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“Education is not that amount of information that is put into your brain and runs
riot there undigested, all your life. We must have [life-building, man-making,

character-making, assimilation of ideas. If you have assimilated five ideas — truth,

right action, peace, divine love and non-infury and made them your life and character,

you have more education than any man who has got by heart a whole Gbrary. If
education is identical with information, the libraries are the greatest sages in the
world, and encyclopaedias are the Rishis. The ideal; therefore, is that we must have
the whole education of our country, spiritual and secular, in our own hands, and it
must be on national fines, through national methods as far as practicall”

——— Swami Vivekgnanda (1863-1902)
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BY
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Abstract

Due to the rapid advancement in information technology, it has become very easy to
capture data about almost every aspect of ones business or related field. The data
captured is stored in various files or databases. Most of the time the mining of
knowledge is carried out considering each of the files or databases independently.
Hence, we cannot find the patterns or relationships that exist across attributes stored in
different files or databases. In Subspace clustering, we try to find all the possible
interrelationships that exist between the various data attributes by finding all the clusters
that. exist in the different subspaces of a very high dimensional dataset. The datasets that
we deal with in subspace clustering contain a large number of attributes, are huge in
size and most of the times contain many missing values.

In this thesis, based on the properties of very high dimensional huge data scts,
and the requirements of the subspace cluétering algorithms, an Attribute Oriented
Storage Structure (AOSS) for storing very high dimensional huge data sets has been
developed. Using the AOSS structure, the complexity of the function, to find the
frequency count of the various candidate units in the datasets is reduced considerably.

This fact is also proved by the experimental evaluation that has been carried out using



synthetic datasets. An algon'tilm to reduce the number of passes required over the
dataset has been designed by using sampling technique and experimentally shown that it
is efficient when we have to deal with huge datasets which cannot be loaded in main
memory at one time. In order to efficiently find high-dimensional clusters in very high
dimensional huge datasets, a depth-first approach instead of the currently used breadth-
first method has been used to find the dense units in the datasets and it is extended to
find clusters in datasets with attributes having varying threshold values. And finally,
using the AOSS structure with this depth-first approach technique, proposed method to
find the various clusters that exist within the clusters identified in the original datasets.
This method can be very useful to do a through analysis of datasets in applications like
census data analysis.

The AOSS structure along with the depth first method of finding the dense units
is found to be very promising to make the design of the subspace clustering algorithms
very efficient with respect to the space as well as the time factor to find high

dimensional clusters in very high dimensional huge datasets.
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Chapter 1

Introduction

1.1 Background

The amount of raw déta and information being captured and stored in computer
files and databases in almost every field has been growing at a tremendous pace. In
short we can say that we have been flooded with data but we are still starving to get the
knowledge from this vast pool of existing data. In today’s competitive world, all
concerned need to extract as much information as possible from their data sources to
help in efficient decision making, so as to compete with their rivals and achieve their
goals. Data mim'ﬁg comes into play to help users satisfy such needs. Data mining,
which is also referred to as knowledge discovery in databases, means a process of
nontrivial extraction of implicit, previously unknown and potentially useful information
(such as knowledge rules, constraints, regularities) from data in databases [26]. Data
mining combines methods and tools from at least three areas namely machine learning,
statistics, and databases [19].

Clustering is a data mining technique that helps in identifying clusters within the
domain space and has many applications in several fields. As a data mining task, data
clustering also referred to as wnsupervised classification can be thought of as
partitioning or segmenting the data into groups that might or might not be disjoint. Data

clustering has been studied in statistics [10,20], machine learning [14,15], and spatial
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data mining [10, 11, 25] areas with different emphasis. The unsupervised nature of
clustering makes it applicable to applications, where the user has limited domain
knowledge. Some of the current applications, which use clustering techniques
extensively are clustering of web-search results and clustering of spatial databases.
Most of the traditional clustering algorithms have been designed to discover clusters in

the full dimensional space using various distance functions.

1.2 Motivation

In recent years, there has been an increase in the number of new database
applications dealing with very large high dimensional data sets. These applications to
name a few include multimedia content-based retrieval, geographic and molecular
biology data analysis, text mining, bio-informatics, medical applications, and time-
series matching. These applications place special requirements on clustering algorithms:
the ability to find good quality clusters embedded in subspaces of high dimensional data
preferably without taking any inputs from the user (which requires the user to have
good domain knowledge), scalability, end-user comprehensibility of the results, non-
presumption of any canonical data distribution, and insensitivity to the order of input
records. Clustering algorithms which work on the full dimensional space of the data
fail to find clusters in high dimensional datasets due to the following main reasons — the

average density of points anywhere in the high dimensional data space is likely to be
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low [6]. Secondly, in the high dimensional data there are more chances of having
missing values in the data attributes. In order to apply the full dimensional clustering
algorithms, these missing values are normally replaced by values taken from a random
distribution say X. Here an assumption is made that, the attribute containing missing
values, follows that particular X distribution. This assumption need not be true always
and thereby affect the quality of the clustering results obtained. Majority of the
traditional clustering algorithms are sensitive to the order of input records and require
input parameters from the user.

The subspace clustering algorithm CLIQUE [1] satisfies some of the above
requirements. It  identifies the subspace clusters in the high dimensional data by

finding all the sets of connected dense units existing in the various subspaces. It

- presents the cluster descriptions in the form of DNF expressions that are minimized for

easy interpretation. It produces identical results irrespective of the order of the input
records and does not need to make any assumptions about the data distributions for any
attributes to handle any missing values. However, it requires the user to give the inputs,
1 (threshold value) and &(number of intervals) in order to find the dense units. Hence
the accuracy of the results obtained depends on the values input by the user. It uses the
level-wise apriori [4] algorithm for finding the dense units. Hence suffers from the

same problems as the apriori algorithm in the following situations:

o If the user inputs a large value for & or enters a very low value for 1, the number

of candidate and dense units generated will be huge in number. And as a result
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the first step of CLIQUE to identify the dense units in the different subspaces

will be computationally very expensive. -

o If the dimensionality of the clusters is large, then the database will have to be
scanned a large number of times to find the high dimensional dense units. And,
if the size of the database is also very large then it will still add to the time

complexity.

As a result of the emerging real life data applications, there is a demand for clustering
algorithms, which can efficiently identify good quality clusters from huge, high
dimensional data sets. Hence, developing efficient techniques to find clusters in huge,

high dimensional data sets has become an important research direction in data mining.

1.3 Contributions

In 'this thesis, we study the problem of subspace clustering for very high
dimensional huge data sets with missing values. In particular, we make the following

contributions -

e Efficient storage structure: Based on the properties of very high dimensional huge

data sets containing missing values, and the requirements of the subspace clustering
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algorithms, we have developed an Attribute Oriented Storage Structure (AOSS) for

storing very high dimensional huge data sets.

Scalability: With the increasing size of the databases, we need to have subspace
clustering algorithms, which can be used for very large data sets. We have used the
sampling technique to address this issue. The SAMCLIQ algorithm developed using
sampling technique gave us very efficient results when compared with the CLIQUE

algorithm.

Efficiency: To handle this issue, we have used a depth-first approach and the
concept of maximal dense units for identifying the subspaces containing the
clusters. The subspace clustering algorithms CLIQUE [1] and MAFIA [16] have
used the level-wise apriori algorithm for identifying the dense units. Again here we
used the AOSS method of storage representation and found that it gives very good

results for very high dimensional huge datasets with missing value attributes.

Applicability: We extended the AOSS method using the maximal dense unit
concept to find clusters in datasets containing attributes with varied threshold
requirements. As an application of this technique in applications like census data
analysis, we developed a subspace clustering algorithm to allow mining of all the

subspace clusters found in the clusters identified in the original dataset.
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. 1.4 Organization of the Theéis

The remainder of the thesis is structured as follows:

e In Chapter 2, we present the subspace clustering problem and an overview of the

related work carried out in high-dimensional clustering.

e In chapter 3, An Attribute Oriented Storage Structure (AOSS) for storing very high
dimensional datasets with many missing values has been developed. The reduction
in time complexity using this structure is reported along with the experimental results

obtained using synthetic datasets.

LY

e In Chapter 4, a sampling based subspace clustering algorithm SAMCLIQ [36] is
developed to handle very large data sets. The experimental evaluation and

performance study by comparing with CLIQUE has been carried out.

e In Chapter 5, details of algorithms developed using AOSS based structure for finding
maximal dense units with uniform threshold value (MADUGEN) and multiple
threshold values (MADUGENMT) have been discussed. Using AOSS structure and
MADUGENMT a subspace clustering algorithm AOMLSCLUS, has been presented

- and its application for analyzing census data discussed.
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¢ In Chapter 6, we summarize the characteristics of the AOSS method along with a

discussion of some interesting extensions and applications of subspace clustering

using AOSS.

¢ In Chapter 7, we conclude with a few directions for future work.
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Chapter 2

Problem Definition and Related Work

In this chapter, we first define the subspace clustering problem, then we
discuss the working of the CLIQUE [1] algorithm. A few improvements over the
CLIQUE algorithm are also discussed.

2.1 Subspace Clustering Problem

The Subspace clustering problem was first introduced by R. Agrawal, in [1].
Subspace Clustering is the most informative/systematic approach for clustering
high-dimensional data. It is the task of automatically identifying(in general several)
subspaces of a high dimensional data space that allow better clustering of the data

objects than the original data space [1].

Terminology Used:
Let A={ A}, A2 , ..., Aq } be a set of bounded, totally ordered domains
and S = A; X A; X ... X Ay a d-dimensional numerical space. A; , ..., Ag are

referred to as the dimensions (attributes ) of S.

The input consists of a set of d-dimensional points V= { vi , V2, ..., Vm }

where vi= <vj, Vi, ..., Via >. The jth component of v; is drawn from domain A;
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The data space S is partitioned into non-overlapping rectangular units. The
units are obtained by partitioning every dimension into & intervals of equal length,

which is an input parameter.

Each unit u is the intersection of one interval from each attribute. It has the
form {u; , ..., us } where u; - [lihi) is a right-open interval in the partitioning of

A;

Apoint v={v;,v2,...,Vq } iscontained inaunit u={w ,u,...,uq }

if k <v; <h; forall u;.

The selectivity of a unit is defined to be the fraction of the total data points
contained in the unit. A unit u is called a dense unit if selectivity(u) is greater than

1, the density threshold which is input by the user.

A k-dimensional subspace 1is a projection of the data set V into Ay X Ap X
X Ax , wherek<dand t < ¢ifi< j. A k-dimensional unit u* in this

subspace is the intersection of an interval from each of the k attributes.

A cluster is a maximal set of connected dense units in k-dimensions. Two k-

dimensional units uy, u; are connected if they have a common face or if there exists
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another k-dimensional unit u; such that u; is connected to uz and w, is connected

to us.

Units u; = { 1;, ..., ra} and vy = { 'y, ..., P4} have a common face if there
are k-1 dimensions, assume dimensions Ay, ..., Ag, such thatry - 1y’ forj=1to

k-1 and either hy =1yorh’y =l

A region in k dimensions is an axis—parallel rectangular k-dimensional set.
Regions are considered as unions of units. Region R is said to be contained in a

cluster Cif RN C=R.

A region R contained in a cluster C is said to be maximal if no proper

superset of R is contained in C.

A minimal description of a cluster is a non-redundant covering of the cluster
with maximal regions. That is, a minimal description of a cluster C is a set R of
maximal regions such that their union equals C but the union of any proper subset of

R does not equal C.

The Problem: Given a set of data points and the input parameters & and <, find
clusters in all subspaces of the original data space and present a minimal description

of each cluster in the form of a DNF expression.
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10

0 25 30 35 40 45 50 55 60 65 70
Figure 2.1: Illustration of CLIQUE definitions.
Example 2.1:
In Figure 2.1, the two dimensional space (age, salary) has been partitioned by

a 10 X 10 grid.

A unit is the intersection of intervals; above an example of a 2-dimensional
unitu = (30 <age <35) A (1 <salary < 2).

A region is a rectangular union of units. A and B are both regions: A=(30<
age <50) A (4 <salary < 8)and B=(40 <age < 60 )A (2< salary< 6).

The minimal description for the cluster (A v B) is the DNF expression:

A=(30 <age < 50) A (4< salary < 8) v (40 < age < 60) A (2 < salary < 6).
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2.2 CLIQUE Algorithm

The CLIQUE algorithm consists of the following three steps:
1. Identification of subspaces that contain clusters.
2. Identification of clusters.

3. Generation of minimal description for the clusters.

The main part of step 1 consists of finding the dense units in different subspaces.
The dense units are identified using a bottom-up algorithm that ‘exploits the
monotonicity of the clustering criterion with respect to dimensionality to prune the
search space. This algorithm is similar to the apriori algorithm for mining

association rules [4]

Example 2.2 Let the transaction database, TDB, be Table 2.1 consisting of a total of
10 transactions, with 6 numeric attributes each and the user input values of & and ©
be 5 and 0.2 respectively. The missing values for the attributes are represented by a
?” symbol. Assume for the sake of simplicity that all the attribute values range from

1 to 100.
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Td A B C D E F

10 |1 |21 41|? |4 |18

20 |4 (24 1449 [9 |49

30 |6 (26146 4523 |83

40 (9 129? |571? |5

50 |2 |8 (25|58|78 |30

60 (53 |? (92597 |52

70 {19 {8 (89|58 |78 |57

80 82 (2 |? |52]72 |12

100 |7 |68 (75?7 (62 |13

Table 2.1: A transaction database TDB.
CLIQUE finds the dense units for identification of the subspaces containing clusters
as follows —

1. Each attribute is split into & intervals to form & 1-dimensional candidate units
for each attribute namely Al, ...A5, B1,...,BS, C1,...,C5, D1,...,.D5 and so
ontill F1,...,F5.

Hence in this example we will have a total of 5 * 6 = 30 1-dimensional

candidate units.
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2. By doing a first pass over the above dataset, the frequency count of all these
1-dimensional candidate units is found. Selectivity of a unit is equal to the
frequency count of that unit divided by the total number of transactions.
Those units whose selectivity is greater than 0.2 are identified as 1-
dimensional dense units D;. D, in this example is {Al, A9, B1, B3, C5, D6,
El, E8, F2, F6}

3. The 2-dimensional candidate units C,, are generated by forming all possible
pairs of the 1-dimensional dense units D;. Some candidate units are pruned.
Only those candidate units are retained which have all its subset units dense.
A 2-dimensional candidate unit u'u'; € C, if and only if u’; ,u'j € D;.In
this example, C; consists of { A1Bl, A1B3, ..., ES8F2, E8F6}

4. A second pass is made through the dataset to find the selectivity of all the
two dimensional candidate units v?; € C, fori =1 to n, n representing the
total number of 2-dimensional candidate units. Thus we get, D, consisting of
{A1B3, B3Cs}

5. For k = 3, the candidate units generation procedure and procedure used for
pruning the generated candidate units is as given below -

The candidate generation procedure used for generating G from Dy
is as under — |

insert into Cy

select ur.[l1, ), up [, b)), ..., upflcr, byt), v [l , bct)

from Dy ur, Diiwp

where up.a) = uw.a , .11 = U2.l| . ul.hl = u:ll],
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wa=wa,ih-h,uuh=wh,...,
Up.ax2 = Ug.ak2 , Urlk2 = U dia , Uiy = uz by,
Up.ak1 < W.dgy
In the above pseudo-code for the join operation, u.a; represents the ith
dimension or attribute of unit u and w.[l;, h;), represents its interval in the ith
dimension.
Prunning procedure used for k-dimensional candidate units Cy - All those Cx
units which do not have all its (k-1) dimensional subsets in the set of (k-1)
dimensional dense units are discarded from the set of Cy units generated above.
Then the k™ pass is done to find selectivity of all Cy units and obtain the Dy
units.
This process is continued till no candidate units can be derived or no
candidate is dense. In this manner all the dense units belonging to the different

subspaces are found. These units form the input for the second step of CLIQUE.

Time complexity: If k is the highest dimensionality of any dense unit and m is the
number of the input points, the above algorithm will make k passes over the
database. If a dense unit exists in k dimensions, then all of its projections in a subset
of the k dimensions that is, 0(2“) different combinations will also be dense. Hence,

the time complexity of this algorithm is O(c* + mk) for a constant' C.

The second step of CLIQUE takes as input the set of dense units D, all in the same

k-dimensional space S and outputs a partition of D into Py , ..., Py , such that all
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units in P; are connected and no two units u; € P; , u; € P; with 1 # j are connected.
All these partitions represent the clusters found in the k-dimensional space S. It finds
the partitions by using a depth-first search algorithm to find the connected
components in the graph formed by representing the dense units as the vertices of
the graph. An edge exists between those vertices whose corresponding dense units

have a common face.

The step three takes as input the clusters identified in step two and generates a
concise description for it. For this purpose it first uses a greedy growth method to
cover the clusters by a number of maximal rectangles(regions), and then discards

the redundant rectangles to generate a minimal cover.
Some of the drawbacks of the CLIQUE algorithm are as under-

e It does not provide any support to the user for selecting the values for the input
parameters & and t. The cluster boundaries generated are totally dependant on the
value of & and the value of t decides the quality of the clusters that will be
generated. If the value of 1 is set too low then we will get a large number of dense
units, and some of the clusters that we get from these dense units will be

-redundant. Similarly, if the value is too high then we will miss to capture some

significant clusters.
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X

e It is tedious to make repeated passes over the database to find the selectivity of
the large number of candidate units generated. This condition worsens when the
dimensionality of the subspace clusters found in the database increases. As the
dimensionality of the subspace clusters increases, there is an explosion in the
number of dense and the candidate units generated. CLIQUE uses a MDL-based
pruning technique. In this the dense units in the subspaces with low coverage
are pruned so as to reduce the number of dense and candidate units generated.
The coverage of a subspace is the fraction of the database that is covered by the
dense units. This is believed to make the algorithm faster but it may lead to

missing out of some important clusters.

o If the size of the dataset is véxy large both with respect to the number of records

L

and the number of attributes (data dimensionality), the time taken for each
database pass to find the selectivity of the candidate units will increase

substantially.

2.3 Improvements over CLIQUE

In the past few years, some subspace clustering algorithms have been

proposed to overcome some of the problems of the CLIQUFE algorithm.
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The ENCLUS [8], a ENtropy-based subspace CLUStering algorithm was proposed
to handle the large number of subspaces with clusters within them. In CLIQUE, the
MDL-based pruning technique was used to prune some subspaces with low coverage
to make the algorithm faster. However, it had the trade-off of missing out some
significant dense units found in subspaces with low coverage. The ENCLUS [8]

algorithm has made the following contributions to the subspace clustering problem —

o It has identified the following additional criteria for determining subspaces with
good clustering;
a) Criterion of High Coverage
b) Criterion of high density and

c) Correlation of dimensions

K g

(a) (b)
Figure 2.2: Examples of two data sets with equal coverage but different

densities. The area within the rectangles is the value of the coverage.
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In the figure 2.2 cases (a) and (b) have the same coverage, however the
points in (a) are more closely packed and is a better candidate to qualify as a

cluster.

o ENCLUS [8] uses the entropy metric to measure all the above three criteria
simultaneously to find subspaces with good clustering. It is also a grid based
method and takes the inputs for the threshold from the user. In order to
calculate the entropy;, it also divides each dimension into equal width intervals
to form a grid. Hence the size selected for the intervals, affects the quality of
the final clustering obtained.

°o MAFIA [16] (Merging of Adaptive Finite Intervals) is another subspace
clustering algorithm, which uses adaptive interval sizes to partition the
dimension depending on the distribution of data in the dimension. Using
adaptive grid sizes, MAFIA attempted to reduce the computation and improve
the clustering quality by concenttating on the portion of the data space which

have more data points and thus more likelihood of having clusters.

° PROCLUS [2] uses the concept of PROjected CLUStering for finding
clusters in a multi-dimensional data space. PROCLUS also discovers
interesting correlations among the data in various subspaces of the original
high dimensional space, but it differé from CLIQUE in the output produced. It

outputs a partition of the data points into clusters, together with the sets of
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dimensions on which points in each cluster are correlated. The clusters output
by PROCLUS are useful in applications like classification and trend analysis
where it is required to partition the data points into disjoint partitions. It fails
to detect any overlapping clusters existing in the data set. ORCLUS [3] is also

an example of a projected clustering algorithm.



Chapter 3
AOSS: An Attribute Oriented Storage

Structure

We discussed the details of the first subspace clustering algorithm CLIQUE
in Section 2.2. We observed that, one of the major drawbacks of the algorithm is the
repeated number of database passes required during step one to find the selectivity
of the large number of candidate units that are generated. In step one of CLIQUE,
which is based on the apriori [4] algorithm we observe that the entire database is
scanned in order to find the selectivity of each candidate unit. Hence, as the number
of candidate units increases the time taken for each database pass increases
proportionately. In reality, all the database records need‘not be accessed to find the
selectivity of each candidate unit. Similarly, in the case when the dimensionality of
the data space is very large it is not required to access the entire data record to find
the selectivity of all the units. In order to find the selectivity of a unit u it needs to
access only the values of those attributes, which are a part of the unit u. In short, if
we can tackle the above two problems we can significantly improve the performance
of step one of CLIQUE.

Can we cut short on the number of data records and the number of attribute
values of each record that are accessed by each unit to find its selectivity? To

handle these concerns, we develop in this chapter an efficient method for storing the
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very high dimensional huge datasets. Because of the ease with which data can be
captured today from almost every aspect of the problem domain, all the datasets
consist of a huge number of data records with a very large number of data attributes.
First, we discuss the limitations of the existing data storage techniques to support the
clustering of very high dimensional huge datasets in Section 3.1. Then in Section
3.2, we propose the Attribute Oriented Storage Structure (AOSS) method for storing
the datasets. In Section 3.3, we discuss how to perform the various database
operations on the data stored using the proposed AOSS method, in section 3.4 we

report the experimental results and conclude with a summary in Section 3.5.
3.1 Limitations of the Existing Storage Techniques

In subspace clustering, we try to find all the possible interrelationships that
exist between the various data attributes. If we apply subspace clustering, on
individual files then we will only find the subspace clusters existing within each of
them independently. However, to get all the possible knowledge or patterns from the
available data, we will have to consider all the data at one place in a database. Each
record in such a database should consist of all the .attn'butes of ones business. The
resulting database that we get will represent a very high dimensional huge dataset.

Such a database is likely to contain many missing values.
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A Sample layout of a record consisting of 100 attributes will be as under —

a) a as ? as ? ar ... age a100

Figure 3.1: A Sample record layout

The a; value, represents the value of the ith attribute A;, fori= 1to 100 and a
‘Y represents a missing value for the corresponding attribute. For example in the
above layout, values of attribute As and Ag are missing. A typical database layout,

consisting of ten lakhs of data records storing information about 100 attributes will

be as under.
. A Az A Aioo
o v
Recl a a ? ? a; ? ? a0
Rec2 a; 7 la a'i+1 ? a'100
?
Rec999999 ?
Rec1000000 8"1 a"j a"iﬂ an 100

Figure 3.2: A typical very high dimensional huge dataset.
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Some of the drawbacks of the representation shown in figure 3.2 are as under:

¢ Since, there will be many missing data values, a lot of storage space will be
wasted.

¢ Each time you access any record, you will be reading all the attribute values
of the record. Majority of the cases you do not need to access all the
attributes at the same time.

¢ This representation is not suitable for subspace clustering algorithms. In order
to find the selectivity of the different candidate units, we need not access all
the attributes of the data and all the data records need not be accessed for all

the candidate units.

Hence, we propose the following Attribute Oriented Storage Structure (AOSS) for

storing such a very high dimensional huge dataset.

3.2 Attribute Oriented Storage Structure(AOSS)

In the Attribute Oriented Storage Structure (AOSS), we store the information
in such a way that all the records from the database are not accessed to find the
selectivity of the various candidate units. And at the same time we access only the
attribute information of the attributes, which are present in that particular candidate

unit while finding its selectivity.
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We explain below the various steps carried out to arrive at such a structure.

e Step I: In Figure 3.2, we observe that there are a lot of missing values in the
various records. We could save a lot on space and time to process such missing
value attributes if we store only those attributes having valid values. By doing
so we will get records with varying number of attributes. And the database so
constructed will lead to a substantial reduction in the space required. The
record layout shown in figure 3.1 and the database structure of figure 3.2 will

appear as under using the new AOSS structure-

(Ar,21) | (A222) | (Asa3) | (Asas) | (Aza7) | . . . | (Ago,a99) | (A100,2100)

Figure 3.3: A Sample AOSS record layout
In the above figure 3.3, (Ai, a;) represents the ith attribute value pair for
those attributes having valid values. We do not show the details of the 4™, 6, and

other attributes which contain missing values.

After the step one the database shown in figure 3.2 will appear as shown in

figure 3.4 with records containing varying number of attribute value pairs.



CHAPTER 3. AOSS: AN ATTRIBUTE ORIENTED STORAGE STRUCTURE 26

Recl (Ava) |(Aza) |(Aia) |... | (Aiooai0)
Rec2 (Aza;) |(-Dth | G+1)th | .. | (A2 100)
pair pair

i
5
j
Rec999999
Rec1000000 (A],a"]) (Aj,a"j (Aloo,a"loo)

Figure 3.4: Database structure using variable length records

Step 2: The above structure reduces the space required by eliminating the
information of the missing value attributes from each record. Hence it results in
shortening the length of the data records to be processed during each database pass
to find the selectivity of the units. While finding the selectivity of a unit u, to avoid
the processing of those attributes, which are not part of the candidate unit u, the
above structure shown in figure 3.4 is split into two levels. At the top level, we have
the AOSS record table. In this table, for each record we keep along with the record
identifier the attribute information details, which include the address of the table
storing the attribute values and the position where the value is stored in it. And at the
next level we have independent AOSS attribute tables for storing the values of each
attribute along with its record identifier from the AOSS record table. Using the

AOSS method, the database structure from figure 3.4 will be represented with the
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help of a AOSS record table and the AOSS attribute tables. A Sample of the

structure of a AOSS record table and a AOSS attribute table is shown below.

feet (£ [ (2x) [(x | (9

2 Ay [G@-Dt |G| [(+9)
pair pair

/

o

I
i
;
'
!

Rec999999

Recl00n00 | (#%) | (%) (*.*)

Figure 3.5: A sample AOSS record table

\f{mbme table

ibute | Rec-id from AOSS | Attribute value
Rec-id W table
Arec-1 >
Arec-2 a’

Figure 3.6: A Sample AOSS attribute table
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In figure 3.5 and figure 3.6, we have shown a sample of the AOSS record
table and a sample of the AOSS attribute table respectively. There will be a separate
AOSS attribute table for each attribute. Hence, for our database of figure 3.2 we will
have 100 such tables. Another advantage of this is that when we have a large
number of candidate units we can split them into units with disjoint sets of attributes

and process them in parallel by using the independent sets of attribute tables.

3.3 Database Operations Using AOSS

Currently, we have all database operations defined with records as the base
unit. That is to say we have operations for creating, reading, deleting, and updating
records. Each record is considered as consisting of a fixed set of data attributes.
When we deal with very high dimensional data, and which is most of the time sparse
in nature, it no longer makes sense to still continue with record as a base unit for
carrying out the database operations. In subspace clustering, we are interested in
capturing all the possible interrelationships that exist between the various data
attributes. Therefore, it is sensible to consider an attribute as the base unit and define
all the database operations in terms of attributes. Hence, we have defined operations
for attribute creation, attribute reading, attribute insertion, attribute deletion, and
attribute updation. Since, the AOSS design is mainly developed to make the
subspace clustering process efficient, we assume that the most frequently performed

operation will be Attribute reading and the other operations will be very infrequently
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carried out. The details of all these operations considering the AOSS method for

representing the data are discussed below-

Attribute Creation: This operation involves creating a new AOSS attribute table and
storing the address of the table in the Attribute-details table. The Attribute-details
table stores the addresses of all the attribute tables along with the attribute-ids and
their descriptions. In figure 3.5 and figure 3.6 we have not shown the Attribute-
details table so as not to show the low-level implementation details and make the
figure complicated.
Algorithm details:
1) Read the attribute description.
2) Check if it exists in the Attribute-details table.
3) If it exists report “Attribute already exists” and go to 6
4) Generate Attribute-id and store Attribute-id and description in Attribute-
details table.
5) Allocate space for attribute-table and store its address in Attribute-
details table. The attribute table could be stored as a separate file and its
address will mean here its filename.

6) Stop

Attribute Insertion: This involves entering the attribute values of some specific

attributes for specific records. The record entries may already be existing in the
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AOSS record table or may not be existing. The details of the insertion operation are

as under-

Algorithm details:

]
2
3
9
5
6

7)

8

9

Read Attribute-id/ Attribute description
Check if it exists in the Attribute-details table

If does not exist report” Attribute not found “ go to 11

Read record-id

Check if record-id exists in AOSS record table

If not found report and then create afier receiving confirmation from

user.

Check if attribute information for the record exists in the AOSS record
table.

If found, then display existing value from AOSS Attribute table and allow
to update afier receiving user’s confirmationand go to 11 .

Add the attribute-details including its id, description and record-id to

the AOSS attribute table for that attribute.

10) Add the Attribute-id and the Attribute rec-id to the AOSS record table

entry for this record.

11) Stop.

Attribute Deletion: Attribute deletion takes as input the attribute-id or attribute

description and the record-id of record whose details need to be deleted and removes
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the entry from the AOSS attribute table and also from the AOSS record table‘s entry
for that record-id.
Algorithm details:
1) Read Attribute-id/ Attribute description
2) Check if it exists in the Attribute-details table
3) If does not exist report” Attribute not found “ go to 11
4) Read record-id
5) Check if record-id exists in AOSS record table
6) Ifnot found report and go to 11
7) Check if attribute information for the record exists in the AOSS record
table.
8) If not found report error go to 11
9) If found, then display existing value from AOSS Attribute table and delete
dfter receiving user’s confirmation
10) Delete the corresponding entry for that record-id from the AOSS record
table.

11)Stop.

Attribute Updation: Attribute Updation mkes.as input the attribute-id or attribute
description and the record-id of record whose details need to be updated.
Algorithm details:

1) Read Attribute-id/ Attribute description

2) Check if it exists in the Attribute-details table
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3) If does not exist report” Attribute not found “ go to 12

4) Read record-id

5) Check if record-id exists in AOSS record table

6) If not found report and go to 12

7) Check if attribute information for the record exists in the AOSS record
table.

8) If not found report error goto 12

9) If found, then display existing value from AOSS Attribute table

10) Reaéi new value for the attribute

11) Write new value into the AOSS Attribute table.

12)Stop.

Attribute Reading: This operation allows you to read the attribute value of a
particular attribute for a particular record-id.
Algorithm details:

1) Read Attribute-id/ Attribute description

2) Check if it exists in the Attribute-details table

3) If does not exist report” Attribute not found “ go to 10

4) Read record-id

5) Check if record-id exists in AOSS record table

6) If not found report and go to 10

7) Check if attribute information for the record exists in the AOSS record

table.
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8) If not found report error go to 10
9) If found, then display existing value from AOSS Attribute table

10)Stop.

Load Attribute-values: In subspace clustering, most of the times all the attribute
values of a particular attribute-id need to be accessed at one time irrespective of their
record-id’s to find the selectivity of the candidate units. This is very efficient in the
AOSS method as all the values of a particular attribute are stored in its AOSS
Attribute table.
Algorithm details:

1) Read Attribute-id/ Attribute description

2) Check if it exists in the Attribute-details table

3) If does not exist report” Attribute not found “ go to 5

4) While not end of AOSS Attribute table of Attribute-id attribute

Read attribute values;

3) Stop
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3.4 Efficiency obtained using AOSS

In this section we discuss the time efficiency achieved using the AOSS
method. This method of representation has mainly helped in making the algorithm
used to find the frequency count of candidate units efficient. We present the details
of the algorithm used in our implementation to find the frequency count of a
candidate unit using the old Record Oriented Structure (ROS) as well as the AOSS
representation and demonstrate the working with the help of the dataset given in

table 2.1 in chapter 2.

Algorithm used for finding frequency count of a k-dimensional unit u using AOSS

Inputs

« unit u — consisting of k attribute-id and unit-id pairs, along with startrec and
endrec of each pair. startrec and endrec denote the first and last occurrence
positions of the unit in the dataset respectively.

* AttTable - Attribute table containing record-id details of attributes present in the

unit u

Output

» frequency count of unit u
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Processing

1. startpos= greatest of startrec values of the attribute-units forming the unit u
2. endpos = smallest of endrec values of the attribute-units forming the unit u
3. if (endpos <= startpos)

4. count =01

5. go tostep 38

6. ford=1tok

7. initialize curpos[d] to 1 // to keep track of record-ids in AttTable of various
units contained in unit u

8. curposl = curpos[1]

9. attl = attribute-id of first pair of u

10. unitl = unit-id of first pair of u

11. // skip all rec-ids less than startrec of the first attribute Arecarray

12. while(AttTable[att1][unit1]. Arecarray[curposi] < startpos )

13.  increment curposl

14. startpos = AttTable[att1][unit1]. Arecarray[curposl]

15. m = curpos] + 1

16. while( startpos <=endpos and m < AttTable[att1]{unit1].reccnt )

// reccnt in above step represents number of record-ids stored in Arecarray of
AttTable for that att-id and unit-id

17. match = TRUE;

18. ford=1tok

19.  att=attribute-id ofd th pair of u
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20.  uid = unit-id of d th pair of u

21.  curposd = curpos(d]
22.  for (p= curposd; p < AttTablefatt][uid].Recent; p++)

23. if ( AttTable[att][uid]. Arecarray[p] < startpos ) ’
24. continue // i.e move to next iteration of for p step 22
25. else

26. break //i.e out of for p loop

27.  if ( AttTable[att][uid]. Arecarray[p] equal to startpos )

28. curpos{l] = p+1

29. continue // move to next iteration of for d loop step 18
30. else

31 match = FALSE

32, curpos[l] = p;

33. break; // i.e out of for dloop

34.  if (match is equal to TRUE )

35. increment count

36.  startpos = AttTable[att1][unitl1]. Arecarray[{m];

37.  increment m and if m < AttTable[alIl][mniti].reccnt goto 16//end while loop

38. stop
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Algorithm used for finding frequency count of a k-dimensional unit u using ROS

Inputs
* unit u — consisting of k attribute-id and umit-id pairs
* Region - table containing unit-ids of all records of all attributes present in the

dataset

Output

« frequency count of unit u

Processing
1. for p =1 to number of records in dataset // complexity more due to this step
2. match = TRUE

3. for d =1 to k / number of attribute-id unit-id pairs in unit «

4. attid = attribute-id of d th pair of unitu

5. unitid = unit-id of d th pair of unit u

6. if{ Region([attid][attid] not equal to unit-id)
7. match = FALSE

8. goto step 11

9. if (match equal to TRUE)
10. increment count
11. stop
For the sake of continuity, we reproduce table 2.1 here again, with minor

modifications with respect to notations used — here we use Rec-id, -1 instead of Tid



CHAPTER 3. AOSS: AN ATTRIBUTE ORIENTED STORAGE STRUCTURE 38

and ? to represent record-id and missing values respectively and the attributes are

named as Aj, Ay, As, As, As, Ag instead of A, B,C,D,E,F.

Rec-id At A A3 A4 As Asg
10 21 141 |-1 |4 18

1
20 (4 (244419 |9 |49
30 |6 |26 |46 |45 |23 |83
9
2

40 29 [-1 |57 (-1 |5
50 8 |25(5878 |30
60 |53 |-1 |92[59|-1 |52
70 |19 |8 |89 |58 (78 [57
80 |82 (2 |-1 (52|72 |12
90 |89 [78 [10 [25 [-1 |38
- 100 (-1 |68 |75 |-1 |62 |13

In this example, considering the value of £ to be equal to 5, we obtain
the region table shown in table 5.1 storing the unit-ids 0 to 5 for the
respective attribute values, 0 is used to represent missing values or values out
of range, 1 for values from 1 to 20, 2 from 21 to 40, and so on ... The range

of values above is from 1 to 100.
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Rec-id A1 Az A3 A4 As A6

10 |1 |2 |3 |0 (1 |1
20 |1 (2 (3 |1 |1 |3
30 {1 {2 |3 |3 {2 |35
40 |1 (2 (0 {3 10 |1
50 |1 |1 {2 |3 14 |2
60 (3 |0 {5 |3 (0 |3
70 (1 {1 |5 |3 {4 |3
8 |5 |1 |0 |3 {4 |1
9 |5 (4 |1 12 {0 |2
100 10 |4 {4 |0 |4 |1

Table 3.1: Region table used in ROS

Consider the 2-dimensional unit u = {( A; , 1) (A4, 3)}. Using ROS, it will
scan through the entire Region table consisting of the 10 entries and obtain the
frequency count as 4 for this unit as there are 4 records which have for attributes A,
and A4 their values falling in unit 1 and unit 3 respectively.

Using AOSS, it will access only the AttTable entries of attributes A; and A4
for unit 1 and 3 respectively. AttTable[A,][1].Arecarray = {10, 20, 30, 40, 50, 70}
and that of AttTable[A4][3]. Arecarray = {30, 40, 50, 60, 70, 80}. The startrec for
attributes A; and A4 are 10 and 30 respectively and the endrec values are 70 and 80.
In AOSS, the startpos value is equal to the value of the largest startrec and the
endpos is equal to the value of the lowest endrec of all the attribute-unit pairs
occurring in unit u. In this case the startpos is 30 and endpos is 70. Hence it just

starts scanning from 30 in AttTable[A,][1]).Arecarray , finds if 30 is found in
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AuTable[A4][3].Arecarray, since it is found it increments the count. Next moves to
40 in AttTable[A,][1].Arecarray and this time AttTable[A4}{3].Arecarray curpos[4]
would be pointing to 40, since they match it increments count moves on to next in
both tables till AttTable[A][1].Arecarray[curpos[1]] becomes greater than endpos.
When curpos of A; moves to 70 that time curpos of A4 will be pointing to 60, since
they do not match, curpos of A4 is moved to the next position which now points to
70 since they match count is incremented and both curpos are incremented. At this
point it so happens in this example that both termination conditions are true — that is
it has reached the end of AttTable[A][1]).Arecarray and also curpos of
AttTable[A4){3].Arecarray is greater than endpos i.e 70. Using this method it greatly
reduces on the number of records accessed and also we can load only the attribute

tables of those attributes, which are present in the unit u.
3.5 Experimental Results

In this section we present an empirical evaluation of the CLIQUE algorithm
using the AOSS file structure using synthetic datasets. The objective of the
experiments was to compare the time efficiency of the CLIQUE algorithm when
implemented using the old record based file structure and the proposed attribute
oriented file structure for storing very high diménsional huge data sets. We

compared the performance by varying the size of the database, dimension of the data
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space and dimension of the clusters. The experiments were run on a 3.00GHz

Pentium 4 processor running linux.
3.5.1 Synthetic data generation

The synthetic data generation method described in [1] has been used for the
data generation. The data generator takes as input the number of records to be
generated, the number of attributes and the range of values for each attribute. The
range of values was set to [1,100] for all attributes. The clusters are hyper-rectangles
in a subset of dimensions such that the average density of points inside the hyper-
rectangle is much larger than the average density in the subspace. The cluster
description details provided by the user include the number of clusters, the
maximum dimensionality of the clusters, and the cluster descriptions which specify
the subspaces of each hyper-rectangle and the range of each attribute in the
subspace. The attribute values for a data point assigned to a cluster are generated as
follows. For those attributes that define the subspace in which the cluster is
embedded, the value is drawn independently at random from the uniform
distribution within the range of the hyper-rectangle. For the remaining attributes,
the value is drawn independently at random from the uniform distnbution over the
entire range of the afuibute. We add 90% of the specified number of points equally
among the specified clusters, and the remaining 10% points are added as random
noise. Values for all the attributes of these points are drawn independently at random

from the uniform distribution over the entire range of the attribute.
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'3.5.2 Synthetic data results

We studied the performance of ROSCLIQUE(CLIQUE implemented using
Record Oriented Storage structure) v/s AOSSCLIQUE(CLIQUE implemented
using Attribute Oriented Storage Structure) algorithm by varying the number of
records, the dimension of the data space(total number of attributes) and the

dimension of the clusters. The values for £ and t, were set to 10 and 0.15

respectively.

Database size: Figure 3.7 shows the results of the experiments camried out by
varying the number of records from 50,000 to 1,50,000. The dimension of the data
space was selected as 100. The number of missing values contained in any record,
have been generated randomly between 20 and 40. The dimension of the 3 clusters
generated was 9. |
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Figure 3.7: Scalability with the number of records(with missing values).

It can be observed from figure 3.7 that there is a significant improvement in
the time taken for CLIQUE, when we used the AOSS method to store the data. The
gain will be much more if the process of finding the 1-dimensional dense units of all
the attributes is carried out in parallel during the first pass.

The same experiment was again repeated for the same set of data records this
time containing no missing values. The only difference in the observations as
expected was a proportionate increase in the time taken by both ROSCLIQUE and

AOSSCLIQUE. The results are shown in figure 3.8 .
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Figure 3.8: Scalability with number of records(without missing values)

’Dimensionality of the data space: The next set of observations were taken by
varying the total number of attributes(dimension of data space) from 50 to 150. The
total number of records was selected as 50,000. Again the dimensionality of the 3
clusters chosen was taken as 9. And the number of missing values in any record was

taken as a random number between 20 and 40. The results are shown in figure 3.9.
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Figure 3.9: Scalability with the dimension of the data space.

Dimensionality of the clusters: Both the methods suffer when the dimensionality of
the clusters increases, due to the inherent nature of the apriori algorithm which
suffers from the curse of dimensionality. However, using the depth-first method to
find the maximal dense units, to help in finding the subspace clusters with the AOSS

structure has showed very good results, details of this are reported in chapter 5.
3.6 Summary

Although, a tremendous amount of research work has been carried out in
clustering by the data mining community, it has been found that all these algorithms

fail when it comes to finding clusters in very high dimensional huge datasets. It is
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here that we realize the importance of subspace clustering algorithms. Although a
few subspace clustering algorithms like CLIQUE (1], MAFIA (16], ENCLUS [8]
have been designed, most of them suffer due to the way the data is stored. In this
chapter, we have discussed a new framework for storing the data keeping in mind
the requirements of the subspace clustering algorithms. In subspace clustering, we
place more importance on the attributes of the data and do not want to miss out on
any useful patterns that may exist across attributes. Hence we have developed the
Attribute Oriented Storage Structure (AOSS) for storing the very high dimensional
huge datasets and performed an experimental study, which showed the performance
gain obtained using this method. The performance gain is mainly due to the different
approach used to find the selectivity of the different units, which became possible
due to AOSS. This approach helps in reducing the number of records actually
accessed to find the selectivity of the different units. However, since CLIQUE is
based on the apriori algorithm to find the dense units, AOSSCLIQUE also dpes not
show improvement as the dimensionality of the clusters increases and the capability
of this structure is not utilized to its full extent. Hence in chapter 5, we have
demonstrated the efficiency of this structure using a depth-first method unlike the

breadth-first method of apriori for high dimensional clusters.
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Chapter 4
SAMCLIQ: A SAMpling based CLIQue

Algorithm

We discussed the details of the first subspace clustering algorithm
CLIQUE(1] in Section 2.2. We observed that, one of the major drawbacks of the
algorithm is the repeated number of database passes required during step one to find
the selectivity of the large number of candidate units that are generated. For very
large databases, when the entire data cannot be loaded into the main memory at one
time this step will require a tremendous amount of 1/O to be done. Hence, if for
example 10% of the data fits in the available main memory at a time then for one
pass through the entire database, the data will have to be loaded in parts 10 times
from the disk. And for k passes over the data, 10 * k load§ will be required.

Can we improve the efficiency of the first step, to handle very large
databases ? To address this problem, we developed an algorithm SAMCLIQ which
uses a sampling based approach to find the dense units existing in the various
subspaces of the data space. In this chapter, we first discuss in Section 4.1 the Use of
sampling technique in data mining. In Section 4.2, we propose a sampling technique
to get the sample of records from the original data space for finding the initial set of
dense units. The details of the SAMCLIQ algorithm are presented in Section 4.3 and

Section 4.4 reports the experimental results.
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4.1 Use of Sampling in Data Mining

Sampling has played a very important role in data mining and has been
mainly used to reduce the 1/O activity required for knowledge discovery in large
databases. In section 4.1.1, we explain the important role played by sampling in data
mining. Section 4.1.2 explains some limitations of sampling and certain solutions to

overcome them.
4.1.1 Role played by Sampling in Data mining

The application of sampling for mining association rules has been suggested
in [21], and its effectiveness for mining association rules has been evaluated in [31].
It has been noted in [29] that samples of reasonable size provide good
approximations for frequent sets. In [18], a general analysis on the relationship
between the logical form of the discovered knowledge and the approximate sample
sizes needed for discovering the knowledge has been studied. The role played by
sampling in data mining has been well explained in [22] also. In the experimental
evaluatioﬁ carried out in {31], it has been shown that samples of reasonable size
which fit in the main memory can be used with a reasonably high level of accuracy,

to find the data patterns that exist in the database with high confidence.
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4.1.2 Limitations of Sampling

To reduce the I/O activity, a random sample from the original database,
small enough to be handled totally in main memory is drawn and the approximate
regularities that exist in the original database are found out. These approximate
results are then used to adjust parameters for a more complete knowledge discovery
phase. Choosing sample sizes depending on the available main memory,
approximate results can be obtained about the original database. However, we
cannot be very sure that we have not missed out any data patterns that exist in the
original database. And at the same time, if we do not include the right set of records
in the sample we may get some patterns in the sample which actually do not exist in
the original database.

Hence, in order to obtain the best results from the sample drawn it is
important that we select a proper size for the sample and at the same time ensure that
we select those records from the original database which help us in identifying in
majority of the cases, all the patterns which exist in the original database. For this
purpose we have developed a sampling technique for extracting a sample of data
records from very high dimensional huge datasets, which is based on the AOSS
method used for storing data. We discuss this method of sampling in Section 4.2.

“In business and various other applications, where important decisions have to
be taken based on the data patterns that exist in the databases, one cannot rely totally
on the results obtained from sampling. Hence, as a tool for further analysis, the

concept of negative border has been applied in many applications. The negative
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border information has been used in {271, {13] and {23] to achieve efficiency in the
incremental mining of association rules. In [23], Manilla and Toivonen have shown
that the evaluation of the negative border units ensures that no frequent patterns are
missed out. We have adopted the use of the negative border concept to ensure that
we do not miss out any of the dense units, which were not present in the sampled
records, but are actually found in the original database. More details about the

negative border units have been discussed in section 4.3.

4.2 Proposed Sampling technique

In this section, we first discuss some criteria for a good sample under
¢ subsection 4.2.1 followed by subsection 4.2.2 which presents a brief discussion on
the sampling method used in [29]. Section 4.2.3 discusses the AOSS based sampling

technique.

4.2.1 Criteria for a good sample

The efficiency and the accuracy of the results obtained by using sampling,
depends on the following two factors-

e Sample size ~ If the sample size selected is too small, compared to the size

of the original database then there is a more chance of missing out the

patterns found in the original data. And at the same time if the sample
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size selected is very large, then we may not get any missed units but the
actual purpose of sampling is lost. The size selected should be able to
have a balance between the number of missed patterns generated and the
extra time that we spent in processing the sample records.

o Selection of good records — The selection of a proper sample size is
important, but choosing the right set of records for the sample is more
important than this. Even if we choose a big sample size, but if most of
the records selected are either outliers or noise points then we will fail to

identify the comrect patterns from the database.

Given a sample size n, we have designed a sampling algorithm which gets
the best set of n points to help in identifying all the possible patterns from the
original database of size N in majority of the cases. For this purpose, we assume that
the original data has a very large number of attributes, and is vefy large in size such
that the entire data does not fit in main memory at one time. The details of the

sampling technique is explained in section 4.2.3.
4.2.2 Sampling for finding frequent sets

Till date, many algorithms have been designed for sampling but none of
them address in specific, the issue of drawing a sample from a very high
dimensional huge dataset. Most of them randomly pick up the points, without giving

much importance to the quality of the points that are selected. A lot of the
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algorithms have attempted to get the sample sizes for a required level of accuracy. In
[29], Toivonen has used sampling for reducing the number of database passes
required to find the frequent item sets to be used for finding the association rules
from large databases. The performance study in [29] shows that after mining the
sample, the sampling algorithm needs only one scan of the original database to find
all frequent patterns. However, this algorithm does not focus on the selection of the
points for the sample, but uses Chernoff bounds to determine the sample size
required for a desired level of accuracy. This process of finding the sample size does
not take into account the size N of the original database, hence many times if the
accuracy level required is very high it may give a large sample size. Besides the
algorithm has not paid much attention to picking the right set of points for the

sample, since they were not dealing with very high dimensional data sets.

4.2.3 AOSS based sampling technique

In our proposed sampling technique we have focused on the selection of the
points for the sample from those, which contribute to the formation of the various 1-
dimensional dense units. The various steps are as under-

1) Using the user-input value for &, form the various one dimensional

candidate units by splitting the range of all attributes into & intervals.
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2) Using the AOSS attribute tables for all the attributes, the selectivity of all
units is found out. The process of finding the selectivity for the candidate
units of the various attributes can be carried out in parallel.

3) The 1-dimensional dense units are obtained by choosing those candidate
units whose selectivity is larger than the user specified threshold value <.

4) We retain only the record-id information of the 1-dimensional dense
units. We call this set of record-ids the sample pool. Naturally this
sample pool will be much smaller in size compared to the total data size.
We select the points for the sample from this pool.

5) Sample selection —

The details of the sample selection are discussed after example 4.1.

Example 4.1
Consider the following transaction table 4.1 consisting of 10 records. Each
record has 6 attributes namely A, B, C, D, E and F. The values of all these

attributes, are in the range of 1 to 100.

TID A B € D E F
™ 1. 219 41 0 4 18
T2 4 24 44 9 9 49
T3 6 26 48 45 23 83
T4 9 29 49 57 56 5
TS 2 8 25 38 78 30
T6 53 9 92 59 79 52
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T7 19 8 89 38 78 57
T8 82 2 98 52 72 12
T9 89 78 10 25 2 38
TI0 68 68 75 1 62 13

Table 4.1: A sample of 10 transactions consisting of 6 attributes

Consider a threshold value of 0.4 and the number of intervals equal to 10.

The various units will have the following range values-

Unit 1: 1-10,

Unit 2: 11-20,
Unit 10: 91-100
The various 1-dim candidate units formed are as under —

Al, A2, ..., AlO,

B1, B2, ... ,B10,
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After pass one through the transactions in the table 4.1, we get the following dense

units —
’
unit Jfreq. count TID lists
Al 5 T1, T2, T3, T4, TS
B1 4 TS, T6, T7, T8
B3 4 T1, T2, T3, T4
Cs 4 T1, T2, T3, T4
D6 5 T4, TS, T6, T7, T8
E8 4 T5, T6, T7, T8
From the 1-dimensional dense units, the following 2-dimensional candidate
units will be generated -
(A1 B1),
(A1 B3),
(A1 ES),
(B1 C5),
(B1EB),

PR

(D6 EB).
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After second pass we get the following 2-dim dense units -
(A1 B3):4,
(A1C5):4,
(B3Cs):4,
(B1D6): 4,
(B1E8): 4,
(D6 E8) : 4.

After third pass we get the following 3-dim dense units -
(A1B3C5): 4

(B1 D6 EB): 4

Given above are the various steps carried out in step one of the CLIQUE

algorithm.

The Sample Selection procedure is as follows -.

1) find all one-dimensional dense units and their tid-lists(record-ids)

2) group transactions(record-ids) based on number of such 1-dim dense units
they are contained in and have these groups sorted in descending order of
the record-id counts.

3) Choose a proportionate number f/t; * S, of record-ids randomly from each

group in the sorted order. f represents the number of dense-units, t; the
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count i.e the number of record-ids present in that group and S the desnred

sample size.

Grouping of record-ids based on number of 1-dim dense units they are

present in, for the data in example 4.1 above this will be as follows —

No. of units Record-ids count
3 T1, T2, T3, T6, T7, T8 6
4 T4, T5 2
5 - 0
6 - 0

Assume sample size = 4. Randomly select any 4 record-ids from group with
number of unit equal to 3. If number of record-ids in unit 3 is less than 4 then select
from remaining units i.e 4 in this case. This process ensures that we get good set of

records for the sample i.e records containing dense units.
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4.3 Subspace Clustering Using Sampling

The first step of the CLIQUE[1] algorithm is quite complex for huge datasets
having high dimensional subspace clusters. If k is the highest dimensionality of any
unit that is found than it will require as many database passes over the data as equal
to the highest dimensionality of any dense unit in the data. Hence in order to reduce
the number of database passes and the 1/0O required, we have developed the
SAMCLIQ algorithm. The SAMCLIQ algorithm basically tries to improve the
performance by using an efficient sampling technique for identifying the dense units
in step one of CLIQUE. After selecting the sample using the method discussed in
section 4.2.3, we find all the dense units in the sample using the method discussed in
section 4.3.1. After getting the dense units from the sample, we use the concept of
negative border units to make sure that we have not missed out on any units, which
are present in the original data space.

The Negative Border N, consists of all the candidate units generated in the
level-wise algorithm that were not dense units. In other words if C is the set of all
the candidate units generated, D is the set of dense units then C = D U N. After
obtaining the results using sampling, we want to make sure that we have not missed
out any units, which are dense in the original database but were not detected in the
sample. Obviously the subsets of all such likely missed units will be found in the

negative border N of the sample.
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4.3.1 Algorithm for identification of dense units

The Algorithm we propose requires an initial pass, for selecting the sample
during which it generates the 1-dimensional dense units also. After selecting the
sample we apply the level wise algorithm used in step one of CLIQUE to get all the
candidate and dense units present in the sample. Then a first pass over the original
database (O. D) is carried out to find if any units are missed out, by using sampling.
If any units are missed then an additional pass is made over the O.D. This work was
carried out prior to the development of the AOSS method. Hence, in this chapter we
have not used it as such for the main algorithm. The details of the algorithms are as

under

Sampling for identification of dense units — The accuracy of the results obtained
using sampling, to a large extent depends on the size of the sample and the method
used to select the sample points from the database. Since we are considering very
large databases and we want our sample to fit in main memory, we choose sample
size s such that it is neither too large and nor too low by using the technique
discussed in section 4.2.3. We know that, with increasing sample sizes the
probability of finding the dense units identified in the sample, in the original
database also are high and thereby the possibility of occurrence of false dense units
and of missed units are almost negligible. Hence, an extra pass over the database
will not be required, but if the sample size is too large, then the time taken to process

the samplé is very large compared to the gain in performance achieved by reducing
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the number of passes. In place of CLIQUE, other subspace clustering algorithms like
MAFIA [16] can also be used. Depending on the quality of sample selected, there
are three cases that we can encounter -

a) There may be some units, which were dense in the sample but are not dense
in the original database. In such cases we have unnecessarily counted such
units, we will call such units as false dense units. These false dense units
get discarded after the first pass over the original database and do not affect
the accuracy of the final results obtained for the original database.

b) There may be some units, which were not dense in the sample but are dense
in the original database. In such a case, we say that there has been a miss
i.e., we have missed to capture these units and some higher-level units of
these in the sample. There are two types of misses that we may come
across  first type is where we fail to capture some dense units in some
subspaces and second wherein some subspaces containing dense units were
fully missed. Whenever there are such missed units say M, then some
higher level candidate units say C1 generated using M may be dense in
the original database. But this set C1 would not be generated by the
sample, hence there is a need to generate higher level candidate units of
such missed units and evaluate them i.e find their counts in the original
database by doing an additional pass over the database.

¢) The units which were dense in the sample are dense in the original database
also and vice-versa. This is an ideal case and gives the best performance if

the sample size is selected properly i.e it is not too large, but at the same
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time very closely resembles the original database. In this case the results
will be obtained by doing a single pass over the original database, besides
the initial pass required to draw a sample and find 1-dimensional candidate
and dense units for the original database.

From above we observe that it is case (a) and case (b) that needs to be
handled properly. To handle case (b) one method that is discussed in [29] is to lower
the density threshold value, while generating the candidate units for the sample. This
will definitely reduce the chances of a miss, but will lead to an increase in the
number of false dense units. The aim to avoid the misses, is to achieve the results in
Jjust one pass. If there are missed units, then two complete passes will be required
over the original database. Another method to reduce the number of passes to less
then two complete passes is to adopt the technique used in [7]. Instead of waiting for
the end of the first pass to find the missed units, we check for missed units after
every M records have been processed and generate the higher level candidate units
for such missed units and start counting the occurrence of these units from that point
onwards. If all the missed units were detected, after x number o