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Abstract. In this paper we report on a method for regularizing a nonlinear Ham-
merstein type operator equation in Hilbert scales. The proposed method is a com-
bination of Lavrentieve regularization method and a Modified Newton’s method
in Hilbert scales . Under the assumptions that the operator F is continuously
differentiable with a Lipschitz-continuous first derivative and that the solution
of (1.1) fulfills a general source condition, we give an optimal order convergence
rate result with respect to the general source function.
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1. Introduction

Let X and Y be Hilbert spaces. In this study we are concerned with the problem
of approximately solving the operator equation

KF (x) = y, (1.1)

where K : X → Y is a bounded linear operator with its range R(K) not closed in Y
and F : D(F ) ⊆ X → X is a nonlinear monotone operator (i.e., 〈F (u)−F (v), u−v〉 ≥
0, ∀u, v ∈ D). We shall use the notations 〈., .〉X , 〈., .〉Y and ‖.‖X , ‖.‖Y for the inner
product and the corresponding norm in the Hilbert spaces X,Y, respectively. The
equation (1.1) is, in general, ill-posed, in the sense that a unique solution that depends
continuously on the data does not exist.

A typical example of a Hammerstein type operator is the nonlinear integral
operator

(KF (x))(t) :=

∫ 1

0

k(s, t)f(s, x(s))ds
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where k(s, t) ∈ L2([0, 1] × [0, 1]), x ∈ L2[0, 1] and t ∈ [0, 1]. Here K : L2[0, 1] →
L2[0, 1] is a linear integral operator with kernel k(t, s) : defined as

Kx(t) =

∫ 1

0

k(t, s)x(s)ds

and F : D(F ) ⊆ L2[0, 1] → L2[0, 1] is a nonlinear superposition operator (cf. [16])
defined as

Fx(s) = f(s, x(s)). (1.2)

In [14], George and Nair studied a Modified NLR method for obtaining an ap-
proximation for the x0-minimum norm solution (x0-MNS) of the equation (1.1). Recall
that a solution x̂ ∈ D(F ) of (1.1) is called an x0-MNS of (1.1), if

‖F (x̂)− F (x0)‖X = min{‖F (x)− F (x0)‖X : AF (x) = y, x ∈ D(F )}. (1.3)

In the following, we always assume the existence of an x0-MNS for exact data
y, i.e.,

KF (x̂) = y.

Note that, due to the nonlinearity of F, the above solution need not be unique. The
element x0 ∈ X in (1.3) plays the role of a selection criterion.

Further we assume throughout that X is a real Hilbert space, yδ ∈ Y are the
available noisy data with

‖y − yδ‖Y ≤ δ (1.4)

and ‖F ′(x)‖X→X ≤M for all x ∈ D.
Since (1.1) is ill-posed, regularization methods are to be employed for obtaining

a stable approximate solution for (1.1). See, for example [18], [24], [7], [9], [10] for
various regularization methods for ill-posed operator equations.

In [6], we considered the sequence {xδn,αk} defined iteratively by

xδn+1,αk
= xδn,αk −Rβ(x0)−1[F (xδn,αk)− zδαk + αk(xδn,αk − x0)] (1.5)

where xδ0,αk := x0 is an initial guess and Rβ(x0) := F ′(x0) + βI, with β > αk for

obtaining an approximation of x̂. Here zδαk = (K∗K+αkI)−1K∗(yδ−KF (x0))+F (x0)
and αk is the regularization parameter chosen appropriately depending on the inexact
data yδ and the error level δ satisfying (1.4). For this we used the adaptive parameter
selection procedure suggested by Pereverzev and Schock [20]. In order to improve the
error estimate available in [14], in this paper we consider the Hilbert scale variant of
(1.5).

Let L : D(L) ⊂ X → X, be a linear, unbounded, self-adjoint, densely defined
and strictly positive operator on X. We consider the Hilbert scale (Xr)r∈< (see [12],
[13], [17] and [18]) generated by L for our analysis. Recall (c.f.[12])that the space Xt

is the completion of D := ∩∞k=0D(Lk) with respect to the norm ‖x‖t, induced by the
inner product

〈u, v〉t := 〈Ltu, Ltv〉, u, v ∈ D. (1.6)

Moreover, if β ≤ γ, then the embedding Xγ ↪→ Xβ is continuous, and therefore the
norm ‖.‖β is also defined in Xγ and there is a constant cβ,γ such that

‖x‖β ≤ cβ,γ‖x‖γ , x ∈ Xγ .
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In this paper we consider the sequence {xδn,αk} in order to obtain stable approx-
imate solution to (1.1), defined iteratively by

xδn+1,αk,s
= xδn,αk,s −Rβ(x0)−1[F (xδn,αk,s)− z

δ
αk,s

+ αkL
s/2(xδn,αk,s − x0)], (1.7)

where xδ0,αk,s := x0 is an initial guess and Rβ(x0) := F ′(x0) +βLs/2, with β > αk for

obtaining an approximation for x̂. Here zδαk,s be as in (2.2) with α = αk and αk is

the regularization parameter chosen appropriately depending on the inexact data yδ

and the error level δ satisfying (1.4). For this we use the adaptive parameter selection
procedure suggested by Pereverzev and Schock [20].

This paper is organized as follows. Preparatory results are given in section 2 and
section 3 comprises the proposed iterative method. Numerical examples are given in
section 4. Finally the paper ends with a conclusion in section 5.

2. Preliminaries

We assume that the ill-posed nature of the operator K is related to the Hilbert
scale {Xt}t∈R according to the relation

c1‖x‖−a ≤ ‖Kx‖Y ≤ c2‖x‖−a, x ∈ X,
for some real numbers a, c1, and c2.

Observe that from the relation 〈Kx, y〉Y = 〈x,K∗y〉X = 〈x, L−sK∗y〉s for all
x ∈ X and y ∈ Y, we conclude that L−sK∗ : Y → X is the adjoint of the operator K
in X. Consequently L−sK∗K : X → X is self-adjoint. Further we note that

(A∗sAs + αI)−1Ls/2 = Ls/2(L−sK∗K + αI)−1

where As = KL−s/2.
One of the crucial results for proving the results in this paper is the following

proposition, where f and g are defined by

f(t) = min{ct1, ct2}, g(t) = max{ct1, ct2}, t ∈ R, |t| ≤ 1.

Proposition 2.1. (See [23], Proposition 2.1) For s ≥ 0 and |ν| ≤ 1,

f(ν)‖x‖−ν(s+a) ≤ ‖(A∗sAs)ν/2x‖X ≤ g(ν)‖x‖−ν(s+a), x ∈ H.

We make use of the relation

‖(As + αI)−1Aps‖X ≤ αp−1, p > 0, 0 < p ≤ 1, (2.1)

which follows from the spectral properties of the positive self-adjoint operator As,
s > 0.

In this section we consider Tikhonov regularized solution zδα,s defined by

zδα,s = (L−sK∗K + αI)−1L−sK∗(yδ −KF (x0)) + F (x0) (2.2)

and obtain an a priori and an a posteriori error estimate for ‖F (x̂)− zδα,s‖X . The fol-
lowing assumption on source condition is based on a source function ϕ and a property
of the source function ϕ. We will be using this assumption to obtain an error estimate
for ‖F (x̂)− zδα,s‖X .
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Assumption 2.2. There exists a continuous, strictly monotonically increasing function
ϕ : (0, ‖A∗sAs‖]→ (0,∞) such that the following conditions hold:

• lim
λ→0

ϕ(λ) = 0,

• sup
λ>0

αϕ(λ)
λ+α ≤ ϕ(α), ∀λ ∈ (0, ‖A∗sAs‖] and

• there exists v ∈ X with ‖v‖ ≤ E, E > 0 such that

(A∗sAs)
s

2(s+a)Ls/2(F (x̂)− F (x0)) = ϕ(A∗sAs)v.

Remark 2.3. Note that if F (x̂) − F (x0) ∈ Xt i.e., ‖F (x̂) − F (x0)‖t ≤ E, for some
0 < t ≤ 2s+ a, then the above assumption is satisfied. This can be seen as follows.

(A∗sAs)
s

2(s+a)Ls/2(F (x̂)− F (x0)) = (A∗sAs)
t

2(s+a) (A∗sAs)
(s−t)

(2s+2a)Ls/2(F (x̂)− F (x0)),

= ϕ(A∗sAs)v

where ϕ(λ) = λ
t

2(s+a) and v = (A∗sAs)
(s−t)

(2s+2a)Ls/2(F (x̂)− F (x0)).
Further note that

‖v‖X ≤ g(
s− t
s+ a

)‖Ls/2(F (x̂)− F (x0))‖t−s

≤ g(
s− t
s+ a

)‖(F (x̂)− F (x0))‖t

≤ E

where E = g( s−ts+a )E.

Theorem 2.4. ([22, Theorem 2.4]) Suppose that Assumption 2.2 holds and let zα,s :=
z0α,s. Then

1.

‖zδα,s − zα,s‖X ≤ ψ(s)α
−a

2(s+a) δ, (2.3)

2.
‖F (x̂)− zα,s‖X ≤ φ(s)ϕ(α), (2.4)

3.
‖F (x0)− zα,s‖X ≤ ψ1(s)‖F (x̂)− F (x0)‖X , (2.5)

where ψ(s) = 1
f( s
s+a )

, φ(s) = E
f( s
s+a )

and ψ1(s) =
g( s
s+a )

f( s
s+a )

.

2.1. Error bounds and parameter choice in Hilbert scales

Let Cs = max{φ(s), ψ(s)}, then by (2.3), (2.4) and triangle inequality, we have

‖F (x̂)− zδα,s‖X ≤ Cs(ϕ(α) + α
−a

2(s+a) δ). (2.6)

The error estimate ϕ(α) + α
−a

2(s+a) δ in (2.6) attains minimum for the choice

α := α(δ, s, a) which satisfies ϕ(α) = α
−a

2(s+a) δ. Clearly α(δ, s, a) = ϕ−1(ψ−1s,a(δ)),
where

ψs,a(λ) = λ[ϕ−1(λ)]
a

2(s+a) , 0 < λ ≤ ‖As‖2 (2.7)

and in this case
‖F (x̂)− zδα,s‖X ≤ 2Csψ

−1
s,a(δ),
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which has at least optimal order with respect to δ, s and a (cf. [20]).

2.2. Adaptive scheme and stopping rule

In this paper we consider the adaptive scheme suggested by Pereverzev and
Schock in [20] modified suitably, for choosing the parameter α which does not involve
even the regularization method in an explicit manner.
Let i ∈ {0, 1, 2, · · · , N} and αi = µiα0 where µ = η2(1+s/a), η > 1 and α0 = δ2(1+s/a).
Let

l := max{i : ϕ(αi) ≤ α
−a

2(s+a)

i δ} < N (2.8)

and

k := max{i : ‖zδαi,s − z
δ
αj,s‖X ≤ 4α

−a
2(s+a)

j δ, j = 0, 1, 2, · · · , i}. (2.9)

Analogous to the proof of Theorem 4.3 in [11], we have the following Theorem.

Theorem 2.5. ([22, Theorem 2.5]) Let l be as in (2.8), k be as in (2.9), ψs,a be as in
(2.7) and zδαk,s be as in (2.2) with α = αk. Then l ≤ k; and

‖F (x̂)− zδαk,s‖X ≤ Cs(2 +
4η

η − 1
)ηψ−1s,a(δ)

where Cs is as in (2.6).

3. The method and convergence analysis

In the earlier papers [11, 15] the authors used the following Assumption:

Assumption 3.1. (cf. [21], Assumption 3 (A3)) There exists a constant K ≥ 0 such
that for every x, u ∈ D(F ) and v ∈ X there exists an element Φ(x, u, v) ∈ X such
that [F ′(x)− F ′(u)]v = F ′(u)Φ(x, u, v), ‖Φ(x, u, v)‖X ≤ K‖v‖X‖x− u‖X .
Assumption 3.2. For each x ∈ Br(x0) there exists a bounded linear operator G such
that

F ′(x) = F ′(x0)G(x, x0)

with ‖G(x, x0)‖ ≤ k where k is a constant.

One of the advantages of the proposed method is that we do not need the above
assumption.

The hypotheses of Assumption 3.1 may not hold or may be very expensive or
impossible to verify in general (see the numerical examples). In particular, as it is the
case for well-posed nonlinear equations the computation of the Lipschitz constant K
even if this constant exists is very difficult. Moreover, there are classes of operators
for which Assumption 3.1 is not satisfied but the iterative method converges.

In the present paper, we expand the applicability of the method in [6] under
less computational cost. We achieve this goal by introducing the following weaker
Assumption.

Assumption 3.3. There exists a constant k0 ≥ 0 such that for every x ∈ D(F ) and
v ∈ X there exists an element Φ(x, x0, v) ∈ X such that

[F ′(x)− F ′(x0)]v = F ′(x0)Φ(x, x0, v), ‖Φ(x, x0, v)‖X ≤ k0‖v‖X‖x− x0‖X .
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Note that

k0 ≤ K
holds in general and K

k0
can be arbitrary large (see Example 4.3). The advantages of

the new approach are:

(1) Assumption 3.3 is weaker than Assumption 3.1. Notice that there are classes of
operators that satisfy Assumption 3.3 but do not satisfy Assumption 3.1 (see
the numerical examples);

(2) The computational cost of finding the constant k0 is less than that of constant
K, even when K = k0;

(3) The sufficient convergence criteria are weaker;
(4) The computable error bounds on the distances involved (including k0) are less

costly and more precise than the old ones (including K);
(5) The information on the location of the solution is more precise;

and

(6) The convergence domain of the iterative method is larger.

These advantages are also very important in computational mathematics since
they provide under less computational cost a wider choice of initial guesses for iterative
method and the computation of fewer iterates to achieve a desired error tolerance.
Numerical examples for (1)-(6) are presented in Section 4.

In this section, we consider the method defined as (1.7) with αk in place of α
for approximating the zero xδαk,s of the equation,

F (x) + αkL
s/2(x− x0) = zδαk,s (3.1)

and then we show that xδαk,s is an approximation to the solution x̂ of (1.1).
Let F ′(x0) ∈ L(X) be a bounded positive self-adjoint operator on X and

Bs := L−s/4F ′(x0)L−s/4.Usually, for the analysis of regularization methods in Hilbert
scales, an assumption of the form (cf.[8], [19])

‖F ′(x̂)x‖X ∼ ‖x‖−b, x ∈ X (3.2)

on the degree of ill-posedness is used. In this paper instead of (3.2) we require only a
weaker assumption;

d1‖x‖−b ≤ ‖F ′(x0)x‖X ≤ d2‖x‖−b, x ∈ D(F ), (3.3)

for some reals b, d1, and d2.
Note that (3.3) is simpler than that of (3.2). Next, we define f1 and g1 by

f1(t) = min{dt1, dt2}, g1(t) = max{dt1, dt2}, t ∈ R, |t| ≤ 1.

One of the crucial result for proving the results in this paper is the following Propo-
sition.

Proposition 3.4. (See. [12], Proposition 3.1) For s > 0 and |ν| ≤ 1,

f1(ν/2)‖x‖−ν(s+b)
2
≤ ‖Bν/2s x‖X ≤ g1(ν/2)‖x‖−ν(s+b)

2
, x ∈ H.

Let ψ2(s) :=
g1(

−s
2(s+b)

)

f1(
s

2(s+b)
) , ψ2(s) :=

g1(
s

2(s+b)
)

f1(
s

2(s+b)
) .
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Lemma 3.5. Let Proposition 3.4 hold. Then for all h ∈ X, the following hold:

(a) ‖(F ′(x0) + βLs/2)−1F ′(x0)h‖X ≤ ψ2(s)‖h‖X
(b) ‖(F ′(x0) + βLs/2)−1Ls/2h‖X ≤ ψ2(s)

β ‖h‖X
(c) ‖(F ′(x0) + βLs/2)−1h‖X ≤ ψ2(s)β

−b
(s+b) ‖h‖X

Proof. Observe that by Proposition 3.4,

‖(F ′(x0) + βLs/2)−1F ′(x0)h‖X = ‖L−s/4(L−s/4F ′(x0)L−s/4 + βI)−1L−s/4

F ′(x0)L−s/4Ls/4h‖X

≤ 1

f1( s
2(s+b) )

‖B
s

2(s+b)
s (Bs + βI)−1BsL

s/4h‖X

≤ 1

f1( s
2(s+b) )

‖(Bs + βI)−1Bs‖‖B
s

2(s+b)
s Ls/4h‖X

≤
g1( s

2(s+b) )

f1( s
2(s+b) )

‖Ls/4h‖−s/2

≤
g1( s

2(s+b) )

f1( s
2(s+b) )

‖h‖X .

This proves (a). To prove (b) and (c) we observe that

‖(F ′(x0) + βLs/2)−1Ls/2h‖X ≤ ‖L−s/4(L−s/4F ′(x0)L−s/4 + βI)−1Ls/4h‖X

≤ 1

f1( s
2(s+b) )

‖B
s

2(s+b)
s (Bs + βI)−1Ls/4h‖X

≤ 1

f1( s
2(s+b) )

‖(Bs + βI)−1B
s

2(s+b)
s Ls/4h‖X

≤
g1( s

2(s+b) )

f1( s
2(s+b) )

β−1‖h‖X

≤ ψ2(s)β−1‖h‖X (3.4)

and

‖(F ′(x0) + βLs/2)−1h‖X ≤ ‖L−s/4(L−s/4F ′(x0)L−s/4 + βI)−1L−s/4h‖X

≤ 1

f1( s
2(s+b) )

‖B
s

2(s+b)
s (Bs +

αk
c
I)−1L−s/4h‖X

≤ 1

f1( s
2(s+b) )

‖(Bs + βI)−1B
s

(s+b)
s B

−s
2(s+b)
s L−s/4h‖X

≤
g1( −s

2(s+b) )

f1( s
2(s+b) )

β
−b

(s+b) ‖h‖X

≤ ψ2(s)β
−b

(s+b) ‖h‖X . (3.5)

�
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Let

G(x) = x−Rβ(x0)−1[F (x)− zδαk,s + αkL
s/2(x− x0)]. (3.6)

Note that with the above notation G(xδn,αk,s) = xδn+1,αk,s
.

First we prove that xδn,αk,s converges to the zero xδαk,s of

F (x) + αkL
s/2(x− x0) = zδαk,s (3.7)

and then we prove that xδαk,s is an approximation for x̂.

Hereafter we assume that ‖x̂− x0‖X < ρ where

ρ <
1

ψ1(s)M

β
b
s+b [1− ψ2(s)(β−αkβ )]2

4k0ψ2(s)
2 − ψ(s)

δ0

α
a

2(s+a)

0


with δ0 <

β
b
s+b [1−ψ2(s)(

β−αk
β )]2

4k0ψ(s)ψ2(s)
2 α

−a
2(s+a)

0 . Let

γρ := ψ2(s)β
−b

(s+b) [ψ1(s)Mρ+ ψ(s)α
−a

2(s+a)

0 δ0].

and we define

q = ψ2(s)[k0r +
β − αk
β

], r ∈ (r1, r2) (3.8)

where

r1 =
[1− ψ2(s)(β−αkβ )]−

√
[1− ψ2(s)(β−αkβ )]2 − 4k0ψ2(s)γρ

2k0ψ2(s)

and

r2 = min

{
1− (1− c)ψ2(s)

k0ψ2(s)
,

1

k0
[

1

ψ2(s)
− β − αk

β
],

[1− ψ2(s)(β−αkβ )] +
√

[1− ψ2(s)(β−αkβ )]2 − 4k0ψ2(s)γρ

2k0ψ2(s)

}
where 0 < c < αk < 1 is a constant.

Remark 3.6. Note that for r ∈ (r1, r2) we have q < 1 and γρ <
γρ
1−q ≤ r.

Theorem 3.7. Let r ∈ (r1, r2) and Assumption 3.3 be satisfied. Then the sequence
(xδn,α,s) defined in (1.7) is well defined and xδn,α,s ∈ Br(x0) for all n ≥ 0. Further

(xδn,α,s) is Cauchy sequence in Br(x0) and hence converges to xδαk,s ∈ Br(x0) and

F (xδαk,s) + αkL
s/2(xδαk,s − x0) = zδαk .

Moreover, the following estimate holds for all n ≥ 0,

‖xδn,α,s − xδαk,s‖X ≤
γρq

n

1− q
. (3.9)
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Proof. Let G be as in (3.6). Then for u, v ∈ Br(x0),

G(u)−G(v) = u− v −Rβ(x0)−1[F (u)− zδαk + αkL
s/2(u− x0)]

+Rβ(x0)−1[F (v)− zδαk,s + αkL
s/2(v − x0)]

= Rβ(x0)−1[Rβ(x0)(u− v)− (F (u)− F (v))]

+αkRβ(x0)−1Ls/2(v − u)

= Rβ(x0)−1[F ′(x0)(u− v)− (F (u)− F (v)) + βLs/2(u− v)]

+αkRβ(x0)−1Ls/2(v − u)

= Rβ(x0)−1[F ′(x0)(u− v)− (F (u)− F (v)) + (β − αk)Ls/2(u− v)]

= Rβ(x0)−1
∫ 1

0

[F ′(x0)− F ′(v + t(u− v)]dt(u− v)

+Rβ(x0)−1(β − αk)Ls/2(u− v)].

Thus by Assumption 3.3 and Lemma 3.5 we have

‖G(u)−G(v)‖X ≤ q‖u− v‖X . (3.10)

Now we shall prove that xδn,αk,s ∈ Br(x0), for all n ≥ 0. Note that

‖xδ1,αk,s − x0‖X = ‖(F ′(x0) + βLs/2)−1(F (x0)− zδαk,s)‖X
≤ ‖L−s/4(L−s/4F ′(x0)L−s/4 + βI)−1L−s/4

(F (x0)− zδαk,s)‖X

≤ 1

f1( s
2(s+b) )

‖B
s

2(s+b)
s (Bs +

αk
c
I)−1L−s/4

(F (x0)− zδαk,s)‖X

≤ 1

f1( s
2(s+b) )

‖(Bs + βI)−1B
s

(s+b)
s B

−s
2(s+b)
s

L−s/4(F (x0)− zδαk,s)‖X

≤
g1( −s

2(s+b) )

f1( s
2(s+b) )

β
−b

(s+b) ‖F (x0)− zδαk,s‖X

≤ ψ2(s)β
−b

(s+b) [‖F (x0)− zαk,s‖X
+‖zαk,s − zδαk,s‖X ] (3.11)

Now using (2.3) and (2.5) in (3.5), one can see that

‖xδ1,αk,s − x0‖X ≤ ψ2(s)β
−b

(s+b) [ψ1(s)‖F (x̂)− F (x0)‖X + ψ(s)α
−a

2(s+a) δ]

≤ ψ2(s)β
−b

(s+b) [ψ1(s)Mρ+ ψ(s)α
−a

2(s+a)

0 δ0] = γρ.



256 Ioannis K. Argyros, Santhosh George and M. Kunhanandan

Assume that xδk,αk,s ∈ Br(x0), for some k. Then

‖xδk+1,αk,s
− x0‖X = ‖xδk+1,αk,s

− xδk,αk,s + xδk,αk,s − x
δ
k−1,αk,s

+ · · ·+ xδ1,αk,s − x0‖X
≤ ‖xδk+1,αk,s

− xδk,αk,s‖X + ‖xδk,αk,s − x
δ
k−1,αk,s‖X

+ · · ·+ ‖xδ1,αk,s − x0‖X
≤ (qk + qk−1 + · · ·+ 1)γρ

≤ γρ
1− q

≤ r.

So xδk+1,αk,s
∈ Br(x0) and hence, by induction xδn,αk,s ∈ Br(x0), ∀n ≥ 0. Next we

shall prove that (xδk+1,αk,s
) is a Cauchy sequence in Br(x0).

‖xδn+m,αk,s − x
δ
n,αk,s

‖X ≤
m∑
i=0

‖xδn+i+1,αk,s
− xδn+i,αk,s‖X (3.12)

≤
m∑
i=0

qn+iγρ

≤ qn

1− q
γρ. (3.13)

Thus (xδn,αk,s) is a Cauchy sequence in Br(x0) and hence converges to some xδαk,s ∈
Br(x0). Now by n→∞ in (1.7) we obtain F (xδαk,s) + αkL

s/2(xδαk,s − x0) = zδαk,s.
This completes the proof of the Theorem.

In addition to the Assumption 2.2, we use the following assumption to obtain
the error estimate for ‖x̂− xδαk,s‖.

Assumption 3.8. There exists a continuous, strictly monotonically increasing function
ϕ1 : (0, ‖Bs‖]→ (0,∞) such that the following conditions hold:

• lim
λ→0

ϕ1(λ) = 0,

• supλ>0
αϕ1(λ)
λ+α ≤ ϕ1(α) ∀λ ∈ (0, ‖Bs‖] and

• there exists w ∈ X with ‖w‖X ≤ E2, such that

B
s

2(s+b)
s Ls/4(x0 − x̂) = ϕ1(Bs)w

Remark 3.9. If x0 − x̂ ∈ Xt1 i.e., ‖x0 − x̂‖t1 ≤ E1 for some positive constant E1 and

0 ≤ t1 ≤ s+b. Then as in Remark 2.3, we have B
s

2(s+b)
s Ls/4(x0− x̂) = ϕ1(Bs)w where

ϕ1(λ) = λt1/(s+b), w = B
s−2t1
2(s+b)
s Ls/4(x̂− x0) and ‖w‖ ≤ g1( s−2t12(s+b) )E1 := E2.

Hereafter we assume that ϕ1(αk) ≤ ϕ(αk).

Theorem 3.10. Suppose xδαk,s is the solution of (3.1) and Assumptions 3.3 and 3.8
hold. Then

‖x̂− xδαk,s‖X = O(ψ−1(δ)).
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Proof. Note that (F (xδαk,s)− z
δ
αk,s

) + αkL
s/2(xδαk,s − x0) = 0, so

(F ′(x0) +
αk
c
Ls/2)(xδαk,s − x̂) = (F ′(x0) +

αk
c
Ls/2)(xδαk,s − x̂)

−(F (xδαk,s)− z
δ
αk,s

)− αkLs/2(xδαk,s − x0)

= (
αk
c
− αk)Ls/2(xδαk,s − x̂) + αkL

s/2(x0 − x̂)

+F ′(x0)(xδαk,s − x̂)− [F (xδαk,s)− z
δ
αk,s

]

= (
αk
c
− αk)Ls/2(xδαk,s − x̂) + αkL

s/2(x0 − x̂)

+F ′(x0)(xδαk,s − x̂)− [F (xδαk,s)− F (x̂) + F (x̂)− zδαk,s]

= (
αk
c
− αk)Ls/2(xδαk,s − x̂) + αkL

s/2(x0 − x̂)− (F (x̂)− zδαk,s)

+F ′(x0)(xδαk,s − x̂)− [F (xδαk,s)− F (x̂)].

Thus

‖xδαk,s − x̂‖X ≤ ‖(
αk
c
− αk)(F ′(x0 +

αk
c
Ls/2)−1Ls/2(xδαk,s − x̂)‖X

+‖αk(F ′(x0 +
αk
c
Ls/2)−1Ls/2(x0 − x̂)‖X + ‖(F ′(x0) +

αk
c
Ls/2)−1

(F (x̂)− zδαk,s)‖X + ‖(F ′(x0) +
αk
c
Ls/2)−1[F ′(x0)(xδαk,s − x̂)

−(F (xδαk,s)− F (x̂))]‖X

≤ ‖(αk
c
− αk)(F ′(x0 +

αk
c
Ls/2)−1Ls/2(xδαk,s − x̂)‖X

+‖αk(F ′(x0) +
αk
c
Ls/2)−1Ls/2(x0 − x̂)‖X

+ψ2(s)(
αk
c

)−1‖F (x̂)− zδαk,k‖X + Γ (3.14)

where Γ := ‖(F ′(x0) + αk
c L

s/2)−1
∫ 1

0
[F ′(x0) − F ′(x̂ + t(xδαk,s − x̂)](xδαk,s − x̂)dt‖X .

Note that

‖(αk
c
− αk)(F ′(x0 +

αk
c
Ls/2)−1Ls/2(xδαk,s − x̂)‖X

≤
αk
c − αk
αk
c

ψ2(s)‖xδαk,s − x̂‖X

≤ (1− c)ψ2(s)‖xδαk,s − x̂‖X , (3.15)
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and by Assumption 3.8, we obtain

‖αk(F ′(x0) +
αk
c
Ls/2)−1Ls/2(x0 − x̂)‖X

= ‖αkL−s/4(Bs +
αk
c

)−1Ls/4(x0 − x̂)‖X

≤ 1

f1( s
2(s+b)

‖αk(Bs +
αk
c

)−1B
s

2(s+b)
s Ls/4(x0 − x̂)‖X

≤ 1

f1( s
2(s+b)

sup
λ∈σ(F ′(x0))

αkϕ1(λ)

λ+ αk
c

≤ sup
λ∈σ(F ′(x0))

αkϕ1(λ)

λ+ αk

≤ ϕ1(αk) (3.16)

and by Assumption 3.3, and Lemma 3.5 we obtain

Γ ≤ ‖(F ′(x0) +
αk
c
Ls/2)−1

∫ 1

0

[F ′(x0)− F ′(x̂+ t(xδαk,s − x̂)]

(xδαk,s − x̂)dt‖X
≤ ψ2(s)k0r‖xδαk,s − x̂‖X (3.17)

and hence by (3.15), (3.16), (3.17) and (3.14) we have

‖xδαk,s − x̂‖X ≤
ϕ1(αk) + Csψ2(s)(2 + 4η

η−1 )ηψ−1s,a(δ)

1− (1− c)ψ2(s)− ψ2(s)k0r

= O(ψ−1s,a(δ)).

This completes the proof of the Theorem.
The following Theorem is a consequence of Theorem 3.7 and Theorem 3.10.

Theorem 3.11. Let xδn,αk,s be as in (1.7) with α = αk and δ ∈ (0, δ0], assumptions in
Theorem 3.7 and Theorem 3.10 hold. Then

‖x̂− xδn,αk,s‖X ≤
γρ

1− q
qn +O(ψ−1s,a(δ)).

Theorem 3.12. Let xδn,αk,s be as in (1.7) with α = αk and δ ∈ (0, δ0], and assumptions
in Theorem 3.11 hold. Let

nk := min{n : q̃n ≤ α
−a

2(s+a)

k δ}.

Then

‖x̂− xδnk,αk,s‖X = O(ψ−1s,a(δ)).

4. Numerical examples

In the next two cases, we present examples for nonlinear equations where
Assumption 3.3 is satisfied but not Assumption 3.1.
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Example 4.1. Let X = Y = R, D = [0,∞), x0 = 1 and define function F on D by

F (x) =
x1+

1
i

1 + 1
i

+ c1x+ c2, (4.1)

where c1, c2 are real parameters and i > 2 an integer. Then F ′(x) = x1/i + c1 is
not Lipschitz on D. Hence, Assumption 3.1 is not satisfied. However central Lipschitz
condition Assumption 3.3 holds for k0 = 1.

Indeed, we have

‖F ′(x)− F ′(x0)‖ = |x1/i − x1/i0 |

=
|x− x0|

x
i−1
i

0 + · · ·+ x
i−1
i

so

‖F ′(x)− F ′(x0)‖ ≤ k0|x− x0|.

Example 4.2. We consider the integral equations

u(s) = f(s) + λ

∫ b

a

G(s, t)u(t)1+1/ndt, n ∈ N. (4.2)

Here, f is a given continuous function satisfying f(s) > 0, s ∈ [a, b], λ is a real number,
and the kernel G is continuous and positive in [a, b]× [a, b].

For example, when G(s, t) is the Green kernel, the corresponding integral equa-
tion is equivalent to the boundary value problem

u′′ = λu1+1/n

u(a) = f(a), u(b) = f(b).

These type of problems have been considered in [1]- [5].

Equation of the form (4.2) generalize equations of the form

u(s) =

∫ b

a

G(s, t)u(t)ndt (4.3)

studied in [1]-[5]. Instead of (4.2) we can try to solve the equation F (u) = 0 where

F : Ω ⊆ C[a, b]→ C[a, b],Ω = {u ∈ C[a, b] : u(s) ≥ 0, s ∈ [a, b]},

and

F (u)(s) = u(s)− f(s)− λ
∫ b

a

G(s, t)u(t)1+1/ndt.

The norm we consider is the max-norm.

The derivative F ′ is given by

F ′(u)v(s) = v(s)− λ(1 +
1

n
)

∫ b

a

G(s, t)u(t)1/nv(t)dt, v ∈ Ω.
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First of all, we notice that F ′ does not satisfy a Lipschitz-type condition in Ω. Let us
consider, for instance, [a, b] = [0, 1], G(s, t) = 1 and y(t) = 0. Then F ′(y)v(s) = v(s)
and

‖F ′(x)− F ′(y)‖ = |λ|(1 +
1

n
)

∫ b

a

x(t)1/ndt.

If F ′ were a Lipschitz function, then

‖F ′(x)− F ′(y)‖ ≤ L1‖x− y‖,
or, equivalently, the inequality∫ 1

0

x(t)1/ndt ≤ L2 max
x∈[0,1]

x(s), (4.4)

would hold for all x ∈ Ω and for a constant L2. But this is not true. Consider, for
example, the functions

xj(t) =
t

j
, j ≥ 1, t ∈ [0, 1].

If these are substituted into (4.4)

1

j1/n(1 + 1/n)
≤ L2

j
⇔ j1−1/n ≤ L2(1 + 1/n), ∀j ≥ 1.

This inequality is not true when j →∞.
Therefore, condition (4.4) is not satisfied in this case. Hence Assumption 3.1 is

not satisfied. However, condition Assumption 3.3 holds. To show this, let x0(t) = f(t)
and γ = mins∈[a,b] f(s), α > 0 Then for v ∈ Ω,

‖[F ′(x)− F ′(x0)]v‖ = |λ|(1 +
1

n
) max
s∈[a,b]

|
∫ b

a

G(s, t)(x(t)1/n − f(t)1/n)v(t)dt|

≤ |λ|(1 +
1

n
) max
s∈[a,b]

Gn(s, t)

where Gn(s, t) = G(s,t)|x(t)−f(t)|
x(t)(n−1)/n+x(t)(n−2)/nf(t)1/n+···+f(t)(n−1)/n ‖v‖.

Hence,

‖[F ′(x)− F ′(x0)]v‖ =
|λ|(1 + 1/n)

γ(n−1)/n
max
s∈[a,b]

∫ b

a

G(s, t)dt‖x− x0‖

≤ k0‖x− x0‖,

where k0 = |λ|(1+1/n)
γ(n−1)/n N and N = maxs∈[a,b]

∫ b
a
G(s, t)dt. Then Assumption 3.3 holds

for sufficiently small λ.

In the last example, we show that K
k0

can be arbitrarily large in certain nonlinear
equation.

Example 4.3. Let X = D(F ) = R, x0 = 0, and define function F on D(F ) by

F (x) = d0x+ d1 + d2 sin ed3x, (4.5)

where di, i = 0, 1, 2, 3 are given parameters. Then, it can easily be seen that for d3
sufficiently large and d2 sufficiently small, K

k0
can be arbitrarily large.
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5. Conclusion

In this paper we present an iterative regularization method for obtaining an
approximate solution of an ill-posed Hammerstein type operator equation KF (x) = y
in the Hilbert scale setting where K is a bounded linear operator and F is a nonlinear
monotone operator. It is assumed that the available data is yδ in place of exact data
y. We considered the Hilbert space (Xt)t∈R generated by L for the analysis where
L : D(L) → X is a linear, unbounded, self-adjoint, densely defined and strictly
positive operator on X. For choosing the regularization parameter α we used the
adaptive scheme of Pereverzev and Schock (2005).
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