi-
cation plus nitrification (without nitrification inhibitor) and 
DN 2 0 = N 20 produced by denitrifiers only (nitrification inhib-
ited in presence of 10 Pa C,H 2 ). 

Fernandes et al.: Nitrous Oxide Production via Denitrification 	 1509 



ponent analysis was used to examine the combined influence of 

environmental parameters on N,O production. 
Percentage of N 20 through incomplete denitrification 

('N,O) was calculated as 

%'N,0 = °N 20/DNT x 100/1 

where DNT = denitrification activity (in the presence of 20 

kPa C,H 2). 

Quantification of Denitrifiers 
Denitrifiers were enumerated by the N,O-most probable 
number (MPN) technique. The sediment core was thawed and 

sectioned at 2-cm intervals using a sterile core cutter to obtain 
representative samples at 0 to 2, 2 to 4, 4 to 6, 6 to 8 and 

8 to 10 cm. Sediment from each depth was homogenized by 

mixing. Approximately 1 g of wet sediment was subsarnpled 

irons each depth using sterile syringes. The subsamples were 

transferred to 9 mL of sterile culture medium to give a 10 ' 

dilution. The culture medium was prepared as described by 
Michotcy et al. (2000). Tween 80 (20 0L) was added and the 

mixture was sonicated at 40 MHz for 15 s. Serial dilutions 

for each section of the core were prepared in triplicates. .1he 

vials were purged with high purity N2  for 10 min to induce 

anaerobic conditions and supplemented with 20 kPa acetylene 

(Bonin et ill.. 1994). Ilse vials were incubated at room temper-

ature in the dark for 10 d, and the positive tubes were scored 

on the basis of the accumulation of N 20. Subsequent quanti-

fication was made using standard McCready's table (Rodina, 
1972). Denitrifier abundance has been expressed as MPN cells 

per gram of dry sediment. 

Statistical Analyses 
All analyses were performed using Statistica version 6 (StatSoft, 
Inc., Tulsa, OK). Bacterial numbers were log,„ transformed 
before analysis. Nitrous oxide production rates were checked 

for normal distribution using the Kolmogorov-Smirnov test. 

As the data was normally distributed (p > 0.2), t-test was used 

to check for statistically significant differences in mean value of 

N,O production between the two sites. Pearson's correlation 

coefficients were used to assess relationships between biotic and 

abiotic parameters. 'Ilie correlation values were plotted using 

Cytoscape 2.6.3 software (http://www.cytoscape.org/),  which 

enabled an open-source network visualization. Principal com- 

Results 

Physicochemical Characteristics 
The mangrove sediments were acidic in nature with pH rang-
ing from 5.8 to 6.1 (Table I). Sediment redox potentials were 

consistently low, in the range of -27.8 (± 0.9) to -6 (± 16.45) 
mV at Tuvem, while the Divar sediments exhibited the lowest 

redox potential of -5.7 (± 25.10) at a depth of 8 to 10 cm. 

Pore water nutrient content varied widely with depth 
with 15.1 (± :1.4)1J mol N1-1,+---N 1. ' recorded at 8- to 10-cm 

depth at Tuvem, while 31.34 (± 1.83) was recorded at Divar 

at a depth of 6 to 8 cm. Nitrite and nitrate concentration 

generally increased with depth with up to 11.7 (± 0.8) pmol 

NO, -N L' and 14.2 (± 0.4) ismol I. ', respectively, 
at Tuveru, while at Divar the maximum levels were 14.2 (± 

0.0) p mol NO -N L 10.1 (± 0.2) prnol NO, -N L' at 

6- to 8-ens depth, respectively. Total organic carbon at Tuvem 

varied from 2.1 to 4.5%, while at Divar it ranged between 

2.5 and 4.0%. 

Denitrification and Net Nitrous Oxide Production 

'Ilse profile of DNT at Tuvem, showed a maxima at 2 to 4 cm 

(2.23 [± 0.34] nmol N 20-N g''' 111, which decreased with 

depth (Fig. 2). Similarly at Divar, the highest DNT activity 
was observed within 0 to 4 cm, which was -5 times higher 

than at Tuvem. 
Nitrous oxide production was significantly different (two-

tailed t test, P = 0.003, ls = 15) at both the locations and 

varied with depth. At ',Fuvem, a steady decrease in N,O pro-
duction with depth was observed. 'Ilse highest production 

rate of 0.71 (± 0.11) nmol N,O-N g ' h' was recorded at 0 
to 2 cm (Fig. 3). At the deepest layer investigated (8-10 cm), 

production of N,0 had decreased to a minimum of 0.12 (± 

0.02) nmol N,O-N g ' h '. At Divar, the 2- to 4-cm layer had 

the maximum N2 0 production rate of 1.95 (± 1.20) nmol 

N,O-N g)' Depth integrated values for net N,O pro-

duction and denitrification activity at both the locations are 

shown in Table 2. 

Table 1. Variation in the average values of physicochemical parameters (± SD; n = 15) in the Tuvem and Divar mangrove sediments. 

Depth pH Eh NH,'-N NO3- -N TOCt 

cm 

0-2 

2-4 

5.8 (± 0.2) 

5.9 (±0.2) 

mV 

-27.8 (± 0.9) 

-23.2 (±7.39) 

L ' 

2.1 (± 0.7) 

2.9 (±1.4) 

Location: Tuvem 

14.7 (± 4.4) 

15.0 (±1.4) 

Irmo' 

4.5 (± 0.13) 

8.6 (±0.33) 

10.4 (± 0.4) 

9.9 (±0.4) 

4-6 6.01±0.6) -9.5 (± 15.06) 7.8 (± 1.4) 8.1 (± 0.1) 10.91±0.61 4.5 (± 2.9) 

6-8 6.0 (± 0.6) -6 (± 16.45) 12.0 (± 0.8) 10.9 (± 0.6) 14.2 (± 0.4) 4.4 (± 2.8) 

8-10 6.1 (± 0.5) -6.3 (± 14.54) 15.1 (± 3.4) 11.7 (1 0.8) 11.4 (± 0.0) 4.0 (± 2.7) 

Location: Divar 

0-2 5.91±0.3) 115 (± 64.7) 15.7 (± 3.4) 7.21_0.0) 4.6 (± 0.7) 2.9 (± 1.6) 

2-4 5.8 (± 0.1) 94.3 (± 62.6) 15.1 (± 2.0) 4.1 (:- 0.2) 4.21±0.2) 4.01± 2.1) 

4-6 5.1 (± 0.1) 93.5 (± 45.18) 23.8 (± 2.3) 6.6 (± 0.6) 9.3 (± 0.2) 2.5 (± 1.0) 

6-8 6.01±0.1) 50.8 (± 61.38) 31.3 (± 1.8) 14.2 (± 0.1) 10.1 (± 0.2) 3.3 (± 1.7) 

8-10 6.0 (± 0.0) -5.7 (±- 25.10) 22.1 (± 3.1) 8.1 (± 0.3) 10.0 (± 0.2) 3.1 (± 1.8) 

f TOC, total organic carbon. 
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Fig. 2. Denitrification profile (± SD) over depth at Tuvem and Divar. 
DNT, denitrification activity. 

Nitrous Oxide Production by Denitrifiers 
Detailed investigations to elucidate the major pathway for 

N 2 0 production at the relatively pristine site Tuvem showed 

that these sediments harbored up to 10 denitrifiers g' sedi-
ment. 'Their abundance was maximum at 4 to 6 cm (7.14 
x 10' cells g ') as compared to the other sections of the 
core where their number was relatively stable. In the Tuvem 
sediments, the denitrifiers significantly influenced N,O pro-
duction (n = 15; r = 0.55; p < 0.05) as illustrated in Fig. 4. 
They also showed an inverse relationship with pore water 
NH:—N (r = —0.57; p < 0.05) and NO 2  —N (r —0.55; p < 
0.05) concentrations. 

In the presence of a nitrification inhibitor, denitrifiers pro-
duced a maximum of 1.26 (± 0.74) nmol. N 20-N g ' h ' at 0 
to 2 cm (Fig. 5). Incomplete denitrification ('N 2 0) was respon-
sible for 43 to 93% (Fig. 6) of the N,O production, which 
accounts for about 13 to 52% (net N 2 0/DNT x 100) of the 
N,O produced through denitrification. Nitrous oxide produc-
tion through nitrification ("N 2 0) was below detection. 

Fig. 3. Variation in net NO production (± SD) with depth from the 
Tuvem and Divar mangrove sediments. 

Table 2. Depth integrated (0-10 cm) net N 20 production and denitrifi-
cation activity in the Tuvem and Divar mangrove sediments. 

Depth integrated activity 
	

Tuvem 	Divar 

Denitrification (mmol N 1 O-N m Z h ') 
	

0.14 	0.67 

Net N 20 production (mmot N 20-N m h `) 	0.03 	0.10 

Environmental Factors Influencing 

Nitrous Oxide Production 
The relationships of NO production rates with physico-
chemical parameters at Tuvem showed an inverse relationship 
between N,O production and pore water NO, concentra-
tion (n = 15; r , —0.47; p < 0.05). Up to 32% of the variation 
in N,O production was negatively influenced by sediment pH 

(r = —0.57; p < 0.05). Even though the relationship between 
N,O concentration and TOC was not statistically significant, a 
positive relationship existed between these parameters. 

Principal component analysis on sediment variables 
resulted in four main components explaining nearly 80% 
of the total variance (Table 3) in N 20 production. '(he first 
component in the correlation plot explained 29% of the 
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Fig. 4. A network visualization of factors influ-
encing nitrous oxide production arranged 
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at each node. Significant correlations at 0.05 
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gray. DNT, denitrification activity; TOC, total 
organic carbon. 
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Fig. 5. Nitrous oxide production by denitrifiers under nitrification-
inhibited conditions at Tuvem. 

observed variance. A forward regression (Fig. 7) of the reduc-
tive processes in the N cycle (DNT and N 2 0 production) 
was observed in the first component. Sediment pH, denitri-
fier abundance, and NO 2 --N significantly influenced this 
component. use second component explained 22% of the 
variance with pore water NO 3  —N and organic carbon con-
centrations correlating strongly with this component. "lhe 
third component correlated with pore water NH '—N and 
denitrification activity and explained 16% of the variation. 
The only and most significant variable in the fourth compo-
nent was sediment redox potential, which explained 12% of 
the variation. 

Discussion 
The Mandovi estuary receives a considerable nutrient input 
from various sources including mining wastes (De Sousa, 1983, 
1999), land runoff during the summer monsoon (Sardessai and 
Sundar, 2007; .Divya et al., 2009), remineralization of organic 
matter (Pratihary el al., 2009), and sewage effluents (Ansari 
et al., 1986). Hence, we expected the adjoining Divar man-
grove ecosystem fringing the estuary to also contain elevated 
inorganic N levels favoring denitrification and consequently, 
N2 0 production. As hypothesized, down-core DNT at Divar 
was found to be comparatively higher than at the relatively 

6 - 8 

8-10 

Fig. 6. Percentage of f‘1,0 produced through incomplete denitrifica-
tion ('N 30) at Tuvem. 

pristine site Tuvem (Fig. 2). Low redox potentials (<115 mV) 
at the sampling sites (Table 1) are indicative of anaerobic 
conditions in the sediment, which are conducive to alternate 
respiratory pathways such as denitrification and sulfate reduc-
tion. Pore water profiles in the present study revealed that low 
NO 1  —N concentrations within the 0- to 4-cm layer in the 
Divar sediments coincided with elevated DNT. Denitrification 
is dependent on NO 1  —N supply either from nitrification 
(Klingensmith and Alexander, 1983) or availability of the 
nutrient from the :ambient seawater. The surficial sediments, 
especially, are continuously replenished with nutrients from 
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Table 3. Results of principal component analysis of sediment variables and N 10 production. 
----------- 

Variable Component 1 Component 2 Component 3 	 Component 4 

N 2 0 production 0.856* 0.124 0.206 0.266 

pH -0.597* 0.391 -0.541 0.134 

Eh -0.215 0.438 0.106 0.828" 

Ammonium -0.453 -0.420 0.640' 0.164 

Nitrite - 0.687" 0.649 0.093 -0.004 

Nitrate -0.395 0.665" --0.367 0.027 

Denitrifiers 0.730" -0.023 -0.496 0.326 

TOCt 0.369 0.779* 0.286 -0.330 

ONTt 0.021 0.133 -0.487* -0.189 

Total variance (%) 29.30 22.47 16.26 11.71 

*Correlation significant at the 0.05 probability level. 

t TOC, total organic carbon; ONT, denitrification activity. 

the estuarine water. - these sediments (,,4 cm) act as efficient 

traps to immobilize nutrients (Tam and Wong, 1993), which 

consequently enhances N metabolism within this depth range. 

Our observation is consistent with earlier studies by Jorgensen 

(1989), who showed that the denitrification capacity of estua-

rine sediments was always highest at the surface and declined 

with depth. To compare DNT measured using the acetylene 

block technique in the present study with other similar mea-

surements in mangrove ecosystems, values were integrated to 

10-cm depth. Denitrification occurred at a rate of up to 0.67 

mmol N,O-N m h ' in the sediments examined (Table 2). 

'lliese values are similar in range to those reported from a man-

grove system prone to secondary sewage 

effluents (Corredor and Morell, 1994) 

and in other estuaries (Barnes and Owens, 

1998; Bernot et al., 2003). Although over-

enrichment of nutrients in coastal waters 

has ecological implications (Howarth et 

al., 2000), little is known about the fate 

of terrestrially derived nutrients in the 

Mandovi estuarine system. Pratihary et al. 

(2009) stated that benthic denitrification 

is responsible for 22% removal of river-

ine dissolved inorganic N in the Mandovi 

estuary,. the high denitrifying capacity 

of the Divar sediments suggests that this 

ecosystem also acts as a buffer zone by 

reducing nutrient levels through the deni-

trification process and helps to maintain 

the water quality of the adjoining estuary. 

High DNT at Divar was accompa-

nied by elevated N,0 production (Fig. 

3) compared with Tuvem. Net  N,O 

production at Divar occurred at a rate 

of up to 1.95 nmol g ' h ', which is 

almost three times higher than the rela-

tively pristine, sire Tuvem. Natural N,O 

production rates in estuarine sediments -1.0 

range from 0.1 to 8.5 pmol 	1-1 - ' 

(Wang et al., 2007). At NO -N concen- 

trations of--10-15 prnol (in situ + ambi- 

ent seawater used in medium), depth 

integrated N 20 production values of up Fig. 7. vCaorriraeblaletisopn r i,jz rlo f 
de 

e  

to 0.1 mmol N,O-N m - ' h"' (Table 2) recorded in our study 

are far greater than those reported by Dong et al. (2002) 

from the anthropogenically influenced Colne estuary at simi-

lar NO concentration. A microsensor approach by Meyer 

et al. (2008) has shown that in subtropical mangrove sedi-

ments, anaerobic N,0 production (through denitrification) 

under eutrophicated conditions occurs at a rate of 0.1 mmol 

m ' h These values are comparable to those recorded in the 

current study. Our findings emphasize that ecosystems prone 

to higher N loading can have a detrimental effect on the envi-

ronment through increased N,O production. Elevated levels 

tom standardized principal component analysis (PCA) on sediment vari-
nitrification activity; TOC, total organic carbon. 
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of greenhouse gas emissions from these sediments would thus 
pose a major environmental issue. 

Experiments to examine the major pathway for N,O pro-
duction in the present study indicate that up to 93% incom-
plete denitrification at the surface of mangrove sediments (Fig. 
6) could contribute substantially to an increase in atmospheric 
N20. Studies by Robinson et al. (1998) in hypernutrified estu-
arine sediments have also shown higher N 20 concentrations 
in the surface layer (52 cm) attributing it to denitrification 
fuelled by NO, --N availability. Similarly, Koike and Terauchi 
(1996) reported their highest concentration of N,O in the top 
I cm of the marine sediments studied. Stratified sampling in 
our study showed that benthic N 20 production was found to 
generally decrease with depth. The flux of the radiative gas to 
the atmosphere would however be dependent on the diffusion 
coefficient and N 20 consumption rates in the sediment layers 
it passes through. 

A number of factors are known to influence the produc-
tion of N,O in marine sediments. Physical, chemical, biologi-
cal, and environmental factors like temperature, pH, sediment 
redox potential (Van Cleemput and Samater, 1996), organic 
C availability (Rosswall et al., 1989), NO, -N concentration 
(Dong et al., 2002), and denitrifying communities play an 
important role in N,O production. Statistical analysis showed 
that pore water nutrient concentrations, organic carbon 
availability, and denitrifiers were some of the important fac-
tors influencing the production of N 20 in the current study. 
Degradation of sediment organic matter results in acidic con-
ditions. Although the relationship between N,O production 
and TOC content in these sediments was not significant, a 
positive relationship existed and is thus indicative of its influ-
ence on the gas. Although the water soluble fraction of organic 
C was not estimated during the study, it is possible that it stim-
ulated denitrifier activity and consequently, N,O production. 
Both DNT and N 20 production followed a decreasing trend 
with depth; however, no significant relationship was observed 
between the two parameters. The production of N,0 could 
be thus be governed by the availability of electron donors and 
acceptors like NH 4 '. N0, - , and organic carbon rather than the 
rate of denitrification (Usui et al., 2001; Mathieu et al., 2006). 

The denitrifier community was also found to influence N,0 
production in mangrove sediments (Hg. 4, 5). They numbered 
up to 10 7  cells g. "', and their abundance could be regulated by 
the amount of organic matter available for their growth (Fig. 
7). 'Ms can be easily explained by the fact that the denitri-
fiers are facultative aerobic microorganisms and their activ-
ity is limited by the amount of NO.,'-N available. Estuaries 
are generally heterotrophic systems, with bacterial respiration 
exceeding primary production (Heip et al., 1995, Gattuso et 
al., 1998). Consequently, removal of dissolved inorganic N 
from estuaries occurs through sedimentary denitrification and/ 
or burial in the sediment (Middelburg and Nieuwenhuize, 
2000). An inverse relationship observed between denitrifiers 
and pore water nutrient concentrations in the present study 
suggests that denitrification could play an important role in 
mitigating excess nutrients within the aquatic system, prevent-
ing eutrophication. 

In sulfidic sediments, the denitrification end-product is 
known to shift from N 2  to partially reduced inorganic N forms  

such as NO 2  and N 2 0 (Ebrahimipoin et al., 2000).1 his could 
explain the high NO, -N pool in the largely anaerobic man-
grove sediments studied. About 22% variation in N,O produc-
tion was caused by the variation in NO -N concentrations, 
suggesting that it was one of the important and statistically 
significant parameters regulating the production of N,O in 
mangrove sediments. Many other studies have shown a cor-
relation between N,O production and NO 2--N concentra-
tion (He et al., 2001; Dong et al., 2004; Alinsafi et al., 2008). 
Denitrification activity in estuarine sediments is dependent on 
NO., - -N availability (Kama et al., 1998), consequently leading 
to NO 2  and N,O production. Dong et al. (2002) stated that 
formation of N,O from NO 2  -N is thermodynamically favor-
able compared to nitrate, suggesting that it may be a critical 
factor regulating N 2 0 formation. Bauza et al. (2002) reported 
N,O production mainly through nitrification in red mangrove 
forests, which are characterized by oxic conditions (redox poten-
tials: 159-377 mV) and NI-.'-N concentrations varying from 
0.188 to 0.273 mmol L '. On the contrary, Meyer et al. (2008) 
showed that nitrification and denitrification contributed almost 
equally to N,O production under NH;-amended conditions. 
In the present study, although ammonium concentrations at 
Tuvem were <15 limo) L ', it did not appear to assert a strong 
influence on N 2 0 production. Nitrification could be a signifi-
cant source of 1\1 2 0. In organically rich mangrove sediments, 

released through remineralization of organic matter 
could easily get bound to clay particles, making it unavailable 
for biological uptake. Thus, when NO., - -N and NO, - -N pre-
dominate, N,O arises from microbial denitrification (Corredor . 
et al., 1999). Nitrate respiration is kinetically and thermody-
namically favorable (Aivasidis et al., 2005) in oxygen-depleted 
environments and is preferred over other electron acceptors 
(Canfield et al., 2005). Denitrification activity also enhances 
NO 2  uptake, preventing its accumulation to toxic levels. 
Experimental results reveal that denitrification was the major 
pathway for N,O production in the mangrove ecosystems of 
Goa, India. Close grid measurements at submillimeter intervals 
by Meyer et al. (2008) have shown that in subtropical mangrove 
sediments, N,O production through nitrification occurs very 
close to the surface, while denitrification is responsible for its 
production in the deeper anaerobic layers. The production of 
N,0 through nitrification could be more prominent when the 
oxidative process is more pronounced. However, N,O produc-
tion through nitrification was nor detected, indicating that the 
reductive phase of the N cycle was predominant at the time 
of sampling (postmonsoon). Despite denitrification show-
ing highest 'activity during the premonsoon season (data not 
shown), measurements have shown that the mechanism of N,O 
production in mangrove sediments of Goa during all the three 
seasons is essentially the same. 

Conclusions 
Denitrification and N,O producing capacity of anthropogeni-
cally influenced mangrove ecosystems was clearly higher when 
compared with relatively pristine locations. Nitrous oxide 
production in the mangrove sediments of Goa was associated 
mainly with denitrification, whereas its production through 
nitrification was nondcrectable. highest percentage of N 20 
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production through incomplete denitrification occurred within 

the first 2 cm of the sediment, a fraction of which could be lost 

to the atmosphere. Nitrite concentration and denitrifier abun-

dance were the two most important environmental parameters 

governing the production of N 20 in these sediments, indicative 

of active nutrient Uptake by the autochthonous denitrifier corn-
muniry. Although mangroves have the ability to efficiently mod-

erate elevated nutrient concentrations in the estuarine system 

through the denitrification pathway, they also pose a threat by 

increasing greenhouse gas production. Our study shows that in 

mangroves prone to elevated nutrient levels, benthic N 2 0 pro-

duction was three orders higher than natural production rates 

in estuarine sediments elsewhere. Thus, adequate measures such 

as lowering use of NH 4 NO, in mining activities and building 

predictive models (Valiela et al., 2000, 2004; Bowen et al., 2007) 

for tracking the fate of N inputs could he initiated to minimize 

N loading in adjoining estuarine systems. These strategies would 

not only help to lower N pollution but also simultaneously result 

in decreased N 20 emission to the atmosphere. 
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Abstract A study to examine the short-term 
effect of nitrate and organic carbon addition on 
denitrification activity was carried out on sed-
iments from a mangrove ecosystem prone to 
anthropogenic activities (Divar, Goa, India). Lab-
oratory microcosms were prepared using sedi-
ment sectioned at every 2-cm-depth interval from 
the surface to 10 cm. The incubations were sub-
jected to varying nitrate amendments at concen-
trations ranging from 0, 5, 10, 20, 40 to 60 µmoll  
(up to three times more than measured in field). 
Nitrous oxide production rates increased sig-
nificantly (n = 15; p < 0.001) on addition of the 
nutrient at all depths investigated indicating that 
denitrification in mangrove sediments was NO; 
limited. Incubations amended with organic carbon 
were prepared using glucose as a substrate with 
concentrations ranging from 0%, 0.1%, 0.3%, 
0.5%, 0.75% to 1%. No significant increase in 
N2 0 production was observed on organic C ad-
dition. When both the substrates were in excess 
(1 mmol KNO3  + 1 mmol glucose), potential deni-
trification rates decreased with depth and were up 
to 38 times higher than the in situ denitrification 
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activity varying from 81.26 to 304.09 jimol N 2 0- 
N m -2  h -1 . These results reveal that mangrove 
sediments could act as a sink for nitrate and micro-
bially mediated denitrification could effectively 
reduce N load controlling any adverse environ-
mental impact in the adjoining estuarine system. 

Keywords Denitrification • Organic carbon • 
Nitrate . Mangrove . Sediment 

Introduction 

In ecosystems with high inputs of nitrogen (N) 
such as estuaries, denitrification mediates reduc-
tion of nitrogen load and therefore contributes to 
eutrophication control (Nogales et al. 2002). One 
such ecosystem is the mangroves which constitute 
nearly 75% of tidal vegetation in tropical regions 
(Alongi et al. 1989). These habitats lie in close 
proximity to areas prone to anthropogenic activity 
(Munoz-Hincapie et al. 2002). Mangroves play 
an important role in the biogeochemical cycles 
of coastal and marine ecosystems (Thorsten and 
Jose 2001). They function as efficient buffer zones 
mitigating large amounts of excess nutrients in the 
estuarine system reducing water pollution. 

The nitrogen cycle within mangrove forests is 
mediated predominantly by microbial rather than 
chemical processes (Alongi et al. 1992). Inorganic 
N and other parameters important for its turnover 
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can fluctuate widely due to the position of man-
groves in the intertidal zone (Meyer et al. 2008). 
Chiu et al, (2004) state that as much as 55% of 
the N loss in mangrove sediments occurs through 
denitrification. Mangrove sediments are largely 
anaerobic and rich in organic matter providing fa-
vorable conditions for denitrification. The process 
is mediated mainly by facultatively anaerobic het-
erotrophic bacteria which utilize oxidized N com-
pounds for respiration under oxygen deficient 
conditions (Zumft 1997). Earlier studies have 
highlighted nitrate (Morel' and Corredor 1993; 
Corredor and MorelI 1994; Rivera-Monroy and 
Twilley 1996; Kana et al. 1998) and organic car-
bon (McCarty and Bremner 1993; Pfenning and 
McMahon 1997; Hill and Cardaci 2004) as im-
portant factors affecting denitrification. In sed-
iment, denitrifying activity is highly correlated 
with water-extractable organic carbon and is fre-
quently stimulated by the addition of exogenous 
carbon (Knowles 1982; Hahndel and Isermann 
1992). Sufficient organic carbon is required for 
denitrification to occur as it is a source of energy 
for the conversion of nitrate to nitrogen gas. In 
the marine environment, high denitrifying activity 
has been reported to occur within the oxygen min-
imum zones (OMZs) contributing to 30-50% of 
the total nitrogen loss and has been commonly at-
tributed to heterotrophic denitrification (Gruber 
and Sarmiento 1997; Codispoti et al. 2001). In the 

OMZs of the Eastern Tropical North and South 
Pacific, denitrification appeared to be limited by 
organic carbon (Ward et al. 2008). In the Indian 
Ocean region, denitrification in the Arabian Sea 
has also been shown to be dependent on the 
organic carbon regime (Anderson et al. 2007), 
So far, there have been no reports on the fac-
tors limiting denitrification from nearby estuarine 
zones. 

In the present study, we examined the short-
term effect of nitrate and organic carbon addition 
on denitrification activity in mangrove sediments 
prone to nutrient input from anthropogenic activ-
ities. We hypothesize that in organically rich man-
grove sediments, denitrification could be more 
dependent on nitrate availability. The significant 
increase in denitrification activity on nitrate 
amendments observed in the present study further 
corroborates our hypothesis suggesting that ni-
trate is the main limiting factor for denitrification 
in mangrove sediments. 

Materials and methods 

Study area and sampling 

Investigations were carried out at fringing man- 
grove forest located at Divar in Goa, west coast of 
India (Fig. 1) during January 2008 (post-monsoon 

Fig. 1 Sampling location 
at Divar Island, Goa 
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season). The Divar mangrove ecosystem (15°30'35" 
N and 73°52'63" E) is separated from the main-
land by the river Mandovi and is accessible by 
ferry. A significant number of inhabitants colonize 
along the bank's. The Mandovi is important for 
the economy of the territory as it is heavily used 
for transportation of iron ore from mines located 
upstream. These iron ore beneficiation plants sit-
uated on the riverbank discharge effluents di-
rectly into the estuary. This discharge contains 
high quantities of NH4 NO 3  used as explosive in 
ferromanganese mining operations (De Souza 
1999). 

Sediment cores were collected at low tide and 
transported in an ice box. Cores for activity mea-
surements were maintained at 4'C. For measure-
ment of labile organic matter (LOM), cores were 
immediately sectioned at 0-2-, 2-4-, 4-6-, 6-8-, 
and 8-10-cm interval. The sections were dried at 
60°C ±2, powdered and sieved through a 200-um 
sieve and stored in clean polyvinyl chloride vials 
until analysis. 

Pore water nitrate 

For the estimation of pore water nitrate concen-
tration, subsamples were taken at every 2 cm 
intervals from surface to 10 cm by carefully sec-
tioning the core. Each section (7.5 cm diameter 
and 2 cm thick) was transferred to 100 ml of sterile 
saline and homogenized using a glass rod. The 
slurry was centrifuged at 5,000 rpm for 10 min 
and 4°C. Low spin was maintained during cen-
trifugation to ensure minimal change in nutrient 
concentration due to lysis of benthic infauna. The 
supernatant was filtered through a 0.2-um filter 
and stored at -20°C until analysis. Nitrate was 
measured colorimetrically (Shin'tadzu UV/VIS 
spectrophotometer; precision 0.01 umol ) as 
described by Wood et al. (1967). Weight of the 
sediment used in the extraction was estimated by 
drying in a hot air oven at 60°C for 48 h. 

Total organic carbon 

Total organic carbon (TOC) was determined by 
wet oxidation method with a precision of 0.01 % 
(El Wakeel and Riley 1957). 

Labile organic matter 

The LOM was measured as a sum of proteins, car-
bohydrate and lipid content in the sediments. Pro-
teins were estimated as described by Lowry et al. 
(1951). Carbohydrate was estimated by phenol-
sulfuric acid method (Dubois et al. 1956) using 
glucose as standard. Lipid content in the sedi-
ment was estimated by using the acid dichromate 
method outlined by Parsons et al. (1984). 

Effect of NO addition on denitrification 

Sediment cores were demarcated into five sections 
(0-2, 2-4, 4-6, 6-8, and 8-40 cm). About 1 cm 3 

 of sediment was extruded from each section us-
ing a syringe core and transferred aseptically to 
sterile 20-m1 headspace vials. Three milliliters of 
sterilized ambient seawater from the sampling site 
was added to the sediment. This seawater used 
for slurry preparation was spiked with a KNO 3 

 solution to give final concentrations of 0 (una-
mended to reflect in situ denitrification activity), 
5, 10, 20, 40, and 60 umol NO 3 -N . The seawater 
was also amended with chloramphenicol at a final 
concentration of 1 g 1 -1  (Bonin et al. 2002) to 
inhibit de novo synthesis of denitrifying enzymes 
thus reflecting in situ activity at the time of sam-
pling (Brooks et al. 1992). No additional carbon 
substrates were added. The vials were capped with 
butyl stoppers and were briefly vortexed to form 
slurry. The vials were purged with high purity N2 
for 10 min to induce anaerobic conditions. Acety-
lene gas at 20 kPa (Bonin et al. 2002) was injected 
into the headspace to inhibit N 2 0 production by 
nitrification and its reduction by denitrification 
(Castro-Gonzalez and Farias 2004). Triplicates 
were maintained at each depth and the vials were 
incubated in the dark for 0, 0.5, 1.0, 1.5, 2.0, 2.5, 
and 3.0 h. At the end of the incubation period, 
bacterial activity was terminated using 0.1 ml of 
I M HgC12. 

Nitrous oxide in the headspace was analyzed 
using a Shimadzu 2010 gas chromatograph fitted 
with a electron capture detector and Porapak Q 
column (1/8" SS column, 3.05 m length, 80/100 
mesh). The oven and detector temperatures were 
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40°C and 300°C, respectively. High-purity nitro-
gen at a flow rate of 35 ml min -1  was used as 
a carrier gas. The gas chromatograph was cali-
brated using a secondary standard 44 ± 0.38 nmol 
N 2 0 in nitrogen , (National Physical Laboratory, 
New Delhi, India). Denitrification activity was cal-
culated based on the linear accumulation of N20 
over time. The solubility coefficients of N 2 0 were 
used to correct for dissolved N20 in the micro-
cosms (Weiss and Price 1980). Sediment used in 
each microcosm was filtered through a laboratory 
grade filter paper, dried at 60°C for approximately 
48 h, and weighed. Denitrification activity was cal-
culated as nanomoles of N20-N per gram per hour 
of dry sediment, extrapolated to a unit area basis 
(per square meter) and expressed as micromoles 
of Ni 0-N per square meter per hour. 

Effect of organic C addition 

Sterilized seawater used for slurry preparation 
was amended with 1 g chloramphenicol and 
glucose solution at a final concentration of 0%, 
0.1%, 0.3%, 0.5%, 0.75%, and 1%. Samples were 
prepared and analyzed as described above. No 
additional nitrate was added. 

Potential denitrification rates 

Samples were prepared and analyzed as described 
above except that the seawater used for slurry 
preparation was amended with KNO1 and glucose 
at a final concentration of 1 mmol I -  in addition 
to chloramphenicol. 

Statistical analyses 

Statistical analyses have been carried out using 
analysis tool pack in Microsoft Excel. Significant 
differences in denitrification rates have been de-
termined using analysis of variance (ANOVA). 

Results and discussion  

traneous inputs like sewage outfall (King and 
Nedwell 1987). The present study showed that 
the Divar sediments harbored measurable pore 
water nitrate content which increased with depth 
(Fig. 2) ranging from 4.15 (±0.21) to 18.71 
(±0.28) rr.mol 1 -1 . Down-core profiling of deni-
trification showed a subsurface maxima at 2-4 cm 
with a rate of 20.08 (±4.37) p.mol N20-N 
TT1 -2  h-1  (1.43 ± 0.66 nmol ). Isotopic 
measurements by Chiu et al. (2004) have 
shown much higher denitrification activity in 
surficial mangrove sediments as compared to the 
deeper nonrhizosphere soil with rates of up to 
120 nmol g -1  h -1 . Thomas and Lloyd (1994) have 
also reported maximum denitrification to occur 
at the surface in estuarine sediment. The process 
is known to be dependent on nitrate availability 
(Seitzinger 1990). Low nitrate values encountered 
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at the surface could thus be attributed to higher 
nitrate removal in the upper few centimeters of 
the sediment. 

High denitrification activity at 2-4 cm coin-
cided with increased organic carbon availability 
at this depth which varied from 2.88% at 4-6 cm 
to 4.95% at 2-4 cm (Fig. 3). Naturally occurring 
organic carbon in sediments is critical because it 
can influence nutrient availability (Moore 1989), 
enhance biological activity, and can increase 
acidity of ambient waters through organic acids 
(Eshleman and Hemond 1985; Kerekes et al. 
1986). The primary source of TOC in mangrove 
swamps is plant material which is decomposed 
by sediment organisms and converted to organic 
compounds viz., carbohydrates, proteins and 
lipids. A sizeable fraction of organic matter could 
be transported to deeper depths by bioturbating  

infauna and retained within the system. Natural 
processes and human activities can also result in 
elevated content of TOC in the area. Sardessai 
(1993) Lave shown that decomposition of man-
grove litter and influx of freshwater during mon-
soons contributes to organic matter derived from 
humic acids. In the present investigation, labile 
organic matter showed a similar depth-wise dis-
tribution like TOC with a maximum concentra-
tion of 0.68% LOM at 2-4 cm (Fig. 4). Labile 
organic matter is known to limit denitrification 
(McCutchan and Lewis 2008). In the reductive 
phase of the N cycle, ions are reduced to 
N,0 or N, whereas organic C gets oxidized to 
CO, and H2 0. Our findings suggest that about 
11-19% of the TOC is present in readily utilizable 
form (LOM) in mangrove sediments and could be 
important for heterotrophic metabolism. 

TOO (%) 
	

LOM  (%) 
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Denitrification activity in mangrove sediments 
was monitored when subjected to a wide range of 
nitrate amendments (three times higher than the 
ambient concentration). Denitrification activity 
was stimulated in microcosms containing seawater 
with all combinations of nitrate amendments, i.e., 
5, 10, 20, 40, and 60 tmol NO3-N . Higher rates 
were observed especially at depth <4 cm. Highest 
activity of 129.22 (±31.94) urnol N,O-N m -2  h- I 

 at 0-2 cm was observed at nitrate amendment of 
40 umol NO3 -N I- I (Fig. 5). At depths >4 cm, 
the activity was less pronounced. In estuarine sed-
iments prone to high nitrate inputs, the bacterial 
communities adapt to changes in the concentra-
tion exhibiting higher rates of nitrate reduction 
and also increasing the proportion of nitrate re- 

Activity (pmol N 20-N m -2  h' 1 ) 

0.0 	20.0 	40.0 	60.0 	80.0 	100.0 120.0 140.0 

Fig. 5 Effect of nitrate addition on denitrification activity 
(±SD) 

duced to gaseous products (King and Nedwell 
1987). Laverman et al. (2007) have shown that 
denitrification in estuarine sediments is nitrate-
limited and the resident denitrifying community 
rapidly adjusts its level of activity to increased 
nitrate availability. Denitrification accounts for 
27% to 57% of the nitrate consumption in estu-
arine and coastal sediments (Nishio et al. 1982). 
The Divar mangrove ecosystem is prone to high 
nutrient input from mining rejects, land runoff and 
domestic sewage discharge. The increase in deni-
trification activity especially in the first few cen-
timeters is indicative of the high nitrate removal 
capacity of these sediments. Corredor and Morell 
(1994) have confirmed that mangrove sediment-
microbial communities are capable of depurating 
up to 10-15 times the nitrate added. Recently, 
Krishnan and Loka Bharathi (2009) have shown 
that nitrification rates in the Divar sediments vary 
between 2.7 to 18.2 nmol g -I  A strong cou-
pling between redox processes of the N cycle 
could exist in these sediments wherein nitrate 
supplied continuously through the nitrification 
process could be fueling denitrification especially 
in the upper few centimeters. 

Organic carbon addition stimulated deni-
trification activity mostly at depths >4 cm 
(Fig. 6). However, maximum activity of only 35.24 
(±9.93) umol 1\120-N TT1 -2  11— I  was recorded at 4-
6 cm depth. A 0.5% amendment of labile organic 
carbon (glucose) was found to effectively stimu-
late denitrification activity at all depths suggesting 
that the process is optimal at this concentration. 
Statistical analyses did not show significant in-
crease in denitrification activity on organic car-
bon addition as compared to amendments with 
nitrate (one-way ANOVA; n = 15; p < 0.001) at 
all depths indicating that organic carbon was not 
a limiting factor for denitrification in mangrove 
sediments. Denitrification in oxygen minimum 
zones is known to be fueled almost entirely by 
organic matter supplied by particles sinking ver-
tically from the euphotic zone (Anderson et al. 
2007; Ward et al. 2008). In these environs, or-
ganic carbon is the main limiting factor control-
ling denitrification. In contrast, estuarine systems 
have considerable organic C loading and labile 
organic matter is readily available for metabolic 
activity. In such circumstances, denitrification is 
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Fig. 6 Effect of varying organic carbon amendments on 
denitrification (±SD) Fig. 7 Down-core variation in potential denitrification 

activity (±SD) 

more dependent on nitrate availability. Similar 
observations have been made by Davidsson and 
Leonardson (1996) using peaty and sandy soil 
in which NO3-  has been shown to be a stronger 
regulator of denitrification than organic carbon. 

Potential denitrification rates decreased with 
depth and were 15-38 times higher (within 
0-10 cm core) than in situ denitrification activity 
when both nitrate and organic carbon were 
in excess. Highest activity of up to 304.09 
(±47.6) p.mol N20-N M -2  (Fig. 7) was 
recorded at 2-4 cm. At 8-10 cm, the activity de-
creased to 81.25 (±22.58) µmot N,O-N m -2  h 
Flemer et al. (1998) have reported relatively 
high potential denitrification rates in estuarine  

sediments ranging between 500 to 1,000 p.mol 
N M -2  h-1  which were also limited by nitrate 
availability. Laverman et al. (2007) have encoun-
tered maximum in situ rates two-fold lower than 
the maximum potential rate in surficial sedi-
ment indicating that in situ denitrification was 
nitrate limited. Our observations indicate that the 
surficial sediments have a comparatively higher 
denitrifying potential. This could be possible since 
the denitrifying communities at depths <4 cm 
get a continuous availability of electron acceptors 
through lateral supply from the ambient seawater 
in addition to relatively intense nitrification in 
the surficial sediments. Thus, these microbes are 
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able to eliminate elevated nitrate concentration 
through the denitrification pathway. 

Conclusion 

The Divar mangrove sediments harbored suffi-
cient amount of labile organic matter to support 
denitrification activity. Microcosm experiments 
have indicated that nitrate addition enhanced den-
itrification at in situ organic carbon concentration. 
The benthic denitrifying community in these habi-
tats respond rapidly to episodic events of elevated 
nutrient supply by increasing the rate of nitrate re-
moval through the denitrification pathway. Thus, 
these sediments could act as a sink for nitrate and 
this nutrient is more crucial in controlling deni-
trification activity. Potential denitrification rates 
were up to 38 times higher than the in situ deni-
trification activity indicating that the process was 
important in maintaining low concentration of ni-
trate and helps to maintain the water quality of the 
adjoining aquatic system. 
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