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Automatic Motion Synthesis of Articulated Figures for 
Computer Animation 

by 

V. V. Kamat 

Synopsis of the Thesis 
to be submitted to 

Goa University, for the award of Ph.D degree. 

The study of motion 

It is always fascinating to watch the motion of objects in the world, particu-

larly the movement of living creatures. The crawl of a worm, the slither of the 

snake, the leap of a gazelle, the run of a dog, the gallop of a horse or the walk 

of a human, all look amazingly simple and beautiful, yet involve extraordinary 

skill in muscle coordination and balance. Reproducing even the simplest of 

these movements by mechanical, or other means has always been a challenge. 

This in part explains the tremendous appeal that Disney animations hold for 

young and old alike, or the effect that a moving limbed toy has on any child. 

Computer animation is primarily concerned with generation of the motion of 

virtual creatures moving around and interacting with a virtual world such that 

the movement appears physically realistic and is generated in a computation-

ally efficient manner. 

Apart from computer animation, motion is studied and modelled in a number 

of other disciplines like robotics, biomechanics, control theory and artificial life. 

These disciplines has their own distinct emphasis in the study of motion as 

discussed below, but most developments in these disciplines are bound to find 

application in computer animation. 

Motion planning and motion control are central areas of research in robotics 

[22]. Forward and inverse kinematics, as well as forward and inverse dynam-

ics are important concepts from robotics that have a direct application to the 

animation of articulated figures. Robots inhabit a more complex physical world 
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than their synthetic counterpart, and must sense the environment and react 

to it in real time. However, the movement of robots is not just simulated but 

physical and is brought about by internal force generators and actual physical 

interaction within physical world. 

Biomechanics is the study of the mechanical bases of human and animal motion 

[19]; with the central focus being on musculotendons which act as the main force 

actuators to bring about motion. Muscles have many properties that influence 

the type of motion produced. Biomechanics is concerned with a study of these 

properties as well as with the investigation of schemes for controlling muscles 

to yield desired motion. Traditionally, studies in biomechanics have focused on 

a single muscle or a single joint. 

Conventional control theory addresses the problem of motion control , but of 

rather simple systems [57]. For more complex systems, difficulties are primarily 

due to the non-linearities involved. The field of control is additionally concerned 

with the issue of proving stability and performance under all conditions. Most 

systems that are studied in control theory are simple, in comparison with the 

motion control systems needed for typical animated figures. 

Artificial life is a new science dedicated to mimicking the emergent behaviour 

of living systems in silico. Instead of trying to simply replicate the effects of liv-

ing systems, artificial life researchers attempt to build these behaviours from 

bottom-up, much in the style that nature itself does. A typical artificial life 

approach begins with biological behaviour such as reproduction, evolution and 

locomotion and attempts to extract simple local rules behind that behaviour 

[104]. Many of the simulated creatures are defined by compact code, which 

subsequently determines the creatures' behaviour when placed in an environ-

ment. Once again most creatures being experimented with are still too simple 

to be interesting enough for the purposes of animation. 

The movement in animation is really just an illusion; made possible because of 

the biological phenomenon of persistence of vision. A series of images slightly 

differing from each other are shown in rapid succession . The eye/mind blends 

them together to result in the visual illusion of movement or change. Typically 



24 to 30 frames (images) per second are shown. Animation is primarily con-

cerned with the synthesis of these images at discrete times and strictly speaking 

does not mandate the modelling of continuous time varying motion. However, 

in computer animation we find it convenient to model motion as a continuous 

function of time and generate the individual frames by appropriately sampling 

this function. 

The motion synthesis problem 

Movement or motion is a dynamic phenomena - it is the change in spatial config-

uration of an object over time. The spatial configuration of an object is defined 

geometrically. A simple object like a pen is completely defined by the position of 

a single point on its body say (x v , yp , zr,) and its orientation (Or , Oy ,Oz ,) in three 

dimensional space. More complex legged objects are defined as articulated bod-

ies composed of links that are connected to each other via joints. However, in 

order to contain the complexity, in most studies rigid articulated bodies are 

used for modelling the motion behaviour of legged creatures. 

Degrees of freedom (DOF) constitutes the minimal set of parameters needed to 

completely specify the configuration of a body in space. Degrees of freedom are 

also known as generalised coordinates. Thus the spatial configuration of the 

pen in 3D has 6 DOF. With just 6 parameters, the pen can be moved to any 

desired point and oriented in any desired direction in space. An articulated 

body has more DOF depending on the number of links, joint types etc. Consider 

for example the planar articulated body with 3 links and 2 rotary joints as 

shown in Figure 0.1. This simple body has 5 degrees of freedom. Human bodies 

are amongst the most complicated of articulated bodies. Typically, the human 

body has about 200 degrees of freedom [110]. 

A universally accepted convention is to consider degrees of freedom as consti-

tuting a vector and use vector notation say X to denote the spatial configuration 

of a body. Hence the motion of the body over a time period T would be denoted 

by X(t), 0 < t < T. 
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A rather simple definition of the synthesis problem is as follows: 

Given the geometry of an articulated body, say X, a desired type of 

movement say walk and a time period T, determine X(t), 0 < t < T. 

The above definition hides the enormous underlying complexity in this prob-

lem. Certainly physics is involved; gravitational and other forces have to be 

considered. The movement of a pen dropped from a height of say, four feet from 

the ground is not arbitrary but completely determined by the properties associ-

ated with the pen, such as its mass, moment of inertia, coefficient of restitution 

etc. Animators take years before they acquire the necessary skills to predict the 

spatial configurations of objects at any time for generating a specific movement. 

Living creatures are active articulated bodies that can bring about their own 

motion through internally generated forces and interaction with environment 

like the wall or the ground. For such bodies, the , motion synthesis problem 

becomes orders of magnitude more complex. It is only in very recent times 

with easy availability of computing power that the studies of motion of such 

complexity are being undertaken in the different disciplines listed above. 

Traditionally, in animation the motion synthesis problem is tackled using a 

technique known as key-frame animation. In key-frame animation, the an-

imator only describes a set of "Key-frames" from which the system can geo-

metrically interpolate each DOF independently to automatically generate all 

the inbetween frames needed. There are two major problems with key-frame 

animation. Firstly it puts a large burden on the animator by requiring the 

adjustment of too many parameters at very fine levels of detail. For a reason-

ably detailed figure with 30 DOF, a minute of animation with a key-frame, say, 

every quarter of a second, would approximately require eight thousand val-

ues to be specified. This is perhaps an impossible task. Secondly, to generate 

very convincing looking motion, the animator must have a very good under-

standing of the motion and also possess artist like skills, for resynthesizing the 

internalised motion. Therefore more often than not, even after many trials, 

key-frame synthesized motion tends to look unrealistic and puppet like. 
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In the late 1980's, researchers working in the field of computer animation were 

convinced that if the animation has to look realistic, the physics behind the 

motion has to be taken into account [3, 105, 52]. This is typically done by aug-

menting the traditional geometric model to include other physical characteris-

tics that computers can use to compute motion. These physical characteristics 

are mass of the body, its moment of inertia, external forces such as gravity, fric-

tion etc. The idea is to incorporate appropriate physical complexity and realism 

of the behaviour into the model itself, rather than requiring that it be imposed 

by the animator. Initial results on incorporation of physics to produce realistic 

movements were very encouraging. 

In physically based animation, the task of synthesizing motion is accomplished 

in several steps. The first is to create a suitable geometric model of the artic-

ulated figure by defining the geometry of each link and its relation to the rest 

of the body. The second step is to supply physical parameters which include, 

mass, centre of mass and moment of inertia for each link. The third step is to 

define control parameters that will determine the necessary force/torque func-

tion which will bring about the desired motion. In the fourth step the equations 

of motion are assembled and solved using numerical techniques to obtain the 

position of the object over time. In the last step, individual images (frames) are 

rendered. 

Currently there are two approaches in physically based animation. They typ-

ically trade off computational work for autonomy of movement versus manual 

work for controllability of movement. 

The method of space-time constraints [108] and space-time windows [20] belongs 

to the first category It poses the motion control problem in terms of trajectory 

through space and time which is subject to the constraints of physics and the 

constraints of the desired motion. This approach has close ties to keyframing. 

The second approach involves creating a controller which produces motion by 

directly supplying actuating forces and torques [101, 81, 49]. A parameterized 

controller results in a compact representation of motion. The controller is typ-

ically synthesised by searching in the multi-dimensional parameter space of 
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urally specified in the form of desirable set of motion feature values. 

Further, with a given motion feature vector as input, the actual 

desired movement can be automatically synthesized by the use of 

appropriate optimization based search procedures in the space of 

motion controllers. 

It is important to note two aspects of the problem of searching for an optimal 

controller for a specific movement by an articulated figure: 

o. The search space is large and multimodal. The number of locally optimal 

solutions far exceeds the useful solutions which typically occupy small 

portions of the search space. 

o The search space may be discontinuous. Small changes in the control 

parameter values may lead to a large change in the fitness value. 

As a consequence motion synthesis for articulated figure is compute intensive 

and needs efficient implementations. 

Implementation and experiments 

As part of this research a fairly elaborate implementation has been carried out 

to substantiate the above thesis. The implementation enables us to test out the 

automatic synthesis of motion for planar articulated bodies by specifying desir-

able feature values from a predefined set of motion features. The automatically 

synthesized motion is played back in real time on the computer display screen. 

Our implemenation includes the following: 

1. accepts geometric definitions of an articulated body 

2. models the ground and interaction with the ground 

3. formulates equations of motion 

4. simulates the motion for a given set of controller parameters 



5. uses the desired feature values and constructs the fitness function that 

is used by a genetic algorithm to search for the optimal controller in the 

controller space. 

Figure 0.2 shows an overview of the different components of our system. 

Since the entire process is very demanding on computer time, the search process 

has been parallelized to run on a network of CPUs. The overall performance 

and the synthesized movements are extremely encouraging. 

Thesis Organization Chapter 1 is a brief introduction to the main goal 

of all computer animation — the synthesis of motion of virtual objects/creatures 
S  moving and interacting in virtual environments. The importance of physical 

correctness and realism in synthesized motion is clearly brought out. The 

chapter includes a small comparative analysis of the approaches to the study 

of motion in computer animation and in other discipline like Robotics, Biome-

chanics, Artificial life and Mechanical simulations. It also gives an overview 

of the different approaches to the automatic synthesis of physically correct mo-

tions, the problems present in these approaches and the solution methodology 

proposed by us. 

Chapter 2 is a comprehensive review of all known methods in computer ani-

mation for generating animated sequences involving articulated figures. Both 

kinematics and dynamics based techniques are discussed. The various ap-

proaches being pursued for the automatic synthesis of physically based motion 

are presented and motion synthesis through the automatic generation of opti-

mal motion controllers is identified as the most promising approach to date. 

In chapter 3 we discuss in detail all major aspects of optimization techniques as 

applicable to the motion synthesis problem. The aspects provide a framework 

along multiple dimensions like search space, task goal, constraints, dynamics 

simulation, and search algorithm, which enables us to concisely review the 

existing optimization methods and also any new developments that may take 

place in the future in this optimal motion search area. 

Chapter 4 describes the importance of external object interaction in the move- 
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ment of an articulated figure. Basically all external interaction results in forces 

and torques that get applied to the moving figure. Collision forces are specif-

ically the most important amongst these. The chapter reviews the collision 

detection and collision response problem and strategies in use for finding so-

lutions to these problems. The different types of contact or collision like the 

colliding contact or the resting contact and methods for handling these are also 

reviewed. Finally the difficulties of modelling frictional contact are presented. 

Chapter 5 addresses the primary thesis of our research — the automatic synthe-

sis of motion through the specification of features. To begin with, we introduce 

the notion of motion features and formulate their specification as computable 

functions that take complete motions as their arguments. We formulate the 

performance metric that uses these feature values. The performance metric 

formulation is such that its value is optimal when the motion, has the specified 

features. Choosing the domain of gaits of legged creatures — a topic very well 

studied in different disciplines — we define a set of motion features that could 

be specified by an animator to obtain different kinds of gaits. 

Chapter 6 describes our implementation and also the results from the different 

experiments that we conducted for synthesizing different kinds of movements 

for virtual legged creatures. As part of our research we have created an in-

tegrated simulation environment. The overall architecture and the different 

components that make up this environment such as the physical, geometric 

and feature model, the simulator and controller synthesizer are briefly de-

scribed. Since the total computational effort involved in the motion synthesis 

task is excessive, we have parallelized the search process. This chapter also 

describes this parallel global optimal search algorithm based on evolutionary 

programming (a type of genetic algorithm), known as the stochastic population 

hill climbing (SPHC) algorithm. The parallel SPHC has been implemented us-

ing the parallel virtual machine (PVM) system. Finally the chapter describes 

in detail the structure of 3 virtual creatures (a single legged creature and 2 

two-legged creatures), and the results of our experiments in automatically syn-

thesising different types of gaits for these virtual creatures by the method of 

motion feature specification. 



Figures 0.3-0.5 shows some animation sequences synthesized using our imple-

mentation. 

Figure 0.3: Mr. Luxo, a lamp like creature hopping 

Figure 0.4: Mr. Pogo, a dog like creature walking 

Figure 0.5: Mr. Walker, a human like creature walking 

Chapter 7, the last chapter of our thesis analyses three major aspects of our 

work. The basic approach to solving the problem of motion synthesis, the spe-

cific solution methodology proposed in this research and the implementation 

and experiments carried out by us. Specifically the chapter highlights the sig-

nificant contributions, some deficiencies/limitations, future extensions possible 

and some open problems in this area. 
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Chapter 1 

Entroduction 

The movement of objects in this world has always fascinated mankind; whether 

it is the movement of a planet, the flight of a ball or the walk of a living creature. 

For centuries, philosophers, physicists and mathematicians have all attempted 

to study and theorize the motion of objects in the world. Thus the science of 

mechanics concerned with the motion and equilibrium of masses is that branch 

of physics which is at once the oldest and also the most fundamental, and is 

therefore treated as introductory to other departments of physics. It was not 

however until the 17th century, that a robust set of physical principles were 

put forward to explain the mechanics of everyday objects, when Issac Newton 

published his three laws of motion (in Principia) in 1687. Newtonian physics 

has been one of the grand success stories of science. The Newtonian paradigm 

has maintained its utility till date despite stunning conceptual advances from 

relativistic and quantum physics developed by Einstein and others. The study 

of Newtonian dynamics is no longer an active area of research in physics. In- 
4  stead, research efforts have branched into newer disciplines such as robotics, 

biomechanics, physically based computer animation, and artificial life. Phys-

ically based computer animation is the primary area of focus in our research. 

However, we also briefly describe in this chapter the distinct emphasis that 

some of the other disciplines have in their study of motion. Developments in 

all these fields are bound to find application in computer animation as well! 



• 

• 

• 

1.1 Computer Animation 

The primary purpose of a computer animation system is to provide assistance 

to the human animator in synthesizing the movement of an object such that 

the resulting motion appears physically correct (for example, say, obeys gravi-

tational laws)', unless explicitly intended otherwise, and also conforms to the 

animator's goals. These goals depend on the story sequence being narrated 

through the animated object. If the object being animated is an autonomous 

character (representative of a living creature that can generate its own forces 

to bring about its movement) then the resulting motion should not only be 

physically correct, but also appear realistic 2  and natural 3 . A walk should look 

like a walk and be different from a hop or a run. 

Typically the autonomous character is modelled as an articulated body com-

posed of links that are connected to each other via joints. These joints have 

associated actuators that generate all the internal torques which along with 

external forces like gravity, reaction, friction etc. are used by living creatures 

to bring about the desired motion. While in real life the limbs are usually 

flexible, for simplicity, in most computer simulations the links are considered 

as being rigid. 

Movement or motion is a dynamic phenomena — it involves change in shape 

and spatial configuration of an object over time. Most often, in digital sim-

ulations the shape of an object is defined geometrically. Shape being such a 

fundamental attribute of physical objects in the world, it has been researched 

extensively and the field of geometric modelling and design has evolved almost 

as an independent discipline [76]. If the shape of the object surface changes 

over time due to effects of say, forces, then these are referred to as deformable 

bodies, otherwise as rigid bodies. 

'More specifically, moves in accordance with Newton's laws of motion 

2The forces being applied are as they would be in a real world situation 
3Appears similar to the same type of movement performed in nature by an actual living 

creature of the same kind. 
Is 



While there is considerable ongoing research on deformable objects [96, 73], 

our research is primarily concerned with the movement of rigid bodies linked 

together, referred to as articulated bodies, and which deform only by changing 

the joint angles. 

The movement in animation is really just an illusion, made possible because of 

the biological phenomenon of persistence of vision. A series of images slightly 

differing from each other are shown in rapid succession. The eye/mind blends 

them together to result in the visual illusion of movement or change. Typi-

cally 24 or 30 frames (images) per second are shown. Animation is primarily 

concerned with motion synthesis, which is the creation/presentation of these 

images at discrete times. Strictly speaking therefore it does not mandate the 

modelling of continuous time varying motion. However, in computer anima-

tion we find it convenient to model motion as a continuous function of time. 

This function is then appropriately sampled in order to generate the individual 

frames showing spatial configurations of the creature(s). 

The spatial configuration of an object is defined geometrically. A simple object 

like a pen is completely defined by the position of a single point on its body say 

(xv , y„, zi,) and its orientation (Or , Oy ,O,,) in three dimensional space. Degrees of 

Freedom (DoFs) constitute the minimal set of parameters needed to completely 

specify the configuration of a body in space. Degrees of Freedom are also known 

as generalized coordinates. Thus the spatial configuration of the pen in 3D has 

6 DoFs. With just 6 parameters, the pen can be moved to any desired point and 

oriented in any desired direction in space. Depending on the number of links, 

joint types etc., an articulated body would have many more DoFs. Consider for 

example the planar articulated body with 3 links and 2 rotary joints as shown 

in Figure 1.1. This simple body has 5 degrees of freedom. Human bodies are 

amongst the most complicated of articulated bodies, with about 200 degrees 

of freedom [110]. A universally accepted convention is to consider degrees of 

freedom as constituting a vector and to use vector notation say X, to denote the 

spatial configuration of a body. Hence the motion of the body over a time period 

T would be denoted by X(t), 0 < t < T. This is also referred to as the trajectory. 
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Figure 1.1: A planar articulated body with three links and two rotary joints 

A simple definition of the motion synthesis problem is thus as follows: 

Given 

• the geometry of an articulated body say X, 

• a desired type of movement say, walk, and 

• a time period T, 

determine X(t), 0 < t < T. 

The above definition hides the enormous underlying complexity in this prob-

lem. Certainly physics is involved; gravitational and other forces have to be 

considered. The movement of a pen pushed from a table of height of say, four 

feet from the ground is not arbitrary but completely determined by the prop-

erties associated with the pen, such as its mass, moment of inertia, coefficient 

of restitution etc. and the initial force applied. Animators take years before 

they acquire the necessary skills to predict the spatial configuration of objects 

at any time instance for generating a specific movement. For living creatures, 

which bring about their own motion through internally generated forces and 

interaction with environmental objects like the wall or the ground, the motion 

synthesis problem becomes orders of magnitude more complex. It is only in very 

recent times with easy availability of computing power that motion synthesis 

tasks of such complexity are being undertaken [54]. 
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There is another view to the motion synthesis problem. All possible motion 

paths for a given character can be considered as forming a space of trajectories. 

And the problem of synthesizing a particular motion can be viewed as that of 

searching for a suitable trajectory in that space. The trajectory that is finally 

selected must satisfy all the physical requirements and also the animator's 

goals. Consider the example of synthesizing the trajectory of the pen pushed 

from the table. ( cf Figure 1.2.) From the space of trajectories that specific 
............. 
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Figure 1.2: Some possible trajectories for a pen pushed off a table 

trajectory has to be chosen which accelerates as determined by the initial force 

and also by the gravitational force acting on it. Search for this kind of trajec-

tory is comparatively simple and can be totally automated using what are being 

called as physically based animation techniques [10]. For autonomous articu-

lated figures however, the search problem gets extremely complex. Firstly the 

number of DoFs is very large. As a result the trajectory space is of very large 

dimension. Secondly, there is always built in task level redundancy, i.e any 

behavioural goal can be achieved in many different ways. Thus, for example, 

a cup of coffee might be reached while moving the hand along many different 

paths. Usually the search is cast as a non-linear constrained optimization prob-

lem. The physical laws, and physical and user specified constraints are to be 

satisfied while the animator's goals are in the form of an objective function that 

has to be optimized. 

Whatever may be the view, whether it is one of defining or creating a suitable 

trajectory or that of searching for the most suitable trajectory, the problem 

of synthesizing the movement of a virtual object or creature inhabiting and 

interacting with a virtual world consisting of other virtual objects or creatures 

remains the fundamental problem of computer animation. All research in 

computer animation is thus oriented towards new techniques that will enable 



the development of software tools that will assist the animator in synthesizing 

different movements for different types of objects/creatures. Over the years a 

variety of techniques have evolved, ranging from providing the animator with 

simple tools for interactive drafting, painting and trajectory interpolation to 

the very highly sophisticated tools, that enable embedding of complex motion 

behaviour into the virtual object or creature. The focus has completely shifted 

from simple transformation based movements of single or groups of objects [78] 

to the complex movement of legged creatures [33, 87]. 

While in chapter 2 we shall present a more detailed and comprehensive review 

of the current state of the art in motion synthesis for articulated figures, below, 

we briefly describe a number of other disciplines in which motion synthesis is 

of concern. 

Robotics 

The construction of autonomous legged robots is one of the goals of robotics. 

This involves creating systems that can sense their environment and can travel 

in a obstacle filled environment. The' two central issues that are of importance 

in robotics are that of motion planning and motion control. Motion planning 

[66] is typically treated as a geometric problem of obstacle avoidance where as 

motion control . [14, 86, 68] involves design of a control system. 

Biomechanics 

Biomechanics is the study of the mechanical bases of biological activity [106, 

107]. One of the primary goals of biomechanics is to understand the mech-

anisms in human locomotion so that it is possible to have a better design of 

prosthesis for disabled persons. In this and other areas dealing with human 

limbs and their substitutes, a consensus is that the end (artificial) products 

should duplicate the performance of their biological counter parts as closely as 
r. 	

possible. 



Artificial life 

In Artificial life, the goal is to mimic the behaviour of living systems in silico 

[62,. 104]. Instead of trying to simply duplicate the effects of living systems, 

artificial life researchers attempt to build these behaviours from bottom-up, 

much in the style that nature itself does. A typical artificial life approach 

begins with biological behaviour such as reproduction, evolution and locomotion 

and attempts to extract simple logical rules behind that behaviour. Many 

of the simulated creatures are defined by compact code, which subsequently 

determines the creatures behaviour when placed in an environment. Most 

creatures being experimented with are still too simple. 

Mechanical Simulations 

For years, dynamic analysis [82, 42] programs such as DADS and ADAMS 

have incorporated graphical post-processors capable of displaying the motion 

of simplified models. The major benefit of such programs is that they allow 

the designer to quickly build an electronic prototype and test it to see how 

the moving parts will function in the real physical world. The recent work by 

Hodgins et. al [49] is one similar such application. They have applied dynamic 

simulation to a platform diver to study how changes in technique can affect the 

diver's performance. Through motion simulation they could visualize what a 

dive might have looked like if the athlete had opened up earlier or later, or had 

left the diving platform differently. 

1.2 A Relative Comparison of Motion Synthesis Studies 

As can be seen from the brief descriptions of the different disciplines above, it 

is clear that motion synthesis is also a problem of interest in disciplines other 

than computer animation. While there are similarities in the studies, there are 

some fundamental and major differences in problem scope, research traditions 

and practical requirements. We elaborate on this in detail below. 



Motion synthesis in artificial life is the closest to that in computer animation. 

In both areas virtual creatures have to interact and move in virtual worlds. 

However the emphasis in artificial life is on embedding mechanisms that en-

able learning of locomotion behaviour, and this along with all other kinds of 

performance behaviours. As of today, in this field movement goals are sim-

ple and are essentially self determined by the virtual creatures rather than 

imposed externally as done by animator. Real-time movement and response 

to collisions in the environment are additional constraints that make it very 

difficult at this stage to consider the embedding of highly complex external goal 

oriented motion behaviour. In the present state of art, the kinds of movements 

being synthesized are extremely simple as compared to what is desired for an-

imated creatures. Moreover there is no requirement that the movements of 

these artificial creatures must appear realistic or natural. 

Mechanical simulations, Biomechanics and Robotics are all concerned with the 

motion of real physical objects. Mechanical simulations deal with the motion 

of rigid linkages primarily towards understanding/analyzing their motion be-

haviour under different load conditions. There is certainly no explicit concern 

in any way to have these linkages represent, the limb structures of living crea-

tures, though there have been some specific efforts towards simulating very 

specific movements like walking, hopping and diving. Biomechanics, while it 

is concerned with the motion behaviour of living creatures, is really concerned 

primarily at the individual limb and muscle level. 

Motion planning and control in robotics once again comes rather close to motion 

synthesis in computer animation. There are however significant differences. 

In particular 

1. The robot's linkage structure is physically real and it inhabits, interacts 

and moves in a real world. Unlike in computer animation, no idealized 

simplification is possible either for the parts of the robot or for the objects 

in the environment. Actuator forces, external interactions like collision 

and external forces like gravity, friction, reaction etc. are all real. As 

such, robots inhabit a very much more complex world than their virtual 
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counterparts in computer animation. 

2. On the other hand physical correctness is built in. A robot will not move 

t- 

 through a wall, nor can its motion trajectories be not in accordance with 

the laws of physics. As such classical motion planning in robotics eschews 

physics totally. Since physical realisability of the synthesized motion is 

usually not of concern, the emphasis in robot motion synthesis is on ob-

stacle avoidance, treated more as a geometric problem. Such an approach 

is clearly not appropriate for motion synthesis in computer animation. 

3. An animated sequence may involve several characters with novel physical 

characteristics. Thus an animator would need to rapidly synthesize a 

„a 
 variety of complex motions for one character and for many characters 

with different physical attributes. Where as current studies in robotics 

are primarily concerned with a single robot or a class of robots with similar 

physical attributes. 

4. An autonomous robot must be able to synthesize its motion trajectory inde-

pendently. This is especially challenging in obstacle filled environments. 

In contrast an animator can afford to build up a character's motion trajec-

tory piecemeal, concatenating a sequence - of trajectories to obtain a final 

complex motion that avoids obstacles and behaves in conformance with the 

interaction with objects in the virtual world. Basically the animator and 

the computer can carry out the motion synthesis task in a collaborative 

manner. 

5. Finally, in robotics real-time response is essential, and this puts very 

heavy demands on the computational resources that have to be built in. 

On the other hand in computer animation the synthesized motion is played 

back and has only to appear physically correct, realistic and natural. Com-

putations taking time of the order of a few hours or days for synthesizing 

the motion of a few seconds are quite acceptable. There are no inherent 

demands on the kind of computing power that needs to be available. Also 

while physical correctness is a goal, appearance is more important and 

slight deviations not noticeable to humans can easily be permitted. 
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1.3 The Physical Basis in Motion Synthesis 

Initial computer animation research can be dated back to early 1960's. The 

approach was purely geometric in nature. The responsibility lay entirely with 

the animator for the resulting motion to look physically correct, realistic and 

natural. The demands of physically correct behaviour had to be understood 

and imposed explicitly by the animator. Interactive tools were made available 

to assist in this task so that the animator could rapidly alter the synthesized 

motion at a local or global level and rapidly make the necessary number of 

trials before choosing the final trajectory for the object or character. By the 

late 1980's however, researchers working in the field of computer animation 

were convinced that if the animation has to look realistic, the physics behind 

the motion has to be taken into account and thus physically based animation 

was introduced. This is typically done by augmenting the traditional geometric 

model to include other physical characteristics that computers can use to com-

pute motion. These physical characteristics are mass of the body, its moment of 

inertia, external forces such as gravity, friction etc. Interaction with other ob-

jects in the environment and resulting behaviour is also modelled and a variety 

of collision detection and collision response techniques have evolved [53]. The 

idea is to incorporate appropriate physical- complekity and realistic behaviour 

into the model itself, rather than imposing it on the animator. Initial results on 

incorporation of physics to produce realistic movements were very encouraging 

[3, 105, 52]. 

However, this is not without problems. As.we shall see later in chapter 2, the 

specification of forces and torques to produce any desired motion is non-intuitive 

and certainly non-trivial. Further, once time varying forces and torques are 

specified, the motion is completely determined and is autonomous, and not any 

more under the control of the animator. Thus incorporation of physics into the 

model results into loss of fine control that an animator always needs to have 

over the generated motion. A number of techniques have therefore evolved to 

accept control specifications for desired motion in a more indirect manner but 

with adequate automatic methods built in for deriving the forces and torques 

that need to be applied [108, 100, 81, 38]. 
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Thus in physically based animation today, the task of synthesizing motion is 

accomplished in several steps. These are listed below. 

1. Create a suitable geometric model of the articulated figure by defining the 

geometry of each link and its relation to the rest of the body. 
( 

2. Supply physical parameters which include, mass, centre of mass and mo-

ment of inertia for each link. 

• 	 3. Define control parameters that will enable automatic determination of 

necessary forces and torques which will bring about the desired motion. 

4. Assemble the equations of motion and solve them using numerical tech-

niques to obtain the position of the object over time. 

5. Render the individual images (frames). 

Of the five steps, except for the third, all others are very well studied and 

excellent working solutions exists [22, 29]. Step 3 however poses rather difficult 

problems. 

Currently available methods trade off manual work for controllability versus 

autonomy for physical correctness. For example, there are methods to control 

at a low-level by interpolation of poses with adherence to physical constraints 

[15, 108]. There are also methods that expect only high level goal specification 

such as "Jump as high as possible" or "Walk as fast as possible" [81, 100]. 

Most of these problems are highly under constrained and use some kind of 

optimization in order to find a solution. Here, a critical problem lies in the 

specification of the performance metric. Performance metrics are very indirect 

ways of specifying motions and lack any immediate intuitive associations with 

the desired motions. 

Typical performance metrics used are like minimization of external energy, or 

travel maximum distance etc. To associate such metrices with desired motions 

such as walk, jump, hop etc. is not very straight forward and involves lot of 

trial and error. As a result, physically based animation is still in the research 
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laboratories. Animators find it more convenient to use purely geometry based 

techniques taking full responsibility for physical correctness and realism, while 

keeping precise control over the synthesized motion. This is of course at the ex-

pense of the considerable manual efforts that the animator has to put in. What 

is really needed are high level physically based motion synthesis techniques 

that require specifications which are easy, highly intuitive and at the same 

time enable the animator to have any desired level of control over the gener-

ated motion. In short, more the automation the better it is, provided complete 

control is in the hands of the animator. This research has primarily addressed 

this problem and has pi-oposed an innovative and implementable methodology 

based on the use of motion features. 

1.4 Thesis Statement 

The different types of movements that we see in the real world have their 

own distinct attributes or features that uniquely characterize them. A run is 

different from a walk; which is different from a jump For example in a walk 

at least one foot is always on the ground at any time; where as in a jump 

both feet can be away from the ground. Similarly its duty cycle, maximum 

height from the ground and so many other attributes are different from that 

of a jump. We refer to these distinguishing attributes as motion features. 

Clearly, we humans are capable of recognizing motion features that enable us 

to distinguish amongst different types of movements. 

Mathematically speaking we represent a motion by the use of a feature vector 

f = f2, • • where fl , f2, • .. , fn  are the n individual features. Each fea-

ture is a computable function which when applied to the given motion returns 

a numerical value(s). Thus for a given motion X(t), fi(X(t)), 0 < t < T denotes 

the ith feature value. The set of motion features forms a feature space. In 

feature space, motions of the same kind and for the same body cluster together. 

Different kinds of motion result in different clusters and these clusters are 

separable. 

0 

• 
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Our main thesis can now be stated as follows: 

Motion features are quantifiable attributes of different types of move-

ments and enable distinguishing amongst them. The task of motion 

synthesis of active articulated bodies for computer animation is spec-

ified in the form of a desirable set of motion feature values. Further, 

with a given motion feature vector as input, the actual desired move-

ment can be automatically synthesized by the use of appropriate 

optimization based global search procedures. 

As part of this research a fairly elaborate implementation has been carried out 

to substantiate the above thesis. Using this implementation we have carried 

out the automatic synthesis of motion for planar articulated bodies by spec-

ifying desirable feature values for a predefined set of motion features. The 

automatically synthesized motion is played back in real time on the computer 

display screen. Our implementation simulates the motion for a given set of con-

trol parameters and uses the desired feature values to analytically formulate 

the fitness function that is used by an evolutionary programming algorithm to 

search for the desired motion. 

Since the, entire process is very demanding on computer time, the search process 

has been parallelized to run on a network of CPUs resulting in considerably 

reduced elapsed times for searching. The synthesized movements appear highly 

realistic and natural and the overall performance is extremely encouraging. 

1.5 Thesis Organization 

Chapter 2 is a comprehensive review of known methods in computer anima-

tion for generating animated sequences involving articulated figures. Both 

kinematics and dynamics based techniques are discussed. The various ap-

proaches being pursued for the automatic synthesis of physically based motion 

are presented and motion synthesis through the automatic generation of opti-

mal motion controllers is identified as the most promising approach to date. 

In chapter 3 we discuss in detail all major aspects of optimization techniques as 
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applicable to the motion synthesis problem. The aspects provide a framework 

along multiple dimensions like search space, task goal, constraints, dynamics 

simulation, and search algorithm, which enables us to concisely review the 

existing optimization methods and also any new developments that may take 

place in the future in this optimal motion search area. 

Chapter 4 describes the importance of external object interaction in the move-

ment of an articulated figure. Basically all external interaction results in forces 

and torques that get applied to the moving figure. Collision forces are specif-

ically the most important amongst these. The chapter reviews the collision 

detection and collision response problem and strategies in use for finding so-

lutions to these problems. The different types of contact or collision like the 

colliding contact or the resting contact and methods for handling these are also 

reviewed. Finally the difficulties of modelling frictional contact are presented. 

Chapter 5 addresses the primary thesis of our research — the automatic synthe-

sis of motion through the specification of features. To begin with, we introduce 

the notion of motion features and formulate their specification as computable 

functions that take complete motions as their arguments. We formulate the 

performance metric that uses these feature values. The performance metric 

formulation is such that its value is optimal when the motion, has the specified 

features. Choosing the domain of gaits of legged creatures — a topic very well 

studied in different disciplines — we define a set of motion features that could 

be specified by an animator to obtain different kinds of gaits. 

Chapter 6 describes our implementation and also the results from the different 

experiments that we conducted for synthesizing different kinds of movements 

for virtual legged creatures. As part of our research we have created an in-

tegrated simulation environment. The overall architecture and the different 

components that make up this environment such as the physical, geometric 

and feature model, the simulator and controller synthesizer are briefly de-

scribed. Since the total computational effort involved in the motion synthesis 

task is excessive, we have parallelized the search process. This chapter also 

describes this parallel global optimal search algorithm based on evolutionary 
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programming (a type of genetic algorithm), known as the stochastic population 

hill climbing (SPHC) algorithm. The parallel SPHC has been implemented us-

ing the parallel virtual machine (PVM) system. Finally the chapter describes 

in detail the structure of 3 virtual creatures (a single legged creature and 2 

two-legged creatures), and the results of our experiments in automatically syn-

thesising different types of gaits for these virtual creatures by the method of 

motion feature specification. 

Chapter 7, the last chapter of our thesis analyses three major aspects of our 

work. The basic approach to solving the problem of motion synthesis, the 

specific solution methodology proposed in this research and the implementation 

and experiments carried out by us. Specifically the chapter highlights the 

significant contributions, some deficiencies or limitations, future extensions 

possible and some open problems in this area. 

t 
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Chapter 2 

Animation Techniques for 

Articulated Figures: A Review 

There are two basic approaches used in synthesizing the movements of articu-

lated figures. These are the kinematics and the dynamics based approaches. 

In the approach based on kinematics, we deal with motion without considera-

tion of mass and forces which cause motion. Within the science of kinematics we 

largely study the position, velocity, acceleration and all higher order derivatives 

of the position variables with respect to time. Thus the kinematics approach 

addresses all the geometrical and time based properties of the motion. Tradi-

tional computer graphics animation techniques are all based on the kinematics 

approach. The more important kinematic methods that have evolved for mo-

tion synthesis in computer animation are key-frame animation, direct user 

manipulation, geometric constraints and morphing. 

In the approach based on dynamics, we deal with motion based on mass, inertia 

etc. and under the influence of forces and torques, in accordance with Newton's 

laws of motion. For a collection of bodies, each body's motion is only due to the 

forces and torques acting directly on it; interaction between bodies is mediated 

by forces and torques. A fundamental requirement of the dynamics approach 

is the synthesis of force and torque functions required to cause any animator 
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desired motion. For example, in order to accelerate an articulated figure from 

rest, glide at constant velocity, and finally decelerate to a stop, a complex set 

of force and torque functions must be applied at the joints. The exact form 

of the required force or torque functions depends on the spatial and temporal 

attributes of the path taken by the figure; as well as the mass properties of 

the links, friction in the joints etc. Dynamic equations of motion are used to 

simulate the movement. This is done by reformulating the dynamic equations 

so that acceleration is computed as a function of force or torque. Dynamic 

equations of motion are also used in the derivation of these torque functions 

needed to cause the figure to follow a desired path. The dynamics approach in 

computer animation though relatively recent is being aggressively researched 

world wide by a large number of groups. This includes techniques such as direct 

force control, motion controllers, dynamic constraints, spacetime constraints 

and automatic motion controller synthesis. 

In the rest of this chapter we briefly discuss representation of articulated fig-

ures, trajectory computation, and forward kinematics computations. We then 

review all the important kinematics and dynamics based techniques listed 

above. 

2.1 Articulated Figure Representation 

The articulated figure is represented using a set of rigid links, arranged in a 

tree structure ( cf Figure 2.1). Each link of the body possesses one joint at 

which it is attached to its parent link and may possess one or more joints at 

which child links are attached. The links move relative to each other depending 

upon type of the joint. The type of joint present between adjacent links will 

determine the allowable number of DoFs between them. For example a pin 

joint will allow 1 DoF, cylindrical joint will allow 2 DoF, ball and socket joint 3 

DoF, etc. ( cf Figure 2.2). 
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Figure 2.1: Tree structured human like figure 

..< (a) (b) (c) 

Figure 2.2: (a) Pin joint with 1 DoF (b) Cylindrical joint with 2 DoF 

(c) Ball and socket joint with 3 DoF. 
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2.2 Trajectory Generation 

In animation we are always concerned with the location in time of each link of 

the articulated figure. This is the purpose of trajectory generation. A common 

way of causing a figure to move from one place to another in a smooth controlled 

fashion is to cause each joint to move as specified by a smooth function of time. 

Usually each joint starts and ends its motion at the same time so that the 

figure motion appears coordinated. Exactly how to compute these joint motion 

functions is the problem of trajectory generation. All animation techniques 

must finally produce these joint angle functions with respect to time defined for 

each of the joints of the articulated figure. These functions are then sampled, 
5  typically at the rate of 1/24th of a second or so, to obtain the individual frames 

of the figure that need to be rendered for playback. 

2.3 Forward Kinematic Computations 

The next basic problem is that of forward kinematics. This is the static geo-

metrical problem of computing the position and orientation of each of the links. 

This problem can be represented as 

X = T(G) 

where X represent the Cartesian coordinates and 0 represents the joint angles. 

This can also be thought of as transforming the representation from a joint 

space to a Cartesian space. This is typically done using Denavit-Hartenberg 

(DH) [25] notation. 

According to DH notation, kinematics of each link is described relative to its 

neighbor by attaching a coordinate frame to each link ( cf Figure 2.3). The 

representation uses a set of four parameters that are used to define a linear 

transformation matrix between adjacent coordinate systems. The four param-

eters are the length of the link a, the twist of the link a, the distance between 

links d, and the angle between links O. The transformation between link i — 1 
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Figure 2.3: Geometric relation between two links, DH notation 
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and link i ( cf Figure 2.3) is defined by 

cos Oi 	— sin 0i 	0 	ai_i 

sin 0i  cos ai_i cos 0i  cos 	— sin 	—sinai_ idi  

sin 0i  sin ai_i cos 0i  sin ai_i cos ai_ 1 	cos 04_ 1 di  

0 	 0 	0 	1 

Though the general transformation matrix looks quite complicated, in practice, 

if we consider only one or two types of joints, the matrix gets considerably 

simplified. For example, if we consider only planar articulated figures with 

rotary joints, then ai  = 0 and di  = 0. 

. If an articulated figure's position at any instant of time is given by a set of joint 

angles O = (01, 02, ... On), the computation of the figure's position in the world 

coordinate system is done in a straight forward manner by applying successive 

matrix multiplications between adjacent links, starting at the base of the link. 

Each link is transformed from its own coordinates to the world coordinate space. 

2.4 Kinematics Based Animation 

2.4.1 Key-frame Animation 

One of the earliest and simplest kinematic method is the key-frame animation 

technique derived directly from the manual cel based method. The cel based 

method is basically for 2D animation. Flat images are hand-drawn and painted 

one character at a time on transparent sheets known as cels. Foreground and 

background parts of the image are on separate cels. Each image of an animation 

sequence is then composed by stacking the cels in the required order so that 

foreground objects and characters are overlaid over background cels. While this 

is very time consuming, cel animation has produced spectacular results. Any 

animated Disney film is a fine example of this. Increasingly computer graphics 

techniques are used for improving the sketching, inking and colouring process 

in cel animation. 

In the key-frame system, the animator need not describe each frame. Instead 

the animator describes a set of "key-frames" from which the animation system 

iTi_i = 
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Keyframe 1 
	 Keyframe 2 

Figure 2.4: Length distortion due to linear interpolation between key-frames 

can geometrically interpolate each DoF, to obtain the parameter values for each 

in between frame. Linear interpolation is very easy to implement but may lead 

to distortion ( cf Figure 2.4) and jerky motion due to velocity discontinuities at 

the key-frames. There are more sophisticated methods based on splines which 

make use of cubic or higher order interpolation to generate smoother motion 

[60, 90, 94]. 

2.4.2 Direct User Manipulation 

The major problem with key-frame animation is that, for articulated objects 

having large number of DoFs, specifying the key-frames is very tedious. For 

example, consider the motion specification problem of an articulated object such 

as a human or an animal. For a reasonably detailed figure with 30 DoFs, a 

minute of animation with a key-frame every quarter of a second, would require 

approximately eight thousand values to be specified. 

In the key-frame animation technique each DoF is independently interpolated. 

Coordinated movement of links is entirely the responsibility of the animator. 

The motor control program technique suggested by Zeltzer [109] to overcome 

this problem is one of the early kinematic methods in which the joint angle 

variation function is directly specified for each joint of the articulated figure. No 
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interpolation is involved. Instead a procedure referred to as a motor program is 

associated with each joint of the figure. Motor programs use hierarchical control 

structures for coordinated movement among several joints in a limb. One motor 

program can thus control several DoFs. However, its main disadvantage is that 

the entire motion has to be preprogrammed. There is no assistance provided 

by the system to formulate these motor programs. Embedding complex motion 

behaviours in the form of motor programs is extremely difficult. 

2.4.3 Inverse Kinematics 

Another very popular method to reduce the number of parameters that an 

animator has to specify is using inverse kinematics. Inverse kinematics takes 

advantage of the fact that we are often interested in only the end position 

and orientation of an articulated chain. For example the end of a limb may 

be required to be moved to a specific position. Since we know the goal to 

be achieved, we can, in effect apply functional constraints so that arm and 

hand linkages can be controlled with fewer parameters. The inverse kinematic 

methods try to determine the sequence of intermediate joint angles that will 

place the limb in the correct position. The inverse kinematics problem can 

be stated as that of finding the joint angles O of the links given the position 

and orientation of the last link X. Given that animals have many degrees of 

freedom, the problem of finding the joint angles that correspond to a given limb 

location and orientation does not have a unique solution. Figure 2.5 shows one 

example of this. 

Typically inverse problems are solved by optimization [55]. The system is 

constrained sufficiently such that the number of possible configurations are 

reduced. For example, one such form of constraint is a limit on the range 

of angles that a joint can move. For multiple constraints, where it may not 

be possible to satisfy exactly all the constraints, Badler et al. [6] attempt to 

minimize the deviation from these multiple constraints or goals by assigning 

weights that act as priorities for goals. They use a tree structure in which 

the nodes are goals and balancing the tree is equivalent to minimizing the 
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Figure 2.5: Three-link figure (dashed lines indicate a second solution) 

total deviation from all the goals. Similarly, Girad [34] has used dynamic 

programming to reparametrize the trajectory with respect to time under the 

optimization criteria of jerkiness minimization to create a smooth motion. As 

we said earlier, the problem with inverse kinematics is that many a times the 

solution is not well defined and optimization methods have to be used. 

2.4.4 Morphing 

The last few years have seen a very rapid increase of the use of synthetic 

3D characters in animation films. These synthetic characters, ranging from 

snakes, dinosaurs to human figures, interact and move in a 3D world. Each 

image frame is photorealistically rendered. One of the main requirements in 

such 3D animation is, therefore deformation of the shape of a 3D character as 

it moves. As such all the above kinematic techniques are extremely difficult 

to use for this kind of 3D animation. The most popular kinematic technique 

in use for such animation is morphing. Morphing in some sense is very sim-

ilar to key-frame animation. In morphing, the animator has to compute the 

in-between frames to do a metamorphosis between two different objects. It 

basically involves altering the surface description of one object to map into 

other. The objects involved may be very similar in type, for example people's 

faces, (all faces have the same components) or they may be as different as cube 

and a sphere. In cases of similar topology, the morphing will be point to point 
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mapping of some type of mesh created on the surface of each object. When 

using morphing for synthesizing movement of a synthetic character, mesh level 

interpolation is done between two poses of the same character. For realistic 

and smooth movement effects, these poses have to be chosen very carefully. 

Usually a very large number of poses are needed for articulated figures with 

large number of DoFs. This is extremely tedious and time consuming. 

2.5 Drawbacks of Kinematics Methods 

The major strength and also the problem of the kinematic approaches, particu-

larly key-frame and morphing is that the methods give complete control to the 

animator over the synthesized motion. The animator as a result is usually very 

comfortable with these techniques and that largely explains their popularity 

to date, in spite of the fact that the amount of effort and data needed for using 

these methods is enormous. The problem with an animator having this kind 

of complete control over the trajectory is that an animator can produce motion 

that is physically unrealizable. Hence the attributes of physical correctness, 

realism and natural appearance have all singularly to be the concern of the an-

imator. Thus these techniques require extremely skilled animators, who over 

years of observation and practice have understood the time and physical com-

plexity of motion and are able to translate that into the computational model 

of interpolated key-frame images. As a result complex 3D animation is inor-

dinately expensive and attempted only by few. And very often, key-framed or 

morphed animation tends to look unrealistic and puppet like. 

In spite of these drawbacks some of the best animations today are results of 

these kinematic techniques. Motion capture devices are flooding the market. 

Real life motion is enacted and a large number of different types of sensors are 

attached to the body of the real character and the motion trajectories of all the 

important parts are digitally recorded. This recorded motion is then applied 

brute force to the synthetic character after some simple local manipulations 

that may be necessary. While these methods have been used for some very 

spectacular 2D animation, simpler, less labour intensive and more efficient 
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methods are essential if 3D animation has to be widely used 1  . 

2.6 Dynamics Based Animation 

In animation methods based on dynamics, the traditional geometric models are 

augmented to include other physical characteristics that computers can use 

to compute motion. These physical characteristics are mass of the body, its 

moment of inertia, external forces such as gravity, friction etc. Of course the 

added realism is not free, it is at the cost of increased computational complexity. 

In physically based animation, the object's behaviour over time is modelled as 

a continuous function determined by the equations of motion. The individual 

frames are generated by sampling this function at an appropriate rate. This is 

known as forward dynamics simulation. Forces and torques are the main agents 

which bring about the motion. There are a number of methods to formulate and 

solve the equations of motion. We shall discuss some of these methods in detail 

in chapter 3. Synthesizing motion using any dynamic based method implies an 

underlying method that generates the forces and torques as functions of time 

that need to be applied for obtaining the desired movements of objects. Once 

these force and torque functions are derived then all further stages of formulat-

ing the differential equations of motion and then solving them for simulation is 

rather straight forward. However, the problem of composing the right force or 

1While computer imaging is considered an indispensable production tool for all Hollywood 

films today, it should be recognized that much of the use of this technology is not for animation 

but for imaging effects with titles and other static imagery. The advertising and publicity that 

is usually associated with films that have used some computer animation might tempt one to 

believe that 3D character animation is used extensively and hence is now only an issue of using 

the right technology. On the contrary, even in the most spectacular examples of digitally created 

cinematic imagery to date i.e Terminator 2, Jurassic park, Apollo 13 and Casper to name a 

few, the computer generated sequences make but a fraction of the running time (ranging from 

6 minutes in Jurassic park to about 40 minutes in Casper). The only film that has 100% 3D 

character animation is the new film, Toy story, which has a running time of about 77 minutes. 

The film made extensive use of motion capture and 3D morphing. The software required is said 

to have consumed 300 Mbytes per frame, produced by 117 Sun SPARC 20s, took four years to 

make and required 800,000 machine hours just to produce the final cut [91]. 
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torque functions in the presence of external forces like gravity, friction, reaction 

from collisions etc. so  as to result in a movement that achieves a coordinated 

goal or expresses a certain desired quality of movement is an extremely difficult 

one. All the different dynamics based methods being developed are essentially 

trying to solve this problem so that an animator can easily provide the right 

specifications to obtain the right torque or force functions. 

2.6.1 Explicit Force and Torque Specification 

Some of the early dynamics based methods were rather simple. The animator 

was expected to directly specify the forces or torques that need to be applied 

at individual joints as functions of time. These functions were then used to 

simulate the motion of the object(s). The resulting motion was viewed by the 

animator and then the force or torque functions had to be manually tuned in 

an iterative manner until the force torque functions resulting in the desired 

motion were obtained. This explicit control gives physically correct trajectories, 

but the level of automation is low. Too much of effort is required to discover and 

refine acceptable motion. This is primarily because force or torque functions, 

unlike trajectory functions, are completely non-intuitive and hence unnatural 

to specify directly. The indirection is introduced by the differential equations 

of motion and even physicists deeply involved in the study of dynamics would 

find specification of these force or torque functions for a desired motion not at 

all a simple task. Animators who are more artists than physicist or engineers 

thus normally find this form of specification not only unnatural but also very 

inconvenient and difficult. This becomes quite obvious when we consider the 

nature of the force function that needs to be applied for making, say, a dog like 

creature walk on the ground. Figure 2.6 shows the torque function that has to 

be applied to joint labeled 4. 

Yet another aspect of the movement of active bodies that makes this method 

of explicit specification of force or torque functions extremely complex is as 

follows: 

living creatures make use of external forces resulting from interaction in order 
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Figure 2.6: Sample torque at a joint for a walking dog like creature 

to locomote themselves. These external forces are in fact essential. It is not 

possible to walk without interacting with the floor and the friction and reaction 

forces generated when the feet collide with the floor. Certainly a more automatic 

method of deriving such force or torque functions is essential 

2.6.2 Motion Controllers 

In the last few years the notion of motion controllers has been introduced for 

parameterizing force or torque functions in a more compact and convenient 

manner. A motion controller provides a higher level description of motion than 

force or torque functions. ( cf Figure 2.7). The task of the motion controller 

Forces 
 Torques 

        

 

Simulator 

    

Graphics 
Display 

 

      

        

        

Figure 2.7: Function of a controller 

is to produce the necessary forces or torques that in turn will generate the de-

sired motion. A variety of different representations have been evolved for these 

motion controllers and we shall describe them shortly. All motion controllers, 

however are essentially finite state machines, which have to be executed in 

order to generate force or torque functions of time. Thus the problem of speci-

fying a continuous force or torque function is transformed to that of specifying 
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static states and state transitions rules for the motion controller. Apart from 

providing a compact and static parameterization of the force or torque func-

tions, motion controllers have the additional advantage that smoothness in the 

variation of force or torque can also be built in. 

This is done by associating actuators with the joints of the articulated figure. 

Actuators convert stored energy into time varying forces or torques. Typical 

example of actuators are springs and muscles. The actuator modelled as a 

spring and damper system is one of the simplest compliant actuator. It consists 

of a spring and damper mechanism in which a torsional spring attached between 

two links applies a torque on the adjacent links according to the proportional 

derivative (PD) control law: 

T = kp(0 d — 0) — e 

where kp  is the spring constant, lc„ is the damper constant, 0 and e are the 

current angle and the angular velocity respectively and 8d is the rest angle 

(equilibrium position) of the spring. ( cf figure 2.8) The values of k p  and lct, 

0 
d 

= 1CP(8 d 0) — k v e 

Figure 2.8: Actuator modelling spring and damper mechanism 

are typically chosen such that the mechanism is critically damped. A critically 

damped system is one that when disturbed will most rapidly return to equilib- 

rium position. Such a system acts to control the angular position, in that, if 
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Figure 2.9: Biomechanical actuator 

the current angle is different from the equilibrium angle, the spring will apply 

a torque on the adjacent links so as to again be in equilibrium. For example, if 

the current limb joint angle is less than its desired angle, the mechanism will 

cause a positive torque to be applied to the joint to move it back toward the 

desired angle and vice versa. The velocity damping term reduces the torque 

applied to the joint once movement towards the desired angle is underway. By 

changing the desired angle at different instances of time, the mechanism can 

be actuated to bring about the motion. 

Lately, researchers in computer animation are looking at biomechanical mod-

els to generate more realistic motion [47]. These methods build from dynamic 

physical simulation by concentrating on the motion of living, biological system 

that obey biomechanical principles. In particular, biomechanical methods de-

velop and use various models for the muscle and tendon dynamics that act as 

biological force actuators in these physical systems. Victor Ng [47] replaces the 

motor actuators with a muscle pair known as flexor and extensor ( cf figure 2.9). 

These two muscles work together in synergy to create motion. For example, 

holding an arm straight out involves alternating work by the flexor and the 

extensor in the arm to adjust the arm level. 

The general problem of motion control with controllers is to devise schemes for 

A 
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activating the actuators to produce coordinated movement. There are a number 

of different motion controller representations that have been proposed. These 

are briefly described below: 

Finite State Machine Controllers 

One of the most popular representations for a controller is using the finite state 

machine (FSM). Typically such a controller consists of a set of states and a 

set of rules, which together specify the torques to be applied at the joints to 

bring about the motion. Zeltzer [71] was one of the first researchers to create 

walking FSM controllers by dividing up the various phases of the walking 

gait into low level motor programs. Raibert and Hodgins [87] have used FSM 

- controllers to model hopping, speed control and posture control. They treat 

each state as an active control law for various phases of motion. A PD control is 

used to move an articulated figure to various calculated positions based on the 

current state. Stewart and Cremer [95] have developed algorithms to control a 

biped climbing and descending stairs by dividing the motion into phases such as 

double-support, start-swing-up and swing etc. Recently, Hansen et al. [40] have 

proposed motion control through communicating hierarchical state machines 

combined with constraint based control to specify control strategies for tasks 

such as hopping, walking, balancing etc. 

In an FSM controller, each node of the FSM represents a state and each arc an 

action to be performed by the articulated figure. Typically a state is entered 

when a certain event in the articulated figure is sensed. For example, a leg 

leaves the ground or touches the ground etc. Actions are at a fairly high level 

and each action would need a specifically programmed procedure for generating 

the torque. For example, interchange active idle legs, lengthen active leg for 

landing etc. Figure 2.10 and associated Table 2.1 show the FSM controller 

designed by Raibert and Hodgins [87] for simulating the running movement of 

a biped. As such in this approach both states and actions are very specific to 

the desired movement. 

Thus for each single movement, say walk, jump, hop etc. there has to be a 
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State Action 

FLIGHT 
Interchange active, idle legs 

Lengthen active leg for landing 

Position active leg for landing 

Shorten idle leg 

Active leg leaves 

ground 

LOADING 
Zero active hip torque 

Keep idle leg short 

Active leg touches 

ground 

COMPRESSION 
Extend active leg 

Keep idle leg short 

Active leg spring 

shorten 

THRUST 
Extend active leg 

Servo pitch with active hip 

Keep idle leg short 

Active leg spring 

lengthens 

UNLOADING 
Shorten active leg 

Zero hip torques active leg 

Keep idle leg short 

Active leg spring 

approaches full 

length 

Table 2.1: An FSM that coordinates running for a biped 
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Figure 2.10: Controller for a two legged articulated figure 

separate FSM controller designed with different topologies and also different 

states and actions. The method is certainly not generic enough for automated 

synthesis of controllers. To date, these types of controllers have all been hand 

designed and tuned. 

Pose Control Graphs 

Pose control graph is another representation for a motion controller proposed by 

Van de Panne et al. 11031. This provides only open loop control but in a generic 

fashion. Each pose control graph is either cyclic or acyclic and consists of a 

number of nodes, where with each node is associated a pose of the articulated 

figure. A pose is a static posture of the articulated figure and is basically 

specified by fixing all the joint angles. Associated with every arc is a time 

period. ( cf Figure 2.11 ) Transition from one state to another is completely 

determined by the time period associated with the transition arc. The pose in 

the end node of this arc provides a kind of"goal" that the articulated figure has to 

reach. This is done through the use of spring and damper actuators associated 

with each joint. Independent of the current posture of the articulated figure, 

the pose control graph tries to reach the destination posture as dictated by the 

damping coefficients associated with each joint and the torque to be applied is 

33 



Figure 2.11: Pose control graph for a hopping lamp 

determined by the distance of the spring from the rest position. Rest position 

is the joint angle in the end node pose. As soon as the transition time is 

completed the pose control graph controller will switch to the next state even if 

the articulated figure has not achieved the goal. A new transition now starts. 

A few important observations are as follows: 

o Poses are like key-frames, except that they are used more to derive the 

torque functions with the help of spring and damper actuators. 

o Articulated figures moving with the help of pose control graph based mo-

tion controllers are like wind-up toys. The force and torque functions get 

applied independent of the environment or the interaction with the en-

vironment. Thus a wind-up toy will flap its legs and move when placed 

on a floor, but will just flap its legs if held in the air or if obstructed by a 

wall. Since their execution is totally determined by the transition times 

and does not depend in any way on the sensing of the figure's state or 

environment dependent events, we refer to these as open loop controllers. 

o Because of their open loop nature, pose control graph controllers can ex-

hibit only a limited class of motion behaviours. But this is not necessarily 

trivial. In fact complex motion like walking, hopping, jumping etc. can 

all be synthesized using pose control graphs. Pose control graph as a 
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Figure 2.12: Banked stimulus response controller with two sense variables 

representation for motion controllers is simple and generic enough for 

experimenting with automated synthesis. 

e- 	
Banked Stimulus Response 

Stimulus response is a powerful paradigm that tries to mimic the behaviour of 

living creatures. A controller based on the stimulus response paradigm makes 

use of the knowledge of the external environment to drive its motion. Banked 

Stimulus Response (BSR) and Sensor Actuator Networks (SAN) are the two 

controllers which are based on this paradigm. 

The principle concepts underlying BSR representation are sense variables, 

stimulus functions and associated action rules. A sense variable is some real-

valued function of the object's physical state. Every physical state of the object 

is mapped onto a point in the sense space. A stimulus function is a scalar func-

tion defined over sense space that is negative everywhere except over a small 

region, which is called sense region. ( cf Figure 2.12.) Associated with each 

stimulus function is a response, which prescribes some action for the object. As 

the physical state of the object changes, the corresponding point in the sense 

space moves from one sense region to the other. Every time it changes the 

sense region the corresponding action associated with the particular stimulus 
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Figure 2.13: Topology of SAN showing different nodes 

function is applied and the process continues. The mechanism makes sure that 

at all times there will only be a single sense region which will be active and the 

action(s) corresponding to that region is performed. 

Sensor Actuator Network (SAN) 

The SAN controllers suggested by Van de Panne et al. [100] provide control 

by connecting sensors to actuators in the form of a network of weighted con-

nections. All sensors are defined to be binary. That is, if the sensor is on, it 

produces a value of 1 otherwise it produces a value of 0. A typical example of 

a sensor would be a touch sensor that would turn on when in contact with the 

ground and otherwise remain off. Once again actuators are modelled using PD 

control law. An example of a SAN is shown in the Figure 2.13. The network 

consists of nodes and unidirectional weighted connections. Once the weights 

are synthesized, the SAN maps the sensor information to action through actu-

ators to bring about a variety of motions. In its function, a SAN is very similar 

to an artificial neural network. 
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Some Problems in Controller Specification 

While the parameterization of motion controllers is done so that user specifica-

tion for desired motion is simpler than direct specification of force and torque 

functions, it still does not provide a natural and intuitive method for the ani-

mators. Most of the experience in synthesizing motion using motion controllers 

has shown the following: 

o The choice of the topology for the motion controller for a specific movement 

is a difficult one. There are no studies as yet that provide any definite 

guidelines towards this. 

o The definition of states and associated transition parameters has to be 

carefully hand tuned. Considerable experimentation is necessary before 

the desired motion controller is obtained. 

o All the motion controllers that have produced natural looking simulations 

described in the literature are results of extensive studies of captured mo-

tion from live actors performing similar movements. A deep understand-

ing of the real life motion and also the controller behaviour is essential for 

anyone to design a suitable motion controller. 

2.7 Automatic Motion Synthesis 

Taking all the above into account a large number of researchers have pursued 

automated synthesis of force and torque functions and also motion controllers 

[100, 102, 81]. Like inverse kinematics these methods could all be classified as 

being in the general category of inverse dynamics. Once again these inverse 

methods are solved using constrained optimization techniques. 

2.7.1 The Constrained Optimization Problem 

The constrained optimization problem is formally described below: 

Let a system be characterized by n state variables xi, x2, • • • , x n, and written as 
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the state vector x = (x 1 , x2 , . . . x n). Further, assume that the state variables 

satisfy the coupled first-order differential equations 

= (Xi, X2 2 	U1 )  U2) • • • , um ; t) 1 < i < n 

on [0, T] where m variables u l , u2, . . . um  form the control vector u = 

The motion control problem can then be formally stated as: 

dx i 
 dt 

(Ui, U2, 	, Um). 

Find an admissible control u* which causes the system 

(t) = a(x(t), u(t), t) 

to follow an admissible trajectory x" that minimizes the performance

measure 

T J = h(x(T), T) I 0  g(x(t), u(t), t)dt 

where if is called optimal control and x* is called optimal trajectory. 

Here h and g are scalar functions and by admissible control we mean control 

variables and state variables satisfying all the control constraints and state 

variable constraints over the entire interval [0, T]. Let U represent admissible 

control space and X represent admissible state variable space. 

Starting from the initial state x(0) = xo and applying different control signals 

u(t), over the interval [0, 21; the system will generate various state trajectories. 

The performance measure assigns a unique real number to each of these tra-

jectories. When we say u* causes the performance measure to be minimized we 

mean that for all ueU, which make xeX, the performance measure is smaller 

than any other admissible control. In other words we are seeking the absolute 

or global minima of J and not local minima ( cf Figure 2.14). It is important 

to note here that many a times it is not possible to know in advance whether 

there exists any optimal control u*. Also, even if optimal control exists it may 

not be unique. 
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Figure 2.14: Performance metric J for different control signals u(t) 

2.7.2 Dynamic Constraints 

As we have seen earlier, in dynamic methods, all interaction among bodies and 

between a body and its environment are mediated through forces and torques. 

In particular, if we wish to influence the behaviour of a particular articulated 

figure, we must do so through application of forces. The "dynamic constraints" 

method described by Barzel and Barr [11] uses inverse dynamics to determine 

the forces which influence the behaviour of the bodies. However, to express 

the motion behaviour of an active articulated figure through constraints is non-

trivial. A similar idea was put forward by Issac and Cohen [52]. Typically 

the user specifies a desired behaviour through a set of constraints such as 

"point-to-point", "point-to-nail" etc. The system then determines the unknown 

forces needed in order to meet the constraint. The equation to be solved is 

linear in forces and torques. The method is quite effective in specifying the 

motion of passive articulated bodies such as pendulums and chains swinging 

under the influence of gravity and other user specified forces and torques. Once 

the constraint forces are known, they are added to the simulator canceling 

exactly the components of the applied forces that fight against the constraint. 

However, specifying dynamic constraints for articulated figures to bring about 

natural looking motion is non-trivial. 

J 

J 
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2.7.3 Space-Time Constraints 

In this method constraints are in state space as well as in time. Basically these 

methods attempt to find a trajectory in state space that optimizes a performance 

metric J. J provides a quantitative measure for desired motion qualities of any 

trajectory. Clearly the formulation of this performance metric J will influence 

the trajectory shape and consequently the quality of the motion. 

The spacetime constraint method was introduced simultaneously by Witkin and 

Kass [108] and by Brotman and Netravali [15]. Both use key poses (key-frames) 

fixed in time as constraints for trajectory optimization. Brotman and Netravali 

give a method of obtaining an optimal trajectory that interpolates the given key-

frame constraints with a performance metric that ensures smooth trajectories 

and minimal control energy. Witkin and Kass only minimize control energy 

and do not necessarily interpolate the key-frames. The principal difference is 

as follows. Brotman and Netravali determine a piecewise trajectory, each piece 

being between two key-frames and with smoothness ensured at the junctions of 

two connected trajectory pieces. On other hand Witkin and Kass consider all the 

fncrether and find the complete trajectory. Thus in the first method 

by Brotman and Netravali, J is approximated by a vecLux v, .-;:mponents 

equal in number to the intervals between successive key-frames. A multi-point 

boundary value problem is converted to a series of two point boundary value 

problems. In the Witkin and Kass method, they choose to include the dynamic 

equations of motion as constraints, it results in a large system of equations that 

do not necessarily converge. In both cases the dynamic equations of motion are 

included in such a fashion so that the optimal trajectory would be encouraged 

to satisfy these equations but may not always satisfy exactly. Both solution 

methods finally result in the form of force and torque functions to be applied at 

each of the joints. Since the force or torque function is independent of the state 

x and X, this is a type of open loop control where no state feedback can influence 

the control forces or torques. Both methods use local optimization techniques 

that find a solution trajectory that is as close to physical realizability as possible. 

In the spacetime constraints method optimization is in time discretized state 
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variables. Along with many constraints this large number of state variables 

make this method slow and impractical. Two extensions have been evolved to 

overcome this problem. 

1. Spacetime windows are separate subdivided regions of spacetime variable 

space enabling piecemeal building up of trajectory like that by Brotman 

and Netravali. Except here the spacetime windows are not necessarily 

bounded by successive key-frames. The larger optimization problem is 

decomposed into series of smaller problems, each of which can converge 

quickly. At the same time an animator is provided with greater control 

over the animation by means of more windows, constraints and goals. 

2. Parameterized trajectories are more compact representations as they re-

sort to the use of a higher level functional basis like linear, 0-spline or 

wavelets. Instead of trajectories represented in a finely discretized fash-

ion, trajectories are replaced by piecewise continuous functions with far 

fewer parameters. An undesirable side effect due to the use of basis 

functions like j3-splines is that the resulting trajectory may end up with 

artificial smoothness and excess control energy. Secondly, these piecewise 

functions require a minimum number of key-frames within each space- 

Tri P Uri in ri 11[1T A 4-1,  
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degenerates to the traditional key-frame interpolation with all associated 

disadvantages as well. 

S 

2.7.4 State Space Motion Controllers 

One of the earliest methods of automatically synthesizing a motion controller 

is the state space controller method [101]. A state space controller generates a 

set of control torques that guides an articulated figure to a specified end state 

from some given initial configuration while satisfying all the given constraints 

and also optimizing a stated goal. The state space controller is represented 

as a dynamic programming graph in discretized state space of the articulated 

figure. The graph defines optimal torque values to be applied to the joints of 
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the articulated figure for reaching a specified destination state. Motions are 

optimized with respect to time and control energy. The principle of dynamic 

programming which states that all intermediate paths are also optimal, en-

sures that any path existing between two nodes in the graph also represents 

an optimal path. Thus instead of the previous two point boundary value opti-

mization, a state space controller represents a family of optimal solutions from 

many different initial states to a single common destination state. This makes 

the state space controller reusable, albeit in a limited sense. 

For each distinct destination state, a different dynamic programming controller 

graph has to be computed. Each controller is defined over a bounded domain of 

the state space. Provided these domains overlap and in the optimal paths there 

exists a common state, it is possible to concatenate controllers and produce com-

plex motion. While the dynamic programming search technique is global, the 

state space controller method essentially results in local optimization, because 

each dynamic programming graph controller is optimal only over the restricted 

region of the state space, that is the domain of the controller. Another problem 

that is inherent due to the restricted state space domain of the controllers is 

that unanticipated interactions with the environment like collisions cannot be 

handled as the post collision state may not be covered by any of the predefined 

set of controllers. The state space controller method is significant primarily 

because of the fact that it was one of the first attempts at automated controller 

synthesis. However, the need for fine discretization of the state space makes 

the method largely impractical. 

2.7.5 Automated Motion Controller Synthesis 

With the tremendous rate at which computing performance improvements take 

place, it was but natural that researchers would explore global optimization 

techniques in place of the local search. Optimization techniques for parameter-

ized controller-based spaces are relatively of much less dimension than state 

space. Current research is primarily directed towards this. In fact automatic 

synthesis is the primary motivation for introducing a variety of motion con- 
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trollers such as the pose control graph [103], the banked stimulus response [81] 

and the sensor actuator networks [100]. 

In global optimization techniques, the initial close guess that is needed in lo-

cal optimization methods is not necessary. The search for controllers expands 

beyond local regions and covers the entire global domain of the controller pa-

rameter spaces, where several possible solutions can be found, each with poten-

tially disparate motion characteristics. All the global optimization techniques 

proposed for obtaining optimized controllers are based on some form of ge-

netic programming. These genetic procedures have been used to synthesize 

all the different types of controllers. Basically in genetic programming, an ini-

tial population of controllers is chosen randomly. Subsequent generations of 

the controller population are obtained by refinement that uses operations like 

mate selection, cross over and mutation. Over a sufficiently large number of 

generations an optimal controller (not guaranteed to be global though) would 

be synthesized. 

The application of global optimization techniques to controller synthesis is cer-

tainly the most promising approach to physically based animation today. While 

the available results are very impressive and seem to hold out the promise, cur-

rently available techniques are far from what an animator would like. The 

prime problem is one of having fine control over the resulting motion. Without 

this control producing animation sequences that follow a script will be ex-

tremely difficult and almost not possible. The only method currently available 

for controlling the synthesized motion, is through the use of the fitness func-

tion. Fitness functions for specific articulated figure configurations for specific 

movements like walk, hop, jump etc. have been evolved. There is however no 

direct or intuitive association between the fitness function and the final desired 

motion. 

2.8 Important Issues in Articulated Figure Animation 

From the above descriptions, it is clear that automated synthesis of parameter- 

ized motion controllers using global optimization techniques has the potential 
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to be a powerful computer graphics tool for animators to create animations in-

volving complex movements of virtual creatures movements that are physically 

correct, realistic and natural looking. There are three aspects of the problem 

that are very important in using such methods. 

1. Search Technique 

The solution space of parameterized controllers is not only of high dimen-

sionality, but also is multi modal and not always continuous. Gradient 

based numerical methods like steepest descent cannot always be used. 

Global methods like genetic algorithms have to be employed. Certainly 

characteristics of the search space and choice of a suitable search method 

would be crucial to the resulting efficiency and success of the automated 

motion controller synthesis technique. Chapter 3 includes a detailed de-

scription of optimal search methods and their applicability. 

2. Environmental Interaction 

Active articulated figures when moved in a virtual environment, consist-

ing of other virtual objects or figures are bound to collide with them. Any 

physically realistic movement simulation would not only have to take care 

that virtual objects do not move through'each other on collision, but in fact 

also react in a physically correct manner. While closed loop controllers do 

have the potential to accommodate this reaction within their state-action 

frame work, most of the existing methods deal with collision and response 

through a separate simulation module. This is discussed in greater detail 

in chapter 4. 

3. Animator Control 

Certainly all possible motions are not necessarily optimal in terms of 

global properties like speed or control energy. Thus control of the auto-

matic motion controller synthesis process such that the resulting motion 

is as desired by the animator is a problem that needs to be attended to. 

Not only must the animator have good physical intuition but he or she 

must also have a good feel for the synthesis process so that a suitable 

performance metric can be designed. In fact there are probably several 
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goals to be concurrently optimized and possibly in a conflicting manner. 

Chapter 5 presents complete details of our solution to this problem using 

motion features and Chapter 6 describes the implementation of a system 

that automatically synthesizes motion controllers based on desirable fea-

tures specified by an animator. Chapter 6 also includes results from some 
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of the experiments conducted using this implementation for animating 

different types of movements of a few virtual creatures. 
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Chapter 3 

Optimization Techniques for 

Motion Synthesis 

As discussed in chapter 2 the most popular and promising approach to the 

problem of motion synthesis for active articulated figures is through the use 

of constrained optimization techniques. There are five components of the con-

strained optimization problem. These are as follows: 

1. The search space that includes all solutions. 

2. A task goal defined mathematically via a performance metric. 

3. A dynamic system that is to be controlled. 

4. A set of constraints. 

5. An analytical or numerical algorithm capable of finding an optimal solu-

tion. 

In this cha-  pter we discuss how the different motion synthesis methods described 

earlier handle each of the components. 
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3.1 The Search Space 

The size and dimensionality of the search space in which the optimal solution 

has to be found has a profound impact on the overall performance of the method. 

Usually constraints are used to limit the search space and these are discussed 

later in this chapter. The dimensionality is determined by the number of 

parameters needed to uniquely specify a single movement (solution). As the 

number of DoFs increase, the dimensionality of the search space increases. 

All the earlymethods like key-frame animation and inverse kinematics searched 

directly in trajectory space, the space formed by position variables and time. 

The parameters for uniquely specifying a solution essentially defined a path as 

position varying with time. On the other hand, all the initial physically based 

animation techniques carried out the search in state variables (that is DoF and 

first deriidime_cd-eada-PeF-with respect to time). For example the methods 

by Witkin and Kass [108] and Brotman and Netravali [15] simply used state 

variables discretized in time as parameters. There are obviously a number of 

severe problems with this. 

O rgt and foremost, as the actual time duration of the movement is in-

creased the dimensionality of the search space increases. 

o Secondly, as the time interval used for discretization is reduced it once 

again results in increased dimensionality. While we need really only 24 

(or 30) frames per second for final playback, often the nature of differential 

equations of motion that are involved is such that much finer steps have 

to be considered. 

o Lastly, as we shall see in the next chapter, external interactions like 

collisions and their resolution also demand that the time intervals be 

carefully chosen. This again increases the search space dimensionality. 

Large optimization problems are slow to converge. A number of efforts have 

been made to essentially address this problem. Cohen [20] proposed subdivid-

ing the animation into smaller pieces. This decomposes the larger optimization . 
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Figure 3.1: Mappings between different coordinate spaces (dotted line shows 

inverse mappings) 

problem into a series of smaller problems which can give the animator greater 

control over the final animation by creating more windows and constraints. 

However as the number of windows increases the animator's efforts also in-

crease considerably and the computer support effectively reduces to that of 

providing interpolation facilities. Similarly the formulat a-

rameterizing trajecTies  using 0-splines or wavelets also attempt to reduce 

the dimensionality of the search space. Instead of a large number of discrete 

points representing a continuous trajectory, a cubic j3-spline for example, would 

require only 4 control points in space-time to represent that continuous tra-

jectory. Similarly with wavelets using only a few significant components the 

continuous trajectory can be represented. As already mentioned the main dis-

advantage is the forcing of higher order continuity in the trajectories that is 

inherent in these methods, thus making these methods suitable only for motion 

with smooth trajectories. 

All subsequently proposed methods have been based on the strategy of finding 

the optimal motion in a space different from the state space. As seen in the 

previous chapter, this is done by introducing the notion of motion controllers 

that are responsible for generating the necessary forces/torques for a desired 

motion. Figure 3.1 shows the different search spaces being used in animation. 

1. Most of the kinematic methods, particularly key-frame animation tech-

niques, use Cartesian space (2D or 3D). 

2. Joint space, denoted by joint angles of different links of the articulated 

figure is used by inverse kinematic methods. It may be recalled that 
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transforming from joint space to Cartesian space is easily done using 

forward kinematics. 

3. Force/torque space or control space is used by most of the initial dynamics 

based methods. Specifically methods like the dynamic constraints [11], 

.1)  
space-time constraints [108] and its extension [20], and also the state 

space controller method based on dynamic programming [101], all search 

for the optimal trajectory in control space. Once the trajectory is found in 

0 

	

	 control space, then by formulating and solving the dynamic equations of 

motion, it can be transformed to joint space. 

4 
	 4. Actuator space depends on the type of actuators modelled in the motion 

controller. For example if the spring and damper actuator model is used 

then the space is defined by spring constants and rest lengths/angles. All 

the newly proposed automatic motion controller synthesis techniques find 

the optimal trajectory in actuator space. There are ongoing studies to 

use mathematical muscle models from biomechanical studies as actuator 

models [47]. These offer the potential to produce alternative motions 

through the use of performance metrics that accurately represent features 

that are being optimized in real motions. Certainly biologically correct 

muscle models can help in matching and evaluating simulated motion 

with digitally captured live motions. 

While actuator space is definitely of lesser dimension than trajectory or torque 

space, the search space dimensionality continues to be a major hurdle in the use 

of these techniques. Ng refers to this as the curse of dimensionality [48]. Ef- 

• 

	

	 forts will certainly continue towards defining control methods that will further 

reduce the search space dimensionality. 

4, 	 3.2 The Performance Metric 

With the motion synthesis problem transformed to one of non-linear constrained 

optimization, an animator can control the resulting movements only through 

the specification of the performance metric, (objective function that is to be 

.4% 
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optimized) and the constraints that the motion has to satisfy. As stated earlier, 

the performance metric is usually a functional of the form 

J = h(x(T), T) I 0  g(x(t) , u(t) , t)dt 	 (3.1) 

where g is integrated over the time duration of the animated sequence T and 

h is a scalar function that is evaluated only at the end of the time duration 

T. Without loss of generality we can assume that J is minimal for the optimal 

motion. 

A variety of performance metrics have been suggested and used. The space 

time constraints method usually minimizes energy, that is J takes the form: 

J = fo  ju(t)1 2  dt (3.2) 

Though there have been indications that other formulations of the performance 

metric could also be used in these methods, in the published literature so far we 

do not see any example of other performance metrics used with the space-time 

constraints methods. 

In the state-space controller [101] methods both time and energy are used by 

suitably weighting each. Thus J takes the form 

J = aT (1- a) fT  lu(t)1 2  dt 	 (3.3) 

There are other variations of the metric formulations: 

1. The distance traveled by the creature with a penalty for moving backward 

[102]. 

J = -x(T)-F max x(t) 
0<t<T 

Here x represents the distance travelled. 

2. Reach a specified pose without loss of contact with the ground (falling 

over) [80]. 

J = Er-1l 9i(T) - 9(11+ max  y(t) 

Here 19° represents the desired configuration of the i th  link and y(t) the 

lowest point on the body. 
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3. Jump to achieve a maximum height. J is maximized such that lowest 

point on the body y(t) is reaching the maximum height [80]. 

J = max y(t) 
0<t<T 

4. To achieve energetic hops, one can use 

T 
d-ky 2)dt 

Here x dt measures the the distance travelled and ky 2dt measures the 

average height of the creature [100]. 

5. The distance travelled in a fixed amount of time [103]. 

= lx(T)I 

Here the assumption is that motions that end fart 
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Here p is the position of the creature, p is its velocity-allot t 

pointing towards the target [100]. 

While the emphasis in most of the research carried out so far has been on 

reducing the search space dimensionality and also on effective optimal search 

techniques, it is clear that we have to develop simple methods that provide . 

 good physical intuition to derive performance metrics that result in desired 

motions. And metrics that permit the concurrent optimization of several goals, 

thus raising further the problem of distributing the weights amongst individual 

goals that may even be in conflict. 

The early efforts were to subdivide the animation and carry out the motion syn- 

thesis task piecewise. Each piece could in principle be optimizing a different 

performance metric. Both Brotman and Netravali and the spacetime windows 
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based methods are examples of this. Restricting the state-space region over 

which the dynamic programming based state space controller is derived, cou-

pled with the concatenation of state space controllers for more complex motions 

is also another case of a similar approach. As a specific case Cohen [20] argues 

that space time windows can simulate a cat chasing a mouse by giving the cat 

only local knowledge of the state space around it. In contrast, global knowledge 

would feature the cat moving in a straight path directly to meet the mouse at 

the destination point. However, a very large number of windows had to be cre-

ated to generate a tight chasing scene. This example, notwithstanding, a major 

draw back of these methods is that they make the optimization essentially local 

by restricting the domain of the search. And such local optimal solutions may 

actually be far from the desired motion in most cases. 

A slightly more generalized method for formulating a performance metric has 

been described in [37]. In this approach the metric is formulated in the form 

of a main goal and style points. The main goal is typically a simple metric 

of whether the primary requirement of desired motion has been fulfilled. For 

example, if the goal of the motion sequence is to move the figure to the point "X", 

then the main goal would simply be the distance between the figure and "X" at 

the end of the time allotment (it must be noted that lower numbers correspond 

to better performance). 

Since the motion is mostly underconstrained, the system can often find out-

rageous ways of satisfying such a simple performance metric. For example, it 

might somersault to the goal point instead of hopping. Because of this, style 

points are added which can be thought of as additional rewards or penalties 

granted to the virtual creature's performance. Examples of style points include: 

1. Penalties for hitting obstacles or violating safety rules (don't hit your head 

on the floor). 

2. Rewards for performing the action quickly, or slowly. 

3. Penalties for inefficient behavior (such as taking the long way around an 

obstacle or sitting for a long time, then rushing when it gets close to the 
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time limit). 

4. Rewards for ending in "neutral positions" and remaining in control (you do 

not want the creature tangled up or laid across the floor when it completes 

its action). 

5. Rewards for minimizing energy consumption are also useful at times. 

Interestingly however, most of the time, they found that this did not 

improve the quality of motion in any significant way. Even when energy 

considerations were useful, the effects tended to be very subtle, and not 

as important as the other style considerations. 

6. Problem-dependent terms (for example, whether certain subgoals were 

met). 

A primary draw back of this method is that the performance metric has to 

be programmed separately for each motion. The style points are very specific 

to the virtual creature and the type of movement, and demand programming 

capabilities, say, at the 'C' language level, from the animator and/or associates. 

Certainly a simpler, more generic and declarative type of method has to be 

evolved. 

3.3 The Dynamic System 

Given the mass of the object, its moment of inertia, forces and torques acting 

on the object and the constraints to be satisfied at any given point of time, the 

dynamic system is formed as a system of differential equations. These equa-

tions known as the dynamic equations of motion basically relate how the mass 

moves under the influence of forces and torques. Resolving these equations 

for acceleration and then integrating the equations enables us to obtain new 

velocities and positions. These new positions are used to provide the desired 

animation. The description of the motion can be entirely in one, two or three 

dimensions. Below we describe in detail the format for the physical description 

of objects, methods for formulating the dynamic equations of motion, solution 

methods for resolving the accelerations and finally integration techniques to 
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obtain the positions and velocities. We also critically address issues such as 

stability, stiffness and computational efficiency relating to the above. 

3.3.1 The Physical Object Description 

In the simplest case, the object is represented as a point mass, and the only 

physical description needed is its mass. More realism is obtained by treating 

the object as a rigid body, which is made up of masses distributed in either 

2D or 3D space. The information needed to simulate a rigid body includes its 

total mass, centre of mass, and moment of inertia. The moment of inertia of a 

rigid body may be defined relative to any frame, either attached to the body or 

outside. The inertia tensor relative to a frame A is expressed in matrix form as 

the 3 x 3 matrix: 

.1"xx 	Ixy 	1.X.Z 

.1"xy 	lryy 	lryz 
	 (3.4) 

lryz 	IzZ 

where the scalar elements are given by: 

I I I v (y 2  z 2 )pdv 

Iyy = 
	jv  ( X 2  + z 2  )pdv 

Izz  = 	fv (x 2  y 2 )pdv 

.1"xy 
=Iffy 

xy p dv 

1.z =1.11vxz 
p dv 

lyz=filvyz p dv 

and the rigid body is composed of different volume elements, dv, containing 

material of density p. 

The elements ./.„ Iyy , and Izz  are called the mass moment of inertia. The ' 

elements with mixed indices are called the mass products of inertia. If the 

A I = 
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reference frame is attached to the centre of mass of the body, the products of 

inertia terms vanish and the resulting inertia tensor can be written as: 

(/

xx  0 0 

c / = 	0 Icy 0 	 (3.5) 

0 	0 /.. 

For a simple rectangular box of homogeneous material with dimension /x w x h 

inertia tensor with respect to the frame attached at the centre of mass will look 

like: 

c l.  = 
( li(h2  + 1 2 ) 

0 

0 

0 
71-1(w2  ►  h) 

0 

0 

0 

1202  + w2) 
(3.6) 

3.3.2 Dynamic Equations of Motion for Articulated Figure 

There are number of ways to formulate the dynamic equations for an articu-

lated figure. In computer animation, researchers have used Gibbs-Appell [105], 

Lagrangian [4], D'Alemberts [52], Armstrong's method [3] and Newton-Euler 

formulation [23]. All the approaches are equivalent and yield the same re-

sults but the route to the solution in each case is different. The key issue 

lies in the computational efficiency of the solution. In this respect it is well 

known that recursive formulations are far superior when compared to their 

non-recursive counterparts. We now discuss, the most popular and also highly 

intuitive method, the Newton-Euler method. 

For a single rigid body, Newton-Euler equations can be written as two three-

dimensional vector equations, a Newton's equation that typically gives the 

linear motion of the centre of mass, and an Euler's equation that gives the 

rotational motion. 

Newton's Equation 

Consider a rigid body whose center of mass is accelerating with acceleration 

i (t). In such a situation, the force F(t) acting at the center of mass which 
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causes the acceleration is given by Newton's Equation 

m ti c  (t) = F (t) 	 (3.7) 

Euler's Equation 

Consider a rigid body rotating with angular velocity, w, and with angular ac-

celeration c.'. In such a situation, the torque N(t), which must be acting on the 

body to cause the rotational motion, is given by Euler's equation 

c / w (t) w(t) x ° /w(t) = N(t) 	 (3.8) 

These are 2ndorder differential equations which need to be solved at each time 

step in order to get the position and orientation of body. 

However, for an articulated body made of rigid links, the movement of the links 

is not completely free but is constrained by the joints. In fact, neighbouring 

links exert forces on each other, which restrict the relative motion between 

the links. For example, if we consider only rotary joints, there exist only 3 

DoFs between the joints and no translational motion will be allowed between 

adjacent links. 

The complete algorithm for forming the equations of motion is composed of two 

parts. First, link velocities and accelerations are iteratively formulated from 

link 1 out to link n and the Newton-Euler equations are applied to each link. 

Second, forces and joint torques are computed recursively from link n back to 

link 1. 
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The equations are as follows: 

Outward iterations: i : 0 n — 1 

i+ 1 ni +  • i1 	
i 	 L41-1-1, 

! +1 Rico' i  +:1+ 1 Riwi  x 	ei+i i+1 2i+1  

i+1 • vi+ = i 	 i+1 + =Wi X  (iWi x iPi+ 1) 	=vi) 

	

1:+1 n 	 141• i+1 0..,i+i  x 	.1-- 	+ 	X (i+10..,i+ i X Pc41 ) 	vi+i, ci+i 

i.+ 1 
-v 	

i+ 1 
i+ i = mi+ 	vc i+i ,  

—i+1 coz. +1. + i+lwi+1 x 

Inward iterations: i : n 1 

ifi = 41Ri+ifi+i 

ini 	+!+1 .Ri+lni+i  iPci  x 	iPi+1  x !+i Ri+ifi+1 , 

The effect of gravity loading on the links can be included by setting (Lik, = G, 
where G is the gravity vector. 
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The terms used in the above equations have meanings as given below: 

BR 	is the rotation matrix describing points in 

frame B relative to frame A 

fi 	force exerted on link i by link i — 1 

ni 	torque exerted on link i by link i — 1 

Ti 	torque exerted at joint i 

2 	for finding 2 component of a vector 

Fi 	Force acing at the center of mass of link i 

Ni 	Torque acting on link i 

iPi+1  Distance between the origin of the frame i 1 

and frame i measured in the frame i 

angular velocity of link i with respect to frame i 

ivi 	linear velocity of link i with respect to frame i 

i)ci  linear velocity of the centre of mass 

of the link i with respect to frame i. 

In symbolic from, all the terms appearing in the equations are treated like 

variables. Given the values of some of the variables, values for the others can 

be calculated. This way it can be used in both forward dynamics and inverse 

dynamics situations. The main feature of symbolic formulation is reduction in 

simulation time. This is typically done by evaluating common subexpressions. 

The values of common subexpressions need to be calculated only once and can 

then be substituted in the equations. The final system of equations takes the 

form, 

Ax = b 	 (3.9) 

where A is a 2n x 2n matrix, giving the mass description of the body in terms 

of masses of links and inertia. Each element of the matrix is represented in 

symbolic form, and can be calculated at each time step. b is a vector having 2n 

components. Each component of the vector represents force acting at the centre 

of mass of some link, or torque acting on the link. 

When one link moves, due to application of some external force it exerts a force 

on the neighbouring links due to the joint constraint attachment. This force 
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has to be added into the external force acting on the neighbouring links. Other 

causes of external force would be collision with the ground and of course the 

gravitational force. Gravitational force is constant and depends on the mass 

of the link. We shall discuss collision force computation in detail in the next 

chapter. 

The torque acting on a link causes rotational motion. As we are considering 

only rotary joints, the only manner by which we can control the motion of the 

body is by varying (controlling) torques at the joints. Application of joint torque 

directly results in the rotary motion of the links connected at that joint, which 

is further passed on to the other links as well. This joint torque can be directly 
I 
	

added to the other torques acting on the link. The other cause of torque on a 

v 
	 link is the force acting on the links. The torque caused by a force depends on 

where the force is applied. It is given by the relation 

T =pxf 

where p is the perpendicular distance of the joint at which torque T is calculated, 

from the point of application of force f. 

In the above equation 3.9, x is a 2n vector of linear and angular accelerations. 

Assuming that the forces and torques to create the motion are known, equa-

tions 3.7 and 3.8 are solved for linear and angular accelerations using the LU 

decomposition technique. 

3.3.3 Integrating the equations 

At a very high level, one can view the simulation as the process of numerically 

solving the ordinary differential equation (ODE) 

dY 
dt

(t)  
= f(Y(t), t) 	 (3.10) 
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Y(t i ) 

Y(t o ) 

Figure 3.2: A numerical integration process 

which describes the evolution of the system over time. The vector Y(t) describes 

the state of the system at time t given by 

Y(t) = (3.11) 

where 

x(t)— represents the position of the centre of mass 

0 (t)— represents the orientation 

v(t)— represents the linear velocity 

w (t)— represents the angular velocity. 

Given the state of the rigid body at time to, numerical integration is used to 

advance the state from Y(to) to a new state Y(to + At) ( cf Figure 3.2). Numerical 

integration technique requires evaluation of the right hand side of equation 3.10 

for a particular value of t. This, in turn, requires computing the total forces 

F(t) and torque N(t) acting on the object at that instance. 
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Euler Method 

The Euler method is a numerical integration technique which is one of the 

simplest to understand and easiest to implement. The Euler method assumes 

that the accelerations will be constant during the time step At of the integration. 

The integration equations are as follows. 

For linear motion: 

v(t + At) = v(t)+ v (t)At 

x(t + At) = x(t) + v(t)At 

For rotational motion: 

w(t + At) = w(t)+ w (t)At 

0(t + At) = 0(t) + w(t)At 

Stability Issues 

Any numerical method for solving ordinary differential equations works on 

well-behaved linear differential equations. The problem arises when the dif-

ferential equations are nonlinear or stiff or have discontinuities. All these 

conditions are likely to be present in our case. Our differential equations are 

nonlinear (second order). There are discontinuities due to collision with the 

ground. The stiffness problem also exists as discussed below. In these cases 

the numerical methods may fail to find the correct solution. This failure is in-

dicated by instability in the method. An instability occurs when the numerical 

method behaves in an inconsistent manner. This inconsistency may show up as 

radically different solutions for different step sizes. Instabilities can be caused 

either by the differential equation, or the numerical method used for their solu-

tion or a combination of both. The most common situation is the combination of 

stiff differential equations and a numerical method (like Euler's) which cannot 

handle stiffness. 
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Stiffness 

Stiffness in ordinary differential equations is the first known cause of instability 

in numerical methods. A set of differential equations is called stiff when in the 

solution, some components are slowly varying, while others have a very high 

frequency but quickly decay to zero. Since sampling of the differential equation 

is done at different time steps, these two components could become mixed, even 

after the high frequency parts have been reduced to zero. This causes the 

rapidly varying perturbation in a solution that has become unstable. 

In case of dynamics the derivatives taken with respect to position and veloc-

ity (both linear and angular) affect the stiffness of the equations. Any force 

or torque that is not a function of position or velocity does not influence the 

stiffness of the equations. For example, stiffness will be introduced due to 

friction since frictional force is a function of velocity of the body. Similarly, a 

force or torque that is used to produce a required body orientation or enforce 

a constraint influences the stiffness. Since these are the techniques which are 

used here in controlling the motion of the body, they are bound to adversely 

influence the stiffness of the equations. Without the control forces and torques, 

the equations of motion for articulated bodies are not stiff, it is just when we 

control them that the stiffness gets introduced. 

One possible solution to the stiffness problem is to use a small step size, in the 

Euler method. With a small step size, the differential equations will be sampled 

often enough to handle high frequency components. There are two problems 

with this approach. First, the step size directly determines the time required 

for simulation. The smaller the step size, the more the simulation time. Second, 

when the step size is decreased, rounding errors in the computations increase. 

Eventually a limit will be reached where the rounding errors dominate the 

solution. If a differential equation requires a step size smaller than this limit, 

then the Euler method cannot be used for solving the differential equations. 
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Second Order Runga-Kutta Technique 

The advantage of the Euler technique is that it makes only one evaluation 

of the function derivative. In the context of the simulator, evaluating the 

state derivative corresponds to solving the system of motion equations. So it 

is desirable to have as few derivative evaluations as possible. However the 

very reason for the Euler methods' inaccuracy is the fact that it approximates 

the function derivative over the interval [t o , t o  + At] by the derivative at to. 

Obviously more derivative evaluations are required in the interval in order 

to obtain a more accurate approximation for the function derivative over the 

entire interval. The second order Runga-Kutta method uses two derivative 

evaluations in the time interval. It evaluates the derivative at to, the beginning 

of the interval and at (to + I), ie. halfway down the interval. In terms of 

equations it can be expressed as: 

= At f(Y(to),to) 
k i  

k2 = At f(Y(t o ) + -pto + At  

Y(to + At) L-  Y(to) k2 0(h3 ) 

This method gives second order accuracy. 

Fourth Order Runga-Kutta Technique 

The fourth order Runga-Kutta technique makes four derivative evaluations in 

the time interval [t o , to + At], one at the beginning (to), two at trial midpoints 

(to + V-) and one at a trial endpoint. The final function values are calculated 

using these derivatives. 

In terms of equations, 

k 1  = Ot f(Y(to), to) 
kJ. 	At 

k2 = Lt f(Y(to + 	to + 

k 
k 3 	At f(Y(t o  --2-

2
), to + At  
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k4 = At AY(to k3), to + At) 

and, 

Y(to  + At) = Y(to) 6(k1 2k2 2k3 k4) 0(h5 ) 

This method gives fourth order accuracy. 

Adaptive Step Size Control 

If the step size is fixed, a step size will have to be chosen which is small enough 

to accommodate a rapidly changing function. This would be wasteful if the 

function is not rapidly varying Any good ordinary differential equation (ODE) 

integrator must therefore exert some adaptive control over its own progress, 

making frequent changes to its step size. The purpose of this control is to 

achieve some predetermined accuracy without undue computational effort. In 

regions of the function domain where the function changes rapidly, small step 

sizes should be used while in regions where the function changes slowly, larger 

step sizes could be used. 

3.4 Constraints 

There are essentially two broad categories of constraints which the synthesized 

motion has to satisfy. These are: 

1. Constraints due to the requirement of physical correctness 

2. Constraints for enabling the animator to have control over the synthesized 

motion, such that it appears realistic and natural. 

Most methods will try to restrict the search space by setting up constraints such 

as joint angles or other dependencies in state variable, reducing the size of the 

state space. Constraints are essentially in the form of mathematical equalities 

or inequalities. Any one or more of the variables appearing in the optimiza-

tion problem could be constrained with the help of constraint equations. For 

example a constraint on the object trajectory will have the form: 
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C(x(t)) = 0 

or 

C(x( t) ) > 0 

The inequality constraints are the most general as all equality constraints can 

be treated as special cases of inequality constraints. For example, C(x(t)) = 0 

can be replaced by C(x(t)) > 0 and —C(x(t)) > 0 

3.4.1 Physical Correctness Constraints 

These are the constraints which are mandatory from the point of physics. In 

general, unless these constraints are satisfied, no physical realism is possible. 

Most of the time these constraints are derived from the the physical descrip-

tion of the creature and its environment. We shall describe now three such 

constraints. 

The Dynamic Equations of Motion 

Given the mass of an object and forces and torques acting on the object, the 

motion of the object can be constrained by the equations of motion. Any motion 

which is not as per these equations of motion cannot be considered as physically 

correct. In all physically based animation techniques satisfying the dynamic 

equations of constraint is a primary goal. 

Non Penetration Constraints 

This is another constraint required for physically correct motion and arises from 

the fact that two rigid bodies cannot interpenetrate each other. Techniques for 

the handling of constraints of this kind are discussed in detail in the next 

chapter. 
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Structural Constraints 

These are again constraints that have to be satisfied for physically correct 

motion. A given geometrical configuration like an articulated body cannot 

have its contact between two links broken any time during the motion. Joint 

connectivity constraints can be imposed in the form of equality constraints to 

be satisfied by the positions of the connected end points of the individual links. 

More often these constraints are automatically resolved by the manner in which 

the equations of motion are formulated. 

3.4.2 Animator Specified Constraints 

These constraints are essentially specified by the animator to control the motion 

that is synthesized. Most of these constraints are based on observations of 

similar movement in real life, say for example a limit on the maximum speed 

of movement. While there is no fixed set of constraint types, we describe below 

many of the constraints that have been applied in the different approaches. 

Value Limiting Constraints 

This is a simple and common type of constraint. Basically the animator limits 

the range of values for a parameter in the search space. 

xi < x(t) < x n, 

In state space this would amount to putting limits on the position, velocity or 

acceleration of an object. In joint space this puts a limit on the joint angles and 

the angular velocities and angular acceleration and in force/torque space on 

forces and torques acting at the joint. For motion controllers these constraints 

would depend upon the parameterization that is applicable for the motion con-

troller. In the pose control graph based controllers, for example this would 

impose limits on spring constants, rest lengths and transition times. For the 

banked stimulus response controllers, this would also put limits on the sensor 
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variable values. It is important to recognize that most of these limits would 

be such that they are reasonable for real life movements of the same kind and 

are essential if the synthesized motion has to appear realistic. Applications of 

unnaturally large forces or impossible speeds would make the resulting motion 

look unrealistic. 

Dynamic Constraints 

The idea of dynamic constraints is to allow the animator to interactively spec-

ify geometric constraints on the motion such that the objects obey Newton's 

laws and at the same time obey the user specified geometric constraints. For 

example, an animator might constrain an object to move along a specified path 

or require two objects to remain at a specified distance apart. However, what 

constraint to specify in order to get the desired motion requires intuition of the 

mechanical aspect of motion. As such, the method is not suitable for motion 

synthesis of an active articulated body. 

Space Time constraints 

Spacetime constraint method is a useful technique for creating goal directed 

motion of an articulated body. A typical example of spacetime constraint is 

that the arm must be in particular position at particular time t o , requiring it 

to be at some other position at time t 1 . This specification alone is not sufficient 

to obtain the intermediate trajectory. In addition to spacetime constraints, an 

animator must specify an objective function, such as to perform the task with 

minimum energy or some other performance criteria. 

Smoothness Constraints 

The most natural motion results when the least amount of effort is put into 

controlling the motion. Therefore, when a large motion control problem is 

broken into a sequence of piece-wise control problems, it is necessary to impose 
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continuity constraints such that the position and velocities are smooth at the 

boundary of each subinterval. One method of doing this is to impose additional 

constraints that the control function be a higher order continuous function of 

time through out the interval and then minimize the energy in control as well 

as its first derivative 415]. 

3.4.3 Constraint Handling Techniques 
4. 

One common technique for solving the constrained optimization problem in-

volves replacing the performance metric J with a Lagrangian function [57], 

R 
L(x, A) = J(u) d-Exic,(x ,t) 

The A i  associated with each constraint c i  is called a Lagrangian multiplier. The 

Lagrangian multipliers roughly weight the influence of the constraint on the 

optimal solution value with inactive constraints having zero-valued multipliers. 

The Kuhn-Tucker [67] conditions provide optimality conditions for these and are 

given by: 
6 
	

V x L(x*, A*) = 0 

c(x*) > 0 

A* > 0 

A*Tc* = 0 

• 

where A represents the vector of Lagrange multipliers and c represents the 

constraint equations. Variables superscripted by * represent their values at 

optimality. These conditions state that all components of the gradient of the 

Lagrangian are zero, which will also implicitly satisfy the constraint. The 

system does not have a closed form solution. The numerical methods used in 

solution are typically of iterative nature, where an initial guess for a solution 

is improved upon at each iteration until an optimality criterion is reached. • It 

is important to note that there is no guarantee that the solutions found are 

true minima or maxima. In fact, most of the time solutions found are likely 

to be approximate local optima due to the nonlinearity and vast size of search 
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space. All methods based on the use of local optimization techniques essentially 

handle constraints using the above strategy. There is a very basic problem with 

this strategy. Since the constraints are integrated into the performance metric 

to be optimized and since the methods only try to optimize the metric value, the 

method as such cannot guarantee that the final solution obtained fully satisfies 

all the constraints. Certainly the performance metric is so formulated that 

constraint satisfaction is encouraged but not necessarily guaranteed. This is 

particularly disturbing when one wants physically correct solutions satisfying 

the constraints put by the dynamic equations of motion. 

However, in the global optimization techniques using evolutionary methods, 

this problem does not exist. In all these approaches the population of solutions 

is chosen in such a fashion that all the constraints are satisfied a priori. Further, 

since the optimal motion is found in a space like the actuator space, and the 

the final motion is obtained by solving and simulating the dynamics equations 

of motion, physically correct motion is guaranteed. 

3.5 Optimization Techniques 

Classical numerical optimization typically use Sequential Quadratic Program-

ming (SQP) [32] or projected gradient methods [88] to solve the optimization 

problem. Many of these are applicable to well behaved continuous functions 

which rely on using information about the gradient of the function to guide 

the direction of the search. If the derivatives of function cannot be computed, 

say, because it is discontinuous, these methods often fail. Such methods are 

generally referred to as hillclimbing. They can perform well on unimodal func-

tions. But on multimodal functions they suffer from the problem that the first 

peak found will be climbed, and this may not be the highest peak. Having 

reached the top of a local maximum, no further progress can be made. A one-

dimensional example is shown in Figure 3.3. The hillclimbing starts from an 

initially guessed point, say, X and moves are made to climb the hill until the 

peak at B is reached. However, the higher peak at C may not be reached 

ever. The method suggested by Witkin and Kass [108] minimizes energy Their 

method, uses linear approximations for the constraints and quadratic approx- 
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A 

Figure 3.3: The hillclimbing approach 

imation for the Lagrangian [32]. The method works by progressively refining 

an initial motion trajectory specified by the animator ( cf Figure 3.4). On the 

B 

• Initial trajectory 

• Trajectory after some iterations 

Final trajectory 

Control variables 

Figure 3.4: Space-time constraints method 

other hand Brotman and Netravali [15] approximate the dynamics to a linear 

system given by the equation: 

(t) = A(t)x(t) B(t)u(t) 

where A(t), B(t) are n x n and n x m matrices with time varying elements. 

The overall performance metric J is defined with J = Elo\T-1  .1,, where 	is 

evaluated at each of the N subintervals between adjacent key poses at times t i  
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• 

and ti+ i. This reduces a multi-point boundary value problem to a series of two 

point constrained optimization problem. The individual performance metrics 

Ji are chosen to produce smooth trajectories and minimal control energy and is 

defined by 

Ji = 
T 

[a 	(t))2  + lu(t)1 2 ] dt 

a and /3 are weights for adjusting the balance of various motion characteristics 

in the final motion. 

Like in key-frame interpolation a major advantage of this method is its ability to 

specify motion requiring precisely timed actions. The major difference between 

these methods and key-frame animation is, in the method of interpolation. In 

these methods geometric interpolation is replaced by a process that attempts 

computing physically correct trajectories automatically. As a result fewer key-

frames are required. Further, the trajectories are goal oriented, that is, chosen 

to be optimal according some user-supplied fitness function. 

These local optimization techniques were useful to introduce optimization as 

a useful mathematical tool for finding near physically correct motions with 

lesser requirements put on animator skills. However, they suffer from several 

computational problems. We discuss some of these problems below. 

1. The systems to solve have many constraints and state variables, making 

the process of motion synthesis slow and non-interactive. 

2.. Since the methods use local optimization techniques, where an initial 

guess for a trajectory (in the form of key-frames) is improved upon at each 

iteration until an optimality criterion is reached, there is no guarantee 

that the solution obtained would be the best or as desired by the animator 

( et Figure 3.4). 

3. Most of the techniques are useful only when the animator can supply a 

good guess of the motion trajectory. At times specifying such a trajectory 

is as burdensome as specifying key-frames. 

4. Many a times the search space is large, multimodal and discontinuous 
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(due to collisions) as a result these gradient based search techniques fail 

to obtain a good solution. 

It is therefore clear that we need a mechanism which can start the search 

effectively through a large multimodal search space. It should avoid achieving 

the false peaks and should not require the function to be continuous in order 

to proceed. The two most common methods which are suitable for this kind of 

situations are simulated annealing and genetic algorithms. Both are stochastic 

optimization techniques, which are based on natural processes found in nature. 

Simulated annealing is patterned after the physical process of annealing found 

in metals, where as genetic algorithms are based on the principle of evolution 

found in nature. 

3.5.1 Simulated annealing 
• 

Simulated annealing [58] is a computational process where the exploration of 

the whole space is done early on so that the final solution is relatively insen-

sitive to the starting state. In the physical process of annealing, the physical 

substances such as metals are melted (i.e raised to high energy levels ) and 

then gradually cooled until some solid state is reached. The goal of this process 

is to produce a minimal energy final state. The computational equivalent of 

energy is the objective function. In an annealing process, as the temperature 

decreases, the probability of a large uphill move is lower than the probability 

of a small one. Thus such moves are more likely to occur during the beginning 

of the process when the temperature is high, and they become less likely at 

the end when the temperature becomes lower, whereas downward moves are 

allowed any time. The rate at which the system is cooled is called as the an-

nealing schedule. If the annealing schedule is too rapid, the method is subject 

to stagnation in a local minima (it degenerates into a pure descent method). If 

the annealing schedule is very slow the method becomes impractical for gener-

ating suitable solutions to complex problems within reasonable computational 

limits. In physically based animation, Van de Panne and Fiume have used sim- 
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ulated annealing technique for global optimization. Using the technique they 

have synthesized the weights of sensor actuator networks, which influence the 

movement control of virtual creatures. 

3.5.2 Genetic Algorithms 

Genetic Algorithms (GA's) are adaptive methods which may be used to solve 

general search and optimization problems. The basic principles of GAs were 

laid down rigorously by Holland [51] and are well described in many texts, e.g 

Davis [24], Goldberg [36], Michalewicz [74]. GAs use a direct analogy of evolu-

tion according to the principles of natural selection and survival of the fittest. 

They work with a population of individuals each representing a possible solu-

tion to a given problem. Each individual is assigned a "fitness score" according 

to how good a solution to the problem it is. The highly fit individuals are given 

opportunities to "reproduce" by "cross breeding" with other individuals in the 

population. This produces new individuals as "offsprings" which share some 

characteristics with each "parent". The least fit members of the population are 

less likely to get selected for reproduction and so "die" out. In this way, over 

many generations good characteristics are spread through out the population 

as they evolve. By favouring the mating of the more fit individuals, the most 

promising regions of the search space are explored. If the GAs have been de-

signed well, the population will converge to an optimal solution to the problem. 

The population is said to have converged when 95% of the individuals in a 

population share the same value of the solution. 

Algorithmically the process can be described as follows. Let P(t) = xi, . , xnt 

be a population (set) of solutions, for iteration t. Each solution x is evaluated 

to give some measure of fitness. Then a new population is formed for iteration 

t + 1 by selecting more fit individuals. Some members of the new population 

are involved in reproduction by means of genetic operators to form new solu-

tions. There are unary transformations m i  (mutation types), which create a 

new individual (solution) by a small change in a single individual, and higher 

order transformation ci  (crossover type), which create two new individuals by 
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combining parts from two other individuals. After some number of generations 

the algorithm converges. The best solution is assumed to and often represents 

the optimal solution. 

i 

procedure genetic algorithm; 

begin 

t :=0; 

initialize P(t); 

evaluate P(t); 

while not ( terminate condition) do 

begin 

t := t + 1; 

select P(t) from P(t-1); 

recombine P(t); 

mutate P(t); 

evaluate P(t); 

end; 

 

end; 

Genetic algorithms work well even if the search space has some of the difficult 

to handle properties mentioned above. Considering a population of points 

rather than a simple point at start, GAs climb many peaks parallelly. Thus 

the probability of finding false peak points is reduced in the case of multimodal 

(many-peaked) search spaces. In order to proceed, GAs only require objective 

function values associated with individual solutions, so there is no need for the 

search space to be continuous or differentiable as no derivative needs to be used 

to climb the peak 1 . 

Classical genetic algorithms use a bit string for representation of a solution. 

The whole probabilistic theory of GAs is based on this representation. Genetic 

las required in gradient based search techniques 
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operators are well defined for binary representation and are unique for all types 

of problems. A problem with the bit representation is that the structures are 

difficult to impose on the parameters. 

In motion optimization, we have floating point numbers to deal with. In order 

to use GAs they need to be converted to binary representation with precision 

information. Also our solution representation requires structures on the pa-

rameters. Hence genetic algorithms are not very practical in their canonical 

form for the kind of optimization problems encountered in physically based ani-

mation. A variant of genetic algorithms which use floating point representation 

are called Evolutionary programming algorithms.. 

4 	 The genetic algorithms differ from evolutionary programming in the following 

aspects [281: 

1. In genetic algorithms a binary coding of the parameters to be evolved is 

used, not the floating point parameters themselves. 

2. The number of offsprings to be created from each parent is proportional to 

the parent's fitness relative to all other members of the current population. 

3. Parents create offsprings through the use of specific genetic operators such 

as one-point crossover, and bit mutation. 

On the other hand in evolutionary programming [281: 

1. Rather than a single coding structure to every problem, each problem is 

Tegarded as unique. 

2. Successful simulations need not create more than a single offspring per 

parent. 

3. Offsprings are created through many mutation operations that follow nat-

urally from the chosen problem representation. No emphasis is placed on 

the use of a crossover operation. 
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Many of the original proposals in GA have undergone significant revision since 

first definition. Much of the current research in GA has foregone the use of bit 

strings [93]. Experiments have indicated the superiority of hybrid crossover 

mechanisms to the one-point crossover originally proposed by Holland. Some 

of the research has indicated a greater role for mutation in evolutionary search 

and has illustrated cases where crossover can be detrimental to search. The ma-

jor advantage of evolutionary programming is that, we can impose a structure 

on the parameters. However, it requires one to define mutation and crossover 

operations. These operators are very problem specific. Although there is no 

proven theory behind the working of this approach, it works well if operators 

are well defined. 

Many evolutionary programing algorithms can be formulated for a given prob-

lem. Such programs may differ in many ways. They can use different data 

structures for representing the individual solutions, different genetic opera-

tors for transforming individuals, methods for creating an initial population, 

methods for handling constraints of the problem, and parameters (population 

size, probabilities of applying different operators etc.). However, they share a 

common principle; a population of individuals undergo some transformations, 

and during this process of evolution the individuals strive for survival and only 

the fittest survive. In physically based animation, Ngo and Marks [81] have 

used a massively parallel genetic algorithm to synthesize motion of articulated 

figures with banked stimulus response controller. A genetic algorithm is also 

used for controller synthesis in the recent work by Sim [89] and by Gritz and 

Hahn [37]. 

3.6 Remarks 

The initial techniques which used local optimization procedures were primar-

ily responsible for introducing optimization as the tool for motion synthesis in 

computer animation. There are a number of problems inherent in the local 

optimization methods. Specifically, the amalgamation of constraints including 

the dynamic equations of motion into the objective function to be optimized has 

the undesirable side effect that the synthesized optimal motion does not neces- 
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sarily satisfy the constraints and hence need not even be physically realizable. 

It must be said here that local optimality would surely mean that constraint 

satisfaction and physical correctness would be encouraged but not guaranteed. 

Use of global optimization methods is therefore mandated. Present algorithms 

based on the genetic programming paradigm seem to be the most suited can-

didates. While such algorithms do search for the optimum globally they too 

do not guarantee that the true optimum can always be found. But probabil-

ity is certainly much greater. Such algorithms are simple to program but are 

computation intensive. One possible solUtion is to use parallel computation 

techniques. This approach has been adopted by us in our implementation and 

the parallel algorithm is described later in chapter 6. 
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Chapter 4 

ModellingSbject Interaction 

Articulated figures representative of living creatures locomote themselves not 

only through internally generated forces and torques but also with the help of 

external forces that arise through interaction with other virtual objects as the 

articulated figures move in the virtual environment. If no special attention is 

paid to object interaction, these objects will move through each other producing 

unrealistic and disconcerting visual effects. A primary requirement of phys-

ically correct animation is to model the dynamic effects of these interactions 

in the form of suitable forces and torques. Along with the internal forces and 

torques 1  these are then incorporated into the dynamic equations of motion for 

obtaining the desired movement. 

Methods for generation of internal forces and torques have been discussed 

in detail in the earlier chapter. In this chapter we discuss methods for the 

modelling and synthesis of external forces. There are essentially two kinds of 

external forces that a rigid object can experience: 

'Some times the term internal forces has been used to distinguish constraint forces like 

the one that has to be generated for maintaining joint connectivity from external forces like 

gravity. In this thesis however, by external forces and torques we mean all environmental and 

environment induced forces/torques, and we reserve the term internal forces/torques for those 

whose generation is internally motivated in the creature in order to achieve a goal oriented 

movement. 
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c  found within tolerance 

inter - penetration detected 

Figure 4.1: The particle colliding with the floor 

o Field forces like gravitational force, that are always present throughout 

the virtual environment. A gravity like force is very simple to model and 

can be easily incorporated into the equations of motion. 

o Constraint forces that arise out of bilateral constraints and unilateral 

constraints such as joint connectivity, collision and contact constraints. 

Bilateral constraint forces typically arise in representing idealized joints which 

connect one rigid body to another. Bilateral constraints are explicitly specified 

as part of the description of the articulated body. An example of a bilateral 

constraint is a rotary joint. Typically, bilateral constraints are valid through 

out the simulation unless they are relaxed explicitly during the course of sim-

ulation. 

Collision and contact constraints on the other hand come and go as objects 

move about and interact with other objects in the environment. For example, 

consider a point mass being dropped on to the floor under the influence of 

gravity ( cf Figure 4.1). Assuming rigid body behaviour for both particle and 

floor, it is clear that we cannot allow the particle to penetrate below the floor 

when it strikes the floor. This means that at the very instance that the particle 

actually comes into contact with the floor, an abrupt change in its velocity has 

to occur, making it move away from the floor. 

However a different approach has to be taken for a flexible object. For a flexible 
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Figure 4.2: A rubber ball colliding with the floor 

object such as a rubber ball, the collision can be considered as occurring gradu-

ally. Over some fairly small, but finite span of time, a force would act between 

the ball and floor and change its velocity ( cf Figure 4.2). During this time the 

ball would deform, due to the force. The more rigid the ball is, less would it 

deform and shorter would be the time of contact. In the limiting case, the ball 

is infinitely rigid, does not deform, and unless the ball's downward velocity is 

instantaneously reversed, it will penetrate the floor ( cf Figure 4.3). Thus for 

rigid body motion under constraints, we have two basic types of contacts to deal 

with. When two bodies at the point of contact, have a relative velocity towards 

each other, it is called a colliding contact. Whenever, the relative velocity be-

tween the bodies at the point of contact is zero, the bodies are said to be in 

resting contact. Like, the rubber ball bouncing off the floor, in resting contact, 

objects remain in touch with each other over a finite span of time. Although, 

there is no deformation due to bodies being rigid. Detecting whether objects are 

in colliding contact or resting contact can be considered as purely a kinematics 

problem depending only on position and velocity. However, after the collision, 

how the objects should move is decided by the dynamics. It must be noted 

here that both colliding and resting contacts may also require the modelling of 

frictional effects. 

4.1 Motion Simulation with constraints 

As we have seen earlier in Chapter 3, at a very high level, one can view mo- 

tion simulation as the process of numerically solving the ordinary differential 
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Figure 4.3: Soft body collision v/s Rigid body collision 
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equation (ODE) 
dY(t)  

= f(Y(2), t) 	 (4.1) 
dt 

Where the vector Y(t) describes the state of the system at time t. For a rigid 

body motion, the state Y(t) is defined as: 

Y(t) = x(t) 0(t) v(t) w(t) 1T 	 (4.2) 

where x(2) — represents the position of the centre of mass, 

0(2) — represents the orientation, 

v(t) —represents the linear velocity, and 

w(2) — represents the angular velocity. 

Given the state at time to i.e Y(t 0 ) and f(Y(to), to), the simulation system 

uses numerical integration to advance its state from Y(20) to Y(t o  + At). Nu-

merical integration techniques require evaluating f (Y (to), to ), which in turn 

requires computing the force F(to) and r(to) acting on an object, representing 

both external and internal forces. When there are no constraints on the object's 

motion (that is, no obstacles to encounter, as in objects in flight), then all these 

forces and torques can be determined trivially and the simulation is a simple 

and straightforward numerical integration of Equation 4.1. In the presence of 

obstacles however the numerical integrator has the following problems: 

o Firstly, we may have the situations that at an intermediate state Y(t i ) 

objects do not penetrate while in the state immediately following it, that is, 

Y(ti  + At), objects may penetrate. Unfortunately, the differential equation 

contains no information about the geometry of objects in the simulation. 

Therefore, we cannot determine when collisions will occur, solely on the 

basis of the differential equations. 

o Secondly, a colliding contact requires an instantaneous change in velocity, 

say at the instant that the collision occurs. As a result the numerical 

integrator that solves the differential equation, suffers from discontinuity 

in state variable Y(t c ) at the time of collision ( cf Figure 4.4). 

The standard technique to overcome these problems consists of testing the colli- 

sion outside the numerical integration loop and solving the differential equation 
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Y(tc)+7----„7 
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Figure 4.4: A discontinuity in the state variable due to collision 

piece-wise. A piece-wise solution involves, stopping the solver at the instant the 

collision is detected, computing the new velocities, and reinitializing the state 

with new velocity variables. It is important to note that the state Y(4) -  just 

before collision and the state Y(t c )+ just after the collision should agree for all 

spatial variables (position and orientation) but may differ in velocity variables. 

The various methods and issues in computing the exact time of collision tc , is 

discussed next. 

4.2 Collision and Contact Detection Techniques 

There are two ways to look at the collision contact determination problem. 

First, as a continuous function of time from time t o  to Given this view 

point, the basic problem to be solved is "at what time" and "where" do bodies 

first come into contact? Second, the problem can be considered discretely, at 

a sequence of time values t o  < to  + At i  < to + At2 . In this viewpoint, the 

basic problem is given the position of bodies at time t i  and time t i  + At, and 

the fact that penetration has occurred during the interval At, where do bodies 

interpenetrate and contact each other. 

At the very core, collision/contact detection is a spatial interference problem 

which has been extensively studied in the fields of computational geometry 
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[85], and robotics [17]. In computational geometry the problem is solved for a 

static environment. That is, given two objects one has to determine whether 

the objects intersect. The emphasis is on complex object shapes and exact 

intersection computation. In robotics on the other hand, the collision detection 

problem is solved as a dynamic environment problem. That is, given two 

objects and their paths, the problem is to determine whether the objects will 

collide and if so at what time do the bodies first come into contact. Examples 

include an algorithm for determining the first collision between rigid polyhedral 

objects [17]. Making the assumption of constant angular velocity, the problem 

is reduced to that of determining the first instant of collision to the problem of 

finding roots of polynomials. Since no closed form solution exists for the time 

at which the first intersection occurs an iterative numerical method is used to 

determine time. 

In physically based simulations however, the paths of the colliding objects are 

not known in advance. In fact they are to be determined. These paths depend 

very much on the interaction of the moving object with other objects in the 

environment as well as the objects own internal forces. Von Herzen et al. [44] 

describe an algorithm that determines the first collision between parametri-

cally defined time-dependent surfaces. Very recently, interval arithmetic based 

methods [77] have attracted considerable attention as a method to deal with 

collision detection. Duff [26] describes a collision detection method using inter-

val analysis that handles rigid-body motion of implicit curved surfaces but with 

restrictions on the motion path. Similarly, Synder [92] uses interval analysis 

to find the first time of collision between both parametric and implicit time 

dependent curved surfaces. The methods based on continuum approach are 

computationally very expensive and are not really practical in todays general 

computing environments. 

The second approach takes a discrete view to the collision detection problem. 

A straight forward method of collision detection would be to solve a sequence of 

static problems one per time step. For example, as we run the simulation, we 

compute the position and orientation of the object at times to, to + At, t o  + A2t 
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Figure 4.5: A missed collision 

and so on 2 . Suppose all we know is that the time of collision t, when objects 

first come into contact lies between t o  and to  + At, then computing t c  involves 

a binary search in the interval t o  and t o  + At. That is, if at time t o  + At we 

detect inter-penetration, we inform the ODE solver that we wish to restart 

back at time t o , and simulate forward to time t o  + If the simulator reaches 

t o  + -V- with out encountering inter-penetration, we know the collision time t c 

 lies between to  + t and to  + At. Otherwise, t, is less than t o  + tt and we try to 

simulate from t o  + 4tand so on. The method will terminate when the objects 

are found to collide within some tolerance. The binary search method is slow 

but is easy to implement and is very robust. 

The problem with this simple method of collision detection is that these algo-

rithms essentially ignore any geometric similarity that may exist between two 

consecutive states. Secondly, even if we find that both states at t o  and t o  + At are 

legal, the method does not guarantee that a collision has not been missed ( cf 

Figure 4.5). The recent work by Baraff [9] and Lin and Canny [63] has focused 

on collision detection algorithms for dynamic simulation that efficiently reuse 

previously computed information. In particular, Lin and Canny describe a col-

lision detection algorithm for convex polyhedra that takes roughly 0(1) time 

to test a pair of polyhedra. Baraff describes a coherence based bounding box 

that detects overlap between n bounding boxes in roughly O(n) time over the 

course of simulation. Methods for coherence-based collision detection among 

2The ODE solver need not proceed with equal size time steps as explained in Chapter 3 
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convex curved surfaces are also described [9]. To guarantee that the object has 

had no collision within the time interval At, one must consider the entire path 

during the interval. But as was said earlier, in general this path is not known. 

The simplest way to approximate the trajectory is by linearizing the motion 

between time interval to and t o  + At. Another common assumption to solve this 

problem is to make sure that the velocities of the moving objects are small as 

compared to the time interval At. 

Collision detection is in general computationally very expensive. A naive col-

lision detection algorithm with n objects requires 0(n 2 ) comparisons at every 

time step of simulation. Bounding box based preprocessing has been proposed 

for increased efficiency. In these methods to improve the performance it is 

necessary to determine only pairs of objects which really require consideration 

by the collision detection algorithm This can be done by enclosing each object 

in the simulation by a bounding box whose sides are parallel to the coordinate 

axis. Given objects A and B, if their bounding boxes do not overlap, there is 

no need to subject the objects to any further consideration. Moreover, this 

technique can be implemented hierarchically to reduce computation time [75]. 

Research on more efficient collision detection methods continues. 

4.3 Collision Resolution Techniques 

Once the collision has been detected and the exact points of contact between the 

colliding objects haire been determined the next step is to ensure that the non-

interpenetration constraint is maintained. Ideally, this is done by computing 

a constraint force at each contact point that acts in a direction normal to the 

contact surface at the point of contact and exactly prevents interpenetration. 

This would require the solution of a non-linear system of equations and is 

fairly complicated. The second method, called the penalty method is much less 

complicated, but does not completely eliminate interpenetration. Essentially 

a contact is modelled by placing a damped spring at the contact point. As the 

• 

	

	 amount of interpenetration increases a repulsive force acts between the objects 

pushing them apart. 
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Vertex -Face contact 
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Figure 4.6: A contact between two polyhedra 

4.4 Exact Methods 

S 
	

Once the exact time (within tolerance) of collision/contact is computed using a 

numerical or binary search, the next, step is to find alPthe points of contact. 

For a collision between a point particle and a surface this is very simple, since 

nothing more than substituting the position of the particle in the equation of 

surface is required. However, for objects with complicated shapes, the problem 

is much more difficult. To simplify the matter, let us assume that all bodies 

are polyhedra, and every contact point between bodies has been detected. The 

fr  contact point between bodies can be considered to be either vertex/face contacts 

or edge/edge contact. We shall assume that vertex/vertex and vertex/edge as 

degenerate cases and have to be handled separate157in some ad hoc manner. A 

vertex/face contact occurs when a vertex on one polyhedron is coincident with a 

face of the other polyhedron ( cf Figure 4.6). An edge/edge contact occurs when 

a pair of edges are coincident. 

4.4.1 Colliding Contact 

t_t 	 Consider two bodies A and B which come in contact at point P at time t c . 

Let Pa(t) and Pb(t) denote the points on body A and on body B respectively 

(expressed in their own coordinate frame) such that P a (t) = Pb (t) at t = t c . 
Although Pa(t) and P b(t)are coincident at time t c , the velocities of the two 

points at contact time t, may be quite different. If we denote Pa  (t) and Pb (t) 
to be their velocities at time of contact, then the relative velocity in the direction 
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Figure 4.7: (a) Colliding contact (b) Resting contact (c) Separating contact 

normal to one surface will be given by 

v„/ = n(t c).(i3 a  (tc)— Pb (tc)) 

which is a scalar ( cf Figure 4.7). In this equation n(t c ) is the unit surface normal 

defined for each contact point at t c  3 . The quantity v„/ gives the component of 

the velocity in n(t c ) direction. Clearly if // re/  is positive, then it means that the 

bodies are moving apart, and that this contact point will disappear immediately 

after t c  ( cf Figure 4.7). We do not now have to worry further about this case. 

If v„/  is zero, then, the bodies are neither approaching nor receding at the 

point of contact. This is exactly what we mean by resting contact. If on the 

other hand vr ei < 0, this means unless the velocities of the bodies undergo an 

immediate change, interpenetration will occur in the next time step ( cf Figure 

4.7). Since we want the bodies to change their velocities instantaneously we 

3Assumption is that one can always find such a normal 

I 
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apply an impulse force J in the direction of n(t c ) 4 . 

J = jn(tc ) 

An impulse is a vector quantity, just like a force, but it has units of momentum. 

Applying an impulse produces an instantaneous change in the velocity of a 

body. For example, if we apply an impulse J to a rigid body with mass M, then 

change in the linear velocity Av =-th. The magnitude j is computed by solving 

the empirical law for frictionless collisions such as: 

v rel 
	

—6 V ;e1 

where the quantity E is called coefficient of restitution and must satisfy 0 < e < 

1. If e = 1, then vr+e, = —Ice) and collision is perfect and there is no loss in 

energy. 

Moore and Wilhelms [75] and Hahn [39] have proposed a solution to the prob-

lem based on the conservation of linear and angular momentum. Fifteen linear 

equations are set up and solved for fifteen unknowns. These unknowns are 

the three components of the resultant linear, angular momentum and the im-

pulse vector. Out of these fifteen equations, twelve equations are due to the 

momentum conservation principle: 

miv i  = miv i  R 

m2v 2 = m2v 2  — R 

117.v;.  = 117.v1  p1 x R 

12'11) 12  = 12W2 — P2 X R 

where 

• Pi., P2 are vectors from the centre of mass of each object to the point of 

collision. 

4This assumption is valid provided we are considering only frictionless systems. 
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as a function of unknown fi 's. This results into equations, which can be solved 

using a numerical technique called quadratic programming to determine the 

fi's. 

The constraint based approach computes exactly the non-penetration constraint 

forces that are required to cancel accelerations that would result in interpen-

etration. However the method typically requires solving nonlinear systems of 

equations, and is fairly difficult to implement. 

4.5 Penalty Method 

A vast number of simulations [61, 71, 75] have employed the penalty method 

to enforce non-penetration constraints. Applications include the simulation of 

deformable bodies, cloths, and articulated rigid bodies. The penalty method 

is a very attractive model in some respect, because it is extremely simple to 

implement and very versatile. 

Unlike the exact methods discussed above, the penalty method provides an ap-

proximate solution to the collision/contact problem. It is based on a numerical 

solution method for constraint optimization where a constrained problem is 

converted to an unconstrained problem with deviation from the constraint be-

ing penalized. In the converted problem however, satisfaction of the constraint 

is encouraged, but not strictly enforced. This is illustrated below. A typical 

constrained optimization problem such as 

minimize f(z) such that g(z) = 0 

can be rewritten as an unconstrained problem as follows: 

minimize f(z) kg(z) 2 as 	oo 

The term kg(z) 2  is called the penalty function. The idea is that as k grows larger, 

potential solutions for z must make g(z) 2  smaller. In the limit, as k —+ oo, the 
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o ml , m2  are the object masses. 

• 11 , /2  are inertia matrices of the objects. 

ti 

o v, , v, are the linear velocities of objects before the collision. 

 k. 	 • v i v'2  are the linear velocities of objects after the collision. 

• w„ w, are the angular velocities of objects before the collision. 

• wi , w'2  are the angular velocities of objects after the collision. 

o R is the impulse vector, by convention directed from object 2 to 1. 

The last three equations depend on the collision behaviour, i.e, elastic or non-

elastic collision, with or without friction, etc. The square linear system of 

fifteen equations in fifteen unknowns is solved by standard Gauss-Jordan or 

LU decomposition method. 

4.4.2 Resting Contact 

As was the case for colliding contact, in a resting contact too, at each contact 

point, there is assumed a contact force f ini (tc) that acts normal to the contact 

surface. Here fi is an unknown scalar, and n i (tc ) is the normal at the ith  

contact point. The goal is to determine what each fi  is. In computing fi 's 

they must all be determined at the same time, since the force at the ith contact 

point may influence one or both of the bodies. For resting contact, the f i 's are 

• computed subject to three conditions. First, the contact forces must prevent 

inter-penetration that is, the contact forces must be strong enough to prevent 

two bodies in contact from being pushed towards one another. Second, the 

• contact forces must be repulsive, that is, contact forces can push bodies apart, 

but can never hold bodies together. Last, the force at a contact point becomes 

zero if the bodies begin to separate. A simple function di  is defined. di  denotes 

the distance between two objects near the point of contact. In order to actually 

find fi's which satisfy the three conditions stated above, we need to express di 
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P(to  At) 

Figure 4.8: A collision between floor and a particle modelled using penalty 

method 

solution to the problem satisfies g(z) = 0 while at the same time minimizing 

f (z). In practice, z is obtained by solving the problem for a series of increasing 

values of k until the series of solutions converge (within numerical tolerance) 

to a limit. Although the method has a theoretically firm basis, in practice, it 

is not a very robust numerical method. The main problem is that as k grows, 

the problem becomes very poorly conditioned and difficult to solve. The main 

attraction of course is that it provides a very simple way of turning a constrained 

problem into an unconstrained one. 

For a specific example, consider a collision between a particle and a surface ( cf 

Figure 4.8). Using the method described above the problem can be converted to 

an unconstrained dynamics problem. As soon as collision is detected, a penalty 

force is applied on the particle, in a direction normal to the surface, so as to push 

the particle away from the surface. Typically, the penalty force is modelled as 

a linear spring force; that is, the penalty force pushes the particle away from 

the surface with a strength equal to some constant k times the distance of 

penetration. If we let P(t) denote the point on the object which has penetrated 

into the surface at time t, then the penalty force is computed as 

—k (X(t) — P(t)) 
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where X(t) denotes the closest point on the surface to the point P(t). From 

the expression above one can see that larger the penetration larger the force 

—k (X(t)— P(t)). 

If the penalty method for dynamics were to completely emulate the penalty 

method for constrained optimization, the simulation would be repeated with 

increasing values of k until the behaviour of the particle approached a limit. 

However, the penalty method, as used by dynamics, chooses a single value 

for k. Setting the penalty constant too high significantly increases the cost of 

the simulation, while setting the stiffness too low can lead to an unacceptable 

degree of interpretation. Moreover, a good choice for penalty stiffness can vary 

greatly over the course of simulation, and it is usually impossible to make 

a reasonable prediction for a single suitable stiffness value. If k is small, it 

may not do an adequate job of enforcing the constraint; that is, the particle 

will penetrate the surface before being pulled away. Visually this may be very 

disconcerting and may be totally unacceptable to the animator. If k is large, it 

may give rise to a funny bounce which again may look unnatural. Further, as 

in other optimization problems, ill-conditioning occurs as k grows large, in the 
guise of "stiffness" of the differential equations of motion. As already discussed 

earlier, stiff differential equations are expensive and difficult to solve. 

One of the biggest plus points of the penalty method is that it models collision 

response as a continuous time varying phenomena clearly requiring state Y(t) 

to change continuously when collision occurs. As a result there is no need to 

stop and start the differential equation solver with fresh initial values like that 

in the case of the analytical method. Further, it handles both colliding and 

resting contacts uniformly. 

4.6 System with Friction 

So far we had considered a frictionless system in which constraint forces and 

impact forces act normal to the contacting surface. This assumption is no 

longer valid for a system with friction. In fact, friction adds considerable 

complication to a rigid body simulation. For example, in a frictionless system 
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the constraint forces that act to prevent interpenetration are conservative; 

that is, they perform no net work. Where as if we wish to model the effects 

of friction, we will need to compute friction forces that act tangentially to the 

contact surface to prevent or oppose sliding between objects at contact points 

and do work in the form of dissipation of energy. The classical friction model 

for contacting surfaces is the one given by Coulomb. This model suggests an 

empirical relationship between the normal force magnitude fN  and frictional 

force magnitude f! f: in the form of 

fx + 4,2  (14N) 2  

where f. and fy  are the components of frictional force in the plane normal to 

the contacting surface and g is a coefficient of friction that depends on material 

properties, and may be different at each contact point. The relationship of these 

forces at each contact point also depends on whether or not bodies are currently 

sliding relative to one another or are at relative rest. If the tangential velocity 

is nonzero, then the friction force is called dynamic; otherwise, the friction force 

is called static. Typically, the coefficient g of static friction a - static is larger than 

the coefficient g of dynamic friction iLa ynamic • 

From the Coulomb's empirical relation it is clear that there does not exist a 

unique relationship between constraint force and frictional force. Rather, it 

imposes inequality. This means that the law does not suggest an effective 

means of determining the contact forces, and in practice, simulations must 

occasionally search for a set of contact forces satisfying constraints. Given this 

state of affairs, it is not too surprising to find that the search might turn up 

more than one solution or fail to turn up any solution. 

4.6.1 Collisions with Friction 

When two bodies collide at a contact point with friction, the collision is modelled 

to take place over some small but nonzero time interval. During the time 

interval of the collision, the normal and friction forces must satisfy the condition 

laid by the Coloumb's empirical law. Frictional force at a single point of contact 
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is computed by examining the limiting behaviour of the system as the time 

interval of contact is reduced to zero. Modelling simultaneous collisions is 

more complicated. Consider for example a cube dropped onto a level plane 

surface so that all four vertices of the bottom face of the cube strike the plane 

surface together. Lotstedt [65] computes simultaneous frictional impulses in 

three dimensions by using a modification of Coulomb friction law that causes 

impacts to dissipate as much as possible. However, in general, it is unclear as 

to how to deal with simultaneous impacts with friction and the problem is still 

open. 

4.6.2 Contact with Friction 

Finding contact forces that satisfy the Coulomb friction model at the contacting 

point is also extremely difficult. Unlike the frictionless case, there is no guar-

antee that a solution exists. Even when a solution does exist, it may not be 

unique. The first possibility of nonexistence of solution is called inconsistency 

where as nonuniqueness of solution is called indeterminacy. Lotstedt [65] real-

izing that both indeterminacy and inconsistency present major difficulties for 

a simulation process, has proposed a modification to the Coulomb friction law 

that eliminates both indeterminacy and inconsistency. Recently Baraff [8] has 

shown that determining if a given configuration of objects with dynamic friction 

is inconsistent is NP-complete. Further, for static friction between contacting 

surfaces, Baraff [8] shows that all one-pont configurations are consistent and 

speculates that all configurations are consistent. Unfortunately, none of the 

methods are suitable for use as solution methods in practice as they all require 

exponential time in the number of contact points. 

4.6.3 Penalty Method with Friction 

Although the penalty method can be extended to add a tangential friction- 

like force, it is not clear how or if the complete Coulomb friction model can 

be accommodated within the framework of the penalty method. In penalty 
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method, a friction is modelled by adding a small amount of viscous drag to the 

penalty force. The effect of the drag is to resist motion, making the particle 

come to rest gradually. This also helps to enhance the numerical stability of 

the differential equation. The resulting equation for penalty force then looks 

like 

Icp  (P(t) — X (t) ) — ic„ 	(t) 

4.7 Remarks 

Although the analytical methods are robust and exact, they are more involved 

and cumbersome to implement as compared to penalty methods. Computation-

ally resting contact is expensive. Penalty method on the other hand makes 

no distinction between colliding and resting contact. The method is inexact 

but very easy to implement. A major problem with the penalty method is in 

choosing the right spring constants. In fact, at times choosing the right spring 

constant even after many trials is very difficult. As a compromise many prac-

tical implementations handle the colliding contact using an analytical method 

and resting (soft collisions) contact using spring and damper [75]. 
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Chapter 5 

Automatic Motion Synthesis by 

Specifying Motion Features 

As humans we perceive all the time, subtle details in the different types of 

movements of objects and living creatures in nature, and easily distinguish 

amongst a wide variety of motions ranging from the undulatory crawl of the 

worm, to the aesthetic walk of a human being. The deep rooted structure 

underlying motion is so well understood and internalized by us that we are 

often able to identify the gender of a person just by the style of the walk. 

Similarly we have no difficulty whatsoever in recognizing the gait of a horse, 

and are quick to note when it breaks from a trot into a gallop. The variety of 

movements that we see around us in the world is vast and fascinating. While 

many of these movements are carried out by living creatures naturally and often 

unconsciously in a most efficient manner, reproducing similar movements by 

computer simulation techniques is an extremely complex task. 

5.1 The Control Over Movements 

As we have seen in the earlier chapter living creatures carry out goal oriented 

movements by generating internal forces and torques that are complementary 

to the external forces and torques. These external forces and torques are either 

present in the environment or are generated in response to their interaction 
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with other objects and creatures in the environment. Animating virtual crea-

tures in a virtual environment thus requires the system to derive the internal 

forces and torques, formulate the dynamic equations of motion, modify the 

equations suitably to accommodate any forces and torques generated by inter-

action with other objects and finally solve these equations of motion to obtain 

the movement of the virtual creatures. When the forces and torques that cause 

this movement are to be automatically synthesized, there are basically two 

methods available to the animator for controlling a virtual creature to move in 

a fashion as specifically desired by the animator. 

• By suitably specifying the performance metric to be optimized. 

• By specifying additional constraints which the synthesized motion has to 

satisfy. 

The current implementations of these methods are not very convenient to pro-

vide the animator with fine control over the movement, while at the same time 

ensuring that the animator's efforts in producing the final animations are not 

excessive. One of the prime problems is due to the fact that generally the 

method of specifying the performance metric lacks fine resolution capabilities 

in terms of desirable motion characteristics. For example, minimum energy 

consumption or maximum distance travelled are typically the goals that many 

motion synthesis techniques have used. These are at rather too gross a level to 

be able to automatically result in distinctly different walking movements. The 

distinction may be subtle but is certainly perceived by us humans. 

Constraints do provide a finer level of control. However specifying non conflict-

ing constraints consistent with the goal of optimizing the performance metric 

is itself a very difficult task. As a result a majority of the methods use key-

frames as constraints. Key-frames are again not really simple to specify. For 

synthesizing even reasonably complex movements of simple articulated figures 

(with a few DoFs) the number of key-frames required is very large. As the 

number of key-frames needed increases the animator's efforts increase and cor-

respondingly the animation system's role reduces to one of providing simple 
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interpolation facilities. 

In chapter 3 we have discussed a number of optimization methods in which 

constraints are satisfied by suitably adding constraint satisfaction forces; and 

that this is one of the prime reasons for the introduction of discontinuities and 

stiffness in the differential equations of motion. The other methods handle 

constraints by including them in the objective functions. Such methods do not 

necessarily guarantee constraint satisfaction and hence may not provide the 

final results as intended by the animator. In general providing fine control 

through the specification of additional constraints is neither convenient nor 

computationally a robust mechanism. 

It is therefore not surprising that automatic physically based motion synthesis 

has not yet been used in any real commercial animation project. Animators con-

tinue to use motion capture as the prime technique of synthesizing simulated 

creature movements. The only other truly convincing simulated movements 

have been carefully hand tuned by simulation experts after many trials and 

observations and are for specific movements of specific creatures. It is quite 

clear that we need motion specification techniques with at least the following 

properties: 

1. In a form that is natural and easy for an animator to specify. It should 

not require that the animator be initiated into or understand any other 

discipline like physics. 

2. Maximal support should be provided by the system and only the minimally 

necessary efforts need to be put in by the animator. 

3. Progressively fine control over the automatically synthesized motions 

should be available with the animator. 

4. The techniques should not make the dynamic system ill conditioned nor 

should the computational process of optimization be overly burdened. 

5. The technique should be easy to incorporate in an optimization based 

animation system. 
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This chapter presents one such motion specification technique — the primary 

result of our research efforts in this area. 

The different movements that we see have distinguishing characteristics, that 

can very often be easily identified and recognized by humans. Let us refer to 

these as motion features. Two distinctly different movements therefore must 

have at least one distinctly different feature that enables us to characterize 

their difference. 

Motion features are natural for an animator to specify. A system can then en-

sure that the optimally chosen simulated motion has all the animator specified 

features while simultaneously satisfying other constraints required for realistic 

motion. 

Motion features are computed for every simulated trajectory, and therefore 

their specification does not require any change in the dynamic equations of 

motion. 

Motion features are integrated into the performance metric and when using, 

say, an evolutionary programming based optimal search technique, they do not 

in any significant way affect the computational efforts required. On the other 

hand, if properly specified, motion features can ensure that the optimal solution 

is reached in fewer generations. 

A careful choice of motion features can ensure that fine control is provided both 

by fine tuning feature values and by an increase in the number of desirable 

features that the optimal solution should have. 

Often very simple algorithms are involved in the computation of features and 

hence the feature based motion specification technique does not impose any 

significant additional implementation burden. 

Motion control by the specification of motion features thus satisfies all the 

criteria listed above for a good motion specification technique. 

In the rest of this chapter we formally define motion features and carry out a 

comparative study of feature extraction in other applications like image anal- 
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ysis and computer vision. We then describe the formulation of a performance 

metric with multiple features. Next we choose a domain of movement types. 

Specifically we have chosen gaits of legged creatures and describe the formula-

tion and computational procedures for evaluating a number of related features 

that enable us to easily synthesize different gaits for different types of crea-

tures. This area has been chosen as it is an extensively studied field and we 

can draw upon a number of reports that give us experimental evidence for the 

definitions and use of the gait related features [1, 72, 31]. 

5.2 Motion Features 

Motion features are quantifiable attributes that can be used to characterize 

motion. Once the set of features is specified, given a motion of an articulated 

figure, it is possible to extract-feature values for that motion. All the features 

need not be present in a given motion. By convention if any feature is not 

present then it takes the null value. Thus each feature can be considered as a 

computable function which when applied to a given motion returns a number. 

We characterize a motion by a feature vector f = 	f2 • • • f.) where fi , f2 

are the n individual features. In n dimensional feature space, the desired 

motion will be represented as a point. Motions which have similar features 

will cluster together in feature space. However, the degree of separability 

among the different classes of motion will strongly depend on the selected set of 

features for an application. Given a feature vector value, the task of the motion 

synthesizer is to search for the motion having its feature vector identical or 

close to the given feature vector. 

3 	 Feature extraction is a very well studied subject in pattern recognition and 

computer vision [84, 7]. In pattern recognition for example, features of known 

classes of pictures are computed and distinct clusters of features are defined 

in feature space, each cluster representing a distinct class of pictures. Given 

any unclassified picture, its features are computed and then .matched with 

the predefined set of feature clusters and classified according to its proximity 

to the clusters. The primary emphasis is on the development of efficient and 
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robust methods for clustering and classification. For historical reasons, pattern 

recognition and image processing work are usually closely tied together and 

most often the pictures are raster images and features are derived using a 

variety of image processing and analysis techniques. 

Another approach to pattern recognition is known as model based or structural 

pattern recognition [18]. In this approach a skeletal structure of the image is 

computed and then classified. The elements of the skeletal structure and their 

connectivity mechanism are themselves u sed like features for classification. 

While there are a few exceptions [46, 97], pattern recognition so far has primar-

ily been a static picture recognition process. If moving images are used, like 

in some computer vision studies related to vehicular movement [43], then they 

are largely used for producing additional information for hypothesis validation 

or filling in of missing information in the static scene. 

Another major area in computer vision is to study moving pictures for synthe-

sizing shape information. The idea is to reconstruct the surface geometry of 

an object from a sequence of images of the object as seen from a camera in 

relative movement with respect to the object [43]. A primary motion feature in 

most of the "shape from motion studies" is what is termed as optical flow. Very 

simply stated, optical flow is the rate at which a pixel of an image changes its 

intensity. The optical flow feature values are then used to synthesize the shape 

(by surface curvature) around the object surface region correspolding to this 

pixel [41]. 

There are a number of fundamental differences between features as used in 

pattern recognition or computer vision studies and features as used by us in 

motion synthesis. 

1. While newer sensing mechanisms like the range sensing devices [21] are 

becoming available and making three dimensional geometric data about 

dynamic scenes available for use in pattern recognition and computer 

vision, most of the emphasis in these fields has been and continues to be on 

colour/intensity images. On the other hand in our approach the features 

102 



are those which can be easily specified by the animators and therefore are 

necessarily not pixel image features but features of the actual motion in 

3D — features that are completely independent of the final rendered image 

of the animation sequence. 

2. Just because of the sheer volume of image data involved in a sequence, 

feature extraction from sequences of moving pictures with the intent of 

classifying different types of motion has not been a significant area of 

study in pattern recognition or computer vision. Our approach primarily 

depends on features of movements. 

3. Since the primary purpose of features obtained from feature extraction 

in pattern recognition and computer vision is for use in other computer 

processes like classifying or surface reconstruction, it is possible to use 

low-level pixel based features of pictures. And most methods do define 

automatic procedures for pixel level feature extraction. Our approach 

requires motion features at a much higher level. They are to be specified 

by the animator and then used for motion synthesis. 

The specification of high level features and their use for synthesis is an 

approach that has been proposed for computer aided geometric design 

also. Feature based design of solid geometric models is a popular and 

promising topic of research and development in the field of geometric 

design. There is once again a major difference in strategy In feature based 

geometric design, features are more like parameterized macro component 

specifications, which are used in a deterministic closed form fashion to 

compose the object [83]. Considerable complexity is introduced due to the 

fact that during the process of composition the resulting object has to be 

checked for validity in all its intermediate stages. Unlike in our approach 

where we synthesize a motion and then analyze its features, there is no 

analysis of features as such, other than validity checks. Also we are not 

aware of any global optimization based approach to geometric design by 

features. 
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In our method of synthesizing motion, we have to choose that motion which 

best matches the animator specified features. Since these features are to be 

extracted from a completed motion, it is mandatory for us to simulate the 

motions and carry out the feature extraction for each of the motions. There 

are three important aspects that play a significant role in the success of our 

method. 

o The set of features that are to be extracted for each simulated motion. 

o The motion representation space which is explored when searching for the 

optimal motion with the best of the given features. 

o The method of matching the simulated motion features with the desirable 

set of features and obtaining a measure of closeness of the motion to the 

desired one. This is essentially the performance metric. 

5.3 Features 

There is no limit to the number of features that can be defined for a movement. 

The set of features that have to be chosen for the synthesis of different classes 

of motions is therefore not a simple problem to solve. There are a few conditions 

that the chosen set of features should satisfy which make this problem difficult 

and these are discussed below. 

1. Computability: Every feature in the set of features chosen must be com-

putable for every trajectory that the computer is capable of generating for 

the given figure. 

2. Discrimination: The chosen set of features must clearly map different 

classes of motion of the figure into distinctly separate clusters in the 

feature space. 

3. Describability: The chosen set of features should be rich enough and at 

a significantly high enough level so that the different classes of motion 

and different movements within each class of motion can be intuitively 
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described by the animator by specifying desirable features of the move-

ment. 

4. Minimality : The chosen set of features should have a minimal size so 

that the dimensionality of the feature space is reduced and overall com-

putational efficiency is increased. 

5. Robustness in control: The chosen set of features should not be overly 

sensitive to fine changes in control parameters. That is, a small change in 

control parameters should not give rise to motion with completely different 

features. 

From the above it should be clear that there is no universal set of features that 

can be used for all classes of motions. The set of motion features must be cho-

sen in a domain specific manner. It is also clear that identifying what features 

should go into the set would be highly dependent on extensive studies of real life 

movements of that domain. As already mentioned for our experimentation we 

have chosen the domain as the movements (gaits) of legged creatures. Fortu-

nately for us, as we shall soon see, this is an area that is very rich in movement 

types, is widely applicable and has also been studied extensively [1, 72, 86]. 

5.4 The motion control representation space 

In principle the motion synthesis method with features could be based on any 

of the motion representation schemes discussed in earlier chapters. All that 

is needed is to be able to simulate the motions and then analyze them for the 

chosen set of features. The optimization technique used determines how the dif-

ferent motions are explored in the motion control space. In our implementation 

we have chosen to use an evolutionary based global optimum search algorithm. 

This algorithm explores the control space in discrete steps starting simulta-

neously at a number of points. The entire procedure will be more efficient if 

the dimensionality of this control space is kept low. We have therefore chosen 

to represent motion through motion controllers. Specifically we have resorted 

to the use of pose control graph controllers, because they are the simplest. 
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However other motion controller representations like the banked stimulus re-

sponse controller or sensor actuator network controller could easily have been 

used without any significant difference in our implementational efforts or to 

the computational resources needed. 

5.5 Feature Based Performance Metric 

Let X denote the space of motion control representations and x denote a specific 

motion controller. 

Let f(x) = fi(x), f2 (x). . fn (x) denote the feature vector with n separate 

feature components. fi(x) to fn (x) are computed for the motion resulting from 

the execution of the controller x. Without loss of generality we shall assume 

that all fi(x) are normalized, i.e, 0 < fi (x) < 1 and fi (x) = 0 implies that the 

feature is not present in the motion. 

If y = y i , y2  ... yn  is the desired feature vector as specified by the animator then 

a performance metric can be defined as follows: 

mM f (x) — y 11 
x€X 

That is the distance of the motion mapped as a point in the feature space 

from the desired feature space point provides us with a measure of the extent 

to which simulated motion deviates from the motion with desirable features. 

Smaller this distance closer the match. It is possible to weight the importance of 

individual features, with these weights being under the control of the animator. 

The performance metric can then be reformulated as follows: 

Let w = (wi, w2 wn), all wi  > 0 denote the weight vector. Each feature 

deviation can then be weighted and denoted by di(x), with di (x) = wi( f i (x)— ye ). 

The performance metric is defined as: 

mM { di(x ) 1 } 
xeX 

Throughout the rest of this thesis and in our implementation we shall assume 

that this metric is used during optimization. 
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5.6 The Gait of Legged Creatures 

The study of motion like walking, running etc. has been a subject of fascination 

for many. There have been many attempts to classify different types of motion 

among quadrupeds and bipeds [86]. One of the generally recognized features 

of natural legged locomotion is that animals typically employ their limbs in 

a number of distinct periodic modes. Thus we say that a man walks, runs 

or leaps and a horse trots, canters, gallops, i.e such modes are identified by 

characteristic patterns of foot falls ordinarily called gaits [45]. For example, 

in bipeds, walking and running can be distinguished from a mechanical point 

point of view on the basis of a simple test — in running, but not in walking, there 

is a period when both feet leave the ground . The synthesis of realistic walking 

or running gaits is however a very difficult problem that has been the focus of a 

large body of research in computer animation [35, 87, 71], biomechanics [106], 

computational neuroethology [12] and robotics [22]. 

In computer animation for example, in recent years we have seen an increasing 

number of films in which legged virtual creatures move in a realistic fashion: 

The computer animation techniques used are however relatively simple. Mo-

tions of mechanically moving toys or living humans are captured from film or 

video (rotoscoping) or by pasting electronically tractable sensors directly on the 

moving figures. The captured data is used with some minimal editing for creat-

ing similar animated movement of a very similar virtual figure. This technique 

is simple and gives excellent results as it is almost like playing back of real phe-

nomena. There are however several limitations. It is best suited for animating 

human movements. It is difficult to ensure that other living creatures move as 

desired by the animator. Motion captured from mechanically moving toys will 

most often will not look realistic. It is also difficult to make mechanical figures 

move with the kind of variety that live creatures move. Furthermore, once a 

motion is captured it is difficult to change or reuse it even if it only requires a 

slightly different situation. 

The specific challenge of creating tools for human animation has been taken 

on by a few others also in computer animation. The work of Badler et al. [5], 
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Thalmann and Thalmann [79], and Boulic et al. [13] illustrate the present 

state of the art in modelling humans using predominantly kinematic methods. 

In another method a technique for generalizing existing rotoscope data while 

preserving original motion characteristics is presented [59]. 

Beyond kinematic methods, there have been several proposals to produce ani-

mated walking motions using physically-based models. Girad [33] uses a mix 

of kinematic and dynamic methods to achieve a variety of biped and quadruped 

motions. Bruderlin and Calvert [16] use a similar mix of techniques to gener-

ate realistic parameterized walking motions for a kinematically complex human 

model, and later show that parameterized walks can also be achieved using a 

purely kinematic model. The gaits are constructed using control rules extracted 

from experimental gait data. 

The work of Raibert and Hodgins [86] demonstrates an elegant and robust 

control solution for balanced hopping and running creatures having one, two, or 

four legs. Hodgins et al. [49] have also developed a variety of control algorithms 

for tasks such as running, diving and bicycling. Stewart and Cremer [95] use 

changing sets of desired constraints to control the motion of a human-like model 

r.  in climbing and descending stairs. McGeer [69] shows that stable passive walks 

can be achieved down modest inclines. McKenna and Zeltzer [71] show how to 

synthesize a variety of gaits for a fully-dynamic hexapodal model. There is a 

significant body of robotics and biomechanics research concerning the control 

of bipedal walking motions, as well as for simulating human motion. While 

specific control solutions abolind, there has been relatively little work on the 

automatic synthesis of gaits in a general setting, i.e, for creatures of arbitrary 

design. 

Kelso and Pandya [56] have studied the order and regularity exhibited in hu-

man and animal motion and viewed the various gaits in terms of phase dy-

namics The theory originated from studies of human movement coordination 

in rhythmic bimanual tasks. It is observed that when the human right hand 

is involved in a task which is out of phase with the left hand, there is a spon-

taneous switch of coordination at certain movement frequency. This shift in 
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synthesis of different gaits of a creature. Interestingly, despite the difference 

in morphology, at intermediate and high speeds, two, four, six and eight-legged 

animals produce ground force patterns that are fundamentally similar. All can 

run, or bounce. Running humans, trotting dogs, etc. can move their bodies by 

producing alternating propulsive forces. Two legs in a trotting quadrupedal 

mammal, three legs in an insect, and four legs in a crab can act the same as one 

leg does in a biped during contact. The centre of mass of the animal undergoes 

repeated acceleration and deceleration with each step, even when travelling at 

constant average velocity. Motion analysis studies of walking and running of 

bipeds have shown that changes in the potential and forward kinetic energies 

of the centre of mass are almost exactly out of phase in walking so that the total 

energy changes only a very little throughout walking steps. The opposite is true 

for running, where changes in potential and kinetic energy are substantially in 

phase leading to a large change in total energy ( cf Figure 5.7). 

Further evidence of this equivalence comes from the the dynamic similarity 

principle proposed by Alexander [1]. His hypothesis is based on the fact that 

despite of the difference in physical structure, many natural motions show 

remarkable similarity. For example, two pendulums of different lengths swing-

ing through the same angle have dynamically similar motion. The dynamic 

similarity hypothesis predicts that animals of different sizes tend to move in 

dynamically similar fashion within their physical limits It is obvious that ani-

mals cannot move in precisely dynamically similar fashion unless their bodies 

have similar physical structure. However, comparisons of related animals of 

grossly different sizes show remarkably little deviation from dynamic similar-

ity. 

All the above studies show that there does exist a set of simple features in 

different gaits which can be used to distinguish amongst them. These features 

are at a high enough level and can also be specified by animators as desirable 

features which the synthesized motion must have. We discuss next the set of 

features used by us for synthesizing different gaits for a number of different 

virtual creatures, both one legged and two legged. 
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5.7 Gait Related Features 

Our interest is in gait patterns that repeat themselves. The sustained gaits 

of animals are all nearly like this. The gait patterns of an articulated figure 

can be characterized using a number of terms. These terms are directly usable 

as features at times and in other cases they would be used to compute feature 

values. We describe the various terms used in gaits. 

Gait cycle: Each repetition of the gait pattern is called as the gait cycle and 

the duration to complete one gait cycle is called as the gait period ( cf Figure 

5.2). Gait period is a feature which differs for different types of movements. 

Foot 

placement 

Transfer 

duration 

Support 

duration 

Foot 

liftoff 

Figure 5.2: Gait cycle 

Step length: This is distance travelled by the articulated figure in one gait 

cycle, for example, from the setting down of a particular foot to the next setting 

down of the same foot ( cf Figure 5.3). Step length is again a feature which 

differs for different gaits. 

Duty factor: This is the percentage of time spent by any given leg on the 

ground. The duty factor.is  an excellent feature to use for distinguishing between 

walking and running movement of bipeds. The distinction generally made is 

that walks have duty factors greater than 0.5, so that there must be stages in 

the gait cycle when both feet are on the ground simultaneously. Similarly runs 
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Figure 5.5: Diagram showing relative phase amongst legs of a quadruped 

• Figure 5.6: Gait matrix and corresponding phase sequence for a quadruped 

walk 
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Centre of mass: This is the point were the entire mass of the body appears to 

be concentrated. For an articulated body it can be computed as follows: 

Let us denote the length of the ith link by L 1 , mass by Mi , the angle 

of the leg with respect to the horizontal line by 0 and other internal 

angles as 0 = (02, 03 ..0,0. Let (Xi , Yi ) denote the centre of mass of the 

ith link and (X, Y) the centre of mass of the articulated figure. 

i-1 

Xi  = >2 Lk COS(E j) + 0.5 Li cos(E8;), 
k=1 	j=1 	 j=1 

i-1 

= E Lk  sin(E 83 ) + 0.5 Li  sin(E j), 

k=1 	j=1 	 j=1 

and 

E 
x = 	 n 

E Mi 
i=1 

E MiY 
Y = i=1  

tt 

Mi 
i=1 

The variation over time of the position of the centre of mass is an oft used 

feature for differentiating amongst different types of movements. 

Total energy: The total mechanical energy of the centre of mass of the body 

during walking and running is very different ( cf Figure 5.7). Total energy 

consists of kinetic energy Ek = 1MV 2  , where v is the speed and gravitational 

potential energy Ep = mgh, where h is the height and g is the gravitational 

acceleration of the centre of mass. 

Froude number: The dynamic similarity hypothesis predicts that animals of 

different sizes will use the same gait when traveling the same Froude number. 

The Froude number is defined as a ratio u2/gh where u is a speed characteristic 
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Figure 5.7: Variation in total energy while walking and running 

of motion, g is the acceleration due to gravity; and h is a characteristic length 

of the leg. 

Table 5.1 reproduced from [31] shows the Froude numbers and a few other 

features for a variety of legged locomotion. 

Creature No. of legs Hip height 

h (m) 

Speed 

u (m/s) 

Frequency 

f (Hz) 

Froude no. 

u2  I (g h) 

Crab walking 8 0.035 0.4 3.2 0.4 

Man walking 2 0.9 1.6 1 0.3 

Dog walking 4 0.5 1.3 1.6 0.4 

Crab trotting 8 0.035 0.9 6.2 2.4 

Cockroach trotting 6 0.004 0.3 13 1.7 

Man jogging 2 0.9 3.3 1.6 1.2 

Dog trotting 4 0.5 2.7 2.2 1.5 

Turtle 4 0.07 0.1 0.6 0.02 

Table 5.1: Comparison of individual leg dynamics 
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5.8 The Use of Gait Related Features 

We have incorporated gait related features in our global optimal search tech-

nique. Just by specifying different values for some of these features we have 

been able to synthesize different kinds of gaits for virtual creatures with differ-

ent number of limbs. The implementation and the experimentation results are 

discussed in detail in the next chapter. 
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Chapter 6 

Implementation and Results 

In order to be able to carry out some experiments on motion synthesis through 

the specification of motion features, it is essential to have a physically based 

motion simulation environment. A considerable part of the research efforts 

reported here have been towards the creation and implementation of such a 

simulation environment. This chapter presents the details of our implementa-

tion of this simulation environment and also reports a number of results from 

various experiments in motion synthesis carried out using this implementa-

tion. As we shall see, the simulation environment is powerful and yet simple 

and will enable a variety of motion simulation related experimental research 

and development to be carried out. 

In our implementation the entire process of motion synthesis is divided into 

three phases ( cf Figure 6.1). In the first phase an optimal controller is syn-

thesized using the stochastic population hill climbing algorithm. In the second 

phase the motion is recorded frame by frame by executing the controller and 

simulating the motion. In the third phase the recorded motion is played back. 

Controller 
Synthesis 
	_.../ 

Controllers 
( 

Motion Simulation 
an and 

,  Frame Sampling J 

Recorded 
›.- 

Playback 
in 

Real-time 
.. 	 _...■ 

Animation 
>. 

( 

Graphic 

Display 
■ 	J 

frames 

Figure 6.1: Three phases in motion synthesis 
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In what follows we shall explairTin detail each of these phases and also illustrate 

our method with a few representative examples of movements of articulated 

figures. Since limited computational resources were available for this work, we 

have made the following simplifying assumptions: 

o The system simulates movements restricted to two dimensions. 

o Only tree structured articulated figures are considered. 

o The only external interacting object modelled is the ground. 

o Links of the articulated figures are connected using joints of a single type, 

namely pin joints. 

o In a single simulation we consider the motion of a single articulated figure. 

It is important for us to emphasize here that the simplifications and assump-

tions stated above are not in any way inherent limitations of our approach. The 

implementation is highly modular, and is flexible enough to easily incorporate 

extensions so that movements of multiple 3D articulated figures with different 

kinds of joints in a complex 3D virtual environment can be handled. 

6.1 Controller Synthesis 

The different components of the controller synthesis process are shown in Fig-

ure 6.2. The animator specifies the physical and the geometric structure of the 

articulated figure and with motion features the movement task to be performed. 

Once the motion features are defined the fitness function is composed and the 

search is undertaken using stochastic population hill climbing algorithm for a 

suitable controller. The output of the controller synthesis stage is a controller 

with values assigned to all its parameters. We shall now explain each of the 

components and their functions. 
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Figure 6.2: Different components in controller synthesis phase 
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Link 1 	 Link 2 

Joint 1 
Joint 2 ........ 

• 

Link 3 

Attach Link 2 to Link 1 	Attach Link 3 to Link 2 

Figure 6.3: Geometric structure specification 

6.1.1 Geometry Model 

The geometry model stores all the relevant geometric information about the 

articulated figures and the environmental objects. The system allows the an-

imator to describe the geometric structure of an articulated figure. Each link 

is specified with respect to the coordinate system attached to it ( et Figure 6.3). 

The specification includes, the length of each link and its relation with other 

links. 

Geometric Description Script 

A link type is defined as: 

objname <name_of_the_object> 

path 

pts xl yl 

pts x2 y2 

Once an object of this type is defined, many instances of this object type can be 
created where each object instance is a link as follows: 

instance <name_of_the_object> <link_name> 

Attachment of two links can be indicated to the system by the use of: 
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6 

• 

attach <link_name> to <link_name> 

Local (body) transformations (translation, rotation etc.) on the link can be done 
using: 

tf trans <link_name> x y 

5 

Environmental object geometry is also part of the geometry model. As already 

mentioned we have chosen to model only ground interactions. Hence we accept 

• position and orientation of the ground plane as specified by the animator. The 

plane of the ground can be edited to change its orientation. In particular, the 

• orientation of the normal vector can be adjusted. This allows sloped ground 

planes to be tested with the articulated objects. 

6.1.2 Physical Model 

The physical model stores animator specified physical properties of each indi-

vidual link such as mass, inertia, position of the centre of mass etc. Although 

for visualization purposes links are modelled as two dimensional entities, phys-

ically they are modelled as one dimensional rigid link-segments. This simplifies 

the computation to a large extent. For example, the inertia tensor gets trans-

formed from a 3 x 3 matrix into a scalar. Typically the inertia is specified in 

the coordinate system attached to the centre of mass. Each link has a unique 

parent link and one or more child links. Further, for each articulated figure 

there is a special link called as the root link. The root link is attached to the 

observer's frame of reference. Each child link is attached to the parent link at 

the origin of the child link. By convention the parent of the root link is assumed 

to be 0 ( cf Figure 6.3). In order to detect collision between the articulated figure 

and the ground, several points on the body of the articulated figure are identi-

fied. These points are called monitor points. Monitor points are continuously 

monitored during the course of simulation. Whenever any of the monitor points 

are found to collide with the floor, an appropriate response force is computed 

by the simulator module and applied at the monitor point. 
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Physical Description Script 

A link is defined as: 

link <link_num> <parent_num> <attach_x> <attach_y> <mass> <inertia> 

<cmass_x> <cmass_y> 

where, <link_num> is a number given to this link in the articulated body. 

<parent.num> is the number of the parent link to which this link is connected. 

Root link always has <parent.num> as 0. 

<attach_x>, and <attach_y> are the coordinates of the point on the parent 

link where this link is connected to it. 

<cmass_x> and <cmass_y> represent the center of mass of the link. 

If the link is fixed at some place say ground or roof it is specified as: 

fix <link_num> <fix_x> <fix_y> 

where <fix_x> and <fix_y> are the coordinates of the fixed point on this 

link. 

Monitor points are used to monitor the points on the body which are expected 
to collide with the ground ( cf Figure 6.4). These are defined as: 

monitor <link_nuth> <monitor_pt_num> <pt_x> <pt_y> 

6.1.3 Feature model 

The feature model stores feature values specified by the animator. Each feature 
is specified by a key word followed by a value and the allowable range for that 
feature. For example: 

feature <value> <min> <max> 
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monitor <link_num> <pt_num> <x> <y> 

BODY DESCRIPTION 

Figure 6.4: Articulated figure with monitor points 

6.1.4 The Simulator 

In addition to the articulated figure's geometric information the user can di-

rectly set parameters for controlling different aspects of simulated environment 

such as simulation time, magnitude and direction of gravity. Gravity control 

allows the direction and magnitude of the gravitational acceleration vector to 

be modified. By setting the components of the gravity vector to zero, gravity 

can be effectively turned off. 

The equations of motion for our articulated bodies are too complex to derive 

by hand. In addition we wish to have an efficient implementation, since these 

equations need to be solved at every time step. We were able to integrate 

into our simulation environment "Dynacomp" [99] a public domain dynamics 

compiler that symbolically computes equations of motion in the form Ax = b 

given a physical description of the articulated figure as input. The output of the 

dynamics compiler gives the symbolic value for each element of matrix A and 
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Figure 6.5: A relation between free-body diagram and the link-segment 

also to the vector b. Values of common subexpressions are precalculated to avoid 

unnecessary calculations. The implementation uses the recursive Newton-

Euler formulation (See section 3.3.2). This is 0(n 3 ) in the number of links and 

is quite suitable for n < 10. The values of A and b are output as lines of "C" code 

so that the equations of motion can be compiled. The LU decomposition method 

is used to solve the linear system of equations for the accelerations. A and b 

are dependent on the internal torques applied at the joints, external forces, the 

physical properties of the links, and the state of the links. x represents the 

vector of unknown accelerations. The accelerations are numerically integrated 

using the simple Euler method to determine new velocity and position of the 

links. The time step is chosen to be in the range of 0.001 to 0.0005 in order to 

overcome the stiffness problem. 

In our model, the creatures are treated as free bodies in space ( cf Figure 6.5). 

That is all the forces and torques acting on an individual segment are added 

up to compute the total force and torque acting on the segment. Apart from the 
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Figure 6.6: Modelling of the floor 

internal forces acting at the specified key joints, the only other external forces 

modelled are the gravitational force and the reaction force exerted by the floor. 

The acceleration of each individual link-segment is computed by calculating 

all forces/torques acting on the segment. The forces exerted by the floor on 

the articulated figure are calculated using stiff spring and damper model. We 

favour this approach as it is simple and flexible and also the same formulation of 

the equations of motion can be used throughout the entire simulation. There is 

no need to model and compute the magnitude of the impulsive forces that occur 

upon impact with the ground. The external forces exerted on the figure are 

computed at the points of contact with the floor which are typically the monitor 

points ( cf Figure 6.6). The position and velocity of these monitor points on the 

articulated figure are used to compute the external forces as follows: 

Fx = (mx — px)kp vx  kv 

Fy  = — (my — py )ky  — vy kv  

where (mx , my) is the present position of the montior point and (px , py ) is the 

point of initial contact with the floor. Typically spring and damper constants 

chosen are Icy  = 105N/m and kv  = 103 N/m. This creates a suitably stiff floor 

that functions effectively when used in a simulator with a sufficiently small 

time step. A simulation script is used to define the various parameters used in 

simulation. 
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Simulation Script 

I 	
The time step used in simulation is set using 

set dtsim <step_size> 

The initial state the articulated figure is set using: 

state <x> <dx> <y> <dy> <thl> <dthl> <th2> <dth2> . 

where <x> 	— is the x position of the origin of the root link 

<dx> 	- x speed 

<y> 	- y position 

110 	 <dy> 	y speed 

<thl> - thl angle of the link 1 

• <dthl> - dthl angular speed of link 1 

Simulation time can be set by: 

sim <time_for_simulation> 

6.1.5 Controller representation 

The choice of representation for the solutions plays a crucial role in the success 

of the evolutionary algorithm. Ideally, the representation should be compact 

enough so that the motion synthesis problem can be solved in a reasonable 

time, without sacrificing generality. Compactness is achieved by having fairly 

powerful rule based controller representations that need a small number of 

states and hence a small number of parameters. In our implementation, we 

have used the pose control graph and PD control law given by the equation 

T = kp (t9d — 8) — to represent a controller. Where kp is the spring constant, k„ 

is the damper constant, B and B are the current angle and the angular velocity 

respectively and Od is the rest angle (equilibrium position) of the spring. 

• 
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Figure 6.7: (a) Piece-wise constant (b) Piece-wise linear (c) Continuous 

The advantage of this controller is that the torque function gets automatically 

defined once the target joint angle is specified. To execute a particular move-

ment of the joint, it is necessary to define a number of target joint angles. The 

motion synthesis problem is then converted to that of synthesizing the function 

Od(t). If the articulated figure has m actuators, it amounts to synthesizing m 

functions of the type O d(t) = (Od(t), 8d(t) ... 0111 (0). The simplest way to solve 

the problem is to choose a piece-wise continuous function. This function could 

be a constant, could be linearly varying or could be more complex with contin-

uous basis functions such as splines [20], sinusoids or wavelets [64] ( cf Figure 

6.7). For the sake of simplicity, for our experimentation purposes, we have used 

piece-wise constant functions. 

To synthesize a motion sequence for duration T, we divide T into several phases 

or states. Each phase will be associated with a set of parameters such as 

= = 

where 

i th  joint actuator 

— desired angle for the i th  joint 

kp — spring constant corresponding to the ith joint 

— damping constant corresponding to the ith  joint 

t — time duration of the phase. 

If there are fifteen phases in a motion sequence, the number of unknowns to be 
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determined are 15 x 4 = 60. We have mentioned earlier, that, as the simulation 

duration increases, the search time increases exponentially. When we consider 

•  periodic motion, such as walking, running, hopping etc., one can reduce the 

search time. In periodic motion, after every period t p„, the motion is repeated 

to fill the simulation time T. Unknown parameters depend only on the number 

of phases in the period tper  ( cf Figure 6.8). In order to reduce the search time 

T = Simulation time 

 

tper 	t2 	t3 

Figure 6.8: An illustration of the controller 

further, one can fix the values t, Icv a priori. The time period t could be 

either derived from a previously synthesized key-framed version of the motion 

or from live or video data of a creature similar in size and shape [103]. Values 

of spring constants can be estimated depending on the mass of the body. For 

heavier links, higher values of spring constants are required in order to protect 

the springs from a possible collapse (spring failure). However, values should 

not be so high that they would generate such high torques at the joints that 

unexpected motions are caused. For more details refer to Appendix A. 

6.1.6 Performance Metric 

For our experimental purpose, we have considered only a few features to char-

acterize the motion. Although this simplifies the implementation considerably, 

it fully retains the essence of our methodology. Our task is to synthesize peri-

odic motions such as hopping, running and walking. Some of the features that 
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we have built into our implementation and experimented with are : 

• external energy (E) 

• horizontal . distance travelled by the centre of mass (D) 

• intermediate postures (04, fully or partially specified 

The specific performance metric is as follows: 

	

samples joints 	
0  — E) 

= w,* E E (1-(6,F,,,)-0(8,;)))+w2*(1.
(E

)+w3*(1 
(D0 — D)

)  

	

9.1 J.1 	 E,max 	 Dmas 

J 
	 where, 

W1) W2) W3 
	are weights, assigned to the features depending on their 

relative importance, the value ranging between 0 and 1. 

9 (8 ,j) 

	 is the angle at joint j for posture, 

E is the external energy 

D is the horizontal distance travelled 

Emax, Dmax are the maximum expected external energy and horizontal 

distance, respectively. These values are used for normal-

ization of the two quantities. 

Or8 ,j) , Eo , Do  are the feature values specified by the animator. 

For more intuitive explanation of various terms used in the performance metirc, 

refer to Appendix A. 

6.2 Stochastic Population Hill Climbing Algorithm (SPHC) 

The SPHC algorithm is an evolutionary programming algorithm [30] that can 

be distinguished from genetic algorithms, primarily by the fact that it uses only 

the mutation operator and does not use a crossover operator. 
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Like all genetic algorithms SPHC uses a population of solutions. Each solution 

in the population is perturbed randomly at each iteration, using the mutation 

operation with probability 1. The resulting solutions are compared with their 

original solutions and the better ones are kept for the next generation. Periodi-

cally, a reseeding operator is applied which selects the top half of the population 

and copies them into the bottom half of the population, refocusing the search 

on the most promising solutions in the population. The full algorithm is shown 

in Figure 6.9 

Initialize population 
Evaluate each solution in the population 
for generation = I to number_of_generations 

for each individual solution in the population 
Randomly perturb the solution 
Evaluate the new solution 
if the new solution is better than the old one then 
Replace the old solution with the new one 

end for 
if(generation mod reseed_interval) = 0 then 

Rank order the population 
Replace bottom 50% of the population with top 50% 

end if 
end for 

Figure 6.9: Stochastic population hill climbing (SPHC) 

Mutation Operator 

The mutation operation is the backbone of our SPHC algorithm. In every 

iteration all solutions go through this operation. Since a slight change in 

parameters can change the motion drastically, it is necessary to apply the 

mutation operation with care. We have selected to mutate only one parameter 
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at a time with only a small change in original value. The parameter to mutate 

is selected randomly with all the parameters having equal probability. This 

was found quite suitable through experiments, as it helps the algorithm to 

fully explore the region near to the existing solution. If we try to mutate 

more than one parameter at a time, the solution may jump from one region to 

another without exploring the current one. As the function is multimodal, it 

may actually be the case that the optimal solution is in the vicinity of solution 

being mutated. Each time mutation is called either the selected parameter goes 

through a creep operation' or all its parameters are randomized from scratch ( 

cf Figure 6.10). 

Randomly select one of the states in pose-control graph to be modified 
Randomly select operation to be applied on selected state 
IF operation is creep operation THEN 

Randomly select one of the creep operations and apply 
ELSE 

Generate all the parameters in the new state randomly from scratch 

Figure 6.10: Mutation operation 

6.2.1 A Parallel SPHC 

Controller synthesis is computationally a very expensive process. The reasons 

are two fold. Firstly, the time taken for a single simulation is large. For ex-

ample, an eight second simulation took around two minutes on a VAX 8600 

machine. The simulation time is directly proportional to the complexity of 

the creature i.e number of links and the monitor points. Secondly, due to the 

fact that search space is very large, the search algorithm has to make many 

'The creep operation is used here to modify the parameter by a very small factor. For more 

details refer to Appendix A. 
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simulations before locating a suitable controller. The overall time taken by 

the synthesis process can be reduced considerably if we parallelize the search 

task. In SPHC algorithm we have a population of solutions which are to be 

modified and checked separately. All the evaluations and mutations are inde-

pendent. We can take advantage of this independence property in parallelizing 

the algorithm. 

In the best case, if we have the number of processors equal to the popula-

tion size, we can run all the simulations separately on each of the processors, 

achieving maximum parallelism at the granularity of a single simulation. If 

the processors are lesser in number than the population size, a good schedul-

ing policy has to be implemented to achieve considerable amount of parallelism. 

Since simulation time for each candidate solution in the population is the same, 

it is easy to parallelize the search process. 

We have implemented the algorithm on a networked environment. There are 

several heterogeneous workstations connected on the network, each having a 

different load average at any time instance. Also there are varying communi-

cation delays on the network. In addition to parallelizing the code to distribute 

the evaluations on different processors, we have to handle the problem arising 

due to varying communication delays. We have adopted a very simple solution 

to the problem. We treat the population of controllers as one common pool of 

tasks which are allocated to the set of processors. To start with, all the pro-

cessors are allocated one candidate each for evaluation. As soon as any of the 

processors becomes free, it is allotted a new candidate. 

To handle the parallelization problems in the network environment we have 

made use of a system called Parallel Virtual Machine (PVM) [27]. 

Application programs view PVM as a general and flexible parallel computing 

resource that supports a message passing model of computation. This resource 

may be accessed at three different levels, the transparent mode in which tasks 

are automatically executed on the most appropriate hosts, the architecture-

depend mode in which the user may indicate specific architectures on which 

particular tasks are to be executed, and the low-level mode in which a particular 
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host may be specified. Such layering permits flexibility while retaining the 

ability to exploit particular strengths of individual machines on the network. 

While parallelizing an application on a multiuser network environment we 

have to deal with several problems not existing on a parallel computer. Here 

the effect is on both communication and computational performance of the 

program. As the machines are of different power, if we divide the problem 

into identical pieces one for each machine then the application will run as slow 

as the task on the slowest machine. If the tasks coordinate with each other, 

then even the fast machines will be slowed down waiting for the data from the 

slowest machine. The long message latency across the network also affects the 

performance of the application. As the performance of the network and the 

machines are dynamically changing the conditions are difficult to reproduce, 

and hence it is difficult to debug the application. 

There are multiple ways by which we can distribute the tasks amongst different 

processors on the network. 

In the simplest case if we have the number of processors equal to the number of 

tasks, we can assign them one each statically. Here the assignment may occur 

ofline even before the job is started. This kind of distribution is only useful 

when all the tasks have to be running together and also there is communication 

between them. In our application we do not have this kind of requirement and 

hence we will not consider this scheme any further. It also requires that the 

number of processors be equal to the number of tasks. This is not practical in 

our case as we generally have a very large population of tasks. 

The other scheme, which we have implemented is based on the method known 

as Pool of Tasks paradigm. It is typically implemented in a master/slave imple-

mentation where the master programs creates and holds the "pool" and farms 

out tasks to slave programs as they fall idle. The pool is implemented as a 

queue and if the tasks vary in their sizes then the larger tasks are placed near 

the head of the queue. With this method all the slave processes are kept busy 

as long as there are tasks left in the pool. Since tasks start and stop at arbi-

trary times with this method, it is better suited to applications which require 
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no communication amongst slave programs and the only communication that 

takes place is with the master or through data files. 

4 
	

Our requirement exactly matches with this model. Each generation in SPHC 

algorithm has a population of solutions to be evaluated, like a pool of tasks. 

We have a limited number of processors, so initially each processor is given a 

solution to be evaluated. As soon as any one of the processors finishes the task 

(as it happens frequently due to the difference in network load and computa-

tional power of machines) it is assigned another member of the population for 

evaluation. This way all the processors are kept busy. 

The main SPHC algorithm when ready with all the solutions to be evaluated, 

makes a call to the master program. Simulation programs are kept on different 

machines which take part as slaves. These slave programs are spawned under 

the control of the master. PVM provides a library routine which allows the 

processes to be spawned on different machines on the network. The master 

then sends the appropriate data to this spawned task through message pass-

ing routines provided by PVM. We require to pass the structure representing 

the solution(controller). The slave program then runs the simulator with this 

controller, calculates the fitness of the solution and returns the fitness to the 

master. Master keeps one to one correspondence between the solution it had 

earlier passed to the slave and the fitness it returned. This is done by passing 

the solution number in the population also as a message to the slave. The slave 

then returns the same number. This way each fitness value produces its identi-

fication to the master process. This avoids the need for processes to finish in the 

order they were spawned. This is continued till there is no solution left in the 

pool to be evaluated. Once all the solutions are evaluated the master passes 

them with their fitness to the SPHC algorithm. The parallel form of SPHC 

algorithm is shown in Figure 6.11 and the master program which distributes 

the tasks is shown in Figure 6.12 

We achieved considerable performance enhancement using this parallel SPHC 

algorithm. For example controller synthesis tasks which would take about 8 

hours of elasped time on a single CPU took just 1 hour when the tasks were 
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Initialize population 
Call Master to Evaluate in parallel all the solutions in the population 

for generation = 1 to number of generations do 
for each individual solution in the population do 

Randomly purturb the solution 

Call Master to Evaluate in parallel all the solutions in the population 

for each individual solution in the population 

if the new solution is better than the old one then 
Replace the old solution with the new one 

end if 
end for 
if (generation mod reseed-interval) = 0) then 

Rank order the population 
Replace bottom 50% of the population with top 50% 

end if 
end for 

Figure 6.11: Parallel stochastic population bill climbing (SPHC) 
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Determine the number of hosts currently available 

Mark all the available hosts as free 

while all the currently running tasks are not over OR there are tasks left to be evaluated do 

while there are tasks left to be evaluated do 

if there is a free host then 

spawn the next task on the host 

send the solution to be evaluated to the spawned task with its number in population 

mark host as busy 

end if 

end while 

if there are tasks running currently then 

wait for any of the task to get over 

get the host corresponding to this task 

mark host as free 

wait for slave message containing fitness value and solution number 

store the fitness value corresponding to the solution number 

end if 

end while 

Figure 6.12: Master program distributing the solutions on different hosts 
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farmed out to 8 workstations. The main feature of the master program is that 

it is independent of the number of hosts currently in the configuration. So 

we can add as many hosts as we want in the configuration and get better and 

better performance. The PVM system provides library calls by which we can 

identify the situation when a host is added into the configuration, or deleted 

from the configuration. We can use this feature to implement fully dynamic 

configurability. 

6.3 Simulation of Motion and Sampling of Frames 

Once the controller is obtained, it is plugged into the simulator to generate the 
motion and the sample frames at required rates. The default sampling rate is 
25 frames per second of simulation. The frames are recorded in the format: 

show <x> <y> <thl> <th2> <th3> . 

	

where <x> 	— is the x position of the root link. 

	

<y> 	— is the y position of the root link. 

< thl> — is the orientation of the root link. 

Each individual frame is recorded as one command line and basically contains 

the values for each of the DoFs of the articulated figure. 

6.4 Motion Playback 

The frames computed and stored by the simulator are played back in real-time 
by "anix" a public domain animation server for X—windows [98]. This is an 
X-Windows program, and can produce real time output on a screen for display 
purposes or in a postscript file format for documentation purposes. The input 
to anix program is the output file created by simulator. At the end of display of 
each frame, the frame is erased by setting <erase> flag to true. 

aniset erase t 
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6.5 Experimental Details 

We describe below the structure and motion behaviour of three creatures that 

we have experimented with. These are named as Luxo, Pogo and Walker. 

Among these creatures, Luxo is the simplest creature made of just three links 

and two actuator joints. It is a one legged virtual creature. Appearance wise it 

is similar to a lamp and the only mode of locomotion available to it is hopping. 

Pogo a two legged virtual creature, is made of 5 links and 4 actuator joints. 

Appearance wise it is similar to a dog. Dynamically it is more stable than Luxo 

and can demonstrate different gaits such as walking and running. Walker is a 

human like virtual creature but without hands or head. It is made of 7 links 

and 6 actuator joints. In comparison to both Luxo and Pogo it is dynamically 

very unstable and this makes it very difficult to get a good controller which 

results into a steady walk. 

The motion synthesis process is primarily based on the SPHC algorithm which 

takes time proportional to the number of generations G, the size of the pop-

ulation M, the amount of time to simulate for each trial, and the accuracy of 

the integration. This is because each individual controller's motion behaviour 

must be evaluated by simulation of the dynamics Even if the simulation can 

be done faster than real time, it still must be performed for roughly M x G dif-

ferent controllers. In our computation, an 8 second controller simulation took 

approximately two minutes on VAX 8600. Though this may not be particularly 

fast in terms of CPU time, it is very efficient in human animator time. 

For the documentation of the Animation System, refere to Appendix B. Details 

of the scripts describing for synthesizing 

6.5.1 The Luxo creature 

Figure 6.13 shows the geometric structure of Luxo. 

Table 6.1 shows the allowable ranges of joint angles (in degrees) defining the 

internal configurations of Luxo. 
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Figure 6.13: The articulated figure — Luxo (a lamp like creature) 

Joint Min Max 

(deg.) (deg.) 

Al -300 -240 

A2 360 210 

Table 6.1: Range of angles for Luxo 

Table 6.2 shows the physical properties of different links of Luxo. 

Link Mass 

(kg) 

Inertia 

(kg .m 2 ) 

cmassx  

(m) 

cmassy  

(m) 

Ll 0.15 0.00312 0.0 0.0 

L2 0.10 0.00208 0.25 0.0 

L3 0.30 0.00625 0.25 0.0 

Table 6.2: Physical properties of Luxo 
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Geometric Description Script for Luxo 

k 

# polyline definition of link object 

objname baselink 

path 

pts -0.27 0.02 0 

pts 0.27 0.02 	0 

pts 0.27 -0.02 0 

pts -0.27 -0.02 0 

objname middlelink 

path 

pts -0.02 0.02 

pts 0.52 0.02 

pts 0.52 -0.02 

pts -0.02 -0.02 

objname toplink 

path 

pts -0.02 0.02 

pts 0.42 0.02 

pts 0.30 -0.15 

pts 0.47 -0.15 

pts 0.42 -0.02 

pts -0.02 -0.02 

# instance of links 

instance baselink linkl 

instance middlelink link2 

instance toplink link3 

# relative coordinate frame definition 

attach linkl to world 

attach link2 to linkl 

attach link3 to link2 

# placement of each link 

tf trans link2 0.0 0.0 

tf trans link3 0.5 0.0 
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# physical parameters of the link 

link 1 0 0.0 0.0 0.15 0.003123 0 0 

link 2 1 0.0 0.0 0.10 0.002082 0.25 	0 

link 3 2 1.0 0.0 0.30 0.006246 0.25 	0 

# specification of monitor points 

monitor 1 1 -0.27 

monitor 1 2 0.27 

# file name containing equations of motion code 

set procname luxo 

# compiling equations 

compile 

quit 

• .1 

Physical Description Script for Luxo 

Simulation Script for Luxo 

# simulation time step 

set dtsim 0.001 

# symbolic code for equations of motion 

dyn luxo 

# symbolic code for monitor points 

mon mon_luxo 2 

# number of state variables 

set state_size 10 

# initial values of state variables 

state 0.0,0.0,0.0,0.0,0.0,0.0,-4.9,0.0,4.665,0.0 

# name of the output file 

set dispfile luxo.out 

# simulation time (sec) 

sim 10.0 

quit 
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Animation Script for Luxo 

# initialize server 

init 

# read the values x y th thl th2 for a frame 

tf trans linkl _1 _2 0 

tf rot linkl Z _3 

tf rot link2 Z _4 

tf rot link3 Z _5 

# initial position of linkl on the screen 

tf trans world 10 4 

# scale the articulated figure 

tf scale world 3 3 

# set degree mode to false 

aniset degmode f 

# erase the frame at the end of the display 

aniset erase t 

The controller for Luxo has been designed using a two node pose control graph. 

The parameter space is ten dimensional. The ratio kp  I is chosen as 0.1. 

[ (9 1, (9 2. , kpil, kpi2,t11 

	

kp2i, kp22,t2] 

Five posture features to synthesize hopping motion are listed in Table 6.3. The 

postures are approximately 0.2 sec apart in time. The value of distance to be 

travelled in a single hop is given as 0.4(m) and external energy as 2.3(Nm). 

Just in order to convince ourselves that the SPHC algorithm will indeed find the 

optimum, we synthesized the same motion i.e optimizing the same performance 

metric by randomly choosing many different sets of initial populations. Figure 

6.14 shows two such cases of the progress of the SPHC search algorithm in 

finding the hopping motion controller for Luxo. In the first case the desired 

controller is found after 40 generations with a population size of 50. In the 

second case, more or less a similar controller was found after only 25 generations 

with the same population size. 
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Figure 6.14: Synthesis of two different controllers for Luxo 

Figure 6.15: Luxo hopping 

Figure 6.16: Phase diagram for hopping Luxo 
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Figure 6.17: Variation in torques for hopping Luxo 
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Figure 6.18: Variation in joint angles for hopping Luxo 
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Figure 6.19: Variation in total energy of hopping Luxo 
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4.1 

L3 

Figure 6.20: The articulated body — Pogo (a dog like creature) 

Joint Min 

(deg.) 

Max 

(deg.) 

Al -115 -45 

A2 270 360 

A3 -70 -40 

A4 210 300 

Table 6.4: Range of angles for Pogo 

values have been chosen so as to synthesize walking as well as running motion. 

The progress of the search algorithm in finding the walking motion controller 

is shown in Figure 6.21. 

Two different gaits are synthesized for Pogo. In the first experiment a walking 

gait is obtained by choosing four intermediate postures at time intervals of 

approximately 0.2 sec as shown in the table 6.6. The value of distance travelled 

and external energy in a single gait cycle is chosen as 0.6(m) and 0.7(Nm) 

respectively. The output is shown in the Figure 6.22 below. 

Figure 6.23 shows a phase diagram which plots height of centre of mass versus 

vertical velocity of centre of mass. The trajectories in the phase diagram once 

again show a periodic behaviour with trajectories being attracted towards an 

attractor cycle, indicating stable behaviour. Figure 6.24 shows the variation in 

total energy for walking Pogo. 

In the second experiment a running gait is obtained by choosing three interme-

diate postures ( Table 6.7) with value of distance travelled in a single gait cycle 

as 0.5(m) and external energy as 0.8(Nm). 
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Link Mass 

(kg) 

Inertia 

(kg .m 2 ) 

cmass 

(m) 

cmassy  

(m) 

Ll 0.15 0.003123 0.25 0.0 

L2 0.10 0.002082 0.125 0.0 

L3 0.10 0.002082 0.125 0.0 

L4 0.10 0.002082 0.125 0.0 

L5 0.10 0.002082 0.125 0.0 

Table 6.5: Physical properties of Pogo 

Change in fitness of soultion with genetations 
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I Figure 6.21: Synthesis of a controller for Pogo 

Figure 6.22: Pogo, walking 
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Figure 6.23: Phase diagram for a walking Pogo 
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Figure 6.24: Variation in energy for walking Pogo 
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Pose# 0 1 

 (rad.) 

02 

(rad.) 

03 

(rad.) 

04 

(rad.) 

1 -1.9700 5.1936 -0.8497 5.0566 

2 -2.0709 5.2423 -0.6785 5.2343 

3 -1.8970 4.7794 -0.8469 4.7110 

4 -1.5962 4.7227 -1.1903 4.3722 

Table 6.6: Four posture features for synthesizing a walking motion for Pogo 

Pose# 0 1  02 03 04 

(rad.) (rad.) (rad.) (rad.) 

1 -1.0138 5.8728 -1.0830 4.1118 

2 -1.8247 5.4664 -0.9404 4.6641 

3 -1.9589 5.3294 -0.8445 4.7969 

Table 6.7: Three posture features for synthesizing a running motion for Pogo 

The output is shown in the Figure 6.25 below. 

Figure 6.25: Pogo, running 

Figure 6.26 shows a phase diagram for running Pogo. After initial instable 

behaviour, the trajectory settles in with a periodic behaviour. Figure 6.27 

shows the variation in total energy for running Pogo. 
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Figure 6.26: Phase diagram for running Pogo 

Figure 6.27: Variation in total energy for running Pogo 
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6.5.3 The Walker creature 

Figure 6.28 shows the geometric structure of Walker. Controller for Walker 

consists of a four node pose control graph. 

LI 

Figure 6.28: The articulated body — Walker (a human like creature) 

Table 6.8 shows the allowable ranges of joint angles (in degrees) defining the 

internal configurations. 

Joint Min 

(deg.) 

Max 

(deg.) 

Al -160 -125 

A2 -10 -45 

A3 60 100 

A4 -160 -125 

A5 -10 -45 

A6 60 100 

Table 6.8: Range of angles for Walker 

Table 6.9 shows the physical properties of different links. 

The result of the simulation of Walker is shown in the Figure 6.29 below. 

• 

• 
• 
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Link Mass 

(kg) 

Inertia 

(kg.m 2 ) 

cmasss  

(m) 

cmassu  

(m) 

L1 3.0 0.0625 0.250 0.0 
L2 5.0 0.0260 0.125 0.0 

L3 4.0 0.0208 0.125 0.0 
L4 5.0 0.0260 0.0 0.0 
L5 4.0 0.0208 0.125 0.0 

L6 1.0 0.0052 0.125 0.0 

L7 1.0 0.0052 0.0 0.0 

Table 6.9: Physical properties of Walker 

Figure 6.29: Walker walking 
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Chapter 7 

Conclusions and Future Work 

This research has been concerned primarily with the field of computer anima-

tion. Traditionally computer animation has been a tedious and time consuming 

process. The animator is given minimal assistance by the computer animation 

systems that are in wide use even today. Physically based animation, partic-

ularly automatic motion synthesis — where by the animator specifies only the 

physical and geometrical structure of the character and the criteria for evalu-

ating the character's motion in the environment, and the computer generates a 

physically correct, realistic and natural looking trajectory for the character—is 

very much more attractive, though computationally very difficult to realize and 

operationally very difficult to control. 

As part of this research we have carried out a detailed investigation of prior 

work in automatic motion synthesis. The most promising approach to the mo-

tion synthesis problem has been identified as the automatic generation of a 

motion controller which when executed in a simulated physical environment 

produces a desired motion. We have analyzed different representations for mo-

tion controllers, the different optimization techniques and also the techniques 

for simulation of movement along with interaction with other environment ob-

jects. We have identified the primary reasons why animators do not get fine 

control over the synthesized motion. As part of the results of our research we 

have invented a novel method of providing fine control over the synthesized 
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motion while at the same time retaining all the advantages of automatic syn-

thesis of physically realistic motion. In this last chapter we first discuss the 

significant contributions that have been made as a result of this thesis research 

and also the limitations of our present method, and its implementation. We 

end this thesis with a discussion on possible future extensions of our research 

and some open problems in this domain. 

7.1 Significant Contributions 

The most significant contribution in this thesis is certainly the new formulation 

of the motion specification problem as one of motion feature specification. The 

method of specification of desired motion, through the input of features char-

acteristic of the desired motion, is novel, very elegant and we believe the most 

convenient method of providing complete control to the animator in his/her use 

of the computer for creating complex animated character sequences. By first 

specifying only high level features and then gradually adding greater detail 

level features the animator gets progressively finer control over the generated 

animation — a highly desirable feature in any interactive design. 

The observed behaviour of various physical phenomena around us has always 

been a major source of inspiration for humans whenever we have had to under-

stand, explain or mechanically imitate these natural phenomena. By asking 

the animator to synthesize motion by specification of high level motion features 

as observed by him/her in the different types of movements that are taking 

place in the real world around us, this method is inherently intuitive and can 

therefore provide very natural interfaces to the motion synthesis task. 

We have formalized the notion of motion features as computable functions, 

and formulated a performance metric for any motion such that the metric at-

tains an optimal value whenever the desired features are best present in that 

motion. By implementing the above formulation and experimenting with the 

features present in different gaits of legged creatures, we have convincingly 

demonstrated that given adequate desirable features, motion can be automat-

ically synthesized such that the synthesized motion has all the given features, 
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is physically realisable and also realistic. This now reduces the burden on 

the animator tremendously. The animator has only to interactively tune the 

feature values or seek additional features in the synthesized motion until it is 

completely to his/her satisfaction. 

Another significant contribution of this research has been the creation of an 

integrated simulation environment that has the capability to synthesize motion 

controllers from feature specifications and to generate the final sequence for 

playback of the animation. Building such an environment has in itself required 

enormous efforts. While the environment does not have at present any fancy 

user interface, it has all the core components necessary for synthesizing the 

motion of articulated figures. This includes figure representation, controller 

$.‘ representation and execution, force/torque synthesis using the spring/damper 

model for muscle actuator behaviour, automatic symbolic formulation of the 

dynamic equations of motion, solving the dynamic equations of motion and • 

integrating acceleration/velocities to obtain the individual image frames that 

make up the animation. These core components are sufficiently general and 

will be extremely useful to experiment with other methods of motion synthesis 

as well. 

The third significant contribution is in the design and implementation of a 

parallel evolutionary programming algorithm, the stochastic population hill 

climbing algorithm used in the global optimization search for the motion con-

troller with the desired motion features. The parallel SPHC algorithm has been 

implemented in a distributed network of heterogeneous workstations using the 

parallel virtual machine PVM system. The parallel SPHC has resulted in very 

substantial reduction in computational time and has enabled experimentation 

with reasonably complex virtual creature moving in a variety of gaits. 

In addition to the above, the thesis has a very comprehensive survey of all 

known methods for physically based animation, and motion synthesis. These 

methods have been presented in the formal frame-work of non-linear optimized 

search. This frame-work enables us to analyze all existing techniques and also 

newer motion synthesis techniques that may be developed in future. 
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7.2 Limitations 

The automatic synthesis of physically based motion is a multidisciplinary 

field and has required the understanding and implementation of formalisms 

and techniques from very diverse fields including computer graphics, corn- 

• puter animation, computer vision, mechanical simulation, robotics, neural net-

works, computational neuroethology, non-linear optimization and biomechan-

ics. Given constraints of time and other resources there are bound to be many 

limitations. Below we discuss some of the limitations in our approach, in our 

implementation and in our experiments. 

A major limitation in the basic approach which is also present in all other mo- 

®) 
'( - 

tion synthesis methods in use today is the specificity of the synthesised motion. 

While we do design a motion controller, the motion controller's behaviour is 

situation optimized. So if we are able to synthesize a motion controller, say, for 

walking on a floor inclined at an angle of 5 degrees to the horizontal, then, in 

general, the same controller cannot be reused for walking on floors with other 

inclinations. It has been argued in [102] that by suitably parameterizing the 

motion controllers it should be possible to reuse the synthesized motion con-

trollers in similar conditions with only slight differences. We however believe 

that motion controller specificity is an inherent limitation of the approach and 

can be overcome only if generic movement behaviours can be learnt. The virtual 

creature has to learn the primitive behavioral mechanisms needed for walking. 

This, as we shall see later, is an open problem. 

With respect to the implementation we have some deficiencies in the simula-

tion environment as well as the synthesis method. The simulation environment 

supports only 2D articulated figures. Further the articulated figures have to be 

tree structured. Joint actuators are modelled using the spring/damper mech-

anism but not using the biomechanics based muscle model. Joint types have 

all to be pin-joints. Many of these deficiencies are not very severe and have 

been introduced primarily to keep the entire implementation simple and com-

putationally tractable within the available computing facilities. The simulation 

environment can certainly be augmented to remove these deficiencies. While it 

i- 
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may prop up some difficulties and may involve considerably extra efforts, there 

do not seem to be any unsurmountable problems. 

There are some limitations in the method we have implemented for automat- 

ically synthesizing motion controllers. One of these is the static nature of the 

controller representation during the entire process of searching for an optimal 

motion controller. We assume for example in the case of a pose control graph 

type motion controller that the topology of the controller (number of nodes and 

their connectivity amongst them) is fixed even before the start of the search 

process and remains invariant there after. Clearly the domain representable 

motions of a pose control graph controller with 3 nodes is larger and differs 

from that of a controller with 2 nodes. This automatically introduces artifacts 

in the final synthesized motion which are inherently not present in the ap-

proach. Instead of using an n node pose graph controller for synthesizing some 

desirable motion, an m (where m n) node pose graph controller may provide 

much better results. The search process could be modified to include the con-

troller topology also as part of the parameter space to be searched. This would 

however give rise to a considerable increase in the search space dimensionality 

and result in reduced efficiency. 

A more serious limitation of our synthesis method is the fact that the motion 

is synthesized for a single virtual creature moving in a static unchanging envi-

ronment. For example, our method, as currently implemented, cannot be used 

to synthesize the movement of a creature catching a ball in flight. This specific 

case may not be very difficult to incorporate. It could be done by suitably for-

mulating the dynamic equations of motion for the ball as well, and including 

them in the system being simulated. The performance metric will also have to 

be suitably modified to include minimization of distance between the creature 

and the ball and also an end condition in which this distance is zero. In general 

however, it is difficult to visualize how the method can be extended to consider 

a changing environment consisting not only of passive objects but also active 

creatures (other virtual creatures) carrying out their own movement. As we 

shall soon see this is yet another open problem in this field. 
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While the experiments that we have conducted to synthesize the gaits of a 

number of different virtual creatures have led us to believe that this method of 

motion synthesis is well suited to character animation, we do know that many 

more experiments are needed before the method can be put to practice on a regu-

lar basis. We have been able to study the gait related features in some detail and 

use some of them to automatically synthesize walking/running/hopping/falling 

types of motion. We have not however experimented using all of them for mo-

tion synthesis and determined their effectiveness/criticality towards the syn-

thesis task. For example at this point of time we are unable to associate any 

discrimination quality characteristics with any of the features. Clearly other 

experiments have shown the comprehensive discriminating capabilities of fea-

tures like the Froude number or the duty cycle. As we collect more experimental 

statistics working with features, it should be possible for us also to make our 

observations. 

We have been fortunate that the study of gaits of legged creatures is a subject 

that has been addressed rigorously by a large number of researchers in different 

disciplines. As a result we could draw upon their research and arrive at a 

comprehensive set of features that could be used to specify different kinds of 

movements of legged creatures. There are other goal oriented movements like 

catching a ball, hitting a ball, shotting into a goal post, dunking a basket, 

picking an object etc. All these would require their set of features to be suitably 

identified/desired. 

7.3 Possible Extensions 

We have seen that many of the deficiencies and limitations described above are 

in themselves pointers for interesting extensions to our research, to our motion 

synthesis method and also to the implementation of the simulation environ-

ment. There are some other important extensions which will definitely need 

to be addressed in the near future if the method has to be used more widely, 

These we briefly discuss below. 

In general, the representation of the controller and the synthesis method are 

such that the actuator response is programmed for a specific external environ- 
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ment configuration. It would indeed be very interesting to explore a gener-

alization of the controller representation schemes so that external objects and 

interaction events are embedded into the motion controller along with actuators 

so that the actuator response could be made more general and less situation 

specific. For example consider the case of our virtual creature, Walker moving 

on a floor which could be inclined within a range say, -15 to 15 degrees. The 

controller representation needs to be suitably generalized to take into account 

this slope in the floor and the synthesis method should be able to give us a 

controller with that representation which can produce similar looking move-

ments on sloping floors. Clearly the motion controller representation has to be 

rich enough so that issues such as maintaining balance, not toppling over, etc. 

would have to get incorporated into the motion controller. Control representa-

tion for maintenance of balance has been a subject of detailed study by many 

others and it should be possible to draw upon some of those results [50, 87]. 

While the work in this thesis has dealt exclusively with the control synthesis 

problem for which stick figures are adequate; there is a need to dress up these 

virtual creatures with skin or clothes to produce interesting images. It needs 

to be determined how such skin should be attached to the mechanical skeleton 

and how it can be made to deform upon bending of joints or contact with other 

objects. Flexible skin could be surrounded or be controlled by the rigid com-

ponents. Various materials could be added such as hair, fur, or tentacles that 

might flow or bounce, producing secondary motion effects which will add to the 

overall realism of the motion. 

In addition to the extensions to the implementation discussed in the earlier 

section the following would also be needed 

• A good user interface which will enable the animator to specify features, 

constraints and other simulation parameters graphically and also provide 

the user with good analysis and visualization tools for evaluating the 

synthesised motion. The system should be able to store simulation results 

and play back after concatenating them, if so desired by the animator. 

• A good technique for compositing motion sequences generated through 
i. 
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automatically synthesized controllers also needs to be incorporated into 

the implementations. Different topological arrangements of controllers, 

linear, hierarchic, network etc. will have to be supported and appropriate 

mechanisms for execution control transfer will also have to be built in. 

This will be needed if complex animation sequences have to be built out 

of individually synthesized motion controllers. 

o If the skeletal structures are fleshed out with skin/cloths then three di-

mensional rendering and visualization facilities with control over optical 

properties of surfaces, the illumination in the environment and texture 

mapping will have to be incorporated for realistically rendered animation 

sequences. 

o In our implementation we have paid considerably more attention to the 

modelling of motion controllers and the synthesis of internal forces and 

torques. The external environment and interaction modelling are equally 

important in motion simulation. Thus collision detection algorithms have 

to be made more general and multi-point collisions have to be handled. 

More sophisticated collision response behaviour modelling has to be incor-

porated, including the difficult problem of handling of frictional contacts. 

7.4 Open Problems 

Our research has thrown up a number of open problems. Primary among these 

are the learning of motion behaviour, synthesis of multiple virtual actor motion 

and the existence of a basis set for motion features. We discuss each of these in 

a little more detail below. 

Learning Motion Behaviours 

As we have pointed out earlier, when the motion controller is automatically 

synthesized it basically embeds into itself a situation specific behaviour. Thus 

by giving the appropriate feature values to the motion controller associated 

with our virtual Walker, it can be made to walk on the floor. However in no 
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way can it be said that Walker has learnt to walk. Learning motion behaviour 

tr  
is certainly an open problem. For this we believe that it would be essential to 

consider synthesizing complex movements through the logical composition of a 

few primitive motion behaviour controls. What must these primitive controls be 

or what is the logical composition mechanism necessary are certainly unsolved 

problems. 

The Motion Synthesis of Interacting Multiple Virtual Actors 

The complexity of the motion synthesis problem increases in an unbounded 

fashion when one considers interaction not only between a virtual creature and 

a static or dynamic (but passive) environment but also between two or more 

virtual creatures. There are two situations which need to be dealt with. 

o a common goal situation in which all the virtual creatures have the same 

goal. Examples include two virtual creatures moving towards each other 

to meet, or a team of players particularly in a football game, or a troupe 

of ballet dancers performing in perfect synchrony. 

o a conflicting goal situation in which groups of virtual creatures are at 

cross purposes. Examples include one virtual creature being chased by 

another and trying to avoid being caught, or a game of doubles tennis. 

The complexity underlying these behaviours is just unfathomable. Identifying 

the important features or formulating a suitable performance metric for the 

above types of behaviours is certainly an open problem. 

The Universal Set of Features 

Finally there is also this open question of whether there exists a finite universal 

set of features which form a basis for describing all movements of a particular 

kind, say, gaits of four legged creatures. The existence of such a feature ba-

sis would certainly imply completeness in motion synthesis by the method of 

specifying features. Until then we must assume that certain movements will 

always elude formalism. 
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Appendix A 

Representation, Performance 

metric and Mutation Operation 

This appendix describes in detail the representation of an individual solution 

used in the evolutionary algorithm. It also gives an intuitive explanation of 

various terms used in the performance metric and the reasons and motivation 

for choosing them. Further, the mutation operation which is used to manipulate 

the individual solution is also documented in detail. 

A.1 Representation of Solution 

In evolutionary programming, the representation of individual solution plays 

a very crucial role in the over all performance of the algorithm. In our method, 

an individual solution represents a controller. We have chosen a Pose control 

graph to represent a controller. Pose control graphs have been described earlier 

in section 2.6.2. 

The arcs of the pose control graph specify the fixed time interval upon which 

the transition between the states takes place. The desired pose associated with 

the state is kept fixed for the duration of the time interval. 

A pose control graph can be represented using a set of parameters called solu- 

tion vector. All these parameters have direct influence over the motion produced 
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by the controller, and so have to be chosen carefully for a particular motion. The 

aim of the evolutionary algorithm is to synthesize these values for a required 

motion. We have used the following parameters in our representation of pose 

control graphs. 

• Poses represent the internal configuration of the body. Internal configu-

ration is nothing but a set of joint angles which can be varied over time. 

In the case of a n link tree structured body there can be maximum n — 1 

joints. Each pose is defined as some combination of these joint angles 

which are to be achieved after a specified time interval. If there are m 

poses defining the pose control graph, there will be m sets of n — 1 joint 

angles. So the solution vector representing the controller will have the 

combination of m(n — 1) joint angles. 

• Spring and damping constants. The torque applied at a joint is given by 

the function 

T = kp (Od — 0) — kde 

It is proportional to the difference between the desired joint angle and 

the current angle. Also spring and damping constants kp  and kd  can 

significantly affect the type of motion. Hence we have also included some 

of these constants in our solution vector 1  

• Time interval between poses. This parameter plays an important role. 

We want the creature to achieve the desired pose but before it achieves 

the desired pose the time interval will get over and the state will change. 

Once the state changes the current configuration will be compared to the 

parameters associated with that state. 

A three link Luxo creature with two joints and two pose control graph is shown 

in the figure A.1. The solution vector for such a representation is 

[ t1  911 071.2 kpll k7, 2] 	[ t2 Bd1 021 2 kp1 42]  

'Experimentally a value of damping constant as one tenth of spring constant has been found 

to be suitable. 
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INITIAL 

STATE 

Figure A.1: Transition between Poses 

Given an initial state a transition is made to posel (011 , 032 ) in time interval 

tl, with values of kpll and q2, then a transition from posel to pose2 (03 1 , OF) in 

time interval t2, with values of kp21  and kp22 . After that the cycle repeats. Every 

time pose change it cause certain torques to be generated which form the input 

to the simulator. 

An ideal automated synthesis system would be able to design a controller given 

only the mechanical structure of the creature, and no other a priori information. 

However, by specifying a small but useful amount of additional information it 

becomes possible to greatly reduce the search time and improve the performance 

of the algorithm. The additional information we are providing is as follows: 

1. the ranges of time interval between the poses 

2. the number of poses required for the motion, and 

3. the expected ranges of spring constants 

These numbers are not very difficult to estimate. An estimation of the time 

interval is done based upon the size and shape of the creature. Values of spring 

constants are estimated with the help of mass description of the body. If the 

links between which the spring has been simulated are having higher weight, 

higher valued ranges of spring constants are required in order to protect the 

springs from a possible collapse(spring failure). Also values should not be 

so high that they would cause high torques at the joint causing unexpected 

motions. 
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Estimating the number of poses for a creature is comparatively more difficult 

task and usually needs in depth knowledge of expected motion of the creature. 

Experience also helps in deciding this number. 

Given the above mentioned information, the synthesis technique must find the 

controller that will perform well with respect to a given performance metric 

which in turn leads to a desired motion. 

A.2 Performance metric 

In a broad sense, the synthesis process searches through a space of controllers 

and selects the best one satisfying the motion features specified by the animator. 

How good the match is, is determined by the performance metric. The perfor-

mance metric typically evaluates the controller by plugging it into the simulator 

and generating the motion. We have considered following performance metric: 

samples joints 
o D) 

f = wi* E E (1-0-- F8,i)e(8,,)))+w2*(1 
(B  	

)+w3*(1 
(Do  — 
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where, 

W17 W27 W3 
	are weights, assigned to the features depending on their 

relative importance, the value ranging between 0 and 1. 

9(8 ,j) 
	

is the angle at joint j for posture, 

is the external energy 

D 	 is the horizontal distance travelled 

Emax , Dmax  are the maximum expected external energy and horizontal 

distance, respectively. These values are used for normal-

ization of the two quantities. 

9F j) , E0, Do are the feature values specified by the animator. 
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It is clear from the above function that, closer the match between the specified 

and synthesized feature values, higher would be the value of the performance 

metric. The specified and achieved poses are compared during each cycle and 

the difference is summed up. The external energy and the horizontal distance 

are summed during each cycle. 

Poses provide the actual snapshot of the object at an instance, like keyframes. 

In order to get similar kind of motion, these values have to match as close 

as possible with the corresponding controllers values. Thus, higher weight wi 

is given to this comparison. External energy and horizontal distance traveled 

help in optimization process in case of ties in other feature values. For example, 

object can achieve the same configuration without even moving from its place 

in the environment. Generation of such a motion has been largely averted by 

using external energy and horizontal distance features. 

A.3 Mutation Operation 

Mutation operation is the backbone of SPHC algorithm. In every iteration all 

solutions go through this operation. Each solution is represented by a set of 

parameters as discussed above. These parameters are time interval, desired 

joint angles and spring constant parameters. 

Change in one of the parameters can change the motion drastically. So a 

careful mutation of these parameters is required with only a small change in 

original value. We have selected to mutate only one parameter in the whole 

state once the mutation operator is applied. The selection of this parameter 

is a randomized process, with equal probability is given to all the parameters. 

This is found suitable through experiments as it helps the algorithm to fully 

explore the region near an existing solution. If we try to mutate more than 

one parameters at a time, the solution may jump from one region to another 

without exploring the current one. As the function is multimodel, it may be the 

case that optimal solution is in the vicinity of solution being mutated. 

Each time mutation is called the selected state goes through a creep operation. 

In creep operation a randomly selected parameter is modified with a very small 
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factor or all its parameters are randomized from scratch. As there are three 

types of parameters to be modified, there are three possible creep operations 

which are defined as follows: 

1. The original time interval is multiplied by a randomly chosen factor close 

to unity (0.8 — 1.2). 

2. One of the joint angles is selected randomly and changed by a randomly 

chosen amount between —10° and 10°, and 

3. One of the joint angles is selected randomly and multiplied by a randomly 

chosen factor close to unity (0.8 — 1.2). 

.4• 
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Appendix B 

Animation System Reference 
Manual 

This appendix list the syntax of all the commands supported by different mod-

ules constituting the experimental animation system used for synthesizing the 

animations in this thesis. 

B.1 Symbolic equation generator 

Command summary: 

< <filename> 

Reads the script in the given file as input. 

cat <filename> 

Prints out the given file 

compile 

Compiles a procedure for solving the equations of motion. 

echo <args> 

Prints arguments 

fix <link_num> <fix_x> <fixy> 

Fixes the location fix_x, fix y on the given link. 

link <link_num> <parent_num> <attach_x> <attach.y> <mass> <inertia> 

<mass_x> <mass_y> 

Creates link number link_num, attached to the given parent at 

the given point, having the given mass, inertia 

168 



(with respect to centre of mass) and centre of mass. 

monitor <link_num> <mon_num> <x> <y> 

Allows for external forces to applied at the given x,y on the 

given link. 

quit 

Exits the program shell 

set <var> <value> 

Sets the variable to the given value. 

The values are obtainable by executing 'set' 

without any arguments 

procname STRING 

name of desired procedure 

B.2 Simulator 

Command summary: 

«filename> 

Reads the script in the given file as input. 

cat <filename> 

Prints out the given file 

dyn [prod] 

Chooses the given dynamics procedure to be used. 

With no arguments, it lists the current dynamics 

procedures available. 

echo <args> 

Prints arguments 

quit 

Exits the program shell 

set <var> <value> 

Sets the variable to the given value. 

The values are obtainable by executing 'set' 

without any arguments 

debug 	bool 	turns debugging info on or off 

dispfile string name of file for output of display information 

dtdisp 	float display time step 

dtsim 	float simulation time step 

kdamp 	float damping constant 

c"7 

state_size int 	the size of the state vector 

sim <time> 
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Simulates the system for the given amount of time, 

in seconds. The simulation time step is given by 

'dtsim'. The display time step is given by 'dtdisp' 

(see the 'set' command) 

state <x,vx,y,vy,th,dth,thl,dthl,th2,dth2...> 

Sets the current system state to the given value. 

B.3 Anix server 

summary of commands: 

«file_name> 

Read input from file. 

aniset <var1> <valuel> <var2> <value2> 

Sets environment values to desired values 

Aniset without any arguments returns the current value 

of all the variables. A brief description of the use of 

all the accessable variables is as follows: 

debug 	flag to output excess information for debugging 

degmode 	flag to specify rotation transformations in degrees 

device 	"ps" for postscript, "display" for X-11 window 

display 	name of host to use as an X-11 server 

erase 	erase display between frames? (X-11 only) 

eyedist 	distance of eye from screen for perspective projection 

helpfile 	file containing documentation 

newsfile 	file containing list of recent modifications 

psfile 	name of file to send postscript output to 

showtime 	echo current time 

sleep 	time to pause between displaying frames 

viewdist 	distance of eye from viewpoint for perspective proj. 

viewto 	the viewpoint, placed in the centre of the screen 

viewfrom 	specifies line of sight 

viewupl 	which direction to consider 'up' for display purposes 

viewup2 	a second choice for an 'up' vector in case viewupl 

is very close to being parallel to the line of sight 

winx,winy 	size of X-window 

xwin,ywin 	window placement 

attach <objname> to <objname> 
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clear 

close 

Attaches one object instance to another object instance. 

Clears the x-display 

Closes animation display. 

comments 

All text following a '#' character on a line is ignored 

detach <objname> 

Detaches the object from its parent 

help [topic] 

Lists information in help file on the specified topic. 

Type 'help sum' for a summary of available commands. 

init 

Calculate world to screen transformation, prepare for display. 

instance 

Creates an instance of an object 

news 

Print the most recent updates. 

objectname <objectname> 

Begin a new object 

path 

Begin a new path. 

pts <x> <y> <z> 

Adds points to the current path. 

quit 

Exit program. 

show <vall> <val2> 	<valn> 

Supplies a series of missing transformation values and then 

displays using the new transformations. 

sleep <time> 

Causes a pause for the specified number of seconds. 

text x y z string 

Prints text at the given point 

tf <obj> <tf_name> <tf_args> 

Performs the specified transformation on the object. 

The acceptable transformations (as specified by 

tf_name and tf_args) are: 

rot 	<xlylz> <angle> 

Rotates the object about the given axis by the angle 

171 



in degrees. 

prot <xlylz> <angle> 

Rotates the object about the given axis in the parent's 

coordinate system. The angle is in degrees. 

trans <x> <y> <z> 

Translates (moves) the object as specified in the objects 

own coordinate system. 

ptrans <x> <y> <z> 

Translates (moves) the object as specified in the parent's 

coordinate system. 

scale <x> <y> <z> 

Postmultiply the ctm by the given scaling factors. The 

object it self and all following transformations are 

affected by the scaling. 

pscale <x> <y> <z> 

Premultiply the ctm by the given scaling factors. All 

transformations and the object itself are affected by 

the scaling. 

tpipe <filel> <pipefile> 

Repeatedly pipes in <pipefile> while <filel> exits. 
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Appendix C 

Documentation of Scripts 

This appendix documents all the scripts for Luxo, Pogo and Walker in generat-

ing the animations. Scripts with extension .anix gives the geometric description 

of the creature. Script with extension .desc describe the physical structure of 

the creature and the script with extension .sim is used in producing the simu-

lation and recording of the frames. 

C.1 Scripts for Luxo 

luxo.anix 

aniset winx 600 

aniset winy 600 

objname baselink 

path 

pts -0.27 0.02 

pts 0.27 0.02 	0 

pts 0.27 -0.02 

pts -0.27 -0.02 

objname middlelink 

path 

pts -0.02 0.02 0 

pts 0.52 0.02 0 

pts 0.52 -0.02 0 

pts -0.02 -0.02 0 

• 

0 

0 

0 

173 



objname toplink 

path 

pts -0.02 0.02 0 

pts 0.42 0.02 	0 

pts 0.35 0.02 	0 

pts 0.40 0.02 	0 

pts 0.30 -0.15 0 

pts 0.47 -0.15 0 

pts 0.42 -0.02 0 

pts -0.02 -0.02 0 

instance baselink linkl 

instance middlelink link2 

instance toplink link3 

attach linkl to world 

attach link2 to linkl 

attach link3 to link2 

tf trans link2 0.0 0.0 0 

tf trans link3 0.5 0.0 0 

< gnd.anix 

init 

tf trans linkl -3.0 0 0 

tf trans linkl _1 _2 0 

tf rot linkl Z _3 

tf rot link2 Z _4 

tf rot link3 Z _5 

tf trans world 15 4 0 

tf scale world 3 3 3 

aniset degmode f 

aniset erase t 

luxo.desc 

link 1 0 0.0 0.0 0.15 0.003123 0 0 

link 2 1 0.0 0.0 0.10 0.002082 0.25 	0 

link 3 2 1.0 0.0 0.30 0.006246 0.25 	0 

monitor 1 1 -0.27 0 

monitor 1 2 0.27 0 

set procname fall 

compile 

quit 
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luxo.sim 

set kdamp 0.0,0.0,0.0,0.0,0.0,0.0,0.0 

set dtsim 0.001 

dyn fall 

mon mon_fall 2 

set state size 10 

state 0.0000,0.0008,-0.0010,0.0069,-0.0016,-0.0100,-4.6161, 

-0.5956,4.6127,0.0025 

set dispfile luxo.out 

sim 8.0 

quit 

C.2 	Scripts for Pogo 

pogo.anix 

aniset winx 600 

aniset winy 600 

objname base 

path 

pts -0.02 0.02 	0 

pts 0.52 0.02 	0 

pts 0.52 -0.02 	0 

pts -0.02 -0.02 0 

pts 0.00 0.08 	0 

pts -0.15 0.03 	0 

pts -0.05 0.0 	0 

pts -0.15 -0.03 0 

pts 0.00 -0.08 	0 

objname leg 

path 

pts -0.02 0.02 	0 

pts 0.27 0.02 	0 

pts 0.27 -0.02 	0 

pts -0.02 -0.02 0 

instance base linkl 

instance leg link2 

instance leg link3 
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instance leg link4 

instance leg link5 

attach linkl to world 

attach link2 to linkl 

attach link3 to link2 

attach link4 to linkl 

attach link5 to link4 

tf trans link2 0.0 0.0 0 

tf trans link3 0.25 0.0 0 

tf trans link4 0.50 0.0 0 

tf trans link5 0.25 0.0 0 

< gnd.anix 

init 

tf trans linkl 3.5 0.0 0 

tf trans linkl _1 _2 0 

tf rot linkl Z _3 

tf rot link2 Z _4 

tf rot link3 Z _5 

tf rot link4 Z _6 

tf rot link5 Z _7 

tf trans world 14 6 0 

tf scale world 3 3 1 

aniset degmode f 

aniset erase t 

pogo.desc 

link 1 0 0.0 	0.0 0.15 0.003123 0.25 	0 

link 2 1 0.0 	0.0 0.10 0.002082 0.125 0 

link 3 2 0.25 	0.0 0.10 0.002082 0.125 0 

link 4 1 0.50 	0.0 0.10 0.002082 0.125 0 

link 5 4 0.25 	0.0 0.10 0.002082 0.125 0 

monitor 3 1 	0.27 0 

monitor 3 2 	-0.02 0 

monitor 5 3 	0.27 0 

monitor 5 4 	-0.02 0 

set procname pogo 

compile 

quit 
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pogo.sim 

set kdamp 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0 

set dtsim 0.001 

dyn pogo 

mon mon-pogo 4 

set state_size 14 

state 0.0000,0.2487,0.3512,-0.4275,-0.1337,-1.7569,-1.7014, 

0.2469,5.2939,0.0589,-1.1427,-0.3886,4.4908,-0.5539 

set dispfile pogo.out 

sim 8.0 

C.3 	Scripts for Walker 

walker.anix 

aniset winx 600 

aniset winy 600 

objname base 

path 

pts -0.02 	0.02 	0 

pts 	0.52 	0.02 	0 

pts 0.52 -0.02 	0 

pts -0.02 -0.02 	0 

objname leg 

path 

pts 	-0.02 	0.02 	0 

pts 0.27 0.02 0 

pts 0.27 -0.02 	0 

pts -0.02 -0.02 0 

objname foot 

path 

pts -0.082 	0.02 	0 

pts 0.082 0.02 	0 

pts 	0.082 -0.02 0 

pts -0.082 -0.02 	0 

instance base linkl 

instance leg link2 

instance leg link3 
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instance foot link4 

instance leg link5 

instance leg link6 

instance foot link7 

attach linkl to world 

attach link2 to linkl 

attach link3 to link2 

attach link4 to link3 

attach link5 to linkl 

attach link6 to link5 

attach link7 to link6 

tf trans link2 0.0 0.0 0 

tf trans link3 0.25 0.0 0 

tf trans link4 0.25 0.0 0 

tf trans link5 0.0 0.0 0 

tf trans link6 0.25 0.0 0 

tf trans link7 0.25 0.0 0 

< gnd.anix 

init 

tf trans linkl 0.0 0.0 0 

tf trans linkl _1 _2 0 

tf rot linkl Z _3 

tf rot link2 Z _4 

tf rot link3 Z _5 

tf rot link4 Z _6 

tf rot link5 Z _7 

tf rot link6 Z _8 

tf rot link7 Z _9 

tf trans world 10 6 0 

tf scale world 4 4 1 

aniset degmode f 

aniset erase t 
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walker.desc 

link 1 0 0.00 	0.0 3.0 0.0625 0.250 0 

link 2 1 0.00 	0.0 5.0 0.0260 0.125 0 

link 3 2 0.25 	0.0 4.0 0.0208 0.125 0 

link 4 3 0.25 	0.0 5.0 0.0260 0.0 	0 

link 5 1 0.00 	0.0 4.0 0.0208 0.125 0 

link 6 5 0.25 	0.0 1.0 0.0052 0.125 0 

link 7 6 0.25 	0.0 1.0 0.0052 0.0 	0 

monitor 4 1 -0.082 0.0 

monitor 4 2 	0.082 0.0 

monitor 7 3 -0.082 0.0 

monitor 7 4 0.082 0.0 

set procname walker 

compile 

quit 

walker.sim 

set kdamp 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0 

set dtsim 0.001 

dyn walker 

mon mon walker 4 

set state size 18 

state 0.0,0.0,0.52,0.0,1.120,0.0,-2.793,0.0,-0.175,0.0, 

1.745,0.0,-2.382,0.0,-0.885,0.0,1.745 

set dispfile walker.out 

sim 8.0 

quit 
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