
Automatic Motion Synthesis of Articulated
Figures for Computer Animation

V. V. Kamat

Thesis submitted to the Goa University for

the degree of

Doctor of Philosophy. 	OCA ' 642

kA-T9 A-OT
January, 1996 	

TT'

Statements as required by the University

1. Statement on originality of thesis document

I hereby declare that for this thesis which I am submitting for the Ph.D

degree in Computer Science and Technology of the Goa university, no

degree or diploma or distinction has been conferred on me before, either

in this or any other university or body.

2. Statement on the research contributions towards general advance-

ment of knowledge

In this research work I have proposed a new methodology for automatic

motion synthesis by the specification of motion features. Motion features

have not been used before for the automatic synthesis of motion. Fur-

ther I have shown with the help of an extensive implementation and a

large number of experiments with virtual creatures that the methodology

of motion feature specification is applicable and gives excellent results.

The highly complex complex motion of gaits of legged creatures has been

thoroughly investigated for successful application of this methodology. A

new and efficient parallel implementation using evolutionary program-

ming based technique has been carried out. Together all the above results

have introduced a novel way of building future physically based anima-

tion systems in which the computer system will provide very high level

support to the animators by doing the tedious work, leaving the animator

only to concentrate on task of motion conceptualization and planning.

3. Statement on originality of reported research

For this research, I have built upon various formalisms and techniques

from the following disciplines, robotics, biomechanics, optimization and

artificial intelligence. The proposed methodology of automatic motion

synthesis of articulated figures by specification of motion features is an

original contribution. Creation of the integrated simulation environment,

parallelizing the stochastic population hill climbing algorithm and ana-

lyzing all the work related to gaits of legged creatures are also my original

ii

(V. V. Kamat)

Signature of the student

Place: NCST, Mumbai

Date: 13th December, 1996.

(Dr. S. P. Mudur)

Signature of the guide

contributions of this thesis.

4. Statement on my own individual research contributions

The entire work reported in this thesis has been carried out by me under

the guidance of Dr. S. P. Mudur of National Centre for Software Technol-

ogy, Bombay.

5. Statement on published work in support of my candidature

The following publications are based completely on this research of the

author.

(a) A Survey of Techniques for Simulation of Dynamic Collision Detection

and Response, Computers and Graphics , Vol. 17, No. 4, pages 379-

I
	

385.

(b) Synthesis of Realistic Motion for Legged Creatures, Software Bul-

letin, Vol. 3, No. 4, pages 9-16.

(c) An Evolutionary Programming Technique Using Motion Features For

Animating Articulated Figures (sent for publication).

Co-author: Atul Jain and S. P. Mudur.

(d) Automatic Synthesis of Gaits of Virtual Legged Creatures (sent for

publication).

Co-author: S. P. Mudur.

6. Statement on revised version of the thesis

All the required modifications suggested by the thesis examiners have

been incorporated in this revised version of the thesis.

iii

Automatic Motion Synthesis of Articulated Figures for
Computer Animation

by

V. V. Kamat

Synopsis of the Thesis
to be submitted to

Goa University, for the award of Ph.D degree.

The study of motion

It is always fascinating to watch the motion of objects in the world, particu-

larly the movement of living creatures. The crawl of a worm, the slither of the

snake, the leap of a gazelle, the run of a dog, the gallop of a horse or the walk

of a human, all look amazingly simple and beautiful, yet involve extraordinary

skill in muscle coordination and balance. Reproducing even the simplest of

these movements by mechanical, or other means has always been a challenge.

This in part explains the tremendous appeal that Disney animations hold for

young and old alike, or the effect that a moving limbed toy has on any child.

Computer animation is primarily concerned with generation of the motion of

virtual creatures moving around and interacting with a virtual world such that

the movement appears physically realistic and is generated in a computation-

ally efficient manner.

Apart from computer animation, motion is studied and modelled in a number

of other disciplines like robotics, biomechanics, control theory and artificial life.

These disciplines has their own distinct emphasis in the study of motion as

discussed below, but most developments in these disciplines are bound to find

application in computer animation.

Motion planning and motion control are central areas of research in robotics

[22]. Forward and inverse kinematics, as well as forward and inverse dynam-

ics are important concepts from robotics that have a direct application to the

animation of articulated figures. Robots inhabit a more complex physical world

iv

than their synthetic counterpart, and must sense the environment and react

to it in real time. However, the movement of robots is not just simulated but

physical and is brought about by internal force generators and actual physical

interaction within physical world.

Biomechanics is the study of the mechanical bases of human and animal motion

[19]; with the central focus being on musculotendons which act as the main force

actuators to bring about motion. Muscles have many properties that influence

the type of motion produced. Biomechanics is concerned with a study of these

properties as well as with the investigation of schemes for controlling muscles

to yield desired motion. Traditionally, studies in biomechanics have focused on

a single muscle or a single joint.

Conventional control theory addresses the problem of motion control , but of

rather simple systems [57]. For more complex systems, difficulties are primarily

due to the non-linearities involved. The field of control is additionally concerned

with the issue of proving stability and performance under all conditions. Most

systems that are studied in control theory are simple, in comparison with the

motion control systems needed for typical animated figures.

Artificial life is a new science dedicated to mimicking the emergent behaviour

of living systems in silico. Instead of trying to simply replicate the effects of liv-

ing systems, artificial life researchers attempt to build these behaviours from

bottom-up, much in the style that nature itself does. A typical artificial life

approach begins with biological behaviour such as reproduction, evolution and

locomotion and attempts to extract simple local rules behind that behaviour

[104]. Many of the simulated creatures are defined by compact code, which

subsequently determines the creatures' behaviour when placed in an environ-

ment. Once again most creatures being experimented with are still too simple

to be interesting enough for the purposes of animation.

The movement in animation is really just an illusion; made possible because of

the biological phenomenon of persistence of vision. A series of images slightly

differing from each other are shown in rapid succession . The eye/mind blends

them together to result in the visual illusion of movement or change. Typically

24 to 30 frames (images) per second are shown. Animation is primarily con-

cerned with the synthesis of these images at discrete times and strictly speaking

does not mandate the modelling of continuous time varying motion. However,

in computer animation we find it convenient to model motion as a continuous

function of time and generate the individual frames by appropriately sampling

this function.

The motion synthesis problem

Movement or motion is a dynamic phenomena - it is the change in spatial config-

uration of an object over time. The spatial configuration of an object is defined

geometrically. A simple object like a pen is completely defined by the position of

a single point on its body say (x v , yp , zr,) and its orientation (Or , Oy ,Oz ,) in three

dimensional space. More complex legged objects are defined as articulated bod-

ies composed of links that are connected to each other via joints. However, in

order to contain the complexity, in most studies rigid articulated bodies are

used for modelling the motion behaviour of legged creatures.

Degrees of freedom (DOF) constitutes the minimal set of parameters needed to

completely specify the configuration of a body in space. Degrees of freedom are

also known as generalised coordinates. Thus the spatial configuration of the

pen in 3D has 6 DOF. With just 6 parameters, the pen can be moved to any

desired point and oriented in any desired direction in space. An articulated

body has more DOF depending on the number of links, joint types etc. Consider

for example the planar articulated body with 3 links and 2 rotary joints as

shown in Figure 0.1. This simple body has 5 degrees of freedom. Human bodies

are amongst the most complicated of articulated bodies. Typically, the human

body has about 200 degrees of freedom [110].

A universally accepted convention is to consider degrees of freedom as consti-

tuting a vector and use vector notation say X to denote the spatial configuration

of a body. Hence the motion of the body over a time period T would be denoted

by X(t), 0 < t < T.

vi

A rather simple definition of the synthesis problem is as follows:

Given the geometry of an articulated body, say X, a desired type of

movement say walk and a time period T, determine X(t), 0 < t < T.

The above definition hides the enormous underlying complexity in this prob-

lem. Certainly physics is involved; gravitational and other forces have to be

considered. The movement of a pen dropped from a height of say, four feet from

the ground is not arbitrary but completely determined by the properties associ-

ated with the pen, such as its mass, moment of inertia, coefficient of restitution

etc. Animators take years before they acquire the necessary skills to predict the

spatial configurations of objects at any time for generating a specific movement.

Living creatures are active articulated bodies that can bring about their own

motion through internally generated forces and interaction with environment

like the wall or the ground. For such bodies, the , motion synthesis problem

becomes orders of magnitude more complex. It is only in very recent times

with easy availability of computing power that the studies of motion of such

complexity are being undertaken in the different disciplines listed above.

Traditionally, in animation the motion synthesis problem is tackled using a

technique known as key-frame animation. In key-frame animation, the an-

imator only describes a set of "Key-frames" from which the system can geo-

metrically interpolate each DOF independently to automatically generate all

the inbetween frames needed. There are two major problems with key-frame

animation. Firstly it puts a large burden on the animator by requiring the

adjustment of too many parameters at very fine levels of detail. For a reason-

ably detailed figure with 30 DOF, a minute of animation with a key-frame, say,

every quarter of a second, would approximately require eight thousand val-

ues to be specified. This is perhaps an impossible task. Secondly, to generate

very convincing looking motion, the animator must have a very good under-

standing of the motion and also possess artist like skills, for resynthesizing the

internalised motion. Therefore more often than not, even after many trials,

key-frame synthesized motion tends to look unrealistic and puppet like.

vii

In the late 1980's, researchers working in the field of computer animation were

convinced that if the animation has to look realistic, the physics behind the

motion has to be taken into account [3, 105, 52]. This is typically done by aug-

menting the traditional geometric model to include other physical characteris-

tics that computers can use to compute motion. These physical characteristics

are mass of the body, its moment of inertia, external forces such as gravity, fric-

tion etc. The idea is to incorporate appropriate physical complexity and realism

of the behaviour into the model itself, rather than requiring that it be imposed

by the animator. Initial results on incorporation of physics to produce realistic

movements were very encouraging.

In physically based animation, the task of synthesizing motion is accomplished

in several steps. The first is to create a suitable geometric model of the artic-

ulated figure by defining the geometry of each link and its relation to the rest

of the body. The second step is to supply physical parameters which include,

mass, centre of mass and moment of inertia for each link. The third step is to

define control parameters that will determine the necessary force/torque func-

tion which will bring about the desired motion. In the fourth step the equations

of motion are assembled and solved using numerical techniques to obtain the

position of the object over time. In the last step, individual images (frames) are

rendered.

Currently there are two approaches in physically based animation. They typ-

ically trade off computational work for autonomy of movement versus manual

work for controllability of movement.

The method of space-time constraints [108] and space-time windows [20] belongs

to the first category It poses the motion control problem in terms of trajectory

through space and time which is subject to the constraints of physics and the

constraints of the desired motion. This approach has close ties to keyframing.

The second approach involves creating a controller which produces motion by

directly supplying actuating forces and torques [101, 81, 49]. A parameterized

controller results in a compact representation of motion. The controller is typ-

ically synthesised by searching in the multi-dimensional parameter space of

viii

urally specified in the form of desirable set of motion feature values.

Further, with a given motion feature vector as input, the actual

desired movement can be automatically synthesized by the use of

appropriate optimization based search procedures in the space of

motion controllers.

It is important to note two aspects of the problem of searching for an optimal

controller for a specific movement by an articulated figure:

o. The search space is large and multimodal. The number of locally optimal

solutions far exceeds the useful solutions which typically occupy small

portions of the search space.

o The search space may be discontinuous. Small changes in the control

parameter values may lead to a large change in the fitness value.

As a consequence motion synthesis for articulated figure is compute intensive

and needs efficient implementations.

Implementation and experiments

As part of this research a fairly elaborate implementation has been carried out

to substantiate the above thesis. The implementation enables us to test out the

automatic synthesis of motion for planar articulated bodies by specifying desir-

able feature values from a predefined set of motion features. The automatically

synthesized motion is played back in real time on the computer display screen.

Our implemenation includes the following:

1. accepts geometric definitions of an articulated body

2. models the ground and interaction with the ground

3. formulates equations of motion

4. simulates the motion for a given set of controller parameters

5. uses the desired feature values and constructs the fitness function that

is used by a genetic algorithm to search for the optimal controller in the

controller space.

Figure 0.2 shows an overview of the different components of our system.

Since the entire process is very demanding on computer time, the search process

has been parallelized to run on a network of CPUs. The overall performance

and the synthesized movements are extremely encouraging.

Thesis Organization Chapter 1 is a brief introduction to the main goal

of all computer animation — the synthesis of motion of virtual objects/creatures
S moving and interacting in virtual environments. The importance of physical

correctness and realism in synthesized motion is clearly brought out. The

chapter includes a small comparative analysis of the approaches to the study

of motion in computer animation and in other discipline like Robotics, Biome-

chanics, Artificial life and Mechanical simulations. It also gives an overview

of the different approaches to the automatic synthesis of physically correct mo-

tions, the problems present in these approaches and the solution methodology

proposed by us.

Chapter 2 is a comprehensive review of all known methods in computer ani-

mation for generating animated sequences involving articulated figures. Both

kinematics and dynamics based techniques are discussed. The various ap-

proaches being pursued for the automatic synthesis of physically based motion

are presented and motion synthesis through the automatic generation of opti-

mal motion controllers is identified as the most promising approach to date.

In chapter 3 we discuss in detail all major aspects of optimization techniques as

applicable to the motion synthesis problem. The aspects provide a framework

along multiple dimensions like search space, task goal, constraints, dynamics

simulation, and search algorithm, which enables us to concisely review the

existing optimization methods and also any new developments that may take

place in the future in this optimal motion search area.

Chapter 4 describes the importance of external object interaction in the move-

i Fitness Specification
Function

. 	 ..'

\II r
Parallel
Genetic

Algorithm
 1

\ l/
Control 	i 	1

Specification 	Control
> System

■. 	 }

Physical
Specification

Geometric
	

f

Specification 	Geometric 	Geometric

Motion Feature

I
Physical
System

	1

Control

 Parameters

Physical

 Parameters

System 	Parameters
	.1

Simulator Parameter Specification

X

Figure 0.1: A planar articulated body with three links and two rotary joints

Y

1

U
S

E

R

S

P

E

C

I

F

I

C

A

T

I

0

N

Figure 0.2: System Configuration

xii

S

I

M
U

L

A

T

0

R

Output

ment of an articulated figure. Basically all external interaction results in forces

and torques that get applied to the moving figure. Collision forces are specif-

ically the most important amongst these. The chapter reviews the collision

detection and collision response problem and strategies in use for finding so-

lutions to these problems. The different types of contact or collision like the

colliding contact or the resting contact and methods for handling these are also

reviewed. Finally the difficulties of modelling frictional contact are presented.

Chapter 5 addresses the primary thesis of our research — the automatic synthe-

sis of motion through the specification of features. To begin with, we introduce

the notion of motion features and formulate their specification as computable

functions that take complete motions as their arguments. We formulate the

performance metric that uses these feature values. The performance metric

formulation is such that its value is optimal when the motion, has the specified

features. Choosing the domain of gaits of legged creatures — a topic very well

studied in different disciplines — we define a set of motion features that could

be specified by an animator to obtain different kinds of gaits.

Chapter 6 describes our implementation and also the results from the different

experiments that we conducted for synthesizing different kinds of movements

for virtual legged creatures. As part of our research we have created an in-

tegrated simulation environment. The overall architecture and the different

components that make up this environment such as the physical, geometric

and feature model, the simulator and controller synthesizer are briefly de-

scribed. Since the total computational effort involved in the motion synthesis

task is excessive, we have parallelized the search process. This chapter also

describes this parallel global optimal search algorithm based on evolutionary

programming (a type of genetic algorithm), known as the stochastic population

hill climbing (SPHC) algorithm. The parallel SPHC has been implemented us-

ing the parallel virtual machine (PVM) system. Finally the chapter describes

in detail the structure of 3 virtual creatures (a single legged creature and 2

two-legged creatures), and the results of our experiments in automatically syn-

thesising different types of gaits for these virtual creatures by the method of

motion feature specification.

Figures 0.3-0.5 shows some animation sequences synthesized using our imple-

mentation.

Figure 0.3: Mr. Luxo, a lamp like creature hopping

Figure 0.4: Mr. Pogo, a dog like creature walking

Figure 0.5: Mr. Walker, a human like creature walking

Chapter 7, the last chapter of our thesis analyses three major aspects of our

work. The basic approach to solving the problem of motion synthesis, the spe-

cific solution methodology proposed in this research and the implementation

and experiments carried out by us. Specifically the chapter highlights the sig-

nificant contributions, some deficiencies/limitations, future extensions possible

and some open problems in this area.

xiv

Acknowledgements

It would have been impossible to complete the thesis without the support of

many people. First and foremost, I am grateful to Dr. S. Ramani, Director,

National Centre for Software Technology (NCST) for providing an excellent

research environment.

Dr. S. P. Mudur, has been more than my thesis supervisor. Not only has he been

influential in shaping my thesis but he has also helped me in broadening my

perspectives in looking at many things in life. His knowledge and grasp of the

subject and the ability to understand things at a higher level without getting

into nitty-gritty details has always intrigued me.

Special thanks are due to Atul Jain for the help in implementation, which

played a crucial role in my thesis. Thanks to Bipin, Reddy and Vijay for the

TATEX support. You were always there whenever I needed help.

Thanks to all the members of the graphics division of NCST who have con-

tributed indirectly to this thesis through their friendship, enthusiasm and dis-

cussions. I shall certainly miss your company. Pijush, your influence on me is

very much there though you may not see it. Thanks to Khandge and Sakpal

for video shooting the animations.

I shall fail in my duty without acknowledging the valuable support provided by

the NCST library staff and systems support group. Life would not have been

smooth in Mumbai without accommodation and dining facilities. Thanks to

admin and canteen staff at NCST.

On a personal front I would like to thank my wife Nandini for her endless

encouragement and support during my thesis work. She has given a lot of

herself so that I can realize my personal goals. Nadisha, I hope you will forgive

me, I know how much you missed me.

Lastly, I have a big thank you for the Goa university authorities for the leave

and the financial support without which none of this would have been possible.

Contents

1 Introduction 	 1

S

	 1.1 Computer Animation 	2

1.2 A Relative Comparison of Motion Synthesis Studies 	7

1.3 The Physical Basis in Motion Synthesis 	 10

1.4 Thesis Statement 	 12

1.5 Thesis Organization 	 13

2 Animation Techniques for Articulated Figures: A Review 	16

2.1 Articulated Figure Representation 	 17

2.2 Trajectory Generation 	 19

2.3 Forward Kinematic Computations 	 19

2.4 Kinematics Based Animation 	 21

2.4.1 Key-frame Animation 	 21

2.4.2 Direct User Manipulation 	 22

2.4.3 Inverse Kinematics 	 23

2.4.4 Morphing 	 24

2.5 Drawbacks of Kinematics Methods 	 25

xvi

2.6 Dynamics Based Animation 	 26

2.6.1 Explicit Force and Torque Specification 	 27

2.6.2 Motion Controllers 	 28

2.7 Automatic Motion Synthesis 	 37

2.7.1 The Constrained Optimization Problem 	 37

2.7.2 Dynamic Constraints 	 39

2.7.3 Space-Time Constraints 	 40

2.7.4 State Space Motion Controllers 	 41

2.7.5 Automated Motion. Controller Synthesis 	 42

2.8 Important Issues in Articulated Figure Animation 	 43

3 Optimization Techniques for Motion Synthesis 	 46

3.1 The Search Space 	 47

3.2 The Performance Metric 	 49

3.3 The Dynamic System 	 53

3.3.1 The Physical Object Description 	 54

3.3.2 Dynamic Equations of Motion for Articulated Figure 	55

3.3.3 Integrating the equations 	 59

3.4 Constraints 	 64

3.4.1 Physical Correctness Constraints 	 65

3.4.2 Animator Specified Constraints 	 66

3.4.3 Constraint Handling Techniques 	 68

3.5 Optimization Techniques 	 69

3.5.1 Simulated annealing 	 72

xvii

5.7 Gait Related Features 	 111

5.8 The Use of Gait Related Features 	 116

6 Implementation and Results 	 117

6.1 Controller Synthesis 	 118

6.1.1 Geometry Model 	 120

6.1.2 Physical Model 	 121

6.1.3 Feature model 	 122

6.1.4 The Simulator 	 123

6.1.5 Controller representation 	 126

6.1.6 Performance Metric 	 128

6.2 Stochastic Population Hill Climbing Algorithm (SPHC) 	 129

6.2.1 A Parallel SPHC 	 131

6.3 Simulation of Motion and Sampling of Frames 	 137

6.4 Motion Playback 	 137

6.5 Experimental Details 	 138

6.5.1 The Luxo creature 	 138

6.5.2 The Pogo creature 	 143

6.5.3 The Walker creature 	 151

7 Conclusions and Future Work 	 153

7.1 Significant Contributions 	 154

7.2 Limitations 	 156

7.3 Possible Extensions 	 158

xix

7.4 Open Problems 	 160

Appendix A Representation, Performance metric and Mutation

Operation 	 162

A.1 Representation of Solution 	 162

A.2 Performance metric 	 165

A.3 Mutation Operation 	 166

Appendix B Animation System Reference Manual 	 168

B.1 Symbolic equation generator 	 168

B.2 Simulator 	 169

B.3 Anix server 	 170

Appendix C Documentation of Scripts 	 174

C.1 Scripts for Luxo 	 174

C.2 Scripts for Pogo 	 176

C.3 Scripts for Walker 	 178

References 	 180

List of Figures

0.1 A planar articulated body with three links and two rotary joints xii

0.2 System Configuration 	 xii

0.3 Mr. Luxo, a lamp like creature hopping 	 xiv

0.4 Mr. Pogo, a dog like creature walking 	 xiv

0.5 Mr. Walker, a human like creature walking 	 xiv

1:1 A planar articulated body 	 4

1.2 Some possible trajectories for a pen pushed off a table 	 5

2.1 Tree structured human like figure 	 18

2.2 Different types of joints 	 18

2.3 Denavit-Hartenberg notation 	 20

2.4 Linear interpolation between key-frames 	 22

2.5 Kinematic redundancy of an articulated figure 	 24

2.6 Sample torque at a joint for a walking dog like creature 	 28

2.7 Function of a controller 	 28

2.8 Actuator modelling spring and damper mechanism 	 29

2.9 Biomechanical actuator 	 30

• xxi

2.10 Controller for a two legged articulated figure 	 33

2.11 Pose control graph for a hopping lamp 	 34

2.12 Banked stimulus response controller with two sense variables . 	35

2.13 Sensor actuator networks 	 36

2.14 Performance metric 	 39

3.1 Control representation in different coordinate space 	 48

3.2 A numerical integration process 	 60

3.3 The hillclimbing approach 	 70

3.4 Space-time constraints method 	 70

4.1 The particle colliding with the floor 	 79

4.2 A rubber ball colliding with the floor 	 80

4.3 Soft body collision v/s Rigid body collision 	 81

4.4 A discontinuity in the state variable due to collision 	 83

4.5 A missed collision 	 85

4.6 A contact between two polyhedra 	 87

4.7 Contact geometry between moving polyhedra 	 88

4.8 A penalty method for modelling collision 	 92

5.1 Gait characterization by shape and duty factor 	 109

5.2 Gait cycle 	 111

5.3 Dynamic structure equivalent to hopping lamp 	 112

5.4 Stepping pattern corresponding to two legged creature 	 112

5.5 Diagram showing relative phase amongst legs of a quadruped . 113

5.6 Gait matrix and corresponding phase sequence for a quadruped

walk 	 113

5:7 Variation in total energy while walking and running 	 115

6.1 Three phases in motion synthesis 	 117

6.2 Different components in controller synthesis phase 	 119

6.3 Geometric structure specification 	 120

6.4 Articulated figure with monitor points 	 123

6.5 A relation between free-body diagram and the link-segment . 	124

6.6 Modelling of the floor 	 125

6.7 Control functions 	 127

6.8 An illustration of the controller 	 128

6.9 Stochastic population hill climbing (SPHC) 	 130

6.10 Mutation operation 	 131

6.11 Parallel stochastic population hill climbing (SPHC) 	 135

6.12 Master program distributing the solutions on different hosts 	136

6.13 The articulated figure — Luxo (a lamp like creature) 	 139

6.14 Synthesis of two different controllers for Luxo 	 144

6.15 Luxo hopping 	 144

6.16 Phase diagram for hopping Luxo 	 144

6.17 Variation in torques for hopping Luxo 	 145

6.18 Variation in joint angles for hopping Luxo 	 145

6.19 Variation in total energy of hopping Luxo 	 145

6.20 The articulated body — Pogo (a dog like creature) 	 146

6.21 Synthesis of a controller for Pogo 	 147

6.22 Pogo, walking 	 147

6.23 Phase diagram for a walking Pogo 	 148

6.24 Variation in energy for walking Pogo 	 148

6.25 Pogo, running 	 149

6.26 Phase diagram for running Pogo 	 150

6.27 Variation in total energy for running Pogo 	 150

6.28 The articulated body — Walker (a human like creature) 	 151

6.29 Walker walking 	 152

A.1 Transition between Poses 	 164

xxiv

List of Tables

2.1 An FSM that coordinates running for a biped 	 32

5.1 Comparison of individual leg dynamics 	 115

6.1 Range of angles for Luxo 	 139

6.2 Physical properties of Luxo 	 139

6.3 Feature values for hopping Luxo 	 143

6.4 Range of angles for Pogo 	 146

6.5 Physical properties of Pogo 	 147

6.6 Feature values for walking Pogo 	 149

6.7 Feature values for running Pogo 	 149

6.8 Range of angles for Walker 	 151

6.9 Physical properties of Walker 	 152

7.1

Chapter 1

Entroduction

The movement of objects in this world has always fascinated mankind; whether

it is the movement of a planet, the flight of a ball or the walk of a living creature.

For centuries, philosophers, physicists and mathematicians have all attempted

to study and theorize the motion of objects in the world. Thus the science of

mechanics concerned with the motion and equilibrium of masses is that branch

of physics which is at once the oldest and also the most fundamental, and is

therefore treated as introductory to other departments of physics. It was not

however until the 17th century, that a robust set of physical principles were

put forward to explain the mechanics of everyday objects, when Issac Newton

published his three laws of motion (in Principia) in 1687. Newtonian physics

has been one of the grand success stories of science. The Newtonian paradigm

has maintained its utility till date despite stunning conceptual advances from

relativistic and quantum physics developed by Einstein and others. The study

of Newtonian dynamics is no longer an active area of research in physics. In-
4 stead, research efforts have branched into newer disciplines such as robotics,

biomechanics, physically based computer animation, and artificial life. Phys-

ically based computer animation is the primary area of focus in our research.

However, we also briefly describe in this chapter the distinct emphasis that

some of the other disciplines have in their study of motion. Developments in

all these fields are bound to find application in computer animation as well!

•

•

•

1.1 Computer Animation

The primary purpose of a computer animation system is to provide assistance

to the human animator in synthesizing the movement of an object such that

the resulting motion appears physically correct (for example, say, obeys gravi-

tational laws)', unless explicitly intended otherwise, and also conforms to the

animator's goals. These goals depend on the story sequence being narrated

through the animated object. If the object being animated is an autonomous

character (representative of a living creature that can generate its own forces

to bring about its movement) then the resulting motion should not only be

physically correct, but also appear realistic 2 and natural 3 . A walk should look

like a walk and be different from a hop or a run.

Typically the autonomous character is modelled as an articulated body com-

posed of links that are connected to each other via joints. These joints have

associated actuators that generate all the internal torques which along with

external forces like gravity, reaction, friction etc. are used by living creatures

to bring about the desired motion. While in real life the limbs are usually

flexible, for simplicity, in most computer simulations the links are considered

as being rigid.

Movement or motion is a dynamic phenomena — it involves change in shape

and spatial configuration of an object over time. Most often, in digital sim-

ulations the shape of an object is defined geometrically. Shape being such a

fundamental attribute of physical objects in the world, it has been researched

extensively and the field of geometric modelling and design has evolved almost

as an independent discipline [76]. If the shape of the object surface changes

over time due to effects of say, forces, then these are referred to as deformable

bodies, otherwise as rigid bodies.

'More specifically, moves in accordance with Newton's laws of motion

2The forces being applied are as they would be in a real world situation
3Appears similar to the same type of movement performed in nature by an actual living

creature of the same kind.
Is

While there is considerable ongoing research on deformable objects [96, 73],

our research is primarily concerned with the movement of rigid bodies linked

together, referred to as articulated bodies, and which deform only by changing

the joint angles.

The movement in animation is really just an illusion, made possible because of

the biological phenomenon of persistence of vision. A series of images slightly

differing from each other are shown in rapid succession. The eye/mind blends

them together to result in the visual illusion of movement or change. Typi-

cally 24 or 30 frames (images) per second are shown. Animation is primarily

concerned with motion synthesis, which is the creation/presentation of these

images at discrete times. Strictly speaking therefore it does not mandate the

modelling of continuous time varying motion. However, in computer anima-

tion we find it convenient to model motion as a continuous function of time.

This function is then appropriately sampled in order to generate the individual

frames showing spatial configurations of the creature(s).

The spatial configuration of an object is defined geometrically. A simple object

like a pen is completely defined by the position of a single point on its body say

(xv , y„, zi,) and its orientation (Or , Oy ,O,,) in three dimensional space. Degrees of

Freedom (DoFs) constitute the minimal set of parameters needed to completely

specify the configuration of a body in space. Degrees of Freedom are also known

as generalized coordinates. Thus the spatial configuration of the pen in 3D has

6 DoFs. With just 6 parameters, the pen can be moved to any desired point and

oriented in any desired direction in space. Depending on the number of links,

joint types etc., an articulated body would have many more DoFs. Consider for

example the planar articulated body with 3 links and 2 rotary joints as shown

in Figure 1.1. This simple body has 5 degrees of freedom. Human bodies are

amongst the most complicated of articulated bodies, with about 200 degrees

of freedom [110]. A universally accepted convention is to consider degrees of

freedom as constituting a vector and to use vector notation say X, to denote the

spatial configuration of a body. Hence the motion of the body over a time period

T would be denoted by X(t), 0 < t < T. This is also referred to as the trajectory.

3

Figure 1.1: A planar articulated body with three links and two rotary joints

A simple definition of the motion synthesis problem is thus as follows:

Given

• the geometry of an articulated body say X,

• a desired type of movement say, walk, and

• a time period T,

determine X(t), 0 < t < T.

The above definition hides the enormous underlying complexity in this prob-

lem. Certainly physics is involved; gravitational and other forces have to be

considered. The movement of a pen pushed from a table of height of say, four

feet from the ground is not arbitrary but completely determined by the prop-

erties associated with the pen, such as its mass, moment of inertia, coefficient

of restitution etc. and the initial force applied. Animators take years before

they acquire the necessary skills to predict the spatial configuration of objects

at any time instance for generating a specific movement. For living creatures,

which bring about their own motion through internally generated forces and

interaction with environmental objects like the wall or the ground, the motion

synthesis problem becomes orders of magnitude more complex. It is only in very

recent times with easy availability of computing power that motion synthesis

tasks of such complexity are being undertaken [54].

•

z .

There is another view to the motion synthesis problem. All possible motion

paths for a given character can be considered as forming a space of trajectories.

And the problem of synthesizing a particular motion can be viewed as that of

searching for a suitable trajectory in that space. The trajectory that is finally

selected must satisfy all the physical requirements and also the animator's

goals. Consider the example of synthesizing the trajectory of the pen pushed

from the table. (cf Figure 1.2.) From the space of trajectories that specific
.............

.10.1,1■ 11
....

Figure 1.2: Some possible trajectories for a pen pushed off a table

trajectory has to be chosen which accelerates as determined by the initial force

and also by the gravitational force acting on it. Search for this kind of trajec-

tory is comparatively simple and can be totally automated using what are being

called as physically based animation techniques [10]. For autonomous articu-

lated figures however, the search problem gets extremely complex. Firstly the

number of DoFs is very large. As a result the trajectory space is of very large

dimension. Secondly, there is always built in task level redundancy, i.e any

behavioural goal can be achieved in many different ways. Thus, for example,

a cup of coffee might be reached while moving the hand along many different

paths. Usually the search is cast as a non-linear constrained optimization prob-

lem. The physical laws, and physical and user specified constraints are to be

satisfied while the animator's goals are in the form of an objective function that

has to be optimized.

Whatever may be the view, whether it is one of defining or creating a suitable

trajectory or that of searching for the most suitable trajectory, the problem

of synthesizing the movement of a virtual object or creature inhabiting and

interacting with a virtual world consisting of other virtual objects or creatures

remains the fundamental problem of computer animation. All research in

computer animation is thus oriented towards new techniques that will enable

the development of software tools that will assist the animator in synthesizing

different movements for different types of objects/creatures. Over the years a

variety of techniques have evolved, ranging from providing the animator with

simple tools for interactive drafting, painting and trajectory interpolation to

the very highly sophisticated tools, that enable embedding of complex motion

behaviour into the virtual object or creature. The focus has completely shifted

from simple transformation based movements of single or groups of objects [78]

to the complex movement of legged creatures [33, 87].

While in chapter 2 we shall present a more detailed and comprehensive review

of the current state of the art in motion synthesis for articulated figures, below,

we briefly describe a number of other disciplines in which motion synthesis is

of concern.

Robotics

The construction of autonomous legged robots is one of the goals of robotics.

This involves creating systems that can sense their environment and can travel

in a obstacle filled environment. The' two central issues that are of importance

in robotics are that of motion planning and motion control. Motion planning

[66] is typically treated as a geometric problem of obstacle avoidance where as

motion control . [14, 86, 68] involves design of a control system.

Biomechanics

Biomechanics is the study of the mechanical bases of biological activity [106,

107]. One of the primary goals of biomechanics is to understand the mech-

anisms in human locomotion so that it is possible to have a better design of

prosthesis for disabled persons. In this and other areas dealing with human

limbs and their substitutes, a consensus is that the end (artificial) products

should duplicate the performance of their biological counter parts as closely as
r. 	

possible.

Artificial life

In Artificial life, the goal is to mimic the behaviour of living systems in silico

[62,. 104]. Instead of trying to simply duplicate the effects of living systems,

artificial life researchers attempt to build these behaviours from bottom-up,

much in the style that nature itself does. A typical artificial life approach

begins with biological behaviour such as reproduction, evolution and locomotion

and attempts to extract simple logical rules behind that behaviour. Many

of the simulated creatures are defined by compact code, which subsequently

determines the creatures behaviour when placed in an environment. Most

creatures being experimented with are still too simple.

Mechanical Simulations

For years, dynamic analysis [82, 42] programs such as DADS and ADAMS

have incorporated graphical post-processors capable of displaying the motion

of simplified models. The major benefit of such programs is that they allow

the designer to quickly build an electronic prototype and test it to see how

the moving parts will function in the real physical world. The recent work by

Hodgins et. al [49] is one similar such application. They have applied dynamic

simulation to a platform diver to study how changes in technique can affect the

diver's performance. Through motion simulation they could visualize what a

dive might have looked like if the athlete had opened up earlier or later, or had

left the diving platform differently.

1.2 A Relative Comparison of Motion Synthesis Studies

As can be seen from the brief descriptions of the different disciplines above, it

is clear that motion synthesis is also a problem of interest in disciplines other

than computer animation. While there are similarities in the studies, there are

some fundamental and major differences in problem scope, research traditions

and practical requirements. We elaborate on this in detail below.

Motion synthesis in artificial life is the closest to that in computer animation.

In both areas virtual creatures have to interact and move in virtual worlds.

However the emphasis in artificial life is on embedding mechanisms that en-

able learning of locomotion behaviour, and this along with all other kinds of

performance behaviours. As of today, in this field movement goals are sim-

ple and are essentially self determined by the virtual creatures rather than

imposed externally as done by animator. Real-time movement and response

to collisions in the environment are additional constraints that make it very

difficult at this stage to consider the embedding of highly complex external goal

oriented motion behaviour. In the present state of art, the kinds of movements

being synthesized are extremely simple as compared to what is desired for an-

imated creatures. Moreover there is no requirement that the movements of

these artificial creatures must appear realistic or natural.

Mechanical simulations, Biomechanics and Robotics are all concerned with the

motion of real physical objects. Mechanical simulations deal with the motion

of rigid linkages primarily towards understanding/analyzing their motion be-

haviour under different load conditions. There is certainly no explicit concern

in any way to have these linkages represent, the limb structures of living crea-

tures, though there have been some specific efforts towards simulating very

specific movements like walking, hopping and diving. Biomechanics, while it

is concerned with the motion behaviour of living creatures, is really concerned

primarily at the individual limb and muscle level.

Motion planning and control in robotics once again comes rather close to motion

synthesis in computer animation. There are however significant differences.

In particular

1. The robot's linkage structure is physically real and it inhabits, interacts

and moves in a real world. Unlike in computer animation, no idealized

simplification is possible either for the parts of the robot or for the objects

in the environment. Actuator forces, external interactions like collision

and external forces like gravity, friction, reaction etc. are all real. As

such, robots inhabit a very much more complex world than their virtual

J

counterparts in computer animation.

2. On the other hand physical correctness is built in. A robot will not move

t-

 through a wall, nor can its motion trajectories be not in accordance with

the laws of physics. As such classical motion planning in robotics eschews

physics totally. Since physical realisability of the synthesized motion is

usually not of concern, the emphasis in robot motion synthesis is on ob-

stacle avoidance, treated more as a geometric problem. Such an approach

is clearly not appropriate for motion synthesis in computer animation.

3. An animated sequence may involve several characters with novel physical

characteristics. Thus an animator would need to rapidly synthesize a

„a
 variety of complex motions for one character and for many characters

with different physical attributes. Where as current studies in robotics

are primarily concerned with a single robot or a class of robots with similar

physical attributes.

4. An autonomous robot must be able to synthesize its motion trajectory inde-

pendently. This is especially challenging in obstacle filled environments.

In contrast an animator can afford to build up a character's motion trajec-

tory piecemeal, concatenating a sequence - of trajectories to obtain a final

complex motion that avoids obstacles and behaves in conformance with the

interaction with objects in the virtual world. Basically the animator and

the computer can carry out the motion synthesis task in a collaborative

manner.

5. Finally, in robotics real-time response is essential, and this puts very

heavy demands on the computational resources that have to be built in.

On the other hand in computer animation the synthesized motion is played

back and has only to appear physically correct, realistic and natural. Com-

putations taking time of the order of a few hours or days for synthesizing

the motion of a few seconds are quite acceptable. There are no inherent

demands on the kind of computing power that needs to be available. Also

while physical correctness is a goal, appearance is more important and

slight deviations not noticeable to humans can easily be permitted.

9

-4

1.3 The Physical Basis in Motion Synthesis

Initial computer animation research can be dated back to early 1960's. The

approach was purely geometric in nature. The responsibility lay entirely with

the animator for the resulting motion to look physically correct, realistic and

natural. The demands of physically correct behaviour had to be understood

and imposed explicitly by the animator. Interactive tools were made available

to assist in this task so that the animator could rapidly alter the synthesized

motion at a local or global level and rapidly make the necessary number of

trials before choosing the final trajectory for the object or character. By the

late 1980's however, researchers working in the field of computer animation

were convinced that if the animation has to look realistic, the physics behind

the motion has to be taken into account and thus physically based animation

was introduced. This is typically done by augmenting the traditional geometric

model to include other physical characteristics that computers can use to com-

pute motion. These physical characteristics are mass of the body, its moment of

inertia, external forces such as gravity, friction etc. Interaction with other ob-

jects in the environment and resulting behaviour is also modelled and a variety

of collision detection and collision response techniques have evolved [53]. The

idea is to incorporate appropriate physical- complekity and realistic behaviour

into the model itself, rather than imposing it on the animator. Initial results on

incorporation of physics to produce realistic movements were very encouraging

[3, 105, 52].

However, this is not without problems. As.we shall see later in chapter 2, the

specification of forces and torques to produce any desired motion is non-intuitive

and certainly non-trivial. Further, once time varying forces and torques are

specified, the motion is completely determined and is autonomous, and not any

more under the control of the animator. Thus incorporation of physics into the

model results into loss of fine control that an animator always needs to have

over the generated motion. A number of techniques have therefore evolved to

accept control specifications for desired motion in a more indirect manner but

with adequate automatic methods built in for deriving the forces and torques

that need to be applied [108, 100, 81, 38].

10

.0

Thus in physically based animation today, the task of synthesizing motion is

accomplished in several steps. These are listed below.

1. Create a suitable geometric model of the articulated figure by defining the

geometry of each link and its relation to the rest of the body.
(

2. Supply physical parameters which include, mass, centre of mass and mo-

ment of inertia for each link.

• 	 3. Define control parameters that will enable automatic determination of

necessary forces and torques which will bring about the desired motion.

4. Assemble the equations of motion and solve them using numerical tech-

niques to obtain the position of the object over time.

5. Render the individual images (frames).

Of the five steps, except for the third, all others are very well studied and

excellent working solutions exists [22, 29]. Step 3 however poses rather difficult

problems.

Currently available methods trade off manual work for controllability versus

autonomy for physical correctness. For example, there are methods to control

at a low-level by interpolation of poses with adherence to physical constraints

[15, 108]. There are also methods that expect only high level goal specification

such as "Jump as high as possible" or "Walk as fast as possible" [81, 100].

Most of these problems are highly under constrained and use some kind of

optimization in order to find a solution. Here, a critical problem lies in the

specification of the performance metric. Performance metrics are very indirect

ways of specifying motions and lack any immediate intuitive associations with

the desired motions.

Typical performance metrics used are like minimization of external energy, or

travel maximum distance etc. To associate such metrices with desired motions

such as walk, jump, hop etc. is not very straight forward and involves lot of

trial and error. As a result, physically based animation is still in the research

11

laboratories. Animators find it more convenient to use purely geometry based

techniques taking full responsibility for physical correctness and realism, while

keeping precise control over the synthesized motion. This is of course at the ex-

pense of the considerable manual efforts that the animator has to put in. What

is really needed are high level physically based motion synthesis techniques

that require specifications which are easy, highly intuitive and at the same

time enable the animator to have any desired level of control over the gener-

ated motion. In short, more the automation the better it is, provided complete

control is in the hands of the animator. This research has primarily addressed

this problem and has pi-oposed an innovative and implementable methodology

based on the use of motion features.

1.4 Thesis Statement

The different types of movements that we see in the real world have their

own distinct attributes or features that uniquely characterize them. A run is

different from a walk; which is different from a jump For example in a walk

at least one foot is always on the ground at any time; where as in a jump

both feet can be away from the ground. Similarly its duty cycle, maximum

height from the ground and so many other attributes are different from that

of a jump. We refer to these distinguishing attributes as motion features.

Clearly, we humans are capable of recognizing motion features that enable us

to distinguish amongst different types of movements.

Mathematically speaking we represent a motion by the use of a feature vector

f = f2, • • where fl , f2, • .. , fn are the n individual features. Each fea-

ture is a computable function which when applied to the given motion returns

a numerical value(s). Thus for a given motion X(t), fi(X(t)), 0 < t < T denotes

the ith feature value. The set of motion features forms a feature space. In

feature space, motions of the same kind and for the same body cluster together.

Different kinds of motion result in different clusters and these clusters are

separable.

0

•
12

Our main thesis can now be stated as follows:

Motion features are quantifiable attributes of different types of move-

ments and enable distinguishing amongst them. The task of motion

synthesis of active articulated bodies for computer animation is spec-

ified in the form of a desirable set of motion feature values. Further,

with a given motion feature vector as input, the actual desired move-

ment can be automatically synthesized by the use of appropriate

optimization based global search procedures.

As part of this research a fairly elaborate implementation has been carried out

to substantiate the above thesis. Using this implementation we have carried

out the automatic synthesis of motion for planar articulated bodies by spec-

ifying desirable feature values for a predefined set of motion features. The

automatically synthesized motion is played back in real time on the computer

display screen. Our implementation simulates the motion for a given set of con-

trol parameters and uses the desired feature values to analytically formulate

the fitness function that is used by an evolutionary programming algorithm to

search for the desired motion.

Since the, entire process is very demanding on computer time, the search process

has been parallelized to run on a network of CPUs resulting in considerably

reduced elapsed times for searching. The synthesized movements appear highly

realistic and natural and the overall performance is extremely encouraging.

1.5 Thesis Organization

Chapter 2 is a comprehensive review of known methods in computer anima-

tion for generating animated sequences involving articulated figures. Both

kinematics and dynamics based techniques are discussed. The various ap-

proaches being pursued for the automatic synthesis of physically based motion

are presented and motion synthesis through the automatic generation of opti-

mal motion controllers is identified as the most promising approach to date.

In chapter 3 we discuss in detail all major aspects of optimization techniques as

13

applicable to the motion synthesis problem. The aspects provide a framework

along multiple dimensions like search space, task goal, constraints, dynamics

simulation, and search algorithm, which enables us to concisely review the

existing optimization methods and also any new developments that may take

place in the future in this optimal motion search area.

Chapter 4 describes the importance of external object interaction in the move-

ment of an articulated figure. Basically all external interaction results in forces

and torques that get applied to the moving figure. Collision forces are specif-

ically the most important amongst these. The chapter reviews the collision

detection and collision response problem and strategies in use for finding so-

lutions to these problems. The different types of contact or collision like the

colliding contact or the resting contact and methods for handling these are also

reviewed. Finally the difficulties of modelling frictional contact are presented.

Chapter 5 addresses the primary thesis of our research — the automatic synthe-

sis of motion through the specification of features. To begin with, we introduce

the notion of motion features and formulate their specification as computable

functions that take complete motions as their arguments. We formulate the

performance metric that uses these feature values. The performance metric

formulation is such that its value is optimal when the motion, has the specified

features. Choosing the domain of gaits of legged creatures — a topic very well

studied in different disciplines — we define a set of motion features that could

be specified by an animator to obtain different kinds of gaits.

Chapter 6 describes our implementation and also the results from the different

experiments that we conducted for synthesizing different kinds of movements

for virtual legged creatures. As part of our research we have created an in-

tegrated simulation environment. The overall architecture and the different

components that make up this environment such as the physical, geometric

and feature model, the simulator and controller synthesizer are briefly de-

scribed. Since the total computational effort involved in the motion synthesis

task is excessive, we have parallelized the search process. This chapter also

describes this parallel global optimal search algorithm based on evolutionary

14

programming (a type of genetic algorithm), known as the stochastic population

hill climbing (SPHC) algorithm. The parallel SPHC has been implemented us-

ing the parallel virtual machine (PVM) system. Finally the chapter describes

in detail the structure of 3 virtual creatures (a single legged creature and 2

two-legged creatures), and the results of our experiments in automatically syn-

thesising different types of gaits for these virtual creatures by the method of

motion feature specification.

Chapter 7, the last chapter of our thesis analyses three major aspects of our

work. The basic approach to solving the problem of motion synthesis, the

specific solution methodology proposed in this research and the implementation

and experiments carried out by us. Specifically the chapter highlights the

significant contributions, some deficiencies or limitations, future extensions

possible and some open problems in this area.

t

15

Chapter 2

Animation Techniques for

Articulated Figures: A Review

There are two basic approaches used in synthesizing the movements of articu-

lated figures. These are the kinematics and the dynamics based approaches.

In the approach based on kinematics, we deal with motion without considera-

tion of mass and forces which cause motion. Within the science of kinematics we

largely study the position, velocity, acceleration and all higher order derivatives

of the position variables with respect to time. Thus the kinematics approach

addresses all the geometrical and time based properties of the motion. Tradi-

tional computer graphics animation techniques are all based on the kinematics

approach. The more important kinematic methods that have evolved for mo-

tion synthesis in computer animation are key-frame animation, direct user

manipulation, geometric constraints and morphing.

In the approach based on dynamics, we deal with motion based on mass, inertia

etc. and under the influence of forces and torques, in accordance with Newton's

laws of motion. For a collection of bodies, each body's motion is only due to the

forces and torques acting directly on it; interaction between bodies is mediated

by forces and torques. A fundamental requirement of the dynamics approach

is the synthesis of force and torque functions required to cause any animator

16

desired motion. For example, in order to accelerate an articulated figure from

rest, glide at constant velocity, and finally decelerate to a stop, a complex set

of force and torque functions must be applied at the joints. The exact form

of the required force or torque functions depends on the spatial and temporal

attributes of the path taken by the figure; as well as the mass properties of

the links, friction in the joints etc. Dynamic equations of motion are used to

simulate the movement. This is done by reformulating the dynamic equations

so that acceleration is computed as a function of force or torque. Dynamic

equations of motion are also used in the derivation of these torque functions

needed to cause the figure to follow a desired path. The dynamics approach in

computer animation though relatively recent is being aggressively researched

world wide by a large number of groups. This includes techniques such as direct

force control, motion controllers, dynamic constraints, spacetime constraints

and automatic motion controller synthesis.

In the rest of this chapter we briefly discuss representation of articulated fig-

ures, trajectory computation, and forward kinematics computations. We then

review all the important kinematics and dynamics based techniques listed

above.

2.1 Articulated Figure Representation

The articulated figure is represented using a set of rigid links, arranged in a

tree structure (cf Figure 2.1). Each link of the body possesses one joint at

which it is attached to its parent link and may possess one or more joints at

which child links are attached. The links move relative to each other depending

upon type of the joint. The type of joint present between adjacent links will

determine the allowable number of DoFs between them. For example a pin

joint will allow 1 DoF, cylindrical joint will allow 2 DoF, ball and socket joint 3

DoF, etc. (cf Figure 2.2).

17

r 	o

Figure 2.1: Tree structured human like figure

..< (a) (b) (c)

Figure 2.2: (a) Pin joint with 1 DoF (b) Cylindrical joint with 2 DoF

(c) Ball and socket joint with 3 DoF.

18

2.2 Trajectory Generation

In animation we are always concerned with the location in time of each link of

the articulated figure. This is the purpose of trajectory generation. A common

way of causing a figure to move from one place to another in a smooth controlled

fashion is to cause each joint to move as specified by a smooth function of time.

Usually each joint starts and ends its motion at the same time so that the

figure motion appears coordinated. Exactly how to compute these joint motion

functions is the problem of trajectory generation. All animation techniques

must finally produce these joint angle functions with respect to time defined for

each of the joints of the articulated figure. These functions are then sampled,
5 typically at the rate of 1/24th of a second or so, to obtain the individual frames

of the figure that need to be rendered for playback.

2.3 Forward Kinematic Computations

The next basic problem is that of forward kinematics. This is the static geo-

metrical problem of computing the position and orientation of each of the links.

This problem can be represented as

X = T(G)

where X represent the Cartesian coordinates and 0 represents the joint angles.

This can also be thought of as transforming the representation from a joint

space to a Cartesian space. This is typically done using Denavit-Hartenberg

(DH) [25] notation.

According to DH notation, kinematics of each link is described relative to its

neighbor by attaching a coordinate frame to each link (cf Figure 2.3). The

representation uses a set of four parameters that are used to define a linear

transformation matrix between adjacent coordinate systems. The four param-

eters are the length of the link a, the twist of the link a, the distance between

links d, and the angle between links O. The transformation between link i — 1

19

Axis i

Figure 2.3: Geometric relation between two links, DH notation

20

A

and link i (cf Figure 2.3) is defined by

cos Oi 	— sin 0i 	0 	ai_i

sin 0i cos ai_i cos 0i cos 	— sin 	—sinai_ idi

sin 0i sin ai_i cos 0i sin ai_i cos ai_ 1 	cos 04_ 1 di

0 	 0 	0 	1

Though the general transformation matrix looks quite complicated, in practice,

if we consider only one or two types of joints, the matrix gets considerably

simplified. For example, if we consider only planar articulated figures with

rotary joints, then ai = 0 and di = 0.

. If an articulated figure's position at any instant of time is given by a set of joint

angles O = (01, 02, ... On), the computation of the figure's position in the world

coordinate system is done in a straight forward manner by applying successive

matrix multiplications between adjacent links, starting at the base of the link.

Each link is transformed from its own coordinates to the world coordinate space.

2.4 Kinematics Based Animation

2.4.1 Key-frame Animation

One of the earliest and simplest kinematic method is the key-frame animation

technique derived directly from the manual cel based method. The cel based

method is basically for 2D animation. Flat images are hand-drawn and painted

one character at a time on transparent sheets known as cels. Foreground and

background parts of the image are on separate cels. Each image of an animation

sequence is then composed by stacking the cels in the required order so that

foreground objects and characters are overlaid over background cels. While this

is very time consuming, cel animation has produced spectacular results. Any

animated Disney film is a fine example of this. Increasingly computer graphics

techniques are used for improving the sketching, inking and colouring process

in cel animation.

In the key-frame system, the animator need not describe each frame. Instead

the animator describes a set of "key-frames" from which the animation system

iTi_i =

21

•

•

Keyframe 1
	 Keyframe 2

Figure 2.4: Length distortion due to linear interpolation between key-frames

can geometrically interpolate each DoF, to obtain the parameter values for each

in between frame. Linear interpolation is very easy to implement but may lead

to distortion (cf Figure 2.4) and jerky motion due to velocity discontinuities at

the key-frames. There are more sophisticated methods based on splines which

make use of cubic or higher order interpolation to generate smoother motion

[60, 90, 94].

2.4.2 Direct User Manipulation

The major problem with key-frame animation is that, for articulated objects

having large number of DoFs, specifying the key-frames is very tedious. For

example, consider the motion specification problem of an articulated object such

as a human or an animal. For a reasonably detailed figure with 30 DoFs, a

minute of animation with a key-frame every quarter of a second, would require

approximately eight thousand values to be specified.

In the key-frame animation technique each DoF is independently interpolated.

Coordinated movement of links is entirely the responsibility of the animator.

The motor control program technique suggested by Zeltzer [109] to overcome

this problem is one of the early kinematic methods in which the joint angle

variation function is directly specified for each joint of the articulated figure. No

22

1

interpolation is involved. Instead a procedure referred to as a motor program is

associated with each joint of the figure. Motor programs use hierarchical control

structures for coordinated movement among several joints in a limb. One motor

program can thus control several DoFs. However, its main disadvantage is that

the entire motion has to be preprogrammed. There is no assistance provided

by the system to formulate these motor programs. Embedding complex motion

behaviours in the form of motor programs is extremely difficult.

2.4.3 Inverse Kinematics

Another very popular method to reduce the number of parameters that an

animator has to specify is using inverse kinematics. Inverse kinematics takes

advantage of the fact that we are often interested in only the end position

and orientation of an articulated chain. For example the end of a limb may

be required to be moved to a specific position. Since we know the goal to

be achieved, we can, in effect apply functional constraints so that arm and

hand linkages can be controlled with fewer parameters. The inverse kinematic

methods try to determine the sequence of intermediate joint angles that will

place the limb in the correct position. The inverse kinematics problem can

be stated as that of finding the joint angles O of the links given the position

and orientation of the last link X. Given that animals have many degrees of

freedom, the problem of finding the joint angles that correspond to a given limb

location and orientation does not have a unique solution. Figure 2.5 shows one

example of this.

Typically inverse problems are solved by optimization [55]. The system is

constrained sufficiently such that the number of possible configurations are

reduced. For example, one such form of constraint is a limit on the range

of angles that a joint can move. For multiple constraints, where it may not

be possible to satisfy exactly all the constraints, Badler et al. [6] attempt to

minimize the deviation from these multiple constraints or goals by assigning

weights that act as priorities for goals. They use a tree structure in which

the nodes are goals and balancing the tree is equivalent to minimizing the

23

Figure 2.5: Three-link figure (dashed lines indicate a second solution)

total deviation from all the goals. Similarly, Girad [34] has used dynamic

programming to reparametrize the trajectory with respect to time under the

optimization criteria of jerkiness minimization to create a smooth motion. As

we said earlier, the problem with inverse kinematics is that many a times the

solution is not well defined and optimization methods have to be used.

2.4.4 Morphing

The last few years have seen a very rapid increase of the use of synthetic

3D characters in animation films. These synthetic characters, ranging from

snakes, dinosaurs to human figures, interact and move in a 3D world. Each

image frame is photorealistically rendered. One of the main requirements in

such 3D animation is, therefore deformation of the shape of a 3D character as

it moves. As such all the above kinematic techniques are extremely difficult

to use for this kind of 3D animation. The most popular kinematic technique

in use for such animation is morphing. Morphing in some sense is very sim-

ilar to key-frame animation. In morphing, the animator has to compute the

in-between frames to do a metamorphosis between two different objects. It

basically involves altering the surface description of one object to map into

other. The objects involved may be very similar in type, for example people's

faces, (all faces have the same components) or they may be as different as cube

and a sphere. In cases of similar topology, the morphing will be point to point

24

mapping of some type of mesh created on the surface of each object. When

using morphing for synthesizing movement of a synthetic character, mesh level

interpolation is done between two poses of the same character. For realistic

and smooth movement effects, these poses have to be chosen very carefully.

Usually a very large number of poses are needed for articulated figures with

large number of DoFs. This is extremely tedious and time consuming.

2.5 Drawbacks of Kinematics Methods

The major strength and also the problem of the kinematic approaches, particu-

larly key-frame and morphing is that the methods give complete control to the

animator over the synthesized motion. The animator as a result is usually very

comfortable with these techniques and that largely explains their popularity

to date, in spite of the fact that the amount of effort and data needed for using

these methods is enormous. The problem with an animator having this kind

of complete control over the trajectory is that an animator can produce motion

that is physically unrealizable. Hence the attributes of physical correctness,

realism and natural appearance have all singularly to be the concern of the an-

imator. Thus these techniques require extremely skilled animators, who over

years of observation and practice have understood the time and physical com-

plexity of motion and are able to translate that into the computational model

of interpolated key-frame images. As a result complex 3D animation is inor-

dinately expensive and attempted only by few. And very often, key-framed or

morphed animation tends to look unrealistic and puppet like.

In spite of these drawbacks some of the best animations today are results of

these kinematic techniques. Motion capture devices are flooding the market.

Real life motion is enacted and a large number of different types of sensors are

attached to the body of the real character and the motion trajectories of all the

important parts are digitally recorded. This recorded motion is then applied

brute force to the synthetic character after some simple local manipulations

that may be necessary. While these methods have been used for some very

spectacular 2D animation, simpler, less labour intensive and more efficient

25

methods are essential if 3D animation has to be widely used 1 .

2.6 Dynamics Based Animation

In animation methods based on dynamics, the traditional geometric models are

augmented to include other physical characteristics that computers can use

to compute motion. These physical characteristics are mass of the body, its

moment of inertia, external forces such as gravity, friction etc. Of course the

added realism is not free, it is at the cost of increased computational complexity.

In physically based animation, the object's behaviour over time is modelled as

a continuous function determined by the equations of motion. The individual

frames are generated by sampling this function at an appropriate rate. This is

known as forward dynamics simulation. Forces and torques are the main agents

which bring about the motion. There are a number of methods to formulate and

solve the equations of motion. We shall discuss some of these methods in detail

in chapter 3. Synthesizing motion using any dynamic based method implies an

underlying method that generates the forces and torques as functions of time

that need to be applied for obtaining the desired movements of objects. Once

these force and torque functions are derived then all further stages of formulat-

ing the differential equations of motion and then solving them for simulation is

rather straight forward. However, the problem of composing the right force or

1While computer imaging is considered an indispensable production tool for all Hollywood

films today, it should be recognized that much of the use of this technology is not for animation

but for imaging effects with titles and other static imagery. The advertising and publicity that

is usually associated with films that have used some computer animation might tempt one to

believe that 3D character animation is used extensively and hence is now only an issue of using

the right technology. On the contrary, even in the most spectacular examples of digitally created

cinematic imagery to date i.e Terminator 2, Jurassic park, Apollo 13 and Casper to name a

few, the computer generated sequences make but a fraction of the running time (ranging from

6 minutes in Jurassic park to about 40 minutes in Casper). The only film that has 100% 3D

character animation is the new film, Toy story, which has a running time of about 77 minutes.

The film made extensive use of motion capture and 3D morphing. The software required is said

to have consumed 300 Mbytes per frame, produced by 117 Sun SPARC 20s, took four years to

make and required 800,000 machine hours just to produce the final cut [91].

26

torque functions in the presence of external forces like gravity, friction, reaction

from collisions etc. so as to result in a movement that achieves a coordinated

goal or expresses a certain desired quality of movement is an extremely difficult

one. All the different dynamics based methods being developed are essentially

trying to solve this problem so that an animator can easily provide the right

specifications to obtain the right torque or force functions.

2.6.1 Explicit Force and Torque Specification

Some of the early dynamics based methods were rather simple. The animator

was expected to directly specify the forces or torques that need to be applied

at individual joints as functions of time. These functions were then used to

simulate the motion of the object(s). The resulting motion was viewed by the

animator and then the force or torque functions had to be manually tuned in

an iterative manner until the force torque functions resulting in the desired

motion were obtained. This explicit control gives physically correct trajectories,

but the level of automation is low. Too much of effort is required to discover and

refine acceptable motion. This is primarily because force or torque functions,

unlike trajectory functions, are completely non-intuitive and hence unnatural

to specify directly. The indirection is introduced by the differential equations

of motion and even physicists deeply involved in the study of dynamics would

find specification of these force or torque functions for a desired motion not at

all a simple task. Animators who are more artists than physicist or engineers

thus normally find this form of specification not only unnatural but also very

inconvenient and difficult. This becomes quite obvious when we consider the

nature of the force function that needs to be applied for making, say, a dog like

creature walk on the ground. Figure 2.6 shows the torque function that has to

be applied to joint labeled 4.

Yet another aspect of the movement of active bodies that makes this method

of explicit specification of force or torque functions extremely complex is as

follows:

living creatures make use of external forces resulting from interaction in order

27

10

8

6

4

T
o
r
q
u
e
a
t
j
o
i
n
t
 4

0

- 2

-4

- 6

8

10
7 	8

4 1

Torque at the joint 4

0 	1 	2 	3 	4 	5
Time

inrct4 scat '

Controller

Figure 2.6: Sample torque at a joint for a walking dog like creature

to locomote themselves. These external forces are in fact essential. It is not

possible to walk without interacting with the floor and the friction and reaction

forces generated when the feet collide with the floor. Certainly a more automatic

method of deriving such force or torque functions is essential

2.6.2 Motion Controllers

In the last few years the notion of motion controllers has been introduced for

parameterizing force or torque functions in a more compact and convenient

manner. A motion controller provides a higher level description of motion than

force or torque functions. (cf Figure 2.7). The task of the motion controller

Forces
 Torques

Simulator

Graphics
Display

Figure 2.7: Function of a controller

is to produce the necessary forces or torques that in turn will generate the de-

sired motion. A variety of different representations have been evolved for these

motion controllers and we shall describe them shortly. All motion controllers,

however are essentially finite state machines, which have to be executed in

order to generate force or torque functions of time. Thus the problem of speci-

fying a continuous force or torque function is transformed to that of specifying

28

Rigid Link i

Rigid Link i+1

Joint with 1 DOF

static states and state transitions rules for the motion controller. Apart from

providing a compact and static parameterization of the force or torque func-

tions, motion controllers have the additional advantage that smoothness in the

variation of force or torque can also be built in.

This is done by associating actuators with the joints of the articulated figure.

Actuators convert stored energy into time varying forces or torques. Typical

example of actuators are springs and muscles. The actuator modelled as a

spring and damper system is one of the simplest compliant actuator. It consists

of a spring and damper mechanism in which a torsional spring attached between

two links applies a torque on the adjacent links according to the proportional

derivative (PD) control law:

T = kp(0 d — 0) — e

where kp is the spring constant, lc„ is the damper constant, 0 and e are the

current angle and the angular velocity respectively and 8d is the rest angle

(equilibrium position) of the spring. (cf figure 2.8) The values of k p and lct,

0
d

= 1CP(8 d 0) — k v e

Figure 2.8: Actuator modelling spring and damper mechanism

are typically chosen such that the mechanism is critically damped. A critically

damped system is one that when disturbed will most rapidly return to equilib-

rium position. Such a system acts to control the angular position, in that, if

29

Flexor

0

6

Figure 2.9: Biomechanical actuator

the current angle is different from the equilibrium angle, the spring will apply

a torque on the adjacent links so as to again be in equilibrium. For example, if

the current limb joint angle is less than its desired angle, the mechanism will

cause a positive torque to be applied to the joint to move it back toward the

desired angle and vice versa. The velocity damping term reduces the torque

applied to the joint once movement towards the desired angle is underway. By

changing the desired angle at different instances of time, the mechanism can

be actuated to bring about the motion.

Lately, researchers in computer animation are looking at biomechanical mod-

els to generate more realistic motion [47]. These methods build from dynamic

physical simulation by concentrating on the motion of living, biological system

that obey biomechanical principles. In particular, biomechanical methods de-

velop and use various models for the muscle and tendon dynamics that act as

biological force actuators in these physical systems. Victor Ng [47] replaces the

motor actuators with a muscle pair known as flexor and extensor (cf figure 2.9).

These two muscles work together in synergy to create motion. For example,

holding an arm straight out involves alternating work by the flexor and the

extensor in the arm to adjust the arm level.

The general problem of motion control with controllers is to devise schemes for

A

30

activating the actuators to produce coordinated movement. There are a number

of different motion controller representations that have been proposed. These

are briefly described below:

Finite State Machine Controllers

One of the most popular representations for a controller is using the finite state

machine (FSM). Typically such a controller consists of a set of states and a

set of rules, which together specify the torques to be applied at the joints to

bring about the motion. Zeltzer [71] was one of the first researchers to create

walking FSM controllers by dividing up the various phases of the walking

gait into low level motor programs. Raibert and Hodgins [87] have used FSM

- controllers to model hopping, speed control and posture control. They treat

each state as an active control law for various phases of motion. A PD control is

used to move an articulated figure to various calculated positions based on the

current state. Stewart and Cremer [95] have developed algorithms to control a

biped climbing and descending stairs by dividing the motion into phases such as

double-support, start-swing-up and swing etc. Recently, Hansen et al. [40] have

proposed motion control through communicating hierarchical state machines

combined with constraint based control to specify control strategies for tasks

such as hopping, walking, balancing etc.

In an FSM controller, each node of the FSM represents a state and each arc an

action to be performed by the articulated figure. Typically a state is entered

when a certain event in the articulated figure is sensed. For example, a leg

leaves the ground or touches the ground etc. Actions are at a fairly high level

and each action would need a specifically programmed procedure for generating

the torque. For example, interchange active idle legs, lengthen active leg for

landing etc. Figure 2.10 and associated Table 2.1 show the FSM controller

designed by Raibert and Hodgins [87] for simulating the running movement of

a biped. As such in this approach both states and actions are very specific to

the desired movement.

Thus for each single movement, say walk, jump, hop etc. there has to be a

31

State Action

FLIGHT
Interchange active, idle legs

Lengthen active leg for landing

Position active leg for landing

Shorten idle leg

Active leg leaves

ground

LOADING
Zero active hip torque

Keep idle leg short

Active leg touches

ground

COMPRESSION
Extend active leg

Keep idle leg short

Active leg spring

shorten

THRUST
Extend active leg

Servo pitch with active hip

Keep idle leg short

Active leg spring

lengthens

UNLOADING
Shorten active leg

Zero hip torques active leg

Keep idle leg short

Active leg spring

approaches full

length

Table 2.1: An FSM that coordinates running for a biped

32

Liftoff 	 41.
Touchdown 	 Touchdown

40
No Support

44. 410
40

Support 	 No Support

41110 °a
Bottom 	 Bottom

Figure 2.10: Controller for a two legged articulated figure

separate FSM controller designed with different topologies and also different

states and actions. The method is certainly not generic enough for automated

synthesis of controllers. To date, these types of controllers have all been hand

designed and tuned.

Pose Control Graphs

Pose control graph is another representation for a motion controller proposed by

Van de Panne et al. 11031. This provides only open loop control but in a generic

fashion. Each pose control graph is either cyclic or acyclic and consists of a

number of nodes, where with each node is associated a pose of the articulated

figure. A pose is a static posture of the articulated figure and is basically

specified by fixing all the joint angles. Associated with every arc is a time

period. (cf Figure 2.11) Transition from one state to another is completely

determined by the time period associated with the transition arc. The pose in

the end node of this arc provides a kind of"goal" that the articulated figure has to

reach. This is done through the use of spring and damper actuators associated

with each joint. Independent of the current posture of the articulated figure,

the pose control graph tries to reach the destination posture as dictated by the

damping coefficients associated with each joint and the torque to be applied is

33

Figure 2.11: Pose control graph for a hopping lamp

determined by the distance of the spring from the rest position. Rest position

is the joint angle in the end node pose. As soon as the transition time is

completed the pose control graph controller will switch to the next state even if

the articulated figure has not achieved the goal. A new transition now starts.

A few important observations are as follows:

o Poses are like key-frames, except that they are used more to derive the

torque functions with the help of spring and damper actuators.

o Articulated figures moving with the help of pose control graph based mo-

tion controllers are like wind-up toys. The force and torque functions get

applied independent of the environment or the interaction with the en-

vironment. Thus a wind-up toy will flap its legs and move when placed

on a floor, but will just flap its legs if held in the air or if obstructed by a

wall. Since their execution is totally determined by the transition times

and does not depend in any way on the sensing of the figure's state or

environment dependent events, we refer to these as open loop controllers.

o Because of their open loop nature, pose control graph controllers can ex-

hibit only a limited class of motion behaviours. But this is not necessarily

trivial. In fact complex motion like walking, hopping, jumping etc. can

all be synthesized using pose control graphs. Pose control graph as a

34

Stimulus function

Current active sense region

Current phy ical state

2

Figure 2.12: Banked stimulus response controller with two sense variables

representation for motion controllers is simple and generic enough for

experimenting with automated synthesis.

e- 	
Banked Stimulus Response

Stimulus response is a powerful paradigm that tries to mimic the behaviour of

living creatures. A controller based on the stimulus response paradigm makes

use of the knowledge of the external environment to drive its motion. Banked

Stimulus Response (BSR) and Sensor Actuator Networks (SAN) are the two

controllers which are based on this paradigm.

The principle concepts underlying BSR representation are sense variables,

stimulus functions and associated action rules. A sense variable is some real-

valued function of the object's physical state. Every physical state of the object

is mapped onto a point in the sense space. A stimulus function is a scalar func-

tion defined over sense space that is negative everywhere except over a small

region, which is called sense region. (cf Figure 2.12.) Associated with each

stimulus function is a response, which prescribes some action for the object. As

the physical state of the object changes, the corresponding point in the sense

space moves from one sense region to the other. Every time it changes the

sense region the corresponding action associated with the particular stimulus

35

Figure 2.13: Topology of SAN showing different nodes

function is applied and the process continues. The mechanism makes sure that

at all times there will only be a single sense region which will be active and the

action(s) corresponding to that region is performed.

Sensor Actuator Network (SAN)

The SAN controllers suggested by Van de Panne et al. [100] provide control

by connecting sensors to actuators in the form of a network of weighted con-

nections. All sensors are defined to be binary. That is, if the sensor is on, it

produces a value of 1 otherwise it produces a value of 0. A typical example of

a sensor would be a touch sensor that would turn on when in contact with the

ground and otherwise remain off. Once again actuators are modelled using PD

control law. An example of a SAN is shown in the Figure 2.13. The network

consists of nodes and unidirectional weighted connections. Once the weights

are synthesized, the SAN maps the sensor information to action through actu-

ators to bring about a variety of motions. In its function, a SAN is very similar

to an artificial neural network.

36

Some Problems in Controller Specification

While the parameterization of motion controllers is done so that user specifica-

tion for desired motion is simpler than direct specification of force and torque

functions, it still does not provide a natural and intuitive method for the ani-

mators. Most of the experience in synthesizing motion using motion controllers

has shown the following:

o The choice of the topology for the motion controller for a specific movement

is a difficult one. There are no studies as yet that provide any definite

guidelines towards this.

o The definition of states and associated transition parameters has to be

carefully hand tuned. Considerable experimentation is necessary before

the desired motion controller is obtained.

o All the motion controllers that have produced natural looking simulations

described in the literature are results of extensive studies of captured mo-

tion from live actors performing similar movements. A deep understand-

ing of the real life motion and also the controller behaviour is essential for

anyone to design a suitable motion controller.

2.7 Automatic Motion Synthesis

Taking all the above into account a large number of researchers have pursued

automated synthesis of force and torque functions and also motion controllers

[100, 102, 81]. Like inverse kinematics these methods could all be classified as

being in the general category of inverse dynamics. Once again these inverse

methods are solved using constrained optimization techniques.

2.7.1 The Constrained Optimization Problem

The constrained optimization problem is formally described below:

Let a system be characterized by n state variables xi, x2, • • • , x n, and written as

37

the state vector x = (x 1 , x2 , . . . x n). Further, assume that the state variables

satisfy the coupled first-order differential equations

= (Xi, X2 2 	U1) U2) • • • , um ; t) 1 < i < n

on [0, T] where m variables u l , u2, . . . um form the control vector u =

The motion control problem can then be formally stated as:

dx i
 dt

(Ui, U2, 	, Um).

Find an admissible control u* which causes the system

(t) = a(x(t), u(t), t)

to follow an admissible trajectory x" that minimizes the performance

measure

T J = h(x(T), T) I 0 g(x(t), u(t), t)dt

where if is called optimal control and x* is called optimal trajectory.

Here h and g are scalar functions and by admissible control we mean control

variables and state variables satisfying all the control constraints and state

variable constraints over the entire interval [0, T]. Let U represent admissible

control space and X represent admissible state variable space.

Starting from the initial state x(0) = xo and applying different control signals

u(t), over the interval [0, 21; the system will generate various state trajectories.

The performance measure assigns a unique real number to each of these tra-

jectories. When we say u* causes the performance measure to be minimized we

mean that for all ueU, which make xeX, the performance measure is smaller

than any other admissible control. In other words we are seeking the absolute

or global minima of J and not local minima (cf Figure 2.14). It is important

to note here that many a times it is not possible to know in advance whether

there exists any optimal control u*. Also, even if optimal control exists it may

not be unique.

38

1 	2
	

3 	4

Figure 2.14: Performance metric J for different control signals u(t)

2.7.2 Dynamic Constraints

As we have seen earlier, in dynamic methods, all interaction among bodies and

between a body and its environment are mediated through forces and torques.

In particular, if we wish to influence the behaviour of a particular articulated

figure, we must do so through application of forces. The "dynamic constraints"

method described by Barzel and Barr [11] uses inverse dynamics to determine

the forces which influence the behaviour of the bodies. However, to express

the motion behaviour of an active articulated figure through constraints is non-

trivial. A similar idea was put forward by Issac and Cohen [52]. Typically

the user specifies a desired behaviour through a set of constraints such as

"point-to-point", "point-to-nail" etc. The system then determines the unknown

forces needed in order to meet the constraint. The equation to be solved is

linear in forces and torques. The method is quite effective in specifying the

motion of passive articulated bodies such as pendulums and chains swinging

under the influence of gravity and other user specified forces and torques. Once

the constraint forces are known, they are added to the simulator canceling

exactly the components of the applied forces that fight against the constraint.

However, specifying dynamic constraints for articulated figures to bring about

natural looking motion is non-trivial.

J

J

39

2.7.3 Space-Time Constraints

In this method constraints are in state space as well as in time. Basically these

methods attempt to find a trajectory in state space that optimizes a performance

metric J. J provides a quantitative measure for desired motion qualities of any

trajectory. Clearly the formulation of this performance metric J will influence

the trajectory shape and consequently the quality of the motion.

The spacetime constraint method was introduced simultaneously by Witkin and

Kass [108] and by Brotman and Netravali [15]. Both use key poses (key-frames)

fixed in time as constraints for trajectory optimization. Brotman and Netravali

give a method of obtaining an optimal trajectory that interpolates the given key-

frame constraints with a performance metric that ensures smooth trajectories

and minimal control energy. Witkin and Kass only minimize control energy

and do not necessarily interpolate the key-frames. The principal difference is

as follows. Brotman and Netravali determine a piecewise trajectory, each piece

being between two key-frames and with smoothness ensured at the junctions of

two connected trajectory pieces. On other hand Witkin and Kass consider all the

fncrether and find the complete trajectory. Thus in the first method

by Brotman and Netravali, J is approximated by a vecLux v, .-;:mponents

equal in number to the intervals between successive key-frames. A multi-point

boundary value problem is converted to a series of two point boundary value

problems. In the Witkin and Kass method, they choose to include the dynamic

equations of motion as constraints, it results in a large system of equations that

do not necessarily converge. In both cases the dynamic equations of motion are

included in such a fashion so that the optimal trajectory would be encouraged

to satisfy these equations but may not always satisfy exactly. Both solution

methods finally result in the form of force and torque functions to be applied at

each of the joints. Since the force or torque function is independent of the state

x and X, this is a type of open loop control where no state feedback can influence

the control forces or torques. Both methods use local optimization techniques

that find a solution trajectory that is as close to physical realizability as possible.

In the spacetime constraints method optimization is in time discretized state

40

variables. Along with many constraints this large number of state variables

make this method slow and impractical. Two extensions have been evolved to

overcome this problem.

1. Spacetime windows are separate subdivided regions of spacetime variable

space enabling piecemeal building up of trajectory like that by Brotman

and Netravali. Except here the spacetime windows are not necessarily

bounded by successive key-frames. The larger optimization problem is

decomposed into series of smaller problems, each of which can converge

quickly. At the same time an animator is provided with greater control

over the animation by means of more windows, constraints and goals.

2. Parameterized trajectories are more compact representations as they re-

sort to the use of a higher level functional basis like linear, 0-spline or

wavelets. Instead of trajectories represented in a finely discretized fash-

ion, trajectories are replaced by piecewise continuous functions with far

fewer parameters. An undesirable side effect due to the use of basis

functions like j3-splines is that the resulting trajectory may end up with

artificial smoothness and excess control energy. Secondly, these piecewise

functions require a minimum number of key-frames within each space-

Tri P Uri in ri 11[1T A 4-1,
	

• 	 • -
W increases the method

degenerates to the traditional key-frame interpolation with all associated

disadvantages as well.

S

2.7.4 State Space Motion Controllers

One of the earliest methods of automatically synthesizing a motion controller

is the state space controller method [101]. A state space controller generates a

set of control torques that guides an articulated figure to a specified end state

from some given initial configuration while satisfying all the given constraints

and also optimizing a stated goal. The state space controller is represented

as a dynamic programming graph in discretized state space of the articulated

figure. The graph defines optimal torque values to be applied to the joints of

41

the articulated figure for reaching a specified destination state. Motions are

optimized with respect to time and control energy. The principle of dynamic

programming which states that all intermediate paths are also optimal, en-

sures that any path existing between two nodes in the graph also represents

an optimal path. Thus instead of the previous two point boundary value opti-

mization, a state space controller represents a family of optimal solutions from

many different initial states to a single common destination state. This makes

the state space controller reusable, albeit in a limited sense.

For each distinct destination state, a different dynamic programming controller

graph has to be computed. Each controller is defined over a bounded domain of

the state space. Provided these domains overlap and in the optimal paths there

exists a common state, it is possible to concatenate controllers and produce com-

plex motion. While the dynamic programming search technique is global, the

state space controller method essentially results in local optimization, because

each dynamic programming graph controller is optimal only over the restricted

region of the state space, that is the domain of the controller. Another problem

that is inherent due to the restricted state space domain of the controllers is

that unanticipated interactions with the environment like collisions cannot be

handled as the post collision state may not be covered by any of the predefined

set of controllers. The state space controller method is significant primarily

because of the fact that it was one of the first attempts at automated controller

synthesis. However, the need for fine discretization of the state space makes

the method largely impractical.

2.7.5 Automated Motion Controller Synthesis

With the tremendous rate at which computing performance improvements take

place, it was but natural that researchers would explore global optimization

techniques in place of the local search. Optimization techniques for parameter-

ized controller-based spaces are relatively of much less dimension than state

space. Current research is primarily directed towards this. In fact automatic

synthesis is the primary motivation for introducing a variety of motion con-

42

trollers such as the pose control graph [103], the banked stimulus response [81]

and the sensor actuator networks [100].

In global optimization techniques, the initial close guess that is needed in lo-

cal optimization methods is not necessary. The search for controllers expands

beyond local regions and covers the entire global domain of the controller pa-

rameter spaces, where several possible solutions can be found, each with poten-

tially disparate motion characteristics. All the global optimization techniques

proposed for obtaining optimized controllers are based on some form of ge-

netic programming. These genetic procedures have been used to synthesize

all the different types of controllers. Basically in genetic programming, an ini-

tial population of controllers is chosen randomly. Subsequent generations of

the controller population are obtained by refinement that uses operations like

mate selection, cross over and mutation. Over a sufficiently large number of

generations an optimal controller (not guaranteed to be global though) would

be synthesized.

The application of global optimization techniques to controller synthesis is cer-

tainly the most promising approach to physically based animation today. While

the available results are very impressive and seem to hold out the promise, cur-

rently available techniques are far from what an animator would like. The

prime problem is one of having fine control over the resulting motion. Without

this control producing animation sequences that follow a script will be ex-

tremely difficult and almost not possible. The only method currently available

for controlling the synthesized motion, is through the use of the fitness func-

tion. Fitness functions for specific articulated figure configurations for specific

movements like walk, hop, jump etc. have been evolved. There is however no

direct or intuitive association between the fitness function and the final desired

motion.

2.8 Important Issues in Articulated Figure Animation

From the above descriptions, it is clear that automated synthesis of parameter-

ized motion controllers using global optimization techniques has the potential

43

to be a powerful computer graphics tool for animators to create animations in-

volving complex movements of virtual creatures movements that are physically

correct, realistic and natural looking. There are three aspects of the problem

that are very important in using such methods.

1. Search Technique

The solution space of parameterized controllers is not only of high dimen-

sionality, but also is multi modal and not always continuous. Gradient

based numerical methods like steepest descent cannot always be used.

Global methods like genetic algorithms have to be employed. Certainly

characteristics of the search space and choice of a suitable search method

would be crucial to the resulting efficiency and success of the automated

motion controller synthesis technique. Chapter 3 includes a detailed de-

scription of optimal search methods and their applicability.

2. Environmental Interaction

Active articulated figures when moved in a virtual environment, consist-

ing of other virtual objects or figures are bound to collide with them. Any

physically realistic movement simulation would not only have to take care

that virtual objects do not move through'each other on collision, but in fact

also react in a physically correct manner. While closed loop controllers do

have the potential to accommodate this reaction within their state-action

frame work, most of the existing methods deal with collision and response

through a separate simulation module. This is discussed in greater detail

in chapter 4.

3. Animator Control

Certainly all possible motions are not necessarily optimal in terms of

global properties like speed or control energy. Thus control of the auto-

matic motion controller synthesis process such that the resulting motion

is as desired by the animator is a problem that needs to be attended to.

Not only must the animator have good physical intuition but he or she

must also have a good feel for the synthesis process so that a suitable

performance metric can be designed. In fact there are probably several

44

goals to be concurrently optimized and possibly in a conflicting manner.

Chapter 5 presents complete details of our solution to this problem using

motion features and Chapter 6 describes the implementation of a system

that automatically synthesizes motion controllers based on desirable fea-

tures specified by an animator. Chapter 6 also includes results from some

1

	

	
of the experiments conducted using this implementation for animating

different types of movements of a few virtual creatures.

•
a

•

•

p
4

45

•

Chapter 3

Optimization Techniques for

Motion Synthesis

As discussed in chapter 2 the most popular and promising approach to the

problem of motion synthesis for active articulated figures is through the use

of constrained optimization techniques. There are five components of the con-

strained optimization problem. These are as follows:

1. The search space that includes all solutions.

2. A task goal defined mathematically via a performance metric.

3. A dynamic system that is to be controlled.

4. A set of constraints.

5. An analytical or numerical algorithm capable of finding an optimal solu-

tion.

In this cha- pter we discuss how the different motion synthesis methods described

earlier handle each of the components.

46

3.1 The Search Space

The size and dimensionality of the search space in which the optimal solution

has to be found has a profound impact on the overall performance of the method.

Usually constraints are used to limit the search space and these are discussed

later in this chapter. The dimensionality is determined by the number of

parameters needed to uniquely specify a single movement (solution). As the

number of DoFs increase, the dimensionality of the search space increases.

All the earlymethods like key-frame animation and inverse kinematics searched

directly in trajectory space, the space formed by position variables and time.

The parameters for uniquely specifying a solution essentially defined a path as

position varying with time. On the other hand, all the initial physically based

animation techniques carried out the search in state variables (that is DoF and

first deriidime_cd-eada-PeF-with respect to time). For example the methods

by Witkin and Kass [108] and Brotman and Netravali [15] simply used state

variables discretized in time as parameters. There are obviously a number of

severe problems with this.

O rgt and foremost, as the actual time duration of the movement is in-

creased the dimensionality of the search space increases.

o Secondly, as the time interval used for discretization is reduced it once

again results in increased dimensionality. While we need really only 24

(or 30) frames per second for final playback, often the nature of differential

equations of motion that are involved is such that much finer steps have

to be considered.

o Lastly, as we shall see in the next chapter, external interactions like

collisions and their resolution also demand that the time intervals be

carefully chosen. This again increases the search space dimensionality.

Large optimization problems are slow to converge. A number of efforts have

been made to essentially address this problem. Cohen [20] proposed subdivid-

ing the animation into smaller pieces. This decomposes the larger optimization .

47

. 	 . 	.

	

. 	. 	. 	. 	 `

	

. 	 	 • 	. 	 .
\IP 	

\fr 	 .

force/Torque .\ 	 Joint
space 	 space

•

Figure 3.1: Mappings between different coordinate spaces (dotted line shows

inverse mappings)

problem into a series of smaller problems which can give the animator greater

control over the final animation by creating more windows and constraints.

However as the number of windows increases the animator's efforts also in-

crease considerably and the computer support effectively reduces to that of

providing interpolation facilities. Similarly the formulat a-

rameterizing trajecTies using 0-splines or wavelets also attempt to reduce

the dimensionality of the search space. Instead of a large number of discrete

points representing a continuous trajectory, a cubic j3-spline for example, would

require only 4 control points in space-time to represent that continuous tra-

jectory. Similarly with wavelets using only a few significant components the

continuous trajectory can be represented. As already mentioned the main dis-

advantage is the forcing of higher order continuity in the trajectories that is

inherent in these methods, thus making these methods suitable only for motion

with smooth trajectories.

All subsequently proposed methods have been based on the strategy of finding

the optimal motion in a space different from the state space. As seen in the

previous chapter, this is done by introducing the notion of motion controllers

that are responsible for generating the necessary forces/torques for a desired

motion. Figure 3.1 shows the different search spaces being used in animation.

1. Most of the kinematic methods, particularly key-frame animation tech-

niques, use Cartesian space (2D or 3D).

2. Joint space, denoted by joint angles of different links of the articulated

figure is used by inverse kinematic methods. It may be recalled that

48

transforming from joint space to Cartesian space is easily done using

forward kinematics.

3. Force/torque space or control space is used by most of the initial dynamics

based methods. Specifically methods like the dynamic constraints [11],

.1)
space-time constraints [108] and its extension [20], and also the state

space controller method based on dynamic programming [101], all search

for the optimal trajectory in control space. Once the trajectory is found in

0

	

	 control space, then by formulating and solving the dynamic equations of

motion, it can be transformed to joint space.

4
	 4. Actuator space depends on the type of actuators modelled in the motion

controller. For example if the spring and damper actuator model is used

then the space is defined by spring constants and rest lengths/angles. All

the newly proposed automatic motion controller synthesis techniques find

the optimal trajectory in actuator space. There are ongoing studies to

use mathematical muscle models from biomechanical studies as actuator

models [47]. These offer the potential to produce alternative motions

through the use of performance metrics that accurately represent features

that are being optimized in real motions. Certainly biologically correct

muscle models can help in matching and evaluating simulated motion

with digitally captured live motions.

While actuator space is definitely of lesser dimension than trajectory or torque

space, the search space dimensionality continues to be a major hurdle in the use

of these techniques. Ng refers to this as the curse of dimensionality [48]. Ef-

•

	

	 forts will certainly continue towards defining control methods that will further

reduce the search space dimensionality.

4, 	 3.2 The Performance Metric

With the motion synthesis problem transformed to one of non-linear constrained

optimization, an animator can control the resulting movements only through

the specification of the performance metric, (objective function that is to be

.4%

49

optimized) and the constraints that the motion has to satisfy. As stated earlier,

the performance metric is usually a functional of the form

J = h(x(T), T) I 0 g(x(t) , u(t) , t)dt 	 (3.1)

where g is integrated over the time duration of the animated sequence T and

h is a scalar function that is evaluated only at the end of the time duration

T. Without loss of generality we can assume that J is minimal for the optimal

motion.

A variety of performance metrics have been suggested and used. The space

time constraints method usually minimizes energy, that is J takes the form:

J = fo ju(t)1 2 dt (3.2)

Though there have been indications that other formulations of the performance

metric could also be used in these methods, in the published literature so far we

do not see any example of other performance metrics used with the space-time

constraints methods.

In the state-space controller [101] methods both time and energy are used by

suitably weighting each. Thus J takes the form

J = aT (1- a) fT lu(t)1 2 dt 	 (3.3)

There are other variations of the metric formulations:

1. The distance traveled by the creature with a penalty for moving backward

[102].

J = -x(T)-F max x(t)
0<t<T

Here x represents the distance travelled.

2. Reach a specified pose without loss of contact with the ground (falling

over) [80].

J = Er-1l 9i(T) - 9(11+ max y(t)

Here 19° represents the desired configuration of the i th link and y(t) the

lowest point on the body.

50

3. Jump to achieve a maximum height. J is maximized such that lowest

point on the body y(t) is reaching the maximum height [80].

J = max y(t)
0<t<T

4. To achieve energetic hops, one can use

T
d-ky 2)dt

Here x dt measures the the distance travelled and ky 2dt measures the

average height of the creature [100].

5. The distance travelled in a fixed amount of time [103].

= lx(T)I

Here the assumption is that motions that end fart
	

sually the

ones that have an interesting mode of locomotio . is 00 13';

, * i ! 6. To follow a moving target, 	 i. , / _____ 	, s c

J . I
T .

p .Fdt '4'

5 n
Here p is the position of the creature, p is its velocity-allot t

pointing towards the target [100].

While the emphasis in most of the research carried out so far has been on

reducing the search space dimensionality and also on effective optimal search

techniques, it is clear that we have to develop simple methods that provide .

 good physical intuition to derive performance metrics that result in desired

motions. And metrics that permit the concurrent optimization of several goals,

thus raising further the problem of distributing the weights amongst individual

goals that may even be in conflict.

The early efforts were to subdivide the animation and carry out the motion syn-

thesis task piecewise. Each piece could in principle be optimizing a different

performance metric. Both Brotman and Netravali and the spacetime windows

51

based methods are examples of this. Restricting the state-space region over

which the dynamic programming based state space controller is derived, cou-

pled with the concatenation of state space controllers for more complex motions

is also another case of a similar approach. As a specific case Cohen [20] argues

that space time windows can simulate a cat chasing a mouse by giving the cat

only local knowledge of the state space around it. In contrast, global knowledge

would feature the cat moving in a straight path directly to meet the mouse at

the destination point. However, a very large number of windows had to be cre-

ated to generate a tight chasing scene. This example, notwithstanding, a major

draw back of these methods is that they make the optimization essentially local

by restricting the domain of the search. And such local optimal solutions may

actually be far from the desired motion in most cases.

A slightly more generalized method for formulating a performance metric has

been described in [37]. In this approach the metric is formulated in the form

of a main goal and style points. The main goal is typically a simple metric

of whether the primary requirement of desired motion has been fulfilled. For

example, if the goal of the motion sequence is to move the figure to the point "X",

then the main goal would simply be the distance between the figure and "X" at

the end of the time allotment (it must be noted that lower numbers correspond

to better performance).

Since the motion is mostly underconstrained, the system can often find out-

rageous ways of satisfying such a simple performance metric. For example, it

might somersault to the goal point instead of hopping. Because of this, style

points are added which can be thought of as additional rewards or penalties

granted to the virtual creature's performance. Examples of style points include:

1. Penalties for hitting obstacles or violating safety rules (don't hit your head

on the floor).

2. Rewards for performing the action quickly, or slowly.

3. Penalties for inefficient behavior (such as taking the long way around an

obstacle or sitting for a long time, then rushing when it gets close to the

52

time limit).

4. Rewards for ending in "neutral positions" and remaining in control (you do

not want the creature tangled up or laid across the floor when it completes

its action).

5. Rewards for minimizing energy consumption are also useful at times.

Interestingly however, most of the time, they found that this did not

improve the quality of motion in any significant way. Even when energy

considerations were useful, the effects tended to be very subtle, and not

as important as the other style considerations.

6. Problem-dependent terms (for example, whether certain subgoals were

met).

A primary draw back of this method is that the performance metric has to

be programmed separately for each motion. The style points are very specific

to the virtual creature and the type of movement, and demand programming

capabilities, say, at the 'C' language level, from the animator and/or associates.

Certainly a simpler, more generic and declarative type of method has to be

evolved.

3.3 The Dynamic System

Given the mass of the object, its moment of inertia, forces and torques acting

on the object and the constraints to be satisfied at any given point of time, the

dynamic system is formed as a system of differential equations. These equa-

tions known as the dynamic equations of motion basically relate how the mass

moves under the influence of forces and torques. Resolving these equations

for acceleration and then integrating the equations enables us to obtain new

velocities and positions. These new positions are used to provide the desired

animation. The description of the motion can be entirely in one, two or three

dimensions. Below we describe in detail the format for the physical description

of objects, methods for formulating the dynamic equations of motion, solution

methods for resolving the accelerations and finally integration techniques to

53

obtain the positions and velocities. We also critically address issues such as

stability, stiffness and computational efficiency relating to the above.

3.3.1 The Physical Object Description

In the simplest case, the object is represented as a point mass, and the only

physical description needed is its mass. More realism is obtained by treating

the object as a rigid body, which is made up of masses distributed in either

2D or 3D space. The information needed to simulate a rigid body includes its

total mass, centre of mass, and moment of inertia. The moment of inertia of a

rigid body may be defined relative to any frame, either attached to the body or

outside. The inertia tensor relative to a frame A is expressed in matrix form as

the 3 x 3 matrix:

.1"xx 	Ixy 	1.X.Z

.1"xy 	lryy 	lryz
	 (3.4)

lryz 	IzZ

where the scalar elements are given by:

I I I v (y 2 z 2)pdv

Iyy =
	jv (X 2 + z 2)pdv

Izz = 	fv (x 2 y 2)pdv

.1"xy
=Iffy

xy p dv

1.z =1.11vxz
p dv

lyz=filvyz p dv

and the rigid body is composed of different volume elements, dv, containing

material of density p.

The elements ./.„ Iyy , and Izz are called the mass moment of inertia. The '

elements with mixed indices are called the mass products of inertia. If the

A I =

54

reference frame is attached to the centre of mass of the body, the products of

inertia terms vanish and the resulting inertia tensor can be written as:

(/

xx 0 0

c / = 	0 Icy 0 	 (3.5)

0 	0 /..

For a simple rectangular box of homogeneous material with dimension /x w x h

inertia tensor with respect to the frame attached at the centre of mass will look

like:

c l. =
(li(h2 + 1 2)

0

0

0
71-1(w2 ► h)

0

0

0

1202 + w2)
(3.6)

3.3.2 Dynamic Equations of Motion for Articulated Figure

There are number of ways to formulate the dynamic equations for an articu-

lated figure. In computer animation, researchers have used Gibbs-Appell [105],

Lagrangian [4], D'Alemberts [52], Armstrong's method [3] and Newton-Euler

formulation [23]. All the approaches are equivalent and yield the same re-

sults but the route to the solution in each case is different. The key issue

lies in the computational efficiency of the solution. In this respect it is well

known that recursive formulations are far superior when compared to their

non-recursive counterparts. We now discuss, the most popular and also highly

intuitive method, the Newton-Euler method.

For a single rigid body, Newton-Euler equations can be written as two three-

dimensional vector equations, a Newton's equation that typically gives the

linear motion of the centre of mass, and an Euler's equation that gives the

rotational motion.

Newton's Equation

Consider a rigid body whose center of mass is accelerating with acceleration

i (t). In such a situation, the force F(t) acting at the center of mass which

55

causes the acceleration is given by Newton's Equation

m ti c (t) = F (t) 	 (3.7)

Euler's Equation

Consider a rigid body rotating with angular velocity, w, and with angular ac-

celeration c.'. In such a situation, the torque N(t), which must be acting on the

body to cause the rotational motion, is given by Euler's equation

c / w (t) w(t) x ° /w(t) = N(t) 	 (3.8)

These are 2ndorder differential equations which need to be solved at each time

step in order to get the position and orientation of body.

However, for an articulated body made of rigid links, the movement of the links

is not completely free but is constrained by the joints. In fact, neighbouring

links exert forces on each other, which restrict the relative motion between

the links. For example, if we consider only rotary joints, there exist only 3

DoFs between the joints and no translational motion will be allowed between

adjacent links.

The complete algorithm for forming the equations of motion is composed of two

parts. First, link velocities and accelerations are iteratively formulated from

link 1 out to link n and the Newton-Euler equations are applied to each link.

Second, forces and joint torques are computed recursively from link n back to

link 1.

56

The equations are as follows:

Outward iterations: i : 0 n — 1

i+ 1 ni + • i1 	
i 	 L41-1-1,

! +1 Rico' i +:1+ 1 Riwi x 	ei+i i+1 2i+1

i+1 • vi+ = i 	 i+1 + =Wi X (iWi x iPi+ 1) 	=vi)

	

1:+1 n 	 141• i+1 0..,i+i x 	.1-- 	+ 	X (i+10..,i+ i X Pc41) 	vi+i, ci+i

i.+ 1
-v 	

i+ 1
i+ i = mi+ 	vc i+i ,

—i+1 coz. +1. + i+lwi+1 x

Inward iterations: i : n 1

ifi = 41Ri+ifi+i

ini 	+!+1 .Ri+lni+i iPci x 	iPi+1 x !+i Ri+ifi+1 ,

The effect of gravity loading on the links can be included by setting (Lik, = G,
where G is the gravity vector.

57

The terms used in the above equations have meanings as given below:

BR 	is the rotation matrix describing points in

frame B relative to frame A

fi 	force exerted on link i by link i — 1

ni 	torque exerted on link i by link i — 1

Ti 	torque exerted at joint i

2 	for finding 2 component of a vector

Fi 	Force acing at the center of mass of link i

Ni 	Torque acting on link i

iPi+1 Distance between the origin of the frame i 1

and frame i measured in the frame i

angular velocity of link i with respect to frame i

ivi 	linear velocity of link i with respect to frame i

i)ci linear velocity of the centre of mass

of the link i with respect to frame i.

In symbolic from, all the terms appearing in the equations are treated like

variables. Given the values of some of the variables, values for the others can

be calculated. This way it can be used in both forward dynamics and inverse

dynamics situations. The main feature of symbolic formulation is reduction in

simulation time. This is typically done by evaluating common subexpressions.

The values of common subexpressions need to be calculated only once and can

then be substituted in the equations. The final system of equations takes the

form,

Ax = b 	 (3.9)

where A is a 2n x 2n matrix, giving the mass description of the body in terms

of masses of links and inertia. Each element of the matrix is represented in

symbolic form, and can be calculated at each time step. b is a vector having 2n

components. Each component of the vector represents force acting at the centre

of mass of some link, or torque acting on the link.

When one link moves, due to application of some external force it exerts a force

on the neighbouring links due to the joint constraint attachment. This force

58

has to be added into the external force acting on the neighbouring links. Other

causes of external force would be collision with the ground and of course the

gravitational force. Gravitational force is constant and depends on the mass

of the link. We shall discuss collision force computation in detail in the next

chapter.

The torque acting on a link causes rotational motion. As we are considering

only rotary joints, the only manner by which we can control the motion of the

body is by varying (controlling) torques at the joints. Application of joint torque

directly results in the rotary motion of the links connected at that joint, which

is further passed on to the other links as well. This joint torque can be directly
I
	

added to the other torques acting on the link. The other cause of torque on a

v
	 link is the force acting on the links. The torque caused by a force depends on

where the force is applied. It is given by the relation

T =pxf

where p is the perpendicular distance of the joint at which torque T is calculated,

from the point of application of force f.

In the above equation 3.9, x is a 2n vector of linear and angular accelerations.

Assuming that the forces and torques to create the motion are known, equa-

tions 3.7 and 3.8 are solved for linear and angular accelerations using the LU

decomposition technique.

3.3.3 Integrating the equations

At a very high level, one can view the simulation as the process of numerically

solving the ordinary differential equation (ODE)

dY
dt

(t)
= f(Y(t), t) 	 (3.10)

59

Y(t i)

Y(t o)

Figure 3.2: A numerical integration process

which describes the evolution of the system over time. The vector Y(t) describes

the state of the system at time t given by

Y(t) = (3.11)

where

x(t)— represents the position of the centre of mass

0 (t)— represents the orientation

v(t)— represents the linear velocity

w (t)— represents the angular velocity.

Given the state of the rigid body at time to, numerical integration is used to

advance the state from Y(to) to a new state Y(to + At) (cf Figure 3.2). Numerical

integration technique requires evaluation of the right hand side of equation 3.10

for a particular value of t. This, in turn, requires computing the total forces

F(t) and torque N(t) acting on the object at that instance.

60

Euler Method

The Euler method is a numerical integration technique which is one of the

simplest to understand and easiest to implement. The Euler method assumes

that the accelerations will be constant during the time step At of the integration.

The integration equations are as follows.

For linear motion:

v(t + At) = v(t)+ v (t)At

x(t + At) = x(t) + v(t)At

For rotational motion:

w(t + At) = w(t)+ w (t)At

0(t + At) = 0(t) + w(t)At

Stability Issues

Any numerical method for solving ordinary differential equations works on

well-behaved linear differential equations. The problem arises when the dif-

ferential equations are nonlinear or stiff or have discontinuities. All these

conditions are likely to be present in our case. Our differential equations are

nonlinear (second order). There are discontinuities due to collision with the

ground. The stiffness problem also exists as discussed below. In these cases

the numerical methods may fail to find the correct solution. This failure is in-

dicated by instability in the method. An instability occurs when the numerical

method behaves in an inconsistent manner. This inconsistency may show up as

radically different solutions for different step sizes. Instabilities can be caused

either by the differential equation, or the numerical method used for their solu-

tion or a combination of both. The most common situation is the combination of

stiff differential equations and a numerical method (like Euler's) which cannot

handle stiffness.

61

Stiffness

Stiffness in ordinary differential equations is the first known cause of instability

in numerical methods. A set of differential equations is called stiff when in the

solution, some components are slowly varying, while others have a very high

frequency but quickly decay to zero. Since sampling of the differential equation

is done at different time steps, these two components could become mixed, even

after the high frequency parts have been reduced to zero. This causes the

rapidly varying perturbation in a solution that has become unstable.

In case of dynamics the derivatives taken with respect to position and veloc-

ity (both linear and angular) affect the stiffness of the equations. Any force

or torque that is not a function of position or velocity does not influence the

stiffness of the equations. For example, stiffness will be introduced due to

friction since frictional force is a function of velocity of the body. Similarly, a

force or torque that is used to produce a required body orientation or enforce

a constraint influences the stiffness. Since these are the techniques which are

used here in controlling the motion of the body, they are bound to adversely

influence the stiffness of the equations. Without the control forces and torques,

the equations of motion for articulated bodies are not stiff, it is just when we

control them that the stiffness gets introduced.

One possible solution to the stiffness problem is to use a small step size, in the

Euler method. With a small step size, the differential equations will be sampled

often enough to handle high frequency components. There are two problems

with this approach. First, the step size directly determines the time required

for simulation. The smaller the step size, the more the simulation time. Second,

when the step size is decreased, rounding errors in the computations increase.

Eventually a limit will be reached where the rounding errors dominate the

solution. If a differential equation requires a step size smaller than this limit,

then the Euler method cannot be used for solving the differential equations.

62

Second Order Runga-Kutta Technique

The advantage of the Euler technique is that it makes only one evaluation

of the function derivative. In the context of the simulator, evaluating the

state derivative corresponds to solving the system of motion equations. So it

is desirable to have as few derivative evaluations as possible. However the

very reason for the Euler methods' inaccuracy is the fact that it approximates

the function derivative over the interval [t o , t o + At] by the derivative at to.

Obviously more derivative evaluations are required in the interval in order

to obtain a more accurate approximation for the function derivative over the

entire interval. The second order Runga-Kutta method uses two derivative

evaluations in the time interval. It evaluates the derivative at to, the beginning

of the interval and at (to + I), ie. halfway down the interval. In terms of

equations it can be expressed as:

= At f(Y(to),to)
k i

k2 = At f(Y(t o) + -pto + At

Y(to + At) L- Y(to) k2 0(h3)

This method gives second order accuracy.

Fourth Order Runga-Kutta Technique

The fourth order Runga-Kutta technique makes four derivative evaluations in

the time interval [t o , to + At], one at the beginning (to), two at trial midpoints

(to + V-) and one at a trial endpoint. The final function values are calculated

using these derivatives.

In terms of equations,

k 1 = Ot f(Y(to), to)
kJ. 	At

k2 = Lt f(Y(to + 	to +

k
k 3 	At f(Y(t o --2-

2
), to + At

63 —

k4 = At AY(to k3), to + At)

and,

Y(to + At) = Y(to) 6(k1 2k2 2k3 k4) 0(h5)

This method gives fourth order accuracy.

Adaptive Step Size Control

If the step size is fixed, a step size will have to be chosen which is small enough

to accommodate a rapidly changing function. This would be wasteful if the

function is not rapidly varying Any good ordinary differential equation (ODE)

integrator must therefore exert some adaptive control over its own progress,

making frequent changes to its step size. The purpose of this control is to

achieve some predetermined accuracy without undue computational effort. In

regions of the function domain where the function changes rapidly, small step

sizes should be used while in regions where the function changes slowly, larger

step sizes could be used.

3.4 Constraints

There are essentially two broad categories of constraints which the synthesized

motion has to satisfy. These are:

1. Constraints due to the requirement of physical correctness

2. Constraints for enabling the animator to have control over the synthesized

motion, such that it appears realistic and natural.

Most methods will try to restrict the search space by setting up constraints such

as joint angles or other dependencies in state variable, reducing the size of the

state space. Constraints are essentially in the form of mathematical equalities

or inequalities. Any one or more of the variables appearing in the optimiza-

tion problem could be constrained with the help of constraint equations. For

example a constraint on the object trajectory will have the form:

64

C(x(t)) = 0

or

C(x(t)) > 0

The inequality constraints are the most general as all equality constraints can

be treated as special cases of inequality constraints. For example, C(x(t)) = 0

can be replaced by C(x(t)) > 0 and —C(x(t)) > 0

3.4.1 Physical Correctness Constraints

These are the constraints which are mandatory from the point of physics. In

general, unless these constraints are satisfied, no physical realism is possible.

Most of the time these constraints are derived from the the physical descrip-

tion of the creature and its environment. We shall describe now three such

constraints.

The Dynamic Equations of Motion

Given the mass of an object and forces and torques acting on the object, the

motion of the object can be constrained by the equations of motion. Any motion

which is not as per these equations of motion cannot be considered as physically

correct. In all physically based animation techniques satisfying the dynamic

equations of constraint is a primary goal.

Non Penetration Constraints

This is another constraint required for physically correct motion and arises from

the fact that two rigid bodies cannot interpenetrate each other. Techniques for

the handling of constraints of this kind are discussed in detail in the next

chapter.

65

Structural Constraints

These are again constraints that have to be satisfied for physically correct

motion. A given geometrical configuration like an articulated body cannot

have its contact between two links broken any time during the motion. Joint

connectivity constraints can be imposed in the form of equality constraints to

be satisfied by the positions of the connected end points of the individual links.

More often these constraints are automatically resolved by the manner in which

the equations of motion are formulated.

3.4.2 Animator Specified Constraints

These constraints are essentially specified by the animator to control the motion

that is synthesized. Most of these constraints are based on observations of

similar movement in real life, say for example a limit on the maximum speed

of movement. While there is no fixed set of constraint types, we describe below

many of the constraints that have been applied in the different approaches.

Value Limiting Constraints

This is a simple and common type of constraint. Basically the animator limits

the range of values for a parameter in the search space.

xi < x(t) < x n,

In state space this would amount to putting limits on the position, velocity or

acceleration of an object. In joint space this puts a limit on the joint angles and

the angular velocities and angular acceleration and in force/torque space on

forces and torques acting at the joint. For motion controllers these constraints

would depend upon the parameterization that is applicable for the motion con-

troller. In the pose control graph based controllers, for example this would

impose limits on spring constants, rest lengths and transition times. For the

banked stimulus response controllers, this would also put limits on the sensor

66

variable values. It is important to recognize that most of these limits would

be such that they are reasonable for real life movements of the same kind and

are essential if the synthesized motion has to appear realistic. Applications of

unnaturally large forces or impossible speeds would make the resulting motion

look unrealistic.

Dynamic Constraints

The idea of dynamic constraints is to allow the animator to interactively spec-

ify geometric constraints on the motion such that the objects obey Newton's

laws and at the same time obey the user specified geometric constraints. For

example, an animator might constrain an object to move along a specified path

or require two objects to remain at a specified distance apart. However, what

constraint to specify in order to get the desired motion requires intuition of the

mechanical aspect of motion. As such, the method is not suitable for motion

synthesis of an active articulated body.

Space Time constraints

Spacetime constraint method is a useful technique for creating goal directed

motion of an articulated body. A typical example of spacetime constraint is

that the arm must be in particular position at particular time t o , requiring it

to be at some other position at time t 1 . This specification alone is not sufficient

to obtain the intermediate trajectory. In addition to spacetime constraints, an

animator must specify an objective function, such as to perform the task with

minimum energy or some other performance criteria.

Smoothness Constraints

The most natural motion results when the least amount of effort is put into

controlling the motion. Therefore, when a large motion control problem is

broken into a sequence of piece-wise control problems, it is necessary to impose

67

continuity constraints such that the position and velocities are smooth at the

boundary of each subinterval. One method of doing this is to impose additional

constraints that the control function be a higher order continuous function of

time through out the interval and then minimize the energy in control as well

as its first derivative 415].

3.4.3 Constraint Handling Techniques
4.

One common technique for solving the constrained optimization problem in-

volves replacing the performance metric J with a Lagrangian function [57],

R
L(x, A) = J(u) d-Exic,(x ,t)

The A i associated with each constraint c i is called a Lagrangian multiplier. The

Lagrangian multipliers roughly weight the influence of the constraint on the

optimal solution value with inactive constraints having zero-valued multipliers.

The Kuhn-Tucker [67] conditions provide optimality conditions for these and are

given by:
6
	

V x L(x*, A*) = 0

c(x*) > 0

A* > 0

A*Tc* = 0

•

where A represents the vector of Lagrange multipliers and c represents the

constraint equations. Variables superscripted by * represent their values at

optimality. These conditions state that all components of the gradient of the

Lagrangian are zero, which will also implicitly satisfy the constraint. The

system does not have a closed form solution. The numerical methods used in

solution are typically of iterative nature, where an initial guess for a solution

is improved upon at each iteration until an optimality criterion is reached. • It

is important to note that there is no guarantee that the solutions found are

true minima or maxima. In fact, most of the time solutions found are likely

to be approximate local optima due to the nonlinearity and vast size of search

68

space. All methods based on the use of local optimization techniques essentially

handle constraints using the above strategy. There is a very basic problem with

this strategy. Since the constraints are integrated into the performance metric

to be optimized and since the methods only try to optimize the metric value, the

method as such cannot guarantee that the final solution obtained fully satisfies

all the constraints. Certainly the performance metric is so formulated that

constraint satisfaction is encouraged but not necessarily guaranteed. This is

particularly disturbing when one wants physically correct solutions satisfying

the constraints put by the dynamic equations of motion.

However, in the global optimization techniques using evolutionary methods,

this problem does not exist. In all these approaches the population of solutions

is chosen in such a fashion that all the constraints are satisfied a priori. Further,

since the optimal motion is found in a space like the actuator space, and the

the final motion is obtained by solving and simulating the dynamics equations

of motion, physically correct motion is guaranteed.

3.5 Optimization Techniques

Classical numerical optimization typically use Sequential Quadratic Program-

ming (SQP) [32] or projected gradient methods [88] to solve the optimization

problem. Many of these are applicable to well behaved continuous functions

which rely on using information about the gradient of the function to guide

the direction of the search. If the derivatives of function cannot be computed,

say, because it is discontinuous, these methods often fail. Such methods are

generally referred to as hillclimbing. They can perform well on unimodal func-

tions. But on multimodal functions they suffer from the problem that the first

peak found will be climbed, and this may not be the highest peak. Having

reached the top of a local maximum, no further progress can be made. A one-

dimensional example is shown in Figure 3.3. The hillclimbing starts from an

initially guessed point, say, X and moves are made to climb the hill until the

peak at B is reached. However, the higher peak at C may not be reached

ever. The method suggested by Witkin and Kass [108] minimizes energy Their

method, uses linear approximations for the constraints and quadratic approx-

69

A

Figure 3.3: The hillclimbing approach

imation for the Lagrangian [32]. The method works by progressively refining

an initial motion trajectory specified by the animator (cf Figure 3.4). On the

B

• Initial trajectory

• Trajectory after some iterations

Final trajectory

Control variables

Figure 3.4: Space-time constraints method

other hand Brotman and Netravali [15] approximate the dynamics to a linear

system given by the equation:

(t) = A(t)x(t) B(t)u(t)

where A(t), B(t) are n x n and n x m matrices with time varying elements.

The overall performance metric J is defined with J = Elo\T-1 .1,, where 	is

evaluated at each of the N subintervals between adjacent key poses at times t i

70

•

and ti+ i. This reduces a multi-point boundary value problem to a series of two

point constrained optimization problem. The individual performance metrics

Ji are chosen to produce smooth trajectories and minimal control energy and is

defined by

Ji =
T

[a 	(t))2 + lu(t)1 2] dt

a and /3 are weights for adjusting the balance of various motion characteristics

in the final motion.

Like in key-frame interpolation a major advantage of this method is its ability to

specify motion requiring precisely timed actions. The major difference between

these methods and key-frame animation is, in the method of interpolation. In

these methods geometric interpolation is replaced by a process that attempts

computing physically correct trajectories automatically. As a result fewer key-

frames are required. Further, the trajectories are goal oriented, that is, chosen

to be optimal according some user-supplied fitness function.

These local optimization techniques were useful to introduce optimization as

a useful mathematical tool for finding near physically correct motions with

lesser requirements put on animator skills. However, they suffer from several

computational problems. We discuss some of these problems below.

1. The systems to solve have many constraints and state variables, making

the process of motion synthesis slow and non-interactive.

2.. Since the methods use local optimization techniques, where an initial

guess for a trajectory (in the form of key-frames) is improved upon at each

iteration until an optimality criterion is reached, there is no guarantee

that the solution obtained would be the best or as desired by the animator

(et Figure 3.4).

3. Most of the techniques are useful only when the animator can supply a

good guess of the motion trajectory. At times specifying such a trajectory

is as burdensome as specifying key-frames.

4. Many a times the search space is large, multimodal and discontinuous

71

(due to collisions) as a result these gradient based search techniques fail

to obtain a good solution.

It is therefore clear that we need a mechanism which can start the search

effectively through a large multimodal search space. It should avoid achieving

the false peaks and should not require the function to be continuous in order

to proceed. The two most common methods which are suitable for this kind of

situations are simulated annealing and genetic algorithms. Both are stochastic

optimization techniques, which are based on natural processes found in nature.

Simulated annealing is patterned after the physical process of annealing found

in metals, where as genetic algorithms are based on the principle of evolution

found in nature.

3.5.1 Simulated annealing
•

Simulated annealing [58] is a computational process where the exploration of

the whole space is done early on so that the final solution is relatively insen-

sitive to the starting state. In the physical process of annealing, the physical

substances such as metals are melted (i.e raised to high energy levels) and

then gradually cooled until some solid state is reached. The goal of this process

is to produce a minimal energy final state. The computational equivalent of

energy is the objective function. In an annealing process, as the temperature

decreases, the probability of a large uphill move is lower than the probability

of a small one. Thus such moves are more likely to occur during the beginning

of the process when the temperature is high, and they become less likely at

the end when the temperature becomes lower, whereas downward moves are

allowed any time. The rate at which the system is cooled is called as the an-

nealing schedule. If the annealing schedule is too rapid, the method is subject

to stagnation in a local minima (it degenerates into a pure descent method). If

the annealing schedule is very slow the method becomes impractical for gener-

ating suitable solutions to complex problems within reasonable computational

limits. In physically based animation, Van de Panne and Fiume have used sim-

72

ulated annealing technique for global optimization. Using the technique they

have synthesized the weights of sensor actuator networks, which influence the

movement control of virtual creatures.

3.5.2 Genetic Algorithms

Genetic Algorithms (GA's) are adaptive methods which may be used to solve

general search and optimization problems. The basic principles of GAs were

laid down rigorously by Holland [51] and are well described in many texts, e.g

Davis [24], Goldberg [36], Michalewicz [74]. GAs use a direct analogy of evolu-

tion according to the principles of natural selection and survival of the fittest.

They work with a population of individuals each representing a possible solu-

tion to a given problem. Each individual is assigned a "fitness score" according

to how good a solution to the problem it is. The highly fit individuals are given

opportunities to "reproduce" by "cross breeding" with other individuals in the

population. This produces new individuals as "offsprings" which share some

characteristics with each "parent". The least fit members of the population are

less likely to get selected for reproduction and so "die" out. In this way, over

many generations good characteristics are spread through out the population

as they evolve. By favouring the mating of the more fit individuals, the most

promising regions of the search space are explored. If the GAs have been de-

signed well, the population will converge to an optimal solution to the problem.

The population is said to have converged when 95% of the individuals in a

population share the same value of the solution.

Algorithmically the process can be described as follows. Let P(t) = xi, . , xnt

be a population (set) of solutions, for iteration t. Each solution x is evaluated

to give some measure of fitness. Then a new population is formed for iteration

t + 1 by selecting more fit individuals. Some members of the new population

are involved in reproduction by means of genetic operators to form new solu-

tions. There are unary transformations m i (mutation types), which create a

new individual (solution) by a small change in a single individual, and higher

order transformation ci (crossover type), which create two new individuals by

73

combining parts from two other individuals. After some number of generations

the algorithm converges. The best solution is assumed to and often represents

the optimal solution.

i

procedure genetic algorithm;

begin

t :=0;

initialize P(t);

evaluate P(t);

while not (terminate condition) do

begin

t := t + 1;

select P(t) from P(t-1);

recombine P(t);

mutate P(t);

evaluate P(t);

end;

end;

Genetic algorithms work well even if the search space has some of the difficult

to handle properties mentioned above. Considering a population of points

rather than a simple point at start, GAs climb many peaks parallelly. Thus

the probability of finding false peak points is reduced in the case of multimodal

(many-peaked) search spaces. In order to proceed, GAs only require objective

function values associated with individual solutions, so there is no need for the

search space to be continuous or differentiable as no derivative needs to be used

to climb the peak 1 .

Classical genetic algorithms use a bit string for representation of a solution.

The whole probabilistic theory of GAs is based on this representation. Genetic

las required in gradient based search techniques

74

operators are well defined for binary representation and are unique for all types

of problems. A problem with the bit representation is that the structures are

difficult to impose on the parameters.

In motion optimization, we have floating point numbers to deal with. In order

to use GAs they need to be converted to binary representation with precision

information. Also our solution representation requires structures on the pa-

rameters. Hence genetic algorithms are not very practical in their canonical

form for the kind of optimization problems encountered in physically based ani-

mation. A variant of genetic algorithms which use floating point representation

are called Evolutionary programming algorithms..

4 	 The genetic algorithms differ from evolutionary programming in the following

aspects [281:

1. In genetic algorithms a binary coding of the parameters to be evolved is

used, not the floating point parameters themselves.

2. The number of offsprings to be created from each parent is proportional to

the parent's fitness relative to all other members of the current population.

3. Parents create offsprings through the use of specific genetic operators such

as one-point crossover, and bit mutation.

On the other hand in evolutionary programming [281:

1. Rather than a single coding structure to every problem, each problem is

Tegarded as unique.

2. Successful simulations need not create more than a single offspring per

parent.

3. Offsprings are created through many mutation operations that follow nat-

urally from the chosen problem representation. No emphasis is placed on

the use of a crossover operation.

75

Many of the original proposals in GA have undergone significant revision since

first definition. Much of the current research in GA has foregone the use of bit

strings [93]. Experiments have indicated the superiority of hybrid crossover

mechanisms to the one-point crossover originally proposed by Holland. Some

of the research has indicated a greater role for mutation in evolutionary search

and has illustrated cases where crossover can be detrimental to search. The ma-

jor advantage of evolutionary programming is that, we can impose a structure

on the parameters. However, it requires one to define mutation and crossover

operations. These operators are very problem specific. Although there is no

proven theory behind the working of this approach, it works well if operators

are well defined.

Many evolutionary programing algorithms can be formulated for a given prob-

lem. Such programs may differ in many ways. They can use different data

structures for representing the individual solutions, different genetic opera-

tors for transforming individuals, methods for creating an initial population,

methods for handling constraints of the problem, and parameters (population

size, probabilities of applying different operators etc.). However, they share a

common principle; a population of individuals undergo some transformations,

and during this process of evolution the individuals strive for survival and only

the fittest survive. In physically based animation, Ngo and Marks [81] have

used a massively parallel genetic algorithm to synthesize motion of articulated

figures with banked stimulus response controller. A genetic algorithm is also

used for controller synthesis in the recent work by Sim [89] and by Gritz and

Hahn [37].

3.6 Remarks

The initial techniques which used local optimization procedures were primar-

ily responsible for introducing optimization as the tool for motion synthesis in

computer animation. There are a number of problems inherent in the local

optimization methods. Specifically, the amalgamation of constraints including

the dynamic equations of motion into the objective function to be optimized has

the undesirable side effect that the synthesized optimal motion does not neces-

76

sarily satisfy the constraints and hence need not even be physically realizable.

It must be said here that local optimality would surely mean that constraint

satisfaction and physical correctness would be encouraged but not guaranteed.

Use of global optimization methods is therefore mandated. Present algorithms

based on the genetic programming paradigm seem to be the most suited can-

didates. While such algorithms do search for the optimum globally they too

do not guarantee that the true optimum can always be found. But probabil-

ity is certainly much greater. Such algorithms are simple to program but are

computation intensive. One possible solUtion is to use parallel computation

techniques. This approach has been adopted by us in our implementation and

the parallel algorithm is described later in chapter 6.

77

Chapter 4

ModellingSbject Interaction

Articulated figures representative of living creatures locomote themselves not

only through internally generated forces and torques but also with the help of

external forces that arise through interaction with other virtual objects as the

articulated figures move in the virtual environment. If no special attention is

paid to object interaction, these objects will move through each other producing

unrealistic and disconcerting visual effects. A primary requirement of phys-

ically correct animation is to model the dynamic effects of these interactions

in the form of suitable forces and torques. Along with the internal forces and

torques 1 these are then incorporated into the dynamic equations of motion for

obtaining the desired movement.

Methods for generation of internal forces and torques have been discussed

in detail in the earlier chapter. In this chapter we discuss methods for the

modelling and synthesis of external forces. There are essentially two kinds of

external forces that a rigid object can experience:

'Some times the term internal forces has been used to distinguish constraint forces like

the one that has to be generated for maintaining joint connectivity from external forces like

gravity. In this thesis however, by external forces and torques we mean all environmental and

environment induced forces/torques, and we reserve the term internal forces/torques for those

whose generation is internally motivated in the creature in order to achieve a goal oriented

movement.

78

c found within tolerance

inter - penetration detected

Figure 4.1: The particle colliding with the floor

o Field forces like gravitational force, that are always present throughout

the virtual environment. A gravity like force is very simple to model and

can be easily incorporated into the equations of motion.

o Constraint forces that arise out of bilateral constraints and unilateral

constraints such as joint connectivity, collision and contact constraints.

Bilateral constraint forces typically arise in representing idealized joints which

connect one rigid body to another. Bilateral constraints are explicitly specified

as part of the description of the articulated body. An example of a bilateral

constraint is a rotary joint. Typically, bilateral constraints are valid through

out the simulation unless they are relaxed explicitly during the course of sim-

ulation.

Collision and contact constraints on the other hand come and go as objects

move about and interact with other objects in the environment. For example,

consider a point mass being dropped on to the floor under the influence of

gravity (cf Figure 4.1). Assuming rigid body behaviour for both particle and

floor, it is clear that we cannot allow the particle to penetrate below the floor

when it strikes the floor. This means that at the very instance that the particle

actually comes into contact with the floor, an abrupt change in its velocity has

to occur, making it move away from the floor.

However a different approach has to be taken for a flexible object. For a flexible

79

At

O

O

0 0 ED 0 0
no

force t 	t 	no
force

Figure 4.2: A rubber ball colliding with the floor

object such as a rubber ball, the collision can be considered as occurring gradu-

ally. Over some fairly small, but finite span of time, a force would act between

the ball and floor and change its velocity (cf Figure 4.2). During this time the

ball would deform, due to the force. The more rigid the ball is, less would it

deform and shorter would be the time of contact. In the limiting case, the ball

is infinitely rigid, does not deform, and unless the ball's downward velocity is

instantaneously reversed, it will penetrate the floor (cf Figure 4.3). Thus for

rigid body motion under constraints, we have two basic types of contacts to deal

with. When two bodies at the point of contact, have a relative velocity towards

each other, it is called a colliding contact. Whenever, the relative velocity be-

tween the bodies at the point of contact is zero, the bodies are said to be in

resting contact. Like, the rubber ball bouncing off the floor, in resting contact,

objects remain in touch with each other over a finite span of time. Although,

there is no deformation due to bodies being rigid. Detecting whether objects are

in colliding contact or resting contact can be considered as purely a kinematics

problem depending only on position and velocity. However, after the collision,

how the objects should move is decided by the dynamics. It must be noted

here that both colliding and resting contacts may also require the modelling of

frictional effects.

4.1 Motion Simulation with constraints

As we have seen earlier in Chapter 3, at a very high level, one can view mo-

tion simulation as the process of numerically solving the ordinary differential

80

velocity force

A Soft Collision

velocity force

A Rigid Body Collision

Figure 4.3: Soft body collision v/s Rigid body collision

.4

81

equation (ODE)
dY(t)

= f(Y(2), t) 	 (4.1)
dt

Where the vector Y(t) describes the state of the system at time t. For a rigid

body motion, the state Y(t) is defined as:

Y(t) = x(t) 0(t) v(t) w(t) 1T 	 (4.2)

where x(2) — represents the position of the centre of mass,

0(2) — represents the orientation,

v(t) —represents the linear velocity, and

w(2) — represents the angular velocity.

Given the state at time to i.e Y(t 0) and f(Y(to), to), the simulation system

uses numerical integration to advance its state from Y(20) to Y(t o + At). Nu-

merical integration techniques require evaluating f (Y (to), to), which in turn

requires computing the force F(to) and r(to) acting on an object, representing

both external and internal forces. When there are no constraints on the object's

motion (that is, no obstacles to encounter, as in objects in flight), then all these

forces and torques can be determined trivially and the simulation is a simple

and straightforward numerical integration of Equation 4.1. In the presence of

obstacles however the numerical integrator has the following problems:

o Firstly, we may have the situations that at an intermediate state Y(t i)

objects do not penetrate while in the state immediately following it, that is,

Y(ti + At), objects may penetrate. Unfortunately, the differential equation

contains no information about the geometry of objects in the simulation.

Therefore, we cannot determine when collisions will occur, solely on the

basis of the differential equations.

o Secondly, a colliding contact requires an instantaneous change in velocity,

say at the instant that the collision occurs. As a result the numerical

integrator that solves the differential equation, suffers from discontinuity

in state variable Y(t c) at the time of collision (cf Figure 4.4).

The standard technique to overcome these problems consists of testing the colli-

sion outside the numerical integration loop and solving the differential equation

82

Y(t)

Y(tc)+7----„7

X

Figure 4.4: A discontinuity in the state variable due to collision

piece-wise. A piece-wise solution involves, stopping the solver at the instant the

collision is detected, computing the new velocities, and reinitializing the state

with new velocity variables. It is important to note that the state Y(4) - just

before collision and the state Y(t c)+ just after the collision should agree for all

spatial variables (position and orientation) but may differ in velocity variables.

The various methods and issues in computing the exact time of collision tc , is

discussed next.

4.2 Collision and Contact Detection Techniques

There are two ways to look at the collision contact determination problem.

First, as a continuous function of time from time t o to Given this view

point, the basic problem to be solved is "at what time" and "where" do bodies

first come into contact? Second, the problem can be considered discretely, at

a sequence of time values t o < to + At i < to + At2 . In this viewpoint, the

basic problem is given the position of bodies at time t i and time t i + At, and

the fact that penetration has occurred during the interval At, where do bodies

interpenetrate and contact each other.

At the very core, collision/contact detection is a spatial interference problem

which has been extensively studied in the fields of computational geometry

83

[85], and robotics [17]. In computational geometry the problem is solved for a

static environment. That is, given two objects one has to determine whether

the objects intersect. The emphasis is on complex object shapes and exact

intersection computation. In robotics on the other hand, the collision detection

problem is solved as a dynamic environment problem. That is, given two

objects and their paths, the problem is to determine whether the objects will

collide and if so at what time do the bodies first come into contact. Examples

include an algorithm for determining the first collision between rigid polyhedral

objects [17]. Making the assumption of constant angular velocity, the problem

is reduced to that of determining the first instant of collision to the problem of

finding roots of polynomials. Since no closed form solution exists for the time

at which the first intersection occurs an iterative numerical method is used to

determine time.

In physically based simulations however, the paths of the colliding objects are

not known in advance. In fact they are to be determined. These paths depend

very much on the interaction of the moving object with other objects in the

environment as well as the objects own internal forces. Von Herzen et al. [44]

describe an algorithm that determines the first collision between parametri-

cally defined time-dependent surfaces. Very recently, interval arithmetic based

methods [77] have attracted considerable attention as a method to deal with

collision detection. Duff [26] describes a collision detection method using inter-

val analysis that handles rigid-body motion of implicit curved surfaces but with

restrictions on the motion path. Similarly, Synder [92] uses interval analysis

to find the first time of collision between both parametric and implicit time

dependent curved surfaces. The methods based on continuum approach are

computationally very expensive and are not really practical in todays general

computing environments.

The second approach takes a discrete view to the collision detection problem.

A straight forward method of collision detection would be to solve a sequence of

static problems one per time step. For example, as we run the simulation, we

compute the position and orientation of the object at times to, to + At, t o + A2t

84

Figure 4.5: A missed collision

and so on 2 . Suppose all we know is that the time of collision t, when objects

first come into contact lies between t o and to + At, then computing t c involves

a binary search in the interval t o and t o + At. That is, if at time t o + At we

detect inter-penetration, we inform the ODE solver that we wish to restart

back at time t o , and simulate forward to time t o + If the simulator reaches

t o + -V- with out encountering inter-penetration, we know the collision time t c

 lies between to + t and to + At. Otherwise, t, is less than t o + tt and we try to

simulate from t o + 4tand so on. The method will terminate when the objects

are found to collide within some tolerance. The binary search method is slow

but is easy to implement and is very robust.

The problem with this simple method of collision detection is that these algo-

rithms essentially ignore any geometric similarity that may exist between two

consecutive states. Secondly, even if we find that both states at t o and t o + At are

legal, the method does not guarantee that a collision has not been missed (cf

Figure 4.5). The recent work by Baraff [9] and Lin and Canny [63] has focused

on collision detection algorithms for dynamic simulation that efficiently reuse

previously computed information. In particular, Lin and Canny describe a col-

lision detection algorithm for convex polyhedra that takes roughly 0(1) time

to test a pair of polyhedra. Baraff describes a coherence based bounding box

that detects overlap between n bounding boxes in roughly O(n) time over the

course of simulation. Methods for coherence-based collision detection among

2The ODE solver need not proceed with equal size time steps as explained in Chapter 3

85

convex curved surfaces are also described [9]. To guarantee that the object has

had no collision within the time interval At, one must consider the entire path

during the interval. But as was said earlier, in general this path is not known.

The simplest way to approximate the trajectory is by linearizing the motion

between time interval to and t o + At. Another common assumption to solve this

problem is to make sure that the velocities of the moving objects are small as

compared to the time interval At.

Collision detection is in general computationally very expensive. A naive col-

lision detection algorithm with n objects requires 0(n 2) comparisons at every

time step of simulation. Bounding box based preprocessing has been proposed

for increased efficiency. In these methods to improve the performance it is

necessary to determine only pairs of objects which really require consideration

by the collision detection algorithm This can be done by enclosing each object

in the simulation by a bounding box whose sides are parallel to the coordinate

axis. Given objects A and B, if their bounding boxes do not overlap, there is

no need to subject the objects to any further consideration. Moreover, this

technique can be implemented hierarchically to reduce computation time [75].

Research on more efficient collision detection methods continues.

4.3 Collision Resolution Techniques

Once the collision has been detected and the exact points of contact between the

colliding objects haire been determined the next step is to ensure that the non-

interpenetration constraint is maintained. Ideally, this is done by computing

a constraint force at each contact point that acts in a direction normal to the

contact surface at the point of contact and exactly prevents interpenetration.

This would require the solution of a non-linear system of equations and is

fairly complicated. The second method, called the penalty method is much less

complicated, but does not completely eliminate interpenetration. Essentially

a contact is modelled by placing a damped spring at the contact point. As the

•

	

	 amount of interpenetration increases a repulsive force acts between the objects

pushing them apart.

86

Vertex -Face contact

Edge - Edge contact

gib

Figure 4.6: A contact between two polyhedra

4.4 Exact Methods

S
	

Once the exact time (within tolerance) of collision/contact is computed using a

numerical or binary search, the next, step is to find alPthe points of contact.

For a collision between a point particle and a surface this is very simple, since

nothing more than substituting the position of the particle in the equation of

surface is required. However, for objects with complicated shapes, the problem

is much more difficult. To simplify the matter, let us assume that all bodies

are polyhedra, and every contact point between bodies has been detected. The

fr contact point between bodies can be considered to be either vertex/face contacts

or edge/edge contact. We shall assume that vertex/vertex and vertex/edge as

degenerate cases and have to be handled separate157in some ad hoc manner. A

vertex/face contact occurs when a vertex on one polyhedron is coincident with a

face of the other polyhedron (cf Figure 4.6). An edge/edge contact occurs when

a pair of edges are coincident.

4.4.1 Colliding Contact

t_t 	 Consider two bodies A and B which come in contact at point P at time t c .

Let Pa(t) and Pb(t) denote the points on body A and on body B respectively

(expressed in their own coordinate frame) such that P a (t) = Pb (t) at t = t c .
Although Pa(t) and P b(t)are coincident at time t c , the velocities of the two

points at contact time t, may be quite different. If we denote Pa (t) and Pb (t)
to be their velocities at time of contact, then the relative velocity in the direction

87

••=
I

B

pa (tc)— Pb (tc)

(b)

n 5„ (t c)
— pb (t c)

n
(a)

4

(c)

Figure 4.7: (a) Colliding contact (b) Resting contact (c) Separating contact

normal to one surface will be given by

v„/ = n(t c).(i3 a (tc)— Pb (tc))

which is a scalar (cf Figure 4.7). In this equation n(t c) is the unit surface normal

defined for each contact point at t c 3 . The quantity v„/ gives the component of

the velocity in n(t c) direction. Clearly if // re/ is positive, then it means that the

bodies are moving apart, and that this contact point will disappear immediately

after t c (cf Figure 4.7). We do not now have to worry further about this case.

If v„/ is zero, then, the bodies are neither approaching nor receding at the

point of contact. This is exactly what we mean by resting contact. If on the

other hand vr ei < 0, this means unless the velocities of the bodies undergo an

immediate change, interpenetration will occur in the next time step (cf Figure

4.7). Since we want the bodies to change their velocities instantaneously we

3Assumption is that one can always find such a normal

I

88

apply an impulse force J in the direction of n(t c) 4 .

J = jn(tc)

An impulse is a vector quantity, just like a force, but it has units of momentum.

Applying an impulse produces an instantaneous change in the velocity of a

body. For example, if we apply an impulse J to a rigid body with mass M, then

change in the linear velocity Av =-th. The magnitude j is computed by solving

the empirical law for frictionless collisions such as:

v rel
	

—6 V ;e1

where the quantity E is called coefficient of restitution and must satisfy 0 < e <

1. If e = 1, then vr+e, = —Ice) and collision is perfect and there is no loss in

energy.

Moore and Wilhelms [75] and Hahn [39] have proposed a solution to the prob-

lem based on the conservation of linear and angular momentum. Fifteen linear

equations are set up and solved for fifteen unknowns. These unknowns are

the three components of the resultant linear, angular momentum and the im-

pulse vector. Out of these fifteen equations, twelve equations are due to the

momentum conservation principle:

miv i = miv i R

m2v 2 = m2v 2 — R

117.v;. = 117.v1 p1 x R

12'11) 12 = 12W2 — P2 X R

where

• Pi., P2 are vectors from the centre of mass of each object to the point of

collision.

4This assumption is valid provided we are considering only frictionless systems.

89

as a function of unknown fi 's. This results into equations, which can be solved

using a numerical technique called quadratic programming to determine the

fi's.

The constraint based approach computes exactly the non-penetration constraint

forces that are required to cancel accelerations that would result in interpen-

etration. However the method typically requires solving nonlinear systems of

equations, and is fairly difficult to implement.

4.5 Penalty Method

A vast number of simulations [61, 71, 75] have employed the penalty method

to enforce non-penetration constraints. Applications include the simulation of

deformable bodies, cloths, and articulated rigid bodies. The penalty method

is a very attractive model in some respect, because it is extremely simple to

implement and very versatile.

Unlike the exact methods discussed above, the penalty method provides an ap-

proximate solution to the collision/contact problem. It is based on a numerical

solution method for constraint optimization where a constrained problem is

converted to an unconstrained problem with deviation from the constraint be-

ing penalized. In the converted problem however, satisfaction of the constraint

is encouraged, but not strictly enforced. This is illustrated below. A typical

constrained optimization problem such as

minimize f(z) such that g(z) = 0

can be rewritten as an unconstrained problem as follows:

minimize f(z) kg(z) 2 as 	oo

The term kg(z) 2 is called the penalty function. The idea is that as k grows larger,

potential solutions for z must make g(z) 2 smaller. In the limit, as k —+ oo, the

91

o ml , m2 are the object masses.

• 11 , /2 are inertia matrices of the objects.

ti

o v, , v, are the linear velocities of objects before the collision.

 k. 	 • v i v'2 are the linear velocities of objects after the collision.

• w„ w, are the angular velocities of objects before the collision.

• wi , w'2 are the angular velocities of objects after the collision.

o R is the impulse vector, by convention directed from object 2 to 1.

The last three equations depend on the collision behaviour, i.e, elastic or non-

elastic collision, with or without friction, etc. The square linear system of

fifteen equations in fifteen unknowns is solved by standard Gauss-Jordan or

LU decomposition method.

4.4.2 Resting Contact

As was the case for colliding contact, in a resting contact too, at each contact

point, there is assumed a contact force f ini (tc) that acts normal to the contact

surface. Here fi is an unknown scalar, and n i (tc) is the normal at the ith

contact point. The goal is to determine what each fi is. In computing fi 's

they must all be determined at the same time, since the force at the ith contact

point may influence one or both of the bodies. For resting contact, the f i 's are

• computed subject to three conditions. First, the contact forces must prevent

inter-penetration that is, the contact forces must be strong enough to prevent

two bodies in contact from being pushed towards one another. Second, the

• contact forces must be repulsive, that is, contact forces can push bodies apart,

but can never hold bodies together. Last, the force at a contact point becomes

zero if the bodies begin to separate. A simple function di is defined. di denotes

the distance between two objects near the point of contact. In order to actually

find fi's which satisfy the three conditions stated above, we need to express di

90

P(to At)

Figure 4.8: A collision between floor and a particle modelled using penalty

method

solution to the problem satisfies g(z) = 0 while at the same time minimizing

f (z). In practice, z is obtained by solving the problem for a series of increasing

values of k until the series of solutions converge (within numerical tolerance)

to a limit. Although the method has a theoretically firm basis, in practice, it

is not a very robust numerical method. The main problem is that as k grows,

the problem becomes very poorly conditioned and difficult to solve. The main

attraction of course is that it provides a very simple way of turning a constrained

problem into an unconstrained one.

For a specific example, consider a collision between a particle and a surface (cf

Figure 4.8). Using the method described above the problem can be converted to

an unconstrained dynamics problem. As soon as collision is detected, a penalty

force is applied on the particle, in a direction normal to the surface, so as to push

the particle away from the surface. Typically, the penalty force is modelled as

a linear spring force; that is, the penalty force pushes the particle away from

the surface with a strength equal to some constant k times the distance of

penetration. If we let P(t) denote the point on the object which has penetrated

into the surface at time t, then the penalty force is computed as

—k (X(t) — P(t))

92

where X(t) denotes the closest point on the surface to the point P(t). From

the expression above one can see that larger the penetration larger the force

—k (X(t)— P(t)).

If the penalty method for dynamics were to completely emulate the penalty

method for constrained optimization, the simulation would be repeated with

increasing values of k until the behaviour of the particle approached a limit.

However, the penalty method, as used by dynamics, chooses a single value

for k. Setting the penalty constant too high significantly increases the cost of

the simulation, while setting the stiffness too low can lead to an unacceptable

degree of interpretation. Moreover, a good choice for penalty stiffness can vary

greatly over the course of simulation, and it is usually impossible to make

a reasonable prediction for a single suitable stiffness value. If k is small, it

may not do an adequate job of enforcing the constraint; that is, the particle

will penetrate the surface before being pulled away. Visually this may be very

disconcerting and may be totally unacceptable to the animator. If k is large, it

may give rise to a funny bounce which again may look unnatural. Further, as

in other optimization problems, ill-conditioning occurs as k grows large, in the
guise of "stiffness" of the differential equations of motion. As already discussed

earlier, stiff differential equations are expensive and difficult to solve.

One of the biggest plus points of the penalty method is that it models collision

response as a continuous time varying phenomena clearly requiring state Y(t)

to change continuously when collision occurs. As a result there is no need to

stop and start the differential equation solver with fresh initial values like that

in the case of the analytical method. Further, it handles both colliding and

resting contacts uniformly.

4.6 System with Friction

So far we had considered a frictionless system in which constraint forces and

impact forces act normal to the contacting surface. This assumption is no

longer valid for a system with friction. In fact, friction adds considerable

complication to a rigid body simulation. For example, in a frictionless system

93

the constraint forces that act to prevent interpenetration are conservative;

that is, they perform no net work. Where as if we wish to model the effects

of friction, we will need to compute friction forces that act tangentially to the

contact surface to prevent or oppose sliding between objects at contact points

and do work in the form of dissipation of energy. The classical friction model

for contacting surfaces is the one given by Coulomb. This model suggests an

empirical relationship between the normal force magnitude fN and frictional

force magnitude f! f: in the form of

fx + 4,2 (14N) 2

where f. and fy are the components of frictional force in the plane normal to

the contacting surface and g is a coefficient of friction that depends on material

properties, and may be different at each contact point. The relationship of these

forces at each contact point also depends on whether or not bodies are currently

sliding relative to one another or are at relative rest. If the tangential velocity

is nonzero, then the friction force is called dynamic; otherwise, the friction force

is called static. Typically, the coefficient g of static friction a - static is larger than

the coefficient g of dynamic friction iLa ynamic •

From the Coulomb's empirical relation it is clear that there does not exist a

unique relationship between constraint force and frictional force. Rather, it

imposes inequality. This means that the law does not suggest an effective

means of determining the contact forces, and in practice, simulations must

occasionally search for a set of contact forces satisfying constraints. Given this

state of affairs, it is not too surprising to find that the search might turn up

more than one solution or fail to turn up any solution.

4.6.1 Collisions with Friction

When two bodies collide at a contact point with friction, the collision is modelled

to take place over some small but nonzero time interval. During the time

interval of the collision, the normal and friction forces must satisfy the condition

laid by the Coloumb's empirical law. Frictional force at a single point of contact

94

is computed by examining the limiting behaviour of the system as the time

interval of contact is reduced to zero. Modelling simultaneous collisions is

more complicated. Consider for example a cube dropped onto a level plane

surface so that all four vertices of the bottom face of the cube strike the plane

surface together. Lotstedt [65] computes simultaneous frictional impulses in

three dimensions by using a modification of Coulomb friction law that causes

impacts to dissipate as much as possible. However, in general, it is unclear as

to how to deal with simultaneous impacts with friction and the problem is still

open.

4.6.2 Contact with Friction

Finding contact forces that satisfy the Coulomb friction model at the contacting

point is also extremely difficult. Unlike the frictionless case, there is no guar-

antee that a solution exists. Even when a solution does exist, it may not be

unique. The first possibility of nonexistence of solution is called inconsistency

where as nonuniqueness of solution is called indeterminacy. Lotstedt [65] real-

izing that both indeterminacy and inconsistency present major difficulties for

a simulation process, has proposed a modification to the Coulomb friction law

that eliminates both indeterminacy and inconsistency. Recently Baraff [8] has

shown that determining if a given configuration of objects with dynamic friction

is inconsistent is NP-complete. Further, for static friction between contacting

surfaces, Baraff [8] shows that all one-pont configurations are consistent and

speculates that all configurations are consistent. Unfortunately, none of the

methods are suitable for use as solution methods in practice as they all require

exponential time in the number of contact points.

4.6.3 Penalty Method with Friction

Although the penalty method can be extended to add a tangential friction-

like force, it is not clear how or if the complete Coulomb friction model can

be accommodated within the framework of the penalty method. In penalty

95

method, a friction is modelled by adding a small amount of viscous drag to the

penalty force. The effect of the drag is to resist motion, making the particle

come to rest gradually. This also helps to enhance the numerical stability of

the differential equation. The resulting equation for penalty force then looks

like

Icp (P(t) — X (t)) — ic„ 	(t)

4.7 Remarks

Although the analytical methods are robust and exact, they are more involved

and cumbersome to implement as compared to penalty methods. Computation-

ally resting contact is expensive. Penalty method on the other hand makes

no distinction between colliding and resting contact. The method is inexact

but very easy to implement. A major problem with the penalty method is in

choosing the right spring constants. In fact, at times choosing the right spring

constant even after many trials is very difficult. As a compromise many prac-

tical implementations handle the colliding contact using an analytical method

and resting (soft collisions) contact using spring and damper [75].

96

Chapter 5

Automatic Motion Synthesis by

Specifying Motion Features

As humans we perceive all the time, subtle details in the different types of

movements of objects and living creatures in nature, and easily distinguish

amongst a wide variety of motions ranging from the undulatory crawl of the

worm, to the aesthetic walk of a human being. The deep rooted structure

underlying motion is so well understood and internalized by us that we are

often able to identify the gender of a person just by the style of the walk.

Similarly we have no difficulty whatsoever in recognizing the gait of a horse,

and are quick to note when it breaks from a trot into a gallop. The variety of

movements that we see around us in the world is vast and fascinating. While

many of these movements are carried out by living creatures naturally and often

unconsciously in a most efficient manner, reproducing similar movements by

computer simulation techniques is an extremely complex task.

5.1 The Control Over Movements

As we have seen in the earlier chapter living creatures carry out goal oriented

movements by generating internal forces and torques that are complementary

to the external forces and torques. These external forces and torques are either

present in the environment or are generated in response to their interaction

97

with other objects and creatures in the environment. Animating virtual crea-

tures in a virtual environment thus requires the system to derive the internal

forces and torques, formulate the dynamic equations of motion, modify the

equations suitably to accommodate any forces and torques generated by inter-

action with other objects and finally solve these equations of motion to obtain

the movement of the virtual creatures. When the forces and torques that cause

this movement are to be automatically synthesized, there are basically two

methods available to the animator for controlling a virtual creature to move in

a fashion as specifically desired by the animator.

• By suitably specifying the performance metric to be optimized.

• By specifying additional constraints which the synthesized motion has to

satisfy.

The current implementations of these methods are not very convenient to pro-

vide the animator with fine control over the movement, while at the same time

ensuring that the animator's efforts in producing the final animations are not

excessive. One of the prime problems is due to the fact that generally the

method of specifying the performance metric lacks fine resolution capabilities

in terms of desirable motion characteristics. For example, minimum energy

consumption or maximum distance travelled are typically the goals that many

motion synthesis techniques have used. These are at rather too gross a level to

be able to automatically result in distinctly different walking movements. The

distinction may be subtle but is certainly perceived by us humans.

Constraints do provide a finer level of control. However specifying non conflict-

ing constraints consistent with the goal of optimizing the performance metric

is itself a very difficult task. As a result a majority of the methods use key-

frames as constraints. Key-frames are again not really simple to specify. For

synthesizing even reasonably complex movements of simple articulated figures

(with a few DoFs) the number of key-frames required is very large. As the

number of key-frames needed increases the animator's efforts increase and cor-

respondingly the animation system's role reduces to one of providing simple

98

interpolation facilities.

In chapter 3 we have discussed a number of optimization methods in which

constraints are satisfied by suitably adding constraint satisfaction forces; and

that this is one of the prime reasons for the introduction of discontinuities and

stiffness in the differential equations of motion. The other methods handle

constraints by including them in the objective functions. Such methods do not

necessarily guarantee constraint satisfaction and hence may not provide the

final results as intended by the animator. In general providing fine control

through the specification of additional constraints is neither convenient nor

computationally a robust mechanism.

It is therefore not surprising that automatic physically based motion synthesis

has not yet been used in any real commercial animation project. Animators con-

tinue to use motion capture as the prime technique of synthesizing simulated

creature movements. The only other truly convincing simulated movements

have been carefully hand tuned by simulation experts after many trials and

observations and are for specific movements of specific creatures. It is quite

clear that we need motion specification techniques with at least the following

properties:

1. In a form that is natural and easy for an animator to specify. It should

not require that the animator be initiated into or understand any other

discipline like physics.

2. Maximal support should be provided by the system and only the minimally

necessary efforts need to be put in by the animator.

3. Progressively fine control over the automatically synthesized motions

should be available with the animator.

4. The techniques should not make the dynamic system ill conditioned nor

should the computational process of optimization be overly burdened.

5. The technique should be easy to incorporate in an optimization based

animation system.

99

This chapter presents one such motion specification technique — the primary

result of our research efforts in this area.

The different movements that we see have distinguishing characteristics, that

can very often be easily identified and recognized by humans. Let us refer to

these as motion features. Two distinctly different movements therefore must

have at least one distinctly different feature that enables us to characterize

their difference.

Motion features are natural for an animator to specify. A system can then en-

sure that the optimally chosen simulated motion has all the animator specified

features while simultaneously satisfying other constraints required for realistic

motion.

Motion features are computed for every simulated trajectory, and therefore

their specification does not require any change in the dynamic equations of

motion.

Motion features are integrated into the performance metric and when using,

say, an evolutionary programming based optimal search technique, they do not

in any significant way affect the computational efforts required. On the other

hand, if properly specified, motion features can ensure that the optimal solution

is reached in fewer generations.

A careful choice of motion features can ensure that fine control is provided both

by fine tuning feature values and by an increase in the number of desirable

features that the optimal solution should have.

Often very simple algorithms are involved in the computation of features and

hence the feature based motion specification technique does not impose any

significant additional implementation burden.

Motion control by the specification of motion features thus satisfies all the

criteria listed above for a good motion specification technique.

In the rest of this chapter we formally define motion features and carry out a

comparative study of feature extraction in other applications like image anal-

100

ysis and computer vision. We then describe the formulation of a performance

metric with multiple features. Next we choose a domain of movement types.

Specifically we have chosen gaits of legged creatures and describe the formula-

tion and computational procedures for evaluating a number of related features

that enable us to easily synthesize different gaits for different types of crea-

tures. This area has been chosen as it is an extensively studied field and we

can draw upon a number of reports that give us experimental evidence for the

definitions and use of the gait related features [1, 72, 31].

5.2 Motion Features

Motion features are quantifiable attributes that can be used to characterize

motion. Once the set of features is specified, given a motion of an articulated

figure, it is possible to extract-feature values for that motion. All the features

need not be present in a given motion. By convention if any feature is not

present then it takes the null value. Thus each feature can be considered as a

computable function which when applied to a given motion returns a number.

We characterize a motion by a feature vector f = 	f2 • • • f.) where fi , f2

are the n individual features. In n dimensional feature space, the desired

motion will be represented as a point. Motions which have similar features

will cluster together in feature space. However, the degree of separability

among the different classes of motion will strongly depend on the selected set of

features for an application. Given a feature vector value, the task of the motion

synthesizer is to search for the motion having its feature vector identical or

close to the given feature vector.

3 	 Feature extraction is a very well studied subject in pattern recognition and

computer vision [84, 7]. In pattern recognition for example, features of known

classes of pictures are computed and distinct clusters of features are defined

in feature space, each cluster representing a distinct class of pictures. Given

any unclassified picture, its features are computed and then .matched with

the predefined set of feature clusters and classified according to its proximity

to the clusters. The primary emphasis is on the development of efficient and

101

robust methods for clustering and classification. For historical reasons, pattern

recognition and image processing work are usually closely tied together and

most often the pictures are raster images and features are derived using a

variety of image processing and analysis techniques.

Another approach to pattern recognition is known as model based or structural

pattern recognition [18]. In this approach a skeletal structure of the image is

computed and then classified. The elements of the skeletal structure and their

connectivity mechanism are themselves u sed like features for classification.

While there are a few exceptions [46, 97], pattern recognition so far has primar-

ily been a static picture recognition process. If moving images are used, like

in some computer vision studies related to vehicular movement [43], then they

are largely used for producing additional information for hypothesis validation

or filling in of missing information in the static scene.

Another major area in computer vision is to study moving pictures for synthe-

sizing shape information. The idea is to reconstruct the surface geometry of

an object from a sequence of images of the object as seen from a camera in

relative movement with respect to the object [43]. A primary motion feature in

most of the "shape from motion studies" is what is termed as optical flow. Very

simply stated, optical flow is the rate at which a pixel of an image changes its

intensity. The optical flow feature values are then used to synthesize the shape

(by surface curvature) around the object surface region correspolding to this

pixel [41].

There are a number of fundamental differences between features as used in

pattern recognition or computer vision studies and features as used by us in

motion synthesis.

1. While newer sensing mechanisms like the range sensing devices [21] are

becoming available and making three dimensional geometric data about

dynamic scenes available for use in pattern recognition and computer

vision, most of the emphasis in these fields has been and continues to be on

colour/intensity images. On the other hand in our approach the features

102

are those which can be easily specified by the animators and therefore are

necessarily not pixel image features but features of the actual motion in

3D — features that are completely independent of the final rendered image

of the animation sequence.

2. Just because of the sheer volume of image data involved in a sequence,

feature extraction from sequences of moving pictures with the intent of

classifying different types of motion has not been a significant area of

study in pattern recognition or computer vision. Our approach primarily

depends on features of movements.

3. Since the primary purpose of features obtained from feature extraction

in pattern recognition and computer vision is for use in other computer

processes like classifying or surface reconstruction, it is possible to use

low-level pixel based features of pictures. And most methods do define

automatic procedures for pixel level feature extraction. Our approach

requires motion features at a much higher level. They are to be specified

by the animator and then used for motion synthesis.

The specification of high level features and their use for synthesis is an

approach that has been proposed for computer aided geometric design

also. Feature based design of solid geometric models is a popular and

promising topic of research and development in the field of geometric

design. There is once again a major difference in strategy In feature based

geometric design, features are more like parameterized macro component

specifications, which are used in a deterministic closed form fashion to

compose the object [83]. Considerable complexity is introduced due to the

fact that during the process of composition the resulting object has to be

checked for validity in all its intermediate stages. Unlike in our approach

where we synthesize a motion and then analyze its features, there is no

analysis of features as such, other than validity checks. Also we are not

aware of any global optimization based approach to geometric design by

features.

103

In our method of synthesizing motion, we have to choose that motion which

best matches the animator specified features. Since these features are to be

extracted from a completed motion, it is mandatory for us to simulate the

motions and carry out the feature extraction for each of the motions. There

are three important aspects that play a significant role in the success of our

method.

o The set of features that are to be extracted for each simulated motion.

o The motion representation space which is explored when searching for the

optimal motion with the best of the given features.

o The method of matching the simulated motion features with the desirable

set of features and obtaining a measure of closeness of the motion to the

desired one. This is essentially the performance metric.

5.3 Features

There is no limit to the number of features that can be defined for a movement.

The set of features that have to be chosen for the synthesis of different classes

of motions is therefore not a simple problem to solve. There are a few conditions

that the chosen set of features should satisfy which make this problem difficult

and these are discussed below.

1. Computability: Every feature in the set of features chosen must be com-

putable for every trajectory that the computer is capable of generating for

the given figure.

2. Discrimination: The chosen set of features must clearly map different

classes of motion of the figure into distinctly separate clusters in the

feature space.

3. Describability: The chosen set of features should be rich enough and at

a significantly high enough level so that the different classes of motion

and different movements within each class of motion can be intuitively

104

described by the animator by specifying desirable features of the move-

ment.

4. Minimality : The chosen set of features should have a minimal size so

that the dimensionality of the feature space is reduced and overall com-

putational efficiency is increased.

5. Robustness in control: The chosen set of features should not be overly

sensitive to fine changes in control parameters. That is, a small change in

control parameters should not give rise to motion with completely different

features.

From the above it should be clear that there is no universal set of features that

can be used for all classes of motions. The set of motion features must be cho-

sen in a domain specific manner. It is also clear that identifying what features

should go into the set would be highly dependent on extensive studies of real life

movements of that domain. As already mentioned for our experimentation we

have chosen the domain as the movements (gaits) of legged creatures. Fortu-

nately for us, as we shall soon see, this is an area that is very rich in movement

types, is widely applicable and has also been studied extensively [1, 72, 86].

5.4 The motion control representation space

In principle the motion synthesis method with features could be based on any

of the motion representation schemes discussed in earlier chapters. All that

is needed is to be able to simulate the motions and then analyze them for the

chosen set of features. The optimization technique used determines how the dif-

ferent motions are explored in the motion control space. In our implementation

we have chosen to use an evolutionary based global optimum search algorithm.

This algorithm explores the control space in discrete steps starting simulta-

neously at a number of points. The entire procedure will be more efficient if

the dimensionality of this control space is kept low. We have therefore chosen

to represent motion through motion controllers. Specifically we have resorted

to the use of pose control graph controllers, because they are the simplest.

105

However other motion controller representations like the banked stimulus re-

sponse controller or sensor actuator network controller could easily have been

used without any significant difference in our implementational efforts or to

the computational resources needed.

5.5 Feature Based Performance Metric

Let X denote the space of motion control representations and x denote a specific

motion controller.

Let f(x) = fi(x), f2 (x). . fn (x) denote the feature vector with n separate

feature components. fi(x) to fn (x) are computed for the motion resulting from

the execution of the controller x. Without loss of generality we shall assume

that all fi(x) are normalized, i.e, 0 < fi (x) < 1 and fi (x) = 0 implies that the

feature is not present in the motion.

If y = y i , y2 ... yn is the desired feature vector as specified by the animator then

a performance metric can be defined as follows:

mM f (x) — y 11
x€X

That is the distance of the motion mapped as a point in the feature space

from the desired feature space point provides us with a measure of the extent

to which simulated motion deviates from the motion with desirable features.

Smaller this distance closer the match. It is possible to weight the importance of

individual features, with these weights being under the control of the animator.

The performance metric can then be reformulated as follows:

Let w = (wi, w2 wn), all wi > 0 denote the weight vector. Each feature

deviation can then be weighted and denoted by di(x), with di (x) = wi(f i (x)— ye).

The performance metric is defined as:

mM { di(x) 1 }
xeX

Throughout the rest of this thesis and in our implementation we shall assume

that this metric is used during optimization.

106

5.6 The Gait of Legged Creatures

The study of motion like walking, running etc. has been a subject of fascination

for many. There have been many attempts to classify different types of motion

among quadrupeds and bipeds [86]. One of the generally recognized features

of natural legged locomotion is that animals typically employ their limbs in

a number of distinct periodic modes. Thus we say that a man walks, runs

or leaps and a horse trots, canters, gallops, i.e such modes are identified by

characteristic patterns of foot falls ordinarily called gaits [45]. For example,

in bipeds, walking and running can be distinguished from a mechanical point

point of view on the basis of a simple test — in running, but not in walking, there

is a period when both feet leave the ground . The synthesis of realistic walking

or running gaits is however a very difficult problem that has been the focus of a

large body of research in computer animation [35, 87, 71], biomechanics [106],

computational neuroethology [12] and robotics [22].

In computer animation for example, in recent years we have seen an increasing

number of films in which legged virtual creatures move in a realistic fashion:

The computer animation techniques used are however relatively simple. Mo-

tions of mechanically moving toys or living humans are captured from film or

video (rotoscoping) or by pasting electronically tractable sensors directly on the

moving figures. The captured data is used with some minimal editing for creat-

ing similar animated movement of a very similar virtual figure. This technique

is simple and gives excellent results as it is almost like playing back of real phe-

nomena. There are however several limitations. It is best suited for animating

human movements. It is difficult to ensure that other living creatures move as

desired by the animator. Motion captured from mechanically moving toys will

most often will not look realistic. It is also difficult to make mechanical figures

move with the kind of variety that live creatures move. Furthermore, once a

motion is captured it is difficult to change or reuse it even if it only requires a

slightly different situation.

The specific challenge of creating tools for human animation has been taken

on by a few others also in computer animation. The work of Badler et al. [5],

107

Thalmann and Thalmann [79], and Boulic et al. [13] illustrate the present

state of the art in modelling humans using predominantly kinematic methods.

In another method a technique for generalizing existing rotoscope data while

preserving original motion characteristics is presented [59].

Beyond kinematic methods, there have been several proposals to produce ani-

mated walking motions using physically-based models. Girad [33] uses a mix

of kinematic and dynamic methods to achieve a variety of biped and quadruped

motions. Bruderlin and Calvert [16] use a similar mix of techniques to gener-

ate realistic parameterized walking motions for a kinematically complex human

model, and later show that parameterized walks can also be achieved using a

purely kinematic model. The gaits are constructed using control rules extracted

from experimental gait data.

The work of Raibert and Hodgins [86] demonstrates an elegant and robust

control solution for balanced hopping and running creatures having one, two, or

four legs. Hodgins et al. [49] have also developed a variety of control algorithms

for tasks such as running, diving and bicycling. Stewart and Cremer [95] use

changing sets of desired constraints to control the motion of a human-like model

r. in climbing and descending stairs. McGeer [69] shows that stable passive walks

can be achieved down modest inclines. McKenna and Zeltzer [71] show how to

synthesize a variety of gaits for a fully-dynamic hexapodal model. There is a

significant body of robotics and biomechanics research concerning the control

of bipedal walking motions, as well as for simulating human motion. While

specific control solutions abolind, there has been relatively little work on the

automatic synthesis of gaits in a general setting, i.e, for creatures of arbitrary

design.

Kelso and Pandya [56] have studied the order and regularity exhibited in hu-

man and animal motion and viewed the various gaits in terms of phase dy-

namics The theory originated from studies of human movement coordination

in rhythmic bimanual tasks. It is observed that when the human right hand

is involved in a task which is out of phase with the left hand, there is a spon-

taneous switch of coordination at certain movement frequency. This shift in

108

synthesis of different gaits of a creature. Interestingly, despite the difference

in morphology, at intermediate and high speeds, two, four, six and eight-legged

animals produce ground force patterns that are fundamentally similar. All can

run, or bounce. Running humans, trotting dogs, etc. can move their bodies by

producing alternating propulsive forces. Two legs in a trotting quadrupedal

mammal, three legs in an insect, and four legs in a crab can act the same as one

leg does in a biped during contact. The centre of mass of the animal undergoes

repeated acceleration and deceleration with each step, even when travelling at

constant average velocity. Motion analysis studies of walking and running of

bipeds have shown that changes in the potential and forward kinetic energies

of the centre of mass are almost exactly out of phase in walking so that the total

energy changes only a very little throughout walking steps. The opposite is true

for running, where changes in potential and kinetic energy are substantially in

phase leading to a large change in total energy (cf Figure 5.7).

Further evidence of this equivalence comes from the the dynamic similarity

principle proposed by Alexander [1]. His hypothesis is based on the fact that

despite of the difference in physical structure, many natural motions show

remarkable similarity. For example, two pendulums of different lengths swing-

ing through the same angle have dynamically similar motion. The dynamic

similarity hypothesis predicts that animals of different sizes tend to move in

dynamically similar fashion within their physical limits It is obvious that ani-

mals cannot move in precisely dynamically similar fashion unless their bodies

have similar physical structure. However, comparisons of related animals of

grossly different sizes show remarkably little deviation from dynamic similar-

ity.

All the above studies show that there does exist a set of simple features in

different gaits which can be used to distinguish amongst them. These features

are at a high enough level and can also be specified by animators as desirable

features which the synthesized motion must have. We discuss next the set of

features used by us for synthesizing different gaits for a number of different

virtual creatures, both one legged and two legged.

110

5.7 Gait Related Features

Our interest is in gait patterns that repeat themselves. The sustained gaits

of animals are all nearly like this. The gait patterns of an articulated figure

can be characterized using a number of terms. These terms are directly usable

as features at times and in other cases they would be used to compute feature

values. We describe the various terms used in gaits.

Gait cycle: Each repetition of the gait pattern is called as the gait cycle and

the duration to complete one gait cycle is called as the gait period (cf Figure

5.2). Gait period is a feature which differs for different types of movements.

Foot

placement

Transfer

duration

Support

duration

Foot

liftoff

Figure 5.2: Gait cycle

Step length: This is distance travelled by the articulated figure in one gait

cycle, for example, from the setting down of a particular foot to the next setting

down of the same foot (cf Figure 5.3). Step length is again a feature which

differs for different gaits.

Duty factor: This is the percentage of time spent by any given leg on the

ground. The duty factor.is an excellent feature to use for distinguishing between

walking and running movement of bipeds. The distinction generally made is

that walks have duty factors greater than 0.5, so that there must be stages in

the gait cycle when both feet are on the ground simultaneously. Similarly runs

111

0.5

0.75 	Amble 0.25

0 	 0.5

0,5 	Trot 	0

	

0.5 	0

Pace 	0.5 	0.7 	Canter
0

0.5

0.1

0.5 Transverse 0.5 	0.6

gallop

	

0 	 0

	

0.5 0.5 	Bound 0.5

r.

Rotary

gallop

0
0.1

Pronk

G =

0001
0101
0100
0110
0010
1010

1000
1001

t =3/4

t = 0

t = 1/2

Figure 5.5: Diagram showing relative phase amongst legs of a quadruped

• Figure 5.6: Gait matrix and corresponding phase sequence for a quadruped

walk

113

Centre of mass: This is the point were the entire mass of the body appears to

be concentrated. For an articulated body it can be computed as follows:

Let us denote the length of the ith link by L 1 , mass by Mi , the angle

of the leg with respect to the horizontal line by 0 and other internal

angles as 0 = (02, 03 ..0,0. Let (Xi , Yi) denote the centre of mass of the

ith link and (X, Y) the centre of mass of the articulated figure.

i-1

Xi = >2 Lk COS(E j) + 0.5 Li cos(E8;),
k=1 	j=1 	 j=1

i-1

= E Lk sin(E 83) + 0.5 Li sin(E j),

k=1 	j=1 	 j=1

and

E
x = 	 n

E Mi
i=1

E MiY
Y = i=1

tt

Mi
i=1

The variation over time of the position of the centre of mass is an oft used

feature for differentiating amongst different types of movements.

Total energy: The total mechanical energy of the centre of mass of the body

during walking and running is very different (cf Figure 5.7). Total energy

consists of kinetic energy Ek = 1MV 2 , where v is the speed and gravitational

potential energy Ep = mgh, where h is the height and g is the gravitational

acceleration of the centre of mass.

Froude number: The dynamic similarity hypothesis predicts that animals of

different sizes will use the same gait when traveling the same Froude number.

The Froude number is defined as a ratio u2/gh where u is a speed characteristic

114

Walking

Running

Etot = Ek + Ep

Figure 5.7: Variation in total energy while walking and running

of motion, g is the acceleration due to gravity; and h is a characteristic length

of the leg.

Table 5.1 reproduced from [31] shows the Froude numbers and a few other

features for a variety of legged locomotion.

Creature No. of legs Hip height

h (m)

Speed

u (m/s)

Frequency

f (Hz)

Froude no.

u2 I (g h)

Crab walking 8 0.035 0.4 3.2 0.4

Man walking 2 0.9 1.6 1 0.3

Dog walking 4 0.5 1.3 1.6 0.4

Crab trotting 8 0.035 0.9 6.2 2.4

Cockroach trotting 6 0.004 0.3 13 1.7

Man jogging 2 0.9 3.3 1.6 1.2

Dog trotting 4 0.5 2.7 2.2 1.5

Turtle 4 0.07 0.1 0.6 0.02

Table 5.1: Comparison of individual leg dynamics

115

5.8 The Use of Gait Related Features

We have incorporated gait related features in our global optimal search tech-

nique. Just by specifying different values for some of these features we have

been able to synthesize different kinds of gaits for virtual creatures with differ-

ent number of limbs. The implementation and the experimentation results are

discussed in detail in the next chapter.

116

Chapter 6

Implementation and Results

In order to be able to carry out some experiments on motion synthesis through

the specification of motion features, it is essential to have a physically based

motion simulation environment. A considerable part of the research efforts

reported here have been towards the creation and implementation of such a

simulation environment. This chapter presents the details of our implementa-

tion of this simulation environment and also reports a number of results from

various experiments in motion synthesis carried out using this implementa-

tion. As we shall see, the simulation environment is powerful and yet simple

and will enable a variety of motion simulation related experimental research

and development to be carried out.

In our implementation the entire process of motion synthesis is divided into

three phases (cf Figure 6.1). In the first phase an optimal controller is syn-

thesized using the stochastic population hill climbing algorithm. In the second

phase the motion is recorded frame by frame by executing the controller and

simulating the motion. In the third phase the recorded motion is played back.

Controller
Synthesis
	_.../

Controllers
(

Motion Simulation
an and

, Frame Sampling J

Recorded
›.-

Playback
in

Real-time
.. 	 _...■

Animation
>.

(

Graphic

Display
■ 	J

frames

Figure 6.1: Three phases in motion synthesis

117

In what follows we shall explairTin detail each of these phases and also illustrate

our method with a few representative examples of movements of articulated

figures. Since limited computational resources were available for this work, we

have made the following simplifying assumptions:

o The system simulates movements restricted to two dimensions.

o Only tree structured articulated figures are considered.

o The only external interacting object modelled is the ground.

o Links of the articulated figures are connected using joints of a single type,

namely pin joints.

o In a single simulation we consider the motion of a single articulated figure.

It is important for us to emphasize here that the simplifications and assump-

tions stated above are not in any way inherent limitations of our approach. The

implementation is highly modular, and is flexible enough to easily incorporate

extensions so that movements of multiple 3D articulated figures with different

kinds of joints in a complex 3D virtual environment can be handled.

6.1 Controller Synthesis

The different components of the controller synthesis process are shown in Fig-

ure 6.2. The animator specifies the physical and the geometric structure of the

articulated figure and with motion features the movement task to be performed.

Once the motion features are defined the fitness function is composed and the

search is undertaken using stochastic population hill climbing algorithm for a

suitable controller. The output of the controller synthesis stage is a controller

with values assigned to all its parameters. We shall now explain each of the

components and their functions.

118

SIMULATOR

USER INTERFACE

Geometry 	Physical

model 	 model
	■

Motion

I

Feature

model

FITNESS

FUNCTION

CONTROLLER SPHC

Figure 6.2: Different components in controller synthesis phase

119

Link 1 	 Link 2

Joint 1
Joint 2

•

Link 3

Attach Link 2 to Link 1 	Attach Link 3 to Link 2

Figure 6.3: Geometric structure specification

6.1.1 Geometry Model

The geometry model stores all the relevant geometric information about the

articulated figures and the environmental objects. The system allows the an-

imator to describe the geometric structure of an articulated figure. Each link

is specified with respect to the coordinate system attached to it (et Figure 6.3).

The specification includes, the length of each link and its relation with other

links.

Geometric Description Script

A link type is defined as:

objname <name_of_the_object>

path

pts xl yl

pts x2 y2

Once an object of this type is defined, many instances of this object type can be
created where each object instance is a link as follows:

instance <name_of_the_object> <link_name>

Attachment of two links can be indicated to the system by the use of:

120

6

•

attach <link_name> to <link_name>

Local (body) transformations (translation, rotation etc.) on the link can be done
using:

tf trans <link_name> x y

5

Environmental object geometry is also part of the geometry model. As already

mentioned we have chosen to model only ground interactions. Hence we accept

• position and orientation of the ground plane as specified by the animator. The

plane of the ground can be edited to change its orientation. In particular, the

• orientation of the normal vector can be adjusted. This allows sloped ground

planes to be tested with the articulated objects.

6.1.2 Physical Model

The physical model stores animator specified physical properties of each indi-

vidual link such as mass, inertia, position of the centre of mass etc. Although

for visualization purposes links are modelled as two dimensional entities, phys-

ically they are modelled as one dimensional rigid link-segments. This simplifies

the computation to a large extent. For example, the inertia tensor gets trans-

formed from a 3 x 3 matrix into a scalar. Typically the inertia is specified in

the coordinate system attached to the centre of mass. Each link has a unique

parent link and one or more child links. Further, for each articulated figure

there is a special link called as the root link. The root link is attached to the

observer's frame of reference. Each child link is attached to the parent link at

the origin of the child link. By convention the parent of the root link is assumed

to be 0 (cf Figure 6.3). In order to detect collision between the articulated figure

and the ground, several points on the body of the articulated figure are identi-

fied. These points are called monitor points. Monitor points are continuously

monitored during the course of simulation. Whenever any of the monitor points

are found to collide with the floor, an appropriate response force is computed

by the simulator module and applied at the monitor point.

121

Physical Description Script

A link is defined as:

link <link_num> <parent_num> <attach_x> <attach_y> <mass> <inertia>

<cmass_x> <cmass_y>

where, <link_num> is a number given to this link in the articulated body.

<parent.num> is the number of the parent link to which this link is connected.

Root link always has <parent.num> as 0.

<attach_x>, and <attach_y> are the coordinates of the point on the parent

link where this link is connected to it.

<cmass_x> and <cmass_y> represent the center of mass of the link.

If the link is fixed at some place say ground or roof it is specified as:

fix <link_num> <fix_x> <fix_y>

where <fix_x> and <fix_y> are the coordinates of the fixed point on this

link.

Monitor points are used to monitor the points on the body which are expected
to collide with the ground (cf Figure 6.4). These are defined as:

monitor <link_nuth> <monitor_pt_num> <pt_x> <pt_y>

6.1.3 Feature model

The feature model stores feature values specified by the animator. Each feature
is specified by a key word followed by a value and the allowable range for that
feature. For example:

feature <value> <min> <max>

122

L3

L2

L

GROUND

Monitor Pt. I 	 Monitor Pt. 2

DESCRIPTION:

link <num> <par_num> <par_x> <par_y> <mass> <inertia> <cx> <cy>

monitor <link_num> <pt_num> <x> <y>

BODY DESCRIPTION

Figure 6.4: Articulated figure with monitor points

6.1.4 The Simulator

In addition to the articulated figure's geometric information the user can di-

rectly set parameters for controlling different aspects of simulated environment

such as simulation time, magnitude and direction of gravity. Gravity control

allows the direction and magnitude of the gravitational acceleration vector to

be modified. By setting the components of the gravity vector to zero, gravity

can be effectively turned off.

The equations of motion for our articulated bodies are too complex to derive

by hand. In addition we wish to have an efficient implementation, since these

equations need to be solved at every time step. We were able to integrate

into our simulation environment "Dynacomp" [99] a public domain dynamics

compiler that symbolically computes equations of motion in the form Ax = b

given a physical description of the articulated figure as input. The output of the

dynamics compiler gives the symbolic value for each element of matrix A and

123

Link - Segment
	

Free - Body

Model
	 Diagram

Figure 6.5: A relation between free-body diagram and the link-segment

also to the vector b. Values of common subexpressions are precalculated to avoid

unnecessary calculations. The implementation uses the recursive Newton-

Euler formulation (See section 3.3.2). This is 0(n 3) in the number of links and

is quite suitable for n < 10. The values of A and b are output as lines of "C" code

so that the equations of motion can be compiled. The LU decomposition method

is used to solve the linear system of equations for the accelerations. A and b

are dependent on the internal torques applied at the joints, external forces, the

physical properties of the links, and the state of the links. x represents the

vector of unknown accelerations. The accelerations are numerically integrated

using the simple Euler method to determine new velocity and position of the

links. The time step is chosen to be in the range of 0.001 to 0.0005 in order to

overcome the stiffness problem.

In our model, the creatures are treated as free bodies in space (cf Figure 6.5).

That is all the forces and torques acting on an individual segment are added

up to compute the total force and torque acting on the segment. Apart from the

124

Original point

of contact

Monitor point

Figure 6.6: Modelling of the floor

internal forces acting at the specified key joints, the only other external forces

modelled are the gravitational force and the reaction force exerted by the floor.

The acceleration of each individual link-segment is computed by calculating

all forces/torques acting on the segment. The forces exerted by the floor on

the articulated figure are calculated using stiff spring and damper model. We

favour this approach as it is simple and flexible and also the same formulation of

the equations of motion can be used throughout the entire simulation. There is

no need to model and compute the magnitude of the impulsive forces that occur

upon impact with the ground. The external forces exerted on the figure are

computed at the points of contact with the floor which are typically the monitor

points (cf Figure 6.6). The position and velocity of these monitor points on the

articulated figure are used to compute the external forces as follows:

Fx = (mx — px)kp vx kv

Fy = — (my — py)ky — vy kv

where (mx , my) is the present position of the montior point and (px , py) is the

point of initial contact with the floor. Typically spring and damper constants

chosen are Icy = 105N/m and kv = 103 N/m. This creates a suitably stiff floor

that functions effectively when used in a simulator with a sufficiently small

time step. A simulation script is used to define the various parameters used in

simulation.

125

Simulation Script

I 	
The time step used in simulation is set using

set dtsim <step_size>

The initial state the articulated figure is set using:

state <x> <dx> <y> <dy> <thl> <dthl> <th2> <dth2> .

where <x> 	— is the x position of the origin of the root link

<dx> 	- x speed

<y> 	- y position

110 	 <dy> 	y speed

<thl> - thl angle of the link 1

• <dthl> - dthl angular speed of link 1

Simulation time can be set by:

sim <time_for_simulation>

6.1.5 Controller representation

The choice of representation for the solutions plays a crucial role in the success

of the evolutionary algorithm. Ideally, the representation should be compact

enough so that the motion synthesis problem can be solved in a reasonable

time, without sacrificing generality. Compactness is achieved by having fairly

powerful rule based controller representations that need a small number of

states and hence a small number of parameters. In our implementation, we

have used the pose control graph and PD control law given by the equation

T = kp (t9d — 8) — to represent a controller. Where kp is the spring constant, k„

is the damper constant, B and B are the current angle and the angular velocity

respectively and Od is the rest angle (equilibrium position) of the spring.

•

126

4\Y

e d

Ti n¢
	 Ti 	 Ti

(a)
	

(b) 	 (c)

Figure 6.7: (a) Piece-wise constant (b) Piece-wise linear (c) Continuous

The advantage of this controller is that the torque function gets automatically

defined once the target joint angle is specified. To execute a particular move-

ment of the joint, it is necessary to define a number of target joint angles. The

motion synthesis problem is then converted to that of synthesizing the function

Od(t). If the articulated figure has m actuators, it amounts to synthesizing m

functions of the type O d(t) = (Od(t), 8d(t) ... 0111 (0). The simplest way to solve

the problem is to choose a piece-wise continuous function. This function could

be a constant, could be linearly varying or could be more complex with contin-

uous basis functions such as splines [20], sinusoids or wavelets [64] (cf Figure

6.7). For the sake of simplicity, for our experimentation purposes, we have used

piece-wise constant functions.

To synthesize a motion sequence for duration T, we divide T into several phases

or states. Each phase will be associated with a set of parameters such as

= =

where

i th joint actuator

— desired angle for the i th joint

kp — spring constant corresponding to the ith joint

— damping constant corresponding to the ith joint

t — time duration of the phase.

If there are fifteen phases in a motion sequence, the number of unknowns to be

127

determined are 15 x 4 = 60. We have mentioned earlier, that, as the simulation

duration increases, the search time increases exponentially. When we consider

• periodic motion, such as walking, running, hopping etc., one can reduce the

search time. In periodic motion, after every period t p„, the motion is repeated

to fill the simulation time T. Unknown parameters depend only on the number

of phases in the period tper (cf Figure 6.8). In order to reduce the search time

T = Simulation time

tper 	t2 	t3

Figure 6.8: An illustration of the controller

further, one can fix the values t, Icv a priori. The time period t could be

either derived from a previously synthesized key-framed version of the motion

or from live or video data of a creature similar in size and shape [103]. Values

of spring constants can be estimated depending on the mass of the body. For

heavier links, higher values of spring constants are required in order to protect

the springs from a possible collapse (spring failure). However, values should

not be so high that they would generate such high torques at the joints that

unexpected motions are caused. For more details refer to Appendix A.

6.1.6 Performance Metric

For our experimental purpose, we have considered only a few features to char-

acterize the motion. Although this simplifies the implementation considerably,

it fully retains the essence of our methodology. Our task is to synthesize peri-

odic motions such as hopping, running and walking. Some of the features that

128

we have built into our implementation and experimented with are :

• external energy (E)

• horizontal . distance travelled by the centre of mass (D)

• intermediate postures (04, fully or partially specified

The specific performance metric is as follows:

	

samples joints 	
0 — E)

= w,* E E (1-(6,F,,,)-0(8,;)))+w2*(1.
(E

)+w3*(1
(D0 — D)

)

	

9.1 J.1 	 E,max 	 Dmas

J
	 where,

W1) W2) W3
	are weights, assigned to the features depending on their

relative importance, the value ranging between 0 and 1.

9 (8 ,j)

	 is the angle at joint j for posture,

E is the external energy

D is the horizontal distance travelled

Emax, Dmax are the maximum expected external energy and horizontal

distance, respectively. These values are used for normal-

ization of the two quantities.

Or8 ,j) , Eo , Do are the feature values specified by the animator.

For more intuitive explanation of various terms used in the performance metirc,

refer to Appendix A.

6.2 Stochastic Population Hill Climbing Algorithm (SPHC)

The SPHC algorithm is an evolutionary programming algorithm [30] that can

be distinguished from genetic algorithms, primarily by the fact that it uses only

the mutation operator and does not use a crossover operator.

129

Like all genetic algorithms SPHC uses a population of solutions. Each solution

in the population is perturbed randomly at each iteration, using the mutation

operation with probability 1. The resulting solutions are compared with their

original solutions and the better ones are kept for the next generation. Periodi-

cally, a reseeding operator is applied which selects the top half of the population

and copies them into the bottom half of the population, refocusing the search

on the most promising solutions in the population. The full algorithm is shown

in Figure 6.9

Initialize population
Evaluate each solution in the population
for generation = I to number_of_generations

for each individual solution in the population
Randomly perturb the solution
Evaluate the new solution
if the new solution is better than the old one then
Replace the old solution with the new one

end for
if(generation mod reseed_interval) = 0 then

Rank order the population
Replace bottom 50% of the population with top 50%

end if
end for

Figure 6.9: Stochastic population hill climbing (SPHC)

Mutation Operator

The mutation operation is the backbone of our SPHC algorithm. In every

iteration all solutions go through this operation. Since a slight change in

parameters can change the motion drastically, it is necessary to apply the

mutation operation with care. We have selected to mutate only one parameter

130

at a time with only a small change in original value. The parameter to mutate

is selected randomly with all the parameters having equal probability. This

was found quite suitable through experiments, as it helps the algorithm to

fully explore the region near to the existing solution. If we try to mutate

more than one parameter at a time, the solution may jump from one region to

another without exploring the current one. As the function is multimodal, it

may actually be the case that the optimal solution is in the vicinity of solution

being mutated. Each time mutation is called either the selected parameter goes

through a creep operation' or all its parameters are randomized from scratch (

cf Figure 6.10).

Randomly select one of the states in pose-control graph to be modified
Randomly select operation to be applied on selected state
IF operation is creep operation THEN

Randomly select one of the creep operations and apply
ELSE

Generate all the parameters in the new state randomly from scratch

Figure 6.10: Mutation operation

6.2.1 A Parallel SPHC

Controller synthesis is computationally a very expensive process. The reasons

are two fold. Firstly, the time taken for a single simulation is large. For ex-

ample, an eight second simulation took around two minutes on a VAX 8600

machine. The simulation time is directly proportional to the complexity of

the creature i.e number of links and the monitor points. Secondly, due to the

fact that search space is very large, the search algorithm has to make many

'The creep operation is used here to modify the parameter by a very small factor. For more

details refer to Appendix A.

131

simulations before locating a suitable controller. The overall time taken by

the synthesis process can be reduced considerably if we parallelize the search

task. In SPHC algorithm we have a population of solutions which are to be

modified and checked separately. All the evaluations and mutations are inde-

pendent. We can take advantage of this independence property in parallelizing

the algorithm.

In the best case, if we have the number of processors equal to the popula-

tion size, we can run all the simulations separately on each of the processors,

achieving maximum parallelism at the granularity of a single simulation. If

the processors are lesser in number than the population size, a good schedul-

ing policy has to be implemented to achieve considerable amount of parallelism.

Since simulation time for each candidate solution in the population is the same,

it is easy to parallelize the search process.

We have implemented the algorithm on a networked environment. There are

several heterogeneous workstations connected on the network, each having a

different load average at any time instance. Also there are varying communi-

cation delays on the network. In addition to parallelizing the code to distribute

the evaluations on different processors, we have to handle the problem arising

due to varying communication delays. We have adopted a very simple solution

to the problem. We treat the population of controllers as one common pool of

tasks which are allocated to the set of processors. To start with, all the pro-

cessors are allocated one candidate each for evaluation. As soon as any of the

processors becomes free, it is allotted a new candidate.

To handle the parallelization problems in the network environment we have

made use of a system called Parallel Virtual Machine (PVM) [27].

Application programs view PVM as a general and flexible parallel computing

resource that supports a message passing model of computation. This resource

may be accessed at three different levels, the transparent mode in which tasks

are automatically executed on the most appropriate hosts, the architecture-

depend mode in which the user may indicate specific architectures on which

particular tasks are to be executed, and the low-level mode in which a particular

132

host may be specified. Such layering permits flexibility while retaining the

ability to exploit particular strengths of individual machines on the network.

While parallelizing an application on a multiuser network environment we

have to deal with several problems not existing on a parallel computer. Here

the effect is on both communication and computational performance of the

program. As the machines are of different power, if we divide the problem

into identical pieces one for each machine then the application will run as slow

as the task on the slowest machine. If the tasks coordinate with each other,

then even the fast machines will be slowed down waiting for the data from the

slowest machine. The long message latency across the network also affects the

performance of the application. As the performance of the network and the

machines are dynamically changing the conditions are difficult to reproduce,

and hence it is difficult to debug the application.

There are multiple ways by which we can distribute the tasks amongst different

processors on the network.

In the simplest case if we have the number of processors equal to the number of

tasks, we can assign them one each statically. Here the assignment may occur

ofline even before the job is started. This kind of distribution is only useful

when all the tasks have to be running together and also there is communication

between them. In our application we do not have this kind of requirement and

hence we will not consider this scheme any further. It also requires that the

number of processors be equal to the number of tasks. This is not practical in

our case as we generally have a very large population of tasks.

The other scheme, which we have implemented is based on the method known

as Pool of Tasks paradigm. It is typically implemented in a master/slave imple-

mentation where the master programs creates and holds the "pool" and farms

out tasks to slave programs as they fall idle. The pool is implemented as a

queue and if the tasks vary in their sizes then the larger tasks are placed near

the head of the queue. With this method all the slave processes are kept busy

as long as there are tasks left in the pool. Since tasks start and stop at arbi-

trary times with this method, it is better suited to applications which require

133

no communication amongst slave programs and the only communication that

takes place is with the master or through data files.

4
	

Our requirement exactly matches with this model. Each generation in SPHC

algorithm has a population of solutions to be evaluated, like a pool of tasks.

We have a limited number of processors, so initially each processor is given a

solution to be evaluated. As soon as any one of the processors finishes the task

(as it happens frequently due to the difference in network load and computa-

tional power of machines) it is assigned another member of the population for

evaluation. This way all the processors are kept busy.

The main SPHC algorithm when ready with all the solutions to be evaluated,

makes a call to the master program. Simulation programs are kept on different

machines which take part as slaves. These slave programs are spawned under

the control of the master. PVM provides a library routine which allows the

processes to be spawned on different machines on the network. The master

then sends the appropriate data to this spawned task through message pass-

ing routines provided by PVM. We require to pass the structure representing

the solution(controller). The slave program then runs the simulator with this

controller, calculates the fitness of the solution and returns the fitness to the

master. Master keeps one to one correspondence between the solution it had

earlier passed to the slave and the fitness it returned. This is done by passing

the solution number in the population also as a message to the slave. The slave

then returns the same number. This way each fitness value produces its identi-

fication to the master process. This avoids the need for processes to finish in the

order they were spawned. This is continued till there is no solution left in the

pool to be evaluated. Once all the solutions are evaluated the master passes

them with their fitness to the SPHC algorithm. The parallel form of SPHC

algorithm is shown in Figure 6.11 and the master program which distributes

the tasks is shown in Figure 6.12

We achieved considerable performance enhancement using this parallel SPHC

algorithm. For example controller synthesis tasks which would take about 8

hours of elasped time on a single CPU took just 1 hour when the tasks were

134

Initialize population
Call Master to Evaluate in parallel all the solutions in the population

for generation = 1 to number of generations do
for each individual solution in the population do

Randomly purturb the solution

Call Master to Evaluate in parallel all the solutions in the population

for each individual solution in the population

if the new solution is better than the old one then
Replace the old solution with the new one

end if
end for
if (generation mod reseed-interval) = 0) then

Rank order the population
Replace bottom 50% of the population with top 50%

end if
end for

Figure 6.11: Parallel stochastic population bill climbing (SPHC)

135

Determine the number of hosts currently available

Mark all the available hosts as free

while all the currently running tasks are not over OR there are tasks left to be evaluated do

while there are tasks left to be evaluated do

if there is a free host then

spawn the next task on the host

send the solution to be evaluated to the spawned task with its number in population

mark host as busy

end if

end while

if there are tasks running currently then

wait for any of the task to get over

get the host corresponding to this task

mark host as free

wait for slave message containing fitness value and solution number

store the fitness value corresponding to the solution number

end if

end while

Figure 6.12: Master program distributing the solutions on different hosts

136

farmed out to 8 workstations. The main feature of the master program is that

it is independent of the number of hosts currently in the configuration. So

we can add as many hosts as we want in the configuration and get better and

better performance. The PVM system provides library calls by which we can

identify the situation when a host is added into the configuration, or deleted

from the configuration. We can use this feature to implement fully dynamic

configurability.

6.3 Simulation of Motion and Sampling of Frames

Once the controller is obtained, it is plugged into the simulator to generate the
motion and the sample frames at required rates. The default sampling rate is
25 frames per second of simulation. The frames are recorded in the format:

show <x> <y> <thl> <th2> <th3> .

	

where <x> 	— is the x position of the root link.

	

<y> 	— is the y position of the root link.

< thl> — is the orientation of the root link.

Each individual frame is recorded as one command line and basically contains

the values for each of the DoFs of the articulated figure.

6.4 Motion Playback

The frames computed and stored by the simulator are played back in real-time
by "anix" a public domain animation server for X—windows [98]. This is an
X-Windows program, and can produce real time output on a screen for display
purposes or in a postscript file format for documentation purposes. The input
to anix program is the output file created by simulator. At the end of display of
each frame, the frame is erased by setting <erase> flag to true.

aniset erase t

137

6.5 Experimental Details

We describe below the structure and motion behaviour of three creatures that

we have experimented with. These are named as Luxo, Pogo and Walker.

Among these creatures, Luxo is the simplest creature made of just three links

and two actuator joints. It is a one legged virtual creature. Appearance wise it

is similar to a lamp and the only mode of locomotion available to it is hopping.

Pogo a two legged virtual creature, is made of 5 links and 4 actuator joints.

Appearance wise it is similar to a dog. Dynamically it is more stable than Luxo

and can demonstrate different gaits such as walking and running. Walker is a

human like virtual creature but without hands or head. It is made of 7 links

and 6 actuator joints. In comparison to both Luxo and Pogo it is dynamically

very unstable and this makes it very difficult to get a good controller which

results into a steady walk.

The motion synthesis process is primarily based on the SPHC algorithm which

takes time proportional to the number of generations G, the size of the pop-

ulation M, the amount of time to simulate for each trial, and the accuracy of

the integration. This is because each individual controller's motion behaviour

must be evaluated by simulation of the dynamics Even if the simulation can

be done faster than real time, it still must be performed for roughly M x G dif-

ferent controllers. In our computation, an 8 second controller simulation took

approximately two minutes on VAX 8600. Though this may not be particularly

fast in terms of CPU time, it is very efficient in human animator time.

For the documentation of the Animation System, refere to Appendix B. Details

of the scripts describing for synthesizing

6.5.1 The Luxo creature

Figure 6.13 shows the geometric structure of Luxo.

Table 6.1 shows the allowable ranges of joint angles (in degrees) defining the

internal configurations of Luxo.

138

•)

LI
Al

Figure 6.13: The articulated figure — Luxo (a lamp like creature)

Joint Min Max

(deg.) (deg.)

Al -300 -240

A2 360 210

Table 6.1: Range of angles for Luxo

Table 6.2 shows the physical properties of different links of Luxo.

Link Mass

(kg)

Inertia

(kg .m 2)

cmassx

(m)

cmassy

(m)

Ll 0.15 0.00312 0.0 0.0

L2 0.10 0.00208 0.25 0.0

L3 0.30 0.00625 0.25 0.0

Table 6.2: Physical properties of Luxo

139

Geometric Description Script for Luxo

k

polyline definition of link object

objname baselink

path

pts -0.27 0.02 0

pts 0.27 0.02 	0

pts 0.27 -0.02 0

pts -0.27 -0.02 0

objname middlelink

path

pts -0.02 0.02

pts 0.52 0.02

pts 0.52 -0.02

pts -0.02 -0.02

objname toplink

path

pts -0.02 0.02

pts 0.42 0.02

pts 0.30 -0.15

pts 0.47 -0.15

pts 0.42 -0.02

pts -0.02 -0.02

instance of links

instance baselink linkl

instance middlelink link2

instance toplink link3

relative coordinate frame definition

attach linkl to world

attach link2 to linkl

attach link3 to link2

placement of each link

tf trans link2 0.0 0.0

tf trans link3 0.5 0.0

140

physical parameters of the link

link 1 0 0.0 0.0 0.15 0.003123 0 0

link 2 1 0.0 0.0 0.10 0.002082 0.25 	0

link 3 2 1.0 0.0 0.30 0.006246 0.25 	0

specification of monitor points

monitor 1 1 -0.27

monitor 1 2 0.27

file name containing equations of motion code

set procname luxo

compiling equations

compile

quit

• .1

Physical Description Script for Luxo

Simulation Script for Luxo

simulation time step

set dtsim 0.001

symbolic code for equations of motion

dyn luxo

symbolic code for monitor points

mon mon_luxo 2

number of state variables

set state_size 10

initial values of state variables

state 0.0,0.0,0.0,0.0,0.0,0.0,-4.9,0.0,4.665,0.0

name of the output file

set dispfile luxo.out

simulation time (sec)

sim 10.0

quit

141

Animation Script for Luxo

initialize server

init

read the values x y th thl th2 for a frame

tf trans linkl _1 _2 0

tf rot linkl Z _3

tf rot link2 Z _4

tf rot link3 Z _5

initial position of linkl on the screen

tf trans world 10 4

scale the articulated figure

tf scale world 3 3

set degree mode to false

aniset degmode f

erase the frame at the end of the display

aniset erase t

The controller for Luxo has been designed using a two node pose control graph.

The parameter space is ten dimensional. The ratio kp I is chosen as 0.1.

[(9 1, (9 2. , kpil, kpi2,t11

	

kp2i, kp22,t2]

Five posture features to synthesize hopping motion are listed in Table 6.3. The

postures are approximately 0.2 sec apart in time. The value of distance to be

travelled in a single hop is given as 0.4(m) and external energy as 2.3(Nm).

Just in order to convince ourselves that the SPHC algorithm will indeed find the

optimum, we synthesized the same motion i.e optimizing the same performance

metric by randomly choosing many different sets of initial populations. Figure

6.14 shows two such cases of the progress of the SPHC search algorithm in

finding the hopping motion controller for Luxo. In the first case the desired

controller is found after 40 generations with a population size of 50. In the

second case, more or less a similar controller was found after only 25 generations

with the same population size.

142

30 35 40

Change in fitness of soultion with genetations
12

1 1 1

C
m
a
s
s

V
e
r
t
i
c
a
l

V
e
l
o
c
i
t
y

(
m
/s

)

-1.5

-2

-2.5

3

2 5

2

1 5

1

0 5

0

-0 5

-1

Figure 6.14: Synthesis of two different controllers for Luxo

Figure 6.15: Luxo hopping

Figure 6.16: Phase diagram for hopping Luxo

144

J
o
i
n
t
a
n
g
l
e

1

(
r
a
d)

3 	4 	5 	6 	7 	8
Time (sec)

La

u

0

J
o
i
n
t
t
o
r
q
u
e

1
 (N

m
)

;

rql 1 t

•-4

1 	2 	3
	

4
	

8
	

1 	2 	3 	4 	5 	 7 	8
Time
	

Time (sec)

Figure 6.17: Variation in torques for hopping Luxo

J
o
i
n
t
a
n
g
le

2

(
r
a
d)

6.4

6.

6

5.8

5.6

5.4

5.2

5

4.8

4.6

4.4
1
	

3 	4 	5
	

6
	

7
Time (sec)

Figure 6.18: Variation in joint angles for hopping Luxo

4.5

3.5

ri

2.5

" tm_eg •

dat "

r

1 	2 	3 	4 	5 	6 	7 	8
Time (sec)

Figure 6.19: Variation in total energy of hopping Luxo

145

4.1

L3

Figure 6.20: The articulated body — Pogo (a dog like creature)

Joint Min

(deg.)

Max

(deg.)

Al -115 -45

A2 270 360

A3 -70 -40

A4 210 300

Table 6.4: Range of angles for Pogo

values have been chosen so as to synthesize walking as well as running motion.

The progress of the search algorithm in finding the walking motion controller

is shown in Figure 6.21.

Two different gaits are synthesized for Pogo. In the first experiment a walking

gait is obtained by choosing four intermediate postures at time intervals of

approximately 0.2 sec as shown in the table 6.6. The value of distance travelled

and external energy in a single gait cycle is chosen as 0.6(m) and 0.7(Nm)

respectively. The output is shown in the Figure 6.22 below.

Figure 6.23 shows a phase diagram which plots height of centre of mass versus

vertical velocity of centre of mass. The trajectories in the phase diagram once

again show a periodic behaviour with trajectories being attracted towards an

attractor cycle, indicating stable behaviour. Figure 6.24 shows the variation in

total energy for walking Pogo.

In the second experiment a running gait is obtained by choosing three interme-

diate postures (Table 6.7) with value of distance travelled in a single gait cycle

as 0.5(m) and external energy as 0.8(Nm).

146

Link Mass

(kg)

Inertia

(kg .m 2)

cmass

(m)

cmassy

(m)

Ll 0.15 0.003123 0.25 0.0

L2 0.10 0.002082 0.125 0.0

L3 0.10 0.002082 0.125 0.0

L4 0.10 0.002082 0.125 0.0

L5 0.10 0.002082 0.125 0.0

Table 6.5: Physical properties of Pogo

Change in fitness of soultion with genetations
17 	

16.5

16

15.5

Ol
15

14.5

14

13

"QenFi A

0 	5 	10 	15 	20 	25 	30
Generation

I Figure 6.21: Synthesis of a controller for Pogo

Figure 6.22: Pogo, walking

147

-2.5
0.15 	0.2 	0.25 	0.3 	0.35 	0.4

Cmass Height (m)

C
m
a
s
s

V
e
r
t
i
c
a
l
 V
e
lo
c
i
t
y

(
m
/s

)

0.45

Figure 6.23: Phase diagram for a walking Pogo

2.6

2.4

2.2

2

1 8

1 6

1 4

1 2

1

0 8 -

0 6 	
0 •

da.t.!!

1 	2 	3 	4 	5 	6 	7 	8
Time (sec)

E
n
e
r
g
y
 (

N
m

)

_eg. 4

cs.

Figure 6.24: Variation in energy for walking Pogo

148

Pose# 0 1

 (rad.)

02

(rad.)

03

(rad.)

04

(rad.)

1 -1.9700 5.1936 -0.8497 5.0566

2 -2.0709 5.2423 -0.6785 5.2343

3 -1.8970 4.7794 -0.8469 4.7110

4 -1.5962 4.7227 -1.1903 4.3722

Table 6.6: Four posture features for synthesizing a walking motion for Pogo

Pose# 0 1 02 03 04

(rad.) (rad.) (rad.) (rad.)

1 -1.0138 5.8728 -1.0830 4.1118

2 -1.8247 5.4664 -0.9404 4.6641

3 -1.9589 5.3294 -0.8445 4.7969

Table 6.7: Three posture features for synthesizing a running motion for Pogo

The output is shown in the Figure 6.25 below.

Figure 6.25: Pogo, running

Figure 6.26 shows a phase diagram for running Pogo. After initial instable

behaviour, the trajectory settles in with a periodic behaviour. Figure 6.27

shows the variation in total energy for running Pogo.

149

6 7 8

Ks.

C
m
a
ss

V
e
r
t
ic

a
l
 Ve

lo
c
i
t
y

(
m
/s

)

-2.5
0.120.140.160.180.20.220.240.260.280.30.320.34

Cmass Height (m)

Figure 6.26: Phase diagram for running Pogo

Figure 6.27: Variation in total energy for running Pogo

150

4

MOM

•

p

6.5.3 The Walker creature

Figure 6.28 shows the geometric structure of Walker. Controller for Walker

consists of a four node pose control graph.

LI

Figure 6.28: The articulated body — Walker (a human like creature)

Table 6.8 shows the allowable ranges of joint angles (in degrees) defining the

internal configurations.

Joint Min

(deg.)

Max

(deg.)

Al -160 -125

A2 -10 -45

A3 60 100

A4 -160 -125

A5 -10 -45

A6 60 100

Table 6.8: Range of angles for Walker

Table 6.9 shows the physical properties of different links.

The result of the simulation of Walker is shown in the Figure 6.29 below.

•

•
•

151

Link Mass

(kg)

Inertia

(kg.m 2)

cmasss

(m)

cmassu

(m)

L1 3.0 0.0625 0.250 0.0
L2 5.0 0.0260 0.125 0.0

L3 4.0 0.0208 0.125 0.0
L4 5.0 0.0260 0.0 0.0
L5 4.0 0.0208 0.125 0.0

L6 1.0 0.0052 0.125 0.0

L7 1.0 0.0052 0.0 0.0

Table 6.9: Physical properties of Walker

Figure 6.29: Walker walking

152

Chapter 7

Conclusions and Future Work

This research has been concerned primarily with the field of computer anima-

tion. Traditionally computer animation has been a tedious and time consuming

process. The animator is given minimal assistance by the computer animation

systems that are in wide use even today. Physically based animation, partic-

ularly automatic motion synthesis — where by the animator specifies only the

physical and geometrical structure of the character and the criteria for evalu-

ating the character's motion in the environment, and the computer generates a

physically correct, realistic and natural looking trajectory for the character—is

very much more attractive, though computationally very difficult to realize and

operationally very difficult to control.

As part of this research we have carried out a detailed investigation of prior

work in automatic motion synthesis. The most promising approach to the mo-

tion synthesis problem has been identified as the automatic generation of a

motion controller which when executed in a simulated physical environment

produces a desired motion. We have analyzed different representations for mo-

tion controllers, the different optimization techniques and also the techniques

for simulation of movement along with interaction with other environment ob-

jects. We have identified the primary reasons why animators do not get fine

control over the synthesized motion. As part of the results of our research we

have invented a novel method of providing fine control over the synthesized

153

motion while at the same time retaining all the advantages of automatic syn-

thesis of physically realistic motion. In this last chapter we first discuss the

significant contributions that have been made as a result of this thesis research

and also the limitations of our present method, and its implementation. We

end this thesis with a discussion on possible future extensions of our research

and some open problems in this domain.

7.1 Significant Contributions

The most significant contribution in this thesis is certainly the new formulation

of the motion specification problem as one of motion feature specification. The

method of specification of desired motion, through the input of features char-

acteristic of the desired motion, is novel, very elegant and we believe the most

convenient method of providing complete control to the animator in his/her use

of the computer for creating complex animated character sequences. By first

specifying only high level features and then gradually adding greater detail

level features the animator gets progressively finer control over the generated

animation — a highly desirable feature in any interactive design.

The observed behaviour of various physical phenomena around us has always

been a major source of inspiration for humans whenever we have had to under-

stand, explain or mechanically imitate these natural phenomena. By asking

the animator to synthesize motion by specification of high level motion features

as observed by him/her in the different types of movements that are taking

place in the real world around us, this method is inherently intuitive and can

therefore provide very natural interfaces to the motion synthesis task.

We have formalized the notion of motion features as computable functions,

and formulated a performance metric for any motion such that the metric at-

tains an optimal value whenever the desired features are best present in that

motion. By implementing the above formulation and experimenting with the

features present in different gaits of legged creatures, we have convincingly

demonstrated that given adequate desirable features, motion can be automat-

ically synthesized such that the synthesized motion has all the given features,

154

is physically realisable and also realistic. This now reduces the burden on

the animator tremendously. The animator has only to interactively tune the

feature values or seek additional features in the synthesized motion until it is

completely to his/her satisfaction.

Another significant contribution of this research has been the creation of an

integrated simulation environment that has the capability to synthesize motion

controllers from feature specifications and to generate the final sequence for

playback of the animation. Building such an environment has in itself required

enormous efforts. While the environment does not have at present any fancy

user interface, it has all the core components necessary for synthesizing the

motion of articulated figures. This includes figure representation, controller

$.‘ representation and execution, force/torque synthesis using the spring/damper

model for muscle actuator behaviour, automatic symbolic formulation of the

dynamic equations of motion, solving the dynamic equations of motion and •

integrating acceleration/velocities to obtain the individual image frames that

make up the animation. These core components are sufficiently general and

will be extremely useful to experiment with other methods of motion synthesis

as well.

The third significant contribution is in the design and implementation of a

parallel evolutionary programming algorithm, the stochastic population hill

climbing algorithm used in the global optimization search for the motion con-

troller with the desired motion features. The parallel SPHC algorithm has been

implemented in a distributed network of heterogeneous workstations using the

parallel virtual machine PVM system. The parallel SPHC has resulted in very

substantial reduction in computational time and has enabled experimentation

with reasonably complex virtual creature moving in a variety of gaits.

In addition to the above, the thesis has a very comprehensive survey of all

known methods for physically based animation, and motion synthesis. These

methods have been presented in the formal frame-work of non-linear optimized

search. This frame-work enables us to analyze all existing techniques and also

newer motion synthesis techniques that may be developed in future.

155

7.2 Limitations

The automatic synthesis of physically based motion is a multidisciplinary

field and has required the understanding and implementation of formalisms

and techniques from very diverse fields including computer graphics, corn-

• puter animation, computer vision, mechanical simulation, robotics, neural net-

works, computational neuroethology, non-linear optimization and biomechan-

ics. Given constraints of time and other resources there are bound to be many

limitations. Below we discuss some of the limitations in our approach, in our

implementation and in our experiments.

A major limitation in the basic approach which is also present in all other mo-

®)
'(-

tion synthesis methods in use today is the specificity of the synthesised motion.

While we do design a motion controller, the motion controller's behaviour is

situation optimized. So if we are able to synthesize a motion controller, say, for

walking on a floor inclined at an angle of 5 degrees to the horizontal, then, in

general, the same controller cannot be reused for walking on floors with other

inclinations. It has been argued in [102] that by suitably parameterizing the

motion controllers it should be possible to reuse the synthesized motion con-

trollers in similar conditions with only slight differences. We however believe

that motion controller specificity is an inherent limitation of the approach and

can be overcome only if generic movement behaviours can be learnt. The virtual

creature has to learn the primitive behavioral mechanisms needed for walking.

This, as we shall see later, is an open problem.

With respect to the implementation we have some deficiencies in the simula-

tion environment as well as the synthesis method. The simulation environment

supports only 2D articulated figures. Further the articulated figures have to be

tree structured. Joint actuators are modelled using the spring/damper mech-

anism but not using the biomechanics based muscle model. Joint types have

all to be pin-joints. Many of these deficiencies are not very severe and have

been introduced primarily to keep the entire implementation simple and com-

putationally tractable within the available computing facilities. The simulation

environment can certainly be augmented to remove these deficiencies. While it

i-

156

may prop up some difficulties and may involve considerably extra efforts, there

do not seem to be any unsurmountable problems.

There are some limitations in the method we have implemented for automat-

ically synthesizing motion controllers. One of these is the static nature of the

controller representation during the entire process of searching for an optimal

motion controller. We assume for example in the case of a pose control graph

type motion controller that the topology of the controller (number of nodes and

their connectivity amongst them) is fixed even before the start of the search

process and remains invariant there after. Clearly the domain representable

motions of a pose control graph controller with 3 nodes is larger and differs

from that of a controller with 2 nodes. This automatically introduces artifacts

in the final synthesized motion which are inherently not present in the ap-

proach. Instead of using an n node pose graph controller for synthesizing some

desirable motion, an m (where m n) node pose graph controller may provide

much better results. The search process could be modified to include the con-

troller topology also as part of the parameter space to be searched. This would

however give rise to a considerable increase in the search space dimensionality

and result in reduced efficiency.

A more serious limitation of our synthesis method is the fact that the motion

is synthesized for a single virtual creature moving in a static unchanging envi-

ronment. For example, our method, as currently implemented, cannot be used

to synthesize the movement of a creature catching a ball in flight. This specific

case may not be very difficult to incorporate. It could be done by suitably for-

mulating the dynamic equations of motion for the ball as well, and including

them in the system being simulated. The performance metric will also have to

be suitably modified to include minimization of distance between the creature

and the ball and also an end condition in which this distance is zero. In general

however, it is difficult to visualize how the method can be extended to consider

a changing environment consisting not only of passive objects but also active

creatures (other virtual creatures) carrying out their own movement. As we

shall soon see this is yet another open problem in this field.

157

While the experiments that we have conducted to synthesize the gaits of a

number of different virtual creatures have led us to believe that this method of

motion synthesis is well suited to character animation, we do know that many

more experiments are needed before the method can be put to practice on a regu-

lar basis. We have been able to study the gait related features in some detail and

use some of them to automatically synthesize walking/running/hopping/falling

types of motion. We have not however experimented using all of them for mo-

tion synthesis and determined their effectiveness/criticality towards the syn-

thesis task. For example at this point of time we are unable to associate any

discrimination quality characteristics with any of the features. Clearly other

experiments have shown the comprehensive discriminating capabilities of fea-

tures like the Froude number or the duty cycle. As we collect more experimental

statistics working with features, it should be possible for us also to make our

observations.

We have been fortunate that the study of gaits of legged creatures is a subject

that has been addressed rigorously by a large number of researchers in different

disciplines. As a result we could draw upon their research and arrive at a

comprehensive set of features that could be used to specify different kinds of

movements of legged creatures. There are other goal oriented movements like

catching a ball, hitting a ball, shotting into a goal post, dunking a basket,

picking an object etc. All these would require their set of features to be suitably

identified/desired.

7.3 Possible Extensions

We have seen that many of the deficiencies and limitations described above are

in themselves pointers for interesting extensions to our research, to our motion

synthesis method and also to the implementation of the simulation environ-

ment. There are some other important extensions which will definitely need

to be addressed in the near future if the method has to be used more widely,

These we briefly discuss below.

In general, the representation of the controller and the synthesis method are

such that the actuator response is programmed for a specific external environ-

158

ment configuration. It would indeed be very interesting to explore a gener-

alization of the controller representation schemes so that external objects and

interaction events are embedded into the motion controller along with actuators

so that the actuator response could be made more general and less situation

specific. For example consider the case of our virtual creature, Walker moving

on a floor which could be inclined within a range say, -15 to 15 degrees. The

controller representation needs to be suitably generalized to take into account

this slope in the floor and the synthesis method should be able to give us a

controller with that representation which can produce similar looking move-

ments on sloping floors. Clearly the motion controller representation has to be

rich enough so that issues such as maintaining balance, not toppling over, etc.

would have to get incorporated into the motion controller. Control representa-

tion for maintenance of balance has been a subject of detailed study by many

others and it should be possible to draw upon some of those results [50, 87].

While the work in this thesis has dealt exclusively with the control synthesis

problem for which stick figures are adequate; there is a need to dress up these

virtual creatures with skin or clothes to produce interesting images. It needs

to be determined how such skin should be attached to the mechanical skeleton

and how it can be made to deform upon bending of joints or contact with other

objects. Flexible skin could be surrounded or be controlled by the rigid com-

ponents. Various materials could be added such as hair, fur, or tentacles that

might flow or bounce, producing secondary motion effects which will add to the

overall realism of the motion.

In addition to the extensions to the implementation discussed in the earlier

section the following would also be needed

• A good user interface which will enable the animator to specify features,

constraints and other simulation parameters graphically and also provide

the user with good analysis and visualization tools for evaluating the

synthesised motion. The system should be able to store simulation results

and play back after concatenating them, if so desired by the animator.

• A good technique for compositing motion sequences generated through
i.

159

automatically synthesized controllers also needs to be incorporated into

the implementations. Different topological arrangements of controllers,

linear, hierarchic, network etc. will have to be supported and appropriate

mechanisms for execution control transfer will also have to be built in.

This will be needed if complex animation sequences have to be built out

of individually synthesized motion controllers.

o If the skeletal structures are fleshed out with skin/cloths then three di-

mensional rendering and visualization facilities with control over optical

properties of surfaces, the illumination in the environment and texture

mapping will have to be incorporated for realistically rendered animation

sequences.

o In our implementation we have paid considerably more attention to the

modelling of motion controllers and the synthesis of internal forces and

torques. The external environment and interaction modelling are equally

important in motion simulation. Thus collision detection algorithms have

to be made more general and multi-point collisions have to be handled.

More sophisticated collision response behaviour modelling has to be incor-

porated, including the difficult problem of handling of frictional contacts.

7.4 Open Problems

Our research has thrown up a number of open problems. Primary among these

are the learning of motion behaviour, synthesis of multiple virtual actor motion

and the existence of a basis set for motion features. We discuss each of these in

a little more detail below.

Learning Motion Behaviours

As we have pointed out earlier, when the motion controller is automatically

synthesized it basically embeds into itself a situation specific behaviour. Thus

by giving the appropriate feature values to the motion controller associated

with our virtual Walker, it can be made to walk on the floor. However in no

160

way can it be said that Walker has learnt to walk. Learning motion behaviour

tr
is certainly an open problem. For this we believe that it would be essential to

consider synthesizing complex movements through the logical composition of a

few primitive motion behaviour controls. What must these primitive controls be

or what is the logical composition mechanism necessary are certainly unsolved

problems.

The Motion Synthesis of Interacting Multiple Virtual Actors

The complexity of the motion synthesis problem increases in an unbounded

fashion when one considers interaction not only between a virtual creature and

a static or dynamic (but passive) environment but also between two or more

virtual creatures. There are two situations which need to be dealt with.

o a common goal situation in which all the virtual creatures have the same

goal. Examples include two virtual creatures moving towards each other

to meet, or a team of players particularly in a football game, or a troupe

of ballet dancers performing in perfect synchrony.

o a conflicting goal situation in which groups of virtual creatures are at

cross purposes. Examples include one virtual creature being chased by

another and trying to avoid being caught, or a game of doubles tennis.

The complexity underlying these behaviours is just unfathomable. Identifying

the important features or formulating a suitable performance metric for the

above types of behaviours is certainly an open problem.

The Universal Set of Features

Finally there is also this open question of whether there exists a finite universal

set of features which form a basis for describing all movements of a particular

kind, say, gaits of four legged creatures. The existence of such a feature ba-

sis would certainly imply completeness in motion synthesis by the method of

specifying features. Until then we must assume that certain movements will

always elude formalism.

161

Appendix A

Representation, Performance

metric and Mutation Operation

This appendix describes in detail the representation of an individual solution

used in the evolutionary algorithm. It also gives an intuitive explanation of

various terms used in the performance metric and the reasons and motivation

for choosing them. Further, the mutation operation which is used to manipulate

the individual solution is also documented in detail.

A.1 Representation of Solution

In evolutionary programming, the representation of individual solution plays

a very crucial role in the over all performance of the algorithm. In our method,

an individual solution represents a controller. We have chosen a Pose control

graph to represent a controller. Pose control graphs have been described earlier

in section 2.6.2.

The arcs of the pose control graph specify the fixed time interval upon which

the transition between the states takes place. The desired pose associated with

the state is kept fixed for the duration of the time interval.

A pose control graph can be represented using a set of parameters called solu-

tion vector. All these parameters have direct influence over the motion produced

162

by the controller, and so have to be chosen carefully for a particular motion. The

aim of the evolutionary algorithm is to synthesize these values for a required

motion. We have used the following parameters in our representation of pose

control graphs.

• Poses represent the internal configuration of the body. Internal configu-

ration is nothing but a set of joint angles which can be varied over time.

In the case of a n link tree structured body there can be maximum n — 1

joints. Each pose is defined as some combination of these joint angles

which are to be achieved after a specified time interval. If there are m

poses defining the pose control graph, there will be m sets of n — 1 joint

angles. So the solution vector representing the controller will have the

combination of m(n — 1) joint angles.

• Spring and damping constants. The torque applied at a joint is given by

the function

T = kp (Od — 0) — kde

It is proportional to the difference between the desired joint angle and

the current angle. Also spring and damping constants kp and kd can

significantly affect the type of motion. Hence we have also included some

of these constants in our solution vector 1

• Time interval between poses. This parameter plays an important role.

We want the creature to achieve the desired pose but before it achieves

the desired pose the time interval will get over and the state will change.

Once the state changes the current configuration will be compared to the

parameters associated with that state.

A three link Luxo creature with two joints and two pose control graph is shown

in the figure A.1. The solution vector for such a representation is

[t1 911 071.2 kpll k7, 2] 	[t2 Bd1 021 2 kp1 42]

'Experimentally a value of damping constant as one tenth of spring constant has been found

to be suitable.

163

INITIAL

STATE

Figure A.1: Transition between Poses

Given an initial state a transition is made to posel (011 , 032) in time interval

tl, with values of kpll and q2, then a transition from posel to pose2 (03 1 , OF) in

time interval t2, with values of kp21 and kp22 . After that the cycle repeats. Every

time pose change it cause certain torques to be generated which form the input

to the simulator.

An ideal automated synthesis system would be able to design a controller given

only the mechanical structure of the creature, and no other a priori information.

However, by specifying a small but useful amount of additional information it

becomes possible to greatly reduce the search time and improve the performance

of the algorithm. The additional information we are providing is as follows:

1. the ranges of time interval between the poses

2. the number of poses required for the motion, and

3. the expected ranges of spring constants

These numbers are not very difficult to estimate. An estimation of the time

interval is done based upon the size and shape of the creature. Values of spring

constants are estimated with the help of mass description of the body. If the

links between which the spring has been simulated are having higher weight,

higher valued ranges of spring constants are required in order to protect the

springs from a possible collapse(spring failure). Also values should not be

so high that they would cause high torques at the joint causing unexpected

motions.

164

Estimating the number of poses for a creature is comparatively more difficult

task and usually needs in depth knowledge of expected motion of the creature.

Experience also helps in deciding this number.

Given the above mentioned information, the synthesis technique must find the

controller that will perform well with respect to a given performance metric

which in turn leads to a desired motion.

A.2 Performance metric

In a broad sense, the synthesis process searches through a space of controllers

and selects the best one satisfying the motion features specified by the animator.

How good the match is, is determined by the performance metric. The perfor-

mance metric typically evaluates the controller by plugging it into the simulator

and generating the motion. We have considered following performance metric:

samples joints
o D)

f = wi* E E (1-0-- F8,i)e(8,,)))+w2*(1
(B 	

)+w3*(1
(Do —

	
)

8=1 j=1 	 Eimax

E)

Dmax

where,

W17 W27 W3
	are weights, assigned to the features depending on their

relative importance, the value ranging between 0 and 1.

9(8 ,j)
	

is the angle at joint j for posture,

is the external energy

D 	 is the horizontal distance travelled

Emax , Dmax are the maximum expected external energy and horizontal

distance, respectively. These values are used for normal-

ization of the two quantities.

9F j) , E0, Do are the feature values specified by the animator.

165

It is clear from the above function that, closer the match between the specified

and synthesized feature values, higher would be the value of the performance

metric. The specified and achieved poses are compared during each cycle and

the difference is summed up. The external energy and the horizontal distance

are summed during each cycle.

Poses provide the actual snapshot of the object at an instance, like keyframes.

In order to get similar kind of motion, these values have to match as close

as possible with the corresponding controllers values. Thus, higher weight wi

is given to this comparison. External energy and horizontal distance traveled

help in optimization process in case of ties in other feature values. For example,

object can achieve the same configuration without even moving from its place

in the environment. Generation of such a motion has been largely averted by

using external energy and horizontal distance features.

A.3 Mutation Operation

Mutation operation is the backbone of SPHC algorithm. In every iteration all

solutions go through this operation. Each solution is represented by a set of

parameters as discussed above. These parameters are time interval, desired

joint angles and spring constant parameters.

Change in one of the parameters can change the motion drastically. So a

careful mutation of these parameters is required with only a small change in

original value. We have selected to mutate only one parameter in the whole

state once the mutation operator is applied. The selection of this parameter

is a randomized process, with equal probability is given to all the parameters.

This is found suitable through experiments as it helps the algorithm to fully

explore the region near an existing solution. If we try to mutate more than

one parameters at a time, the solution may jump from one region to another

without exploring the current one. As the function is multimodel, it may be the

case that optimal solution is in the vicinity of solution being mutated.

Each time mutation is called the selected state goes through a creep operation.

In creep operation a randomly selected parameter is modified with a very small

166

factor or all its parameters are randomized from scratch. As there are three

types of parameters to be modified, there are three possible creep operations

which are defined as follows:

1. The original time interval is multiplied by a randomly chosen factor close

to unity (0.8 — 1.2).

2. One of the joint angles is selected randomly and changed by a randomly

chosen amount between —10° and 10°, and

3. One of the joint angles is selected randomly and multiplied by a randomly

chosen factor close to unity (0.8 — 1.2).

.4•

167

Appendix B

Animation System Reference
Manual

This appendix list the syntax of all the commands supported by different mod-

ules constituting the experimental animation system used for synthesizing the

animations in this thesis.

B.1 Symbolic equation generator

Command summary:

< <filename>

Reads the script in the given file as input.

cat <filename>

Prints out the given file

compile

Compiles a procedure for solving the equations of motion.

echo <args>

Prints arguments

fix <link_num> <fix_x> <fixy>

Fixes the location fix_x, fix y on the given link.

link <link_num> <parent_num> <attach_x> <attach.y> <mass> <inertia>

<mass_x> <mass_y>

Creates link number link_num, attached to the given parent at

the given point, having the given mass, inertia

168

(with respect to centre of mass) and centre of mass.

monitor <link_num> <mon_num> <x> <y>

Allows for external forces to applied at the given x,y on the

given link.

quit

Exits the program shell

set <var> <value>

Sets the variable to the given value.

The values are obtainable by executing 'set'

without any arguments

procname STRING

name of desired procedure

B.2 Simulator

Command summary:

«filename>

Reads the script in the given file as input.

cat <filename>

Prints out the given file

dyn [prod]

Chooses the given dynamics procedure to be used.

With no arguments, it lists the current dynamics

procedures available.

echo <args>

Prints arguments

quit

Exits the program shell

set <var> <value>

Sets the variable to the given value.

The values are obtainable by executing 'set'

without any arguments

debug 	bool 	turns debugging info on or off

dispfile string name of file for output of display information

dtdisp 	float display time step

dtsim 	float simulation time step

kdamp 	float damping constant

c"7

state_size int 	the size of the state vector

sim <time>

169

Simulates the system for the given amount of time,

in seconds. The simulation time step is given by

'dtsim'. The display time step is given by 'dtdisp'

(see the 'set' command)

state <x,vx,y,vy,th,dth,thl,dthl,th2,dth2...>

Sets the current system state to the given value.

B.3 Anix server

summary of commands:

«file_name>

Read input from file.

aniset <var1> <valuel> <var2> <value2>

Sets environment values to desired values

Aniset without any arguments returns the current value

of all the variables. A brief description of the use of

all the accessable variables is as follows:

debug 	flag to output excess information for debugging

degmode 	flag to specify rotation transformations in degrees

device 	"ps" for postscript, "display" for X-11 window

display 	name of host to use as an X-11 server

erase 	erase display between frames? (X-11 only)

eyedist 	distance of eye from screen for perspective projection

helpfile 	file containing documentation

newsfile 	file containing list of recent modifications

psfile 	name of file to send postscript output to

showtime 	echo current time

sleep 	time to pause between displaying frames

viewdist 	distance of eye from viewpoint for perspective proj.

viewto 	the viewpoint, placed in the centre of the screen

viewfrom 	specifies line of sight

viewupl 	which direction to consider 'up' for display purposes

viewup2 	a second choice for an 'up' vector in case viewupl

is very close to being parallel to the line of sight

winx,winy 	size of X-window

xwin,ywin 	window placement

attach <objname> to <objname>

170

clear

close

Attaches one object instance to another object instance.

Clears the x-display

Closes animation display.

comments

All text following a '#' character on a line is ignored

detach <objname>

Detaches the object from its parent

help [topic]

Lists information in help file on the specified topic.

Type 'help sum' for a summary of available commands.

init

Calculate world to screen transformation, prepare for display.

instance

Creates an instance of an object

news

Print the most recent updates.

objectname <objectname>

Begin a new object

path

Begin a new path.

pts <x> <y> <z>

Adds points to the current path.

quit

Exit program.

show <vall> <val2> 	<valn>

Supplies a series of missing transformation values and then

displays using the new transformations.

sleep <time>

Causes a pause for the specified number of seconds.

text x y z string

Prints text at the given point

tf <obj> <tf_name> <tf_args>

Performs the specified transformation on the object.

The acceptable transformations (as specified by

tf_name and tf_args) are:

rot 	<xlylz> <angle>

Rotates the object about the given axis by the angle

171

in degrees.

prot <xlylz> <angle>

Rotates the object about the given axis in the parent's

coordinate system. The angle is in degrees.

trans <x> <y> <z>

Translates (moves) the object as specified in the objects

own coordinate system.

ptrans <x> <y> <z>

Translates (moves) the object as specified in the parent's

coordinate system.

scale <x> <y> <z>

Postmultiply the ctm by the given scaling factors. The

object it self and all following transformations are

affected by the scaling.

pscale <x> <y> <z>

Premultiply the ctm by the given scaling factors. All

transformations and the object itself are affected by

the scaling.

tpipe <filel> <pipefile>

Repeatedly pipes in <pipefile> while <filel> exits.

172

4

J

r

Appendix C

Documentation of Scripts

This appendix documents all the scripts for Luxo, Pogo and Walker in generat-

ing the animations. Scripts with extension .anix gives the geometric description

of the creature. Script with extension .desc describe the physical structure of

the creature and the script with extension .sim is used in producing the simu-

lation and recording of the frames.

C.1 Scripts for Luxo

luxo.anix

aniset winx 600

aniset winy 600

objname baselink

path

pts -0.27 0.02

pts 0.27 0.02 	0

pts 0.27 -0.02

pts -0.27 -0.02

objname middlelink

path

pts -0.02 0.02 0

pts 0.52 0.02 0

pts 0.52 -0.02 0

pts -0.02 -0.02 0

•

0

0

0

173

objname toplink

path

pts -0.02 0.02 0

pts 0.42 0.02 	0

pts 0.35 0.02 	0

pts 0.40 0.02 	0

pts 0.30 -0.15 0

pts 0.47 -0.15 0

pts 0.42 -0.02 0

pts -0.02 -0.02 0

instance baselink linkl

instance middlelink link2

instance toplink link3

attach linkl to world

attach link2 to linkl

attach link3 to link2

tf trans link2 0.0 0.0 0

tf trans link3 0.5 0.0 0

< gnd.anix

init

tf trans linkl -3.0 0 0

tf trans linkl _1 _2 0

tf rot linkl Z _3

tf rot link2 Z _4

tf rot link3 Z _5

tf trans world 15 4 0

tf scale world 3 3 3

aniset degmode f

aniset erase t

luxo.desc

link 1 0 0.0 0.0 0.15 0.003123 0 0

link 2 1 0.0 0.0 0.10 0.002082 0.25 	0

link 3 2 1.0 0.0 0.30 0.006246 0.25 	0

monitor 1 1 -0.27 0

monitor 1 2 0.27 0

set procname fall

compile

quit

174

luxo.sim

set kdamp 0.0,0.0,0.0,0.0,0.0,0.0,0.0

set dtsim 0.001

dyn fall

mon mon_fall 2

set state size 10

state 0.0000,0.0008,-0.0010,0.0069,-0.0016,-0.0100,-4.6161,

-0.5956,4.6127,0.0025

set dispfile luxo.out

sim 8.0

quit

C.2 	Scripts for Pogo

pogo.anix

aniset winx 600

aniset winy 600

objname base

path

pts -0.02 0.02 	0

pts 0.52 0.02 	0

pts 0.52 -0.02 	0

pts -0.02 -0.02 0

pts 0.00 0.08 	0

pts -0.15 0.03 	0

pts -0.05 0.0 	0

pts -0.15 -0.03 0

pts 0.00 -0.08 	0

objname leg

path

pts -0.02 0.02 	0

pts 0.27 0.02 	0

pts 0.27 -0.02 	0

pts -0.02 -0.02 0

instance base linkl

instance leg link2

instance leg link3

175

instance leg link4

instance leg link5

attach linkl to world

attach link2 to linkl

attach link3 to link2

attach link4 to linkl

attach link5 to link4

tf trans link2 0.0 0.0 0

tf trans link3 0.25 0.0 0

tf trans link4 0.50 0.0 0

tf trans link5 0.25 0.0 0

< gnd.anix

init

tf trans linkl 3.5 0.0 0

tf trans linkl _1 _2 0

tf rot linkl Z _3

tf rot link2 Z _4

tf rot link3 Z _5

tf rot link4 Z _6

tf rot link5 Z _7

tf trans world 14 6 0

tf scale world 3 3 1

aniset degmode f

aniset erase t

pogo.desc

link 1 0 0.0 	0.0 0.15 0.003123 0.25 	0

link 2 1 0.0 	0.0 0.10 0.002082 0.125 0

link 3 2 0.25 	0.0 0.10 0.002082 0.125 0

link 4 1 0.50 	0.0 0.10 0.002082 0.125 0

link 5 4 0.25 	0.0 0.10 0.002082 0.125 0

monitor 3 1 	0.27 0

monitor 3 2 	-0.02 0

monitor 5 3 	0.27 0

monitor 5 4 	-0.02 0

set procname pogo

compile

quit

176

pogo.sim

set kdamp 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0

set dtsim 0.001

dyn pogo

mon mon-pogo 4

set state_size 14

state 0.0000,0.2487,0.3512,-0.4275,-0.1337,-1.7569,-1.7014,

0.2469,5.2939,0.0589,-1.1427,-0.3886,4.4908,-0.5539

set dispfile pogo.out

sim 8.0

C.3 	Scripts for Walker

walker.anix

aniset winx 600

aniset winy 600

objname base

path

pts -0.02 	0.02 	0

pts 	0.52 	0.02 	0

pts 0.52 -0.02 	0

pts -0.02 -0.02 	0

objname leg

path

pts 	-0.02 	0.02 	0

pts 0.27 0.02 0

pts 0.27 -0.02 	0

pts -0.02 -0.02 0

objname foot

path

pts -0.082 	0.02 	0

pts 0.082 0.02 	0

pts 	0.082 -0.02 0

pts -0.082 -0.02 	0

instance base linkl

instance leg link2

instance leg link3

177

instance foot link4

instance leg link5

instance leg link6

instance foot link7

attach linkl to world

attach link2 to linkl

attach link3 to link2

attach link4 to link3

attach link5 to linkl

attach link6 to link5

attach link7 to link6

tf trans link2 0.0 0.0 0

tf trans link3 0.25 0.0 0

tf trans link4 0.25 0.0 0

tf trans link5 0.0 0.0 0

tf trans link6 0.25 0.0 0

tf trans link7 0.25 0.0 0

< gnd.anix

init

tf trans linkl 0.0 0.0 0

tf trans linkl _1 _2 0

tf rot linkl Z _3

tf rot link2 Z _4

tf rot link3 Z _5

tf rot link4 Z _6

tf rot link5 Z _7

tf rot link6 Z _8

tf rot link7 Z _9

tf trans world 10 6 0

tf scale world 4 4 1

aniset degmode f

aniset erase t

178

walker.desc

link 1 0 0.00 	0.0 3.0 0.0625 0.250 0

link 2 1 0.00 	0.0 5.0 0.0260 0.125 0

link 3 2 0.25 	0.0 4.0 0.0208 0.125 0

link 4 3 0.25 	0.0 5.0 0.0260 0.0 	0

link 5 1 0.00 	0.0 4.0 0.0208 0.125 0

link 6 5 0.25 	0.0 1.0 0.0052 0.125 0

link 7 6 0.25 	0.0 1.0 0.0052 0.0 	0

monitor 4 1 -0.082 0.0

monitor 4 2 	0.082 0.0

monitor 7 3 -0.082 0.0

monitor 7 4 0.082 0.0

set procname walker

compile

quit

walker.sim

set kdamp 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0

set dtsim 0.001

dyn walker

mon mon walker 4

set state size 18

state 0.0,0.0,0.52,0.0,1.120,0.0,-2.793,0.0,-0.175,0.0,

1.745,0.0,-2.382,0.0,-0.885,0.0,1.745

set dispfile walker.out

sim 8.0

quit

179

ibliography

[1] R. Alexander. The gaits of bipedal and quadrupedal animals. The Inter-

national Journal of Robotics Research, 3(2):49-59, 1984.

[2] R. Alexander and A. Jayes. Vertical movements in walking and running.

Journal of Zoology, 185:27-40, 1978.

[3] William Armstrong and Mark Green. The dynamics of articulated rigid

bodies for purpose of animation. Visual Computer, 1(4):231-240, 1985.

[4] B. Arnaldi, G. Dumont, and G. Hegron. Animation of physical systems

from geometric, kinematic and dynamic models. In Proceedings IFIP, on

Modelling in Computer Graphics, April 1991.

[5] N. I. Badler, C. B Phillips, and B. L. Webber. Simulating Humans. Oxford

University Press, 1993.

[6] Norman I. Badler, Kamran H. Manoochehri, and Graham Walters. Artic-

ulated figure positioning by multiple constraints. IEEE Computer Graph-

ics and Applications, 7(6):28-38,1987.

[7] D. H. Ballard. Computer vision. Prentice-Hall, 1982.

[8] D. Baraff. Determining frictional inconsistency for rigid bodies is np-

complete. Technical Report TR 90-1112, Cornell University, 1990.

[9] David Baraff. Curved surfaces and coherence for non-penetrating rigid

body simulation. Computer Graphics, SIGGRAPH'90, 24:19-28, 1990.

180

[10] R. Barzel. Physically-Based Modelling for Computer Graphics. Academic

D
	 Press Inc., 1992.

[11] Ronen Barzel and Alan H. Barr. A modeling system based on dynamic

constraints. Computer Graphics, 22(4):179-188, 1988.

[12] R. Beer, R. Ritzmann, and T. McKenna. Biological neural networks in

invertebrate neuroethology and robotics. Academic press, 1993.

[13] R. Boulic, N. Thalmann, and D. Thalmann. A global human walking

model with real-time kinematic personification. The Visual Computer,

6:344-358, 1990.

[14] R. A. Brooks. A robot that walks: Emergent behaviours from carefully

evolved network. In Norman I. Badler, Brian A. Barsky, and David

Zeltzer, editors, Making them move: mechanics, control and animation,

pages 209-232. Morgan Kaufmann, 1991.

[15] Lynne Brotman and Arun Netravali. Motion interpolation by optimal

control. Computer Graphics, 22:309-315, August 1988.

[16] Armin Bruderlin and Thomas W. Calvert. Goal-directed dynamic anima-

tion of human walking. Computer Graphics, 23(3):233-242, 1989.

[17] J. Canny. Collision detection for moving polyhedra. IEEE Transaction on

Pattern Analysis and Machine Intelligence, 8(2):200-209, 1986.

[18] R. T. Chin and C. R. Dyer. Model-based recognition in robot vision. Com-

puting Surveys, 18(1):67-108, 1986.

[19] C. K. Chow and D. H. Jacobson. Studies of human locomotion via optimal

programming. Mathematical Bioscience, 10:239-306, 1971.

[20] Michael F. Cohen. Interactive space time control for animation. Computer

Graphics, 26:293-302, July 1993.

[21] N. Corby and J. Mundy. Applications of range image sensing and pro-

cessing. In R. C. Jain and A. K. Jain, editors, Analysis and interpretetion

of range images, pages 273-337. Springer-Verlag, 1990.

181

[22] J. J. Craig. Introduction to robotics mechanics and control. Addision-

Wesley, 1986.

[23] James Cremer. An architecture for general purpose physical system

simulation—integrating geometry, dynamics, and control. PhD thesis, Cor-

nell University Ithaca, New York, 1989.

[24] L. Davis. Handbook of genetic algorithms. Van Nostrand Reinhold, 1991.

[25] J. Denavit and R. S. Hartenberg. A kinematic notation for lower-pair

mechanisms based on matrices. Journal of Applied Mechanics, pages

215-221, June 1955.

[26] T. Duff. Interval arithmetic and recursive subdivision for implicit

functions and constructive solid geometry. Computer Graphics, SIG-

GRAPH'92, 26:131-138, 1992.

[27] Geist et. al. PVM 3 user's guide and reference manual.

[28] D. Fogel. Asymptotic convergence properties of genetic algorithms and

evolutionary programming: analysis and experiments. Cybernetics and

Systems: An International Journal, 25:389-407, 1994.

[29] J. D. Foley, A. V. Dam, S. K. Feiner, and J. F. Hughes. Computer Graphics.

Addison-Wesley, 1990.

[30] A. Fukunaga, L. Hsu, P. Reiss, A. Shuman, J. Christenen, J. Marks,

and J. T. Ngo. Motion-synthesis techniques for 2d articulated figures.

Technical Report TR-05-94, Harvard University, Center for Research in

Computing Technology, 1994.

[31] R. Full. Integration of individual leg dynamics with whole body move-

ment in arthropod locomotion. In R. Beer, R. Ritzmann, and T. McKenna,

editors, Biological neural networks in invertebrate neuroethology and

robotics, pages 3-20. Academic Press, 1993.

[32] P. Gill, W. Murray, and M. Wright. Practical optimization. Academic

Press, New York, 1981.

182

[33] Michael Girad. Interactive design of 3d computer-animated legged an-

imal motion. IEEE Computer Graphics and Applications, 7(6):39-51,

June 1987.

[34] Michael Girad. Constrained optimization of articulated body in computer

animation. In Norman I. Badler, Brian A. Barsky, and David Zeltzer,

editors, Making them move: mechanics, control and animation, pages

209-232. Morgan Kaufmann, 1991.

[35] Michael Girad and A. A. Maciejewski. Computational modelling for the

computer animation of legged figures. Computer Graphics, 19:263-270,

1985.

[36] D. E. Goldberg. Genetic algorithms in search, optimization and machine

learning. Addison Wesley, 1989.

[37] L. Gritz and J. Hahn. Genetic programming for articulated figure motion.

The Journal of Visualization and Computer Animation, 6(3):129-142,

1995.

[38] R. Grzeszczuk and D. Terzopoulous. Automated learning of muscle-

actuated locomotion through control abstraction. Computer Graphics,

SIGGRAPH'95, 29:63-70, 1995.

[39] J. K. Hahn. Realistic animation of rigid bodies. Computer Graphics,

SIGGRAPH'88, 22(4):299-308,1988.

[40] S. Hansen, J. Kearney, and J. Cremer. Motion control through commu-

nicating hierarchical state machines. Fifth Eurographics workshop on

r
	 Animation and Simulation, September 1994.

[41] R. Harelick and L. Shapiro. Computer and robot vision, Vol. II. Addision-

Wesley, 1993.

[42] E. Haug. Computer aided analysis and optimization of mechanical system

dynamics. NATO ASI Series F: Computer and System Sciences, Vol.9.

Springer-Verlag, 1984.

183

[43] M. Hebert, T. Kanade, and I. Kweon. 3-d vision technique for autonomous

vehicles. In R. C. Jain and A. K. Jain, editors, Analysis and interpretation

of range images, pages 273-337. Springer-Verlag, 1990.

[44] V. Herzen and A. Barr H. Zatz. Geometric collision for time-dependent

parametric surfaces. Computer Graphics, SIGGRAPH'90, 24(4):39-48,

1990.

[45] M. Hildebrand. Symmetrical gaits of horse. Science, 150:701-708, 1965.

[46] E. C. Hildreth. The measurement of visual motion. MIT press, 1983.

[47] Victor Ng Thow Hing. A biomechanical musculotendon model for ani-

mating articulated objects. Master's thesis, University of Toronto, 1994.

[48] Victor Ng Thow Hing. Research issues in the design of control methods

for physically-based computer animation. Unpublished, 1995.

[49] J. K. Hodgins, W. L. Wooten, D. C. Brogan, and J. F. O'Brien. Animating

human athletics. Computer Graphics, SIGGRAPH'95, 29,1995.

[50] Jessica Hodgins and Mark Raibert. Biped gymnastics. The International

Journal of Robotics Research, 9(2):115-132,1990.

[51] J. Holland. Adaptation in natural and artificial systems. University of

Michigan Press, Ann Arbor, 1975.

[52] Paul M. Issac and Michael F. Cohen. Controlling dynamic simulation

with kinematic constraints, behavior functions and inverse dynamics.

Computer Graphics, SIGGRAPH'87, 21:215-224, July 1987.

[53] V. V. Kamat. A survey of techniques for simulation of dynamic collision

detection and response. Computers and Graphics, 17(4):379-385, 1993.

[54] V. V. Kamat. Synthesis of realistic motion for legged creatures. Software

Bulletin, 3(4):9-16, 1995.

184

[55] Michael Kass. Inverse problems in computer graphics. In N.M.Thalmann

and D.Thalmann, editors, Creating and animating the virtual world,

pages 21-33, Springer-Verlag, 1992.

[56] J. A. S. Kelso and A. S. Pandya. Dynamic pattern generation and recog-

nition. In Norman I. Badler, Brian A. Barsky, and David Zeltzer, editors,

Making them move: mechanics, control and animation, pages 171-190.

Morgan Kaufmann, 1991.

[57] D. E. Kirk. Optimal Control Theory: An Introduction. Prentice-Hall Inc.,

1970.

[58] S. Kirkpatric, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated

annealing. Science, 220(13):671-680, May 1983.

[59] H. Ko and N. I. Badler. Stright line walking animation based on kine-

matic generalization that preserves original characteristics. Proceedings

of Graphics Interface'93, pages 9-16, May 1993.

[60] D. H. U. Kochanek and R. H. Bartels. Interpolating splines with local

tension, continuity and bias control. Computer Graphics, SIGGRAPH'84,

18(3):33-41, 1984.

[61] B. Lafleur, M. Thalmann, and D. Thalmann. Cloth animation with self-

collision detection. In Animation of Synthetic Actors and 3D Interaction,

1991.

[62] S. Levy. Artificial life: the quest for a new creation. Pantheon Books, New

York, 1992.

[63] M. C. Lin and J. Canny. Efficient collision detection for animation. Third

Eurographics Workshop on Animation and Simulation, September 1992.

[64] Zicheng Liu, Steven J. Gortler, and Michael F. Cohen. Hierarchical space-

time control. Computer Graphics, 28:35-42, 1994.

185

[65] P. Loststedt. Numerical simulation of time-dependent contact friction

problem in rigid body. SIAM Journal of Scientific Statistical Computing,

5(2):370-393, 1984.

[66] T. Lozano-Perez and M. Wesley. An algorithm for planning collision free

paths among polyhedral obstacles. Communication of ACM, 22:560-570,

1979.

[67] D. Luenberger. Introduction to linear and nonlinear programming.

Addison-Wesley, 1973.

[68] P. Maes and R. Brooks. Learning to coordinate behaviours. Proc. of

AAAP90, pages 796-802, 1990.

[69] T. McGeer. Passive dynamic walking. The International Journal of

Robotics Research, 9(2):62-82, 1990.

[70] R. B. McGhee. Some finite state aspects of legged locomotion. Mathemat-

ical Bioscience, 2:67-84, 1968.

[71] M. McKenna and D. Zeltzer. Dynamic simulation of autonomous legged

locomotion. Computer Graphics SIGGRAPH'90, 24:29-38, August 1990.

[72] T. McMahon. Mechanics of locomotion. The International Journal of

Robotics Research, 3(2):5-26, 1984.

[73] D. Metaxas and D. Terzopoulos. Dynamic deformation of solid primitives

with constraints. Computer Graphics, SIGGRAPH'92, 26(2):309-312,

1992.

[74] Z. Michalewicz. Genetic algorithms + Data structure = Evolution pro-

grams. Springer-Verlag, 1992.

[75] Mathew Moore and Jane Wilhelms. Collision detection and response for

computer animation. Computer Graphics, 22(4):289-298, 1988.

[76] M. Mortenson. Geometric modelling. Wiley, New York, 1985.

186

0

•

[77] S. P. Mudur and P. A. Koparkar. Interval methods for processing geo-

metric objects. IEEE Computer Graphics and Applications, 4(7):7-17,

1984.

[78] S. P. Mudur and J. H. Singh. A notation for computer animation. IEEE

Transaction Systems, Man, and Cybernetics, SMC-8(4):308-311, 1978.

[79] Magnenat-Thalmann N. and D. Thalmann. Computer animation: theory

and practice. Springer-Verlag, 1985.

[80] J. T. Ngo and J. Marks. Physically realistic motion synthesis in animation.

Evolutionary Computation, 1(3):235-268, 1993.

[81] J. Thomas Ngo and Joe Marks. Spacetime constraints revisited. Com-

puter Graphics, SIGGRAPH'93, 27:344-350, August 1993.

[82] P. E. Nikravesh. Computer-aided analysis of mechanical systems.

Prentice-Hall, 1988.

[83] S. Parry-Barwick and A. Bowyer. Is the feature interface ready? In

R. Martin, editor, Directions in geometric computing, pages 129-160.

Information Geometers, 1993.

[84] T. Pavlidas. Structural pattern recognition. Springer-Verlag, 1977.

[85] F. P. Preparata and M. I. Shamos. Computational geometry, an introduc-

tion. Springer-Verlag, 1985.

[86] M. Raibert and J. Hodgins. Legged robots. In R. Beer, R. Ritzmann,

and T. McKenna, editors, Biological neural networks in invertebrate neu-

roethology and robotics, pages 319-354. Academic Press, 1993.

[87] Mark Raibert and Jessica Hodgins. Animation of dynamic legged loco-

motion. Computer Graphics, 25:349-358, July 1991.

[88] L. Scales. Introduction to non-linear optimization. Macmillan, 1985.

-IN 	[89] Karl Sims. Evolving virtual creatures. Computer Graphics, 28:15-22,

July 1994.

187

[90] A. Smith. Tutorial notes: Introduction to computer animation. Spline

b
	 tutorial notes- Technical memo No. 77, SIGGRAPH'83, pages 64-75, July

U
	 1983.

i
	 [91] B. Snider. The toy story. Wired, December 1995.

[92] J. Snyder. Interval methods for multi-point collision between time-

dependent curved surfaces. Computer Graphics, SIGGRAPH'93, 27,

1993.

[93] M. Srinivas and L. M. Patnaik. Genetic algorithms: a survey. IEEE

Computer, 27(6):17-26, 1994.
I

[94] S. N. Steketer and N. I. Badler. Parametric keyframe interpolation in-
0 	 corporating kinetic adjustment of phrasing control. Computer Graphics,

SIGGRAPH'85, 19(3):255-262, 1985.

[95] A. James Stewart and James F. Cremer. Animation of 3d human lo-

comotion: climbing stairs and descending stairs. Third Eurographics

Workshop on Animation and Simulation, September 1992.

[96] D. Terzopolos, J. Platt, A. Barr, and K. Fleischer. Elastically deformable

models. Computer Graphics, SIGGRAPH'87, 21(4):205-214, 1987.

[97] S. Ullman. The interpretation of visual motion. MIT press, 1979.

[98] Michiel van de Panne. anix an animation server for x—windows. Technical

report, Dynamic Graphics Project, Dept. of Computer Science, University

a
	 of Toronto, ftp site: dgp.utoronto.ca , in pub/van, 1989.

P-
	 [99] Michiel van de Panne. Dynamics compiler, v1.1. Technical report,

Dynamic Graphics Project, Dept. of Computer Science, University of

Toronto, ftp site: dgp.utoronto.ca , in pub/van, 1989.

[100] Michiel van de Panne and Eugene Fiume. Sensor-actuator networks.

Computer Graphics, SIGGRAPH'93, 27:335-342, August 1993.

r'

188

[101] Michiel van de Panne, Eugene Fiume, and Zvonko Vranesic. Reusable

motion synthesis using state-space controller. Computer Graphics SIG-

GRAPH'90 , 24:225-234, August 1990.

[102] Michiel van de Panne, Ryan Kim, and Eugene Fiume Synthesizing

parameterized motions. Fifth Eurographics workshop on Animation and

Simulation, September 1994.

[103] Michiel van de Panne, Ryan Kim, and Eugene Fiume Virtual wind-up

toys for animation. In Proceedings of Graphics Interface, pages 208-215,

1994.

[104] C. Walnum. Adventures in artificial life. Que corporation, 1993.

[105] Jane Wilhelms. Toward automatic motion control. IEEE Computer

Graphics and Applications, 7(4):11-22, 1987.

[106] D. Winter. Biomechanics and motor control of human movement. John

Wiley & Sons, 1990.

[107] J. M. Winters and S. Woo. Multiple Muscle System: Biomechanics and

Movement organization. Springer-Verlag, 1990.

[108] Andrew Witkin and Michael Kass. Spacetime constraints. Computer

Graphics, 22:159-168, August 1988.

[109] D. Zeltzer. Motor control techniques for figure animation. IEEE Computer

Graphics and Applications, 2(9):53-59, November 1982.

[110] D. Zeltzer. Task-level graphical simulation: abstraction, representation

and control. In Norman I. Badler, Brian A. Barsky, and David Zeltzer,

editors, Making them move: mechanics, control and animation, pages

171-190. Morgan Kaufmann, 1991.

189

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209

