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'Education is not that amount of information that is put into your brain and runs 

not there undigested, all your Cafe. We must have life-building, man-making, 

character-making, assimilation of ideas. If you have assimilated five ideas — truth, 

right action, peace, divine love and non-injury and made them your fife and character, 

you have more education than any man who has got by heart a whole library. If 

education is identical with information, the libraries are the greatest sages in the 

world, and encyclopaedias are the Vshis. The iika4 therefore, is that we must have 

the whole education of our country, spiritual' and secular, in our own hands, and it 

must be on national lines, through national methods as far as practical' 

Swami Vivekgnanda (1863-1902) 
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Abstract 

Due to the rapid advancement in information technology, it has become very easy to 

capture data about almost every aspect of ones business or related field. The data 

captured is stored in various files or databases. Most of the time the mining of 

knowledge is carried out considering each of the files or databases independently. 

Hence, we cannot find the patterns or relationships that exist across attributes stored in 

different files or databases. In Subspace clustering, we try to find all the possible 

interrelationships that exist between the various data attributes by finding all the clusters 

that exist in the different subspaces of a very high dimensional dataset. The datasets that 

we deal with in subspace clustering contain a large number of attributes, are huge in 

size and most of the times contain many missing values. 

In this thesis, based on the properties of very high dimensional huge data sets, 

and the requirements of the subspace clustering algorithms, an Attribute Oriented 

Storage Structure (AOSS) for storing very high dimensional huge data sets has been 

developed. Using the AOSS structure, the complexity of the function, to find the 

frequency count of the various candidate units in the datasets is reduced considerably. 

This fact is also proved by the experimental evaluation that has been carried out using 



synthetic datasets. An algorithm to reduce the number of passes required over the 

dataset has been designed by using sampling technique and experimentally shown that it 

is efficient when we have to deal with huge datasets which cannot be loaded in main 

memory at one time. In order to efficiently find high-dimensional clusters in very high 

dimensional huge datasets, a depth-first approach instead of the currently used breadth-

first method has been used to find the dense units in the datasets and it is extended to 

find clusters in datasets with attributes having varying threshold values. And finally, 

using the AOSS structure with this depth-first approach technique, proposed method to 

find the various clusters that exist within the clusters identified in the original datasets. 

This method can be very useful to do a through analysis of datasets in applications like 

census data analysis. 

The AOSS structure along with the depth first method of finding the dense units 

is found to be very promising to make the design of the subspace clustering algorithms 

very efficient with respect to the space as well as the time factor to find high 

dimensional clusters in very high dimensional huge datasets. 
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Chapter 1 

lIntroduction 

1.1 Background 

The amount of raw data and information being captured and stored in computer 

files and databases in almost every field has been growing at a tremendous pace. In 

short we can say that we have been flooded with data but we are still starving to get the 

knowledge from this vast pool of existing data. In today's competitive world, all 

concerned need to extract as much information as possible from their data sources to 

help in efficient decision making, so as to compete with their rivals and achieve their 

goals. Data mining comes into play to help users satisfy such needs. Data mining, 

which is also referred to as knowledge discovery in databases, means a process of 

nontrivial extraction of implicit, previously unknown and potentially useful information 

(such as knowledge rules, constraints, regularities) from data in databases [26]. Data 

mining combines methods and tools from at least three areas namely machine learning, 

statistics, and databases [19]. 

Clustering is a data mining technique that helps in identifying clusters within the 

domain space and has many applications in several fields. As a data mining task, data 

clustering also referred to as unsupervised classification can be thought of as 

partitioning or segmenting the data into groups that might or might not be disjoint. Data 

clustering has been studied in statistics [10,20], machine learning [14,15], and spatial • 
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data mining [10, 11, 25] areas with different emphasis. The unsupervised nature of 

clustering makes it applicable to applications, where the user has limited domain 

knowledge. Some of the current applications, which use clustering techniques 

extensively are clustering of web-search results and clustering of spatial databases. 

Most of the traditional clustering algorithms have been designed to discover clusters in 

the full dimensional space using various distance functions. 

1.2 Motivation 

In recent years, there has been an increase in the number of new database 

a applications dealing with very large high dimensional data sets. These applications to 

name a few include multimedia content-based retrieval, geographic and molecular 

biology data analysis, text mining, bio-informatics, medical applications, and time-

series matching. These applications place special requirements on clustering algorithms: 

the ability to find good quality clusters embedded in subspaces of high dimensional data 

preferably without taking any inputs from the user (which requires the user to have 

good domain knowledge), scalability, end-user comprehensibility of the results, non-

presumption of any canonical data distribution, and insensitivity to the order of input 

records. Clustering algorithms which work on the full dimensional space of the data 

fail to find clusters in high dimensional datasets due to the following main reasons — the 

average density of points anywhere in the high dimensional data space is likely to be 
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low [6]. Secondly, in the high dimensional data there are more chances of having 

missing values in the data attributes. In order to apply the full dimensional clustering 

algorithms, these missing values are normally replaced by values taken from a random 

distribution say X. Here an assumption is made that, the attribute containing missing 

values, follows that particular X distribution. This assumption need not be true always 

and thereby affect the quality of the clustering results obtained. Majority of the 

traditional clustering algorithms are sensitive to the order of input records and require 

input parameters from the user. 

The subspace clustering algorithm CLIQUE [1] satisfies some of the above 

requirements. It identifies the subspace clusters in the high dimensional data by 

finding all the sets of connected dense units existing in the various subspaces. It 

presents the cluster descriptions in the form of DNF expressions that are minimized for 

easy interpretation. It produces identical results irrespective of the order of the input 

records and does not need to make any assumptions about the data distributions for any 

attributes to handle any missing values. However, it requires the user to give the inputs, 

c (threshold value) and t(number of intervals) in order to find the dense units. Hence 

the accuracy of the results obtained depends on the values input by the user. It uses the 

level-wise apriori [4] algorithm for finding the dense units. Hence suffers from the 

same problems as the apriori algorithm in the following situations: 

0 If the user inputs a large value for t or enters a very low value for T, the number 

• 	 of candidate and dense units generated will be huge in number. And as a result 
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the first step of CLIQUE to identify the dense units in the different subspaces 

will be computationally very expensive. 

• If the dimensionality of the clusters is large, then the database will have to be 

scanned a large number of times to find the high dimensional dense units. And, 

if the size of the database is also very large then it will still add to the time 

complexity. 

As a result of the emerging real life data applications, there is a demand for clustering 

algorithms, which can efficiently identify good quality clusters from huge, high 

dimensional data sets. Hence, developing efficient techniques to find clusters in huge, 

high dimensional data sets has become an important research direction in data mining. 

1.3 Contributions 

In this thesis, we study the problem of subspace clustering for very high 

dimensional huge data sets with missing values. In particular, we make the following 

contributions - 

• Efficient storage structure: Based on the properties of very high dimensional huge 

data sets containing missing values, and the requirements of the subspace clustering 
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algorithms, we have developed an Attribute Oriented Storage Structure (AOSS) for 

storing very high dimensional huge data sets. 

• Scalability: With the increasing size of the databases, we need to have subspace 

clustering algorithms, which can be used for very large data sets. We have used the 

sampling technique to address this issue. The SAMCLIQ algorithm developed using 

sampling technique gave us very efficient results when compared with the CLIQUE 

algorithm. 

• Efficiency: To handle this issue, we have used a depth-first approach and the 

concept of maximal dense units for identifying the subspaces containing the 

clusters. The subspace clustering algorithms CLIQUE [1] and MAFIA [16] have 

used the level-wise apriori algorithm for identifying the dense units. Again here we 

used the AOSS method of storage representation and found that it gives very good 

results for very high dimensional huge datasets with missing value attributes. 

• Applicability: We extended the AOSS method using the maximal dense unit 

concept to find clusters in datasets containing attributes with varied threshold 

requirements. As an application of this technique in applications like census data 

analysis, we developed a subspace clustering algorithm to allow mining of all the 

subspace clusters found in the clusters identified in the original dataset. 

4 
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1.4 Organization of the Thesis 

The remainder of the thesis is structured as follows: 

• In Chapter 2, we present the subspace clustering problem and an overview of the 

related work carried out in high-dimensional clustering. 

• In chapter 3, An Attribute Oriented Storage Structure (AOSS) for storing very high 

dimensional datasets with many missing values has been developed. The reduction 

in time complexity using this structure is reported along with the experimental results 

obtained using synthetic datasets. 

• In Chapter 4, a sampling based subspace clustering algorithm SAMCLIQ [36] is 

developed to handle very large data sets. The experimental evaluation and 

performance study by comparing with CLIQUE has been carried out 

• In Chapter 5, details of algorithms developed using AOSS based structure for finding 

maximal dense units with uniform threshold value (MADUGEN) and multiple 

threshold values (MADUGENMT) have been discussed. Using AOSS structure and 

MADUGENMT a subspace clustering algorithm AOMLSCLUS, has been presented 

and its application for analyzing census data discussed. 
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• In Chapter 6, we summarize the characteristics of the AOSS method along with a 

discussion of some interesting extensions and applications of subspace clustering 

using AOSS. 

• In Chapter 7, we conclude with a few directions for future work. 

0 
• 
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Chapter 2 

Problem Definition and Related Work 

In this chapter, we first define the subspace clustering problem, then we 

discuss the working of the CLIQUE [1] algorithm. A few improvements over the 

CLIQUE algorithm are also discussed. 

2.1 Subspace Clustering Problem 

The Subspace clustering problem was first introduced by R. Agrawal, in [1]. 

3  
Subspace Clustering is the most informative/systematic approach for clustering 

high-dimensional data. It is the task of automatically identifying(in general several) 

subspaces of a high dimensional data space that allow better clustering of the data 

objects than the original data space [1]. 

Terminology Used: 

Let A = 	, A2 , ..., Ad } be a set of bounded, totally ordered domains 

and S = A 1  X A2 X ... X Ad a d-dimensional numerical space. A l  , , Ad are 

referred to as the dimensions (attributes) ) of S. 

The input consists of a set of d-dimensional points V = v1 v2 , • • • , vm 

where vi  = < vil , va , , via >. The jth component of vi is drawn from domain Ai 
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The data space S is partitioned into non-overlapping rectangular units. The 

units are obtained by partitioning every dimension into 4 intervals of equal length, 

which is an input parameter. 

Each unit u is the intersection of one interval from each attribute. It has the 

form lui , ud } where It; [li,hi) is a right-open interval in the partitioning of 

Ai• 

A point v = 	, v2 , , vd ) is contained in a unit u = { u l  , u2 , • • • , ud } 

if h 	<hi  for all 

The selectivity of a unit is defined to be the fraction of the total data points 

contained in the unit. A unit u is called a dense unit if selectivity(u) is greater than 

T, the density threshold which is input by the user. 

A k-dimensional subspace is a projection of the data set V into A ti X Al2 X 

... X Atk , where k < d and ti < ti if i < j. A k-dimensional unit Ilk  in this 

subspace is the intersection of an interval from each of the k attributes. 

A cluster is a maximal set of connected dense units in k-dimensions. Two k- 

dimensional units il l , u2 are connected if they have a common face or if there exists 
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another k-dimensional unit us such that ui is connected to (13 and ri2 is connected 

to 113. 

Units ukt = rti, 	rtk} and Ilic2 = 	 etk} have a common face if there 

are k-1 dimensions, assume dimensions Au, 	Atk_t, such that rtj = r§' for j = 1 to 

k-1 and either htk  = rtk or h'tk = lik. 

A region in k dimensions is an axis—parallel rectangular k-dimensional set. 

Regions are considered as unions of units. Region R is said to be contained in a 

cluster C if R r C= R. 

A region R contained in a cluster C is said to be maximal if no proper 

superset of R is contained in C. 

A minimal description of a cluster is a non-redundant covering of the cluster 

with maximal regions. That is, a minimal description of a cluster C is a set R of 

maximal regions such that their union equals C but the union of any proper subset of 

R does not equal C. 

The Problem: Given a set of data points and the input parameters 4 and 'r, find 

clusters in all subspaces of the original data space and present a minimal description 

of each cluster in the form of a DNF expression. 
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Figure 2.1: Illustration of CLIQUE definitions. 

Example 21: • 

In Figure 2.1, the two dimensional space (age, salary) has been partitioned by 

a 10 X 10 grid. 

A unit is the intersection of intervals; above an example of a 2-dimensional 

unit u = (30 age < 35) A (1 salary < 2). 

A region is a rectangular union of units. A and B are both regions: A = (30 

age < 50) A (4 salary < 8) and B = (40 5 age < 60 ) A (2 salary < 6 ). 

The minimal description for the cluster (A L.) B) is the DNF expression: 

A = (30 age < 50) A (4_ salary < 8) v (40 age < 60) A (2 salary < 6). 



CHAPTER 2. PROBLEM DEFINITION AND RELAYED WORK 	 12 

2.2 CLIQUE Algorithm 

The CLIQUE algorithm consists of the following three steps: 

1. Identification of subspaces that contain clusters. 

2. Identification of clusters. 

3. Generation of minimal description for the clusters. 

The main part of step 1 consists of finding the dense units in different subspaces. 

The dense units are identified using a bottom-up algorithm that exploits the 

monotonicity of the clustering criterion with respect to dimensionality to prune the 

search space. This algorithm is similar to the apriori algorithm for mining 

• • 	 association rules [4] 

Example 21 Let the transaction database, TDB, be Table 2.1 consisting of a total of 

10 transactions, with 6 numeric attributes each and the user input values of 4 and r 

be 5 and 0.2 respectively. The missing values for the attributes are represented by a 

"?' symbol. Assume for the sake of simplicity that all the attribute values range from 

1 to 100. 

p 
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Tid A B CD E F 

10 1 21 41 

e•-• 4 18 

20 4 24 44 9 9 49 

30 6 26 46 45 23 83 

40 9 29 

e•-• 57 5 

50 2 8 25 58 78 30 

60 53 ? 92 59 52 

70 19 8 89 58 78 57 

80 82 2 52 72 12 

90 

100 

89 

? 

78 

68 

10 

75 

25 

? 

? 

62 

38 

13 

Table 2.1: A transaction database TDB. 

CLIQUE finds the dense units for identification of the subspaces containing clusters 

as follows — 

1. Each attribute is split into 4 intervals to form 4 1-dimensional candidate units 

for each attribute namely Al, ...AS, B1,...,B5, Cl,... ,C5, D1,...,D5 and so 

on till F1,..., F5. 

Hence in this example we will have a total of 5 * 6 = 30 1-dimensional 

candidate units. 

6 
4 

-4) 
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2. By doing a first pass over the above dataset, the frequency count of all these 

1-dimensional candidate units is found. Selectivity of a unit is equal to the 

frequency count of that unit divided by the total number of transactions. 

Those units whose selectivity is greater than 0.2 are identified as 1-

dimensional dense units Di. Di in this example is {Al, A9, BI, B3, C5, D6, 

El, E8, F2, F6} 

3. The 2-dimensional candidate units C2, are generated by forming all possible 

pairs of the 1-dimensional dense units D1. Some candidate units are pruned. 

Only those candidate units are retained which have all its subset units dense. 

A 2-dimensional candidate unit 	E C2 if and only if 	, uli E Di . In 

this example, C2 consists of ( Al B1 , Al B3, 	E8F2, E8F6} 

4. A second pass is made through the dataset to find the selectivity of all the 

two dimensional candidate units u2  E C2 for i = 1 to n, n representing the 

total number of 2-dimensional candidate units. Thus we get, 132 consisting of 

{A1B3, B3C5} 

5. For k a 3, the candidate units generation procedure and procedure used for 

pruning the generated candidate units is as given below - 

The candidate generation procedure used for generating Ck from Dk-i 

is as under — 

insert into Ck 

select nail , h1), u1-[12 , h2), 	, hk-i), 	, hk-i) 

from Dk.-1 1.11 , Dk-1 112 

where ui.ai = u2.al , 	u2.1] , ui.hi = u2.1b, 
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tr1.a2 = u2.a2 , u1.12 = U2.12 U1•h2 = U2-112, - • • , 

111.ak-2 = 112.ak-2 , 111.1k-2= 112.1k-2 , 111.11k-2 = 112.11k-2, 

ui.ak_i < 112-ak-1 

In the above pseudo-code for the join operation, u.ai represents the ith 

dimension or attribute of unit u and , hi), represents its interval in the ith 

dimension. 

Pnmning procedure used for k-dimensional candidate units Ck - All those Ck 

units which do not have all its (k-1) dimensional subsets in the set of (k-1) 

dimensional dense units are discarded from the set of Ck units generated above. 

Then the ktk  pass is done to find selectivity of all Ck units and obtain the Dk 

units. 

This process is continued till no candidate units can be derived or no 

candidate is dense. In this manner all the dense units belonging to the different 

subspaces are found. These units form the input for the second step of CLIQUE. 

Time complexity: If k is the highest dimensionality of any dense unit and m is the 

number of the input points, the above algorithm will make k passes over the 

database. If a dense unit exists in k dimensions, then all of its projections in a subset 

of the k dimensions that is, 0(2k) different combinations will also be dense. Hence, 

the time complexity of this algorithm is O(c k  + mk) for a constant c. 

The second step of CLIQUE takes as input the set of dense units D, all in the same 

k-dimensional space S and outputs a partition of D into 1 31  , 	Pq  , such that all 
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units in Pi are connected and no two units Ui E Pi , E PP with i # j are connected. 

All these partitions represent the clusters found in the k-dimensional space S. It finds 

the partitions by using a depth-first search algorithm to find the connected 

components in the graph formed by representing the dense units as the vertices of 

the graph. An edge exists between those vertices whose corresponding dense units 

have a common face. 

The step three takes as input the clusters identified in step two and generates a 

concise description for it. For this purpose it first uses a greedy growth method to 

cover the clusters by a number of maximal rectangles(regions), and then discards 

the redundant rectangles to generate a minimal cover. 

Some of the drawbacks of the CLIQUE algorithm are as under- 

• It does not provide any support to the user for selecting the values for the input 

parameters and T. The cluster boundaries generated are totally dependant on the 

value of 4 and the value of T decides the quality of the clusters that will be 

generated. If the value of T is set too low then we will get a large number of dense 

units, and some of the clusters that we get from these dense units will be 

redundant. Similarly, if the value is too high then we will miss to capture some 

significant clusters. 

4 
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• It is tedious to make repeated passes over the database to find the selectivity of 

the large number of candidate units generated. This condition worsens when the 

dimensionality of the subspace clusters found in the database increases. As the 

dimensionality of the subspace clusters increases, there is an explosion in the 

number of dense and the candidate units generated. CLIQUE uses a MDL-based 

pruning technique. In this the dense units in the subspaces with low coverage 

are pruned so as to reduce the number of dense and candidate units generated. 

The coverage of a subspace is the fraction of the database that is covered by the 

dense units. This is believed to make the algorithm faster but it may lead to 

missing out of some important clusters. 

• If the size of the dataset is very large both with respect to the number of records 

and the number of attributes (data dimensionality), the time taken for each 

database pass to find the selectivity of the candidate units will increase 

substantially. 

2.3 Improvements over CLIQUE 

In the past few years, some subspace clustering algorithms have been 

proposed to overcome some of the problems of the CLIQUE algorithm. 
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The ENCLUS [8], a ENtropy-based subspace CLUStering algorithm was proposed 

to handle the large number of subspaces with dusters within them. In CLIQUE, the 

MDL-based pruning technique was used to prune some subspaces with low coverage 

to make the algorithm faster. However, it had the trade-off of missing out some 

significant dense units found in subspaces with low coverage. The ENCLUS [81 

algorithm has made the following contributions to the subspace clustering problem — 

o It has identified the following additional criteria for determining subspaces with 

good clustering: 

a) Criterion of High Coverage 

b) Criterion of high density and 

c) Correlation of dimensions 
as 

(a) 
	

(b) 

Figure 2.2: Examples of two data sets with equal coverage but different 

densities. The area within the rectangles is the value of the coverage. 
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In the figure 2.2 cases (a) and (b) have the same coverage, however the 

points in (a) are more closely packed and is a better candidate to qualify as a 

cluster. 

o ENCLUS [8] uses the entropy metric to measure all the above three criteria 

simultaneously to find subspaces with good clustering. It is also a grid based 

method and takes the inputs for the threshold from the user. In order to 

calculate the entropy, it also divides each dimension into equal width intervals 

to form a grid. Hence the size selected for the intervals, affects the quality of 

the final clustering obtained. 

MAFIA [16] (Merging of Adaptive Finite Intervals) is another subspace 

clustering algorithm, which uses adaptive interval sizes to partition the 

dimension depending on the distribution of data in the dimension. Using 

adaptive grid sizes, MAFIA attempted to reduce the computation and improve 

the clustering quality by concentrating on the portion of the data space which 

have more data points and thus more likelihood of having clusters. 

o PROCLUS [2] uses the concept of PROjected CLUStering for finding 

clusters in a multi-dimensional data space. PROCLUS also discovers 

interesting correlations among the data in various subspaces of the original 

high dimensional space, but it differs from CLIQUE in the output produced. It 

outputs a partition of the data points into clusters, together with the sets of 
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dimensions on which points in each duster are correlated. The clusters output 

by PROCLUS are useful in applications like classification and trend analysis 

where it is required to partition the data points into disjoint partitions. It fails 

to detect any overlapping clusters existing in the data set. ORCLUS [3] is also 

an example of a projected clustering algorithm_ 
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Chapter 3 

AOSS: An Attribute Oriented Storage 

Structure 

We discussed the details of the first subspace clustering algorithm CLIQUE 

in Section 2.2. We observed that, one of the major drawbacks of the algorithm is the 

repeated number of database passes required during step one to find the selectivity 

of the large number of candidate units that are generated. In step one of CLIQUE, 

which is based on the apriori [4] algorithm we observe that the entire database is 

scanned in order to find the selectivity of each candidate unit. Hence, as the number 

e of candidate units increases the time taken for each database pass increases 

proportionately. In reality, all the database records need not be accessed to find the 

selectivity of each candidate unit. Similarly, in the case when the dimensionality of 

the data space is very large it is not required to access the entire data record to find 

the selectivity of all the units. In order to find the selectivity of a unit u it needs to 

access only the values of those attributes, which are a part of the unit u. In short, if 

we can tackle the above two problems we can significantly improve the performance 

of step one of CLIQUE. 

Can we cut short on the number of data records and the number of attribute 

values of each record that are accessed by each unit to find its selectivity? To 

handle these concerns, we develop in this chapter an efficient method for storing the 
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very high dimensional huge datasets. Because of the ease with which data can be 

captured today from almost every aspect of the problem domain, all the datasets 

consist of a huge number of data records with a very large number of data attributes. 

First, we discuss the limitations of the existing data storage techniques to support the 

clustering of very high dimensional huge datasets in Section 3.1. Then in Section 

3.2, we propose the Attribute Oriented Storage Structure (AOSS) method for storing 

the datasets. In Section 3.3, we discuss how to perform the various database 

operations on the data stored using the proposed AOSS method, in section 3.4 we 

report the experimental results and conclude with a summary in Section 3.5. 

3.1 Limitations of the Existing Storage Techniques 

In subspace clustering, we try to find all the possible interrelationships that 

exist between the various data attributes. If we apply subspace clustering, on 

individual files then we will only find the subspace clusters existing within each of 

them independently. However, to get all the possible knowledge or patterns from the 

available data, we will have to consider all the data at one place in a database. Each 

record in such a database should consist of all the attributes of ones business. The 

resulting database that we get will represent a very high dimensional huge dataset. 

Such a database is likely to contain many missing values. 

ti 
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A Sample layout of a record consisting of 100 attributes will be as under — 

ai a2 a3 ? a5 ? a7 . 	.. a99 am 

Figure 3.1: A Sample record layout . 

The ai value, represents the value of the ith attribute Ai, for i = 1 to 100 and a 

`?' represents a missing value for the corresponding attribute. For example in the 

above layout, values of attribute A5 and A6 are missing. A typical database layout, 

consisting of ten lakhs of data records storing information about 100 attributes will 

be as under. 

Al 	A2  
	

Ai 	A100 

Red al a2 ? ? ai ? ? auk 

Rec2 a' 2 ? a'1-1 a'{+1 ? ai  m  

Rec999999 

. 

? 
I 

Rec1000000 a"1 . a"i a"0-1 
I 

a"100 

Figure 3.2: A typical very high dimensional huge dataset 

o. 
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Some of the drawbacks of the representation shown in figure 3.2 are as under: 

• Since, there will be many missing data values, a lot of storage space will be 

wasted. 

• Each time you access any record, you will be reading all the attribute values 

of the record. Majority of the cases you do not need to access all the 

attributes at the same time. 

• This representation is not suitable for subspace clustering algorithms. In order 

to find the selectivity of the different candidate units, we need not access all 

the attributes of the data and all the data records need not be accessed for all 

the candidate units. 

Hence, we propose the following Attribute Oriented Storage Structure (AOSS) for 

storing such a very high dimensional huge dataset. 

3.2 Attribute Oriented Storage Structure(AOSS) 

In the Attribute Oriented Storage Structure (AOSS), we store the information 

in such a way that all the records from the database are not accessed to find the 

selectivity of the various candidate units. And at the same time we access only the 

attribute information of the attributes, which are present in that particular candidate 

unit while finding its selectivity. 
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We explain below the various steps carried out to arrive at such a structure. 

• Step 1: In Figure 3.2, we observe that there are a lot of missing values in the 

various records. We could save a lot on space and time to process such missing 

value attributes if we store only those attributes having valid values. By doing 

so we will get records with varying number of attributes. And the database so 

constructed will lead to a substantial reduction in the space required. The 

record layout shown in figure 3.1 and the database structure of figure 3.2 will 

appear as under using the new AOSS structure- 

(Ai,a1.) (A2,a2) (A3,a3) (As,a5)  (A7,a7) . 	.. (A99,a99) (Aioo,aioo) 

Figure 3.3: A Sample AOSS record layout 

In the above figure 3.3, (Ai„ ai) represents the ith attribute value pair for 

those attributes having valid values. We do not show the details of the 4 th, 6th, and 

other attributes which contain missing values. 

After the step one the database shown in figure 3.2 will appear as shown in 

figure 3.4 with records containing varying number of attribute value pairs. 
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Reel (Ai,ai) (A2,a2) (kai) ... (Ai oo,ai 00) 

Rec2 
(A2,a12) (i4  )th 

Pair 

01+1  Alt 

pair 

•• - (A 100,a' too) 

I 

Rec999999 

Rec1000000 (Ai  ,a" i ) (Ai,a";) (A100,a"100) 

Figure 3.4: Database structure using variable length records 

Step 2: The above structure reduces the space required by eliminating the 

information of the missing value attributes from each record. Hence it results in 

shortening the length of the data records to be processed during each database pass 

to find the selectivity of the units. While finding the selectivity of a unit u, to avoid 

the processing of those attributes, which are not part of the candidate unit u, the 

above structure shown in figure 3.4 is split into two levels. At the top level, we have 

the AOSS record table. In this table, for each record we keep along with the record 

identifier the attribute information details, which include the address of the table 

storing the attribute values and the position where the value is stored in it. And at the 

next level we have independent AOSS attribute tables for storing the values of each 

attribute along with its record identifier from the AOSS record table. Using the 

AOSS method, the database structure from figure 3.4 will be represented with the 
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help of a AOSS record table and the AOSS attribute tables. A Sample of the 

structure of a AOSS record table and a AOSS attribute table is shown below. 

Reel (* *) ( * .* ) (s,*) ... (*,*) 

(i-l)th 

Pair 

(i+l)th 

Pair 

 ... (*,*) (...

. 

Rec999999 

Rec1000000 (40,40) 

Figure 3.5: A sample AOSS record table 

Ai  attribute table 

• ute 

Rec-id 

Rec-id from AOSS 

rd table 

Attribute value 

Arec-1 al 

Arec-2 aj ' 

Figure 3.6: A Sample AOSS attribute table 

• 
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In figure 3.5 and figure 3.6, we have shown a sample of the AOSS record 

table and a sample of the AOSS attribute table respectively. There will be a separate 

AOSS attribute table for each attribute. Hence, for our database of figure 3.2 we will 

have 100 such tables. Another advantage of this is that when we have a large 

number of candidate units we can split them into units with disjoint sets of attributes 

and process them in parallel by using the independent sets of attribute tables. 

3.3 Database Operations Using AOSS 

Currently, we have all database operations defined with records as the base 

unit. That is to say we have operations for creating, reading, deleting, and updating 

records. Each record is considered as consisting of a fixed set of data attributes. 

When we deal with very high dimensional data, and which is most of the time sparse 

in nature, it no longer makes sense to still continue with record as a base unit for 

carrying out the database operations. In subspace clustering, we are interested in 

capturing all the possible interrelationships that exist between the various data 

attributes. Therefore, it is sensible to consider an attribute as the base unit and define 

all the database operations in terms of attributes. Hence, we have defined operations 

for attribute creation, attribute reading, attribute insertion, attribute deletion, and 

attribute updation. Since, the AOSS design is mainly developed to make the 

subspace clustering process efficient, we assume that the most frequently performed 

operation will be Attribute reading and the other operations will be very infrequently 

4.4 
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carried out. The details of all these operations considering the AOSS method for 

representing the data are discussed below- 

Attribute Creation: This operation involves creating a new AOSS attribute table and 

storing the address of the table in the Attribute-details table. The Attribute-details 

table stores the addresses of all the attribute tables along with the attribute-ids and 

their descriptions. In figure 3.5 and figure 3.6 we have not shown the Attribute-

details table so as not to show the low-level implementation details and make the 

figure complicated. 

Algorithm details:  

1) Read the attribute description. 

2) Check if it exists in the Attribute-details table. 

3) If it exists report "Attribute already exists" and go to 6 

4) Generate Attribute-id and store Attribute-id and description in Attribute-

details table. 

5) Allocate space for attribute-table and store its address in Attribute-

details table. The attribute table could be stored as a separate file and its 

address will mean here its .  filename. 

6) Stop 

Attribute Insertion: This involves entering the attribute values of some specific 

attributes for specific records. The record entries may already be existing in the 
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AOSS record table or may not be existing. The details of the insertion operation are 

as under- 

Algorithm details:  

1) Read Attribute-id/Attribute description 

2) Check if it exists in the Attribute-details table 

3) If does not exist report" Attribute not found " go to 11 

4) Read record-id 

5) Check if record-id exists in AOSS record table 

6) If not found report and then create after receiving confirmation from 

user. 

7) Check if attribute information for the record exists. in the AOSS record 

table. 

8) If found, then display existing value from AOSS Attribute table and allow 

to update after receiving user's confirmation and go to 11. 

9) Add the attribute-details including its id description and record-id to 

the AOSS attribute table for that attribute. 

10) Add the Attribute-id and the Attribute rec-id to the AOSS record table 

entry for this record. 

11) Stop. 

Attribute Deletion: Attribute deletion takes as input the attribute-id or attribute 

description and the record-id of record whose details need to be deleted and removes 
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the entry from the AOSS attribute table and also from the AOSS record table's entry 

• for that record-id. 

Algorithm details:  

1) Read Attribute-id/Attribute description 

2) Check if it exists in the Attribute-details table 

3) If does not exist report" Attribute not found " go to 11 

4) Read record-id 

5) Check if record-id exists in AOSS record table 

6) If not found report and go to 11 

7) Check if attribute information for the record exists in the AOSS record 

table. 

8) If not found report error go to 11 

9) Iffound, then display existing value from AOSS Attribute table and delete 

after receiving user's confirmation 

10)Delete the corresponding entry for that record-id from the AOSS record 

table. 

11)Stop. 

Attribute Updation: Attribute Updation takes as input the attribute-id or attribute 

description and the record-id of record whose details need to be updated. 

Algorithm details:  

1) Read Attribute-id/Attribute description 

2) Check if it exists in the Attribute-details table 
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3) If does not exist report" Attribute not found " go to 12 

4) Read record-id 

5) Check if record-id exists in AOSS record table 

6) If not found report and go to 12 

7) Check if attribute information for the record exists in the AOSS record 

table. 

8) If not found report error go to 12 

9) Wound, then display existing value from AOSS Attribute table 

10)Read new value for the attribute 

11) Write new value into the AOSS Attribute table. 

12)Stop. 

Attribute Reading: This operation allows you to read the attribute value of a 

particular attribute for a particular record-id. 

Algorithm details:  

1) Read Attribute-id/Attribute description 

2) Check if it exists in the Attribute-details table 

3) If does not exist report" Attribute not found " go to 10 

4) Read record-id 

5) Check if record-id exists in AOSS record table 

6) If not found report and go to 10 

7) Check if attribute information for the record exists in the AOSS record 

table. 

V 
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8) If not found report error go to 10 

9) Iffound, then display existing value from AOSS Attribute table 

10)Stop. 

Load Attribute-values: In subspace clustering, most of the times all the attribute 

values of a particular attribute-id need to be accessed at one time irrespective of their 

record-id's to find the selectivity of the candidate units. This is very efficient in the 

AOSS method as all the values of a particular attribute are stored in its AOSS 

Attribute table. 

Algorithm details:  

1) Read Attribute-id/Attribute description 

2) Check if it exists in the Attribute-details table 

3) If does not exist report" Attribute not found " go to 5 

4) While not end of AOSS Attribute table ofAttribute-id attribute 

Read attribute values; 

5) Stop 

• 

4 
• 
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3.4 Efficiency obtained using AOSS 

In this section we discuss the time efficiency achieved using the AOSS 

method. This method of representation has mainly helped in making the algorithm 

used to find the frequency count of candidate units efficient. We present the details 

of the algorithm used in our implementation to find the frequency count of a 

candidate unit using the old Record Oriented Structure (ROS) as well as the AOSS 

representation and demonstrate the working with the help of the dataset given in 

table 2.1 in chapter 2. 

Algorithm used for finding frequency count of a k-dimensional unit u using AOSS 

o 	 Inputs 

• unit u — consisting of k attribute-id and unit-id pairs, along with startrec and 

endrec of each pair. startrec and endrec denote the first and last occurrence 

positions of the unit in the dataset respectively. 

• AttTable - Attribute table containing record-id details of attributes present in the 

unit u 

Output 

• frequency count of unit u 
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Processing 

1. startpos = greatest of startrec values of the attribute-units forming the unit u 

2. endpos = smallest of endrec values of the attribute-units forming the unit u 

3. if (endpos <= startpos) 

4. count = 01 

5. go to step 38 

6. ford= 1 tok 

7. initialize curpos[d] to 1 // to keep track of record-ids in AttTable of various 

units contained in unit u 

8. curposl = cuipos[1] 

9. attl = attribute-id of first pair of u 

10.unitl = unit-id of first pair of u 

11.// skip all rec-ids less than startrec of the first attribute Arecarray 

12. while(AttTable[attl][unitl].Arecarray[curposl] < startpos ) 

13. increment curposl 

14.startpos = AttTable[attl][unitl].Arecarray[curposl] 

15.m = ctoposl + 1 

16.while( startpos <= endpos and m < AttTable[attl ][unitl].reccnt ) 

II recent in above step represents number of record-ids stored in Arecarray of 

AttTable for that att-id and unit-id 

17.match = TRUE; 

18.ford=ltok 

19. 	att = attribute-id of d th pair of u 
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20. uid = unit-id of d th pair of u 

21. curposd = cuipos[d] 

22. for ( p = curposd; p < AttTable[aft][uid].Reccnt; p++) 

23. if ( AttTable[att][uid].Arecarray[p] < startpos ) 

24. continue 	II i.e move to next iteration offor p step 22 

25. else 

26. break 	// i.e out of for p loop 

27. if ( AttTable[att][uid]. Arecarray[p] equal to startpos ) 

28. curpos[l] = p+1 

29. continue // move to next iteration of ford loop step 18 

30. else 

31. match = FALSE 

32. curpos[1] = p; 

33. break; // i.e out of ford loop 

34. if (match is equal to TRUE ) 

35. increment count 

36. startpos = AttTable[attl ] [unit1].Arecarray[m]; 

37. inclement m and if m < AttTable[attl][unitUreccnt goto 16//end while loop 

38. stop 
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Algorithm used for finding frequency count of a k-dimensional unit u using ROS 

Inputs 

• unit u — consisting of k attribute-id and unit-id pairs 

• Region - table containing unit-ids of all records of all attributes present in the 

dataset 

Output 

• frequency count of unit u 

Processing 

1. for p =1 to number of records in dataset 11 complexity more due to this step 

2. match = TRUE 

3. for d = 1 to k // number of attribute-id unit-id pairs in unit u 

4. attid = attribute-id of d th pair of unit u 

5. unitid = unit-id of d th pair of unit u 

6. if( Region[attid][attid] not equal to unit-id) 

7. match = FALSE 

8. goto step 11 

9. if (match equal to TRUE) 

10. increment count 

11.stop 

For the sake of continuity, we reproduce table 2.1 here again, with minor 

modifications with respect to notations used — here we use Rec-id, -1 instead of Tid 
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and ? to represent record-id and missing values respectively and the attributes are 

named as Ai, A2 , A3, A4, A5 , A6 instead of A, B, C, D, E, F 

Rec-id Al A2 A3 A4 A5 A6 
10 1 21 41 -1 4 18 

20 4 24 44 9 9 49 

30 6 26 46 45 23 83 

40 9 29 -1 57 -1 5 

50 2 8 25 58 78 30 

60 53 -1 92 59 -1 52 

70 19 8 89 58 78 57 

80 82 2 -1 52 72 12 

90 89 78 10 25 -1 38 

100 -1 68 75 -1 62 13 

In this example, considering the value of to be equal to 5, we obtain 

the region table shown in table 5.1 storing the unit-ids 0 to 5 for the 

respective attribute values, 0 is used to represent missing values or values out 

of range, 1 for values from 1 to 20, 2 from 21 to 40, and so on ... The range 

of values above is from 1 to 100. 
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Rec-id Al A2 A3 A4 A5 A6 
10 1 2 3 0 1 1 

20 1 2 3 1 1 3 

30 1 2 3 3 2 5 

40 1 2 0 3 0 1 

50 1 1 2 3 4 2 

60 3 0 5 3 0 3 

70 1 1 5 3 4 3 

80 5 1 0 3 4 1 

90 5 4 1 2 0 2 

100 0 4 4 0 4 1 

Table 3.1: Region table used in ROS 

Consider the 2-dimensional unit u = {( At , 1) (A4 , 3)). Using ROS, it will 

scan through the entire Region table consisting of the 10 entries and obtain the 

frequency count as 4 for this unit as there are 4 records which have for attributes Al 

and A4 their values falling in unit 1 and unit 3 respectively. 

Using AOSS, it will access only the AttTable entries of attributes Aland A4 

for unit 1 and 3 respectively. AttTable[Ad[1].Arec.affay = 110, 20, 30, 40, 50, 70) 

and that of AttTable[A4][3].Arecarray = {30, 40, 50, 60, 70, 80). The startrec for 

attributes Aland A4 are 10 and 30 respectively and the endrec values are 70 and 80. 

In AOSS, the startpos value is equal to the value of the largest startrec and the 

endpos is equal to the value of the lowest endrec of all the attribute-unit pairs 

occurring in unit u. In this case the startpos is 30 and endpos is 70. Hence it just 

starts scanning from 30 in AttTable[A 3][1].Arecarray , finds if 30 is found in 

a 
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AnTable[A4][3].Arecarray, since it is found it increments the count. Next moves to 

40 in AttTable[Ai][1].Arecarray and this time AttTable[A4][3].Arecarray curpos[4] 

would be pointing to 40, since they match it increments count moves on to next in 

both tables till AttTable[Ad[1].Arecarray[oupos[1]] becomes greater than endpos. 

When curpos of Al moves to 70 that time curpos of A4 will be pointing to 60, since 

they do not match, curpos of A4 is moved to the next position which now points to 

70 since they match count is incremented and both curpos are incremented. At this 

point it so happens in this example that both termination conditions are true — that is 

it has reached the end of AttTable[Ai][1].Arecaray and also curpos of 

AttTable[A4][3]..Arecarray is greater than endpos i.e 70. Using this method it greatly 

reduces on the number of records accessed and also we can load only the attribute 

tables of those attributes, which are present in the unit u. 

3.5 Experimental Results 

In this section we present an empirical evaluation of the CLIQUE algorithm 

using the AOSS file structure using synthetic datasets. The objective of the 

experiments was to compare the time efficiency of the CLIQUE algorithm when 

implemented using the old record based file structure and the proposed attribute 

oriented file structure for storing very high dimensional huge data sets. We 

compared the performance by varying the size of the database, dimension of the data 
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space and dimension of the clusters. The experiments were run on a 3.00GHz 

Pentium 4 processor running linux. 

3.5.1 Synthetic data generation 

The synthetic data generation method described in [1] has been used for the 

data generation. The data generator takes as input the number of records to be 

generated, the number of attributes and the range of values for each attribute. The 

range of values was set to [1,100] for all attributes. The clusters are hyper-rectangles 

in a subset of dimensions such that the average density of points inside the hyper-

rectangle is much larger than the average density in the subspace. The cluster 

description details provided by the user include the number of clusters, the 

maximum dimensionality of the clusters, and the cluster descriptions which specify 

the subspaces of each hyper-rectangle and the range of each attribute in the 

subspace. The attribute values for a data point assigned to a cluster are generated as 

follows. For those attributes that define the subspace in which the cluster is 

embedded, the value is drawn independently at random from the uniform 

distribution within the range of the hyper-rectangle. For the remaining attributes, 

the value is drawn independently at random from the uniform distribution over the 

entire range of the attribute. We add 90% of the specified number of points equally 

among the specified clusters, and the remaining 10% points are added as random 

noise. Values for all the attributes of these points are drawn independently at random 

from the uniform distribution over the entire range of the attribute. 
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3.5.2 Synthetic data results 

We studied the performance of ROSCLIQUE(CLIQUE implemented using 

Record Oriented Storage structure) v/s AOSSCLIQUE(CLIQUE implemented 

using Attribute Oriented Storage Structure) algorithm by varying the number of 

records, the dimension of the data space(total number of attributes) and the 

dimension of the clusters. The values for 4 and T , were set to 10 and 0.15 

respectively. 

Database size: Figure 3.7 shows the results of the experiments carried out by 

varying the number of records from 50,000 to 1,50,000. The dimension of the data 

space was selected as 100. The number of missing values contained in any record, 

have been generated randomly between 20 and 40. The dimension of the 3 clusters 

generated was 9. 
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Figure 3.7: Scalability with the number of records(with missing values). 

It can be observed from figure 3.7 that there is a significant improvement in 

the time taken for CLIQUE, when we used the AOSS method to store the data. The 

gain will be much more if the process of finding the 1-dimensional dense units of all 

the attributes is carried out in parallel during the first pass. 

The same experiment was again repeated for the same set of data records this 

time containing no missing values. The only difference in the observations as 

expected was a proportionate increase in the time taken by both ROSCLIQUE and 

AOSSCLIQUE. The results are shown in figure 3.8 . 

e 
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Figure 3.8: Scalability with number of records(without missing values) 

e 
A 

Dimensionality of the data space: The next set of observations were taken by 

varying the total number of attributes(dimension of data space) from 50 to 150. The 

total number of records was selected as 50,000. Again the dimensionality of the 3 

clusters chosen was taken as 9. And the number of missing values in any record was 

taken as a random number between 20 and 40. The results are shown in figure 3.9. 

e 
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Figure 3.9: Scalability with the dimension of the data space. 

Dimensionality of the clusters: Both the methods suffer when the dimensionality of 

the clusters increases, due to the inherent nature of the apriori algorithm which 

suffers from the curse of dimensionality. However, using the depth-first method to 

find the maximal dense units, to help in finding the subspace clusters with the AOSS 

structure has showed very good results, details of this are reported in chapter 5. 

3.6 Summary 

Although, a tremendous amount of research work has been carried out in 

clustering by the data mining community, it has been found that all these algorithms 

fail when it comes to finding clusters in very high dimensional huge datasets. It is 
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here that we realize the importance of subspace clustering algorithms. Although a 

few subspace clustering algorithms like CLIQUE [1], MAFIA [16], ENCLUS [8] 

have been designed, most of them suffer due to the way the data is stored. In this 

chapter, we have discussed a new framework for storing the data keeping in mind 

the requirements of the subspace clustering algorithms. In subspace clustering, we 

place more importance on the attributes of the data and do not want to miss out on 

any useful patterns that may exist across attributes. Hence we have developed the 

Attribute Oriented Storage Structure (AOSS) for storing the very high dimensional 

huge datasets and performed an experimental study, which showed the performance 

gain obtained using this method. The performance gain is mainly due to the different 

approach used to fmd the selectivity of the different units, which became possible 

due to AOSS. This approach helps in reducing the number of records actually 

accessed to find the selectivity of the different units. However, since CLIQUE is 

based on the apriori algorithm to fmd the dense units, AOSSCLIQUE also does not 

show improvement as the dimensionality of the clusters increases and the capability 

of this structure is not utilized to its full extent. Hence in chapter 5, we have 

demonstrated the efficiency of this structure using a depth-first method unlike the 

breadth-first method of apriori for high dimensional clusters. 



47 

Chapter 4 

SAMCLIQ: A SAMpling based CLIQue 

Algorithm 

We discussed the details of the first subspace clustering algorithm 

CLIQUE[I] in Section 2.2. We observed that, one of the major drawbacks of the 

algorithm is the repeated number of database passes required during step one to find 

the selectivity of the large number of candidate units that are generated. For very 

large databases, when the entire data cannot be loaded into the main memory at one 

time this step will require a tremendous amount of 110 to be done. Hence, if for 

example 10% of the data fits in the available main memory at a time then for one 

pass through the entire database, the data will have to be loaded in parts 10 times 

from the disk. And fork passes over the data, 10 * k loads will be required. 

Can we improve the efficiency of the first step, to handle very large 

databases? To address this problem, we developed an algorithm SAMCLIQ which 

uses a sampling based approach to find the dense units existing in the various 

subspaces of the data space. In this chapter, we first discuss in Section 4.1 the Use of 

sampling technique in data mining. In Section 4.2, we propose a sampling technique 

to get the sample of records from the original data space for finding the initial set of 

dense units. The details of the SAMCLIQ algorithm are presented in Section 4.3 and 

Section 4.4 reports the experimental results. 
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4.1 Use of Sampling in Data Mining 

Sampling has played a very important role in data mining and has been 

mainly used to reduce the I/O activity required for knowledge discovery in large 

databases. In section 4.1.1, we explain the important role played by sampling in data 

mining. Section 4.1.2 explains some limitations of sampling and certain solutions to 

overcome them. 

4.1.1 Role played by Sampling in Data mining 

The application of sampling for mining association rules has been suggested 

in [21], and its effectiveness for mining association rules has been evaluated in [31]. 

It has been noted in [29] that samples of reasonable size provide good 

approximations for frequent sets. In [18], a general analysis on the relationship 

between the logical form of the discovered knowledge and the approximate sample 

sizes needed for discovering the knowledge has been studied. The role played by 

sampling in data mining has been well explained in [22] also. In the experimental 

evaluation carried out in [31], it has been shown that samples of reasonable size 

which fit in the main memory can be used with a reasonably high level of accuracy, 

to find the data patterns that exist in the database with high confidence. 
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4.1.2 Limitations of Sampling 

To reduce the 110 activity, a random sample from the original database, 

small enough to be handled totally in main memory is drawn and the approximate 

regularities that exist in the original database are found out. These approximate 

results are then used to adjust parameters for a more complete knowledge discovery 

phase. Choosing sample sizes depending on the available main memory, 

approximate results can be obtained about the original database. However, we 

cannot be very sure that we have not missed out any data patterns that exist in the 

original database. And at the same time, if we do not include the right set of records 

in the sample we may get some patterns in the sample which actually do not exist in 

the original database. 

Hence, in order to obtain the best results from the sample drawn it is 

important that we select a proper size for the sample and at the same time ensure that 

we select those records from the original database which help us in identifying in 

majority of the cases, all the patterns which exist in the original database. For this 

purpose we have developed a sampling technique for extracting a sample of data 

records from very high dimensional huge datasets, which is based on the AOSS 

method used for storing data. We discuss this method of sampling in Section 4.2. 

In business and various other applications, where important decisions have to 

be taken based on the data patterns that exist in the databases, one cannot rely totally 

on the results obtained from sampling. Hence, as a tool for further analysis, the 

concept of negative border has been applied in many applications. The negative 
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4 

border information has been used in [27], [13] and [23] to achieve efficiency in the 

incremental mining of association rules. In [23], Manilla and Toivonen have shown 

that the evaluation of the negative border units ensures that no frequent patterns are 

missed out. We have adopted the use of the negative border concept to ensure that 

we do not miss out any of the dense units, which were not present in the sampled 

records, but are actually found in the original database. More details about the 

negative border units have been discussed in section 4.3. 

4.2 Proposed Sampling technique 

In this section, we first discuss some criteria for a good sample under 

subsection 4.2.1 followed by subsection 4.2.2 which presents a brief discussion on 

the sampling method used in [29]. Section 4.2.3 discusses the AOSS based sampling 

technique. 

4.2.1 Criteria for a good sample 

The efficiency and the accuracy of the results obtained by using sampling, 

depends on the following two factors- 

• Sample size — If the sample size selected is too small, compared to the size 

of the original database then there is a more chance of missing out the 

patterns found in the original data. And at the same time if the sample 

• 
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size selected is very large, then we may not get any missed units but the 

actual purpose of sampling is lost. The size selected should be able to 

have a balance between the number of missed patterns generated and the 

extra time that we spent in processing the sample records. 

• Selection of good records — The selection of a proper sample size is 

important, but choosing the right set of records for the sample is more 

important than this. Even if we choose a big sample size, but if most of 

the records selected are either outliers or noise points then we will fail to 

identify the correct patterns from the database. 

Given a sample size n, we have designed a sampling algorithm which gets 

the best set of n points to help in identifying all the possible patterns from the 

original database of size N in majority of the cases. For this purpose, we assume that 

the original data has a very large number of attributes, and is very large in size such 

that the entire data does not fit in main memory at one time. The details of the 

sampling technique is explained in section 4.2.3. 

4.2.2 Sampling for finding frequent sets 

Till date, many algorithms have been designed for sampling but none of 

them address in specific, the issue of drawing a sample from a very high 

dimensional huge dataset. Most of them randomly pick up the points, without giving 

much importance to the quality of the points that are selected. A lot of the 
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algorithms have attempted to get the sample sizes for a required level of accuracy. In 

[29], Toivonen has used sampling for reducing the number of database passes 

required to find the frequent item sets to be used for finding the association rules 

from large databases. The performance study in [29] shows that after mining the 

sample, the sampling algorithm needs only one scan of the original database to find 

all frequent patterns. However, this algorithm does not focus on the selection of the 

points for the sample, but uses Chernoff bounds to determine the sample size 

required for a desired level of accuracy. This process of finding the sample size does 

not take into account the size N of the original database, hence many times if the 

accuracy level required is very high it may give a large sample size. Besides the 

algorithm has not paid much attention to picking the right set of points for the 

sample, since they were not dealing with very high dimensional data sets. 
et 

11. 

4.23 AOSS based sampling technique 

In our proposed sampling technique we have focused on the selection of the 

points for the sample from those, which contribute to the formation of the various 1-

dimensional dense units. The various steps are as under- 

1) Using the user-input value for 4, form the various one dimensional 

candidate units by splitting the range of all attributes into 4 intervals. 

A 
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2) Using the AOSS attribute tables for all the attributes, the selectivity of all 

units is found out. The process of finding the selectivity for the candidate 

units of the various attributes can be carried out in parallel. 

3) The 1-dimensional dense units are obtained by choosing those candidate 

units whose selectivity is larger than the user specified threshold value T. 

4) We retain only the record-id information of the 1-dimensional dense 

units. We call this set of record-ids the sample pool. Naturally this 

sample pool will be much smaller in size compared to the total data size. 

We select the points for the sample from this pool. 

5) Sample selection — 

The details of the sample selection are discussed after example 4.1. 

Example 4.1 

Consider the following transaction table 4.1 consisting of 10 records. Each 

record has 6 attributes namely A, B, C, D, E and F. The values of all these 

attributes, are in the range of 1 to 100. 

TIDA B C D E F 

T1 1 21 41 0 4 18 

T2 4 24 44 9 9 49 

T3 6 26 46 45 23 83 

T4 9 29 49 56 5 57 

T5 2 8 25 58 78 30 

T6 53 9 92 59 79 52 

V 

,g4 

A 
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T7 19 8 89 58 78 57 

T8 82 2 98 52 72 12 

T9 89 78 10 25 2 38 

T10 68 68 75 1 62 13 

Table 4.1: A sample of 10 transactions consisting of 6 attributes 

Consider a threshold value of 0.4 and the number of intervals equal to 10. 

The various units will have the following range values- 

Unit 1: 1-10 , 

Unit 2: 11-20, 

Unit 10: 91-100 

The various 1-dim candidate units formed are as under — 

Al, A2, 	, A10, 

Bl, B2, ... ,B10, 

F1,F2, , F10. 
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After pass one through the transactions in the table 4.1, we get the following dense 

units — 

unit 	freq. count 	 TID lists 

Al 	5 	 Tl, T2, T3, T4, T5 

B1 	4 	 T5, T6, T7, T8 

B3 	4 	 T1, T2, T3, T4 

C5 	4 	 T1, T2, T3, T4 

D6 	5 	 T4, T5, T6, T7, T8 

E8 	4 	 T5, T6, T7, T8 

From the 1-dimensional dense units, the following 2-dimensional candidate 

units will be generated - 

(Al B1), 

(Al B3), 

• • • 

(Al E8), 

(B1 C5), 

(B1 ES), 

• • • 

(D6 E8). 

A 
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After second pass we get the following 2-dim dense units 
• 

(Al B3) : 4, 

(Al C5) : 4, 

(B3 C5) : 4, 

(BI D6) : 4, 

(B1 E8) : 4, 

(D6 E8) : 4. 

After third pass we get the following 3-dim dense units - 

(Al B3 C5) : 4 

(Bl D6 E8) : 4 

• 
Given above are the various steps carried out in step one of the CLIQUE 

algorithm. 

The Sample Selection procedure is as follows -. 

1) find all one-dimensional dense units and their tid-lists(record-ids) 

2) group transactions(record-ids) based on number of such 1-dim dense units 

they are contained in and have these groups sorted in descending order of 

the record-id counts. 

3) Choose a proportionate number f / tf * S, of record-ids randomly from each 

group in the sorted order. f represents the number of dense-units, tf the 
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count i.e the number of record-ids present in that group and S the desired 

sample size. 

Grouping of record-ids based on number of 1-dim dense units they are 

present in, for the data in example 4.1 above this will be as follows — 

No. of units 	Record-ids 	 count 

3 	 T1, T2, T3, T6, T7, T8 	6 

4 	 T4, T5 	 2 

5 	 0 

6 	 0 

Assume sample size = 4. Randomly select any 4 record-ids from group with 

number of unit equal to 3. If number of record-ids in unit 3 is less than 4 then select 

from remaining units i.e 4 in this case. This process ensures that we get good set of 

records for the sample i.e records containing dense units. 
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4.3 Subspace Clustering Using Sampling 

The first step of the CLIQUE[1] algorithm is quite complex for huge datasets 

having high dimensional subspace clusters. If k is the highest dimensionality of any 

unit that is found than it will require as many database passes over the data as equal 

to the highest dimensionality of any dense unit in the data. Hence in order to reduce 

the number of database passes and the I/O required, we have developed the 

SAMCLIQ algorithm. The SAMCLIQ algorithm basically tries to improve the 

performance by using an efficient sampling technique for identifying the dense units 

in step one of CLIQUE. After selecting the sample using the method discussed in 

section 4.2.3, we find all the dense units in the sample using the method discussed in 

section 4.3.1. After getting the dense units from the sample, we use the concept of 

negative border units to make sure that we have not missed out on any units, which 

are present in the original data space. 

The Negative Border N, consists of all the candidate units generated in the 

level-wise algorithm that were not dense units. In other words if C is the set of all 

the candidate units generated, D is the set of dense units then C = D L) N. After 

obtaining the results using sampling, we want to make sure that we have not missed 

out any units, which are dense in the original database but were not detected in the 

sample. Obviously the subsets of all such likely missed units will be found in the 

negative border N of the sample. 
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4.3.1 Algorithm for identification of dense units 

The Algorithm we propose requires an initial pass, for selecting the sample 

during which it generates the 1-dimensional dense units also. After selecting the 

sample we apply the level wise algorithm used in step one of CLIQUE to get all the 

candidate and dense units present in the sample. Then a first pass over the original 

database (0. D) is carried out to find if any units are missed out, by using sampling. 

If any units are missed then an additional pass is made over the O.D. This work was 

carried out prior to the development of the AOSS method. Hence, in this chapter we 

have not used it as such for the main algorithm. The details of the algorithms are as 

under 

Sampling for identification of dense units — The accuracy of the results obtained 

using sampling, to a large extent depends on the size of the sample and the method 

used to select the sample points from the database. Since we are considering very 

large databases and we want our sample to fit in main memory, we choose sample 

size s such that it is neither too large and nor too low by using the technique 

discussed in section 4.2.3. We know that, with increasing sample sizes the 

probability of finding the dense units identified in the sample, in the original 

database also are high and thereby the possibility of occurrence of false dense units 

and of missed units are almost negligible. Hence, an extra pass over the database 

will not be required, but if the sample size is too large, then the time taken to process 

the sample is very large compared to the gain in performance achieved by reducing 

er 
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the number of passes. In place of CLIQUE, other subspace clustering algorithms like 

MAFIA [16] can also be used. Depending on the quality of sample selected, there 

are three cases that we can encounter - 

a) There may be some units, which were dense in the sample but are not dense 

in the original database. In such cases we have unnecessarily counted such 

units, we will call such units as false dense units. These false dense units 

get discarded after the first pass over the original database and do not affect 

the accuracy of the final results obtained for the original database. 

b) There may be some units, which were not dense in the sample but are dense 

in the original database. In such a case, we say that there has been a miss 

i.e., we have missed to capture these units and some higher-level units of 

these in the sample. There are two types of misses that we may come 

across first type is where we fail to capture some dense units in some 

subspaces and second wherein some subspaces containing dense units were 

fully missed. Whenever there are such missed units say M, then some 

higher level candidate units say Cl generated using M may be dense in 

the original database. But this set Cl would not be generated by the 

sample, hence there is a need to generate higher level candidate units of 

such missed units and evaluate them i.e find their counts in the original 

database by doing an additional pass over the database. 

c) The units which were dense in the sample are dense in the original database 

also and vice-versa. This is an ideal case and gives the best performance if 

the sample size is selected properly i.e it is not too large, but at the same 
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time very closely resembles the original database. In this case the results 

will be obtained by doing a single pass over the original database, besides 

the initial pass required to draw a sample and find 1-dimensional candidate 

and dense units for the original database. 

From above we observe that it is case (a) and case (b) that needs to be 

handled properly. To handle case (b) one method that is discussed in [29] is to lower 

the density threshold value, while generating the candidate units for the sample. This 

will definitely reduce the chances of a miss, but will lead to an increase in the 

number of false dense units. The aim to avoid the misses, is to achieve the results in 

just one pass. If there are missed units, then two complete passes will be required 

over the original database. Another method to reduce the number of passes to less 

then two complete passes is to adopt the technique used in [7]. Instead of waiting for 

the end of the first pass to find the missed units, we check for missed units after 

every M records have been processed and generate the higher level candidate units 

for such missed units and start counting the occurrence of these units from that point 

onwards. If all the missed units were detected, after x number of transactions were 

processed during the first pass, then we will need one complete pass and scan only 

the un-scanned x transactions during the second pass for the missed units in C 1 . We 

will need two complete passes only when we have found missed units towards the 

end of the first pass. This will normally happen if the data is very correlated. The 

value for M should be selected carefully, in such a way that there is not much of 

processing overhead. 
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Algorithm for Generating the dense units in the Sample drawn :  

Inputs: 

• The Sample points of size s from the original database (0D), 

• number of attributes(dim), 

• density threshold T, 

• set C[1 ] of 1- dimensional candidate units 

• set D[1] of 1-dimensional dense units obtained from the sample. 

Outputs: 

• set C of candidate units in the sample, 

• set D of dense units obtained from the sample data records 

• the 1-dimensional dense units of O.D. 

Processing: 

1. Use D[1] to find C[2] set of 2-dimensional candidate units; // this avoids 

the chances of a 1-dimensional missed unit 

2. While more candidates are generated 

{ 

find selectivity of C[k] in the sample ; // fork >= 2 and <= dim 

find D[k] = dense units in sample from C[k]; 

generate C[k+l] from D[k]; 	// the candidate generation procedure 

used in CLIQUE is used. 

it 
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-1-1-k; 

) 

Algorithm for the_first pass /1 to find if any missed units are found 

Inputs: 

• set C and D obtained from the sample, 

• the Original Database O.D, 

• the threshold value T. 

Outputs: 

• set Dl set of dense units in the O.D 

• set Cl set of missed units. 

Processing: 

1. Num_parts = NABUFFSIEE; 

2. Initialize counts of all units in C to 0; 

3. for (n =1; n<= Num_parts; n++) 

( read BUFFSIZE records into main memory buffer[BUFFSIZE]; 

update counts of units in C using buffer[BUFFSIZE]; 

} 

4. find Dl = set of dense units in O.D ; // those units from C whose count is 

N* 
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5. find M - missed units by comparing D and DI ; 

6. if M is empty 

goto step 9; //stop 

else 

find CI = set of all candidate units formed from M and D units ; 

// Cl is the candidate units missed in the sample , which may be dense in the O.D 

7. Do a second pass through the 0. D ; // required only if there are missed 

units . 

8. The set Dl consists of all the dense units in the Original Database (O.D). 

9. Stop 

This forms the input to the second step of the subspace clustering algorithm. 

Algorithm for the second pass  

Inputs: 

• set Cl // the set of all candidate units formed from M and D units 

obtained from first pass, 

• OD, 

• the threshold value T. 

Output: 

• the final set Dl of O.D // all dense units of 0.D 

• 
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Processing: 

1. Find the counts of all units in set Cl in O.D. 

2. Find additional dense units obtained from Cl and add to set Dl; 

3. Stop. 

4.4 Experimental Results 

In this section we present an empirical evaluation of the above algorithm, 

which we call SAMCLIQ (SAMpling based CLIQue) algorithm using synthetic 

datasets. The goal of the experiments was to compare the performance of step one 

of CLIQUE with the step one of SAMCLIQ. The MDL pruning used in step one of 

CLIQUE is not used in our implementation of CLIQUE. We compared the 

performance by varying the size of the database, dimension of the data space and 

dimension of the Clusters. The experiments were run on a 800 MHz Intel Pentium 

III processor running linux. 

4.4.1 Synthetic data generation 

The synthetic data generation method described in [1] has been used for the 

data generation. The data generator takes as input the number of records to be 

generated, the number of attributes and the range of values for each attribute. The 

range of values was set to [0,100] for all attributes. The clusters are hyper-rectangles 
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• 

in a subset of dimensions such that the average density of points inside the hyper-

rectangle is much larger than the average density in the subspace. The cluster 

description details provided by the user include the number of clusters, the 

maximum dimensionality of the clusters, and the cluster descriptions which specify 

the subspaces of each hyper-rectangle and the range of each attribute in the 

subspace. The attribute values for a data point assigned to a cluster are generated as 

follows. For those attributes that define the subspace in which the cluster is 

embedded, the value is drawn independently at random from the uniform 

distribution within the range of the hyper-rectangle. For the remaining attributes, 

the value is drawn independently at random from the uniform distribution over the 

entire range of the attribute. We add 90% of the specified number of points equally 

among the specified clusters, and the remaining 10% points are added as random 

noise. Values for all the attributes of these points are drawn independently at random 

from the uniform distribution over the entire range of the attribute. 

4.4.2 Synthetic data results 

We studied the performance of CLIQUE v/s SAMCLIQ algorithm, by 

varying the following parameters the database size, the dimension of the data space 

and the dimension of the clusters. The values for 4 and T, were set to 10 and 0.15 

respectively. 

- 
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• 

Figure 4.1: Scalability with the number of records. 

Database size: Figure 4.1 shows the results of the experiments carried out by 

varying the database size from 5,00,000 records to 20,00,000 records. The sample 

size was selected as 1% of the database size and the main memory buffer size was 

taken equal to the space required to load 50,000 records. The data space had 50 

dimensions. We found that the difference between the time taken by CLIQUE and 

SAMCLIQ increases significantly with the increase in the database sizes. 
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Figure 4.2: Scalability with the dimension of the data space. 
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Dimensionality of the data space: Figure 4.2 shows the scalability as the 

dimensionality of the dataspace is increased from 25 to 100. The experiments were 

carried out with a database containing 10,00,000 records. There were 5 clusters 

each in a different 7 dimensional subspace. The sample size selected for SAMCLIQ 

was 5% of the database size. 

Figure 4.3: Scalability with the dimensionality of the clusters. 

Dimensionality of the clusters: Figure 4.3 shows the scalability as the highest 

dimensionality of the clusters embedded in the different subspaces is increased from 

3 to 9. Again the database size was selected to be equal to 10,00,000 records and the 

sample size was taken equal to 5% of the database size. 

4.5 Summary 

We have used the CLIQUE algorithm as the base on which the SAMCLIQ 

algorithm has been developed. But this can also be used in other subspace clustering 
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algorithms like MAFIA to further boost the performance. Our algorithm can easily 

be implemented as a parallel algorithm After the first pass through the data base and 

the generation of candidate units using the sample, the data base can be split into n 

parts and the counts of all the candidate units can be computed in parallel in all the 

subparts. Then the counts in all n parts can be summed up and if there are missed 

units then again the counts for the missed units can be found in parallel during the 

second pass in SAMCLIQ. 

We compared the performance of SAMCLIQ with CLIQUE by varying the 

database size, the dimension of the data space, and the dimensionality of the 

clusters. We found that there is a significant gain in performance when we use 

SAMCLIQ for large databases and higher dimensional data spaces. As we vary the 

dimensionality of the clusters, also the performance of SAMCLIQ is much better 

compared to CLIQUE but for very high dimensional clusters, the performance of 

SAMCLIQ also suffers because of very large number of candidate units produced. 

Hence, there is a need to use a different technique to find the high dimensional dense 

units in such cases. 

The different techniques that can be used for this purpose are to make use of 

the concepts of g-closed itemsets, use FP-tree for generating dense units, or use of 

maximal frequent itemsets for finding the subspaces. The performance can be 

significantly improved by using the AOSS method for storing the high dimensional 

huge datasets, which gives the freedom to access only those attributes or records, 

which am needed during the process of finding the selectivity of the various 

candidate units. 
i. 
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Chapter 5 

MLSCLUS: A Multi Level Subspace 

CLUStering Algorithm 

In Chapter 3, we developed AOSS method to store very high dimensional huge 

datasets to be used mainly for subspace clustering. Although AOSS method is more 

efficient than the old record based method of storage, to handle the very high 

dimensional huge datasets with many missing values, it will fail to produce the best 

results in some cases, as illustrated below. 

• Not many missing values are,  ound.  AOSS method stores the data in various 

AOSS Attribute tables by splitting the original record-based database to save 

on the space required by the many missing value attributes, that are most 

common in the very high dimensional datasets. We know that in each of the 

entries of the AOSS Attribute tables, we store the record-ids along with the 

respective attribute values. If missing values are not common, then in the 

AOSS method the additional space required to store the record-ids along with 

the attribute values in all the AOSS attribute tables will be significantly large. 

• Real datasets contain a combination of all types of attributes. Majority of the 

existing subspace clustering algorithms use a uniform threshold value for all the 
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attributes. By using a single threshold value for all attributes, we tend to give equal 

importance to all the attributes. In reality, the threshold should not be uniform. 

Certain attributes are exceptional and need to be handled in a different manner. 

These exceptional attributes either have a much lower threshold requirement, or 

need a very high threshold value depending on whether they are rare or very 

frequent. Thus a uniform threshold for all attributes might lead to either generation 

of uninteresting subspace clusters for frequently occurring attributes and at the 

same time miss out some interesting subspace clusters of rare attributes. 

• Applications with Huge datasets need more scalability. Existing methods are not 

efficient when the dataset is very large. This problem was addressed in chapter 4 

and the SAMCLIQ [36] algorithm designed for this purpose. The SAMCLIQ 

algorithm succeeded in reducing the number of passes, but since it used the old 

record based method of storage and the level wise apriori based method for 

generation of dense units it fails just like the other methods when the 

dimensionality of the subspace clusters is high. This was also observed from the 

experimental results of SAMCLIQ, in section 4.4 

In this chapter, we present algorithms to address some of the above issues. They 

differ from the CLIQUE, SAMCLIQ and AOSSCLIQUE methods addressed in the 

previous chapters of this thesis in the following respects - 
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o Based on the AOSS method presented in chapter 3, 

• Use different threshold values for the different attributes, 

o Use the concept of maximal dense units for identification of subspace clusters, 

o Mine the knowledge about the subspace clusters at different levels. 

All these features are required in order to do a thorough analysis of data in any 

application area like census data analysis, and classification of web documents 

involving huge datasets with a very large number of attributes. 

The remainder of the chapter is organized as follows. In Section 5.1, we discuss 

the use of the maximal frequent itemsets concept for finding all the dense units in first 

step of subspace clustering algorithm. Section 5.2 presents the details of the algorithm 

MADUGEN designed to find all the maximal dense units in a given dataset using 

uniform threshold for all attributes. In subsection 5.2.1 of this section we present the 

experimental results obtained using MADUGEN. In section 5.2.2 we present an 

algorithm MADUGENMT( MAximal Dense Unit GENeration with Multiple 

Thresholds), to find the maximal dense units using different threshold values for 

different attributes. We present in section 5.3 AOMLSCLUS, the Attribute Oriented 

Multi Level Subspace CLUStering algorithm, which uses concept of maximal dense 

units to identify sub subspace clusters in very high dimensional huge datasets, 

PI 
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consisting of attributes with varied threshold requirements and uses a variable number 

of intervals instead of using the same value for all attributes. The experimental results 

of AOMLSCLUS and AOMADUGENMT are reported in section 5.3.1. 

AOMADUGENMT is again a variation of CLIQUE implemented using 

MADUGENMT in step 1 of CLIQUE. Due to the use of variable intervals for different 

attributes, AOMLSCLUS can be enhanced further even for processing categorical 

attributes. In case of categorical attributes, the number of intervals will be equal to the 

number of unique categorical values of that attribute. 

5.1 Use of Maximal Frequent Itemsets in Subspace 

Clustering 

The apriori algorithm used for finding the frequent itemsets has the following 

main drawback — 

• It employs a bottom-up search that enumerates every single itemset. Hence, 

in order to produce a frequent itemset of length k, it must produce all 2 k  of its subsets 

since they too must be frequent. This exponential complexity of the algorithm restricts it 

to discovering only short patterns in medium sized datasets. To address this problem, 

the concept of maximal frequent itemsets [33] [34] [35] was introduced. 
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Definition 5.1: A frequent itemset is a set of items appearing together in a number of 

database records meeting a user-specified threshold. For example, if X is a k-itemset 

( an itemset consisting of k items), then X is frequent iff all the items found in X occur 

in atleast minsupport number of records, where minsupport is equal to threshold 

multiplied by total number of records in the dataset. 

Definition 5.2: If X is a frequent itemset and no superset of X is frequent, then we say 

that X is a maximal frequent itemset. 

Any frequent itemset Y which is not a maximal frequent itemset, will be a 

subset of some maximal frequent itemset X of the dataset. Hence the set of all maximal 

frequent itemsets present in a dataset, concisely represents all the frequent itemsets 

present in that dataset. 

The first step of the subspace clustering algorithm, needs to find all the dense 

units in order to identify the subspaces containing clusters. CLIQUE [1] uses a level 

wise apriori based algorithm to generate the dense units and suffers from the same 

drawback as the apriori algorithm. The efficiency of this step can be significantly 

improved if we apply the maximal frequent itemset concept to the dense units. The 

concept of dense units has been explained in chapter 2, but we redefine them again 
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considering our AOSS representation and then we proceed to define maximal dense 

unit. 

Definition 5.3 A k-dimensional unit uk  is defined as the collection of the units from 

each of k distinct attributes. It has the form u k  = tut, u2, • • • , uk) where ui  is the <Ai, Ii > 

pair of the attribute Ai present in uk, L is a integer value representing the interval to 

which the attribute belongs to. 

Definition 5.4 The frequency count of a unit u k  in the original database DB is equal to 

the number of record-ids common to all the AOSS attribute tables of the k attribute 

units present in uk. 

Definition 5.5 The minimum support value msv of a unit uk  in the original database DB 

msv ( uk, DB) = N * min { ti of Ai  € uk, i = l to k }where N is the number of records 

in DB and ti is the density threshold value of the ith  attribute of uk, expressed as a 

percentage of records expected in each unit of the attribute for it to be dense. 
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Definition 5.6 A k-dimensional unit Uk  is said to be a dense unit in the original database 

DB, if the frequency count of this unit in the original database DB is greater than or 

equal to the minimum support value msv ( uk, DB) of the unit in DB. 

Definition 5.7 If X is a k-dimensional dense unit and no m-dimensional superset of X 

where m > k, is dense, then we say that X is a maximal dense unit. 

In order to improve the efficiency of the first step we can find all the maximal 

dense units and use them to find the subspace clusters present in the dataset. In the next 

section we present an algorithm for the same. 

5.2 MADUGEN: A MAximal Dense Unit GENeration 

algorithm. 

In this section, we present the MADUGEN algorithm to find all the maximal 

dense units present in a dataset containing attributes with a uniform threshold value. We 

have designed this algorithm using the AOSS method of representing the data It is 

based on the GenMax [34] algorithm used to find the maximal frequent itemsets for 

association rule mining. 
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Notations and Terminology used — 

unit - is a pair of integers representing the attribute-id and unit-id respectively. 

iset - it is a collection of attribute-id and unit-id pairs(units) belonging to the one 

dimensional dense units. An iset of length k consists of k such units. 

len — used to keep track of number of units in iset. 

pset(11) - pset of a k-dimensional unit ztk  denotes the possible set of zk and consists of 

all the units from the one-dimensional dense units D[1] , which are candidate units for 

forming higher dimensional dense units with ti as the base unit. The units in D[l] are 

sorted in ascending order based on attribute-id as primary key and unit-id as secondary 

key. 

plen - is used to keep track of the number of units in pset(z1). 

cset(11) - cset of a unit ztk  denotes the combine set of zic  and is a subset of pset(d) 

consisting of only those units from pset which form k+1 dimensional dense unit when 

combined with uk  . This helps in pruning those units from pset which are not candidates 

for forming higher dimensional dense units. 

ccnt - ccnt used to keep track of the number of units in the cset(u). 

mduset - consists of all the maximal dense units from the given data set. 

mducnt — used to keep track of the number of maximal dense units obtained in the data 

set. 

threshold value and one-dimensional dense units have the same interpretation as used in 

chapter 2. 
• 
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MADMEN Algorithm 

Input: 

• D[1] — details of one dimensional dense units obtained in the dataset, 

• threshold value, 

• record count ( total number of data records in the dataset), 

Output: 

• mduset — set of maximal dense units found, 

• mducnt — number of maximal dense units found in the dataset. 

Processing method: 

1. Start 

2. initialize mduset to empty and mducnt to 0 

3. for each subspace unit u in D[1] 

a. initialize iset to u 

b. call findpset(D[1], u) 	// findpset used to find the pset of unit u. 

c. call fmdmdu(mduset, iset, len, pset, plen, threshold) 

// findmdu is a recursive function to find maximal dense units. 

4. // endfor 

5. Stop // end of MADUGEN algorithm 

The details of the algorithm used for findpset and findmdu are described in the 

following pages. 

• 
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Algorithm for findpset 

Inputs 

• D[1] — one dimensional dense units 

• unit u — consisting of its attribute-id and unit-id 

Output 

• pset of u — set of all units in D[1], whose attribute-id is greater than attribute-id of 

unit u. 

• plen - number of units in pset. 

Processing method 

1. for each unit ul in D[1] 

if attribute-id of u 1 > attribute-id of u 

add unit ul to the pset 

2. return pset 

Algorithm for findmdu 

Inputs 

• iset 

• len 

• pset 

• plen 

• threshold 
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• record-count 

Output 

• mduset — set of all maximal dense units. 

Processing method 

1. if pset is not empty 

2. begin 

3. call findcset(iset, len, pset, plen, mduset, threshold, record-count) 

// finds the combine set - cset, detailed algorithm for findcset described after this 

algorithm. 

4. if cset is empty 

5. call addiset(mduset, iset, len) // detailed algorithm for addiset 

described after algorithm for findcset. 

6. else 

7. begin 

8. for all the units cu in cset 

with attribute-id = attribute-id of first unit in cset do 

9. begin //for 

10. // form new isets by extending iset with cu. 

11. iset = iset + cu 

12. cset = cset — cu 

13. end //for 

14. len = len +1 // length of iset increased by 1 

15. for all the newisets obtained in step 8 do 

16. begin //for 
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17. call findmdu( mduset, iset, len, cset, cent, threshold, record-count) 

// pset = cset in above step 17. 

18. end // for 

19. end // else of if cset empty 

20. end // if pset not empty 

21. call addiset( mduset, iset, len) 

22. Stop // end of findmdu. 

Algorithm for fmdcset 

Inputs 

• iset 

• len 

• pset 

• plen 

• mduset 

• threshold 

• record-count 

Output 

• cset 

e 



e 
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• cent 

Processing method: 

1. for each unit u in pset 

2. newiset = iset + u // extend iset by adding u 

3. check if newiset exists in mduset 

4. if exists goto step 1 // continue with next unit u from pset 

5. if not find frequency count of newset in the dataset 

6. if frequency count > threshold * record-count 

7. add u to cset 

8. increment cent 

9. stop 

Algorithm for addiset 

Inputs 

• iset 

• len 

• mduset 

Output 

• mduset 

r 
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• mducnt 

Processing method 

I. add iset to mduset. 

2. increment mducnt 

3. stop 

5.2.1 Experimental results 

In this subsection we present the comparison of time requirements of the 

ROSCLIQUE, AOSSCLIQUE and AOMADUCLIQUE. AOMADUCLIQUE is the 

implementation which uses MADUGEN algorithm in step one of CLIQUE to find the 

maximal dense units and uses only the maximal dense units to find the subspace 

clusters, instead of using all the dense units. We compared the performance by varying 

the dimension of the clusters from 5 to 12 using dataset of size 50,000 with 100 

attributes. The values for the threshold and number of intervals, was set to 0.15 and 10 

respectively. For generating synthetic data the method discussed in section 3.4.1 was 

used. The experiments were run on a 3.00GHz Pentium 4 processor running linux. The 

results obtained are shown in figure 5.1. 
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Figure 5.1: Scalability with the dimension of the clusters. 

5.2.2 MADUGENMT: MADUGEN algorithm with multiple 

threshold values. 

In this section we discuss, how we have modified MADUGEN algorithm to 

handle attributes with varying threshold values and also discuss the experimental results 

obtained using MADUGENMT. 

In all the discussions earlier we have seen that the downward closure property is 

satisfied by all the dense units i.e if a particular k-dimensional unit ti k  is dense then all 

its subsets are also dense. This property is no longer satisfied when the attributes have 

different threshold values. In MADUGEN, D 1  is used to generate the maximal dense 

to 
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units, but here if we use only D 1  we fail to generate all the maximal dense units, that is 

all those units possible with the low threshold value attributes. Hence we use the seed 

set SS, which is generated using D 1  and C 1 . The seed set SS is generated as follows- 

Seed Set Generation  - 

1. sort all the 1-dimensional candidate units C1 based on the threshold values of the 

attributes in ascending order. 

2. D1  in this multiple threshold value case consists of all the units whose frequency 

count is greater than or equal to the minimum support value calculated using the 

threshold value of the attribute representing the respective units. Again in D 1  all the 

units are kept sorted in ascending value of the threshold values of the attributes. 

3. Using the sorted order of attributes in C 1, find the first attribute unit fu in C 1  which 

belongs to D 1  and insert it into seedset SS. 

4. for each subsequent attribute unit su in C 1  which comes after fu, whose frequency 

count is greater than or equal to the msv(fu, DB), insert su into SS. 

All the maximal dense units generated using SS ensure that these dense units 

satisfy the sorted closure property. The sorted closure property ensures that we do not 

miss out any dense subsets of the low threshold attributes. Another variation that is 

required is that in step 6 of findcset function, in MADUGEN we had just one threshold 

value to decide whether to add it to cset, but in this case we will be having a maximum 
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of k different threshold values if iset is of length k. From these k different values, we 

use the threshold value of the first unit in iset as that will be the lowest threshold value. 

In MA.DUGEN, findpset function uses D[1] the set of all one-dimensional dense units 

D1 to find the units in pset, but in MADUGENMT we use the seed set SS obtained as 

explained above and pset is obtained as follows- 

Processing method // for pset(u k)of MADUGENMT 

1. for each unit ul in SS 

if attribute-id of ul is not contained in any unit of U k 

 add unit ul to the pset 

2. return pset 

MADUGENMT Alrorithm 

Input: 

• C[1] — details of one dimensional candidate units of all attributes after finding their 

frequency counts 

• D[1] — details of one dimensional dense units obtained in the dataset 

• thresholdarray // storing threshold values of all attributes 

• record count ( total number of data records in the dataset) 

Output: 

• mduset — set of maximal dense units found, 

• mducnt -- number of maximal dense units found in the dataset. 
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Processing method: 

1. Start 

2. initialize mduset to empty and mducnt to 0 

3. find seed set SS as explained earlier in this section under Seed Set Generation 

4. sort D[1] in ascending order of threshold values of attributes 

5. for each subspace unit u in D[1] 

a. initialize iset to u 

b. call findpset(SS, u) 	// findpset used to find the pset of unit u. 

c. call findmdu(mduset, iset, len, pset, plen, thresholdarray, record-count) 

// findmdu is a recursive function to find maximal dense units. 

6. // endfor 

7. Stop // end of MADUGENMT algorithm 

5.3 AOMLSCLUS: An Attribute Oriented Multi Level 

Subspace CLUStering Algorithm. 

The subspace clustering algorithms that we have discussed so far find only the 

subspace clusters, which are found in the original dataset. In this section, we define the 

subspace clustering problem for attributes with different threshold and interval values, 

which also identifies all the sub subspace clusters found in the subspace clusters of the 

original dataset. We also report some experimental results obtained. 
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Problem statement: 

Given a set of say n records RI, R2, • • • ,Rn each record Rj, j = 1 to n having d attributes 

where R.;  = { <Ai, Vi>, i = 1 to d} where Ai is the ith attribute and Vi is the value of the 

ith attribute and given user input interval values 4i for i = 1 to d, for the different d 

attributes the problem is to find the clusters in all the subspaces of the original data 

space and also identify those sub clusters which are not found in the original data space 

by the one dimensional dense units, but are found in the subspace clusters identified in 

the original data space. 

The algorithm for this problem has been named as AOMLSCLUS, and is 

implemented using the AOSS data representation, the MADUGENMT algorithm and 

the findthreshold algorithm which we have designed to find the threshold values of the 

attributes in the dataset. The details of the findthreshold algorithm are discussed in the 

next subsection. We used the AOSS method discussed in chapter 3 to store the data 

records. All the record details are stored in the AOSS record table. The record details 

include the attribute-id and the attribute-record id pairs for all attributes of the record 

containing non-missing values. The attribute values along with the record id's are stored 

in independent AOSS attribute tables. The Attribute-details table stores the information 

about all the attributes of the dataset. The Attribute-details table includes following 

information about each attribute — 

o Attribute-id 

o Attribute-name 
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• Attribute-filename 

• Attribute-type(Numeric/Categorical) 

• Attribute-Num-Intervals( number of intervals for the attribute) 

The number of intervals is input by user for each attribute. Our implementation 

of the algorithm splits the attribute values into equal sized intervals and works for 

numeric attributes. In order to provide for variable interval sizes, the lower and upper 

range for each of the intervals can also be stored in case of numeric attributes and all 

distinct values of the categorical attributes can be stored to handle the categorical 

attributes. 

This problem can be decomposed into the following three main parts — 

I. Identification of the maximal dense units in the original dataset DB. 

2. Identification of the maximal sub dense units in the various maximal dense units 

identified in DB. 

3. Presentation of the details regarding the maximal dense and maximal sub dense 

units to the user. 

The details of the above three steps are explained in the following subsections- 
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a 

t 

	 Identification of the maximal dense units in the original dataset DB  The maximal dense 

units found in the original dataset are found using the MADUGENMT algorithm. The 

different threshold values for all the attributes are found using the following algoritlun- 

findthreshold algorithm 

Inputs 

• frequency counts of each attribute in all its units 

// number of units for each attribute is equal to the number of intervals for that attribute. 

Output 

• threshold value for each attribute 

Processing 

1. for each attribute repeat following steps - 

2. find the average frequency count, avgfcount 

II avgfcount = sum of frequency counts in all its units divided by the number of units 

for that attribute. 

3. find new average frequency count, navgfcount by considering only those units whose 

frequency counts are greater than the avg/count 

4. find the standard deviation, stddev 
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// stddev = squareroot of ( sumofsquares(difference between navgfcount and frequency 

count) of each unit) 

5. threshold of the attribute = (navgcount — stddev) / sum of frequency count in all 

units of that attribute. 

6. stop 

It has been observed that, those attributes, which do not contain any significant 

clusters do not show much variation in their frequency count values in the various units 

and as a result have a low value for the standard deviation. But in the other case, where 

there are clusters there is a wide variation in the frequency count values of the different 

units, and have a much higher value for the standard deviation. By finding the new 

average frequency count in step 3 of findthreshold and using it to find the threshold 

value, we try to eliminate the low frequency count units of that attribute by setting a 

higher threshold value for that attribute. If we just use the average frequency count 

obtained in step 2, we get more or less the same threshold value for all attributes having 

the same number of intervals. Using the threshold values obtained as above, we find 

all maximal dense units and use these to find the subspace clusters in DR The user can 

also be given the freedom to input their own threshold values for the attributes at the 

time of entering the attribute details. 

We define below certain terms, which are used in the next subsection. 
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Definition 5.8 The minimum support value msv of unit u" in a dense unit u k  is defined 

as 

msv(uP ,uk) = M * min{ t1  of Ai E UP, I = I to p ) 

where M is the frequency count of the up unit in unit uk  and ti is the density threshold 

value of the eh  attribute of up, expressed as a percentage of records expected in each 

unit of the attribute for it to be dense. 

Definition 5.9 We define the frequency count of a unit up in another unit uk  as equal to 

the number of record-ids common to all the AOSS attribute tables of the (k+p) attribute 

units. This is used to find the sub dense units 

Definition 5.10 We define a sub dense unit as one which is not dense in the original 

dataset DB but is dense within the maximal dense unit identified in DB. A unit u' is 

dense in uk  if frequency count of up in uk  is greater than or equal to msv(u" ,uk) . 

Definition 5.11 If X is a k-dimensional sub dense unit in unit uk  and no m-dimensional 

superset of X where m > k, is sub dense in uk, then we say that X is a maximal sub 

dense unit of ilk. 

an 
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so; 
	 Identcation of the maximal sub dense units in the various maximal dense units 

identified in DB.  

In order to find the sub subspace clusters in the subspace clusters identified 

above, we need to first find all maximal sub dense units found in the maximal dense 

units identified in above step. We have designed algorithm findsubmdu which uses the 

findpset and findmdu functions of MADUGENMT algorithm for this purpose. The 

details are as follows — 

findsubmdu algorithm 

Inputs 

• mduset // output of step 1 obtained using MADUGENMT 

• mducnt 

Output 

• mdusubset // maximal dense units found in the mduset of step 1 

• mdusubcnt // number of sub dense units identified 

Processing 

1. for each unit mdu belonging to mduset 

2. record-count = frequency count of mdu 

3. initialize iset to mdu 
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4. call findpset(SS, mdu) 	// findpset used to find the pset of unit mdu. 

5. call findmdu(mduset, iset, len, pset, plen, thresholdarray, record-count) 

// findmdu is a recursive function to find maximal dense units. 

6. endfor 

7. stop // end of findsubmdu 

Presentation of the details regarding the maximal dense and maximal sub dense units to 

the user 

We display the details of the maximal dense units found in the original database 

DB along with the maximal sub dense units found in them both in descending order of 

their dimensionality. In order to obtain a concise description for the cluster and sub 

clusters represented by the maximal dense units and the maximal sub dense units 

respectively the logic used in step 2 and step 3 of CLIQUE discussed in section 2.2 of 

chapter 2 can be used. 

Clusters obtained from k-dimensional maximal dense units- 

ulk  

sub clusters details obtained from maximal sub dense units found in !il k 

 (d-k)-dimensional sub dense units — 



CHAPTER S. MLSCLUS: A MULTI-LEVEL SUBSPACE CLUSTERING ALGORITHM 95 

1-dimensional sub dense units — 

u2
k - 

sub clusters details obtained from maximal sub dense units found in u2 k 

 (d-k)-dimensional sub dense units — 

1-dimensional sub dense units — 

and so on ... 

Cluster details obtained from (k-1)-dimensional maximal dense units- 

k-1 Ui 	- 

sub cluster details obtained from maximal sub dense units found in u lk-I 

 (d-(k-1))-dimensional sub dense units — 

40- o 
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1-dimensional sub dense units — 

U2 - 

sub cluster details obtained from maximal sub dense units found in u2 k-1 

 (d-(k-1 ))-dimensional sub dense units — 

1-dimensional sub dense units — 

and so on till the one dimensional dense units. 

Clusters obtained from one-dimensional maximal dense units- 

- 

sub clusters details obtained from maximal sub dense units found in Lil l 

 (d-1)-dimensional sub dense units — 

1-dimensional sub dense units — 

k -1 
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u2 

sub clusters details obtained from maximal sub dense units found in u2 1 

 (d-1)-dimensional sub dense units — 

1-dimensional sub dense units — 

and so on for each of the one-dimensional dense units. 

Example 5.3: Consider a census database having four attributes namely age as a 

numeric attribute and sex, educational—qualifications and marital status as categorical 

attributes. 

Each of these attributes have say, the following number of intervals — 

for age it will be equal to r (110 - 1)/10 1= 11, 

for sex it will be 2 having values male and female 



CHAPTER S. MLSCLUS: A MULTI-LEVEL SUBSPACE CLUSTERING ALGORITHM 98 

for educational qualifications it will be 6 with values non-SSC, SSC, HSSC, 

GRADUATE, POSTGRADUATE, DOCTORATE and for marital status it is equal to 

2 having values married and unmarried. 

Assume that k = 2, for this database and the threshold values input for age, sex, 

marital status and educational qualifications are 0.2, 0.6, 0.7 and 0.15 respectively. 

The presentation of the dense units and their sub units for a sample of data will 

be as shown below - 

2-dimensional cluster details 

< edu_qual, GRADUATE> <Age, 21 —30> 

<sex, female> 

<edu qual, POSTGRADUATE> <Age, 31— 40> 

<sex, male> 

<marital status, married> 

1-dimensional cluster details 

<Age, 41-50> - 

<sex, male> <edu qual, DOCTORATE> 

<maritalstatus, married> 
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5.3.1 Experimental results 

We present here the details of the clusters identified using ROSCLIQUE, 

AOSSCLIQUE, AOMADUCLIQUE, AOMADUMTCLIQUE and AOMLSCLUS 

using a synthetic dataset. AOMADUCLIQUE and AOMADUMTCLIQUE are the 

implementations, which use MADUGEN and MADUGENMT algorithm in step one of 

CLIQUE respectively to find the maximal dense units and use only the maximal dense 

units to find the subspace clusters, instead of using all the dense units. We compared the 

results obtained using each of them using a synthetic dataset of size 50,000 with 100 

attributes containing three 9-dimensional clusters. The value for the number of intervals 
• 

was set to 10. For generating synthetic data the method discussed in section 3.4.1 was 

used. The experiments were run on a 3.00GHz Pentium 4 processor running linux. The 

results obtained are reported below. 

Method Used Threshold values used No. of correct clusters found 

ROSCLIQUE 0.13 One 9-dimensional (out of 3) 

AOSSCLIQUE 0.13 Three 9-dimensional (all 3) 

AOMADUCLIQUE 0.13 Two 9-dimensional (out of 3) 

AOMADUMTCLIQUE 0.13, 0.16, 0.17, 0.20 Three 9-dimensional (all 3) 

AOMLSCLUS 0.13, 0.16, 0.17, 0.20 Three 9-dimensional (all 3) 

e 
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Besides the three 9-dimensional main clusters, AOMLSCLUS also reported the 

sub clusters found within the dataset. In case of AOMADUMTCLIQUE and 

AOMLSCLUS the threshold values obtained using findthreshold algorithm discussed 

in section 5.3 were used. 

5.4 Summary 

In this Chapter, we proposed the subspace clustering problem for mixed data 

types for finding the subspace clusters in the database by fixing different values of 

threshold for the different attributes. We also extended the algorithm to find the 

significant subspace clusters found in the various subspace clusters existing in the 

database at various levels. This problem can be used to study the patterns found in a 

typical census data, university/college enrollment data, grading data which contains 

information about marks, grade awarded, course name, course credits etc., 

e 
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Chapter 6 

Discussion 

We have developed an Attribute Oriented Storage Structure (AOSS), for 

effective and efficient subspace clustering of very high dimensional huge datasets. In 

this chapter, we first summarize the major characteristics of the very high dimensional 

huge datasets. We then explain the efficiency of the AOSS method for use in subspace 

clustering and give some extensions and applications of subspace clustering using the 

AOSS method. 

6.1 Characteristics of the AOSS method 

We have developed the new class of AOSS method for effective and efficient 

subspace clustering of very high dimensional huge datasets. We, summarize the major 

characteristics of AOSS based methods here. 

• AOSS based methods adopt a divide-and-conquer methodology and partition the 

data sets consisting of various records from the high dimensional data space into 

independent AOSS Attribute tables for each attribute belonging to the data set. In 

general, subspace clustering has to search a very huge very high dimensional data 
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space. Divide-and-conquer methodology enables the subspace clustering 

algorithms to focus on reduced subsets of records within each AOSS Attribute 

table in the first pass and then again a much smaller subset of records belonging to 

the various dense units by applying the divide-and-conquer strategy on the AOSS 

Attribute tables. This process automatically focuses on only the relevant set of 

attributes and the relevant set of records belonging to the various units while 

finding their selectivity. Hence it eliminates the processing of irrelevant records as 

well as irrelevant attributes of a particular unit, thereby saving a lot of processing 

time. It also helps in processing some set of units, which are independent with 

respect to attributes and units in parallel. 

• AOSS based methods also save on the main memory space requirements as those 

records and attributes not contributing to any dense units are automatically pruned 

and are not loaded in memory in subsequent processing of the high-dimensional 

candidate units for determining their selectivity. 

• AOSS based-methods MADUGEN and MADUGENMT for finding the dense 

units use a depth-first search algorithm and eliminate the requirement to find the 

selectivity of all the 2" subsets of a k-dimensional dense unit before finding the 

selectivity of the k-dimensional unit, a feature which is most common in the level-

wise (apriori based) algorithms. 

S 
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6.2 Extensions and Applications of AOSS based methods 

We have shown that the AOSS based methods are effective and efficient in 

subspace clustering for finding the dense units belonging to the various subspaces of a 

high dimensional dense unit. The AOSS method however is also applicable to mining 

other kinds of knowledge and solving some other interesting high dimensional data 

processing problems. In this section, we discuss some examples. 

6.2.1 Mining Multi-dimensional Sequential Patterns from high-

dimensional data 

Sequential pattern mining, which finds the set of frequent subsequences in 

sequence databases, is an important data-mining task and has broad applications. 

Mining of sequential patterns from very high dimensional datasets which is a common 

requirement in the emerging new applications like protein classification, keyword 

extraction from text documents, etc is a very interesting task and can greatly benefit 

from the AOSS structure. 
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6.2.2 Mining Closed Association Rules from high-dimensional data 

In order to reduce the generation of redundant association rules the use of the 

closed frequent itemsets has been proposed by Pasquier in [26a]. The AOSS can be 

used for the extraction of the frequent closed itemsets from the high dimensional 

datasets in an efficient manner 

6.2.3 Categorization of high dimensional datasets using subspace 

clustering 

Many real datasets like collection of documents on various subjects, can be 

viewed as having very high dimensionality and missing dimensional values. Subspace 

clustering based on the AOSS can be used here, to find efficiently all the clusters some 

of which may be overlapping. 

6.2.4 Mining long Sequences from high-dimensional data 

Applications like protein classification, and other bio-informatics applications 

require effective and efficient mining of long sequences from their high dimensional 
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data sets. Since, AOSS based methods are efficient for the depth-first search, it can be 

used to extract the long sequences efficiently from the high dimensional datasets. 

10  
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Chapter 7 

Conclusions 

The amount of raw data and information being captured and stored in computer files 

and databases in almost every field has been growing at a tremendous pace. In recent 

years, there has been an increase in the number of new database applications dealing 

with very large high dimensional data sets. These applications place special 

requirements on clustering algorithms: the ability to find good quality clusters 

embedded in subspaces of high dimensional data preferably without taking any inputs 

from the user (which requires the user to have good domain knowledge), scalability, 

4,  
end-user comprehensibility of the results, non-presumption of any canonical data 

distribution, and insensitivity to the order of input records. In this thesis, we studied the 

problem of subspace clustering for very high dimensional huge data sets with missing 

values. 

In this chapter, we summarize the thesis, and then present some directions for future 

work. 
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7.1 Summary of the Thesis. 

Clustering has been a very active area of research in data mining for the past several 

years. But, most of the clustering algorithms designed work on the full dimensional data 

space and cannot be used for finding clusters in datasets having a very large number of 

attributes. The subspace clustering algorithm CLIQUE identifies the subspace clusters 

in the high dimensional data by finding all the sets of connected dense units existing in 

the various subspaces. However, it requires the user to give the inputs, T (threshold 

value) and (number of intervals) in order to find the dense units. Hence the accuracy 

of the results obtained depends on the values input by the user. It uses the level-wise 

apriori algorithm for finding the dense units. Hence suffers from the same problems as 

the apriori algorithm In this thesis, we study the problem of subspace clustering for 

very high dimensional huge data sets with missing values and make the following 

contributions. 

0 We propose an Attribute Oriented Storage Structure (AOSS) for storing very high 

dimensional huge data sets considering the requirements of the subspace clustering 

algorithms for very high dimensional large datasets containing missing values. 

4 
4 
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• We have used the sampling technique to reduce the number of database passes 

required to find the dense units. The SAMCLIQ algorithm developed using sampling 

technique gave us very efficient results when compared with the CLIQUE 

algorithm. 

• We have used the maximal dense units to identify the subspace clusters in order to 

improve the efficiency of the first step which used dense units for this purpose. 

Again here we used the AOSS method of storage representation and found that it 

gives very good results for very high dimensional huge datasets with missing value 

attributes. 

• We extended the AOSS method to develop a multi-level subspace clustering 

algorithm to allow the mining of subspace clusters at different levels from a dataset 

having attributes with varied threshold requirements. 

7.2 Future Research Directions 

With the increase in the desire and ease of collecting data, most of the resulting 

databases in today's information era will be very high dimensional in nature with a lot 

of missing values also and huge in size. Hence, it will be very interesting and 



CHAPTER 7. CONCLUSIONS 	 109 

challenging to re-examine and explore many related problems, extensions and 

applications of subspace clustering for these databases. Some of them are listed here. 

• Visual Subspace Clustering. 

• Interactive Subspace Clustering - some effort has been put here but the results were 

not all that satisfactory, hence not reported. 

• Subspace Clustering for streaming data. 

• 	 • Subspace Clustering for Keyword extraction — Some work in this direction has been 

carried out, but not included in this thesis. 

4 
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