
DESIGN AND ANALYSIS OF SUBSPACE CLUSTERING

ALGORITHMS AND THEIR APPLICABILITY

'I HESIS SUBMITTED TO GOA UNIVERSITY

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

COMPUTER SCIENCE

BY

JYOTI D. PA WAR

GOA UNIVERSITY

TALEIGAO PLATEAU

GOA-403206 061. 6

INDIA

April 2004

f

Pkwitle

zös--
4.

A

STATEMENT

As required under the University ordinance 0.19.8(iv), I state that the present thesis

entitled "DESIGN AND ANALYSIS OF SUBSPACE CLUSTERING

ALGORITHMS AND THEIR APPLICABILITY" is my original contribution and

the same has not been submitted on any previous occasion. To the best of my

knowledge the present study is the first comprehensive work of its kind from the area

mentioned.

The literature related to the problem investigated has been cited. Due

acknowledgements have been made wherever facilities and suggestions have been

availed of

(Jyoti D. Pawar)

CERTIFICATE

This is to certify that the thesis entitled "DESIGN AND ANALYSIS OF

SUBSPACE CLUSTERING ALGORITHMS AND THEIR

APPLICABILITY", submitted by Smt. Jyoti D. Pawar for the award of

the degree of Doctor of Philosophy in Computer Science is based on her

original studies carried out under my supervision. The thesis or any part

thereof has not been previously submitted for any other degree or diploma

in any University or Institute.

(rte YA:k.ed 	<1/

Cdvy,(c A '# ti s

Dr. Pralhad. R. Rao
Dept. of Computer Sc., & Tech.,
Goa University,
Taleigao Plateau,
Goa — 403206.

i-‘41,-45/Lc
fr-5

r0)/;(),- -6,/-€0e ,4--■"

2.2/ /

	

190 e.,t4 	 Co

	

X o(ri,z-or/ 	4-,,J vt,e 2_2:1 t 010

Place: Department of Computer Science & Technology,
Goa University, Goa.

Dated:

'Education is not that amount of information that is put into your brain and runs

not there undigested, all your Cafe. We must have life-building, man-making,

character-making, assimilation of ideas. If you have assimilated five ideas — truth,

right action, peace, divine love and non-injury and made them your fife and character,

you have more education than any man who has got by heart a whole library. If

education is identical with information, the libraries are the greatest sages in the

world, and encyclopaedias are the Vshis. The iika4 therefore, is that we must have

the whole education of our country, spiritual' and secular, in our own hands, and it

must be on national lines, through national methods as far as practical'

Swami Vivekgnanda (1863-1902)

Acknowledgement

It would have remained a dream to complete the thesis without the support of many

people and many things as well, which proved useful in some or the other way. If I

go on mentioning the names of each and every person and thing, there is a

possibility that I may miss out unknowingly the names of some people and things

Hence, I have decided to thank God and only one person. For, I know when I thank

him it includes all. And that person is none other than my sadguru Param Pujya

Sant Shri Asaramji Bappu. When I was completely lost trying to fight against my

health and both personal and professional problems, it is he who taught me the art of

living a tension free life amidst all favorable, unfavorable, happy, sad and all

possible circumstances. If I master what he has taught me and lead my life based on

his teachings then, that will be the highest possible invaluable degree for me. And, I

know that the knowledge that I get from the degree which my Bapuji, will award me

if I master and mould my life based on his teachings will also prove useful to each

and every person whom I meet. To practice whatever he has taught me is both a next

to impossible task as well as a very simple task. Reading this statement, everybody

will feel I have gone mad. But it is absolutely true. It becomes very simple when I

forget all my ego and have a very clear conscience and see myself in everybody

around me. And absolutely impossible when my ego, jealousy, anger, and the

feeling of me and mine crops up.

DESIGN AND ANALYSIS OF SUBSPACE CLUSTERING
ALGORITHMS AND THEIR APPLICABILITY

BY
JYOTI D. PAWAR

Abstract

Due to the rapid advancement in information technology, it has become very easy to

capture data about almost every aspect of ones business or related field. The data

captured is stored in various files or databases. Most of the time the mining of

knowledge is carried out considering each of the files or databases independently.

Hence, we cannot find the patterns or relationships that exist across attributes stored in

different files or databases. In Subspace clustering, we try to find all the possible

interrelationships that exist between the various data attributes by finding all the clusters

that exist in the different subspaces of a very high dimensional dataset. The datasets that

we deal with in subspace clustering contain a large number of attributes, are huge in

size and most of the times contain many missing values.

In this thesis, based on the properties of very high dimensional huge data sets,

and the requirements of the subspace clustering algorithms, an Attribute Oriented

Storage Structure (AOSS) for storing very high dimensional huge data sets has been

developed. Using the AOSS structure, the complexity of the function, to find the

frequency count of the various candidate units in the datasets is reduced considerably.

This fact is also proved by the experimental evaluation that has been carried out using

synthetic datasets. An algorithm to reduce the number of passes required over the

dataset has been designed by using sampling technique and experimentally shown that it

is efficient when we have to deal with huge datasets which cannot be loaded in main

memory at one time. In order to efficiently find high-dimensional clusters in very high

dimensional huge datasets, a depth-first approach instead of the currently used breadth-

first method has been used to find the dense units in the datasets and it is extended to

find clusters in datasets with attributes having varying threshold values. And finally,

using the AOSS structure with this depth-first approach technique, proposed method to

find the various clusters that exist within the clusters identified in the original datasets.

This method can be very useful to do a through analysis of datasets in applications like

census data analysis.

The AOSS structure along with the depth first method of finding the dense units

is found to be very promising to make the design of the subspace clustering algorithms

very efficient with respect to the space as well as the time factor to find high

dimensional clusters in very high dimensional huge datasets.

Contents

1 	Introduction 	 1

1.1 Background 	 1

1.2 Motivation 	 2

1.3 Contributions 	 4

1.4 Organization of the Thesis 	 6

2 	Problem Definition and Related Work 	 8

2.1 Subspace Clustering Problem 	 8

2.2 CLIQUE algorithm 	 12

2.3 Improvements over CLIQUE 	 17

3 	AOSS: An Attribute Oriented Storage Structure 	 21

3.1 Limitations of the existing storage techniques. 	22

3.2 Design of Attribute Oriented Storage Structure 	24

3.3 Database operations Using AOSS 	 28

3.4 Efficiency obtained using AOSS 	 34

3.5 Experimental Results 	 40

3.5.1 Synthetic data generation 	 41

3.5.2 Synthetic data results 	 42

3.6 Summary 	 45

4 	SAMCLIQ: A SAMpling based CLIQue algorithm 	47

4.1 Use of Sampling in Data Mining 	 48

4.1.1 Role played by sampling in data mining 	 48

4.1.2 Limitations of sampling 	 49

4.2 	Proposed Sampling technique 	 50

4.2.1 Criteria for a good sample 	 50

4.2.2 Sampling for finding frequent sets 	 51

4.2.3 AOSS based sampling technique 	 52

4.3 	Subspace Clustering Using Sampling 	 58

4.3.1 Algorithm for identification of dense units 	59

4.4 	Experimental Results 	 65

4.4.1 Synthetic data generation 	 65

4.4.2 Synthetic data results 	 66

4.5 Summary 	 68

5 	MLSCLUS: A Multi Level Subspace CLUStering Algorithm 70

5.1 	Use of Maximal Frequent Itemsets in Subspace Clustering 73

5.2 MADUGEN: A Maximal Dense Unit. Generation

Algorithm Using Multiple Threshold Values 	 76

5.2.1 Experimental results 	 83

5.2.2 MADUGENMT: MADUGEN algorithm

with multiple threshold values 	 84

5.3 AOMLSCLUS: An Attribute Oriented Multi Level

Subspace CLUStering Algorithm 	 87

5.3.1 Experimental results 	 99

5.4 Summary
	 100

6 	Discussion
	 101

6.1 Characteristics of the AOSS method
	

101

6.2 Extensions and Applications of Subspace Clustering methods 103

7 	Conclusions
	 106

7.1 Summary of The Thesis
	

107

7.2 Future Research Directions
	 108

References 	 110

List of Figures

2.1 Illustrations of CLIQUE definitions 11

2.2 Example of two datasets with equal coverage but different densities 18

3.1 A Sample record layout 23

3.2 A typical very high dimensional huge dataset 23

3.3 A Sample AOSS record layout 25

3.4 Database structure using variable length records 26

3.5 A sample AOSS record table 27

3.6 A Sample AOSS attribute table 27

3.7 Scalability with the number of records(with missing values) 43

3.8 Scalability with the number of records(without missing values) 44

3.9 Scalability with the dimension of the data space 45

4.1 Scalability with the number of records 67

4.2 Scalability with the dimension of the data space 67

4.3 Scalability with the dimensionality of the clusters 68

5.1 Scalability with the dimensionality of the clusters 84

1

Chapter 1

lIntroduction

1.1 Background

The amount of raw data and information being captured and stored in computer

files and databases in almost every field has been growing at a tremendous pace. In

short we can say that we have been flooded with data but we are still starving to get the

knowledge from this vast pool of existing data. In today's competitive world, all

concerned need to extract as much information as possible from their data sources to

help in efficient decision making, so as to compete with their rivals and achieve their

goals. Data mining comes into play to help users satisfy such needs. Data mining,

which is also referred to as knowledge discovery in databases, means a process of

nontrivial extraction of implicit, previously unknown and potentially useful information

(such as knowledge rules, constraints, regularities) from data in databases [26]. Data

mining combines methods and tools from at least three areas namely machine learning,

statistics, and databases [19].

Clustering is a data mining technique that helps in identifying clusters within the

domain space and has many applications in several fields. As a data mining task, data

clustering also referred to as unsupervised classification can be thought of as

partitioning or segmenting the data into groups that might or might not be disjoint. Data

clustering has been studied in statistics [10,20], machine learning [14,15], and spatial •

CHAPTER 1. INTRODUCTION 	 2

data mining [10, 11, 25] areas with different emphasis. The unsupervised nature of

clustering makes it applicable to applications, where the user has limited domain

knowledge. Some of the current applications, which use clustering techniques

extensively are clustering of web-search results and clustering of spatial databases.

Most of the traditional clustering algorithms have been designed to discover clusters in

the full dimensional space using various distance functions.

1.2 Motivation

In recent years, there has been an increase in the number of new database

a applications dealing with very large high dimensional data sets. These applications to

name a few include multimedia content-based retrieval, geographic and molecular

biology data analysis, text mining, bio-informatics, medical applications, and time-

series matching. These applications place special requirements on clustering algorithms:

the ability to find good quality clusters embedded in subspaces of high dimensional data

preferably without taking any inputs from the user (which requires the user to have

good domain knowledge), scalability, end-user comprehensibility of the results, non-

presumption of any canonical data distribution, and insensitivity to the order of input

records. Clustering algorithms which work on the full dimensional space of the data

fail to find clusters in high dimensional datasets due to the following main reasons — the

average density of points anywhere in the high dimensional data space is likely to be

CHAPTER 1. INTRODUCTION 	 3

low [6]. Secondly, in the high dimensional data there are more chances of having

missing values in the data attributes. In order to apply the full dimensional clustering

algorithms, these missing values are normally replaced by values taken from a random

distribution say X. Here an assumption is made that, the attribute containing missing

values, follows that particular X distribution. This assumption need not be true always

and thereby affect the quality of the clustering results obtained. Majority of the

traditional clustering algorithms are sensitive to the order of input records and require

input parameters from the user.

The subspace clustering algorithm CLIQUE [1] satisfies some of the above

requirements. It identifies the subspace clusters in the high dimensional data by

finding all the sets of connected dense units existing in the various subspaces. It

presents the cluster descriptions in the form of DNF expressions that are minimized for

easy interpretation. It produces identical results irrespective of the order of the input

records and does not need to make any assumptions about the data distributions for any

attributes to handle any missing values. However, it requires the user to give the inputs,

c (threshold value) and t(number of intervals) in order to find the dense units. Hence

the accuracy of the results obtained depends on the values input by the user. It uses the

level-wise apriori [4] algorithm for finding the dense units. Hence suffers from the

same problems as the apriori algorithm in the following situations:

0 If the user inputs a large value for t or enters a very low value for T, the number

• 	 of candidate and dense units generated will be huge in number. And as a result

CHAPTER 1. INTRODUCTION 	 4

the first step of CLIQUE to identify the dense units in the different subspaces

will be computationally very expensive.

• If the dimensionality of the clusters is large, then the database will have to be

scanned a large number of times to find the high dimensional dense units. And,

if the size of the database is also very large then it will still add to the time

complexity.

As a result of the emerging real life data applications, there is a demand for clustering

algorithms, which can efficiently identify good quality clusters from huge, high

dimensional data sets. Hence, developing efficient techniques to find clusters in huge,

high dimensional data sets has become an important research direction in data mining.

1.3 Contributions

In this thesis, we study the problem of subspace clustering for very high

dimensional huge data sets with missing values. In particular, we make the following

contributions -

• Efficient storage structure: Based on the properties of very high dimensional huge

data sets containing missing values, and the requirements of the subspace clustering

CHAPTER 1. INTRODUCTION 	 5

algorithms, we have developed an Attribute Oriented Storage Structure (AOSS) for

storing very high dimensional huge data sets.

• Scalability: With the increasing size of the databases, we need to have subspace

clustering algorithms, which can be used for very large data sets. We have used the

sampling technique to address this issue. The SAMCLIQ algorithm developed using

sampling technique gave us very efficient results when compared with the CLIQUE

algorithm.

• Efficiency: To handle this issue, we have used a depth-first approach and the

concept of maximal dense units for identifying the subspaces containing the

clusters. The subspace clustering algorithms CLIQUE [1] and MAFIA [16] have

used the level-wise apriori algorithm for identifying the dense units. Again here we

used the AOSS method of storage representation and found that it gives very good

results for very high dimensional huge datasets with missing value attributes.

• Applicability: We extended the AOSS method using the maximal dense unit

concept to find clusters in datasets containing attributes with varied threshold

requirements. As an application of this technique in applications like census data

analysis, we developed a subspace clustering algorithm to allow mining of all the

subspace clusters found in the clusters identified in the original dataset.

4

CHAPTER 1. INTRODUCTION 	 6

1.4 Organization of the Thesis

The remainder of the thesis is structured as follows:

• In Chapter 2, we present the subspace clustering problem and an overview of the

related work carried out in high-dimensional clustering.

• In chapter 3, An Attribute Oriented Storage Structure (AOSS) for storing very high

dimensional datasets with many missing values has been developed. The reduction

in time complexity using this structure is reported along with the experimental results

obtained using synthetic datasets.

• In Chapter 4, a sampling based subspace clustering algorithm SAMCLIQ [36] is

developed to handle very large data sets. The experimental evaluation and

performance study by comparing with CLIQUE has been carried out

• In Chapter 5, details of algorithms developed using AOSS based structure for finding

maximal dense units with uniform threshold value (MADUGEN) and multiple

threshold values (MADUGENMT) have been discussed. Using AOSS structure and

MADUGENMT a subspace clustering algorithm AOMLSCLUS, has been presented

and its application for analyzing census data discussed.

CHAPTER 1. INTRODUCTION 	 7

• In Chapter 6, we summarize the characteristics of the AOSS method along with a

discussion of some interesting extensions and applications of subspace clustering

using AOSS.

• In Chapter 7, we conclude with a few directions for future work.

0
•

8

0,0

Chapter 2

Problem Definition and Related Work

In this chapter, we first define the subspace clustering problem, then we

discuss the working of the CLIQUE [1] algorithm. A few improvements over the

CLIQUE algorithm are also discussed.

2.1 Subspace Clustering Problem

The Subspace clustering problem was first introduced by R. Agrawal, in [1].

3
Subspace Clustering is the most informative/systematic approach for clustering

high-dimensional data. It is the task of automatically identifying(in general several)

subspaces of a high dimensional data space that allow better clustering of the data

objects than the original data space [1].

Terminology Used:

Let A = 	, A2 , ..., Ad } be a set of bounded, totally ordered domains

and S = A 1 X A2 X ... X Ad a d-dimensional numerical space. A l , , Ad are

referred to as the dimensions (attributes)) of S.

The input consists of a set of d-dimensional points V = v1 v2 , • • • , vm

where vi = < vil , va , , via >. The jth component of vi is drawn from domain Ai

CHAPTER 2. PROBLEM DEFINITION AND RELATED WORK 	 9

The data space S is partitioned into non-overlapping rectangular units. The

units are obtained by partitioning every dimension into 4 intervals of equal length,

which is an input parameter.

Each unit u is the intersection of one interval from each attribute. It has the

form lui , ud } where It; [li,hi) is a right-open interval in the partitioning of

Ai•

A point v = 	, v2 , , vd) is contained in a unit u = { u l , u2 , • • • , ud }

if h 	<hi for all

The selectivity of a unit is defined to be the fraction of the total data points

contained in the unit. A unit u is called a dense unit if selectivity(u) is greater than

T, the density threshold which is input by the user.

A k-dimensional subspace is a projection of the data set V into A ti X Al2 X

... X Atk , where k < d and ti < ti if i < j. A k-dimensional unit Ilk in this

subspace is the intersection of an interval from each of the k attributes.

A cluster is a maximal set of connected dense units in k-dimensions. Two k-

dimensional units il l , u2 are connected if they have a common face or if there exists

CHAPTER 2. PROBLEM DEFINITION AND RELATED WORK 	 10

another k-dimensional unit us such that ui is connected to (13 and ri2 is connected

to 113.

Units ukt = rti, 	rtk} and Ilic2 = 	 etk} have a common face if there

are k-1 dimensions, assume dimensions Au, 	Atk_t, such that rtj = r§' for j = 1 to

k-1 and either htk = rtk or h'tk = lik.

A region in k dimensions is an axis—parallel rectangular k-dimensional set.

Regions are considered as unions of units. Region R is said to be contained in a

cluster C if R r C= R.

A region R contained in a cluster C is said to be maximal if no proper

superset of R is contained in C.

A minimal description of a cluster is a non-redundant covering of the cluster

with maximal regions. That is, a minimal description of a cluster C is a set R of

maximal regions such that their union equals C but the union of any proper subset of

R does not equal C.

The Problem: Given a set of data points and the input parameters 4 and 'r, find

clusters in all subspaces of the original data space and present a minimal description

of each cluster in the form of a DNF expression.

O
,N4

00

V')

Csi

O

CHAPTER 2. PROBLEM DEFINITION AND RELATED WORK 	 11

A

----- 	1-- _I

B

u .-

	20 25 30 35 40 45 50 55 60 65 70

Figure 2.1: Illustration of CLIQUE definitions.

Example 21: •

In Figure 2.1, the two dimensional space (age, salary) has been partitioned by

a 10 X 10 grid.

A unit is the intersection of intervals; above an example of a 2-dimensional

unit u = (30 age < 35) A (1 salary < 2).

A region is a rectangular union of units. A and B are both regions: A = (30

age < 50) A (4 salary < 8) and B = (40 5 age < 60) A (2 salary < 6).

The minimal description for the cluster (A L.) B) is the DNF expression:

A = (30 age < 50) A (4_ salary < 8) v (40 age < 60) A (2 salary < 6).

CHAPTER 2. PROBLEM DEFINITION AND RELAYED WORK 	 12

2.2 CLIQUE Algorithm

The CLIQUE algorithm consists of the following three steps:

1. Identification of subspaces that contain clusters.

2. Identification of clusters.

3. Generation of minimal description for the clusters.

The main part of step 1 consists of finding the dense units in different subspaces.

The dense units are identified using a bottom-up algorithm that exploits the

monotonicity of the clustering criterion with respect to dimensionality to prune the

search space. This algorithm is similar to the apriori algorithm for mining

• • 	 association rules [4]

Example 21 Let the transaction database, TDB, be Table 2.1 consisting of a total of

10 transactions, with 6 numeric attributes each and the user input values of 4 and r

be 5 and 0.2 respectively. The missing values for the attributes are represented by a

"?' symbol. Assume for the sake of simplicity that all the attribute values range from

1 to 100.

p

CHAPTER 2. PROBLEM DEFINITION AND RELATED WORK 	 13

Tid A B CD E F

10 1 21 41

e•-• 4 18

20 4 24 44 9 9 49

30 6 26 46 45 23 83

40 9 29

e•-• 57 5

50 2 8 25 58 78 30

60 53 ? 92 59 52

70 19 8 89 58 78 57

80 82 2 52 72 12

90

100

89

?

78

68

10

75

25

?

?

62

38

13

Table 2.1: A transaction database TDB.

CLIQUE finds the dense units for identification of the subspaces containing clusters

as follows —

1. Each attribute is split into 4 intervals to form 4 1-dimensional candidate units

for each attribute namely Al, ...AS, B1,...,B5, Cl,... ,C5, D1,...,D5 and so

on till F1,..., F5.

Hence in this example we will have a total of 5 * 6 = 30 1-dimensional

candidate units.

6
4

-4)

CHAPTER 2. PROBLEM DEFINITION AND RELATED WORK 	 14

2. By doing a first pass over the above dataset, the frequency count of all these

1-dimensional candidate units is found. Selectivity of a unit is equal to the

frequency count of that unit divided by the total number of transactions.

Those units whose selectivity is greater than 0.2 are identified as 1-

dimensional dense units Di. Di in this example is {Al, A9, BI, B3, C5, D6,

El, E8, F2, F6}

3. The 2-dimensional candidate units C2, are generated by forming all possible

pairs of the 1-dimensional dense units D1. Some candidate units are pruned.

Only those candidate units are retained which have all its subset units dense.

A 2-dimensional candidate unit 	E C2 if and only if 	, uli E Di . In

this example, C2 consists of (Al B1 , Al B3, 	E8F2, E8F6}

4. A second pass is made through the dataset to find the selectivity of all the

two dimensional candidate units u2 E C2 for i = 1 to n, n representing the

total number of 2-dimensional candidate units. Thus we get, 132 consisting of

{A1B3, B3C5}

5. For k a 3, the candidate units generation procedure and procedure used for

pruning the generated candidate units is as given below -

The candidate generation procedure used for generating Ck from Dk-i

is as under —

insert into Ck

select nail , h1), u1-[12 , h2), 	, hk-i), 	, hk-i)

from Dk.-1 1.11 , Dk-1 112

where ui.ai = u2.al , 	u2.1] , ui.hi = u2.1b,

CHAPTER 2. PROBLEM DEFINITION AND RELATED WORK 	 15

tr1.a2 = u2.a2 , u1.12 = U2.12 U1•h2 = U2-112, - • • ,

111.ak-2 = 112.ak-2 , 111.1k-2= 112.1k-2 , 111.11k-2 = 112.11k-2,

ui.ak_i < 112-ak-1

In the above pseudo-code for the join operation, u.ai represents the ith

dimension or attribute of unit u and , hi), represents its interval in the ith

dimension.

Pnmning procedure used for k-dimensional candidate units Ck - All those Ck

units which do not have all its (k-1) dimensional subsets in the set of (k-1)

dimensional dense units are discarded from the set of Ck units generated above.

Then the ktk pass is done to find selectivity of all Ck units and obtain the Dk

units.

This process is continued till no candidate units can be derived or no

candidate is dense. In this manner all the dense units belonging to the different

subspaces are found. These units form the input for the second step of CLIQUE.

Time complexity: If k is the highest dimensionality of any dense unit and m is the

number of the input points, the above algorithm will make k passes over the

database. If a dense unit exists in k dimensions, then all of its projections in a subset

of the k dimensions that is, 0(2k) different combinations will also be dense. Hence,

the time complexity of this algorithm is O(c k + mk) for a constant c.

The second step of CLIQUE takes as input the set of dense units D, all in the same

k-dimensional space S and outputs a partition of D into 1 31 , 	Pq , such that all

CHAPTER 2. PROBLEM DEFINITION AND RELATED WORK 	 16

units in Pi are connected and no two units Ui E Pi , E PP with i # j are connected.

All these partitions represent the clusters found in the k-dimensional space S. It finds

the partitions by using a depth-first search algorithm to find the connected

components in the graph formed by representing the dense units as the vertices of

the graph. An edge exists between those vertices whose corresponding dense units

have a common face.

The step three takes as input the clusters identified in step two and generates a

concise description for it. For this purpose it first uses a greedy growth method to

cover the clusters by a number of maximal rectangles(regions), and then discards

the redundant rectangles to generate a minimal cover.

Some of the drawbacks of the CLIQUE algorithm are as under-

• It does not provide any support to the user for selecting the values for the input

parameters and T. The cluster boundaries generated are totally dependant on the

value of 4 and the value of T decides the quality of the clusters that will be

generated. If the value of T is set too low then we will get a large number of dense

units, and some of the clusters that we get from these dense units will be

redundant. Similarly, if the value is too high then we will miss to capture some

significant clusters.

4

CHAPTER 2. PROBLEM DEFINITION AND RELAYED WORK 	 17

• It is tedious to make repeated passes over the database to find the selectivity of

the large number of candidate units generated. This condition worsens when the

dimensionality of the subspace clusters found in the database increases. As the

dimensionality of the subspace clusters increases, there is an explosion in the

number of dense and the candidate units generated. CLIQUE uses a MDL-based

pruning technique. In this the dense units in the subspaces with low coverage

are pruned so as to reduce the number of dense and candidate units generated.

The coverage of a subspace is the fraction of the database that is covered by the

dense units. This is believed to make the algorithm faster but it may lead to

missing out of some important clusters.

• If the size of the dataset is very large both with respect to the number of records

and the number of attributes (data dimensionality), the time taken for each

database pass to find the selectivity of the candidate units will increase

substantially.

2.3 Improvements over CLIQUE

In the past few years, some subspace clustering algorithms have been

proposed to overcome some of the problems of the CLIQUE algorithm.

CHAPTER 2. PROBLEM DEFINITION AND RELATED WORK 	 18

The ENCLUS [8], a ENtropy-based subspace CLUStering algorithm was proposed

to handle the large number of subspaces with dusters within them. In CLIQUE, the

MDL-based pruning technique was used to prune some subspaces with low coverage

to make the algorithm faster. However, it had the trade-off of missing out some

significant dense units found in subspaces with low coverage. The ENCLUS [81

algorithm has made the following contributions to the subspace clustering problem —

o It has identified the following additional criteria for determining subspaces with

good clustering:

a) Criterion of High Coverage

b) Criterion of high density and

c) Correlation of dimensions
as

(a)
	

(b)

Figure 2.2: Examples of two data sets with equal coverage but different

densities. The area within the rectangles is the value of the coverage.

CHAPTER 2. PROBLEM DEFINITION AND RELATED WORK 	 19

In the figure 2.2 cases (a) and (b) have the same coverage, however the

points in (a) are more closely packed and is a better candidate to qualify as a

cluster.

o ENCLUS [8] uses the entropy metric to measure all the above three criteria

simultaneously to find subspaces with good clustering. It is also a grid based

method and takes the inputs for the threshold from the user. In order to

calculate the entropy, it also divides each dimension into equal width intervals

to form a grid. Hence the size selected for the intervals, affects the quality of

the final clustering obtained.

MAFIA [16] (Merging of Adaptive Finite Intervals) is another subspace

clustering algorithm, which uses adaptive interval sizes to partition the

dimension depending on the distribution of data in the dimension. Using

adaptive grid sizes, MAFIA attempted to reduce the computation and improve

the clustering quality by concentrating on the portion of the data space which

have more data points and thus more likelihood of having clusters.

o PROCLUS [2] uses the concept of PROjected CLUStering for finding

clusters in a multi-dimensional data space. PROCLUS also discovers

interesting correlations among the data in various subspaces of the original

high dimensional space, but it differs from CLIQUE in the output produced. It

outputs a partition of the data points into clusters, together with the sets of

CHAPTER 2. PROBLEM DEFINITION AND RELATED WORK 	 20

dimensions on which points in each duster are correlated. The clusters output

by PROCLUS are useful in applications like classification and trend analysis

where it is required to partition the data points into disjoint partitions. It fails

to detect any overlapping clusters existing in the data set. ORCLUS [3] is also

an example of a projected clustering algorithm_

21

Chapter 3

AOSS: An Attribute Oriented Storage

Structure

We discussed the details of the first subspace clustering algorithm CLIQUE

in Section 2.2. We observed that, one of the major drawbacks of the algorithm is the

repeated number of database passes required during step one to find the selectivity

of the large number of candidate units that are generated. In step one of CLIQUE,

which is based on the apriori [4] algorithm we observe that the entire database is

scanned in order to find the selectivity of each candidate unit. Hence, as the number

e of candidate units increases the time taken for each database pass increases

proportionately. In reality, all the database records need not be accessed to find the

selectivity of each candidate unit. Similarly, in the case when the dimensionality of

the data space is very large it is not required to access the entire data record to find

the selectivity of all the units. In order to find the selectivity of a unit u it needs to

access only the values of those attributes, which are a part of the unit u. In short, if

we can tackle the above two problems we can significantly improve the performance

of step one of CLIQUE.

Can we cut short on the number of data records and the number of attribute

values of each record that are accessed by each unit to find its selectivity? To

handle these concerns, we develop in this chapter an efficient method for storing the

CHAPTER 3. AOSS: AN ATTRIBUTE ORIENTED STORAGE STRUC'T'URE 22

very high dimensional huge datasets. Because of the ease with which data can be

captured today from almost every aspect of the problem domain, all the datasets

consist of a huge number of data records with a very large number of data attributes.

First, we discuss the limitations of the existing data storage techniques to support the

clustering of very high dimensional huge datasets in Section 3.1. Then in Section

3.2, we propose the Attribute Oriented Storage Structure (AOSS) method for storing

the datasets. In Section 3.3, we discuss how to perform the various database

operations on the data stored using the proposed AOSS method, in section 3.4 we

report the experimental results and conclude with a summary in Section 3.5.

3.1 Limitations of the Existing Storage Techniques

In subspace clustering, we try to find all the possible interrelationships that

exist between the various data attributes. If we apply subspace clustering, on

individual files then we will only find the subspace clusters existing within each of

them independently. However, to get all the possible knowledge or patterns from the

available data, we will have to consider all the data at one place in a database. Each

record in such a database should consist of all the attributes of ones business. The

resulting database that we get will represent a very high dimensional huge dataset.

Such a database is likely to contain many missing values.

ti

CHAPTER 3. AOSS: AN ATTRIBUTE ORIENTED STORAGE STRUCTURE 23

A Sample layout of a record consisting of 100 attributes will be as under —

ai a2 a3 ? a5 ? a7 . 	.. a99 am

Figure 3.1: A Sample record layout .

The ai value, represents the value of the ith attribute Ai, for i = 1 to 100 and a

`?' represents a missing value for the corresponding attribute. For example in the

above layout, values of attribute A5 and A6 are missing. A typical database layout,

consisting of ten lakhs of data records storing information about 100 attributes will

be as under.

Al 	A2
	

Ai 	A100

Red al a2 ? ? ai ? ? auk

Rec2 a' 2 ? a'1-1 a'{+1 ? ai m

Rec999999

.

?
I

Rec1000000 a"1 . a"i a"0-1
I

a"100

Figure 3.2: A typical very high dimensional huge dataset

o.

CHAPTER 3. AOSS: AN ATTRIBUTE ORIENTED STORAGE STRUCTURE 24

Some of the drawbacks of the representation shown in figure 3.2 are as under:

• Since, there will be many missing data values, a lot of storage space will be

wasted.

• Each time you access any record, you will be reading all the attribute values

of the record. Majority of the cases you do not need to access all the

attributes at the same time.

• This representation is not suitable for subspace clustering algorithms. In order

to find the selectivity of the different candidate units, we need not access all

the attributes of the data and all the data records need not be accessed for all

the candidate units.

Hence, we propose the following Attribute Oriented Storage Structure (AOSS) for

storing such a very high dimensional huge dataset.

3.2 Attribute Oriented Storage Structure(AOSS)

In the Attribute Oriented Storage Structure (AOSS), we store the information

in such a way that all the records from the database are not accessed to find the

selectivity of the various candidate units. And at the same time we access only the

attribute information of the attributes, which are present in that particular candidate

unit while finding its selectivity.

CHAPTER 3. AOSS: AN ATTRIBUTE ORIENTED STORAGE STRUCTURE 25

We explain below the various steps carried out to arrive at such a structure.

• Step 1: In Figure 3.2, we observe that there are a lot of missing values in the

various records. We could save a lot on space and time to process such missing

value attributes if we store only those attributes having valid values. By doing

so we will get records with varying number of attributes. And the database so

constructed will lead to a substantial reduction in the space required. The

record layout shown in figure 3.1 and the database structure of figure 3.2 will

appear as under using the new AOSS structure-

(Ai,a1.) (A2,a2) (A3,a3) (As,a5) (A7,a7) . 	.. (A99,a99) (Aioo,aioo)

Figure 3.3: A Sample AOSS record layout

In the above figure 3.3, (Ai„ ai) represents the ith attribute value pair for

those attributes having valid values. We do not show the details of the 4 th, 6th, and

other attributes which contain missing values.

After the step one the database shown in figure 3.2 will appear as shown in

figure 3.4 with records containing varying number of attribute value pairs.

•

CHAPTER 3. AOSS: ANATTRIBUTE ORIENTED STORAGE STRUCTURE 26

Reel (Ai,ai) (A2,a2) (kai) ... (Ai oo,ai 00)

Rec2
(A2,a12) (i4)th

Pair

01+1 Alt

pair

•• - (A 100,a' too)

I

Rec999999

Rec1000000 (Ai ,a" i) (Ai,a";) (A100,a"100)

Figure 3.4: Database structure using variable length records

Step 2: The above structure reduces the space required by eliminating the

information of the missing value attributes from each record. Hence it results in

shortening the length of the data records to be processed during each database pass

to find the selectivity of the units. While finding the selectivity of a unit u, to avoid

the processing of those attributes, which are not part of the candidate unit u, the

above structure shown in figure 3.4 is split into two levels. At the top level, we have

the AOSS record table. In this table, for each record we keep along with the record

identifier the attribute information details, which include the address of the table

storing the attribute values and the position where the value is stored in it. And at the

next level we have independent AOSS attribute tables for storing the values of each

attribute along with its record identifier from the AOSS record table. Using the

AOSS method, the database structure from figure 3.4 will be represented with the

CHAPTER 3. AOSS: AN ATTRIBUTE ORIENTED STORAGE STRUCTURE 27

help of a AOSS record table and the AOSS attribute tables. A Sample of the

structure of a AOSS record table and a AOSS attribute table is shown below.

Reel (* *) (* .*) (s,*) ... (*,*)

(i-l)th

Pair

(i+l)th

Pair

 ... (*,*) (...

.

Rec999999

Rec1000000 (40,40)

Figure 3.5: A sample AOSS record table

Ai attribute table

• ute

Rec-id

Rec-id from AOSS

rd table

Attribute value

Arec-1 al

Arec-2 aj '

Figure 3.6: A Sample AOSS attribute table

•

CHAPTER 3. AOSS: AN ATTRIBUTE MEWED STORAGE STRUCTURE 28

In figure 3.5 and figure 3.6, we have shown a sample of the AOSS record

table and a sample of the AOSS attribute table respectively. There will be a separate

AOSS attribute table for each attribute. Hence, for our database of figure 3.2 we will

have 100 such tables. Another advantage of this is that when we have a large

number of candidate units we can split them into units with disjoint sets of attributes

and process them in parallel by using the independent sets of attribute tables.

3.3 Database Operations Using AOSS

Currently, we have all database operations defined with records as the base

unit. That is to say we have operations for creating, reading, deleting, and updating

records. Each record is considered as consisting of a fixed set of data attributes.

When we deal with very high dimensional data, and which is most of the time sparse

in nature, it no longer makes sense to still continue with record as a base unit for

carrying out the database operations. In subspace clustering, we are interested in

capturing all the possible interrelationships that exist between the various data

attributes. Therefore, it is sensible to consider an attribute as the base unit and define

all the database operations in terms of attributes. Hence, we have defined operations

for attribute creation, attribute reading, attribute insertion, attribute deletion, and

attribute updation. Since, the AOSS design is mainly developed to make the

subspace clustering process efficient, we assume that the most frequently performed

operation will be Attribute reading and the other operations will be very infrequently

4.4

6

CHAPTER 3. AOSS: AN ATTRIBUTE MEWED STORAGE STRUCTURE 29

carried out. The details of all these operations considering the AOSS method for

representing the data are discussed below-

Attribute Creation: This operation involves creating a new AOSS attribute table and

storing the address of the table in the Attribute-details table. The Attribute-details

table stores the addresses of all the attribute tables along with the attribute-ids and

their descriptions. In figure 3.5 and figure 3.6 we have not shown the Attribute-

details table so as not to show the low-level implementation details and make the

figure complicated.

Algorithm details:

1) Read the attribute description.

2) Check if it exists in the Attribute-details table.

3) If it exists report "Attribute already exists" and go to 6

4) Generate Attribute-id and store Attribute-id and description in Attribute-

details table.

5) Allocate space for attribute-table and store its address in Attribute-

details table. The attribute table could be stored as a separate file and its

address will mean here its . filename.

6) Stop

Attribute Insertion: This involves entering the attribute values of some specific

attributes for specific records. The record entries may already be existing in the

CHAPTER 3. AOSS: AN ATTRIBUTE ORIENTED STORAGE STRUCTURE 30

AOSS record table or may not be existing. The details of the insertion operation are

as under-

Algorithm details:

1) Read Attribute-id/Attribute description

2) Check if it exists in the Attribute-details table

3) If does not exist report" Attribute not found " go to 11

4) Read record-id

5) Check if record-id exists in AOSS record table

6) If not found report and then create after receiving confirmation from

user.

7) Check if attribute information for the record exists. in the AOSS record

table.

8) If found, then display existing value from AOSS Attribute table and allow

to update after receiving user's confirmation and go to 11.

9) Add the attribute-details including its id description and record-id to

the AOSS attribute table for that attribute.

10) Add the Attribute-id and the Attribute rec-id to the AOSS record table

entry for this record.

11) Stop.

Attribute Deletion: Attribute deletion takes as input the attribute-id or attribute

description and the record-id of record whose details need to be deleted and removes

•

CHAPTER 3. AOSS: AN ATTRIBUTE ORIENTED STORAGE STRUCTURE 31

the entry from the AOSS attribute table and also from the AOSS record table's entry

• for that record-id.

Algorithm details:

1) Read Attribute-id/Attribute description

2) Check if it exists in the Attribute-details table

3) If does not exist report" Attribute not found " go to 11

4) Read record-id

5) Check if record-id exists in AOSS record table

6) If not found report and go to 11

7) Check if attribute information for the record exists in the AOSS record

table.

8) If not found report error go to 11

9) Iffound, then display existing value from AOSS Attribute table and delete

after receiving user's confirmation

10)Delete the corresponding entry for that record-id from the AOSS record

table.

11)Stop.

Attribute Updation: Attribute Updation takes as input the attribute-id or attribute

description and the record-id of record whose details need to be updated.

Algorithm details:

1) Read Attribute-id/Attribute description

2) Check if it exists in the Attribute-details table

4

CHAPTER 3. .AOSS: AN ATTRIBUTE ORIENTED STORAGE STRUCTURE 32

3) If does not exist report" Attribute not found " go to 12

4) Read record-id

5) Check if record-id exists in AOSS record table

6) If not found report and go to 12

7) Check if attribute information for the record exists in the AOSS record

table.

8) If not found report error go to 12

9) Wound, then display existing value from AOSS Attribute table

10)Read new value for the attribute

11) Write new value into the AOSS Attribute table.

12)Stop.

Attribute Reading: This operation allows you to read the attribute value of a

particular attribute for a particular record-id.

Algorithm details:

1) Read Attribute-id/Attribute description

2) Check if it exists in the Attribute-details table

3) If does not exist report" Attribute not found " go to 10

4) Read record-id

5) Check if record-id exists in AOSS record table

6) If not found report and go to 10

7) Check if attribute information for the record exists in the AOSS record

table.

V

CHAPTER 3. AOSS: AN ATTRIBUTE ORIENTED STORAGE STRUCTURE 33

8) If not found report error go to 10

9) Iffound, then display existing value from AOSS Attribute table

10)Stop.

Load Attribute-values: In subspace clustering, most of the times all the attribute

values of a particular attribute-id need to be accessed at one time irrespective of their

record-id's to find the selectivity of the candidate units. This is very efficient in the

AOSS method as all the values of a particular attribute are stored in its AOSS

Attribute table.

Algorithm details:

1) Read Attribute-id/Attribute description

2) Check if it exists in the Attribute-details table

3) If does not exist report" Attribute not found " go to 5

4) While not end of AOSS Attribute table ofAttribute-id attribute

Read attribute values;

5) Stop

•

4
•

CHAPTER 3. AOSS: AN ATTRIBUTE ORIENTED STORAGE STRUCTURE 34

3.4 Efficiency obtained using AOSS

In this section we discuss the time efficiency achieved using the AOSS

method. This method of representation has mainly helped in making the algorithm

used to find the frequency count of candidate units efficient. We present the details

of the algorithm used in our implementation to find the frequency count of a

candidate unit using the old Record Oriented Structure (ROS) as well as the AOSS

representation and demonstrate the working with the help of the dataset given in

table 2.1 in chapter 2.

Algorithm used for finding frequency count of a k-dimensional unit u using AOSS

o 	 Inputs

• unit u — consisting of k attribute-id and unit-id pairs, along with startrec and

endrec of each pair. startrec and endrec denote the first and last occurrence

positions of the unit in the dataset respectively.

• AttTable - Attribute table containing record-id details of attributes present in the

unit u

Output

• frequency count of unit u

CHAPTER 3. AOSS: AN ATTRIBUTE ORIENTED STORAGE STRUCTURE 35

Processing

1. startpos = greatest of startrec values of the attribute-units forming the unit u

2. endpos = smallest of endrec values of the attribute-units forming the unit u

3. if (endpos <= startpos)

4. count = 01

5. go to step 38

6. ford= 1 tok

7. initialize curpos[d] to 1 // to keep track of record-ids in AttTable of various

units contained in unit u

8. curposl = cuipos[1]

9. attl = attribute-id of first pair of u

10.unitl = unit-id of first pair of u

11.// skip all rec-ids less than startrec of the first attribute Arecarray

12. while(AttTable[attl][unitl].Arecarray[curposl] < startpos)

13. increment curposl

14.startpos = AttTable[attl][unitl].Arecarray[curposl]

15.m = ctoposl + 1

16.while(startpos <= endpos and m < AttTable[attl][unitl].reccnt)

II recent in above step represents number of record-ids stored in Arecarray of

AttTable for that att-id and unit-id

17.match = TRUE;

18.ford=ltok

19. 	att = attribute-id of d th pair of u

CHAPTER 3. AOSS: AN ATTRIBUTE ORIENTED STORAGE STRUCTURE 36

20. uid = unit-id of d th pair of u

21. curposd = cuipos[d]

22. for (p = curposd; p < AttTable[aft][uid].Reccnt; p++)

23. if (AttTable[att][uid].Arecarray[p] < startpos)

24. continue 	II i.e move to next iteration offor p step 22

25. else

26. break 	// i.e out of for p loop

27. if (AttTable[att][uid]. Arecarray[p] equal to startpos)

28. curpos[l] = p+1

29. continue // move to next iteration of ford loop step 18

30. else

31. match = FALSE

32. curpos[1] = p;

33. break; // i.e out of ford loop

34. if (match is equal to TRUE)

35. increment count

36. startpos = AttTable[attl] [unit1].Arecarray[m];

37. inclement m and if m < AttTable[attl][unitUreccnt goto 16//end while loop

38. stop

CHAPTER 3. AOSS: AN ATTRIBUTE ORIENTED STORAGE STRUCTURE 37

Algorithm used for finding frequency count of a k-dimensional unit u using ROS

Inputs

• unit u — consisting of k attribute-id and unit-id pairs

• Region - table containing unit-ids of all records of all attributes present in the

dataset

Output

• frequency count of unit u

Processing

1. for p =1 to number of records in dataset 11 complexity more due to this step

2. match = TRUE

3. for d = 1 to k // number of attribute-id unit-id pairs in unit u

4. attid = attribute-id of d th pair of unit u

5. unitid = unit-id of d th pair of unit u

6. if(Region[attid][attid] not equal to unit-id)

7. match = FALSE

8. goto step 11

9. if (match equal to TRUE)

10. increment count

11.stop

For the sake of continuity, we reproduce table 2.1 here again, with minor

modifications with respect to notations used — here we use Rec-id, -1 instead of Tid

go

CHAPTER 3. AOSS: AN ATTRIBUTE ORIENTED STORAGE STRUCTURE 38

and ? to represent record-id and missing values respectively and the attributes are

named as Ai, A2 , A3, A4, A5 , A6 instead of A, B, C, D, E, F

Rec-id Al A2 A3 A4 A5 A6
10 1 21 41 -1 4 18

20 4 24 44 9 9 49

30 6 26 46 45 23 83

40 9 29 -1 57 -1 5

50 2 8 25 58 78 30

60 53 -1 92 59 -1 52

70 19 8 89 58 78 57

80 82 2 -1 52 72 12

90 89 78 10 25 -1 38

100 -1 68 75 -1 62 13

In this example, considering the value of to be equal to 5, we obtain

the region table shown in table 5.1 storing the unit-ids 0 to 5 for the

respective attribute values, 0 is used to represent missing values or values out

of range, 1 for values from 1 to 20, 2 from 21 to 40, and so on ... The range

of values above is from 1 to 100.

CHAPTER 3. AOSS: AN ATTRIBUTE ORIENTED STORAGE STRUCTURE 39

Rec-id Al A2 A3 A4 A5 A6
10 1 2 3 0 1 1

20 1 2 3 1 1 3

30 1 2 3 3 2 5

40 1 2 0 3 0 1

50 1 1 2 3 4 2

60 3 0 5 3 0 3

70 1 1 5 3 4 3

80 5 1 0 3 4 1

90 5 4 1 2 0 2

100 0 4 4 0 4 1

Table 3.1: Region table used in ROS

Consider the 2-dimensional unit u = {(At , 1) (A4 , 3)). Using ROS, it will

scan through the entire Region table consisting of the 10 entries and obtain the

frequency count as 4 for this unit as there are 4 records which have for attributes Al

and A4 their values falling in unit 1 and unit 3 respectively.

Using AOSS, it will access only the AttTable entries of attributes Aland A4

for unit 1 and 3 respectively. AttTable[Ad[1].Arec.affay = 110, 20, 30, 40, 50, 70)

and that of AttTable[A4][3].Arecarray = {30, 40, 50, 60, 70, 80). The startrec for

attributes Aland A4 are 10 and 30 respectively and the endrec values are 70 and 80.

In AOSS, the startpos value is equal to the value of the largest startrec and the

endpos is equal to the value of the lowest endrec of all the attribute-unit pairs

occurring in unit u. In this case the startpos is 30 and endpos is 70. Hence it just

starts scanning from 30 in AttTable[A 3][1].Arecarray , finds if 30 is found in

a

a 	 CHAPTER 3. AOSS: AN ATTRIBUTE ORIENTED STORAGE STRUCTURE 40

AnTable[A4][3].Arecarray, since it is found it increments the count. Next moves to

40 in AttTable[Ai][1].Arecarray and this time AttTable[A4][3].Arecarray curpos[4]

would be pointing to 40, since they match it increments count moves on to next in

both tables till AttTable[Ad[1].Arecarray[oupos[1]] becomes greater than endpos.

When curpos of Al moves to 70 that time curpos of A4 will be pointing to 60, since

they do not match, curpos of A4 is moved to the next position which now points to

70 since they match count is incremented and both curpos are incremented. At this

point it so happens in this example that both termination conditions are true — that is

it has reached the end of AttTable[Ai][1].Arecaray and also curpos of

AttTable[A4][3]..Arecarray is greater than endpos i.e 70. Using this method it greatly

reduces on the number of records accessed and also we can load only the attribute

tables of those attributes, which are present in the unit u.

3.5 Experimental Results

In this section we present an empirical evaluation of the CLIQUE algorithm

using the AOSS file structure using synthetic datasets. The objective of the

experiments was to compare the time efficiency of the CLIQUE algorithm when

implemented using the old record based file structure and the proposed attribute

oriented file structure for storing very high dimensional huge data sets. We

compared the performance by varying the size of the database, dimension of the data

CHAPTER 3. AOSS: AN ATTRIBUTE ORIENTED STORAGE STRUCTURE 41

space and dimension of the clusters. The experiments were run on a 3.00GHz

Pentium 4 processor running linux.

3.5.1 Synthetic data generation

The synthetic data generation method described in [1] has been used for the

data generation. The data generator takes as input the number of records to be

generated, the number of attributes and the range of values for each attribute. The

range of values was set to [1,100] for all attributes. The clusters are hyper-rectangles

in a subset of dimensions such that the average density of points inside the hyper-

rectangle is much larger than the average density in the subspace. The cluster

description details provided by the user include the number of clusters, the

maximum dimensionality of the clusters, and the cluster descriptions which specify

the subspaces of each hyper-rectangle and the range of each attribute in the

subspace. The attribute values for a data point assigned to a cluster are generated as

follows. For those attributes that define the subspace in which the cluster is

embedded, the value is drawn independently at random from the uniform

distribution within the range of the hyper-rectangle. For the remaining attributes,

the value is drawn independently at random from the uniform distribution over the

entire range of the attribute. We add 90% of the specified number of points equally

among the specified clusters, and the remaining 10% points are added as random

noise. Values for all the attributes of these points are drawn independently at random

from the uniform distribution over the entire range of the attribute.

CHAPTER 3. AOSS: AN ATTRIBUTE ORIENTED STORAGE STRUCTURE 42

3.5.2 Synthetic data results

We studied the performance of ROSCLIQUE(CLIQUE implemented using

Record Oriented Storage structure) v/s AOSSCLIQUE(CLIQUE implemented

using Attribute Oriented Storage Structure) algorithm by varying the number of

records, the dimension of the data space(total number of attributes) and the

dimension of the clusters. The values for 4 and T , were set to 10 and 0.15

respectively.

Database size: Figure 3.7 shows the results of the experiments carried out by

varying the number of records from 50,000 to 1,50,000. The dimension of the data

space was selected as 100. The number of missing values contained in any record,

have been generated randomly between 20 and 40. The dimension of the 3 clusters

generated was 9.

C

CHAPTER 3. AOSS: AN ATTRIBUTE ORIENTED STORAGE STRUCTURE 43

Figure 3.7: Scalability with the number of records(with missing values).

It can be observed from figure 3.7 that there is a significant improvement in

the time taken for CLIQUE, when we used the AOSS method to store the data. The

gain will be much more if the process of finding the 1-dimensional dense units of all

the attributes is carried out in parallel during the first pass.

The same experiment was again repeated for the same set of data records this

time containing no missing values. The only difference in the observations as

expected was a proportionate increase in the time taken by both ROSCLIQUE and

AOSSCLIQUE. The results are shown in figure 3.8 .

e

CHAPTER 3. AOSS: AN ATTRIBUTE ORIENTED STORAGE STRUCTURE 44

Figure 3.8: Scalability with number of records(without missing values)

e
A

Dimensionality of the data space: The next set of observations were taken by

varying the total number of attributes(dimension of data space) from 50 to 150. The

total number of records was selected as 50,000. Again the dimensionality of the 3

clusters chosen was taken as 9. And the number of missing values in any record was

taken as a random number between 20 and 40. The results are shown in figure 3.9.

e

20 -

18-

16

14
12-

1
c 10-
Y -

6
7-

4

—*—AOSSCUQUE
ROSCUQUE

2 -

0 	
50 	75 	100 	125 	150

Number of attributes

CHAPTER 3. AOSS: AN ATTRIBUTE ORIENTED STORAGE STRUCTURE 45

Figure 3.9: Scalability with the dimension of the data space.

Dimensionality of the clusters: Both the methods suffer when the dimensionality of

the clusters increases, due to the inherent nature of the apriori algorithm which

suffers from the curse of dimensionality. However, using the depth-first method to

find the maximal dense units, to help in finding the subspace clusters with the AOSS

structure has showed very good results, details of this are reported in chapter 5.

3.6 Summary

Although, a tremendous amount of research work has been carried out in

clustering by the data mining community, it has been found that all these algorithms

fail when it comes to finding clusters in very high dimensional huge datasets. It is

I)

CHAPTER 3. AOSS: AN ATTRIBUTE ORIENTED STORAGE STRUCTURE 46

here that we realize the importance of subspace clustering algorithms. Although a

few subspace clustering algorithms like CLIQUE [1], MAFIA [16], ENCLUS [8]

have been designed, most of them suffer due to the way the data is stored. In this

chapter, we have discussed a new framework for storing the data keeping in mind

the requirements of the subspace clustering algorithms. In subspace clustering, we

place more importance on the attributes of the data and do not want to miss out on

any useful patterns that may exist across attributes. Hence we have developed the

Attribute Oriented Storage Structure (AOSS) for storing the very high dimensional

huge datasets and performed an experimental study, which showed the performance

gain obtained using this method. The performance gain is mainly due to the different

approach used to fmd the selectivity of the different units, which became possible

due to AOSS. This approach helps in reducing the number of records actually

accessed to find the selectivity of the different units. However, since CLIQUE is

based on the apriori algorithm to fmd the dense units, AOSSCLIQUE also does not

show improvement as the dimensionality of the clusters increases and the capability

of this structure is not utilized to its full extent. Hence in chapter 5, we have

demonstrated the efficiency of this structure using a depth-first method unlike the

breadth-first method of apriori for high dimensional clusters.

47

Chapter 4

SAMCLIQ: A SAMpling based CLIQue

Algorithm

We discussed the details of the first subspace clustering algorithm

CLIQUE[I] in Section 2.2. We observed that, one of the major drawbacks of the

algorithm is the repeated number of database passes required during step one to find

the selectivity of the large number of candidate units that are generated. For very

large databases, when the entire data cannot be loaded into the main memory at one

time this step will require a tremendous amount of 110 to be done. Hence, if for

example 10% of the data fits in the available main memory at a time then for one

pass through the entire database, the data will have to be loaded in parts 10 times

from the disk. And fork passes over the data, 10 * k loads will be required.

Can we improve the efficiency of the first step, to handle very large

databases? To address this problem, we developed an algorithm SAMCLIQ which

uses a sampling based approach to find the dense units existing in the various

subspaces of the data space. In this chapter, we first discuss in Section 4.1 the Use of

sampling technique in data mining. In Section 4.2, we propose a sampling technique

to get the sample of records from the original data space for finding the initial set of

dense units. The details of the SAMCLIQ algorithm are presented in Section 4.3 and

Section 4.4 reports the experimental results.

CHAPTER 4. SAildCLIQ: A SAMPLING BASED CLIQUE ALGORITHM 	48

4.1 Use of Sampling in Data Mining

Sampling has played a very important role in data mining and has been

mainly used to reduce the I/O activity required for knowledge discovery in large

databases. In section 4.1.1, we explain the important role played by sampling in data

mining. Section 4.1.2 explains some limitations of sampling and certain solutions to

overcome them.

4.1.1 Role played by Sampling in Data mining

The application of sampling for mining association rules has been suggested

in [21], and its effectiveness for mining association rules has been evaluated in [31].

It has been noted in [29] that samples of reasonable size provide good

approximations for frequent sets. In [18], a general analysis on the relationship

between the logical form of the discovered knowledge and the approximate sample

sizes needed for discovering the knowledge has been studied. The role played by

sampling in data mining has been well explained in [22] also. In the experimental

evaluation carried out in [31], it has been shown that samples of reasonable size

which fit in the main memory can be used with a reasonably high level of accuracy,

to find the data patterns that exist in the database with high confidence.

CHAPTER 4. SAMCLIQ: A SAMPLING BASED CLIQUE ALGORITHM 	49

rt.

fi

4.1.2 Limitations of Sampling

To reduce the 110 activity, a random sample from the original database,

small enough to be handled totally in main memory is drawn and the approximate

regularities that exist in the original database are found out. These approximate

results are then used to adjust parameters for a more complete knowledge discovery

phase. Choosing sample sizes depending on the available main memory,

approximate results can be obtained about the original database. However, we

cannot be very sure that we have not missed out any data patterns that exist in the

original database. And at the same time, if we do not include the right set of records

in the sample we may get some patterns in the sample which actually do not exist in

the original database.

Hence, in order to obtain the best results from the sample drawn it is

important that we select a proper size for the sample and at the same time ensure that

we select those records from the original database which help us in identifying in

majority of the cases, all the patterns which exist in the original database. For this

purpose we have developed a sampling technique for extracting a sample of data

records from very high dimensional huge datasets, which is based on the AOSS

method used for storing data. We discuss this method of sampling in Section 4.2.

In business and various other applications, where important decisions have to

be taken based on the data patterns that exist in the databases, one cannot rely totally

on the results obtained from sampling. Hence, as a tool for further analysis, the

concept of negative border has been applied in many applications. The negative

CHAPTER 4. SAMCLIQ: A SAMPLING BASED CLIQUE ALGORITHM 	50

4

border information has been used in [27], [13] and [23] to achieve efficiency in the

incremental mining of association rules. In [23], Manilla and Toivonen have shown

that the evaluation of the negative border units ensures that no frequent patterns are

missed out. We have adopted the use of the negative border concept to ensure that

we do not miss out any of the dense units, which were not present in the sampled

records, but are actually found in the original database. More details about the

negative border units have been discussed in section 4.3.

4.2 Proposed Sampling technique

In this section, we first discuss some criteria for a good sample under

subsection 4.2.1 followed by subsection 4.2.2 which presents a brief discussion on

the sampling method used in [29]. Section 4.2.3 discusses the AOSS based sampling

technique.

4.2.1 Criteria for a good sample

The efficiency and the accuracy of the results obtained by using sampling,

depends on the following two factors-

• Sample size — If the sample size selected is too small, compared to the size

of the original database then there is a more chance of missing out the

patterns found in the original data. And at the same time if the sample

•

CHAPTER 4. SAMCLIQ: A SAMPLING BASED CLIQUE ALGORITHM 	51

size selected is very large, then we may not get any missed units but the

actual purpose of sampling is lost. The size selected should be able to

have a balance between the number of missed patterns generated and the

extra time that we spent in processing the sample records.

• Selection of good records — The selection of a proper sample size is

important, but choosing the right set of records for the sample is more

important than this. Even if we choose a big sample size, but if most of

the records selected are either outliers or noise points then we will fail to

identify the correct patterns from the database.

Given a sample size n, we have designed a sampling algorithm which gets

the best set of n points to help in identifying all the possible patterns from the

original database of size N in majority of the cases. For this purpose, we assume that

the original data has a very large number of attributes, and is very large in size such

that the entire data does not fit in main memory at one time. The details of the

sampling technique is explained in section 4.2.3.

4.2.2 Sampling for finding frequent sets

Till date, many algorithms have been designed for sampling but none of

them address in specific, the issue of drawing a sample from a very high

dimensional huge dataset. Most of them randomly pick up the points, without giving

much importance to the quality of the points that are selected. A lot of the

CHAPTER 4. SAMCLIQ: A SAMPLING BASED CLIQUE ALGORITHM 	52

algorithms have attempted to get the sample sizes for a required level of accuracy. In

[29], Toivonen has used sampling for reducing the number of database passes

required to find the frequent item sets to be used for finding the association rules

from large databases. The performance study in [29] shows that after mining the

sample, the sampling algorithm needs only one scan of the original database to find

all frequent patterns. However, this algorithm does not focus on the selection of the

points for the sample, but uses Chernoff bounds to determine the sample size

required for a desired level of accuracy. This process of finding the sample size does

not take into account the size N of the original database, hence many times if the

accuracy level required is very high it may give a large sample size. Besides the

algorithm has not paid much attention to picking the right set of points for the

sample, since they were not dealing with very high dimensional data sets.
et

11.

4.23 AOSS based sampling technique

In our proposed sampling technique we have focused on the selection of the

points for the sample from those, which contribute to the formation of the various 1-

dimensional dense units. The various steps are as under-

1) Using the user-input value for 4, form the various one dimensional

candidate units by splitting the range of all attributes into 4 intervals.

A

CHAPTER 4. SAMCLIQ: A SAMPLING BASED CLIQUE ALGORITHM 	53

2) Using the AOSS attribute tables for all the attributes, the selectivity of all

units is found out. The process of finding the selectivity for the candidate

units of the various attributes can be carried out in parallel.

3) The 1-dimensional dense units are obtained by choosing those candidate

units whose selectivity is larger than the user specified threshold value T.

4) We retain only the record-id information of the 1-dimensional dense

units. We call this set of record-ids the sample pool. Naturally this

sample pool will be much smaller in size compared to the total data size.

We select the points for the sample from this pool.

5) Sample selection —

The details of the sample selection are discussed after example 4.1.

Example 4.1

Consider the following transaction table 4.1 consisting of 10 records. Each

record has 6 attributes namely A, B, C, D, E and F. The values of all these

attributes, are in the range of 1 to 100.

TIDA B C D E F

T1 1 21 41 0 4 18

T2 4 24 44 9 9 49

T3 6 26 46 45 23 83

T4 9 29 49 56 5 57

T5 2 8 25 58 78 30

T6 53 9 92 59 79 52

V

,g4

A

CHAPTER 4. SAMCLIQ: A SAMPLING BASED CLIQUE ALGORITHM 	54

T7 19 8 89 58 78 57

T8 82 2 98 52 72 12

T9 89 78 10 25 2 38

T10 68 68 75 1 62 13

Table 4.1: A sample of 10 transactions consisting of 6 attributes

Consider a threshold value of 0.4 and the number of intervals equal to 10.

The various units will have the following range values-

Unit 1: 1-10 ,

Unit 2: 11-20,

Unit 10: 91-100

The various 1-dim candidate units formed are as under —

Al, A2, 	, A10,

Bl, B2, ... ,B10,

F1,F2, , F10.

CHAPTER 4. SAMCLIQ: A SAMPLING BASED CLIQUE ALGORITHM 	55

After pass one through the transactions in the table 4.1, we get the following dense

units —

unit 	freq. count 	 TID lists

Al 	5 	 Tl, T2, T3, T4, T5

B1 	4 	 T5, T6, T7, T8

B3 	4 	 T1, T2, T3, T4

C5 	4 	 T1, T2, T3, T4

D6 	5 	 T4, T5, T6, T7, T8

E8 	4 	 T5, T6, T7, T8

From the 1-dimensional dense units, the following 2-dimensional candidate

units will be generated -

(Al B1),

(Al B3),

• • •

(Al E8),

(B1 C5),

(B1 ES),

• • •

(D6 E8).

A

a 	 CHAPTER 4. SAMCLIQ: A SAMPLING BASED CLIQUE ALGORITHM 	56

After second pass we get the following 2-dim dense units
•

(Al B3) : 4,

(Al C5) : 4,

(B3 C5) : 4,

(BI D6) : 4,

(B1 E8) : 4,

(D6 E8) : 4.

After third pass we get the following 3-dim dense units -

(Al B3 C5) : 4

(Bl D6 E8) : 4

•
Given above are the various steps carried out in step one of the CLIQUE

algorithm.

The Sample Selection procedure is as follows -.

1) find all one-dimensional dense units and their tid-lists(record-ids)

2) group transactions(record-ids) based on number of such 1-dim dense units

they are contained in and have these groups sorted in descending order of

the record-id counts.

3) Choose a proportionate number f / tf * S, of record-ids randomly from each

group in the sorted order. f represents the number of dense-units, tf the

CHAPTER 4. SAMCLIQ: A SAMPLING BASED CLIQUE ALGORITHM 	57

count i.e the number of record-ids present in that group and S the desired

sample size.

Grouping of record-ids based on number of 1-dim dense units they are

present in, for the data in example 4.1 above this will be as follows —

No. of units 	Record-ids 	 count

3 	 T1, T2, T3, T6, T7, T8 	6

4 	 T4, T5 	 2

5 	 0

6 	 0

Assume sample size = 4. Randomly select any 4 record-ids from group with

number of unit equal to 3. If number of record-ids in unit 3 is less than 4 then select

from remaining units i.e 4 in this case. This process ensures that we get good set of

records for the sample i.e records containing dense units.

CHAPTER 4. SAMCLIQ: A SAMPLING BASED CLIQUE ALGORITHM 	58

4.3 Subspace Clustering Using Sampling

The first step of the CLIQUE[1] algorithm is quite complex for huge datasets

having high dimensional subspace clusters. If k is the highest dimensionality of any

unit that is found than it will require as many database passes over the data as equal

to the highest dimensionality of any dense unit in the data. Hence in order to reduce

the number of database passes and the I/O required, we have developed the

SAMCLIQ algorithm. The SAMCLIQ algorithm basically tries to improve the

performance by using an efficient sampling technique for identifying the dense units

in step one of CLIQUE. After selecting the sample using the method discussed in

section 4.2.3, we find all the dense units in the sample using the method discussed in

section 4.3.1. After getting the dense units from the sample, we use the concept of

negative border units to make sure that we have not missed out on any units, which

are present in the original data space.

The Negative Border N, consists of all the candidate units generated in the

level-wise algorithm that were not dense units. In other words if C is the set of all

the candidate units generated, D is the set of dense units then C = D L) N. After

obtaining the results using sampling, we want to make sure that we have not missed

out any units, which are dense in the original database but were not detected in the

sample. Obviously the subsets of all such likely missed units will be found in the

negative border N of the sample.

CHAPTER 4. SAMCLIQ: A SAMPLING BASED CLIQUE ALGORITHM 	59

4.3.1 Algorithm for identification of dense units

The Algorithm we propose requires an initial pass, for selecting the sample

during which it generates the 1-dimensional dense units also. After selecting the

sample we apply the level wise algorithm used in step one of CLIQUE to get all the

candidate and dense units present in the sample. Then a first pass over the original

database (0. D) is carried out to find if any units are missed out, by using sampling.

If any units are missed then an additional pass is made over the O.D. This work was

carried out prior to the development of the AOSS method. Hence, in this chapter we

have not used it as such for the main algorithm. The details of the algorithms are as

under

Sampling for identification of dense units — The accuracy of the results obtained

using sampling, to a large extent depends on the size of the sample and the method

used to select the sample points from the database. Since we are considering very

large databases and we want our sample to fit in main memory, we choose sample

size s such that it is neither too large and nor too low by using the technique

discussed in section 4.2.3. We know that, with increasing sample sizes the

probability of finding the dense units identified in the sample, in the original

database also are high and thereby the possibility of occurrence of false dense units

and of missed units are almost negligible. Hence, an extra pass over the database

will not be required, but if the sample size is too large, then the time taken to process

the sample is very large compared to the gain in performance achieved by reducing

er

CHAPTER 4. SAMCLIQ: A SAMPLING BASED CLIQUE ALGORITHM 	60

the number of passes. In place of CLIQUE, other subspace clustering algorithms like

MAFIA [16] can also be used. Depending on the quality of sample selected, there

are three cases that we can encounter -

a) There may be some units, which were dense in the sample but are not dense

in the original database. In such cases we have unnecessarily counted such

units, we will call such units as false dense units. These false dense units

get discarded after the first pass over the original database and do not affect

the accuracy of the final results obtained for the original database.

b) There may be some units, which were not dense in the sample but are dense

in the original database. In such a case, we say that there has been a miss

i.e., we have missed to capture these units and some higher-level units of

these in the sample. There are two types of misses that we may come

across first type is where we fail to capture some dense units in some

subspaces and second wherein some subspaces containing dense units were

fully missed. Whenever there are such missed units say M, then some

higher level candidate units say Cl generated using M may be dense in

the original database. But this set Cl would not be generated by the

sample, hence there is a need to generate higher level candidate units of

such missed units and evaluate them i.e find their counts in the original

database by doing an additional pass over the database.

c) The units which were dense in the sample are dense in the original database

also and vice-versa. This is an ideal case and gives the best performance if

the sample size is selected properly i.e it is not too large, but at the same

CHAPTER 4. SAMCLIQ: A SAMPLING BASED CLIQUE .ALGORITHM 	61

time very closely resembles the original database. In this case the results

will be obtained by doing a single pass over the original database, besides

the initial pass required to draw a sample and find 1-dimensional candidate

and dense units for the original database.

From above we observe that it is case (a) and case (b) that needs to be

handled properly. To handle case (b) one method that is discussed in [29] is to lower

the density threshold value, while generating the candidate units for the sample. This

will definitely reduce the chances of a miss, but will lead to an increase in the

number of false dense units. The aim to avoid the misses, is to achieve the results in

just one pass. If there are missed units, then two complete passes will be required

over the original database. Another method to reduce the number of passes to less

then two complete passes is to adopt the technique used in [7]. Instead of waiting for

the end of the first pass to find the missed units, we check for missed units after

every M records have been processed and generate the higher level candidate units

for such missed units and start counting the occurrence of these units from that point

onwards. If all the missed units were detected, after x number of transactions were

processed during the first pass, then we will need one complete pass and scan only

the un-scanned x transactions during the second pass for the missed units in C 1 . We

will need two complete passes only when we have found missed units towards the

end of the first pass. This will normally happen if the data is very correlated. The

value for M should be selected carefully, in such a way that there is not much of

processing overhead.

CHAPTER 4. SAMCLIQ: A SAMPLING BASED CLIQUE ALGORITHM 	62

Algorithm for Generating the dense units in the Sample drawn :

Inputs:

• The Sample points of size s from the original database (0D),

• number of attributes(dim),

• density threshold T,

• set C[1] of 1- dimensional candidate units

• set D[1] of 1-dimensional dense units obtained from the sample.

Outputs:

• set C of candidate units in the sample,

• set D of dense units obtained from the sample data records

• the 1-dimensional dense units of O.D.

Processing:

1. Use D[1] to find C[2] set of 2-dimensional candidate units; // this avoids

the chances of a 1-dimensional missed unit

2. While more candidates are generated

{

find selectivity of C[k] in the sample ; // fork >= 2 and <= dim

find D[k] = dense units in sample from C[k];

generate C[k+l] from D[k]; 	// the candidate generation procedure

used in CLIQUE is used.

it

CHAPTER 4. SAMCLIQ: A SAMPLING BASED CLIQUE ALGORITHM 	63

-1-1-k;

)

Algorithm for the_first pass /1 to find if any missed units are found

Inputs:

• set C and D obtained from the sample,

• the Original Database O.D,

• the threshold value T.

Outputs:

• set Dl set of dense units in the O.D

• set Cl set of missed units.

Processing:

1. Num_parts = NABUFFSIEE;

2. Initialize counts of all units in C to 0;

3. for (n =1; n<= Num_parts; n++)

(read BUFFSIZE records into main memory buffer[BUFFSIZE];

update counts of units in C using buffer[BUFFSIZE];

}

4. find Dl = set of dense units in O.D ; // those units from C whose count is

N*

CHAPTER 4. SAMCLIQ: A SAMPLING BASED CLIQUE ALGORITHM 	64

5. find M - missed units by comparing D and DI ;

6. if M is empty

goto step 9; //stop

else

find CI = set of all candidate units formed from M and D units ;

// Cl is the candidate units missed in the sample , which may be dense in the O.D

7. Do a second pass through the 0. D ; // required only if there are missed

units .

8. The set Dl consists of all the dense units in the Original Database (O.D).

9. Stop

This forms the input to the second step of the subspace clustering algorithm.

Algorithm for the second pass

Inputs:

• set Cl // the set of all candidate units formed from M and D units

obtained from first pass,

• OD,

• the threshold value T.

Output:

• the final set Dl of O.D // all dense units of 0.D

•

CHAPTER 4. SAMCLIQ: A SAMPLING BASED CLIQUE ALGORITHM 	65

Processing:

1. Find the counts of all units in set Cl in O.D.

2. Find additional dense units obtained from Cl and add to set Dl;

3. Stop.

4.4 Experimental Results

In this section we present an empirical evaluation of the above algorithm,

which we call SAMCLIQ (SAMpling based CLIQue) algorithm using synthetic

datasets. The goal of the experiments was to compare the performance of step one

of CLIQUE with the step one of SAMCLIQ. The MDL pruning used in step one of

CLIQUE is not used in our implementation of CLIQUE. We compared the

performance by varying the size of the database, dimension of the data space and

dimension of the Clusters. The experiments were run on a 800 MHz Intel Pentium

III processor running linux.

4.4.1 Synthetic data generation

The synthetic data generation method described in [1] has been used for the

data generation. The data generator takes as input the number of records to be

generated, the number of attributes and the range of values for each attribute. The

range of values was set to [0,100] for all attributes. The clusters are hyper-rectangles

CHAPTER 4. SAMCLIQ: A SAMPLING BASED CLIQUE ALGORITHM 	66

•

in a subset of dimensions such that the average density of points inside the hyper-

rectangle is much larger than the average density in the subspace. The cluster

description details provided by the user include the number of clusters, the

maximum dimensionality of the clusters, and the cluster descriptions which specify

the subspaces of each hyper-rectangle and the range of each attribute in the

subspace. The attribute values for a data point assigned to a cluster are generated as

follows. For those attributes that define the subspace in which the cluster is

embedded, the value is drawn independently at random from the uniform

distribution within the range of the hyper-rectangle. For the remaining attributes,

the value is drawn independently at random from the uniform distribution over the

entire range of the attribute. We add 90% of the specified number of points equally

among the specified clusters, and the remaining 10% points are added as random

noise. Values for all the attributes of these points are drawn independently at random

from the uniform distribution over the entire range of the attribute.

4.4.2 Synthetic data results

We studied the performance of CLIQUE v/s SAMCLIQ algorithm, by

varying the following parameters the database size, the dimension of the data space

and the dimension of the clusters. The values for 4 and T, were set to 10 and 0.15

respectively.

-

O

•

2000
1500
1000
500

0

— SAMCLIQ

— CLIQUE

5 10 15 20

Number of records(in
100000).

CHAPTER 4. SAMCLIQ: A SAMPLING BASED CLIQUE ALGORITHM 	67

•

Figure 4.1: Scalability with the number of records.

Database size: Figure 4.1 shows the results of the experiments carried out by

varying the database size from 5,00,000 records to 20,00,000 records. The sample

size was selected as 1% of the database size and the main memory buffer size was

taken equal to the space required to load 50,000 records. The data space had 50

dimensions. We found that the difference between the time taken by CLIQUE and

SAMCLIQ increases significantly with the increase in the database sizes.

3 2000
3 1500

1000

500
0 0
E
p

— SAMCLIQ

—CLIQUE

25 50 75 100

Number of dimensions

Figure 4.2: Scalability with the dimension of the data space.

CHAPTER 4. SAMCLIQ: A SAMPLING BASED CLIQUE ALGORITHM 	68

Dimensionality of the data space: Figure 4.2 shows the scalability as the

dimensionality of the dataspace is increased from 25 to 100. The experiments were

carried out with a database containing 10,00,000 records. There were 5 clusters

each in a different 7 dimensional subspace. The sample size selected for SAMCLIQ

was 5% of the database size.

Figure 4.3: Scalability with the dimensionality of the clusters.

Dimensionality of the clusters: Figure 4.3 shows the scalability as the highest

dimensionality of the clusters embedded in the different subspaces is increased from

3 to 9. Again the database size was selected to be equal to 10,00,000 records and the

sample size was taken equal to 5% of the database size.

4.5 Summary

We have used the CLIQUE algorithm as the base on which the SAMCLIQ

algorithm has been developed. But this can also be used in other subspace clustering

CHAPTER 4. SAMCLIQ: A SAMPLING BASED CIJQUE ALGORITHM 	69

algorithms like MAFIA to further boost the performance. Our algorithm can easily

be implemented as a parallel algorithm After the first pass through the data base and

the generation of candidate units using the sample, the data base can be split into n

parts and the counts of all the candidate units can be computed in parallel in all the

subparts. Then the counts in all n parts can be summed up and if there are missed

units then again the counts for the missed units can be found in parallel during the

second pass in SAMCLIQ.

We compared the performance of SAMCLIQ with CLIQUE by varying the

database size, the dimension of the data space, and the dimensionality of the

clusters. We found that there is a significant gain in performance when we use

SAMCLIQ for large databases and higher dimensional data spaces. As we vary the

dimensionality of the clusters, also the performance of SAMCLIQ is much better

compared to CLIQUE but for very high dimensional clusters, the performance of

SAMCLIQ also suffers because of very large number of candidate units produced.

Hence, there is a need to use a different technique to find the high dimensional dense

units in such cases.

The different techniques that can be used for this purpose are to make use of

the concepts of g-closed itemsets, use FP-tree for generating dense units, or use of

maximal frequent itemsets for finding the subspaces. The performance can be

significantly improved by using the AOSS method for storing the high dimensional

huge datasets, which gives the freedom to access only those attributes or records,

which am needed during the process of finding the selectivity of the various

candidate units.
i.

70

Chapter 5

MLSCLUS: A Multi Level Subspace

CLUStering Algorithm

In Chapter 3, we developed AOSS method to store very high dimensional huge

datasets to be used mainly for subspace clustering. Although AOSS method is more

efficient than the old record based method of storage, to handle the very high

dimensional huge datasets with many missing values, it will fail to produce the best

results in some cases, as illustrated below.

• Not many missing values are, ound. AOSS method stores the data in various

AOSS Attribute tables by splitting the original record-based database to save

on the space required by the many missing value attributes, that are most

common in the very high dimensional datasets. We know that in each of the

entries of the AOSS Attribute tables, we store the record-ids along with the

respective attribute values. If missing values are not common, then in the

AOSS method the additional space required to store the record-ids along with

the attribute values in all the AOSS attribute tables will be significantly large.

• Real datasets contain a combination of all types of attributes. Majority of the

existing subspace clustering algorithms use a uniform threshold value for all the

•

CHAPTER S. MLSCLUS: A MULTI-LEVEL SUBSPACE CLUSTERING ALGORITHM 71

attributes. By using a single threshold value for all attributes, we tend to give equal

importance to all the attributes. In reality, the threshold should not be uniform.

Certain attributes are exceptional and need to be handled in a different manner.

These exceptional attributes either have a much lower threshold requirement, or

need a very high threshold value depending on whether they are rare or very

frequent. Thus a uniform threshold for all attributes might lead to either generation

of uninteresting subspace clusters for frequently occurring attributes and at the

same time miss out some interesting subspace clusters of rare attributes.

• Applications with Huge datasets need more scalability. Existing methods are not

efficient when the dataset is very large. This problem was addressed in chapter 4

and the SAMCLIQ [36] algorithm designed for this purpose. The SAMCLIQ

algorithm succeeded in reducing the number of passes, but since it used the old

record based method of storage and the level wise apriori based method for

generation of dense units it fails just like the other methods when the

dimensionality of the subspace clusters is high. This was also observed from the

experimental results of SAMCLIQ, in section 4.4

In this chapter, we present algorithms to address some of the above issues. They

differ from the CLIQUE, SAMCLIQ and AOSSCLIQUE methods addressed in the

previous chapters of this thesis in the following respects -

CHAPTER S. MLSCLUS: A MULTI-LEVEL SUBSPACE CLUSTERING ALGORITHM 72

o Based on the AOSS method presented in chapter 3,

• Use different threshold values for the different attributes,

o Use the concept of maximal dense units for identification of subspace clusters,

o Mine the knowledge about the subspace clusters at different levels.

All these features are required in order to do a thorough analysis of data in any

application area like census data analysis, and classification of web documents

involving huge datasets with a very large number of attributes.

The remainder of the chapter is organized as follows. In Section 5.1, we discuss

the use of the maximal frequent itemsets concept for finding all the dense units in first

step of subspace clustering algorithm. Section 5.2 presents the details of the algorithm

MADUGEN designed to find all the maximal dense units in a given dataset using

uniform threshold for all attributes. In subsection 5.2.1 of this section we present the

experimental results obtained using MADUGEN. In section 5.2.2 we present an

algorithm MADUGENMT(MAximal Dense Unit GENeration with Multiple

Thresholds), to find the maximal dense units using different threshold values for

different attributes. We present in section 5.3 AOMLSCLUS, the Attribute Oriented

Multi Level Subspace CLUStering algorithm, which uses concept of maximal dense

units to identify sub subspace clusters in very high dimensional huge datasets,

PI

CHAPTER S. MLSCLUS: A MULTI-LEVEL SUBSPACE CLUSTERING ALGORITHM 73

consisting of attributes with varied threshold requirements and uses a variable number

of intervals instead of using the same value for all attributes. The experimental results

of AOMLSCLUS and AOMADUGENMT are reported in section 5.3.1.

AOMADUGENMT is again a variation of CLIQUE implemented using

MADUGENMT in step 1 of CLIQUE. Due to the use of variable intervals for different

attributes, AOMLSCLUS can be enhanced further even for processing categorical

attributes. In case of categorical attributes, the number of intervals will be equal to the

number of unique categorical values of that attribute.

5.1 Use of Maximal Frequent Itemsets in Subspace

Clustering

The apriori algorithm used for finding the frequent itemsets has the following

main drawback —

• It employs a bottom-up search that enumerates every single itemset. Hence,

in order to produce a frequent itemset of length k, it must produce all 2 k of its subsets

since they too must be frequent. This exponential complexity of the algorithm restricts it

to discovering only short patterns in medium sized datasets. To address this problem,

the concept of maximal frequent itemsets [33] [34] [35] was introduced.

CHAPTER 5. MLSCLUS: A MULTI-LEVEL SUBSPACE CLUSTERING ALGORITHM 74

Definition 5.1: A frequent itemset is a set of items appearing together in a number of

database records meeting a user-specified threshold. For example, if X is a k-itemset

(an itemset consisting of k items), then X is frequent iff all the items found in X occur

in atleast minsupport number of records, where minsupport is equal to threshold

multiplied by total number of records in the dataset.

Definition 5.2: If X is a frequent itemset and no superset of X is frequent, then we say

that X is a maximal frequent itemset.

Any frequent itemset Y which is not a maximal frequent itemset, will be a

subset of some maximal frequent itemset X of the dataset. Hence the set of all maximal

frequent itemsets present in a dataset, concisely represents all the frequent itemsets

present in that dataset.

The first step of the subspace clustering algorithm, needs to find all the dense

units in order to identify the subspaces containing clusters. CLIQUE [1] uses a level

wise apriori based algorithm to generate the dense units and suffers from the same

drawback as the apriori algorithm. The efficiency of this step can be significantly

improved if we apply the maximal frequent itemset concept to the dense units. The

concept of dense units has been explained in chapter 2, but we redefine them again

CHAPTER S. MLSCLUS: A MULTI-LEVEL SUBSPACE CLUSTERING ALGORITHM 75

considering our AOSS representation and then we proceed to define maximal dense

unit.

Definition 5.3 A k-dimensional unit uk is defined as the collection of the units from

each of k distinct attributes. It has the form u k = tut, u2, • • • , uk) where ui is the <Ai, Ii >

pair of the attribute Ai present in uk, L is a integer value representing the interval to

which the attribute belongs to.

Definition 5.4 The frequency count of a unit u k in the original database DB is equal to

the number of record-ids common to all the AOSS attribute tables of the k attribute

units present in uk.

Definition 5.5 The minimum support value msv of a unit uk in the original database DB

msv (uk, DB) = N * min { ti of Ai € uk, i = l to k }where N is the number of records

in DB and ti is the density threshold value of the ith attribute of uk, expressed as a

percentage of records expected in each unit of the attribute for it to be dense.

CHAPTER S. MLSCLUS: A MULTI-LEVEL SUBSPACE CLUSTERING ALGORITHM 76

Definition 5.6 A k-dimensional unit Uk is said to be a dense unit in the original database

DB, if the frequency count of this unit in the original database DB is greater than or

equal to the minimum support value msv (uk, DB) of the unit in DB.

Definition 5.7 If X is a k-dimensional dense unit and no m-dimensional superset of X

where m > k, is dense, then we say that X is a maximal dense unit.

In order to improve the efficiency of the first step we can find all the maximal

dense units and use them to find the subspace clusters present in the dataset. In the next

section we present an algorithm for the same.

5.2 MADUGEN: A MAximal Dense Unit GENeration

algorithm.

In this section, we present the MADUGEN algorithm to find all the maximal

dense units present in a dataset containing attributes with a uniform threshold value. We

have designed this algorithm using the AOSS method of representing the data It is

based on the GenMax [34] algorithm used to find the maximal frequent itemsets for

association rule mining.

CHAPTER S. MLSCLUS: A MULTI-LEVEL SUBSPACE CLUSTERING ALGORITHM 77

Notations and Terminology used —

unit - is a pair of integers representing the attribute-id and unit-id respectively.

iset - it is a collection of attribute-id and unit-id pairs(units) belonging to the one

dimensional dense units. An iset of length k consists of k such units.

len — used to keep track of number of units in iset.

pset(11) - pset of a k-dimensional unit ztk denotes the possible set of zk and consists of

all the units from the one-dimensional dense units D[1] , which are candidate units for

forming higher dimensional dense units with ti as the base unit. The units in D[l] are

sorted in ascending order based on attribute-id as primary key and unit-id as secondary

key.

plen - is used to keep track of the number of units in pset(z1).

cset(11) - cset of a unit ztk denotes the combine set of zic and is a subset of pset(d)

consisting of only those units from pset which form k+1 dimensional dense unit when

combined with uk . This helps in pruning those units from pset which are not candidates

for forming higher dimensional dense units.

ccnt - ccnt used to keep track of the number of units in the cset(u).

mduset - consists of all the maximal dense units from the given data set.

mducnt — used to keep track of the number of maximal dense units obtained in the data

set.

threshold value and one-dimensional dense units have the same interpretation as used in

chapter 2.
•

CHAPTER 5. MLSCLUS: A MULTI-LEVEL SUBSPACE CLUSTERING ALGORITHM 78

MADMEN Algorithm

Input:

• D[1] — details of one dimensional dense units obtained in the dataset,

• threshold value,

• record count (total number of data records in the dataset),

Output:

• mduset — set of maximal dense units found,

• mducnt — number of maximal dense units found in the dataset.

Processing method:

1. Start

2. initialize mduset to empty and mducnt to 0

3. for each subspace unit u in D[1]

a. initialize iset to u

b. call findpset(D[1], u) 	// findpset used to find the pset of unit u.

c. call fmdmdu(mduset, iset, len, pset, plen, threshold)

// findmdu is a recursive function to find maximal dense units.

4. // endfor

5. Stop // end of MADUGEN algorithm

The details of the algorithm used for findpset and findmdu are described in the

following pages.

•

CHAPTER 5. MLSCLUS: A MULTI-LEVEL SUBSPACE CLUSTERING ALGORITHM 79

Algorithm for findpset

Inputs

• D[1] — one dimensional dense units

• unit u — consisting of its attribute-id and unit-id

Output

• pset of u — set of all units in D[1], whose attribute-id is greater than attribute-id of

unit u.

• plen - number of units in pset.

Processing method

1. for each unit ul in D[1]

if attribute-id of u 1 > attribute-id of u

add unit ul to the pset

2. return pset

Algorithm for findmdu

Inputs

• iset

• len

• pset

• plen

• threshold

CHAPTER S. MLSCLUS: A MULTI-LEVEL SUBSPACE CLUSTERING ALGORITHM 80

• record-count

Output

• mduset — set of all maximal dense units.

Processing method

1. if pset is not empty

2. begin

3. call findcset(iset, len, pset, plen, mduset, threshold, record-count)

// finds the combine set - cset, detailed algorithm for findcset described after this

algorithm.

4. if cset is empty

5. call addiset(mduset, iset, len) // detailed algorithm for addiset

described after algorithm for findcset.

6. else

7. begin

8. for all the units cu in cset

with attribute-id = attribute-id of first unit in cset do

9. begin //for

10. // form new isets by extending iset with cu.

11. iset = iset + cu

12. cset = cset — cu

13. end //for

14. len = len +1 // length of iset increased by 1

15. for all the newisets obtained in step 8 do

16. begin //for

CHAPTER 5. MLSCLUS: A MULTI-LEVEL SUBSPACE CLUSTERING ALGORITHM 81

17. call findmdu(mduset, iset, len, cset, cent, threshold, record-count)

// pset = cset in above step 17.

18. end // for

19. end // else of if cset empty

20. end // if pset not empty

21. call addiset(mduset, iset, len)

22. Stop // end of findmdu.

Algorithm for fmdcset

Inputs

• iset

• len

• pset

• plen

• mduset

• threshold

• record-count

Output

• cset

e

e

CHAPTER 5. MLSCLUS: A MULTI-LEVEL SUBSPACE CLUSTERING ALGORITHM 82

• cent

Processing method:

1. for each unit u in pset

2. newiset = iset + u // extend iset by adding u

3. check if newiset exists in mduset

4. if exists goto step 1 // continue with next unit u from pset

5. if not find frequency count of newset in the dataset

6. if frequency count > threshold * record-count

7. add u to cset

8. increment cent

9. stop

Algorithm for addiset

Inputs

• iset

• len

• mduset

Output

• mduset

r

CHAPTER 5. MLSCLUS: A MULTI-LEVEL SUBSPACE CLUSTERING ALGORITHM 83

• mducnt

Processing method

I. add iset to mduset.

2. increment mducnt

3. stop

5.2.1 Experimental results

In this subsection we present the comparison of time requirements of the

ROSCLIQUE, AOSSCLIQUE and AOMADUCLIQUE. AOMADUCLIQUE is the

implementation which uses MADUGEN algorithm in step one of CLIQUE to find the

maximal dense units and uses only the maximal dense units to find the subspace

clusters, instead of using all the dense units. We compared the performance by varying

the dimension of the clusters from 5 to 12 using dataset of size 50,000 with 100

attributes. The values for the threshold and number of intervals, was set to 0.15 and 10

respectively. For generating synthetic data the method discussed in section 3.4.1 was

used. The experiments were run on a 3.00GHz Pentium 4 processor running linux. The

results obtained are shown in figure 5.1.

90 -

80 -

.aj 70 -

60 -

; 50 -

140 -

30 -

74 20 -

10-

0
5 	7 	9 	11

dimensionality of clusters

12

——AOSSCUQUE

—111—AOMADUCLIQUE

ROSCUQUE

CHAPTER 5. MLSCLUS: A MULTI-LEVEL SUBSPACE CLUSTERING ALGORITHM 84

Figure 5.1: Scalability with the dimension of the clusters.

5.2.2 MADUGENMT: MADUGEN algorithm with multiple

threshold values.

In this section we discuss, how we have modified MADUGEN algorithm to

handle attributes with varying threshold values and also discuss the experimental results

obtained using MADUGENMT.

In all the discussions earlier we have seen that the downward closure property is

satisfied by all the dense units i.e if a particular k-dimensional unit ti k is dense then all

its subsets are also dense. This property is no longer satisfied when the attributes have

different threshold values. In MADUGEN, D 1 is used to generate the maximal dense

to

CHAPTER S. MLSCLUS: A MULTI-LEVEL SUBSPACE CLUSTERING ALGORITHM 85

units, but here if we use only D 1 we fail to generate all the maximal dense units, that is

all those units possible with the low threshold value attributes. Hence we use the seed

set SS, which is generated using D 1 and C 1 . The seed set SS is generated as follows-

Seed Set Generation -

1. sort all the 1-dimensional candidate units C1 based on the threshold values of the

attributes in ascending order.

2. D1 in this multiple threshold value case consists of all the units whose frequency

count is greater than or equal to the minimum support value calculated using the

threshold value of the attribute representing the respective units. Again in D 1 all the

units are kept sorted in ascending value of the threshold values of the attributes.

3. Using the sorted order of attributes in C 1, find the first attribute unit fu in C 1 which

belongs to D 1 and insert it into seedset SS.

4. for each subsequent attribute unit su in C 1 which comes after fu, whose frequency

count is greater than or equal to the msv(fu, DB), insert su into SS.

All the maximal dense units generated using SS ensure that these dense units

satisfy the sorted closure property. The sorted closure property ensures that we do not

miss out any dense subsets of the low threshold attributes. Another variation that is

required is that in step 6 of findcset function, in MADUGEN we had just one threshold

value to decide whether to add it to cset, but in this case we will be having a maximum

CHAPTER S. MLSCLUS: A MULTI-LEVEL SUBSPACE CLUSTERING ALGORITHM 86

of k different threshold values if iset is of length k. From these k different values, we

use the threshold value of the first unit in iset as that will be the lowest threshold value.

In MA.DUGEN, findpset function uses D[1] the set of all one-dimensional dense units

D1 to find the units in pset, but in MADUGENMT we use the seed set SS obtained as

explained above and pset is obtained as follows-

Processing method // for pset(u k)of MADUGENMT

1. for each unit ul in SS

if attribute-id of ul is not contained in any unit of U k

 add unit ul to the pset

2. return pset

MADUGENMT Alrorithm

Input:

• C[1] — details of one dimensional candidate units of all attributes after finding their

frequency counts

• D[1] — details of one dimensional dense units obtained in the dataset

• thresholdarray // storing threshold values of all attributes

• record count (total number of data records in the dataset)

Output:

• mduset — set of maximal dense units found,

• mducnt -- number of maximal dense units found in the dataset.

CHAPTER S. MLSCLUS: A MULTI-LEVEL SUBSPACE CLUSTERING ALGORITHM 87

Processing method:

1. Start

2. initialize mduset to empty and mducnt to 0

3. find seed set SS as explained earlier in this section under Seed Set Generation

4. sort D[1] in ascending order of threshold values of attributes

5. for each subspace unit u in D[1]

a. initialize iset to u

b. call findpset(SS, u) 	// findpset used to find the pset of unit u.

c. call findmdu(mduset, iset, len, pset, plen, thresholdarray, record-count)

// findmdu is a recursive function to find maximal dense units.

6. // endfor

7. Stop // end of MADUGENMT algorithm

5.3 AOMLSCLUS: An Attribute Oriented Multi Level

Subspace CLUStering Algorithm.

The subspace clustering algorithms that we have discussed so far find only the

subspace clusters, which are found in the original dataset. In this section, we define the

subspace clustering problem for attributes with different threshold and interval values,

which also identifies all the sub subspace clusters found in the subspace clusters of the

original dataset. We also report some experimental results obtained.

CHAPTER 5. MLSCLUS: A MULTI-LEVEL SUBSPACE CLUSTERING ALGORITHM 88

Problem statement:

Given a set of say n records RI, R2, • • • ,Rn each record Rj, j = 1 to n having d attributes

where R.; = { <Ai, Vi>, i = 1 to d} where Ai is the ith attribute and Vi is the value of the

ith attribute and given user input interval values 4i for i = 1 to d, for the different d

attributes the problem is to find the clusters in all the subspaces of the original data

space and also identify those sub clusters which are not found in the original data space

by the one dimensional dense units, but are found in the subspace clusters identified in

the original data space.

The algorithm for this problem has been named as AOMLSCLUS, and is

implemented using the AOSS data representation, the MADUGENMT algorithm and

the findthreshold algorithm which we have designed to find the threshold values of the

attributes in the dataset. The details of the findthreshold algorithm are discussed in the

next subsection. We used the AOSS method discussed in chapter 3 to store the data

records. All the record details are stored in the AOSS record table. The record details

include the attribute-id and the attribute-record id pairs for all attributes of the record

containing non-missing values. The attribute values along with the record id's are stored

in independent AOSS attribute tables. The Attribute-details table stores the information

about all the attributes of the dataset. The Attribute-details table includes following

information about each attribute —

o Attribute-id

o Attribute-name

CHAPTER 5. MLSCLUS: A MULTI-LEVEL SUBSPACE CLUSTERING ALGORITHM 89

• Attribute-filename

• Attribute-type(Numeric/Categorical)

• Attribute-Num-Intervals(number of intervals for the attribute)

The number of intervals is input by user for each attribute. Our implementation

of the algorithm splits the attribute values into equal sized intervals and works for

numeric attributes. In order to provide for variable interval sizes, the lower and upper

range for each of the intervals can also be stored in case of numeric attributes and all

distinct values of the categorical attributes can be stored to handle the categorical

attributes.

This problem can be decomposed into the following three main parts —

I. Identification of the maximal dense units in the original dataset DB.

2. Identification of the maximal sub dense units in the various maximal dense units

identified in DB.

3. Presentation of the details regarding the maximal dense and maximal sub dense

units to the user.

The details of the above three steps are explained in the following subsections-

CHAPTER S. MLSCLUS: A MULTI-LEVEL SUBSPACE CLUSTERING ALGORITHM 90

a

t

	 Identification of the maximal dense units in the original dataset DB The maximal dense

units found in the original dataset are found using the MADUGENMT algorithm. The

different threshold values for all the attributes are found using the following algoritlun-

findthreshold algorithm

Inputs

• frequency counts of each attribute in all its units

// number of units for each attribute is equal to the number of intervals for that attribute.

Output

• threshold value for each attribute

Processing

1. for each attribute repeat following steps -

2. find the average frequency count, avgfcount

II avgfcount = sum of frequency counts in all its units divided by the number of units

for that attribute.

3. find new average frequency count, navgfcount by considering only those units whose

frequency counts are greater than the avg/count

4. find the standard deviation, stddev

CHAPTER S. MLSCLUS: A MULTI-LEVEL SUBSPACE CLUSTERING ALGORITHM 91

// stddev = squareroot of (sumofsquares(difference between navgfcount and frequency

count) of each unit)

5. threshold of the attribute = (navgcount — stddev) / sum of frequency count in all

units of that attribute.

6. stop

It has been observed that, those attributes, which do not contain any significant

clusters do not show much variation in their frequency count values in the various units

and as a result have a low value for the standard deviation. But in the other case, where

there are clusters there is a wide variation in the frequency count values of the different

units, and have a much higher value for the standard deviation. By finding the new

average frequency count in step 3 of findthreshold and using it to find the threshold

value, we try to eliminate the low frequency count units of that attribute by setting a

higher threshold value for that attribute. If we just use the average frequency count

obtained in step 2, we get more or less the same threshold value for all attributes having

the same number of intervals. Using the threshold values obtained as above, we find

all maximal dense units and use these to find the subspace clusters in DR The user can

also be given the freedom to input their own threshold values for the attributes at the

time of entering the attribute details.

We define below certain terms, which are used in the next subsection.

CHAPTER 5. MLSCLUS: A MULTI—LEVEL SUBSPACE CLUSTERING ALGORITHM 92

Definition 5.8 The minimum support value msv of unit u" in a dense unit u k is defined

as

msv(uP ,uk) = M * min{ t1 of Ai E UP, I = I to p)

where M is the frequency count of the up unit in unit uk and ti is the density threshold

value of the eh attribute of up, expressed as a percentage of records expected in each

unit of the attribute for it to be dense.

Definition 5.9 We define the frequency count of a unit up in another unit uk as equal to

the number of record-ids common to all the AOSS attribute tables of the (k+p) attribute

units. This is used to find the sub dense units

Definition 5.10 We define a sub dense unit as one which is not dense in the original

dataset DB but is dense within the maximal dense unit identified in DB. A unit u' is

dense in uk if frequency count of up in uk is greater than or equal to msv(u" ,uk) .

Definition 5.11 If X is a k-dimensional sub dense unit in unit uk and no m-dimensional

superset of X where m > k, is sub dense in uk, then we say that X is a maximal sub

dense unit of ilk.

an

CHAPTER S. MLSCLUS: A MULTI—LEVEL SUBSPACE CLUSTERING ALGORITHM 93

so;
	 Identcation of the maximal sub dense units in the various maximal dense units

identified in DB.

In order to find the sub subspace clusters in the subspace clusters identified

above, we need to first find all maximal sub dense units found in the maximal dense

units identified in above step. We have designed algorithm findsubmdu which uses the

findpset and findmdu functions of MADUGENMT algorithm for this purpose. The

details are as follows —

findsubmdu algorithm

Inputs

• mduset // output of step 1 obtained using MADUGENMT

• mducnt

Output

• mdusubset // maximal dense units found in the mduset of step 1

• mdusubcnt // number of sub dense units identified

Processing

1. for each unit mdu belonging to mduset

2. record-count = frequency count of mdu

3. initialize iset to mdu

tt

CHAPTER S. MLSCLUS: A MULTI -LEVEL SUBSPACE CLUSTERING ALGORITHM 94

4. call findpset(SS, mdu) 	// findpset used to find the pset of unit mdu.

5. call findmdu(mduset, iset, len, pset, plen, thresholdarray, record-count)

// findmdu is a recursive function to find maximal dense units.

6. endfor

7. stop // end of findsubmdu

Presentation of the details regarding the maximal dense and maximal sub dense units to

the user

We display the details of the maximal dense units found in the original database

DB along with the maximal sub dense units found in them both in descending order of

their dimensionality. In order to obtain a concise description for the cluster and sub

clusters represented by the maximal dense units and the maximal sub dense units

respectively the logic used in step 2 and step 3 of CLIQUE discussed in section 2.2 of

chapter 2 can be used.

Clusters obtained from k-dimensional maximal dense units-

ulk

sub clusters details obtained from maximal sub dense units found in !il k

 (d-k)-dimensional sub dense units —

CHAPTER S. MLSCLUS: A MULTI-LEVEL SUBSPACE CLUSTERING ALGORITHM 95

1-dimensional sub dense units —

u2
k -

sub clusters details obtained from maximal sub dense units found in u2 k

 (d-k)-dimensional sub dense units —

1-dimensional sub dense units —

and so on ...

Cluster details obtained from (k-1)-dimensional maximal dense units-

k-1 Ui 	-

sub cluster details obtained from maximal sub dense units found in u lk-I

 (d-(k-1))-dimensional sub dense units —

40- o

CHAPTER 5. MLSCLUS: A MULTI-LEVEL SUBSPACE CLUSTERING ALGORITHM 96

1-dimensional sub dense units —

U2 -

sub cluster details obtained from maximal sub dense units found in u2 k-1

 (d-(k-1))-dimensional sub dense units —

1-dimensional sub dense units —

and so on till the one dimensional dense units.

Clusters obtained from one-dimensional maximal dense units-

-

sub clusters details obtained from maximal sub dense units found in Lil l

 (d-1)-dimensional sub dense units —

1-dimensional sub dense units —

k -1

CHAPTER 5. MLSCLUS: A MULTI-LEVEL SUBSPACE CLUSTERING ALGORITHM 97

u2

sub clusters details obtained from maximal sub dense units found in u2 1

 (d-1)-dimensional sub dense units —

1-dimensional sub dense units —

and so on for each of the one-dimensional dense units.

Example 5.3: Consider a census database having four attributes namely age as a

numeric attribute and sex, educational—qualifications and marital status as categorical

attributes.

Each of these attributes have say, the following number of intervals —

for age it will be equal to r (110 - 1)/10 1= 11,

for sex it will be 2 having values male and female

CHAPTER S. MLSCLUS: A MULTI-LEVEL SUBSPACE CLUSTERING ALGORITHM 98

for educational qualifications it will be 6 with values non-SSC, SSC, HSSC,

GRADUATE, POSTGRADUATE, DOCTORATE and for marital status it is equal to

2 having values married and unmarried.

Assume that k = 2, for this database and the threshold values input for age, sex,

marital status and educational qualifications are 0.2, 0.6, 0.7 and 0.15 respectively.

The presentation of the dense units and their sub units for a sample of data will

be as shown below -

2-dimensional cluster details

< edu_qual, GRADUATE> <Age, 21 —30>

<sex, female>

<edu qual, POSTGRADUATE> <Age, 31— 40>

<sex, male>

<marital status, married>

1-dimensional cluster details

<Age, 41-50> -

<sex, male> <edu qual, DOCTORATE>

<maritalstatus, married>

CHAPTER S. MLSCLUS: A MULTI-LEVEL SUBSPACE CLUSTERING ALGORITHM 99

5.3.1 Experimental results

We present here the details of the clusters identified using ROSCLIQUE,

AOSSCLIQUE, AOMADUCLIQUE, AOMADUMTCLIQUE and AOMLSCLUS

using a synthetic dataset. AOMADUCLIQUE and AOMADUMTCLIQUE are the

implementations, which use MADUGEN and MADUGENMT algorithm in step one of

CLIQUE respectively to find the maximal dense units and use only the maximal dense

units to find the subspace clusters, instead of using all the dense units. We compared the

results obtained using each of them using a synthetic dataset of size 50,000 with 100

attributes containing three 9-dimensional clusters. The value for the number of intervals
•

was set to 10. For generating synthetic data the method discussed in section 3.4.1 was

used. The experiments were run on a 3.00GHz Pentium 4 processor running linux. The

results obtained are reported below.

Method Used Threshold values used No. of correct clusters found

ROSCLIQUE 0.13 One 9-dimensional (out of 3)

AOSSCLIQUE 0.13 Three 9-dimensional (all 3)

AOMADUCLIQUE 0.13 Two 9-dimensional (out of 3)

AOMADUMTCLIQUE 0.13, 0.16, 0.17, 0.20 Three 9-dimensional (all 3)

AOMLSCLUS 0.13, 0.16, 0.17, 0.20 Three 9-dimensional (all 3)

e

CHAPTER S. MLSCLUS: A MULTI-LEVEL SUBSPACE CLUSTERING ALGORITHM 100

Besides the three 9-dimensional main clusters, AOMLSCLUS also reported the

sub clusters found within the dataset. In case of AOMADUMTCLIQUE and

AOMLSCLUS the threshold values obtained using findthreshold algorithm discussed

in section 5.3 were used.

5.4 Summary

In this Chapter, we proposed the subspace clustering problem for mixed data

types for finding the subspace clusters in the database by fixing different values of

threshold for the different attributes. We also extended the algorithm to find the

significant subspace clusters found in the various subspace clusters existing in the

database at various levels. This problem can be used to study the patterns found in a

typical census data, university/college enrollment data, grading data which contains

information about marks, grade awarded, course name, course credits etc.,

e

101

Chapter 6

Discussion

We have developed an Attribute Oriented Storage Structure (AOSS), for

effective and efficient subspace clustering of very high dimensional huge datasets. In

this chapter, we first summarize the major characteristics of the very high dimensional

huge datasets. We then explain the efficiency of the AOSS method for use in subspace

clustering and give some extensions and applications of subspace clustering using the

AOSS method.

6.1 Characteristics of the AOSS method

We have developed the new class of AOSS method for effective and efficient

subspace clustering of very high dimensional huge datasets. We, summarize the major

characteristics of AOSS based methods here.

• AOSS based methods adopt a divide-and-conquer methodology and partition the

data sets consisting of various records from the high dimensional data space into

independent AOSS Attribute tables for each attribute belonging to the data set. In

general, subspace clustering has to search a very huge very high dimensional data

CHAPTER 6. DISCUSSION 	 102

space. Divide-and-conquer methodology enables the subspace clustering

algorithms to focus on reduced subsets of records within each AOSS Attribute

table in the first pass and then again a much smaller subset of records belonging to

the various dense units by applying the divide-and-conquer strategy on the AOSS

Attribute tables. This process automatically focuses on only the relevant set of

attributes and the relevant set of records belonging to the various units while

finding their selectivity. Hence it eliminates the processing of irrelevant records as

well as irrelevant attributes of a particular unit, thereby saving a lot of processing

time. It also helps in processing some set of units, which are independent with

respect to attributes and units in parallel.

• AOSS based methods also save on the main memory space requirements as those

records and attributes not contributing to any dense units are automatically pruned

and are not loaded in memory in subsequent processing of the high-dimensional

candidate units for determining their selectivity.

• AOSS based-methods MADUGEN and MADUGENMT for finding the dense

units use a depth-first search algorithm and eliminate the requirement to find the

selectivity of all the 2" subsets of a k-dimensional dense unit before finding the

selectivity of the k-dimensional unit, a feature which is most common in the level-

wise (apriori based) algorithms.

S

CHAPTER 6. DISCUSSION 	 103

6.2 Extensions and Applications of AOSS based methods

We have shown that the AOSS based methods are effective and efficient in

subspace clustering for finding the dense units belonging to the various subspaces of a

high dimensional dense unit. The AOSS method however is also applicable to mining

other kinds of knowledge and solving some other interesting high dimensional data

processing problems. In this section, we discuss some examples.

6.2.1 Mining Multi-dimensional Sequential Patterns from high-

dimensional data

Sequential pattern mining, which finds the set of frequent subsequences in

sequence databases, is an important data-mining task and has broad applications.

Mining of sequential patterns from very high dimensional datasets which is a common

requirement in the emerging new applications like protein classification, keyword

extraction from text documents, etc is a very interesting task and can greatly benefit

from the AOSS structure.

CHAPTER 6. DISCUSSION 	 104

6.2.2 Mining Closed Association Rules from high-dimensional data

In order to reduce the generation of redundant association rules the use of the

closed frequent itemsets has been proposed by Pasquier in [26a]. The AOSS can be

used for the extraction of the frequent closed itemsets from the high dimensional

datasets in an efficient manner

6.2.3 Categorization of high dimensional datasets using subspace

clustering

Many real datasets like collection of documents on various subjects, can be

viewed as having very high dimensionality and missing dimensional values. Subspace

clustering based on the AOSS can be used here, to find efficiently all the clusters some

of which may be overlapping.

6.2.4 Mining long Sequences from high-dimensional data

Applications like protein classification, and other bio-informatics applications

require effective and efficient mining of long sequences from their high dimensional

CHAPTER 6. DISCUSSION 	 105

data sets. Since, AOSS based methods are efficient for the depth-first search, it can be

used to extract the long sequences efficiently from the high dimensional datasets.

10

106

Chapter 7

Conclusions

The amount of raw data and information being captured and stored in computer files

and databases in almost every field has been growing at a tremendous pace. In recent

years, there has been an increase in the number of new database applications dealing

with very large high dimensional data sets. These applications place special

requirements on clustering algorithms: the ability to find good quality clusters

embedded in subspaces of high dimensional data preferably without taking any inputs

from the user (which requires the user to have good domain knowledge), scalability,

4,
end-user comprehensibility of the results, non-presumption of any canonical data

distribution, and insensitivity to the order of input records. In this thesis, we studied the

problem of subspace clustering for very high dimensional huge data sets with missing

values.

In this chapter, we summarize the thesis, and then present some directions for future

work.

CHAPTER 7. CONCLUSIONS
	

107

7.1 Summary of the Thesis.

Clustering has been a very active area of research in data mining for the past several

years. But, most of the clustering algorithms designed work on the full dimensional data

space and cannot be used for finding clusters in datasets having a very large number of

attributes. The subspace clustering algorithm CLIQUE identifies the subspace clusters

in the high dimensional data by finding all the sets of connected dense units existing in

the various subspaces. However, it requires the user to give the inputs, T (threshold

value) and (number of intervals) in order to find the dense units. Hence the accuracy

of the results obtained depends on the values input by the user. It uses the level-wise

apriori algorithm for finding the dense units. Hence suffers from the same problems as

the apriori algorithm In this thesis, we study the problem of subspace clustering for

very high dimensional huge data sets with missing values and make the following

contributions.

0 We propose an Attribute Oriented Storage Structure (AOSS) for storing very high

dimensional huge data sets considering the requirements of the subspace clustering

algorithms for very high dimensional large datasets containing missing values.

4
4

CHAPTER 7. CONCLUSIONS 	 108

• We have used the sampling technique to reduce the number of database passes

required to find the dense units. The SAMCLIQ algorithm developed using sampling

technique gave us very efficient results when compared with the CLIQUE

algorithm.

• We have used the maximal dense units to identify the subspace clusters in order to

improve the efficiency of the first step which used dense units for this purpose.

Again here we used the AOSS method of storage representation and found that it

gives very good results for very high dimensional huge datasets with missing value

attributes.

• We extended the AOSS method to develop a multi-level subspace clustering

algorithm to allow the mining of subspace clusters at different levels from a dataset

having attributes with varied threshold requirements.

7.2 Future Research Directions

With the increase in the desire and ease of collecting data, most of the resulting

databases in today's information era will be very high dimensional in nature with a lot

of missing values also and huge in size. Hence, it will be very interesting and

CHAPTER 7. CONCLUSIONS 	 109

challenging to re-examine and explore many related problems, extensions and

applications of subspace clustering for these databases. Some of them are listed here.

• Visual Subspace Clustering.

• Interactive Subspace Clustering - some effort has been put here but the results were

not all that satisfactory, hence not reported.

• Subspace Clustering for streaming data.

• 	 • Subspace Clustering for Keyword extraction — Some work in this direction has been

carried out, but not included in this thesis.

4

110

References

[1] R. Agarwal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic

subspace clustering of high dimensional data for data mining applications. In

Proceedings of the ACM SIGMOD Conference on Management of Data,

Montreal, Canada, 1998.

[2] C. C. Agarwal, C. Procopiuc, J. L. Wolf, P.S. Yu and J. S. Park. A

Framework for Finding Projected Clusters in High Dimensional Spaces. In

Proceedings of ACM SIGMOD International Conference on Management of

Data, 1999.

[3] C. C. Agarwal, and P. Yu. Finding Generalized Projected Clusters in High

Dimensional Space. In Proc. ACM SIGMOD Int. Conf. On Management of Data,

Dallas, TX.(2000)

[4] R. Agarwal, H. Manilla, R. Srikant, R Toivonen, and A. I. Verkamo. Fast

Discovery of Association Rules. In U. M. Fayyad, G. Piatetsky-Shapiro, P.

Smyth, and R. Uthurusamy, editors, Advances in Knowledge Discovery and

Data Mining, chapter 12, pages 307 -328. AAAI/MIT Press , 1996.

[5] A. Aho, J. Hoperoft, and J. Ullman. The Design and Analysis of Computer

Algorithms. Addison -Welsley,1974.

[6] S. Berchtold, C.Bohm, D. Keim, and H.-P. Kriegel. A cost model for nearest

neighbour search in high-dimensional data space. In Proceedings of the 16 m

 Symposium on Principles of Database Systems(PODS), pages 78-86, 1997.

References 	 111

[7] S. Brin, It Motwani, J. D. Ullman and S. Tsur. Dynamic Itemset Counting and

Implication Rules for Market Basket Data In Proceedings of the ACM SIGMOD

Conference on Management of Data, May 1997.

[8] C. Cheng , A. W. Fu and Y. Zhang. Entropy-based Subspace Clustering for

Mining Numerical Data In Proceedings of ACM SIGMOD Conference, August

1999.

[9] P. Chundi and U. Dayal. An Application of Adaptive Data Mining :

Facilitating Web Information Access. 19 97 SIGMOD Workshop on Research

Issues on Data Mining and Knowledge Discovery, Arizona, USA.

[10] P. Cheeseman and J. Stutz. Bayesian classification (AutoClass): Theory and

results. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and It Uthttrusamy,

editors, Advances in Knowledge Discovery and Data Mining, pages 153-180.

AAA/MIT Press, 1996.

[11] M. Ester, H. -P. Kriegel, and X. Xu. Knowledge discovery in large spatial

databases: Focusing techniques for efficient class identification. In Proc. 4th Int.

Symp. On Large Spatial Databases(SSD'95), pages 67-82, Portland, Maine,

August 1995.

[12] M. Ester, H. -P. Kriegel, J. Sander, and X. Xu. A density-based algorithm

for discovering clusters in large spatial databases with noise. In Proceedings of

the 2nd International Conference on Knowledge Discovery in Databases and

Data Mining , Portland, Oregon, August 1996.

[13] R. Feldman, Y. Aumann, A. Amir and H. Manilla. Efficient algorithms

for discovering frequent sets in incremental database s. In Proceedings of

SIGMOD Workshop on Research Issues in Data Mining and Knowledge

Discovery, May 1997.

References 	 112

[14] D. Fisher. Improving inference through conceptual clustering. In Proc. 1987

AAAI Conf., pages 461-465, Seattle, Washington, July 1987.

[15] D. Fisher. Optimization and simplification of hierarchical clusterings. First

International Conference on Knowledge Discovery and Data Mining (KDD - 95),

Montreal, Quebec, Canada, AAA1 Press, Menlo Park, California. Pp. 118-123.

[16] S. Goil, H. Nagesh, A. Choudhary. MAFIA : Efficient and Scalable

Subspace Clustering for Very Large Data Sets. Technical Report No. CPDC-

TR-9906-010 , Center for Parallel and Distributed Computing, June 1999.

[17] S. Guha, R. Rastogi, and K. Shim. CURE : An efficient clustering

algorithm 	for large databases. In Proceedings of the ACM SIGMOD

Conference on Management of Data, Montreal, Canada, June 1996.

Q
	 [18] T. Hagerup and C. Rub. A guided tour of chernoff bounds. In Information

Processing Letters, pages 305 -308. North -Holland, 1989/90.

[19] Heikki Mannila. Data mining: machine learning, statistics, and databases.

URL : http://www.cs.helsinki.fi/--mannila/

[20] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice Hall,

1988.

[21] J. Kivinen and H. Mannila. The power of sampling in knowledge discovery .

In Proceedings of the Thirteenth ACM SIGACT -SIGMOD-SIGART

Symposium on Principles of Database Systems(PODS'94),PAGES 77 -85,

Minneapolis, MN, May 1994.

References 	 113

•

[22] H. Manilla and H. Toivonen. On an algorithm for finding all interesting

sentences. In Cybernetics and Systems, Volume II, The Thirteenth European

Meeting on Cybernetics and Systems Research, pages 973 - 978, Vienna,

Austria, April 1996.

[23] H. Mannila , H. Toivonen and I. Verkamo. Efficient algorithms for

discovering association rules. In AAAI Wkshp. Knowledge Discovery in

Databases, July 1994.

[24] H. Mannila. Methods and problems in data mining. In Proceedings of

International Conference on Database Theory, Delphi, Greece, January 1997, F.

Afrati and P. Kolaitis (ed.), Springer-Verlag.

[25] T. Ng and J. Han. Efficient and effective clustering methods for spatial data

mining. In Proceedings of the 20th VLDB Conference , Santiago, Chile, 1994.

[26a] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent •
closed itemsets for association rules. In Proc. 7 th Int. Conf. Databases

Theory(ICDT '99), pages 398-416, Jerusalem, Isreal, Jan 1999.

[26] G. Piatetsky-Shapiro and W. J. Frawley. Knowledge Discovery in Databases.

AAAI/MIT Press, 1991.

[27] V. Pudi and J. Haritsa. Incremental Mining of Association Rules.

Technical Report, DSL, Indian Institut e of Science, 1999.

[28] S. Thomas, S. Bodagala, K. Alsabati and S. Ranka. An Efficient algorithm

for the incremental updation of association rules in large databases. In

Proceedings of 3rd KDD Conference , August 1997.

References 	 114

[29] H. Toivonen. Sampling Large Databases for Association Rules. In

Proceedings of the 22nd VLDB Conference, Mumbai,India 1996.

[30] J. S. Vitter An Efficient algorithm for sequential random Sampling.

Technical Report 624, INRIA, Feb. 1987.

[31]M. J. Zaki, S. Parthasarathy, W. Li, M. Ogihara Evaluation of Sampling for

Data Mining of Association Rules . Technical Report 614, The University of

Rochester Computer Science Department , New York.

[32]T. Zhang, Raghu Ramakrishnan, and Miron Livny. BIRCH : An efficient

data clustering method for very large databases. In Proceedings of the ACM

SIGMOD Conference on Management of Data, Montreal, Canada, pages 103-

114, June 1996.

[33] Doug Burdick, Manuel Calimlim, Jason Flannick, J. Gehreke and Tomi Yiu.

MAFIA: A Maximal Frequent Itemset Algorithm for Transactional Databases. In

Proceedings of the 17th International Conference on Data Engineering,

Heidelberg, Germany, April 2001.

[34] M. J. Zaki, K. Gouda. GenMax: An Efficient Algorithm for Mining Maximal

Frequent Itemsets. Data Mining and Knowledge Discovery.

[35] Bayardo, R. J. Efficiently mining long patterns from databases. In ACM

SIGMOD Conference of Data, 1998, pp. 85-93.

[36] J. D. Pawar, P. R. Rao. A subspace Clustering Algorithm for Finding

Clusters in Large Databases Using Sampling. In Proceedings of the International

Conference KBCS — 2002, pp. 27-36.

:" •

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125

