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Synopsis

Discovering and processing of knowledge in databases are two important categories of
tasks. Many important themes of activities could fall under these categories of tasks. The
work done in this thesis could be divided into three parts. The theme of Part 1 has been
entitled as “Association Analysis and Pattern Recognition in a Database”. Part 2 is based
on the theme “Pattern Recognition in Multiple Databases”. Finally, the theme of Part 3
has been entitled as “Developing Better Multi-database Mining Applications”. In the
following paragraphs, we describe the work performed in different chapters of these three
parts.

We have defined the notion of conditional pattern in a transactional database. It helps
us to study the association among the items in Y along with negation of items in X-Y at a
given itemset X, for all nonempty Y such that Y ¢ X. We have designed an algorithm to
mine interesting conditional patterns in a database. Experiments are conducted on three
real databases. The results of the experiments show that conditional patterns store
significant nuggets of knowledge about a database.

Frequent itemsets determine major characteristics of a transactional database. Thus, it
is important to mine arbitrary Boolean expressions induced by frequent itemsets. From a
frequent itemset, one could generate Boolean expressions of members of the frequent
itemset connecting through Boolean operators. We have established a simple and elegant
framework for synthesizing arbitrary Boolean expressions using conditional patterns in a
database. It determines the supports of the Boolean expressions generated from a frequent

itemset. Experimental results are provided on both real and synthetic databases.
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Many data analyses require a suitable metric to capture gsspciation among a set of

items in a database. Metri¢s such as correlation, Jaccard/‘\could be used to measureé—

association between two items in a database. On the other hand, metrics such as support,
collective strength, all-confidence have been used to measure interestingness of an
itemset. The major concern regarding computation of collective strength of an itemset is
that the computation is based on statistical independence of items of the itemset.
Moreover, metrics such as support and all-confidence do not consider the frequencies of
subsets of an itemset. In general, an existing metric might not be effective to serve as a
measure of association among a set of items in a database. We have presented two
measures of association, A; and A,, for capturing association among a set of items.
Measure A4; is the proportion of the number of transactions containing all the items of the
itemset and the number of transactions containing at least one of the items of the itemset.
On the other hand measure A4, is based on a weighting model. The weight of a transaction
is proportion to the number of items of the itemset present in the transaction. For
example, if a transaction contains all the items of an itemset, then it has the maximum
weight for the given itemset so far as the association among items in the itemset is
concerned. Based on measure A4,, we introduce the notion of associative itemset in a
database. We express 4; and 4, in ferms of supports of itemsets. We also provide
theoretical foundation of the work. Finally, we present experimental results on both real
and synthetic databases to show the effectiveness of 4.

Most of the real market basket data are non-binary in the sensé that an item could be
purchased multiple times in the same transaction. In this case, there are two types of
occurrences of an itemset in a database: the number of transactions in the database
containing the itemset, called the transaction frequency of an itemset, and the number of
occurrences of the itemset in the database, called the database frequency of an itemset.
Traditional support-confidence framework might not be adequate for extracting
association rules in such a database. We have defined following three categories of

association rules: (i) Association rules induced by transaction frequency of an itemset,
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(i) Association rules induced by database frequency of an itemset, and (iii) Association
rules induced by both transaction frequency and database frequency of an itemset. We
have established a framework based on traditional support-confidence framework for
mining each category of association rules. We have presented experimental results based
on two databases.

Multi-database mining has been recognized recently as an important area of research.
The first problem we present here is to identify global exceptional patterns in multiple
databases. A global exceptional pattern describes interesting individuality of few
branches. Therefore, it is interesting to identify such patterns. We have given a definition
of global exceptional frequent itemset in multiple databases. A global exceptional
frequent itemset has high support in multiple databases. But, it is reported from a few
data sources. Also, we have defined the notion of exceptional sources for a global
exceptional frequent itemset. The data sources that support a global exceptional frequent
itemset heavily are called exceptional sources for the global exceptional frequent itemset.
We have designed an algorithm for synthesizing global exceptional frequent itemsets.
Experimental results are presented on both artificial and real databases. We have
compared our algorithm with the existing algorithm theoretically and experimentally. The
experimental results show that the proposed algorithfn is effective and promising.

We have defined two new patterns, called exceptional association rule and heavy
association rule in multiple databases. A heavy association rule has high support and high
confidence in multiple databases. An exceptional association rule is a heavy association
rule that is reported from a few data sources. On the other hand, a high-frequent
association rule is extracted from many data sources. We have designed an algorithm to
mine high-frequent, exceptional and heavy association rules in multiple databases. In this
connection, we have designed an extended model of local pattern analysis. In the
extended model, we have included many layers and interfaces. Thus, it helps us to mine

multiple databases systematically. In the extended model, a global pattern is synthesized
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based on both local patterns and suggested local patterns. Thus, it improves the accuracy
of multi-database mining. We present experimental results on three real databases. Also,
we make a comparative analysis between our algorithm and an existing algorithm.

Frequent items could be considered as the basic ingredients of different types of
knowledge in a database. Based on measure 4, and a multi-database mining technique,
we have designed an algorithm for clustering frequent items in multiple databases. We
have conducted experiments on three databases to judge effectiveness of the clustering
technique.

Effective data analysis with multiple databases requires highly accurate patterns. Due
fo large size of some local databases, a traditional data mining technique might not be
suitable for mining the collection of all local databases. Also, local pattern analysis might
extract low quality of patterns from multiple databases. Thus, it is necessary to improve
mining multiple databases. We have designed a new multi-databases mining technique,
called PFM + SPS. It combines pipelined feedback model (PFM) and simple pattern
synthesizing (SPS) algorithm for mining multiple large databases. In this technique, each
local database is mined using a traditional data mining technique in a particular order for
synthesizing global patterns. The technique improves quality of synthesized global
patterns significantly. We conduct experiments on both real and synthetic databases to
judge effectiveness of our technique.

Multi-database mining using local pattern analysis could be considered as an
approximate method of mining multiple large databases. Thus, it might be required to
enhance the quality of knowledge synthesized from multiple databases. Also, many
decision-making applications are directly based on the available local patterns in different
databases. The quality of synthesized knowledge / decision based on local patterns in
different databases could be enhanced by incorporating more local patterns in the
knowledge synthesizing / processing activities. Thus, the available local patterns play a

crucial role in building efficient multi-database mining applications. We represent pat-



Synopsis Xiv

terns in condensed form by employing a coding, called ACP coding. It allows us to store
more local patterns in the main memory. Accordingly, one could extract more patterns by
lowering further the user inputs, like minimum support and minimum confidence. The
proposed coding enables more local patterns participate in the knowledge synthesizing /
processing activities and thus, the quality of synthesized knowledge based on local
patterns in different databases gets enhanced significantly at a given pattern synthesizing
algorithm and computing resource.

For the purpose of mining relevant databases one may need to cluster the given
databases. It could help reducing the cost of searching relevant information in multiple
large databases. In this regard, we have defined two measures of similarity between a pair
of databases, called simi; and simi,. Measure simi; is the ratio of the number frequent
itemsets common to databases and the total number of distinct frequent itemsets in these
databases. But, the similarity measure simi, is based on the supports of the frequent
itemsets in the databases. We have proved the metric properties of corresponding
distance measures. We have designed an algorithm for clustering a set of databases. For
the purpose of enhancing efficiency of the clustering process, we have presented a new
coding technique, called itemset (IS) coding, for representing frequent itemsets in
different databases. It allows more local patterns to participate in deéision—making
measures. Efficiency of the clustering process has been improved using the following
strategies: reducing execution time of clustering algorithm, using more appropriate
similarity measure, and storing frequent itemsets space efficiently.

Many important decisions are based on a set of specific items, called the select items.
Thus, the analysis of select items in multiple databases is an important issue. For purpose
of studying select items in multiple databases, a model of mining global patterns of select
items in multiple databases has been designed. We have defined a measure of overall
association (OA4) between two items in a database. Measure OA4 is based on both positive

and negative association between two items in a database. We have designed an algo-
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rithm based on OA for the purpose of grouping the frequent items in multiple databases.
Each group contains a select item, called the nucleus item of the group and the group
grows centring round the nucleus item. Experimental results are presented on real,
synthetic and artificial databases.

A multi-database mining application could be developed using a sequence of stages. It
might be possible to provide a framework for each stage of the development process.

Finally, we provide a framework for developing better multi-database mining

applications.
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Part 1

Association analysis and pattern recognition in a database
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Chapter 1.1

Introduction

Association analysis of items (variables) as well as patterns in a database could play

important roles in finding solutions to many problems. In the context of market basket

data, one could perform various types of association analyses of items purchased. Also,

there may exist new types of pattern useful in solving different problems. We get to know

interesting buying patterns of customers by analyzing a large volume of data. Previous

work on mining frequent itemsets, association rules, and negative association rules might

have not answered all the'queries of a data miner, or a decision maker. Let X be a set of

items, called an itemset, purchased frequently in a database. We mention below some

issues that have not been addressed in the previous work.

= Given an itemset X, we might be interested in the pattern where the items in Y are
purchased and the items in X-Y are not purchased, for nonempty ¥ < X.

* Given an itemset X, we might be interested in mining arbitrary Boolean expressions
induced by items in X.

* Given an itemset X, we would like to measure the amount of statistical association
among the items in X.

* We might be interested in the association rules in a database where each transaction
contains the items and their quantities purchased.

In Part 1, we have addressed the above issues and made the following contributions.

* The notion of conditional pattern in a database has been introduced.

» An algorithm has been designed to extract interesting conditional patterns from a

database.
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» A simple and elegant framework has been proposed for synthesizing arbitrary Boolean
expressions.

= We have proposed two measures of association 4, and A4, for capturing statistical
association among a set of items.

* The notion of associative itemset is introduced.

* Three categories of association rules have been introduced in a database containing
transactions of items and their quantities purchased. A framework based on traditional
support-confidence framework has been proposed for mining each category of
association rules.

There might be repetition of some pieces of information in different chapters of different

parts. There are two reasons behind such repetitions. Firstly, some chapters are correlated

in some sense. For example, a multi-database mining technique described is one chapter
and has been used to mine multiple databases for finding a solution to a problem in an
earlier chapter. Secondly, each chapter except the introductory and concluding chapters,
is made complete with respect to the problem discussed, and has been communicated, or
proposed to communicate as a paper to either an international journal, or an international

conference. Nevertheless, we have made efforts to reduce such repetitions.
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Chapter 1.2

Mining conditional patterns in a database

Association analysis of items [11], [17], and selecting right interestingness measures [41],
[75] are two significant tasks being at the heart of many data mining problems. An
association a.nalysis.is generally associated with interesting patterns in a database. A
pattern would become interesting if the associated interestingness measures satisfy some
conditions. Association rules [11] and negative association rules [17] are examples of two
types of patterns that are synthesized from the itemset patterns in a database. An
association rule is éxpressed by a forward implication X — Y, where X and Y are itemsets
in the database. Itemsets X and Y are called the antécedent and consequent of the
association rule, respectively. The meaning attached to this type of association rules is
that if all the items in X are purchased by a customer then it is likely that all the items in ¥
are purchased by the same customer at the same time. On the other hand, a negative
association rule is expressed by one of the following three forward implications: X — —Y,
—X — ¥, and =X — —Y, where X and Y are itemsets in the given database. Let us
consider a negative association rule of the form X — —Y. The meaning attached to the
negative association rule of the form X — —Y is that if all the items in X are purchased by
a customer then it is unlikely that all the items in Y are purchased by the same customer at
the same time. Though an association rule expresses interesting association among items
in a frequent itemset, it might not be sufficient for all kinds of association analysis among
items in the itemset.

The importance of an itemset could be judged by its support [11]. Support (supp) of an

itemset X in database D is the fraction of transactions in D containing X. Itemset X is
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Sfrequent in D if supp (X, D) > «, where « is user-defined minimum support level. Ttemset
X = {x1,x2, ..., Xm} corresponds to Boolean expression x;AxA...Ax,. Thus, if the itemset

{x1, x2, ..., Xm} contains in a transaction then the Boolean expression x;AX,A... Ay, 1S true
for that transaction. On the other hand, if the itemset {x;, x>, ..., x,,} does not contain in a
transaction then the Boolean expression x;AX,A...AX, is false for that transaction. In
general, let E be a Boolean expression on the items in D. Then, supp(E, D) is the fraction
of transactions in D that satisfy E.

Frequent itemset mining has received significant attention in the recent time. Several
implementations of mining frequent itemsets [32] have been reported. Frequent itemsets
are important patterns in a database, since they determine major characteristics of a
database. Wu et al. [80] have proposed a solution of inverse frequent itemset mining.
Authors argued that one could efficiently generate a synthetic market basket database
from the frequent itemsets and their supports. Let X and Y be two itemsets in database D.
The characteristics of database D are revealed more by the pair (X, supp (X, D)) than that
of (Y, supp (¥, D)), if supp(X, D) > supp(Y, D). Thus, it is important to study frequent
itemsets more than infrequent itemsets. Negative association rules are generated from
infrequent itemsets. Thus, their applications in different problem domains are limited.
The goal of this chapter is to study some kind of association among items which is not
immediately available from frequent itemsets and association rules.

If X is frequent in D then every non-null subsct of X is also frequent in D. Let us

consider the following example.
Example 1.2.1. Let D = {{a, b}, {a, b, c,d}, {a, b, c, h}, {a, b, g}, {a, b, h}, {a, c}, {a,
c,d}, {b}, {b,c,d, h}, {b,d, g}}. Let X(n7) denote frequent itemset X with support 7. The
frequent itemsets in D at minimum support level 0.2 are given as follows: {a}(0.7),
{6}(0.8), {c}(0.5), {d}(0.4), {g}(0.2), {n}(0.3), {a, b}(0.5), {a, c}(0.4), {a, d}(0.2), {a,
h}(0.2), {b, c}(0.3), {b, d}((0.3), {b, g}(0.2), {b, h}(0.3), {c, d}(0.3), {c, h}(0.2), {a, b,
c3(0.2), {a, b, h}(0.2), {a, ¢, d}(0.2), {b, c, d}(0.2), {b, c, h}(0.2).
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Suppose we wish to study association among items in {a, b, c}. A frequent itemset
mining algorithm could mine the following details about the items in {a, b, c}.

Table 1.2.1. Frequent itemset {a, b, ¢} and its non-null subsets at = 0.2
Itemset | {a} | {b} | {c} | {a,b} | {a,c} | {b,c} | {a,b,c}
Support | 0.7 | 0.8 | 0.5 0.5 0.4 0.3 0.2

Table 1.2.1 provides the information regarding how frequently a non-null subset of {a, b,
¢} occurs in D. Such information might not be sufficient for all types of queries and
analyses of items in {a, b, c}. ®

A positive association rule finds positive association between two disjoint non-null
itemsets. Positive association rules are generated from frequent itemsets in the database.
A positive association rule »: X— Y in D is characterized by its support and confidence
measures [11]. Support of association rule »: X— Y in D is the fraction of transactions in
D containing both X and Y. Confidence (conf) of an association rule » in D is the fraction
of transactions in D containing Y among the transactions containing X. An association
rule r in D is interesting if supp(r, D) > «, and conf(r, D) > S, where S is the minimum
confidence level. The parameters « and £ are user-defined inputs to an association rule
mining algorithm. In Example 1.2.2, we generate interesting association rules from {a, b,
c}.

Example 1.2.2, We continue here the discussion of Example 1.2.1. The interesting
association rules generated from {q, b, c} are given in Table 1.2.2.

Table 1.2.2. Association rules generated from {a, b, ¢} at a=0.2 and f= 0.5

Association rule | Support | Confidence
{a,c} > {b} 0.2 0.5
{b, c} > {a} 0.2 0.66667
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The rest of the chapter is organized as follows. In Section 1.2.2, we introduce the
notion of conditional pattern in a database. We discuss properties of conditional patterns
in Section 1.2.3. In Section 1.2.4, we propose an algorithm for extracting conditional
patterns from a database. Experimental results are given in Section 1.2.5. Also, we

present an application of conditional patterns. We discuss related work in Section 1.2.6.

1.2.2 Conditional pattern

The study of items in {a, b, ¢} might be incomplete if we know the supports of its non-
null subsets and the association rules with respect to the non-null subsets of {a, b, c}.
Thus, the information provided in Tables 1.2.1 and 1.2.2 might not be sufficient for all
types of queries. and analyses related to items in {a, b, c}. In fact, there are some queries
related to items in {a, b, ¢} whose answers are not immediately available from Tables
1.2.1 and 1.2.2. A few examples of such queries are given below.
e Given a frequenf itemset {a, b, c}, find the support of Boolean expression containing
item a but not items b and c.
= Given a frequent itemset {a, b, ¢}, find the support of Boolean expression containing
items a and b but not item c.
The above queries correspond to a specific type of pattern in a database. Some of these
patterns could have significant supports, since {a, b, c} is a frequent itemset. In general,
if we wish to study the association among the items in ¥ along with negation of items in
X-Y, then such analysis is not immediately available from frequent itemsets and positive
association rules, given the itemsets X in a database such that ¥ < X. Such association
analyses could be interesting, since the corresponding Boolean expressions could have
high supports. Therefore, we need to mine such patterns for an effective analysis of items
in frequent itemsets.
Let (¥, X) be a pattern that a transaction in a database contains all the items of ¥, but

not items of X-7, for itemsets X and Y in the database such that ¢ # ¥ < X. Let supp (¥, X,
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D) be the fraction of transactions in database D containing all the items of ¥, but not the

items of X-Y, for itemset X in D such that ¥ < X. A pattern of type (¥, X) is called a

conditional pattern [9)]. A conditional pattern (¥, X) has two components: pattern itemset
(Y) and reference itemset (X). Thus, a conditional pattern (¥, X) is associated with two
values: supp(Y, X, D) and supp(X, D). supp(Y, X, D) and supp(X, D) are called
conditional support and reference support of conditional pattern (¥, X) in D,
respectively. The conditional support and reference support of conditional pattern (¥, X)
in D are denoted by csupp(Y, X, D) and rsupp(Y, X, D), respectively. In other words, supp
(Y, X, D) and supp(X, D) are denoted by csupp (Y, X, D) and rsupp (¥, X, D), respectively.
A conditional pattern (Y, X) in D is interesting if csupp(Y, X, D) > & and rsupp(Y, X, D) >
a, where ¢ is the minimum conditional support. The parameters ¢ and & are user-defined
inputs to a conditional pattern mining algorithm.

The following figures provide more information about given queries.

e R ',Q b
& &
) (i)
Figure 1.2.1. Shaded regions in (i) and (ii) correspond to conditional supports of ({a},
{a, b, c})and ({a, b}, {a, b, c}) in D, respectively
The shaded region in Figure 1.2.1(i) is a set of transactions in D such that each
transaction contains item a but not items b and ¢, with respect to {a, b, c¢}. The shaded
region in Figure 1.2.1(ii) is a set of transactions in D such that each transaction contains
items a and b but not item c¢, with respect to {a, b, c}. Conditional support of a
conditional pattern could be synthesized using supports of relevant itemsets in the
database. For example, csupp({a}, {a, b, ¢}, D) and csupp{{a, b}, {a, b, ¢}, D) could be

synthesized as follows.
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Table 1.2.4. Non-trivial conditional patterns with respect to {a, b, c} at §= 0.2 and o=
0.2

Conditional pattern | csupp | rsupp | Conditional pattern | csupp | rsupp
{b}, {a, b, c}) 0.2 0.2 ({a, c}, {a, b, c}) 0.2 0.2
{a, b}, {a,b,c}) | 03 0.2

We observe that csupp(Y, X, D) < supp(Y, D), for Y < X. Nonetheless, csupp(Y, X, D)
could be high, if X is frequent in D. Thus, it is necessary to study such patterns in a
database for effective analysis of items in frequent itemsets. The problem could be stated

as follows.

We are given a database D of customer transactions. Extract interesting non-trivial

conditional patterns from D.

1.2.3 Properties of conditional patterns

In this section, we present some interesting properties of conditional patterns in a
database. Before presenting the properties, we introduce some notations. Let X = {x;, x>,

ooy Xmy and Y = {y;, ¥2, ..., ¥p}. Then, supp(XUY, D) and supp(X( Y, D) refer to
SUpp((X1 /X2 oo AXm) V (VIAV2A ... AVp), D) and supp((xinxon ... AxXm) A (VIAV2IA ... AVp),
D), respectively.

Lemma 1.2.1. Let E be a Boolean expression that a transaction contains at least one
item of itemset X in database D. Then, supp(E, D) = X, _, .., csupp(Y, X, D) ~ (1.2.3)
Proof. We re-state the theorem of total probability [31] in terms of supports as follows:

For any m Boolean expressions X}, X>, ..., X,, in database D, we have supp( X D)
= X7, supp(X,, D) - 57, oy supp(X,N X, D) + ... +(-1)"" supp (., X,, D). The

events (¥, X) and (Z, X) are mutually exclusive, for Y # Z, Y ¢ X and Z < X. Thus,
supp((Y, X) N {Z,X),D)=0,forY#Z, Yc Xand Zc X. e



-+

Chapter 1.2 Mining conditional patterns in a database 1.11

Let X = {a, b, c}. With reference to Examples 1.2.1 and 1.2.3, supp(avbvc, D) = 1 and
supp(avbve, D) = csupp({a, X, D) + csupp({b}, X, D) + csupp({c}, X, D) + csupp({a,
b}, X, D) + csupp({a, c}, X, D) + csupp{{b, c}, X, D) + csupp(X, X, D). It validates
Lemma 1.2.1.

Lemma 1.2.2. supp(X, D) < X, _, ., csupp(Y, X, D), for any two itemsets X and Y in
database D such that Y c X.

Proof. Let X = {x;, x2, ..., X}. Then X corresponds to Boolean expression x;AXsA ... AXn
in D. Let E be a Bdolean expression that a transaction contains at least one item of
itemset X in D. Then, supp(E, D) = Zyg X Ve csupp(Y , X, D> , by Lemma 1.2.1.
Therefore, supp(E, D) = csupp(X, X, D) + Q, where Q > 0. Then, supp(E, D) = supp(X, D)
+ Q, since supp(X, D) = csupp (X, X, D). The lemma follows. e

With reference to Examples 1.2.1 and 1.2.3, let X = {a, b, c}. Then, supp(X, D) = 0.2.
Now, csupp{{a}, X, D) +csupp{{b}, X, D) + csupp{{c}, X, D) + csupp{{a, b}, X, D) +
csupp {{a, c}, X, D) + csupp{{b, c}, X, D) + csupp(X, X, D) = 1.0 > 0.2. It validates
Lemma 1.2.2. ,

Lemina 1.2.3. The conditional supports of (X, Y) and (X, Z) in a database may not be
equal, for any three itemsets X, Y and Z in the database suchthat Xc Yand X c Z.
Proof. The itemsets Y-X and Z-X may not be the same. Thus, the lemma follows. e

With reference to Example 1.2.1, we get csupp({a, b}, {a, b, h}, D) = 0.3 and csupp{{a,
b}, {a, b, d}, D) = 0.4. We observe that csupp({a, b}, {a, b, h}, D) # csupp{{a, b}, {a, b,
d}, D). It validates Lemma 1.2.3.

Lemma 1.2.4. There is no fixed ordered relationship between conditional supports of (Y,
X) and (Z, X) in a database, for any three itemsets X, Y and Z in the database such that Z
cYcX

Proof. Let X, Y and Z be three itemsets in database D such that csupp(Y, X, D) < csupp(Z,

X, D), forsomeZ < Y < X. Also, there may exist another three itemsets P, O, and R in
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database D such that csupp(R, P, D) < csupp(Q, P, D), for some R ¢ Q c P. The proof'is
based on a counter example. With reference to Example 1.2.1, let X = {a, b, ¢}, ¥ = {aq,
b} and Z = {a}. Then, csupp{Z, X, D) = csupp{{a}, {a, b, ¢}, D) =0, and csupp(Y, X, D)
= csupp({{a, b}, {a, b, c}, D) =0.3. In this case, we observe csupp(Z, X, D) < csupp(Y, X,
D), forZcYc X Letd={b,d, h}, B={b, d} and C = {b}. Then, csupp(C, 4, D) =
csupp({b}, {b, d, h}, D) = 0.3, and csupp(B, A, D) = csupp{{b, d}, {b, d, h}) =0.2.In
this case, we observe csupp(B, A, D) < csupp{C, A, D),for Cc BC 4. ®

We could synthesize a set of frequent itemsets from a set of association rules. In
particular, let 7;: XY and r,: X—>Z be two positive association rules in D, where X, ¥
and Z are three frequent itemsets in D. The set of frequent itemsets synthesized from {r,,
r,} is {X, XY, XZ}. In a similar way, we could synthesize a set of frequent itemsets from a
set of conditional patterns. In particular, let cp;: ({x/, X2}, {x/, X2, x3}), and cp2: ({x;, x3},
{x;, x2, x3}) be two conditional patterns in D, where x; is an item in D, for i =1, 2, 3. The
set of frequent itemsets is synthesized from {cp,, cp,} is {{x1, x2}, {x1,x3}, {x1, x2, x3} }.
Example 1.2.4. With reference to Table 1.2.2, the set of frequent itemsets synthesized
from the set of positive association rules is given as follows: {{a, ¢}(0.4), {b, c}(0.3), {a,
b, c}(0.2)}. With reference to Table 1.2.4, the set of frequent itemsets synthesized from
the set of conditional patterns is given as follows: {{a, 5}(0.5), {a, c}(0.4), {a, b,
c}(0.2)}. o
From Example 1.2.4, one could conclude that the association rules and conditional
patterns in a database may not represent the same information about a database, since the
amount of information conveyed by association rules in a database is dependent on £, at a
given a. Also, the information conveyed by the conditional patterns in a database is

dependent on &, at a given «. Thus, we have the following definition.
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Definition 1.2.1. A set of association rules A and a set of conditional patterns C in a
database convey the same information about a given database if the set of frequent
itemsets synthesized from A is the same as the set of frequent itemsets synthesized from
C. [ ]

Lemma 1.2.5. The set association rules in a database at B = « and the set of conditional
patterns in the database at & = 0 represent the same information about the database at a
given .

Proof. Let S be a set of frequent itemsets in database D. Also, let CLOSURE(S) = {s: (s €
S), or (s 2 gand s = p € S)}. Let FIS(D, i) be the set of frequent itemsets in D of size 7,
forani=1,2,.... The set of frequent itemsets synthesized from association rules in D

at B = a is equal to CLOSURE (U,,, FIS(D,i)). Also, the set of frequent itemsets
synthesized from the conditional pattens in D at & = 0 is equal to
CLOSURE (U,,, FIS(D,i)).» |

With reference to Example 1.2.1, the frequent itemsets in D at « = 0.4 are given as

follows: {a, b}(0.5), {a, c}(0.4). The association rules in D at #= 0.4 are given in Table
1.2.5.

Table 1.2.5. Association rules in D at = 0.4 and f=0.4

Association rule 7 supp(r, D) | conf(r, D)
{a} > {b} 0.5 0.71429
{b} > {a} 0.5 0.625
{a} > {c} 0.4 0.57143
{c} > {a} 0.4 0.8

The set of frequent itemsets synthesized from the above association rules is equal to

{{a}(0.7), {b}(0.8), {c}(0.5), {a, b}(0.5), {a, c}(0.4)}. The conditional patterns in D at &
= (.4 are given in Table 1.2.6.
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Table 1.2.6. Conditional patterns in D at «=0.4 and =0

Conditional pattern | csupp | rsupp | Conditional pattern | csupp | rsupp
({a}, {a, b}) 0.2 0.5 ({a}, {a, c}) 0.3 0.4
({b}, {a, b}) 0.3 0.5 ({c}, {a, c}) 0.1 0.4

The set of frequent itemsets synthesized from the above conditional patterns is equal to
{{a}(0.7), {b}(0.8), {c}(0.5), {a, b}(0.5), {a, c}(0.4)}. Thus, the set of frequent itemsets
synthesized from the above association rules and the set of frequent itemsets synthesized
from the above conditional patterns are the same at = o and & = 0. Thus, it validates
Lemma 1.2.5.

Lemma 1.2.6. Let the conditional pattern (Y, X) in database D be interesting at
conditional support level 6 and support level o. Then itemset Y is frequent at level a + 6.
Proof. csupp(Y, X, D) > & and supp(X, D) > a, since (¥, X) is interesting in D at
conditional support level § and support level . The patterns X and (¥, X) in D cannot
occur in a transaction simultaneously. supp(X, D) > « implies supp(Y, D) > a, since ¥ <
X. Also, csupp(Y, X, D) 2 6 and thus, supp(Y, D) > (a + 6). e

With reference to Example 1.2.3, ({b}, {a, b, ¢}) is interesting conditional pattern in D at
6 =0.2 and a = 0.2. With reference to Example 1.2.1, supp({b}, D)= 0.8 =202+ 02 =
0.4. Thus, 1t validates Lemma 1.2.6.

Lemma 1.2.7. Let X, X>, ..., X, be itemsets in database D such X; < Xi+p, fori =1, 2, ...,
m-1. Then, csupp(Y, X;, D) 2 csupp(Y, Xi+1, D), for Y X; at everyi=1, 2, ..., m-1.
Proof. Let Y= {a;, a,, ..., a,}. For i =k, let Z = Xj+1-Xi. Also let, Xy = {b;, by, ..., by},
and Z = {c;, ¢z, ..., ¢}. Consider the following two Boolean expressions: E; =
AN NaA—DIN=DIA . A=by  and  E; = aiadoA. AGpA—biA—DIAL L AmBgA

—CIA—C2A. .. A—C,. The Boolean expressions E; and E, correspond to conditional patterns
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(Y, Xy and (Y, Xi+1), respectively. The expression E; is more restrictive than the
expression E;. Thus, supp(E, D) 2 sup(E», D). e

With reference to database D of Example 1.2.1, let Y= {b}, X; = {a, b} and X, = {aq, b,
c}. We have csupp(Y, X;, D) = 0.3 and csupp(Y, X,, D) = 0.2. We observe that csupp(Y,
X1, D) 2 csupp(Y, Xz, D).

1.2.4 Mining conditional patterns

For mining conditional patterns in a database, we need to find their conditional supports.
We calculate csupp(Y, X, D) in terms of supports of relevant frequent itemsets, for ¥ < X.
Let X = YUZ, where Z = {a,, a, ..., a,}. The following theorem [9] is useful for
synthesizing conditional supports using relevant frequent itemsets in D.

Lemma 1.2.8. Let X Y and Z are itemsets in database D such that X = YU Z, where Z =
{a;, as .., a,}. Then, ésupp(Y, X Dy = supp(Y, D) -2F supp(YNi{a},D) +

i gml supp(Yﬂ{a,.,aj},D) - Z,’:Kk;i’bk:l supp(Yﬂ{a,.,aj,ak}, D)y + .. +
(-1) x supp (Y N{a,, a,, .., a,}, D) (1.2.4)
Proof. We shall prove the result using the method of induction on p. For p =1, X =
YN {a;}. Then, csupp(Y, X, D) = supp(Y, D) - supp(Y {a;}, D). Thus, the result is true
for p = 1. Let us assume that the result is true for p = m.

We shall prove that the result is true for p =m + 1. Let Z = {ay, a2, ..., Gu+1}. Due to
the addition of item a,.;, many supports are required to be added to or, subtracted from
the expression of csupp(Y, X, D) at p = m. For example, supp(Y( {am+1}, D) is required
to be subtracted, supp(YN {ai, am+1}, D) is required to be added, for 1 <i < m, and so on.
Finally, the term  (-1)"*' x supp(Y N{a,, a,, ..., a,,,;}, D) is required to be added. Thus, the

expression of csupp(Y, X, D) at p=m+ 1, is given as follows.
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csupp (Y, X, Dy = supp(Y, D) - 2" supp (Y N{a,}, D) + X . supp(Y N{a,,a;}, D) -

;":}(k;’.,j’kﬂ Supp(Yﬂ{a,.,aj,ak},D) +... 4+ (-1)"”I xsupp (Y N{a,,a,,...,a,,,}, D).

Formulas (1.2.1) and (1.2.2) validate above theorem. We shall use this formula in the
algorithm for computing conditional support of a conditional pattern.

Lemma 1.2.9. The maximum number of non-trivial conditional patterns is equal to
2 xe FIS(DY, IX]22 212, where FIS(D) is the set of frequent itemsets in database D.

Proof. The number of nonempty subsets of X excluding X is equal to 2! - 2. Each such
subset of X corresponds to a non-trivial conditional pattern with reference to X. Thus, the
lemma follows. e |

The interestingness of a conditional pattern is judged by its conditional support and
reference support. By combining both the measures one could define many
interestingness measures of a conditional pattern. An appealing measure of
interestingness of a conditional pattern (¥, X) in database D could be csupp(Y, X, D) +
rsupp(Y, X, D).

1.2.4.1 Algorithm design

For mining conditional patterns in a database, we make use of an existing frequent
itemset mining algorithm [13], [39], [66]. There are two approaches of mining
conditional patterns in a database.

In the first approach, one could synthesize conditional patterns from current frequent
itemset extracted during the mining process. As soon as a frequent itemset is found
during the mining process, one could call an algorithm for finding conditional patterns
using the current frequent itemset. When a frequent itemset is extracted, then all the non-
null subsets of the frequent itemest have already been extracted. Thus, one could
synthesize all the conditional patterns from the current frequent itemset extracted from
the database. In the second approach, one could synthesize conditional patterns from the

frequent itemsets in the given database after mining of all frequent itemsets. Thus, all



Chapter 1.2 Mining conditional patterns in a database 1.17

the frequent itemsets are processed at the end of mining task. These two approaches seem
to be the same so far as the computational complexity is concerned. In this chapter, we
have followed the second approach of synthesizing conditional patterns. During the
process of mining frequent itemsets, the frequent itemsets of smaller size get extracted
before the frequent itemsets of larger size. The frequent itemsets are stored in array FIS
and get sorted based on their size automatically. During the processing of current
frequent itemset, all the non-null subsets are available before the current itemset in FIS.
Before presenting the proposed algorithm of synthesizing the conditional patterns, we
first state how we have designed the synthesizing algorithm. The frequent itemsets of size
1 generate trivial conditional patterns. Thus, the algorithm skips processing frequent
itemsets of size 1. There are 2¥-1 non-null subsets of an itemset X. Each non-null subset
of X may correspond to an interesting conditional pattern, for |X] > 2. The subset X of X
corresponds to a trivial conditional pattern. Thus, we need to process 2%.2 subsets of X.
One could view a conditional pattern as an object having the following attributes:
pattern, reference, csupp, and rsupp. We use an array CP to store conditional patterns in
a database. The y attribute of i-th conditional pattern is accessed by notation CP(i).y.
Also, a frequent itemset could be viewed as an object described by the following
attributes: itemset and supp. Let N be the number of frequent itemsets in the given
database D. The variables i and j are used to index the frequent itemset being processed
and the conditional pattern being synthesized, respectively. An algorithm [9] for
synthesizing interesting non-trivial conditional patterns is presented below.
Algorithm 1.2.1. Synthesize interesting non-trivial conditional patterns in a database.
procedure Conditional PatternSynthesis (N, FIS)
Input:
N: number of frequent itemsets in the given database

FIS: array of frequent itemsets in the given database
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Output: - .

Interesting non-trivial conditional patterns in the database

01: leti=1,;

02: letj=1;

03: while (|[FIS(i))| = 1) do

04:  increaseiby 1;

05: end while

06: while (i <N)do

07:  CP(j).rsupp = FIS(i).supp; CP(f).reference = FIS(i).itemset,
08: letsum=0;

09:  for k=1 to (2Siemsel_ 1) go

10: let templtemset = k-th subset of FIS(i).itemset,

11: if (FIS(i).itemset = templtemset) then go to line 24; end if
12: let kk=1;

13: while (kk < i) do

14: if (FIS(kk).itemset = templtemset) then

15: sum = sum + (-1)7SER-temsed| ~|templtemsell - Ly k) supp;
16: go to line 21;

17: end if

18: increase kk by 1;

19: end while

20:  end for

21:  if (sum > 6) then

22: CP(i).csupp = sum; CP(i).pattern = templtemset,

23: increase j by 1;

24:  endif

25:  increase i by 1;

26: end while
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27: sort conditional patterns on (csupp + rsupp) in non-increasing order;

28: fork=1tojdo |

29:  display -th conditional pattern;

30: end for

end procedure

In this paragraph, we explain and justify the statements of the above algorithm. The
important parts of the algorithm are explained as follows. The frequent itemsets of size 1
generate trivial conditional patterns. Thus, we have skipped processing frequent itemsets
of size one using lines 3-5. We synthesize conditional patterns using lines 6-26. There are
2%.1 non-null subsets for an itemset X. Each subset is considered using a for-loop in lines
9-20. The algorithm synthesizes conditional patterns with reference to a frequent itemset
X, for |X] 2 2. The algorithm bypasses processing itemset Y, if Y = X. When we synthesize
conditional patterns with reference to a frequent itemset, we have already finished
synthesizing its subsets. All the non-null subsets appear on or before the frequent itemset
in FIS. Thus, if a frequent itemset X located at position i, then we search for a subset of X
from index 1 to i in FIS, since FIS is sorted in non-decreasing order on length of an
itemset. Thus, it justifies the condition of while loop at line 13. Formula (1.2.4) expresses
csupp (Y, X, D) in terms of supp(¥Y( Z, D), for all Z < X-Y. The coefficient of supp(¥Y( Z,
D) is (—l)lzI in the expression of csupp(Y, X, D). Thus, csupp(Y, X, D)
= e vy -1)" xcsupp (¥, X, D) . This formula has been applied at line 15 to calculate

csupp(Y, X, D). A conditional pattern is interesting if the conditional support is greater
than or equal to 9, provided the reference support of the itemset is greater than or equal to
a. We need not check the reference support, since we deal with the frequent itemsets. In
line 21, we check whether the currently synthesized conditional pattern is interesting. The
details of a synthesized conditional pattern are stored using lines 7 and 22. At line 27, we

sort all interesting conditional patterns in the given database. Finally, we display interes-
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ting conditional patterns using lines 28-30. We calculate time complexity of algorithm
Conditional PatternSynthesis using Lemma 1.2.10.

Lemma 1.2.10. Algorithm ConditionalPatternSynthesis executes in O(NZ x 2F) time,
“where N and p are the number of frequent itemsets and the average size of the frequent
itemsets of size greater than 1 in the database, respectively. |

Proof. Lines 3-5 take O(N) time. The while-loop at line 6 repeats maximum N times. .
Thus, the for-loop at line 9 repeats 2°-1 times. The while-loop at line 13 repeats
maximum N times. Thus, the time complexitybof lines 6-26 is equal to O(M x 2°). The
time complexity of line 27 is equal to O(N x 27 x log(N x 27)), since the number of
conditional patterns is equal to O(N x 2P). The time complexity of lines 28-30 is equal to
O(N x 2P). Therefore, the time complexity of the algorithm is maximum {O(N2 x 2P), O(N
x 27 x log(N x27)) }. e

1.2.5 Experiments

We have carried out several experiments to study the effectiveness of our approach. All
the experiments have been impleménted on a 1.6 GHz Pentium processor with 256 MB
of memory using visual C++ (version 6.0) software. We present experimental results
using three real databases. Database retail [34] is obtained from an anonymous Belgian
retail supermarket store. Databases BMS-Web-Wiew-1 and BMS-Web-Wiew-2 can be
found from KDD CUP 2000 [34]. They are processed for the purpose of conducting
experiments. We present some characteristics of these databases in Table 1.2.7.

Table 1.2.7. Database characteristics

_ Avg length Avg frequency
Database # transaction . # items
of a transaction of an item
retail 88,162 11.305755 99.673800 10000
BMS-Web-Wiew-1 1,49,639 2.000000 155.711759 1922
BMS-Web-Wiew-2 3,58,278 2.000000 7165.560000 100
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Top five interesting conditional patterns of available categories are shown in Table 1.2.8.
We have implemented apriori algorithm for the purpose of mining conditional patterns in
the given databases. The conditional patterns in a database are ranked based on the sum
of conditional support and reference support.
Table 1.2.8. Top 5 conditional patterns of each category available in retail at o= 0.05
and 6= 0.03

Conditional pattern csupp rsupp
({39}, {1,39)) | 0.520451 | 0.066332
({39}, (8,39)) | 0.524421 | 0.062362
({39}, 10,39}y | 0.526871 | 0.059912
(39}, {2,39)) | 0.525612 | 0.061171
({39}, (3,39)) | 0.525714 | 0.061069

({39}, {39, 41, 48}) - | 0.210317 | 0.083551
(39}, (32,39, 48)) | 0221603 | 0.061274
] (397, (38, ‘39,»"48}5: - 0.20'8106 0.069213
({48}, (39,41, 48}y | 0.139482 | 0.083551
32}, 32.39,48)) | 0049432 | 0061274
(139,48}, (32,39, 48}y | 0269277 | 0.061274
({39, 48}, {39, 41, 48}) | 0.247000 | 0.083551
({39, 48}, {38, 39, 48}y | 0.261337 | 0.069213
({38, 39}, {38, 39, 48}y | 0.048127 | 0.069213
(132,39}, (32, 39, 48}y | 0.034629 | 0.061274
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Table 1.2.9. Top 5 conditional patterns of each category available in BMS-Web-Wiew-1
at «=0.01 and 6= 0.009

Conditional pattern | csupp rsupp
({5}, {1, 5} 0.235453 | 0.013740
({5}, {3, 7} 0.236135 | 0.013058
({53, {5,7}) | 0.235293 | 0.013900
({5}, {5, 9} 0.236335 | 0.012858
{73, {7,9}) 0.203563 | 0.011568

Table 1.2.10. Top 5 conditional patterns of each category available in BMS-Web-Wiew-2
at = 0.009 and 6= 0.007

Conditional pattern | csupp rsupp
{73, {1, 7)) 0.174072 | 0.022943
{73, {6, 7}) 0.185401 | 0.011614
{7, (7,9 0.175810 | 0.021204
{73, {0, 7}) 0.185702 | 0.011312
7}, {2, 7)) 0.185747 | 0.011268

In both BMS-Web-Wiew-1 and BMS-Web-Wiew-2, only one category of conditional
patterns is available, since the maximum length of a transaction in each of these two
databases is 2.

- We have also conducted experiments for execution time needed for finding conditional
patterns in different databases. The execution time for finding conditional patterns in a
database increases as the size, i.e., the number of transactions contained in a database
increases. We observe this phenomenon in Figures 1.2.2 and 1.2.3. We have also
conducted experiments for execution time needed for synthesizing conditional patterns in

a database. The time required for synthesizing conditional patterns in each of the above
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databases is equal to zero millisecond at the respective values of o and 6 shown in Tables

1.2.8,1.2.9 and 1.2.10.
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We have also conducted experiments for finding the number of conditional patterns in
a database at a given . The number of conditional patterns in a database decreases as «

increases. We observe this phenomenon in Figures 1.2.4 and 1.2.5.
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We have also conducted experiments for finding execution time needed for mining
conditional patterns in a database at a given a. The execution time needed for mining

conditional patterns in a database decreases as « increases. We observe this phenomenon

in Figures 1.2.6 and 12.7.
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Also, we have conducted experiments to study the relationship between the size of a
database and the number of conditional patterns in it. The experiments are conducted on
databases retail and BMS-Web-Wiew-1. The results of the experiments are shown in
Figures 1.2.8 and 1.2.9. From the graphs in Figures 1.2.8 and 1.2.9, we could conclude
that there is no universal relationship between the size of a database and the number of

conditional patterns in it.
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Also, we have conducted experiments to study the relationship between the number of
conditional patterns and conditional support. The experiments have been conducted on
databases refail and BMS-Web-Wiew-1. The number of conditional patterns in a database

decreases as dincreases. We observe this phenomenon in Figures 1.2.10 and 1.2.11.



Chapter 1.2 Mining conditional patterns in a database 1.27

g

e 80

-1

EWSO_%W

o E

O 0 40

< B

o 820

go.

Eo|llllllll

3 — N N T W\ O >0 A e

Z e 9 9O 9 9 © o 9 9O 4
S © O o o o ©o o o

Delta

Figure 1.2.10. Number of conditional patterns versus ¢ for retail

3

§ 25

3 20 - :

S E 15 "

(]

e F 10 A

g5 s \=\¥

§ 0 T T T T T T T T T T T T

’ > 5 9 ‘) A N &
RN SR N AN

Delta

Figure 1.2.11. Number of conditional patterns versus ¢ for BMS-Web-Wiew-1

1.2.5.1 An application

Adhikari and Rao [3] have proposed a technique for mining arbitrary Boolean
expressions induced by frequent itemsets using conditional patterns in a database. In
Chapter 1.3, we have discussed how an arbitrary Boolean expression induced by frequent

itemsets could be synthesized using conditional patterns in a database.

1.2.6 Related work

Agrawal et al. [11] introduced association rule and support-confidence framework and an
algorithm to mine frequent itemsets. The algorithm is sometimes called AIS after the

authors’ initials. Since then, many algorithms have been reported to generate association
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database. Conditional patterns reveal more characteristics of a database. Also, we have
observed that conditional patterns store significant nuggets of knowledge about a

database that are not immediately available from frequent itemsets and association rules.
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Chapter 1.3

A framework for synthesizing arbitrary Boolean expressions

induced by frequent itemsets

An itemset could be thought as a basic type of pattern in a transactional database. Itemset
patterns influence heavily KDD research in the following ways: Firstly, many interesting
algorithms have been reported on mining itemset patterns in a database [11], [39], [66].
Secondly, many patterns are defined based on the itemset patterns in a database. They
may be called as derived patterns. For example, positive association and negative
association rules are examples of derived patterns. A good amount of work has been
reported on mining / synthesizing such derived patterns in a database [13], [17], [81].
Thirdly, solutions of many problems are based on the analysis of patterns in a database.
Such applications [79], [83] process patterns in a database for the purpose of making
some decisions. Thus, mining and analysis of itemset patterns in a database is an
interesting as well as important issue. Also, mining Boolean expressions induced by
frequent itemsets could lead to significant nuggets of knowledge, with many potential
applications in market basket data analysis, web usage mining, social network analysis
and bioinformatics.

The support [11] of an itemset X in database D could be defined as the fraction of
transactions in D containing all the items of X, denoted by supp(X, D). The importance of
an itemset could be judged by its support. Itemset X is frequent in D if supp(X, D) >

minimum support (). Let FIS(D) be the set of frequent itemsets in D. Frequent itemsets
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determine major characteristics of a database. Wu et al. [80] have proposed a solution of
inverse frequent itemset mining. These authors argued that one could efficiently generate
a synthetic market basket database from the frequent itemsets and their supports. Let X
and Y be two itemsets in D. The characteristics of D are revealed more by the pair (X,
supp(X, D)) than that of (¥, supp(Y, D)), if supp(X, D) > supp(Y, D). Thus, it is important
to study frequent itemsets more than infrequent itemsets. In this chapter, we propose a
framework for synthesizing arbitrary Boolean expressions induced by frequent itemsets
in D. The proposed framework for synthesizing Boolean expressions is based on
conditional patterns in D. In Chapter 1.2, we have presented the notion of conditional
pattern in a database. ‘

Let X = {ay, a,, ..., an} be a set of m binary variables (items). Let v, A and — denote
the usual AND, OR and NOT operators in Boolean algebra, respectively. An arbitrary
Boolean expression induced by X could be constructed using the following steps:

(i) a;is a Boolean expression, fori=1,2, ..., m.

(i1) If a;is a Boolean expression then —a; is a Boolean expression, fori=1, 2, ..., m.

(1ii) If a; and a; are Boolean expressions then (a;va;) and (a;Aa;) are Boolean expressions,
fori,j=1,2,...,m. |

(iv) Any expression obtained by applying steps (i), (ii) and (iii) finite number of times is
a Boolean expression.

Our objective is not to give a formal definition of a well formed Boolean expression

induced by X, but to understand how a Boolean expression induced by X could be

constructed using a step-by-step approach. There are some other non-fundamental

operators in Boolean algebra. Some examples of non-fundamental operators are NAND,

NOR, and XOR. Any Boolean expression could be expressed by the set of operators {—,

A, v}. Thus, it is a functionally complete set of operators. Using De Morgan’s laws, one

could show that {—, A} and {—, v} are the minimal sets of operators by which any

Boolean function could be expressed. Thus, {—, A} and {—, v} are also functionally com-
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plete sets of operators. An elaborate discussion on Boolean algebra could be found in
Gregg [37]. _

The pattern itemset of a conditional pattern with reference to itemset X = {a;, as, ...,
am} is of the form b;A by A ... A by, Where b; = a;, or —a;, fori=1,2, ..., m. Let y{X) be
the set of all such pattern itemsets with reference to X. y(X) is called the generator of
Boolean expressions induced by X. y(X) contains 2"-1 pattern itemsets. A pattern itemset
of the corresponding conditional pattern is also called a minterm, or standard product.
Every Boolean expression of items of X could be constructed using pattern itemsets in
W(X) (as mentioned in Lemma 1.3.3). In particular, let X = {a, b, c}. Then, y(X) =
{anbiac, anba—c, an—bac, an—ba—c, manbac, —anba—c, —an—bnac}. The Boolean
expression —bAc could be re-written as (an—bAc) v (—aa—bnac). Every Boolean
expression can be expressed as a sum of some pattern itemsets of the corresponding
generator. A Boolean expression expressed as a sum of pattern itemsets is said to be in
canonical form. Each pattern itemset corresponds to a set of transactions in D. In the

following, we show how each pattern itemset with reference to {a, b, ¢} corresponds to a

set of transactions in D.
a b a b 2 b a b
[ [ C [

(1) anbrc

(i1) anba—c (iii) an—bac (iv) an—br—c

9 |9 &
c c - c

(v) manbac

(vi) manba—c  (vii) man-bac

Figure 1.3.1. Generator of {a, b, ¢}
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is better to mine the generator of an itemset and synthesize the desired Boolean

expressions afterwards. Zhao et al. [95] have proposed BLOSOM framework for mining

arbitrary Boolean expressions. The framework suffers from the following limitations:

* It does not handle NOT operator.

* Let {a, b, c} be a frequent itemset of our interest. We wish to mine some functions
induced by {a, b, c}. It proposes a framework to mine minimal generators of (i) closed
OR-clauses, (ii) closed AND-clauses, (iii) closed maximal min-DNF, and (iv) closed
maximal min-CNF. It requires establishing a mapping from the space of minimal
generators to the space of arbitrary Boolean expressions, so that we could study the
desired Boolean expressions induced by {a, b, c}. Thus, BLOSOM might not provide
the knowledge of Boolean expression that we wish to study.

* A specific framework for a specific type of Boolean expressions is introduced.

Therefore, we propose here a simple and elegant approach for synthesizing arbitrary

‘Boolean expressions induced by frequent itemsefs. We state our problem as follows.
We are given a database D of customer transactions. Mine all the members of y(X),

for all X € FIS(D) such that | X] > 2.

The rest of the chapter is organized as follows. We discuss related results in Section

1.3.2. In Section 1.3.3, we propose an algorithm for mining members of different

generators. The results of the experiments are presented in Section 1.3.4. We discuss

related work in Section 1.3.5.

1.3.2 Related results

In this section, we discuss a few results related to discussion held in previous section.
Lemma 1.3.1. Let E be the event that a transaction contains at least one item of the
itemset X in database D. Then, the support of event E in D, supp(E, D) =
ZY;X,Y¢¢csupp<x X D>
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Proof. The number of non-null subsets of an itemset X is 2™ - 1, for X e FIS(D). Each

non-null subset of X corresponds to a conditional pattern. Thus, the result follows. e .

1.3.3 Synthesizing generators

Conditional patterns are derived from the frequent itemsets in a database. Let X be a
frequent itemset in D. We shall express csupp(Y, X, D) in terms of the supports of the
frequent itemsets in D, for ¥ < X. Without loss of generality, let X =Y U Z, where Z =
{a1, az, ..., an}. The conditional support of i-th conditional pattern with reference to X is
same as the support of i-th member of y(X), fori=1, 2, ..., 2% - 1. Thus, the following
theorem [3] enables us to compute the supports of members of w(X) in D, for all X e
FIS(D), and |X] > 2. _

Lemma 1.3.5. Let X, Y and Z are itemsels in database Dsuchthat X =Y U Z where Z =
{a, az .., am}. Then, csupp(Y, X, D) = supp(Y, D) - X" supp(YN{a;}, D) +
2 msupp(YN{ay a}, D) - X7 i oasupp(YN{a, @, ay, D) + ... +(-1)" x

supp(YN {ay, as, ..., am}, D) (13.2)

Proof. Please refer Lemma 1.2.8. ¢

1.3.3.1 Algorithm design

For synthesizing arbitrary Boolean expressions induced by frequent itemsets in a
database, we make use of an existing frequent itemset mining algorithm. We synthesize -
only the generator of Boolean expressions induced by a frequent itemset. The generator
of Boolean expressions induced by the frequent itemset X contains 2¥-1 pattern itemsets.
The proposed algorithm synthesizes all the members of all the generators. There are two
approaches for synthesizing generators of Bbolean expressions induced by frequent
itemsets in a database. In the first approach, one could synthesize the generator from the

current frequent itemset. As soon as a frequent itemset is extracted, one could call an
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algorithm for synthesizing members of the corresponding generator. When a frequent
itemset is found, then all the non-null subsets of this frequent itemest have already been
extracted. Thus, one could synthesize all the members of the generator from the frequent
itemsets extracted so far. In the second approach, one could synthesize members of the
different generators after mining all the frequent itemsets. Thus, all the frequent itemsets
are processed after the mining task. These two approaches seem to be the same so far as
the computational bomplexity is concerned. In this chapter, we have followed the second

approach of synthesizing members of different generators. During the process of mining

_frequent itemsets, the frequent itemsets of smaller size get extracted before the frequent

itemsets of larger size. The frequent itemsets are kept in array FIS. During the processing
of current frequent itemset, all the non-null subsets are available before the current
itemset in FIS.

There are 2 - 1 non-null subsets of an itemset X. Each non-null subset of X
corresponds to a conditional pattern, and hence, it corresponds to a member of the
generator of Boolean expressions induced by X. The subset X of X corresponds to a trivial
conditional pattern, and gets mined during the mining of frequent itemsets in D. Thus, we
need to process 2X - 2 subsets of .X.

One could view each conditional pattern as an object having the following attributes:
pattern, reference, csupp, and rsupp. We use an array CP to store the conditional patterns
in a database. The reference attribute of the i-th conditional pattern is accessed by the
notation CP(i).reference. Similar notations are used to access other attributes of a
conditional pattern. Also, each frequent itemset could be viewed as an object with the
following attributes: itemset and supp. Let N be the number of frequent itemsets in the
given database D. The following algorithm SynthesizingGenerators [3] synthesizes all the
members of y(X), for X € FIS(D).

Algorithm 1.3.1. Synthesize all the members of generator corresponding to each itemset
in FIS(D).
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procedure SynthesizingGenerators (N, FIS)
Input:
N: number of frequent itemsets in the given database
FIS: set of frequent itemsets in the given database
Output:
Generators corresponding to the frequent itemsets
:leti=1;
: letj=0;
: while (i <N) do
CP(j).rsupp = FIS(i).supp; CP(j).reference = FIS(i).itemset;

Y—

2

3

4

5 let sum = 0;

6: fork=1to (2D uemsel _ 1y do
7 let templtemset = k-th subset of FIS(i).itemset,
8 if (FIS(i).itemset = templtemset) then

9 sum = FIS(i).supp; go to line 19;

10:  endif

11: let kk=1,

12:  while (kk <i) do

13: if (FIS(kk).itemset = templtemset) then

14: sum = sum + (-1 S0k} temset] ~ jiempliemsel, Lyq k) supp;
15: go to line 19;

16: end if

17: increase kk by 1;

18: end while

19: CP()).csupp = sum; CP()).pattern = templtemset,
20: increase j by 1; increase i by 1;

21:  end for

22: end while
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23: letr=0;

24: fori=1toNdo

25:  for k=1 to (2"0emsh 1y go
26: display CP(t + k);

27: end for
28: t=t+ 2|F1S(i)‘itemset| - 1;
29: end for

end procedure
Variable i keeps track of the current frequent itemset being processed. Variable j keeps -

track of number of conditional patterns generated. Using lines 3-22, each frequent itemset

. is processed. There are 2 -1 non-null subsets of X. Each non-null subset corresponds to a

conditional pattern. The generator of an itemset X is synthesized using lines 6-21. Let ¥
be a subset of X. If ¥ = X then the algorithm bypasses from processing of Y (line 8).
When the algorithm synthesizes generator corresponding to a frequent itemset X, then it
has already finished the processing of its non-null subsets. All the non-null subsets appear
on or before X in the array FIS. Thus, if a frequent itemset X located at position i, then we
search for a subset of X from index 1 to i in array FIS, since the array is sorted non-
decreasing order on length of an itemset. Thus, it justiﬁves the condition of the while loop
at line 12. Formula (1.3.2) expresses csupp(Y, X, D) in terms of supp(Y( Z, D), for all Z
c X-Y. The coefficient of supp(Y(Z, D) is (-1)'ZI in the expression of 'csupp(Y, X, D).
Thus, csupp(Y, X, D) =X ,_,, (-1 x supp(YN Z, D). This formula has been applied at

line 14 to calculate csupp(Y, X, D). We need to synthesize both interesting and non-
interesﬁng conditional patterns with reference to frequent itemsets for the solution to the
given problem. Lines 25-27 display the generator corresponding to i-th the frequent
itemset, for i = 1, 2, ..., N. The generator corresponding to i-th frequent itemset contains

pIFISWtemsell 1 members (i.e., pattern itemsets), fori=1,2, ..., N.
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Lemma 1.3.6. Algorithm SynthesizingGenerators executes in O(N°x 2P) time, where N
and p are the number of frequent itemsets and average size of frequent itemsets in the
database, respectively.

Proof. The while-loop at line 3 repeats N times. The for-loop at line 6 repeats 2°-1 times.
Also, the while-loop at line 12 repeats maximum of N times. Thus, the time complexity
of lines 3-22 is O(N? x 27). The time complexity of lines 24-29 is O(N x 27). Therefore,

the time complexity of algorithm SynthesizingGenerators is O(N* x 2%). e

1.3.3.2 Synthesizing first £ Boolean expressions induced by top p frequent itemsets
Using the truth table, one could determine the algebraic forms of Boolean expressions
induced by a frequent itemset. A Boolean expression could be synthesized by the
members of the corresponding generator. We classify the frequent itemsets in a database
into different categories. The frequent itemsets of the same size are put in the same
category. We sort the frequent itemsets of each category in non-increasing order by
support and top frequent itemsets in each category are considered for synthesis. We
perform eXperiments for synthesizing first £ Boolean expressions induced by top p
frequent itemsets of each category.

Example 1.3.1. Let {a, b} and {a, b, c} be two frequent itemsets in D of size 2 and 3,
respectively. We would like to determine first £ Boolean expressions induced by {a, b}
and {a, b, c}. Let E; be the j-th Boolean expression induced by the frequent itemset of
size i, forj=1,2, ..., 2" -1, and i = 2, 3. Then, the truth tables for the first six Boolean

expressions are given in Table 1.3.1.
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Table 1.3.1 Truth tables for the first six Boolean expressions‘induced by {a, b} and

{a, b, c}
a|b|c|Ey|Ex»|Exs|Exy|Exs|Ex|Es|Es|Ess|Es| Ess| Ess
(00 0j0|0j0;]0(O0|O0OjO0O|O0O|O]|O]O
oloj1]o]oflo|o0ololo0olo]olo]|o0olo0]|oO
011{6y 0} 0|0}|0]|1 1 0{0;0;0;074]0O0
ofrf1fo0} 0010 1 1 0|00} 0|00
1/10{0 0} O 1 1 0| 0|00 ]|]O0[0]|]0]O
1{0{1{0 ]| O 1 1 ool 0jO0]|O0O1]O 1 1
111{0]| O 1 0 1 0 1 010 1 110 0
111(1} 0 1 0 1 0 1 0 1 0 1 0 1

First six Boolean expressions are based on items of {a, b}, and the rest of the Boolean
expressions are based on items of {a, b, c}. The algebraic expressions of first six Boolean
expressions are given as follows: E;(a, b) = 0, E;xa, b) = anb, Ejs(a, b) = an—b, E>(a,
b) = a, Ezs(a, b) = —anb, Exa, b) = b; E3i(a, b, ¢) = 0, Esxa, b, ¢) = anbnc, Ez3(a, b, ¢)
= anba—c, Esfa, b, ¢) = anb, Ess(a, b, ¢) = ar—bac, Esda, b, ) = anc. We express E;s
in terms of members of the corresponding generator. Boolean expressions Ej;, E»3, and
E»s have already been expressed in terms of the members of the concerned generator. We
need not compute E,; and E3;, since Eja, b) = Eszfa, b, ¢) = 0. Exfa, b) =
(anb)v(an—=b), and Ex(a, b) = (anb)v(—anb). Also, Es4a, b, c) = (anbac)v(arba—c),
and Esg(a, b, ¢) = (anbac)v(an—bAc). Expressions Es;, Es3 and Ess have already been

expressed in terms of the members of the concerned generator.

1.3.4 Experiments

We have carried out several experiments to study the effectiveness of our approach. All

the experiments have been implemented on a 1.6 GHz Pentium IV with 256 MB of me-
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mory using visual C++ (version 6.0) software. We present the experimental results using
three real and one synthetic databases. The database retail [34] is obtained from an
anonymous Belgian retail supermarket store. The databases BMS-Web-Wiew-1 and BMS-
Web-Wiew-2 can be found from KDD CUP 2000 {34]. They are processed for the
purpose of conducting experiments. The database 77014D100K [34] was generated using
the generator from IBM Almaden Quest research group. We present some characteristics
of these databases in Table 1.3.2. Among four databases of Table 1.3.2, the first three
databases are real and the forth one is synthetic.

Table 1.3.2. Database characteristics

’ . Avg length Avg frequency )
Database # transactions ) # items
of a transaction of an item
retail 88,162 11.305755 99.673800 10000
BMS-Web-Wiew-1 1,49,639 2.000000 155.711759 1922
BMS-Web-Wiew-2 3,58,278 2.000000 7165.560000 100
T1014D100K 1,00,000 11.10228 1276.12413 870

For the purpose of synthesizing Boolean expressions, we have implemented apriori
algorithm [13], since it is simple and easy to implement. In Tables 1.3.3, 1.3.4, 1.3.5 and
1.3.6, we present first six Boolean expressions induced top five frequent itemsets from

retail, BMS-Web-Wiew-1, BMS-Web-Wiew-2 and T1014D100K, respectively.
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in retail at = 0.05

Table 1.3.3. First six Boolean expressions induced by top five frequent itemsets of size 2

Frequent | supp | supp | supp | supp supp
itemset | (Ez2, D) | (Ez3, D) | (E24, D) | (E25, D) | (E26, D)
{39,48} | 0.3306 | 0.2562 | 0.5868 | 0.1582 0.4888
{39,41} | 0.1295 | 0.4573 | 0.5868 | 0.0422 0.1717
{38,39} | 0.1173 | 0.0603 | 0.1776 | 0.4694 0.5868
{41,48} | 0.1023 | 0.0694 | 0.1717 | 0.3865 0.4888
{32,393} | 0.0959 | 0.0793 | 0.1752 | 0.4909 0.5868

itemsets of size 3 in retail at = 0.05

Table 1.3.3(continued). First six Boolean expressions induced by top five frequent

Frequent supp supp supp supp supp
itemset * | (Esz, D) | (Es3, D) | (E34, D) | (E35, D) | (E36, D)
{39,41,48} | 0.0836 | 0.0459 "0.1295 | 0.2470 | 0.3306
{38,39,48} | 0.0692 | 0.0481 | 0.1173 | 0.0209 | 0.0901
{32,39,48} | 0.0613 | 0.0346 | 0.0959 | 0.0299 | 0.0911
{1,39,48} | 0.0449 | 0.0215 | 0.0663 | 0.0170 | 0.0618
{5,39,48} | 0.0432 | 0.0197 | 0.0629 | 0.0162 | 0.0594

The Boolean functions E; and Ej; are not shown, since they are all equal to 0. The

Boolean expressions induced by frequent itemsets of size one are not studied here.
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in BMS-Web-Wiew-1 at o= 0.01

Table 1.3. 4. First six Boolean expressions induced by top five frequent itemsets of size 2

Frequent | supp supp supp supp | supp
itemset | (Ez2, D) | (E23, D) | (E24, D) | (E25, D) | (E26, D)
{5, 7} 0.0139 | 0.2353 | 0.2491 | 0.2012 | 0.2151
{1, 5} 0.0137 | 0.1761 | 0.1899 | 0.2355 | 0.2491
{3, 5} 0.0131 | 0.1953 | 0.2083 | 0.2361 | 0.2491
{5, 9} 0.0129 | 0.2363 | 0.2491 | 0.2014 | 0.2142
{1, 7} 0.0124 | 0.1774 | 0.1899 | 0.2027 | 0.2151

BMS-Web-Wiew-1 and BMS-Web-Wiew-2 do not report any frequent itemsets of size
greater than two.
Table 1.3.5. First six Boolean expressions induced by top five frequent itemsets of size 2

in BMS-Web-Wiew-2 at o= 0.009

Frequent | supp supp supp | supp supp
itemset | (Ez2, D) | (E23, D) | (E24, D) | (Ezs5, D) | (E26, D)
(1,3} | 0.0236 | 0.1695 | 0.1932 | 0.1710 | 0.1946
1,7y | 0.0229 | 0.1702 | 0.1932 | 0.1741 | 0.1970
3,7y | 0.0228 | 0.1719 | 0.1946 | 0.1743 | 0.1970
3,5} | 0.0220 | 0.1726 | 0.1946 | 0.1572 | 0.1793
1,9} | 0.0220 | 0.1712 | 0.1932 | 0.1512 | 0.1732
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Table 1.3.6. First six Boolean expressions induced by top five frequent itemsets of size 2

in 7710I14D100K at o= 0.01

Frequent | supp Supp supp | supp | supp
itemset | (E2, D) | (E23, D) | (E24, D) | (E25, D) | (E25, D)
{217,346} | 0.0134 | 0.0405 | 0.0539 | 0.0214 | 0.0347
{789, 829} | 0.0119 | 0.0335 | 0.0454 | 0.0690 | 0.0809
{368, 829} | 0.0119 | 0.0665 | 0.0785 | 0.0690 | 0.0809
{368, 682} | 0.0119 | 0.0665 | 0.0785 | 0.0319 | 0.0438
{39, 825} | 0.0119 | 0.0307 | 0.0426 | 0.0237 | 0.0356

Table 1.3.6(continued). First six Boolean expressions induced by frequent itemsets of

size 3 in T1014D100K at = 0.01

Frequent supp supp supp supp supp
itemset (Esz, D) | (E33, D) | (E34, D) | (E35, D) | (E36, D)
{39, 704, 825} | 0.0104 | 0.0004 | 0.0111 | 0.0015 0.0119

T10I4D100K reports only one frequent itemset of size 3. We observe that the proposed
framework is simple and elegant. It enables us to synthesize arbitrary Boolean
expressions induced by frequent itemsets in a database.

Also, we have conducted experiments to study the relationship between the size of a
database and the execution time required for mining generators. The execution time
required for mining generators in a database increases as the number of transactions

contained in a database increases. We observe this phenomenon in Figures 1.3.2 and
1.3.3.
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Figure 1.3.3. Execution time versus the number of transactions from BMS-Web-Wiew-1
_ at =0.01

We have also conducted experiments to find the execution time for synthesizing
generators in a database. The time required (only) for synthesizing generators for each of
the above databases is 0 millisecond at the respective value of & shown in each of the
Tables 1.3.3, 1.3.4, 1.3.5, and 1.3.6. |

Also, we have conducted experiments to study the relationship between the size of a
database and the number‘ of generators of Boolean expressions induced by frequent
itemsets of size greater than or equal to 2. The experiments are conducted on databases
retail and BMS-Web-Wiew-1. The results of the experiments are shown in Figures 1.3.3
and 1.3.4. From these figures, we could conclude that there is no universal relationship

between the size of the database and the number of generators in it.
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Figure 1.3.4. Number of generators versus the number of transactions from BMS-Web-
Wiew-1 at = 0.01
We have also conducted experiments for finding the number of generators
corresponding to frequent itemsets of size greater than or equal to 2 in a database at a
given . The number of generators in a database decreases as « increases. We observe

this phenomenon in Figures 1.3.5 and 1.3.6.
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1.3.4.1 Application: Effect of a specific item on other items over time

The proposed framework could be applied to study the effect of a specific item on other
items over time in a market basket data. Let D, be the database at time ¢, for =1, 2, ...,
n. We wish to study how a specific item, say 4, helps pfomoting other items over time.
The proposed study is based on the frequent itemsets in these databases. Let the set of
frequent itemsets related with 4 be FIS; c FIS(D;), for i = 1, 2, ..., n. In particular, let
FISy = {4, AB, AC, ABC, AD, AE}. We wish to study how the item 4 helps promoting
items B, C, D, E, and BC over time. To study the effect of item 4 on item B, the Boolean
expressions AAB and —4AB would provide some useful information. In other words, the
expression effect (4, B, D;) = supp(AAB, D)) / supp(~AAB, D;) would provide some useful

information to study the effect of item 4 on item B in D,, fori =1, 2, ..., n. Thus, to study
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induced by frequent itemsets. Thus, the generators enable us in synthesizing arbitrary
Boolean expressions induced by the frequent itemsets. It is a simple and elegant
technique. There is no need to introduce a specific framework for a specific type of

Boolean expressions. The proposed framework is effective and promising.

428



1.52

Chapter 1.4

Capturing association among items in a database

The analysis of relationships among variables is a fundamental task being at the heart of
many data mining problems. For instance, association rules [11] find relationships
between sets of items in a database of transactions. Such rules express buying patterns of
customers, e.g., finding how the presence of one item affects the presence of another and
so forth. »

Many measures of association have been reported in the literature of data mining,
machine learning, and statistics. They could be categorized into two groups. Some
measures deal with a set of objects, or could be generalized to deal with a set of objects.
On the other hand, the remaining measures could not be generalized. Confidence [11],
conviction [22] are examples of the second category of measures. On the other hand,
measures such as Jaccard [75] could be generalized to find association among a set of
items in a database. We shall see later why measures such as support [11], generalized
Jaccard, and all-confidence [58] have not been effective in measuring association among
a set of items in a database.

Various problems could be addressed using association among a set of items in market
basket data. For example, a company might be interested in analyzing items that are
purchased frequently. Let the items P, O, and R be purchased frequently. A few specific

problems are stated below involving these items.
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(1) Some items (products) could be high profit making. Naturally, the company would
like to promote them. There are various ways one could promote an item. An
indirect way of promoting an item P is to promote items that are highly associated
with it. The implication of high association between P and another item Q is that if
Q is purchased by a customer then P is likely to be purchased by the same customer
at the same time. Thus, P gets indirectly promoted.

(i) Again, some items could be low-profit making. Thus, it is important to know how
they promote sales of other items. Otherwise, the company could stop dealing with
such items.

To solve the above problems, one could cluster the frequent items in a database. In the
context of (i), one could promote item P indirectly, by promoting other items in the class
containing P. In the context of (ii), the company could keep on dealing with R if the class
size containing R is reasonably large. Thus, a suitable metric for capturing association
among a set of itemé could enable us to cluster frequent items in a database. In general,
many corporate decisions could be taken effectively by incorporating knowledge inherent
in data. Later, we shall show that a measure of association based on a 2 x 2 contingency
table might not be effective in clustering a set of items in a database. Thus, we propose
measures of association for capturing association among a set of items in a database.

In this chapter, we present two measures of association among a set of items in a
database. The second measure of association is based on a weighting model. We provide
theoretical foundation of the work. For the purpose of measuring association among a set
of items, we express second measure in terms of supports of itemsets. The main
contributions of this chapter are given as follows: (1) We propose two measures of
association among a set of items in a database, (2) We introduce the notion of associative
itemset in a database, (3) We provide theoretical foundation of the work, and (4) We
express second measure in terms of supports of itemsets.

In the following section, we study some existing measures and explain why these

measures are not suitable for capturing association among aset of items in a database.
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The rest of the chapter is organized as follows. We discuss related work in Section
1.4.2. In Section 1.4.3, we propose two new measures of association among a set of items
in a database. We discuss various properties of proposed measures in Section 1.4.4. Also,
we express second measure in terms of supports of itemsets. In Section 1.4.5, we mention
an application of proposed measure of association. Experimental results are provided in

Section 1.4.6 to show the effectiveness of the second measure of association. -

1.4.2 Related work

Tan et al. [75] have described several key properties of twenty one interestingness
measures proposed in statistics, machine learning and data mining literature. One needs
to examine these properties in order to select right interestingness measure for a given
application domain. Hershberger and Fisher [40] discuss some measures of association
proposed in statistics. Most of the existing measures are based on a 2 x 2 contingency
table. Thus, they might not be suitable for measuring association among a set of items.

Agrawal et al. [11] have proposed support measure in the context of finding
association rules in a database. To find support of an itemset, it requires counting
frequency of the itemset in the given database. An itemset in a transaction could be a
source of association among items in the itemset. But, support of an itemset does not
consider frequencies of it subsets. As a result, support of an itemset might not be a good
measure of association among items in an itemset.

Piatetsky-Shapiro [63] has proposed leverage measure in the context of mining strong

~ rules in a database. Adhikari and Rao [1] have proposed a measure called O4, to measure

overall association between two items in a database. They might not be suitable for
measuring of association among a set of items in a database.

Aggarwal and Yu [10] have proposed collective strength of an itemset. Collective
strength is based of the concept of violation of an itemset. An itemset X is said to be in "
violation of a transaction, if some items of X are present in the transaction and others are

not. Collective strength of an itemset X has been defined as follows.
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, where

1w E6)
= oy < w0

v(X) is the violation rate of itemset X. It is the fraction of transactions in violation of
itemset X. E(v(X)) is the expected violation rate of itemset X. The major concern
regarding computation of C(X) is that the computation of E(v(X)) is based on statistical
independence of items of .X.

Cosine [38] and correlation [38] are used to measure association between two objects.
They might not be suitable as a measure of association among items of an itemset.

Confidence and conviction are used to measure strength of association between
itemsets in some sense. They might not be useful in the current context, since we are
interested in capturing association among items of an itemset. In the following section,

we introduce two measures to capture association among a set of items in a database.

1.4.3 New measures of association
Before we present our measures of association, we mention a few definitions and
notations used frequently in this chapter.

A set of items in a database is called an itemset. Every itemset X in a database is
associated with a statistical measure, called support. Support of an itemset X in database
D is the fraction of transactions in D containing X, denoted by S(X, D). In general, let
S(E, D) be the support of Boolean expression E defined on the transactions in database D.
An itemset X is called frequent in D if S(X, D) > «, where « is user-defined level of
minimum support. If X is frequent then Y is also frequent, since S(¥, D) > S(X, D), for ¢ #
Y ¢ X. Each item in a frequent itemset is called a frequent item. Let |X| denote the number
of items of itemset X. Let X be {x;, x5, ..., x»n}. The following notations are used
frequently in this chapter:
= SxKY, D): support of Boolean expression defined on the transactions in D such that it

contains all the items of Y, but not items of X-Y, for g# Y < X
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" S( HEREAR D): support of Boolean expression defined on the transactions in D such

that it contains at least one item of X
. S( T{xs D): support of Boolean expression defined on the transactions in D such

that it contains all the items of X’

A measure of association gives numerical estimate of magnitude of statistical
dependence among items in an itemset. Highly associated items are likely to be
purchased together. In other words, items in X are highly associated, if one of the items of
X is purchased then the remaining items of X are also likely to be purchased in the same
transaction. One could define association among a set of items in many ways. Our first
measure of association 4; is defined as follows.

Definition 1.4.1. Let X = {x;, x5, ..., x,} be an itemset in database D. Let & be the

minimum level of association. The measure of association 4; is defined as follows.

4, (X,D)={S(X’ D/s "’"=‘{x"}’D), for | X[>2-® (1.4.1)
g, for | X|=1

Measure 4; is the proportion of the number of transactions containing all the items of X
and the number of transactions containing at least one of the items of X. The association
among items of an itemset and the number of association rules generated from the itemset
are positively correlated, provided the support of the itemset is high. If the association
among items of an itemset is more then it is expected to generate more association rules
and vice versa. Palshikar et al. [59] have proposed heavy itemsets for mining association
rules. An itemset X is heavy for given support and confidence values, if all possible
association rules made up of items of X are present. Thus, items of heavy itemsets are
expected to have high association among themselves. Measure 4; could be considered as
a generalized Jaccard measure for capturing association among items of an itemset.

A transaction in a database D provides the following information regarding association
among items of X: (i) A transaction that contains all the items of X contributes maximum

value towards overall association among items of X. We attach weight 1.0 to each such
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transaction. (ii) A transaction that contains & items of X contributes some value towards
overall association among the items of X, for 2 < &k < |X]. We attach weight k£ / |X] to each
such transaction. (iii) A transaction that does not contain any item of X contributes no
information regarding association among the items of X. (iv) A transaction that contains
only one item of X contributes maximum value towards overall dispersion among the
items of X. At a given X, we attach a weight to each transaction that contributes some
value towards overall association among the items of X. Our second measure of
association 4 is defined as follows.

Definition 1.4.2. Let X = {x;, x, ..., x,,} be an itemset in database D. Let & be the

minimum level of association. Our second measure of association A, is defined as

y | SALD) 17|
follows. 4, (X, D)=1, €12 | UL 5. D) [ 4 |- for | X]22. ¢ (142)
d,for| X |=1

A;could be expressed as follows.

7| (Y, D)
A(X,D)= CS . (Y, D)x+—L% where CS, (¥, D)= . (1.4.3)
ol )ZH{ x )X|X|}We“’ A VWS

1.4.4 Properties of 4; and 4,

A; and A, could be used to measure association among a set of items in a database. Thus,
each of these measures could be considered as a generalized measure of association. The
following corollary is obtained from Definitions 1.4.1 and 1.4.2.

Co'rollary 1.4.1. Let X = {x;, x2} be an itemset in database D. Then, A(X, D) = AxX, D)

= S({x3N{x,}, D)/S((x,}Uix,}, D), for X] = 2. (1.4.4)
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The measure in (1.4.4) has been reported as a measure of similarity between two objects
[83], [84]. To judge goodness of proposed measures, we state below monotone property
of a measure of association.
Property 1.4.1. Given an itemset X, if a subset Y occurs more frequently in the
transactions containing at least two items of X then the items of X have stronger
association, for Yc X, and |Y| > 2.
A; satisfies monotone property, for every ¥ c X, and |¥] > 2. But, 4; satisfies monotone
property, for Y = X, and |Y] > 2. Therefore, 4, is more appealing measure of association
than A4,. The following example verifies that 4, measures associatibn among items of an
itemset more accurately than 4;.
Example 1.4.1: Consider the database D = {{a, b, c, d}, {a, ¢}, {a, h}, {b, c}, {b, c, d},
{b, d, e}, {b, e}, {c, d, e}}. Here, 4;({b, ¢, d}, D) = 0.2857, and Ax{b, c, d}, D) =
0.5714. In D, we observe that association among items of {b, ¢, d} is closer to 0.5714
than 0.2857. e
In the context of monotone property of a measure of association, we discuss the
effectiveness of all-confidence measure. For an itemset X, all-confidence measure has
been defined as follows: all-confidence (X) = S(X, D) / maximum(S({x}, D)), for xeX.
Measure all-confidence satisfies monotone property, only for ¥ = X, where Y c X, and |Y]
> 2. Thus, measure all-confidence might not be effective in capturing association among
items in an itemset.

In Section 1.4.6, experimental results are provided using measure 4,. The following
two lemmas are useful to show some interesting properties of 4.
Lemma 14.1. Let X = {x;, x5 ..., xn} be an itemset in database D. Also, let T(i)
= Y5,(, D),for i=0,1, .., m-1. Then T(i) can be expressed as follows.

YeX,[¥l=m-i

{ >.8(¥,p)-""C,,x Y S(¥,D)+"*C,, x > S(Y,D)

Y X, \Y\=m-i Yo X, Wl=m-i+1 Yo X, |Yi=m-i+2

ot ()75 C, xS, D)+ (1) x"C,,, xS(X, D)} | (1.4.5)

YeX,|Y=m-
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Proof. Let us consider the definition of 7(i), for i = 0, 1, ..., m-1. In particular, 7(k) is
defined in terms of SKY, D) , for |¥] = m-k such that ¥ c X. SY, D) could be expressed
by itemsets of size greater than or equal to m-k. There are "C,,.; distinct ¥s, and thus, we
have "Cy.x distinct expressions for Sx¥, D), one for each Y. Each expression of SKY, D)
contains a S(X, D). Thus, the last term of T(k) is "Cpm.x x S(X, D). The second last term
contains itemsets of size m-1. Not all expressions of SK¥, D) contain a particular itemset
Y; of size m-1. Y; is present in the expression of SxY, D), if Y; — Y. The number of
expressions of Sx(Y, D) that contain Y; is mlc & Other terms could be obtained in a
similar way. o |
We verify Lemma 1.4.1 with the help of following example. Let X = {x;, x,, x3}. Then,
(1) = SX<{x1; x2}, D) + Sx{{x1, x3}, D) + SX({x}, x3}, D)y = S({x, x5}, D) - S({x;, x2, x3},
D) + S({x1, x3}, D) - S ({x1, x2, x3}, D) + S({x2, x3}, D) - S({x;, x2, x3}, D) =
> S(¥, D) +(-1) x°C,, xS(X, D)- Again, T(2) = Sx({x;}, D) + Sx({x2}, D) + Sx{{x3}, D) =

i¥|=3-1,Yc X
S({x1}, D) - S({x1, x2}, D) - S({x1, x3}, D) + S({x1, x2, x5}, D) + S({x2}, D) - S({x1, x2}, D)
- S({x2, x3}, D) + S({x1, x2, x3}, D) + S({x3}, D) - S({x1, x3}, D) - S({x2, x3}, D) + S({x1,

x2%55, D)= 35, D)+ (1) xCyyx TS, D)+ (1) x°C,, xS(X, D) - Thus, the ex-

|V|=3-2,Yc X ¥|=3-1,Yc X
pressions of 7(1) and 7(2) verify Lemma 1.4.1. We prove Lemma 1.4.2 based on Lemma
1.4.1.

Lemma 1.4.2. Let X = {x;, x3 .., Xu} be an itemset in database D. Then

{SAY,D)x%} = i—ng({x,}, D) (146)

Y X, 1<]Y] <1X)

Proof. > {SX(Y,D}x'—ﬂ}={2(m7-i)x]"(i),where i=m-|Y| (1.4.7)

Y X,|Y|=|X|downto 1 IX| i=0

=S(x, D)+(’”—'~1) x[ Y S(¥, D)-"C,,x S(X, D))+... +

m Y X [¥|=m-

(fn_—_Z_}{ z S, D)-”'-IC,,;.z X( ZS(Y,D)]«- "Cooa X S(X, D)]_

m YeX. ¥ =m2 YeX (Y| =m-l
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(’"‘3}{ Y sa, D)-""2Cm_3x( 3 s, D)] + ’""Cm_3x( SIS, D)]- "C_xS(X, D)}+

YgX. (Y|=m-3 4 YoX, |f|=m2 Y g X, {f|=m-)

’” (”’ ]) ( S(Y,D)-Zc,x( ZS(Y,D)] +ot” Cle(X,D)],[LemmalA.l] (1.4.8)
Y X,|P=) YoX =2
= 8(x, D)x{i-"C, + ™, - ..k ™C, b+ (”’71]{ Y s, D)]x{l-“c, £G4 "G, b
Yo X, [F|=m1 )

(""2}{ ZS(Y,D)Jx{lJ""C,+'”'3C2+...i’""’ Cps J+ oo +

Y X V=m2
(Z)x[ Y s, D)]x{l-‘C,} +(i)x( Sse, D)J (1.4.9)
m YcX.|¥|=2 m YEX. =t . i
= (l]x( ZS(Y, D)], since the coefficient of (ﬁjx[ ZS(Y, D)] is zero, for2<p<m.e
m Ye X =1 m YSX,IF=p

We verify Lemma 1.4.2 with the help of following example. Let X = {x;, x2, x3}.
] ‘
Then, ¥y {S (¥, D)x IYI} = L (o} D)+ 5, (6} D)+ 8, {fx,} D))
Y X,1<lY] s|X| |X| 3

+

(RN

{SX({x,, xz}, D>+SX<{x,, x3}, D> +SX<{x2,x3}, D>}+ SX({x,, xz,x3}, D>
‘ =%{Sx({x1 }a D)'Sx ({xlaxz}’ D)-SX({xl’xJ}’ D)+ SX({xl,xz,x3}, D)+“' } +
2fs. (155 D)- ({5522} D) .} +5., ({53, 52 D)

= % {SX (.}, D)+ S, ({x, ) D)+ S, ({1, D)} . We prove Lemma 1.4.3 based on Lemma 1.4.2.

Lemma 1.4.3. Let X = {x}, x5, ..., Xn} be an itemset in database D, for an integer m > 2.

Then, 4,(X, D)= — S(le o D)x [i {8(x3, D)- S, ({x.)), D}} xeX (1.4.10)

1 2 jr) ZSe{.D) (1.4.11)

4,(X, D) = S, (¥, Dyx 2L
x.D) S‘U:ﬂﬂ{xy‘}’D)x r;;mzr ¥ D) [ X m

Proof.
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, 31563, D) 38, (ix3,D)
i=1 sl , [Lemma 1.4.2]. e

(1.4.12)
= X
S(U',L, {x}, D) m m

Lemma 1.4.3 gives a simple expression for 4,. A few corollaries of Lemma 1.4.3 are
given below.

Corollary 1.4.2. Let X = {x}, x2, ..., Xm} be an itemset in database D. If all the items in X
have equal support then 4,(X, D)=q/S(Ur, {x}, D),

where g = S({x,}, D)- Sy {{x}, D), fori=1,2,..,n.e (1.4.13)

Corollary 1.4.3. Let X = {x;, X5 .., Xn} be an itemset in database D. Then,
4,(X, D)= [g,/m], where g, = [$(tx}, D) - Sy(x). D)/sUL (x1.D). @ / m is the
i=1

contribution of item x; towards overall association among items in X, fori =1, 2, ..., m. e
(1.4.14)
Based on measure 4,, we define an associative itemset as follows.
Definition 1.4.3. Let X = {x,, x», ..., X,,} be an itemset in database D. Also, let J be the
minimum level of association. X is associative at levei Sif Ay X, D)= 6. e
From- definition of 4;, an itemset of size 1 is associative at level &. If § > « then a
frequent itemset X might not be associative at level &. This is because of the fact that the
association among items of X might lie in [, J). In many applications, we are interested
in the itemsets that are frequent as well as associative. In the next section, we mention
one such application. In Examples 1.4.2 and 1.4.3, we illustrate the difference between
associative itemsets and frequent itemsets.
Example 1.4.2. We consider the following three transactional databases. Let D; = {{a, b,
¢, d}y, {a, c}, {a, h}, {b, c}, {b,c,d}, {b,d, e}, {b, e}, {c,d, e}}, D= {{a, b, c, e}, {a, b,
S {a.dy, {a. g, by, (b,d g}, (b, f g}, (b, g i}, {b,j}, {c. d}}, and Ds = {{a, b, c, e},
{a, b, g, i},{a, b,j}, {a,cd e}, {b,d g}, {c, d}, {f g}, {g h}}. Let «=0.2,and 5=
0.4. In database Dy, S({a, b}, D;)=1/8, and 4,({a, b}, D)) = 4>({a, b}, D)) =1/7. Thus,
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the itemset {a, b} is not frequent and also not associative. In database D,, S({a, b}, D,) =
2/9, and 41({a, b}, D2) = 42({a, b}, Dy) = 1/4. Thus, the itemset {a, b} is frequent but not
associative. In database D3, S({a, b}, D3) = 3/8, and 4i({a, b}, D3) = A>({a, b}, D3) = 3/5.
Thus, the itemset {a, b} is frequent as well as associative. e

An associative itemset not necessarily be frequent at level «. This is because of the fact
that the subsets of the itemset might be available frequently in different transactions.
Example 1.4.3. Consider the database D; of Example 1.4.1. Let « = 0.2, and § = 0.4.
S({c, d, e}, D)) =.0.125, and Ax({c, d, e}, D;) = 0.429. Thus, the itemset {c, d, e} is
associative, but not frequent. e

Example 1.4.3 is another instance that shows that the support of an itemset could not
effectively measure association among items of an itemset. In the following lemma, we
shall prove that association among items of a frequent itemset is always greater than or
equal to «under 4,. Thus, a frequent itemset is associative at level a.

Lemma 1.4.4. Let X = {x,, x5, ..., Xn} be a frequent itemset in database D, for an integer

m2 2. Then, Ax(X, D)2 c.

Sy{¥.D) Y]
Proof. 4 (x.D) = X =1
(¥ ) Yg)(ZJ:szz{S(U7=1{xi}aD)X|X|

__Sx,D) Sy (Y. D) Y] 1415
S(Utf;l{x,-},D)+YC§|22S(UT=]{x,-},D)x|X| (1.4.13)

S(x,D) > & implies S(X, D)/S(U, {x.}, D) 2 a,since 0< SU™, {x},D) < 1.

SAY,D Y
Thus, 4, (X, D) > a+nyZ,|;;zz{S U',')fj {x,.},>D x||71|}. (1.4.16)
In the following lemma, we discuss an important property of 4,. Association among
items of an itemset under 4; lies in (0, 1].

Lemma 1.4.5. Let X = {x/, x5, ..., Xn} be a frequent itemset in database D, for an integer

m=> 1. Then, 0 < AxX, D) < 1.
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Proof. From Definition 1.4.2, we get 0 < 4x(X, D) < 1, for m = 1. Thus, we need to prove
the result for m > 2. Also from Definition 1.4.2, we get A,(X, D) > 0, for m > 2. We shall
use the method of induction on |X] to show that 4,(X, D)< 1,form>2. Form=2,X=
{x1,x,}. Then,

AX, D) - S({xl} D)-Sy{{x}, D)+ S({x;}, D)- Sy {{x,}, D)

14.17)
253, D)+ S, D)- SN DY o) 410

Also, S, ({x}, D)=S({x,}, D)-S({x}N{x,}, D) fori=1,2.
Thus, 4, (X, D)= S{tx, %3, D) (1.4.18)

S({x}, D)+ S(tx.}, D)- S(fx} N {x,}, D)
We  have,  S({x}N{x,}, D)< S({x}, D) and S({x,}, D)- S({x}N{x,}, D) = 0. So, 4,(X,D) <1
Thus, the result is true for m = 2. We assume that the result is true for m < k-1. Now, we

shall prove that it is true for m = k.

«'S N (1419
e TN P R R (41
1 & 1

SO )| e 25| ¢ el -0, )
(1.4.20)

:ka(U"f:l] {xf}’D)x[c]><(k-1)><S(U’,."=]1 {x,,},D)+c2xS({xk},D)], 0<Lcy, e 21, [induction

hypothesis] (1.4.21)

caxkD o (kD) 1, (1.4.22)

p STk Tk |

Let X = {x;, x2, ..., xn} be afrequent itemset in D. Let ¥ c X such that || = |X]-1, and |X]
2 3. Let Y= {x;, x2, ..., Xm1}. We try to establish the relationship between 4,(X, D) and
Ax(Y, D). Using formula (1.4.20) we get,
4,(X, D)xmxSUL, (x}. D)= 4,(¥, D)x (m-1)xSUr", .}, D)+ S({x,.}, D)- Sy ({x,.}, D) (1.4.23)
or, A»(X, D) = A,(Y, D) x K; + K, where
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K = (m'l)XS(U'i’:ll {xi}JD)
l mxS(U'fn:l {x}, D)

, and KZIS({xm}aD)-SX<{xm}JD>- (1424)
mxS(ULL, {x}, D)
We note that, 0 < Kj, K> < 1. There does not exist any fixed relationship between A4,(X,

D) and 4x(Y, D), for all Y c X such that |}¥] = |X]-1, and |X] > 3. We consider the following
example.

Example 1.4.4. Consider the database D, = {{a, b, ¢, d}, {a, b, d}, {a, b, e}, {a, b, f}, {a,
13, {a, g}, {d, i}, {i,j} }'. Ax({a, b}, Dg) = 0.66667, A2({a, c}, Ds) = 0.16667, A>({a, b, c},
Dy) = 0.5. We observe that, 4,({a, b, ¢}, D,) < 4A:({a, b}, D,), and Ax({a, b, ¢}, Dy) >
Ax({a,c}, Dy). ®

We wish to express A, in terms of supports of itemsets. Given an itemset X, the following
lemma expresses Sy{{x;}, D) in terms of the supports of itemsets ¥ c X, for x; € X.

Lemma 1.4.6. Let X = {x}, x2, ..., Xm} be an itemset in database D, for an integer m > 1.

Then, S,((x}. D)=8(x},0) - S s(x3Nx).0)+  Ss(x)Nx3Nex}. D) — +

Jen =i k=1 j<k; ki
CIy"Ix SO, 4}, D), fori=1,2, ., m. (1.4.25)
Proof. We shall prove the result using the method of induction on m. The result trivially
follows for m = 1. For m = 2, X ={x;, x2}. Then, §,({x},D) = S({&},D)-S({g}ﬂ{xz},j)), for

i =1, 2. Hence, the result is true for m = 2. Assume that the result is true for m = p. We
shall prove that the result is true for m = p + 1. Let X = {x;, x2, ..., xp+1}. Due to the

addition of x,+1, the following observations are made. s{{x}N{x,, }, D) is required to be
subtracted, for 1 <i <p. S({x,}ﬂ{xj}ﬂ{xp+1), D) is required to be added, for 1 <i <j <p.

Finally, the term (-1 xS({x}N{x,}N..N{x,,}, D) is required to be added. Thus,

SX({x,},D>=S({x,},D)-4%5({x,}ﬂ{xj},D)+' SS({x{}ﬂ{xj}ﬂ{xk},D)+ e+ (1Y
xS((x 3N {x,3N..N{x,..}, D). (1.4.26)

Thus, the induction step follows. Hence, the result follows. e
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The following lemma expresses association among items of X in terms of supports of
subsets of X.

Lemma 1.4.7. Let X = {x), x;, ..., Xn} be an itemset in database D, for m > 2. Then

YIS sanen) - SN )Ny D)+ S5 N, ). D)
i=l| j=1j#i Jk=L j ki (1.4.27)

m{ZS{x}D ZS({x,m{x}D)+ +S({x 3N 3 N.. n{x}D)}

i,j=hi<j

A,(X,D)=

Proof. We state the theorem of total probability [60] as follows. For any m events x;, x;,

» Xm» We have s{ym (x}, D)= Zs x},D) - Y slxinexy, D)+ 4 SN {N..N{x, }, D)

1si<jsm
(1.4.28)

Result follows using Lemmas 1.4.3 and 1.4.6. e

A few corollaries of Lemma 1.4.7 are presented belov;/.

Corollary 1.4.4. A;(X, D) = S(x}N s}, D) form=2e (1429)

S({x}, D)+ S((x,}, D)- S((x 3N {x,3, D)
Corollary 1.4.5. For m = 3, AyX, D) = E;/ E,, where
E, =2x{S({x}N{x,}, D)+ S(x 3N {x}, D)+ S(Ex, 3N}, D) }- 3xS({x, ) {x, 3N {x,}, D), and

E, =3x{ 8({x}, D)+ S({x,}, D)+ S({x;}, D)- S({x 3N {x, 3, D)- S(Ex 3N}, D) }
3x{-8({x,3N{x,3, D)+ S({x,3N{x, 3N {x,}, D)}. * (1.4.30)

Thus, 42(X, D) could be computed when supports of subsets of X are available. In Lemma
1.4.8, we study some properties of measure A I

Lemma 1.4.8. Let X be an itemset in database D. Then the measure of association A;
satisfies the following properties. (i) 0 < A)(X, D) < 1, (ii) A)(X, D) < A, (Y, D), for Y c X,
cand Y| 2 2, and (iii) A;(X, D) = o, if X is a frequent itemset.

Proof. (1) A,(X, D) > 0, since S(X, D) > 0. Also, A4;X, D) < 1, since
SU,ex 3, D) 2 S(x, D).

(i1) Let X = {x;, x2, ..., x»}. We consider an itemset ¥ < X, such that |¥] > 2. Then, 4,(X,
D) < 4y(Y, D), since S(X, D) < S(Y, D) and S(U,_, {z}, D) = S(U,., {z}, D).
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(iii) 4, (X,D)=8(X,D)/S(U, .y {x}, D) 2S(X, D)2 a,since 0 < S(U,., {3, D)<1.

The proposed measures of association could be used in many applications. In the

following section, we mention an application of proposed measures of association.

1.4.4.1 Capturing association

Let X = {x;, x2, ..., xx} be an itemset in the given database D. In finding association
among items in X, the following procedure could be followed [6], [83]. The algorithm
finds association between every pair of items. The items in X form a class, if *C;
association values corresponding to “C; pairs of items are close. The level of association
among the items in this class is assumed as the minimum of “C; association values. If the
number of items in a class is more than two, then we observe that this technique fails to
estimate correctly the association among the items in a group. Then the accuracy of
association among items in X becomes low. Instead of that, one could estimate the
association among items in X using measure 4,. The difference in similarity using
measure A; 1s given by DS(X, D) = Ax({x,, x2, ..., xx}, D) - minimum{EMS(x;, x;, D) : 1 <
i <j <k}, where EMS is an existing measure of similarity that measures similarity
between two items in D. Due to the monotone property of A, the amount of difference
could be significant (as reported in Tables 1.4.4 and 1.4.5). In particular, DS(X, D)
becomes 0, if k=2 [Corollary 1.4.1].

1.4.5 An application: Clustering frequent items in a database

We have observed that the measure A4 is effective in finding association among items of
an itemset in a database. For the purpose of clustering frequent items in a database, we
could find associations among items of each frequent itemset of size greater than 1. Items
of a highly associative itemset could be put in the same class. Thus, one could cluster the

frequent items in a given database using 4.
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Adhikari and Rao [6] have proposed a technique for clustering multiple databases. If a
cluster contains a class of size greater than 2, we have observed that the proposed
clustering technique might cluster frequent items with higher degree of accuracy, since 4;
possesses monotone property. In the context of clustering data, an overview of different
clustering techniques is given by Jain et al. [44].

There are two approaches of measuring association among items of each itemset in a
database. In the first approach, one could synthesize association among items of the

current frequent itemset. As soon as a frequent itemset is found during the mining

- process, one could call an algorithm of finding association among items of the current

frequent itemset. When a frequent itemset is extracted, then all the non-null subsets of the
frequent itemest might have been available [13). Thus, one could synthesize association
among items of the current frequent itemset. Also, one could synthesize association
among items of each frequent itemsets after the minihg task. In the second approach, all

the frequent itemsets could be processed at the end of mining task.

1.4.6 Experimental results

We have carried out several experiments to find association among items of each
frequent itemset in a database. All the experiments have been implemented on a 2.8 GHz
Pentium D dual processor with 512 MB of memory using visual C++ (version 6.0)
software. We present the experimental results using four databases. The databases retail
[34], mushroom [34] are real. The database ecoli is a subset of ecoli database [77] and
has been processed for the purpose of conducting experiment. Also, we have omitted
non-numeric fields of ecoli database for the purpose of conducting experiments. The
fourth database check is artificial. The database check contains the following transactions:
{34, 47, 62}, {34, 55, 62, 102}, {47, 62}, {47, 62, 90}, {55, 102}. We have introduced
database check for the purpose of verifying results. We present some characteristics of
these databases in Table 1.4.1.
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Table 1.4.1. Database characteristics

Avg length Avg frequency
Database # transactions # items
of a transaction of an item
retail 88,162 11.30576 80.45880 10,000
mushroom 8,124 23.00000 1570.18487 119
ecoli 336 7.000000 25.565217 92
check 5 2.80000 2.33333 6

There are many interesting algorithms [13], [39], [66] reported to mine frequent itemsets
in a database. We have implemented apriori algorithm [13] for mining frequent itemsets

in a database, since it is simple and easy to implement.

1.4.6.1 Top associative itemsets among' frequent itemsets
We have conducted experiments on different databases to mine itemsets that are frequent
as well as associative. Databases retail, mushroom, ecoli and check are mined at o 0.03,

0.1, 0.5, and 0.1, respectively. Top 10 associative itemsets among frequent itemsets in

these databases are given in Tables 1.4.2, and 1.4.3. Some itemsets in mushroom
database are highly frequent. Thus, associations among items in these itemsets are

significantly high.
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Table 1.4.2. Top 10 associative itemsets in databases retail and mushroom

Table 1.4.3. Top 10 associative itemsets in databases ecoli and check

retail mushroom
Itemset | Ax(Itemset) | Itemset | Ax(Itemset)
{39,41,48} | 0.39183 {85,86} 0.97538
{38,39,48} | 0.38044 | {34,85,86} | 0.97530
{32,39,48} | 0.36929 {34,85} 0.97415
{38,39,41} | 0.23977 | {85,86,90} | 0.96570 |
{39,41} 0.21057 | {34,85,90} | 0.96455
{38,170} 0.19350 | {34,86,90} | 0.94847
{41,48} 0.18763 | {36,85,86} | 0.93763
{38,39} 0.18498 | {34,36,85} | 0.93755
{36,38} 0.17723 {85,90} 0.92171
{38,110} 0.17396 | {34,36,86} | 0.92114

ecoli check

Itemset | A(Itemset) Itemset | Ax(Itemset)

{48,50} 0.94152 {47,62} 0.75000
{44,48,50} | 0.68469 {47,62,90} 0.58333
{37,48,50} | 0.68264 | {34,55,102} | 0.55556
{40,48,50} | 0.68051 {34,47,62} 0.50000
{48,50,54} | 0.67758 {34,62} 0.50000
142,48,50} | 0.67650 | {55,62,102} | 0.33333
{48,50,51} | 0.66764 | {34,62,102} | 0.33333
{48,49,50} | 0.65511 {34,55,62} 0.33333
{47,48,50} | 0.65024 {47,90} 0.33333

{44,48} 0.14873 {34,102} 0.33333
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1.4.6.2 Finding the difference in similarity
We have conducted experiments on different databases to mine itemsets that are frequent
as well as associative. For the purpose of comparison, we take similarity measure sim;(x;,
x;, D)y = S({x,;} " {x,}, D)/S({x,} U{x,}, D) [83]. We present top 10 associative itemsets
along with their difference in similarities in Tables 1.4.4, and 1.4.5.

Table 1.4.4. Top 10 associative itemsets along with their difference in similarities for

retail, and mushroom

retail mushroom
Itemset DS;(Iettzril;)set, Itemset Zi(sl;;gzs;t)’
{39,41,48} 0.20419 {85,86} 0
{38,39,48} 0.22089 {34,85,86} 0.00115
{32,39,48} 0.22196 {34,85} 0
{38,39,41} 0.09351 {85,86,90} 0.08861
{39,41} 0 {34,85,90} 0.06448
{38,170} 0 {34,86,90} 0.07138
{41,48} 0 {36,85,86} 0.12196
{38,39} 0 {34,36,85} 0.12490
{36,38} 0 {85,90} 0
{38,110} 0 {34,36,86} 0.10849

Some itemsets in the mushroom database are highly frequent. Thus, associations among

items in these itemsets are significantly high.
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ecoli, and check

ecoli check

Itemset DSgICtzgl)set, Itemset DSC(;;:;;()S et

{48,50} 0 {34,47,62} 0.50000
{44,48,50} 0.79279 {47,62} 0
{37,48,50} 0.54808 {47,62,90} 0.25000
{40,48,50} 0.54119 {34,55,102} 0.22222
{48,50,54} 0.55296 {34,62} 0
{42,48,50} 0.53718 {55,62,102} 0.13333
{48,50,51} 0.52654 {34,62,102} 0.13333
{48,49,50} 0.54366 {34,55,62} 0.13333
{47.,48,50} 0.54048 {47,90} 0

{44,48} 0 {34,102} 0

1.4.6.3 Execution time for measuring association

Table 1.4.5. Top 10 associative itemsets along with their difference in similarities for

We have studied execution time for measuring association among items in each frequent
itemset of size greater than one. In the first case, the execution time is studied with
respect to the number of transactions in a database. As the number of transactions in a
database increases, the number of frequent itemsets is likely to increase. Therefore,
execution time increases as the size of a database increases. We observe the phenomenon

in Figures 1.4.1, 1.4.2 and 1.4.3.
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In the second case, the execution time is studied with respect to o. As we increase ¢, the

number of frequent itemsets is likely to decrease. Therefore, the execution time decreases

as o increases. We observe the phenomenon in Figures 1.4.4, 1.4.5, and 1.4.6.
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1.4.7 Conclusion

In this chapter, we present two measures of association among items in an itemset in a
database. An existing measure might not be effective in capturing association among
items in an itemset of size greater than 2. Many research problems could boil down to
capturing association among items in an itemset. We have given an example of one such
application in Section 1.4.5.

We have introduced the notion of associative itemset in a database. We have provided
many useful lemmas and examples to make foundation of proposed measures strong and
clear. Using monotone property of a measure of association, we have shown that A,
measures association among items in an itemset more accurately than A4;.

For the purpose of computing 45, we express it in terms of supports of itemsets. The
measure of association A4 is effective in capturing statistical association among items in a

database.
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Chapter 1.5

Association rules induced by item and quantity purchased

Pattern recognition [11], [81] and interestingness measures [41], [75] are two important
as well as interesting topics being at the heart of many data mining problems. Association
analysis using association rules [11], [17] has been studied well on binary data. A pattern
is normally associated with some interestingness measures. Thus, a pattern would
become interesting if the values of associated interestingness measures satisfy some
conditions. Positive association rules in a database are expressed in the form of a forward

implication, X — Y, between two itemsets X and Y in the database such that X (] ¥ = 4.

The meaning attached to association rule X — Y is that if all the items in X are purchased
by a customer then it is likely that all the items in Y are purchased by the same customer
at the same time. On the other hand, negative association rules are expressed by one of
the following three forward implications: X - —Y, =X — ¥, and —X — -7, for itemsets
X and Y in the database such that X (1 ¥ = ¢. Let us consider the negative association

rules of the form X — —Y. The meaning attached with this implication is that if all the
items in X are purchased by a customer then it is unlikely that all the items in Y are
purchased by the same customer at the same time. Most of the real life transactional data
are non-binary, in sense that an item could be purchased multiple times in a transaction.
Thus, it is necessary to study the applicability of traditional support-confidence
framework for mining association rules in these databases.

Association rule mining in a binary database is based on support (supp)-confidence
(conf) framework established by Agrawal et al. [11]. Let I(BD) be the set of items in

binary database BD. A positive association rule in BD expresses positive association bet-
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ween itemsets X and Y, called the antecedent and consequent of the association rule,
respectively. Each itemset in BD is associated with a statistical measure, called the
support of the itemset. Support of itemset X in BD is the fraction of transactions in BD
containing X, denoted by supp(X, BD). The interestingness of an association rule is
expressed by its support and confidence measures. The support and confidence of an
association rule r: X — Yin a binary database BD are defined as follows: supp(r, BD) =
supp(XN Y, BD), and conf(r, BD) = supp(XN Y, BD) / supp(X, BD). In other words, the
support of association rule » in BD is the fraction of transactions in BD containing both X
and >Y, and the confidence of associatioh rule r in BD is the fraction of transactions in BD
containing ¥ among the transactions containing X. An association rule » in BD is
interesting if supp(r, BD) > minimum support, and conf(r, BD) > minimum confidence.
The parameters, minimum support and minimum confidence, are user inputs given to an
association rule mining algorithm.

Though association rule mining in a binary database has been studied well, it has got
limited usage, since in a real life transaction items are often purchased multiple times in
the same transaction. Let TIMT be the type of a database such that a transaction in the
database rhight contain an item multiple times. In this chapter, a database refers to a
TIMT type database, if the type of the database is unspecified. Then, the question comes
to our mind whether the traditional support-confidence framework still works for mining
association rules in a TIMT type database. Before answering to this question, first we
take an example of a TIMT type database DB as follows.

Example 1.5.1. Let DB = {{4(300), B(500), C(1)}, {4(2), B(3), E(Q2)}, {4(3), B(2),
E()}, {4(2), E(1)}, {B(3), C(2)}}, where x(7) denotes item x purchased 7 numbers at a
time in the corresponding transaction. The number of occurrences of itemset {4, B} in
the first transaction is equal to minimum {300, 500}, i.e., 300. Thus, the total number of
occurrences of {4, B} in DB is 304. Also, {4, B} has occurred in 3 out of 5 transactions

in DB. Thus, the following attributes of itemset X are important consideration for making
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association analysis of items in X: number of occurrences of X in DB, and number of

transactions in DB containing X. e

In Section 1.5.2, we have explained why the traditional support-confidence is not

adequate for mining association rules in a TIMT type database.

Rest of the chapter is organized as follows. In Section 1.5.2, we study association rules
in a TIMT type database and introduce three categories of association rules. In Section
1.5.3, we introduce a framework based on traditional support-confidence framework for
mining each category of association rules. We study the properties of proposed
interestingness measures in Section 1.5.4. In Section 1.5.5, we discuss a method for
mining association rules in a TIMT type database. Experimental results are provided in

Section 1.5.6. We discuss related work in Section 1.5.7.

1.5.2 Association rules in a TIMT type database

We are given a TIMT type database DB. A transaction in DB containing p items could be
stored as follows: {i;(n;), ix(ny), ..., in(ny)}, where item i is purchased n; ( = 1) numbers
at a time in the transaction, for i = 1, 2, ..., p. Also, a transaction is stored along with
other attributes: transaction id, date of purchase, and so forth. These attributes do not
have impact on association fules in a database and thus, we shall not deal with them.
Each itemset X in a transaction is associated with the following two attributes:
transaction-itemset frequency (77F), and transaction-itemset status (71S). These two
attributes are defined as follows:
TIF(X, , DB) = m, if X occurs m times in transaction z7in DB

1,for X et,and 7 € DB
TIS(X,7,DB)=

0,for X ¢ r,and re DB
Also, each itemset X in DB is associated with the following two attributes: transaction
frequency (7F), and database frequency (DF). These two attributes are defined as
follows:

TF(X, DB) =Y., cpsTIS(X, 7, DB)
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DF(X, DB) = X.; epsTIF(X, 7, DB)

Steinbach et. al [73] have proposed a generalized support measure using eval and norm
functions. Steinbach and Kumar [72] have also proposed a framework that encompasses
the traditional concept of confidence as a special case and can be used as the basis for
designing a variety of new confidence measures. When an item is purchased multiple
times in a transaction then the above generalized frameworks might not be adequate for
mining association rules, since they are based on a binary database. The following
example shows why the traditional support-confidence framework is not adequate for
mining association rules in a TIMT type database.

Example 1.5.2. There are three TIMT type databases DB;, DB,, and DBj containing five
transactions each. DB; = {{4(1000), B(2000), C(1)}, {4(5), C(2)}, {B(4), E(2)}, {£(2),
F()}, {F2)}}; DB2= {{4(1), B(1), C(2)}, {A(1), B(), E(2)}, {A(1), B(1), F(1)}, {4(D),
B(1), G(2)}, {H(3)}}; DBs = {{A(500), B(600)}, {A(700), B(400), E(1)}, {4(400),
B(600), E(3)}, {G(3)}, {4(200), B(500), H(1)}}. The numbers of occurrences of itemset
{A, B} in transactions of different databases are given below.

Table 1.5.1. Distributions of itemset {4, B} in transactions of different databases

Database | Trans #1 | Trans #2 | Trans #3 | Trans #4 | Trans #5
DB, 1000 0 0 0 0
DB; 1 1 1 1 0
DB; 500 400 400 0 200

From Table 1.5.1, we observe the following points regarding itemset {4, B}:

= It has high database frequency, but low transaction frequency in DB;.

* In DB, it has high transaction frequency, but relatively low database frequency.

* It has high transaction frequency and high database frequency in DB;. e |

Based on the above observations, it might be required to consider database frequencies
and transaction frequencies of {4}, {B} and {4, B} to study association between the

items A and B. Thus, one could have the following categories of association rules in a
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TIMT type database [7].
I. Association rules induced by transaction frequency of an itemset
II. Association rules induced by database frequency of an itemset
III. Association rules induced by both transaction frequency and database frequency of

an itemset

1.5.3 Frameworks for mining association rules under different categories
In this section, we introduce a framework for each category of association rules discussed
in Section 1.5.2. Each framework is based on traditional support-confidence framework

for mining association rules in a binary database.

1.5.3.1 Framework for mining association rules under category 1

Based on the number of transactions containing an itemset, we define transaction-support
(tsupp) [7]' of the itemset as follows.

Definition 1.5.1. Let X be an itemset in TIMT type database DB. Transaction-support of
Xin DB is given as follows: tsupp (X, DB) = TF(X, DB) / |DB|.

Let X and Y be two itemsets in DB. An itemset X is transaction-frequent in DB if tsupp
(X, DB) > «, where a is the minimum transaction-support level. We define transaction-
support of an association rule »: X— Y in DB as follows: tsupp(r, DB) = tsupp(X( 7Y,
DB). In other words, the transaction-support of association rule » in DB is the fraction of
transactions containing both X and Y. We define tramsaction-confidence (tconf) of
association rule » in DB as follows: tconf(r, DB) = tsupp(X(\ Y, DB) / tsupp(X, DB). In
other words, the transaction-confidence of association rule » in DB is the fraction of
transactions containing Y among the transactions containing X. An association rule » in
DB is interesting with respect to transaction frequency of an itemset if tsupp(r, DB) >

minimum transaction-support, and tconf(r, DB) > minimum transaction-confidence (f3).
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The parameters, minimum transaction-support and minimum transaction-confidence are

user-defined inputs, given to a category I association rule mining algorithm.

1.5.3.2 Framework for mining association rules under category II
The number of occurrences of an itemset in a database is also an important issue. Let X =
{x1, X2, ..., Xx} be an itemset in database DB. Also, let 7 be a transaction in DB. Let item
x; be purchased 7, numbers at a time in 7,fori=1,2, ..., k. Then, TIF(X, 7, DB) =
minimum{n;, n, ..., Nx}. Based on the frequency of an itemset in a database, we define
database-support (dsupp) [7] of the itemset as follows.
Definition 1.5.2. Let X be an itemset in TIMT type database DB. Database-support of X
in DB is given as follows: dsupp (X, DB) = DF(X, DB) / |DB|. e
An item in a transaction could occur more than once. Thus, dsupp(X, DB) could be
termed as the multiplicity of itemset X in DB. An important characteristic of a database is
the average multiplicity of an item (4M]) in the database. Let m be the number of distinct
items in DB. We define AMI in a TIMT type database DB as follows: AMI(DB) =
I dsupp(x;, DB)/m, where x; is the i-th item in DB, for i =1, 2 ... . An itemset X is
database-frequent in DB if dsupp(X, DB) > y, where y is the minimum database-support
level. Let Y be another itemset in DB. We define database-support of association rule 7:
X— Y in DB as follows: dsupp(r, DB) = dsupp(X(\Y, DB). In other words, database-
support of association rule » in DB is the multiplicity of X( Y in DB. Also, we define
database-confidence (dconf) of association rule »: X— Y in DB as follows: dconf(r, DB) =
dsupp(X( Y, DB) / dsupp(X, DB). In other words, database confidence of association
rule » in DB is the multiplicity of ¥ in the transactions containing X. An association rule 7:
X— Y is interesting with respect to database frequency of an itemset if dsupp(r, DB) >

minimum database-support and dconf(r, DB) > minimum database-confidence (6). The
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parameters, minimum database-support and minimum database-confidence, are user

defined inputs given to a category II association rule mining algorithm.

1.5.3.3 Framework for mining association rules under category III
Interesting association rules under category III are based on interestingness measures
defined in Sections 1.5.3.1 and 1.5.3.2. An association rule »: X— Y in TIMT type
database DB is interesting with respect to both transaction frequency and database
frequency of an itemset if tsupp(r, DB) > «, tconf(r, DB) = f, dsupp(r, DB) = y, and
dconf(r, DB) > O. The parameters «, f, », and & are defined in Sections 1.5.3.1 énd
1.5.3.2. They are user-defined inputs given to a category III association rule mining
algorithm. Based on the framework, we extract association rules in a database as follows.
Example 1.5.3. Let DB = {{4(1), B(1)}, {4(2), B(3), C(2)}, {4(1), B(4), E(1)}, {4(3),
E(D}, {CQ2), F(2)}}. Let a = 0.4, B= 0.6, = 0.4, and & = 0.5. Transaction-frequent
itemsets and database-frequent itemsets are given in Tables 1.5.2 and 1.5.3, respectively.
Table 1.5.2. Transaction-frequent itemsets in DB
Itemset | 4 | B | C | E |AB | AE
tsupp [0.810.6|04104)06 |04

Table 1.5.3. Database-frequent itemsets in DB
Itemset | 4 | B | C | E | F |AB|AC | AE | BC | CF | ABC
dsupp 1141608040408 04/04|04]04| 04

Interesting association rules under category III are given in Table 1.5.4.



Chapter 1.5

Association rules induced by item and quantity purchased

1.82

Table 1.5.4. Interesting category III association rules in DB

r:X—>Y | tsupp (r, DB) | tconf(r, DB) | dsupp (r, DB) | dconf(r, DB)
A—> B 0.6 0.75 0.8 0.57143
B—> 4 0.6 1.0 0.8 0.5

The goal of this chapter is to provide frameworks for mining association rules under

different categories in a TIMT type database.

1.5.3.4 Dealing with items measured in continuous scale

The above framework works well for items that are measured in discrete scale. Now, we
discuss the issue of handling items that are measured in continuous scale using an
example. Consider the item milk in a departmental store. Let there four types of milk
packets: 0.5 kilolitre, 1 kilolitre, 1.5 kilolitres, and 2 kilolitres. The minimum packing
unit could be considered as 1 unit. Thus, 3.5 kilolitres of milk could be considered as 7

units of milk.

1.5.4 Properties of different interestingness measures

The following properties are based on a TIMT type database DB. Transactional support

measure is the same as the traditional support measure of an itemset in a database. Thus,

it satisfies all the properties that are satisfied by traditional support measure.

Property 1.5.1. 0 < tsupp (Y, DB) < tsupp (X, DB) < 1, for itemsets X, Y in DB such that

XcY e

Transaction-support measure satisfies anti-monotone property [87] of traditional support

measure. Transaction-confidence measure is the same as the traditional confidence

measure of an association rule. Thus, it satisfies all the properties that are satisfied by .
traditional confidence measure of an association rule.

Property 1.5.2. tconf (r, DB) lies in [tsupp(r, DB), 1], for an association rule v in DB. ®
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If an itemset X is present in a transaction 7in DB then TIF(X, 7, DB) > 1. Thus, we have
the following property.

Property 1.5.3. tsupp (X, DB) < dsupp (X, DB) < o, for an itemset X in DB. ®

Let BD be a binary transactional database. Then the maximum database frequency of an
itemset in BD is equal to |[BD|. Thus, database-support of an itemset in BD lies in [0, 1].
Hence, database-confidence of an association rule » in BD lies in [dsupp(r, BD), 1]. In the
context of a TIMT type database DB, database-confidence of an association rule » might
not lie in [dsupp(r, DB), 1.0], since database-support of an itemset in DB might be greater
than 1 (as reported in Table 1.5.3). But, the database confidence of an association rule »

in DB satisfies the following property.
Property 1.5.4. dconf (v, DB) lies in [0, 1], for an association rule r in DB. e

1.5.5 Mining association rules

Association rule mining has received a lot of attention in KDD community. Many
interesting algorithms have been proposed for mining positive association rules in a

binary database [13], [39], [66]. Thus, there are several implementations [32] of mining

positive association rules. In the context of mining association rules in a TIMT type

database, we shall implement apriori algorithm [13], since it is simple and easy to
implement. For mining association rules in a TIMT type database, one could apply
apriori algorithm directly. For mining association rules under category III, the pruning
step of interesting itemset generation requires testing on two conditions: minimum
transaction-support and minimum database-support. The interesting association rules
under category III satisfy the following two additional conditions: minimum transaction-

confidence and minimum database-confidence.
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1.5.6 Experiments

We have carried out several experiments to extract association rules under proposed
frameworks. All the éxperiments have been implemented on a 2.8 GHz Pentium D dual
core processor with 512 MB of memory using visual C++ (version 6.0) software. We
present the experimental results using real databases retail (R) and ecoli (E). Also, we
have used an artificial database check (C) to verify the result of the experiment. The
database retail [34] is obtained from an anonymous Bel gian retail supermarket store. The
database ecoli is a subset of ecoli database [77]. The database ecoli has been processed
for the purpose of conducting experiments. The database check contains the following
transactions: {34, 47, 62}, {34, 55, 62, 102}, {47, 62}, {47, 55, 75}, {55, 62, 120}. We
present some characteristics of these databases in Table 1.5.5.

Table 1.5.5. Database characteristics

Avg length Avg frequency
Database | # transactions # items
of a transaction of an item
R - 88,162 11.30576 99.67380 10000
E - 336 7.00000 22.40000 90
C 5 3.00000 2.14286 7

Due to unavailability of TIMT type database, we have used above data by applying a
preprocessing technique. If an item is present in a transaction then the number of
occurrences of the itém is generated randomly between 1 and 5. Thus, a binary
transactional database gets converted into a TIMT type database. Now, database check
contains the following transactions: {34, 2, 47, 1, 62, 5}, {34, 3, 55, 4, 62, 1, 102, 1},
{47, 2, 62, 3}, {47, 2, 55, 4, 75, 4}, {55, 1, 62, 5, 120, 3}. Each item in a transaction
follows its transaction frequency. Initially, we perform experiments to extract association
rules under category I. A few transaction-frequent itemsets in different databases are

given in Table 1.5.6.
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transaction-support)

Table 1.5.6. Top 5 transaction-frequent itemsets in different databases (sorted on

Database | « femset
(transaction-support)

2 0.05 {39} {48} {39, 48} {38} {32}
(0.57479) | (0.47793) { (0.33055) | (0.17690) | (0.17204)

E 03 {50} {48} {48,50} {44} {40}
(1.00000) | (0.97619) | (0.95833) | (0.15095) | (0.15002)

c o1 {62} {47} {55} {34} {34, 62}
(0.80000) | (0.60000) | (0.60000) | (0.40000) | (0.40000)

transaction-support)

A few association rules under category I in different databases are given in Table 1.5.7.

Table 1.5.7. Top 5 association rules in different databases under category I (sorted on

Database

(a’

P

(antecedent, consequent,

transaction-support, transaction-confidence)

(0.05
0.2)

(48, 39,
0.33055,
0.69163)

H

(39, 48,
0.33055,
0.57508)

(41, 39,
0.12947,
0.76373)

(39, 41,
0.12947,
0.22524)

(38, 39,
0.11734,
0.66331)

0.3)

0.1,

(48, 50,
0.95833,
0.98171)

(50, 48,
0.95833,
0.95833)

(44,48,
0.13988,
0.40286)

(40, 50,
0.13691
0.41039)

(37, 48,
0.13393
0.39571)

0.3)

.1,

(34, 62,
0.40000,
1.00000)

(47, 62,
0.40000,
0.66667)

(55, 62,
0.40000,
0.66667)

(62, 34,
0.40000,
0.50000)

(62, 47,
0.40000,
0.50000)
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Also, we have computed average multiplicity of an item in the given databases. In Table
1.5.8, we present AMI for each of the given databases.
Table 1.5.8. AMI for the given databases
Database R E C
AMI | 0.00309 | 0.23062 | 1.17143

A few database-frequent itemsets in different databases are given in Table 1.5.9.

Table 1.5.9. Top 5 database-frequent itemsets in different databases (sorted on database-

support)
Database | y ftemset
: (database-support)
R 0.07 {39} {0} {1} {8} {38}
(1.75906) | (0.66511) | (0.57741) | (0.55327) | (0.53030)
P 03 {50} {48} {48,50} {44} {40}
(3.00595) | (2.98800) | (2.75833) | (0.30045) | (0.28276)
c o1 {62} {55} {34} {47} {75}
(2.80000) | (1.80000) | (1.00000) | (1.00000) | (0.80000)

A few association rules under category II in different databases are given in Table 1.5.10.
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Table 1.5.10. Top 5 association rules in different databases under category II (sorted on

database-support)

Database (% (antecedent, consequent,

o) database-support, database-confidence)
.07, (48,39, | (39,48, | (41,39, | (38,39, | (41,48,
R 0.4) 0.72554, | 0.72554, | 0.28436, 0.25744, 0.22580,
0.50731) | 0.42078) | 0.55841) | 0.48475) | 0.44341)
0.1, (48,50, | (50,48, | (44,48, | (40,50, | (37,48,
E 02) 2.75833, | 2.75833, | 0.30045, | 0.28276 | 0.28393
0.92314) | 0.91762) | 1.00000) | 1.00000) | 1.00000)
17(75,55, | (55,75, | (120,62, | (34,55, | (34, 62,
C ©1, 0.80000, | 0.80000, | 0.60000, | 0.60000, | 0.60000,
0-) 1.00000) | 0.44444) | 1.00000) | 0.60000) | 0.60000)

We observe the following interesting points in database check.

(i) Though the itemset {55, 75} has high database-support, but it has low transaction-
support. It generates an interesting association rule under category II. But, it fails to
generate an interesting association rule under category I.

(i) Both the association rules {34} — {62} and {62} — {34} are interesting when

transaction frequency of an itemset is considered. But, the association rule {62} —
{34} is not interesting when database frequency of an itemset is considered.
The above observations show why we need to study association rules with respect to
transaction frequency of an itemset and database frequency of an itemset.
Also, we have obtained execution times for extracting association rules at different
database sizes. As the size of a database increases, the execution time also increases. We

have observed such phenomenon in Figures 1.5.1 and 1.5.2.
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Also, we have obtained execution times for extracting association rules at different

minimum database-supports. As the value of minimum database-support increases, the

number of interesting itemsets decreases. Thus, the number of interesting category II

association rules decreases. So, the time required to extract category II association rules

also decreases. We have observed such phenomenon in Figures 1.5.3 and 1.5.4.
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Figure 1.5.3. Execution time versus yat a=0.04, 8=0.2, and 6= 0.4 (retail)

Figure 1.5.4. Execution time versus yat &= 0.08, #=0.3, and 6= 0.2 (ecoli)
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The graph of execution time versus « at a given tuple (3, B, ) is similar to the graph of

execution time versus y at a given tuple (a, 8, 6). As the value of minimum transaction-

support increases, the number of interesting itemsets decreases. Thus, the number of

interesting category I association rules decreases. So, the time required to extract

category I association rules also decreases.

1.5.7 Related work

Association rule mining finds interesting association between two itemsets in a database.

The notion of association rule is introduced by Agrawal et al. [11]. The authors have

proposed an algorithm to mine frequent itemsets in a database. Many algorithms have

been reported to extract association rules in a database. In the following we mention a

few interesting algorithms for extracting association rules in a database. Agrawal and
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Srikant [13] have proposed apriori algorithm that uses breadth-first search strategy to
count the supports of itemsets. The algorithm uses an improved candidate generation
function, which exploits the downward closure property of support and makes it more
efficient than earlier algorithm. Han et al. [39] have proposed data mining method FP-
growth (frequent pattern growth) which uses an extended prefix-tree (FP-tree) structure
to store the database in a compressed form. FP-growth adopts a divide-and-conquer
approach to decompose both the mining tasks and databases. It uses a pattern fragment
growth method to avoid the costly process of candidate generation and testing. Savasere
et al. [66] have introduced partition algorithm. The database is scanned only twice. In the
first scan the database is partitioned and in each partition support is counted. Then the
counts are merged to generate potential frequent itemsets. In the second scan, the
potential frequent itemsets are counted to find the actual frequent itemsets. Wu and
Zhang [81] have proposed a weighting model for synthesizing high-frequent association
rules from different databases.

In the context of interestingness measures, Tan et al. [75] present an overview of
twenty one interestingness measures proposed in the statistics, machine learning and data
mining literature. The measures in general lack to agree with each other. However, the
authors show that if support-based pruning or table standardization (of the contingency
tables) is used, the measures become highly correlated. Brin et al. [22] introduce
measures conviction and lift as the improvements to confidence based on implication
rules. Aggarwal and Yu [10] point out weaknesses of the large frequent itemset method
using support and that lift gives only values close to one for items which are very
frequent, even if they are positively correlated. The authors have introduced collective
strength. Collective strength uses the violation rate for an itemset which is the fraction of

transactions which contains some, but not all items of the itemset.
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1.5.8 Conclusion

The traditional support-confidence framework for mining association rules is based on a
binary database. It has limited usage in association analysis of items, since a real life
transaction might contain an item multiple times.

The traditional support-confidence framework is based on the frequency of an itemset
in a binary database. In a TIMT type database, there are two types of frequency of an
itemset viz., transaction frequency, and database frequency. Due to these reasons, we get
the following categories of association rules in a TIMT type database: (i) Association
rules induced by transaction frequency of an itemset, (ii) Association rules induced by
database frequency of an itemset, and (iii) Association rules induced by both transaction
frequency and database frequency of an itemset. We have introduced a framework for
mining each category of association rules. The proposed frameworks are effective for

studying association among items in real life market basket data.
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Chapter 1.6

Conclusion

It seems many interesting and useful patterns remain undiscovered. In Chapter 1.2, we
have proposed conditional patterns in a database. Conditional patterns provide interesting
knowledge about items in frequent itemsets in a database. They could be useful for
solving many problems. In Chapter 1.3, we have dealt with mining arbitrary Boolean
expressions induced by frequent itemsets using conditional patterns in a database. We
have provided a simple framework for synthesizing an arbitrary Boolean expression. In
future, we shall search for more applications of conditional patterns in a database.

Many data mining problems could be solved by capturing association among items in a
database. In Chapter 1.4, we have proposed measure A4, for this purpose. We have
observed that measure 4, is effective in capturing statistical association among items in a
database. Also, we have introduced the notion of associative itemset in a database. In
Chapter 2.4, we have proposed a technique for clustering frequent items in multiple
databases using the measure of association A,. In future, we shall search for more
applications of the measure of association 4.

Traditional support-conﬁdehce framework has not been effective in finding association
rules in real market basket data. An item in a database could be purchased multiple times
in a transaction. In this case, there are two types of frequency of an itemset in a database:
the number of transactions in the database containing the itemset, and the number of
occurrences of the itemset in the database. Thus, one could study association rules with
respect to these types of frequency of an itemset. We have proposed frameworks for three

different categories of association rules in a database. We believe that such framework
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would help studying association between a pair of itemsets in real market basket data.
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Part 2

Pattern recognition in multiple databases
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Chapter 2.1

Introduction

There are various reasons why mining on multiple databases becomes an important issue

in the recent time. In the following paragraph, we mention a few reasons that motivate us

to work on mining multiple databases.

Due to a liberal economic policy adopted by many countries across the globe, the
number of branches of a multi-national company as well as the number of multi-
national companies is increasing over time. Moreover, the economies of many
countries are growing at a faster rate. As a result the number of multi-branch
companies within a country is also increasing. Many multi-branch companies deal
with multiple databases, since local transactions are stored locally. Thus, it is
necessary to study data mining on multiple databases. Many decision-making
problems are based on knowledge distributed across the branch databases.

Most of the previous pieces of data mining work are based on a single database. Thus,
it is necessary to study data mining on multiple databases.

The number of data mining solution providers is increasing over time. Please visit
http://www kdnuggets.com/ for reference.

In addition, the number of data mining products is also increasing over time. Please
see the above site for reference.

In the year 2002, Dr Shichao Zhang has submitted his thesis on multi-database mining.
His research has made significant impact on data mining community. So, it is a recent

topic in data mining, and thus it deserves much attention.

In discovering knowledge in a database, we have come across various types of patterns.

Some examples of patterns in a database are frequent itemset, positive association rule,
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negative of association rule, and conditional pattern. In Part 2, we have studied various

patterns originated due to a study of multiple databases. These patterns are not only

interesting, but also help solving different problems. We have made the following

contributions in Part 2.

We have proposed a definition of global exceptional frequent itemset in multiple
databases.

The notion of exceptional sources for a global exceptional frequent itemset is
introduced.

We have designed an algorithm for synthesizing global exceptional frequent itemsets.
An extended model is proposed for synthesizing global patterns from local patterns in
different databases.

The notion of heavy association rule in multiple databases is introduced, and an
algorithm for synthesizing such association rules in multiple databases is thus
proposed.

The notion of exceptional association rule in multiple databases is introduced, and an
extension is made to the proposed algorithm to notify whether a heavy association rule -
is high-frequent or exceptional.

We have designed an algorithm for clustering frequent items in multiple databases.
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Chapter 2.2

Synthesizing global exceptional patterns in multiple databases

Many multi-branch companies transact from different locations. Many of them collect a
huge amount of transactional data continuously through their different branches. Due to a
growth-oriented and liberal economic policy adopted by many countries across the globe,
the number of such companies as well as the number of branches of such a company is
increasing over time. Moreover, most of the pieces of data mining work are based on a
single database. Thus, it is important to study data mining on multiple databases.
Analysis and synthesis of patterns in multiple databases is an important as well as
interesting issue.

Based on the number of data sources, patterns in multiple databases could be classified
into three categories. They are local patterns, global patterns, and patterns that are neither
local nor global. A pattern based on a branch database is called a local pattern. On the
other hand, a global pattern is based on all the databases under consideration. Global
patterns are useful for global data analyses and global decision making problems [6],
[79], [83]. There exist other types of patterns in multiple databases. For example,
frequent itemset, positive associative rule and clustering of relevant objects. There is no
fixed set of attributes to describe these patterns, since there are different types of pattern

in a database. Each type of pattern could be described by a specific set of attributes.
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Itemset patterns influence KDD research heavily in following ways: Firstly, many
interesting algorithms have been reported on mining itemset patterns in a database [13],
[39], [66]. Secondly, an itemset could be considered as a basic type of pattern in a
transactional database, since many patterns are derived from the itemset patterns in a
database. Some examples‘ of derived patterns are positive association rule [11], negative
association rule [82], conditional pattern [9] in a database and high-frequent association
rule [81], heavy association rule [S], exceptional association rule [S5] in multiple
databases. Considerable amount of work have been reported on mining / synthesizing
such derived patterns in databases. Thirdly, solutions of many problems are based on the
analysis of patterns in a database. Such applications [83], [79] process patterns in a
database for the purpose of making some decisions. Thus, mining and analysis of itemset
patterns in a database is an interesting as well as important issue. Each itemset in a
database is associated with a statistical measure, called support [11]. The support (supp)
of an itemset X in database D could be defined as the fraction of transactions in D
containing all the items of X, denoted by supp(X, D). In most of the cases, the importance
of an itemset is judged by its support. The itemset X is frequent in D if supp (X, D) > «,
where « is user defined minimum support. Let FIS(D) be the set of frequent itemsets in
D. Frequent itemsets determine major characteristics of a database. Wu et al. [80] have
proposed a solution of inverse frequent itemset mining. They argued that one could
efficiently generate a synthetic market basket database from the frequent itemsets and
their supports. Let X and Y be two itemsets in D. The characteristics of D are revealed
more by the pair (X, supp(X, D)) than that of (¥, supp (Y, D)), if supp(X, D) > supp(Y, D).
Thus, it is important to study frequent itemsets more than infrequent itemsets. Here, we
study frequent itemsets in multi-databases.

In the next section, we have defined global exceptional frequent itemset in multi-
databases. Also, we have designed an algorithm for synthesizing global exceptional

frequent itemsets in multiple databases. There are useful applications of global excep-
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tional frequent itemsets. For example, the company might plan to collect the feedback of
customers for the global exceptional products and implement similar strategies to
increase the sales of other products. Also, the company could identify the branches
having high sales of the global exceptional items. It might plan to manufacture and / or
procure such items locally to reduce the transportation cost. The global exceptional
frequent itemsets would affect many such decisions of a multi-branch company.

The first question comes to our mind whether a traditional data mining technique could
deal with the multiple large databases. To apply a traditional data mining technique we
need to amass all the databases together. A single computer might take unreasonable
amount of time to process the entire database. Sometimes, it might not be feasible to
carry out the mining task. Another solution would be to employ parallel machines and the
associated software. But, it requires high investment on hardware and software.
Moreover, it is difficult to find local patterns when mining techniques are applied on the
entire database. Thus, a traditional data mining techniques is not suitable in this situation.
So, it is a different problem. Hence, it is required to be dealt with in a different way. We
would employ the model of local patfern analysis [91] for mining multiple databases.
Under this model of mining multiple databases, each branch requires to mine local
database using a traditional data mining technique. Afterwards, each branch is required to
forward the pattern base to the central office. Then, the central office would process the
pattern bases collected from different branches for synthesizing the global patterns, or
making decisions related to some problems.

The rest of the chapter is organized as follows. We discuss related work and state the
problem in Section 2.2.2. In Section 2.2.3, we discuss a simple method for synthesizing
support of an itemset in the union of all databases. In Section 2.2.4, we design an
algorithm to synthesize global exceptional frequent itemsets in multi-databases. In
Section 2.2.5, we define two types of errors for synthesizing global exceptional frequent

itemsets. We present experimental results in Section 2.2.6.
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2.2.2 Problem statement

Consider a multi-branch company that has »n branches. Let D; be the database
corresponding to the i-th branch, for i = 1, 2, ..., n. Also, let D be the union of these
databases. In the context of multiple databases, one could conceive the idea of global
exceptional frequent itemset in two ways: Firstly, a frequent itemset extracted from most
of the databases might have moderate support in D. Secondly, a frequent itemset
extracted from a few databases might have high support in D We are interested in the
second category of frequent itemsets and call them as global exceptional frequent
itemsets henceforth. Before we define a global exceptional frequent itemset formally, we

first study work related to this issue.

2.2.2.1 Related work
Multi-database mining has been recently recognized as an important research topic in
KDD community. Zhang et al. [93] studied knowledge discovery in multiple databases
using local pattern analysis.

Zhang et al. [94] have proposed a strategy for mining local exceptions in multiple
databases. The authors have defined an exceptional pattern as follows:

A pattern p in local instances is an exceptional pattern if EPI(p) > minEP, where
EPI(p) is an interestingness measure of p and has been defined as follows:

nExtrn(p)- avgNoExtrn

« EPI(p)= 2.2.1)

- avgNoExtrn
where, nExtrn(p) and avgNoExtrn are the number of times p gets extracted and the
average number times a pattern gets extracted from different data sources,
respectively.
» minEP is the user-defined threshold for minimum interest degree.
Also, the authors have defined interestingness of a pattern in a branch as follows:
A pattern p in i-th branch is of interest if RI(p) > minEPsup, where RI(p) is

interestingness degree of p in i-th branch and has been defined as follows:
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* RI(p)=(supp(p, D)-a,)/a, (222)
@; is the minimum support given for mining D;, fori=1,2, ..., n.

* minEPsup is the user-defined threshold for minimum interest degree.

From the above two definitions, we observe the following points:

= The definition of exceptional pattern is considered with respect to all the databases.
The definition of interestingness of a pattern is considered with respect to a local
database. Thus, an exceptional pattern in multiple databases and interestingness of the
pattern in a local branch are of two different issues.

* For a pattern p in local instances, the authors have shown that 0 < EPI(p) < 1. We take
the following example to show that the above property does not hold always. Let there
are only 4 patterns in 15 databases. The number of extractions of 4 patterns are given
as follows: nExtrn(p;) = 2, nExtrn(p;) = 15, nExtrn(ps) = 4, nExtrn(ps) = 5. Thus,
avgNoExtrn = 26/4 = 6.5. EPI(p;) = (2-6.5)/(-6.5) = 0.69, EPI(p;) = (15-6.5)/(-6.5) = -
1.31, EPI(p3) = (4-6.5)/(-6.5) = 0.38, EPI(ps) = (5-6.5)/(-6.5) = 0.23. Thus, EPI(p;) ¢
(0, 1].

* An interesting exceptional pattern might not emerge as a global exceptional pattern,
since the support of the pattern is not considered in the union of all databases.

We feel that an exceptional global frequent itemset should be constrained on the number

of times it gets extracted and its support in the union of all databases. Thus, none of the

above two definitions, nor the both the definitions together does serve as a definition of
exceptional global frequent itemset in multiple databases.
Zhang et al. [89] have proposed a technique for identifying global exceptional patterns
in multiple databases. The authors have described global exceptional pattern as follows:
Global exceptional patterns are highly supported by only a few branches, that is to
say, these patterns have very high support in these branches and zero support in other
branches.

From the above descriptions, we observe the following points:
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s Let there are ten branches of a multi-branch company. A pattern p has very high
support in first two databases that have small sizes. Also, p does not get extracted from
the remaining databases. According to the above description, p is a global exceptional
pattern. We observe that pattern p might not have high support in the union of all
databases. Thus, such description does not serve the purpose.

s Also, it is not necessarily true that an exceptional pattern will have zero supports in the
remaining databases.

Thus, the above description does not describe a global exceptional pattern in true sense.

Also, we observe the following points regarding algorithm IdentifyExPattern [89] for

identifying exceptional patterns in multiple databases.

s We believe that the size (i.e., the number of transactions) of a database and support of
an itemset in the database are two important parameters for determining the presence
of an itemset in a database, since the number of transactions containing the itemset X
in a database D; is equal to supp(X, D) x size(D;). The algorithm does not consider
size of a database to synthesize the global support of a pattern. Global support of a
pattern has been synthesized using only supports of the pattern in concerned databases.
We take following example to illustrate this issue. Let there are two databases D, and
D,, where size(D)) is significantly larger than size(D;). At a given «, we assume that
pattern p does not get extracted from D», and pattern ¢ does not get extracted from D;.
Thus, supp(p, D,) and supp(q, D;) both are assumed as 0s. Then, supp(p, D;|J D)
could be synthesized by [supp(p, D;) x size(D;) + 0 xsize(Dy)] / size(D;|JD,). If
supp(p, D;) < supp(q, D;) then it might so happen that supp(p, D;{JD,) > supp(q,
D;JD;). In particular, let size(D;) = 10000, size(D;) = 100. At o = 0.05, let supp(p,
D;) = 0.1, supp(q, D;) = 0, supp(p, D2) = 0, and supp(q, D,) = 0.2. We note that
supp(p, D) < supp(q, D). But, supp(p, D;|J D7) = 0.99, and supp(q, D;|J D2) = 0.002.
So, supp(p, D;\J D) > supp(q, D;|JD2). Thus, the size of a database is an important

parameter for synthesizing the support of a pattern in the union of all databases.
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* The algorithm does not identify global exceptional patterns correctly in all the
situations. For example, let there are 10 similar databases. Assume that the number of
times each pattern gets extracted is either 8, or 9, or 10. Thus, these patterns are
supported by most of the databases. According to the nature of global exceptional
patterns, a high voted pattern is not a global exceptional pattern. But, the algorithm
would report some of them as global exceptional patterns. ,

» The algorithm returns patterns that have high supports among the patterns that are
extracted less than average number of times. We feel that a global exceptional pattern
should have the following properties: (i) the support of a global exceptional pattern in
the union of all databases is greater than or equal to a threshold value, and (ii) the
number of extractions of a global exceptional pattern is less than another threshold
value, where these threshold values are user-defined. P
In the context of association rule in multiple databases, Wu and Zhang [81] have

proposed a technique for synthesizing high-frequent association rules in different data

sources. ‘

In the context of support estimation of frequent itemsets, Jaroszewicz and Simovici
[45] have proposed a method for estimating supports of frequent itemsets using
Bonferroni-type inequalities [35].' Also, the maximum-entropy approach to support
estimation of a general Boolean expression is proposed by Pavlov et al. [62]. But, these
support estimation techniques are suitable for problems that deal with single database.

Existing parallel mining techniques [12], [26], [28] could also be used to deal with

multiple databases.

2.2.2.2 Our approach

The difficulty of synthesizing global exceptional frequent itemsets is that a frequent
itemset in a database may not get extracted from all the databases. Apart from
synthesized support of an itemset in D, the number of extractions of the itemset is an

important issue. An itemset may be high-frequent or, low-frequent, or neither high-frequ-
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ent nor low-frequent. In this context, we need to consider only low-frequent itemsets. We
could arrive in such a conclusion only if we have predefined threshold of minimum
number of extractions. The problem of synthesizing global exceptional frequent itemsets
is similar to awarding distinction grade to students in our examination system. In
particular, a student could be awarded distinction grade if he/she gets average marks
greater than or equal to 70%, and attends more than 75% of classes, provided the student
passes all the papers. In a similar way, an exceptional frequent itemset in multiple
databases could be judged against two thresholds, viz., high support and low extraction.
We use the symbol y to denote the threshold of low extraction of an itemset, where 0 < y
< 1. Thus, we define a low-voted frequent itemset as follows.

Definition 2.2.1. An itemset X has been extracted from k& out of n databases. Then X is
low-voted, if £ <n x y, where yis the user defined threshold of low extraction. e

Among low-voted itemsets, we shall search for global exceptional frequent itemsets. An
itemset may not get extracted from all the databases. Sometimes we need to estimate the
support of an itemset in a database to synthesize the support of the itemset in D. Let
supp X, D;) and supp(X, D;) be the actual and estimated support of an itemset X in D,,
respectively, for i = 1, 2, ..., n. We use the symbol u to denote the threshold of high
support for an itemset in a database, where @ < < 1. For a single database, we define an
itemset with high support as follows:

Definition 2.2.2. Let X be an itemset in database D;, for some i = 1, 2, ..., n. X possesses
high support in D; if supp (X, D;) > u, where u ( > ) is the user defined threshold of
high support, for some i=1,2,...,n. e

The method of synthesizing support of an itemset is discussed in Section 2.2.3. Let

supps(X, D) denote the synthesized support of the itemset X in D. For multiple databases,

we define an itemset with high support as follows:
Definition 2.2.3. Let D be the union of all branch databases. An itemset X in D possesses
high support if suppy(X, D) > u, where u is the user-defined threshold of high support. e
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Based on the concepts stated above, we define a global exceptional frequent itemset [2]
in D as follows:

Definition 2.2.4. Let D be the union of all branch databases. Let X be a frequent itemset
in some branch databases. Then X is global exceptional in D if it is low-voted and
possesses high support in D. e

Based on the above discussion, it might be worth noting the following points: (i) A global
exceptional frequent itemset in D is low-voted. (ii) A low-voted frequent itemset in D is
not necessarily be global exceptional. (iii) A global exceptional frequent itemset in D has
high support. (iv) An itemset with high support in D is not necessarily be global
exceptional.

Let X be a global exceptional frequent itemset in D. Without loss of generality, let X be
extracted from Dj, D, ..., Dy, for 0 < k < n. Support of X in D, is supp.(X, D;), fori =1,
2, ..., k. Then the average of these supports is obtained by the following formula:
avg(supp(X), Dy, Dy, .. D) =(S*., supp, (X, D))k (2.2.3)
Database D; is called an exceptional source [2] with respect to the global exceptional
frequent itemset X, if supp.(X, D)) = avg(supp(X), D;, D, ..., D), forsomei=1,2, ..., k.
We take an example to explain this issue. Let X be a global exceptional frequent itemset
in D, and it has been extracted from D;, D,, and D;. supp.(X, D;) = 0.09, supp X, D) =
0.17, and supp,(X, D3) = 0.21. Then, avg(supp(X), D1, D2, D3) = (0.09 + 0.17 + 0.21) / 3
= 0.15667. The databases D, and D; are exceptional sources with respect to the global
exceptional frequent itemset X, since 0.17 > 0.15667, and 0.21 > 0.15667. We state the
problem as follows:

Let there are n databases D, D, ..., D,, and D be the union of these databases. Let
FIS(D)) be the set of frequent itemsets in D, for i = 1, 2, .., n. Find the global
exceptional frequent itemsets in D using FIS(D;), for i = 1, 2, ..., n. Also, report the

exceptional sources for the global exceptional frequent itemsets in D.
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2.2.3 Synthesizing support of an itemset

Synthesizing support of an itemset in multiple databases is an important issue. A method
of synthesizing frequent itemsets in D has been proposed in [5]. It deals with multiple
real databases. The method is explained as follows.

The trend of the customers’ behaviour exhibited in one database is usually present in
other databases, since databases are real. In particular, a frequent itemset in a database is
usually present in some transactions of other databases even if it does not get extracted
there. The estimation procedure captures such trend and estimates the support of an
itmset that fails to get extracted in a database. The estimated support of a missing itemset
usually reduces the error of synthesizing a frequent itemset in multiple databases. If an
itemset X fails to get extracted from database D;, then we assume that D; contributes
some amount of support for X. The support of X in D; satisfies the following inequality:
0 < suppa(X, D;) < a. The estimated support of such an itemset is called average low-
support (als). The procedure of estimating als is discussed below.

Let the itemset X be extracted from m databases, for 1 < m < n. Without loss of
generality, we assume that X has been extracted from the first m databases. We shall use
the average behaviour of the customers of the first m branches to estimate the average
behaviour of the customers in remaining branches. Let D, ,, be the union of D;, Dy, ...,
and D,,. supp,(X, D; ) could be viewed as the average behaviour of customers of the first
m branches with respect to X. supp.(X, D; ») could be obtained by the following formula.
supp,(X, D, ,)=(Er", supp, (X, D,)x size(D,))/Er"., size(D,) 2.2.4)
One could estimate the support of X for each of the remaining (n-m) databases as follows.
als(X, D)) = a x supp X, Dim), fori=m+1,m+2,...,n (2.2.5)
The technique discussed above might not be suitable for synthesizing global exceptional
frequent itemsets. The reason is given as follows. A global exceptional frequent itemset X
gets extracted from a few databases. During the process of synthesis, we need to estimate

the supports of X for the remaining databases. So, the number of actual supports of X is
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much less than the number of estimated supports of X. Thus, the error of synthesizing the
support of X in D would be high. Therefore, we shall follow a different strategy for
synthesizing support of an itemset in D. The strategy is explained as follows. We shall
mine each database at a reasonably low value of «. If the itemset X fails to get extracted
from D, then we assume that supp,(X, D;) = 0, for some i =m + 1, m + 2, ..., n. The
itemset X is present in D;, for i = 1, 2, ..., m. Then, the number of the transactions
containing X in D; is supp(X, D;) x size(D)), fori=1,2, ..., m. Also, the itemset X is not
present in D;, for i=m + 1, m + 2, ..., n. We assume that the estimated number of the
transactions containing X in D; is 0, for i = m + 1, m + 2, ..., n. Thus, the estimated

support of X in a database is given as follows:

supp, (X, D), fori=1,2,...m
supp X, D, )= 2.2.6
pp.( ) {O,fori=m+1,m+2,...,n ( )
The synthesized support of X in D could be obtained by the following formula.
supp, (X, D)=(Z"_, supp, (X, D,)x size(D,) )/ Zr_, size(D,) 22.7)

2.2.4 Synthesizing global exceptional itemsets

In this section, we present an algorithm for synthesizing global exceptional frequent
itemsets in D. We discuss here various data structures required to implement the
algorithm. Let N be the number of frequent itemsets in D;, D, ..., and D,. The frequent
itemsets are kept in a 2-dimensional array FIS. The (i, j)-th element of FIS stores the j-th
frequent itemset extracted from D;, forj=1,2, ..., |[FIS(i)},and i = 1, 2, ..., n. An itemset
could be described by the following attributes: itemset, supp and did. The attributes
itemset, supp and did represent itemset, support and database identification of the
corresponding frequent itemset, respectively. Synthesized global exceptional frequent
itemsets are kept in array synFIS. Each global exceptional itemset has been described by
the following attributes: itemset, ssupp, nSources, databases, nExSources, and exDbases.

The attributes itemset and ssupp represent the itemset and synthesized support of a global
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exceptional frequent itemset in D, respectively. The attributes nSources and databases
store the number of sources of exceptional frequent itemsets and the list of identifications
of source databases of a global exceptional frequent itemset, respectively. The attributes
nExSources and exDbases store the number of exceptional sources and the list of
identifications of exceptional sources for a global exceptional frequent itemset,
respectively. The algorithm {2] is given below:

Algorithm 2.2.1. Synthesize global exceptional frequent itemsets in the union of all
branch databases.

procedure ExceptionalFrequentltemsetSynthesis (n, FIS, p, size, )

Input: |

n: number of databases

FIS: array of frequent itemsets

u: threshold of high support

size: array of total number of transactions in different databases

y. threshold bf low extraction

output: - - -

Global exceptional frequent itemsets in D

01: collect all the frequent itemsets into array FIS;

02: sort frequent itemsets in FIS in non-decreasing order on ifemset attribute;
03: calculate total number of transactions into totTrans;

04: let nSynFIS = 0; let curPos = 1;

05: while (curPos < N) do

06: leti= curPos; let count =0,

07: let nTransCurFIS = 0; totSupp = 0;

08: while (i < curPos + n) do

09:  if (FIS(i).itemset = FIS(curPos).itemset) then

10: update count, sources(count), totalSupp, nTransCurFIS, supports(count),
11: else break;
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12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

22

23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:

increase i by 1;
end if
end while
if ((count | n) < y) and (nTransCurFIS / totTrans > 1)) then
increase nSynFIS 1;
update attributes supp, itemset and nSources of synFIS(nSynFIS),
avgSupp = totalSupp | count; exCount = 0;
forj =1 to count do
synFIS(nSynF1IS).databases(j) = source(j);
if (supports(exCount) > avgSupp) then
increase exCount by 1,
synFIS(nSynFIS).exDbases(exCount) = sources(j) ;
end if
end for
synFIS(nSynFIS).nExSources = exCount;
end if
update curPos by i; -
end while
sort itemsets of synFIS;

for i = 1 to nSynFIS do
display details of synFIS(i);

end for

end procedure

We explain here the above algorithm. The frequent itemsets having the same itemset

attribute are kept consecutive in FIS. It helps processing one itemset at a time. An

exceptional frequent itemset is synthesized using the lines 8-27. The array sources is used

to store the database identifications of all the databases that report the current frequent

itemset. Also, the array supports is used to store the supports of the current frequent item-
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set in different databases. The information about the current itemset is obtained by the
while-loop in lines 8-14. The information includes the number of extractions, database
identifications of the source databases, supports in different databases, total supports, and
the number of transactions containing current frequent itemset in different databases. We
explain the update-statement at line 10 as follows. The number of extraction of current
frequent itemset i.e., count is increased by 1. The did of the corresponding database is
copied into cell sources(count). Variable nCurFIS is added by expression FIS(i).supp x
size(FIS(i).did). Variable fotalSupp is also added by expression FIS(i).supp. The support
of frequent itemset in the current database is copied into supports(count). We also explain
the update-statement at line 17 as follows. The synthesized support of current global
exceptional frequent itemset is obtained by expression nCurFIS / totTrans. The itemset
attribute of current global exceptional frequent itemset is the same as the itemset attribute
of current frequent itemset. The variable count is copied into synFIS(nSynFIS). nSources.
The if-statement in lines 15-27 checks whether the current itemsets is a global
exceptional frequent itemset in multiple databases and it synthesizes each global
exceptional frequent itemset. All the frequent itemsets are processed using the lines 4-29.
We sort global exceptional itensets at line 30 for better presentation. All the global
exceptional itemsets are kept in non-decreasing order on the length of the itemset. Again,
the itemsets of the same length are sorted on non-increasing order on support of the
itemset. Finally, global exceptional itemsets are displayed using lines 31-33. We display
all the global exceptional itemsets and their synthesized supports. For every global
exceptional frequent itemset, we display the source databases from which it has been
extracted. Also, for every global exceptional frequent itemset, we also display the
exceptional source databases from which it has been highly supported.

Theorem 2.2.1. The time complexity of the procedure
Exceptional FrequentltemsetSynthesis is maximum{O(N x log(N)), O(n x N)}, where N is

the number of frequent itemsets extracted from n databases.
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Proof. The time complexity of line 1 is O(¥), since there are N frequent itemsets in all
the databases. Line 2 sorts N frequent itemsets in O(N x log(N)) time. The time
complexity of line 3 is O(n), since there are » databases. The program segment lines 5-29
repeats maximum N times. Within this program segment, there is a while-loop and a for-
loop. The while-loop in lines 8-14 takes O(n) time. Also, the for-loop in lines 19-25 takes
O(n) time. Thus, the time complexity of the program segment lines 5-29 is O(n x N).
Line 30 takes O(N x log(N)) time for sorting maximum N synthesized global exceptional
itemsets. To display the details of a global exceptional itemset it takes O(n) time, since
there are maximum » sources of the itemset. Thus, the program segment in lines 31-33
take O(r x N) time. Therefore, the time complexity of the procedure
ExceptionalFrequentltemsetSynthesis is maximum{O(N x log(N)), O(n x N)}. e

In the following example, we manually execute the above algorithm and verify that it
works correctly.

Example 2.2.1. Let D;, D, and D; be three databases of sizes 4000 transactions, 3290
transactions, and 10200 _transactions, respectively. Let D be the union of D;, D,, and D3.
Assume that = 0.1, y= 0.4, and ¢ = 0.25. Let X(7) denote the frequent itemset X with
support 7. The sets of frequent itemsets extracted from these databases are given as
follows. FIS(D;) = {4(0.12), B(0.14), AB(0.11), C(0.20)}, FIS(D,) = {4(0.10), B(0.20),
C(0.25), D(0.16), CD(0.12), E(0.16)}, FIS(D3) = {A(0.11), C(0.60), F(0.77)}. We keep
frequent itemsets in array FIS and sort them on itemset attribute. The sorted frequent

itemsets are given in Table 2.2.1.
Table 2.2.1. Sorted frequent itemsets in different databases
itemset | 4 | A | 4| B|B|C | C|C | D|E|F |4AB|CD
supp |12 .10 .11 |.14|.20|.20|.25(.60 .16 |.16|.77|.11| .12
did 1231212 |3{2}2}{3|1]2

Here, totTrans is 17490. We synthesize the frequent itemsets in FIS. Synthesized

frequent itemsets are given in Table 2.2.2.
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Table 2.2.2. Synthesized frequent itemsets in multi-databases
itemset A B C | D E F | AB | CD
synthesized supp | 0.11 | 0.07 | 0.44 | 0.03 | 0.03 | 0.45 | 0.03 | 0.02

In Algorithm 2.2.1, we maintain synthesized global exceptional frequent itemset in array
synFIS. For the purpose of explanation, Table 2.2.2 has been introduced here. From Table
2.2.2, we find that the synthesized supports of C and F are high, since suppy(C, D) > u
and supp(F, D) > p. Itemset F has been extracted from one out of three databases. Thus,
F is low-voted, since 1/3 < y. Therefore, the itemset F is a global exceptional frequent
itemsetin D. o

In the following theorem, we determine time complexity of algorithm
IdentifyExPattern [89] for the purpose of comparing algorithms IdentifyExPattern and
ExceptionalFrequentltemsetSynthesis theoretically.
Theorem 2.2.2. The algorithm IdentifyExPattern takes 0(n2 x N x log(N)) time, where N
is the number of frequent itemsets extracted from n databases.
Proof. Please refer to algorithm IdentifyExPattern. Step 5 of the algorithm ranks
candidate exceptional patterns based on their global supports. Step 4 calculates global
support of a candidate exceptional pattern based on the number of databases that support
the pattern. Step 1 counts the number databases that support a specific pattern. Thus, step
5 is based on step 4, and step 4 is based on step 1. Step 1 takes O(n) time for a specific
pattern. This implies that step 4 takes O(n x n) time for each candidate exceptional
pattern. Thus, step 5 takes O(#* x N x log(N)) time, and hence the theorem follows. e
From Theorems 2.2.1 and 222, one could conclude that the algorithm
ExceptionalFrequentltemsetSynthesis executes faster than algorithm Identify ExPatter. We

also compare these two algorithms experimentally in Section 2.2.6.1.
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2.2.5 Error calculation

To evaluate the proposed technique for synthesizing global exceptional frequent itemsets,
we have measured the amount of error occurred in the experiments. Error of the
experiment is relative to the number of transactions (i.e., the size of the database),
number of items, and length of a transaction in a database. Let ANT, ALT, and ANI denote
the average number of transactions, average length of a transaction and average number
of items in the database, respectively. Then, the error of the experiment needs to be
expressed along with ANT, ALT, and ANI. The error of the experiment is based on the
global exceptional frequent itemsets in D. Let {X;, X», ..., X,} be set of global
exceptional frequent itemsets in D. There are several ways one could define the error of

an experiment. We have defined following two types of error of an experiment.
1. Average Error (AE)

1 <
AE(D, a, p ) =— L1 |supp, (X, D) - supp (X, D) (22.8)

2. Maximum Error (ME)

MED, a, u, y) = maximum {|suppa (X,,D)-supp(X,,D),i=1,2,...m } (2.2.9)

Actual support of X; in D, supp,(X;, D), is obtained by mining D using a traditional data
mining technique, for i =1, 2, ..., m. Synthesized support of X; in D, supp(X;, D), is
obtained by the technique discussed in Section 2.2.3, for i = 1, 2, ..., m. Then we
compute error of synthesizing support of X; in D as | supp.(X;, D) - supp«( X, D)| , for i =
1,2, ..., m.

Example 2.2.2. With reference to Example 2.2.1, the itemset F is the only global
exceptional frequent itemset present in D. Thus, AE(D, 0.1, 0.25, 0.4) = ME(D, 0.1, 0.25,
0.4) = |suppa(F, D) - supp(F, D)|. ®

2.2.6 Experiments

We have carried out several experiments to study the effectiveness of our approach. All

the experiments have been implemented on a 2.8 GHz Pentium D dual processor with
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512 MB of memory using visual C++ (version 6.0) software. The experimental results are
presented on both artificial and real databases. We have constructed artificial database
check to verify that the proposed algorithm works correctly. Each item is represented by
an integer number to perform experiments more conveniently. Thus, a transaction in
check is a collection of integer numbers separated by commas. The database retail [34] is
obtained from an anonymous Belgian retail supermarket store. We present some
characteristics of these databases in Table 2.2.3.

Table 2.2.3. Characteristics of the databases

# transactions | Avglengthofa | Avg frequency | # items
Database
(NT) transaction (ALT) | of an item (4F1) | (NI)
check(C) 40 3.025000 3.102564 39
retail(R) 88,162 11.305755 99.673800 10000

Each of the above databases has been divided into 10 databases for the purpose of
carrying out experiments. These databases are called input databases. The algorithm is
based on the frequent itemsets in the input databases. There are many algorithms [13],
[39], [66] for mining frequent itemsets in a database. Thus, there exist many
implementations [32] of mining frequent itemsets in a database.

Database c}\zeck consists of 40 transactions. The input databases obtained from check
are given as follows: Cp = {{1, 4, 9, 31}, {1, 4, 7, 10, 50}, {1, 4, 10, 20, 24}, {1, 4, 10,
23}; Cr = {{1, 4, 10, 34}, {1, 3, 44}, {1, 2, 3, 10, 20, 44}, {2, 3, 20, 39}}; C; = {{2, 3,
20, 44}, {2, 3, 45}, {2, 3, 44, 50}, {2, 3, 20, 44, 50}}; C3 = {{ 3, 44},{3, 19, 50}, {5, 7,
21}, {5, 8}}; Ca={{ 5, 41, 45}, {5, 49}, {5, 7, 21}, {5, 11, 21}}; Cs = {{6, 41}, {6, 15,
19}, {11, 12, 13}, {11, 21, 49}}; Cs= {{11, 19}, {21}, {21, 24, 39}, {22, 26, 38}}; C7 =
{{22, 30,31}, {24, 35}, {25, 39, 49}, {26, 41, 46}}; Cs = { {30, 32, 42}, {32, 49}, {41,
45, 59}, {42, 45}}; Co = { {42, 47},{45, 49}, {47, 48, 49}, {49}}. The input databases

obtained from retail are named as R;, for i = 0, 1, ..., 9. For the purpose of mining
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b 2
input databases, we have implemented apriori algorithm [13], since it is simple and
popular. Some characteristics of these input databases are presented in the Table 2.2.4.
Table 2.2.4. The characteristics of databases obtained from retail
Input ) Avg length Avg frequency )
database # transactions of a transaction of an item # toms
Ry 9000 11.24389 12.07001 8384
R; 9000 11.20922 12.26541 8225
R; 9000 11.33667 14.59657 6990
R; 9000 11.48978 16.66259 6206
R, 9000 10.95678 16.03953 6148
R;s 9000 10.85578 16.70977 5847
Rs 9000 11.20011 17.41552 5788
+ R; 9000 11.15511 17.34554 5788
Rs 9000 11.99711 18.69032 5777
Ry - 7162 11.69199 15.34787 5456

The global exceptional frequent itemsets corresponding to check and retail are presented

in Tables 2.2.5 and 2.2.6, respectively.

s~
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Table 2.2.5. Global exceptional frequent itemsets in {Cy, C},

..., Co} at = 0.05, y=0.4

and x=0.1
itemset | ssupp sources exceptional itemset | ssupp sources exceptional
sources sources
{1} | .17500 Co, Cy Co {1,10} |.12500 Co, ¢y C;
{2y |.17500 C1, C; C, {2,3} |.15000 C, C; C,
{3} |.20000{ Cy, Cy, C3 C;, C; 2,20} |.12500 Cy, C; C,
{4} |.12500 Cy, Cy Co {2,44} | .12500 Cy, C; C;
{5} |.15000 C3, Cy Cy {3,20} | .10000 Cy, C C,
{10} |.12500 Co, Cy Co {3,44} |.15000| Cy, C;, C3 Cy, Cs
{11} {.10000| Cy4, Cs, Cs Cs {4,10} | .10000 Cy, Cy Cy
{20} 1.12500 | Cy, Cy, C; Ci, C {1,4,10} | .10000 Cy, Cy Cy, Cy
{44} |.15000 | C;,C, Cs C;, C {2,3,20} | .10000 Cy, C Cp,C
{50} | .10000 | Cy, C2, C; C {2,3,44} | .10000 C, C C;, C;
{1,4} |.12500 Co, C; C

A global exceptional frequent itemset might not be supported with equal degree from

each of the source databases. For example, the global exceptional frequent itemset {50}

has been extracted from databases Cy, C,, and C;s. But, the database C; reports itemset

{50} exceptionally more.
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Table 2.2.6. Global exceptional frequent itemsets in {Rg, R;, ..., Ro} at &= 0.02, y=

0.4 and x=0.1
itemset ssupp sources exceptional sources
{2,6,9} |0.10228 Ro, R; Ry, R;
{2,9,41} | 0.10272 | Ry, R;, R; Ry, R1, R;
{6,9,41} | 0.10662 | Ry, R;, R3 Ro, Ry, R3
{8,9,271} 1 0.10184 Ry Ry
{9,41,48} | 0.10184 R; R;

We observe that some databases do no report any global exceptional frequent itemsets.
On the contrary, some other databases are the source of many global exceptional frequent
itemsets. In Tables 2.2.7 and 2.2.8, we present the distributions of global exceptional
frequent itemsets in {Cy, Cy, ..., Co} and {Ry, Ry, ..., Ro}, respectively.
Table 2.2.7. Distribution of global exceptional frequent itemsets in {Cy, Cj, ..., Co} at
a=0.05, y=0.4and 4= 0.1
Database Co | Cr i Co | C3 | Cqi | Cs 1 Cs| Cr| Cs | Co

# global exceptional ‘
9 |18 12| 5 2 1 1 0 0 0
frequent itemsets

In Table 2.2.7, we observe that three out of ten databases do not report any global
exceptional frequent itemsets. We have also conducted experiments on synthetic
databases. The items in most of the synthetic databases are more or less uniformly
distributed. Thus, a set of synthetic databases rarely reports global exceptional frequent

itemsets.
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Table 2.2.8. Distribution of global exceptional frequent itemsets in {Ry, Ry, ..., Ro} at
a=0.02, y=04and u=0.1
Database Ry | R/ | Ry | Rs | Ry | Rs | Re | R | Rg | Ry
# global exceptional

frequent itemsets A U e T R e A L R
The distribution of global exceptional frequent itemsets in {Ry, R, ..., Ro} is different
from that in {Cy, C), ..., Co}. In Table 2.2.8, we notice that three out of ten databases
report global exceptional frequent itemsets. The items in retail are more uniformly
distributed than that in check, since the number of global exceptional frequent items in

retail is much less than that in check.

Y Also, we have studied the number of global exceptional frequent itemsets in multi-

databases at different js. As we increase y, we allow more frequent itemsets to be global

exceptional. In Figures 2.2.1 and 2.2.2, we study the relationship between y and the

number of global exceptional frequent itemsets in multiple databases.

24
22 g;

Number of
exceptional frequent
itemsets
S

Figure 2.2.1. Number of global exceptional frequent itemsets in {Cy, Cy, ..., Co} at &
=0.05,and z=0.1
We have observed that the number of global exceptional frequent itemsets do not vary

much at different 7s. In fact, there is only one change in both the graphs of Figures 2.2.1
and 2.2.2.
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Figure 2.2.2. Number of global exceptional frequent itemsets in {Ry, R;, ..., Ro} at a=
0.02,and 4= 0.1
Also, we have studied the number of global exceptional frequent itemsets in multiple
databases at different as. We present experimental results in Figures 2.2.3 and 2.2.4. The
number of global exceptional frequent itemsets in {Cy, Cj, ..., Co} remains fixed at 21
over different os.
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Figure 2.2.3. Number of global exceptional frequent itemsets in {Cyp, Cy, ..., Co} at y=
0.4,and x£= 0.1
But, we find a different trend with respect to the number of global exceptional frequent
itemsets in {Ry, R;, ..., Ro}. At lower and upper values of ¢, the number of global
exceptional frequent itemsets is 0. Again, we get few global exceptional frequent itemsets
for some middle values of . Thus, there is no fixed relationship between the number of

global exceptional frequent itemsets and c.
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Figure 2.2.4. Number of global exceptional frequent itemsets in {Ry, R/,

0.4, and = 0.1

..., Ro} at y=

Also, we have calculated the error of the experiments. In Table 2.2.9, we present the
error of the experiments at a given value of triplet (&, 7, ).

Table 2.2.9. Errors of the experiments at a given value of triplet (e, ¥, 1)

Experimental (AE, Avg NT, (ME, Avg NT,
a
databases s ALT, Avg NI) ALT, Avg NI)
(0, 4, 0, 4,
Co, Cp,...,Co | 0.05104]0.1
3.025000, 8.4) 3.025000, 8.4)
(0.08359, 8816.2, | (0.085015, 8816.2,
Ro,R;,...,R9 10.02|04]0.1
11.305755, 5882.1) | 11.305755, 5882.1)

2.2.6.1 Comparison with the existing algorithm

In this section, we make comparison between algorithms IdentifyExPattern [89] and
Exceptional-Frequentltemset-Synthesis [2] experimentally. We analyze and compare
these two algorithms on the basis of experiments conducted on the following two issues:

(1) average error versus ¢, and (ii) synthesizing time versus number of databases.

2.2.6.1.1 Average error
We have calculated AEs at different as to study the relationship between them.
Experimental results are presented in Figures 2.2.5 and 2.2.6. We observe that there is no

fixed relationship between AE and .
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Figure 2.2.5. Average error versus « for check at y= 0.4, and = 0.1
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Figure 2.2.6. Average error versus o, for retail at y= 0.4, and = 0.1
For both the databases, algorithm ExceptionalFrequentltemsetSynthesis performs better
than algorithm IdentifyExPattern. In database check, the global exceptional frequent
itemsets are not uniformly distributed. The global exceptional frequent itemsets appear
only in few databases, while they remain absent in the remaining databases. Algorithm
ExceptionalFrequentltemsetSynthesis finds average error 0 at different as, since the error

of synthesizing each global exceptional frequent itemset in {Cy, Cj, ..., Co} is 0.

2.2.6.1.2 Synthesizing time

Also, we have calculated the time for synthesizing global exceptional frequent itemsets
by varying the number of databases. In Figures 2.2.7 and 2.2.8, we show time (in ms.)
required to synthesize global exceptional frequent itemsets in multiple databases. In case
of the experiment conducted on {Cy, Cj, ..., Co}, we observe that the synthesizing time

does not increase as the number of databases increases. This is due to the fact that the size
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y
of each of the databases is very small. In fact, the time required to synthesize global
exceptional frequent itemsets in {Cy, C, ..., Co}is 0 ms., for both the algorithms.
’g 1 —eo— Synthesizing time
5 08 foralgm
E 06 Exceptional-
%0 0.4
H 02 - = - Synthesizing time
L J AN A T s S s SR A AR B A
s for algm
> 4 5 6 7 8 9 10 IdentifyFxPattern
Number of databases
Figure 2.2.7. Synthesizing time versus number of databases obtained from check at y=
0.4, and = 0.1
g 150 —e— Synthesizing time
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£ 100 _ Exceptional-
‘é‘) 50 A Igreq%entlgems_et-
; : i --+-- Synthesizing time
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Figure 2.2.8. Synthesizing time versus number of databases obtained from retail at o=
0.02, y=0.4,and #=0.1

Considering the results presented in Figures 2.2.7 and 2.2.8, one could conclude that

algorithm Exceptional-Frequentltemset-Synthesis executes faster than algorithm

IdentifyExPattern. Also, this observation matches with the theoretical results presented.

In general, the time for synthesizing global exceptional frequent itemsets either remains

the same or, increases as the number of databases increases.

2.2.7 Conclusion

Synthesis of global exceptional patterns is an important component of a multi-database

mining system. Many corporate decisions of a multi-branch company would depend on
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global exceptional patterns in branch databases. Though previous work discussed issues
related to this problem, we believe that we have presented a better analysis.

We have identified the short-comings of the existing concepts and the algorithm to
identify global exceptional patterns. We have proposed a definition of a global
exceptional frequent itemset. Also, we have introduced the notion of exceptional sources
for a global exceptional frequent itemset. The proposed algorithm identifies global
exceptional frequent itemsets and their exceptional sources in multiple databases. We
have also compared our algorithm with the éxisting algorithm. Our algorithm performs
better than the existing algorithm on the following issues: (i) error of the experiment, and
(ii) execution time. We have observed that our algorithm executes faster than the existing
algorithm when the number of databases increases. Also, we have shown theoretically
that our algorithm executes faster than the existing algorithm. The solution presented here
is simple and effective in synthesizing global exceptional frequent itemsets in multiple

databases.
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Chapter 2.3

Synthesizing heavy association rules from different real data

Sources

Improved communication technology has been a major influential factor to rapid
industrial growth and business activities. Also, many countries across the globe are
adopting slowly a liberal economic policy. Due to the influence of a number of such
factors, many countries are experiencing rapid economic growth. As a result, the number
of companies is increasing over time. Many large companies have multiple branches.
They operate from different branches located at different places. Some of these branches
are fully operational and collect transactional data continuously. Consider the shopping
malls owned by a company. These malls are open at least 12 hours a day. All the
transactions made in a mall are stored locally. Thus, the company possesses multiple
databases. Most of the pieces of previous data mining work are based on a single
database. Thus, it is necessary to study data mining on multiple databases.

Many corporate decisions could be taken effectively by incorporating knowledge
inherent in data across the branches. But, the effective management of multiple large
databases becomes a challenging issue. It creates not only opportunities but also risks.
The risks might involve significant amount investment on hardware and software to deal
with a large volume of data. Our objective is to provide good quality of knowledge by
minimizing the risks. The first question comes to our mind whether a traditional data
mining technique could deal with multiple large databases. To apply a traditional data
mining technique we need to amass all the databases together. A single computer might

take unreasonable amount of time to process the entire database. Sometimes, it might not
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be feasible to carry out the data mining task using a single computer. Another solution to
this problem would be to employ parallel machines. It might require high investment on
hardware and software. One needs to make a cost-benefit analysis before implementing
such a decision. In many situations, it might not be an acceptable solution to the
management of the company. Moreover, it might be difficult to find regional patterns
when a traditional data mining technique is applied on the entire database. Thus, the
traditional data mining techniques are not suitable in this situation. So, it is a different
problem. Hence, it is required to be dealt with in a different. way. In this situation, we
would employ the model of local pattern analysis [91] to deal with multiple large
databases. Under this model, the branches are required to forward their local patterns
instead of original databases to the central office for synthesis of global patterns.

Association rule mining has received a lot of attention to KDD community. An
association rule becomes more interesting if it possesses higher support and higher
confidence. In this chapter, we present the notion of heavy association rule. Heavy
association rules are sometimes more useful than high-frequent association rules [81].
Many corporate decisions could be influenced by heavy association rules. Thus, it is
important to mine heavy association rules in multiple databases. It could be difficult to
extract heavy association rules in the union of all branch databases by employing a
traditional data mining technique. Therefore, we éynthesize heavy association rules from
the association rules in local databases. We present an algorithm to synthesize heavy
association rules from local association rules. We have extended the algorithm to notify
whether a heavy association rule is high-frequent.

Also, we introduce the notion of exceptional association rule in multiple databases. We
have also extended the algorithm to notify whether a heavy association rule is
exceptional. Thus, our extended algorithm not only synthesizes heavy association rules,
but also it notifies whether a heavy association rule is high-frequent or exceptional in

multiple databases.
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The rest of the chapter is organized as follows. We state the problem in Section 2.3.2.
We discuss work related to the problem in Section 2.3.3. In Section 2.3.4, we present an
extended model of synthesizing global patterns from local patterns in different databases.
In Section 2.3.5, we discuss a method of synthesizing an association rule in multiple
databases. We present an algorithm for synthesizing heavy association rules in multiple
databases. The algorithm also reports whether a heavy association rule is high-frequent or
exceptional in muitiple databases. We have defined error of an experiment in Section

2.3.6. The experimental results on three real databases are presented in Section 2.3.7.

2.3.2 Problem statement

Consider a large company that tfansacts from n branches. Let D; be the transactional
database corresponding to the i-th branch of the multi-branch company, fori=1,2, ..., n.
Also, let D be the union of all branch databases. We present an algorithm for synthesizing
heavy association rules in D. The algorithm also notifies the high-frequency and
exceptionality statuses of heavy association rules in D. Heavy association rules, high-
frequent association rules and exceptional association rules are specific types of
association rules. It might be required to discuss some other concepts.before we define
them.

Association rule mining is based on support (supp)-confidence (conf) framework
established by Agrawal et al. [11]. Let I be set of items in D. An association rule » has
been expressed symbolically as ¢ — d, where ¢ = {c}, ¢2, ..., ¢p}, and d = {d}, d>, ..., dy};
ci, e I, fori=1,2,...,p,andj =1, 2, ..., g. It expresses an association between the
itemsets ¢ and d, called the antecedent and consequent of r, respectively. The meaning
attached to this implication could be expressed as follows: If the items in the itemset ¢ are
purchased by a customer then the items in the itemset d are likely to be purchased by the
same customer at the same time. The interestingness of an association rule could be
expressed by its support and confidence. Let E be a Boolean expression of items in

database DB. Support of E in DB could be defined as the fraction of transactions in DB
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such that the Boolean expression E is true for each of these transactions. We denote
support of E in DB as supp,(E, DB). Then the support and confidence of association rule r
could be expressed as follows: supp,(r, DB) = supp,(c(\d, DB), and conf,(r, DB) =
supp.(cd, DB) / supp,(c, DB). Later, we shall be dealing with synthesized support and
synthesized confidence of an association rule. Thus, it is required to differentiate between
actual support / confidence and their synthesized versions. The subscript @ in the notation
of support / confidence refers to actual support / confidence of an association rule. On the
other hand, the subscript s in the notation of support / confidence refers to synthesized
support / confidence of an association rule. We shall discuss how to get synthesized
support and confidence of an association rule later. An association rule r in database DB
is interesting if supp,(r, DB) > minimum support (), and confy(r, DB) = minimum
confidence (f), fori=1, 2, ..., n. The values of énd B are user-defined. The collection
of association rules extracted from a database at the given « and S is called a rulebase.
Let RB; and SB; be the rulebase and suggested rulebase corresponding to database D,
respectively, for i = 1, 2, ..., n. An association rule € RB;, if supp,(r, D;) = o, and
confo(r, D) = B, fori=1,2, ..., n. An association rule r € SB,, if supp,(r, D;) = o, and
confy(r, D) <p, fori=1,2, ..., n. There is a tendency of a suggested association rule in
a database to become an association rule in another database. Apart from the association
rules, we also consider the suggested association rules for synthesizing heavy association
rules in D. The reasons for considering suggested association rules are given as follows.
Firstly, we could synthesize support and confidence of an association rule in D more
accurately. Secondly, we could synthesize high-frequent association rules in D more
accurately. Thirdly, the experimental results (as reported in Table 2.3.5) have shown that
the number of suggested association rules could be significant for some databases. In
general, the accuracy of synthesizing an association rule increases as the number of

extractions of the association rule increases. Thus, we consider suggested association
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rules also for synthesizing heavy association rules in D. In addition, the number of
transactions in a database would be required for synthesizing an association rule. We
define size of database DB as the number of transactions in DB, denoted by size(DB). In
the following, we define the concept of heavy association rule in multiple databases.
First, we define a heavy association rule in a single database. Afterwards, we shall define
a heavy association rule in multiple databases.

Definition 2.3.1. An association rule r in database DB is heavy if supp,(r, DB) > u, and
conf,(r, DB) > v, where u (> « ) and v (> f) are the user defined thresholds of high-
support and high-confidence for identifying heavy association rules in DB, respectively. o
If an association rule is heavy in a local database then it might not be heavy in D. An
association rule in D might have different statuses in different local databases. For
example, it might be a heavy association rule, or an association rule, or a suggested
association rule, or absent in a local database. Thus, we need to synthesize an association
rule for determining its overall status in D. The method of synthesizing an association
rule is discussed in Section 2.3.5. After synthesizing an association rule, we get
synthesized support and synthesized confidence of the association rule in D. Let suppy(r,
DB) and conf(r, DB) denote synthesized support and “synthesized confidence of
association rule r in DB, respectively. Now, we define a heavy association rule in D as
follows.

Definition 2.3.2. Let D be the union of local databases under consideration. An
association rule r in D is heavy if supps(r, D) > u, and conf(r, D) > v, where p and v are
the user-defined thresholds of high-support and high-confidence for identifying heavy
association rules in D, respectively. o

Apart from synthesized support and synthesized confidence of an association rule, the
frequency of an association rule is an important issue in multi-database mining. We
define frequency of an association rule as the number of extractions of the association

rule from different databases. If an association rule is extracted from k out of » databases
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then the frequency of the association rule is &, for 0 < k < »n. An association rule may be
high-frequent or, low-frequent, or neither high-frequent nor low-frequent in multiple
databases. We could arrive in such a conclusion only if we have user-defined thresholds
of low-frequency (), and high-frequency (72) of an association rule, for 0 <y <y < 1.
A low-frequent association rule is extracted from less than n x ; databases. On the other
hand, a high-frequent association rule is extracted from at least 7 x y, databases. In multi-
database mining using local pattern analysis, we define a high-frequent association rule
and a low-frequent association rule as follows: |

Definition 2.3.3. Let an association rule be extracted from k out of n databases. Then the
association rule is low-frequent if k < n x y;, where y is the user-defined threshold of
low-frequency. ®

Definition 2.3.4. Let an association rule be extracted from k out of n databases. Then the
association rule is high-frequent if ¥ > n x 7, where 7, is the user defined-threshold of
high-frequency. e

While synthesizing heavy association rules in multiple databases, it may be worth noting
the other attributes of a synthesized association rule. For example, high-frequency, low-
frequency, and exceptionality are interesting as well as important attributes of a
synthesized association rule. We have already defined high-frequent association rule and
low-frequent association rule in multiple databases. We define an exceptional association
rule in multiple databases as follows.

Definition 2.3.5. A heavy association rule in multiple databases is exceptional if it is

low-frequent. o

It may be worth contrasting between a heavy association rule, a high-frequent association

rule and an exceptional association rule in multiple databases.
» An exceptional association rule is also a heavy association rule.

= A high-frequent association rule is not an exceptional association rule, and vice versa.
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= A high-frequent association rule is not necessarily be a heavy association rule.
= There may exist heavy association rules that are neither high-frequent nor exceptional.
The proposed problem could be stated as follows:

Let there are n distinct databases D;, D, D,. Let RB; and SB; be the set of
association rules and suggested association rules in D, respectively, for i = 1, 2, ..., n.
Synthesize heavy association rules in the union of all databases (D) based on RB; and
SB;, fori =1, 2, ..., n. Also, notify whether each heavy association rule is high-frequent

or exceptional in D.

2.3.3 Related work

Association rule mining finds interesting association between two itemsets in a database.
The notion of association rule is introduced by Agrawal et al. [11]. The authors have
proposed an algorithm to mine frequent itemsets in a database. Many algorithms have
been reported to extract association rules in a database. In the following, we mention a
few interesting algorithms for extracting association rules in a database. Agrawal and
Srikant [13] have proposed apriori algorithm that uses breadth-first search strategy to
count the supports of itemsets. The algorithm uses an improved candidate generation
function, which exploits the downward closure property of support and makes it more
efficient than earlier algorithm. Han et al. [39] have proposed data mining method FP-
growth (frequent pattern growth) which uses an extended prefix-tree (FP-tree) structure
to store the database in a compressed form. FP-growth adopts a divide-and-conquer
approach to decompose both the mining tasks and databases. It uses a pattern fragment
growth method to avoid the costly process of candidate generation and testing. Savasere
et al. [66] have introduced partition algorithm. The database is scanned only twice. In the
first scan the database is partitioned and in each partition support is counted. Then the
counts are merged to generate potential frequent itemsets. In the second scan, the

potential frequent itemsets are counted to find the actual frequent itemsets.
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In the context of pattern synthesis, Viswanath et al. [78] have proposed a novel pattern
synthesis method, called partition based pattern synthesis, which can generate an artificial
training set of exponential order when compared with that of the given original training
set.

Multi-database mining has been recently recognized as an important research topic in
KDD community. In the following, we mention a few important contributions in multi-
database mining. Liu et al. [55] have proposed multi-database mining technique that
searches only the relevant databases. Otherwise, the mining process could be lengthy,
aimless and ineffective. A measure of relevance is thus proposed for mining tasks with an
objective to find patterns or regularities about certain attributes. Wu and Zhang [81] have
proposed a weighting model for synthesizing high-frequent association rules from
different databases. Zhang et al. [89] have proposed an algorithm to identify global
exceptional frequent itemsets in multiple databases. Zhang [88], Zhang et al. [93] studied
various strategies for mining different databases. Wu et at. [83] have proposed a database
clustering technique for multi-database mining. Yin and Han [86] have proposed a new
strategy for relational heterogeneous database classification. Zhang and Zaki [92] have
edited a book on multi-database mining. Aronis et al. [18] introduced a system, called
WOoRLD, that uses spreading activation to enable inductive learning from multiple tables
in multiple databases spread across the network.

Existing parallel mining techniques [12], [26], [28] could also be used to deal with
multi-databases.

In the context of other applications of data mining, Hong and Weiss [42] have
examined a few successful application areas and their technical challenges to show how
the demand for data mining of massive data warehouses has fuelled advances in

automated predictive methods.
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2.3.4 An extended model of synthesizing global patterns from local patterns
in different databases

Many multi-branch companies deal with multiple databases. As the number of such
companies increases, we need to prepare ourselves to develop various applications based
on patterns in multiple databases. There are following types of patterns in multiple
databases: local pattern, global patterns, and patterns that are neither local nor global. A
pattern based on a branch database is called a local pattern. On the other hand, a global
pattern is based on all the databases under consideration. Zhang et al. [91] designed a
local pattern analysis for synthesizing global patterns in multiple databases. We present
here an extension to this model and the extended model [5] is shown in Figure 2.3.1. The
extended model has a set of interfaces and a set of layers. Each interface is a set of
operations that produces database(s) (or, knowledge) based on the database(s) at the next
lower layer. There are four interfaces of the extended model for synthesizing global
patterns from local patterns in different databases. The functions of the interfaces are
described below.

Interface 2/1 applies different operations on data at the lowest layer. By applying these
operations, we get a processed database from a local (original) database. These operations
are performed on each branch database. Interface 3/2 applies a filtering algorithm on each
processed database to separate relevant data from outlier data [20]. In particular, if we are
interested in studying the durable items then the transactions containing only non-durable
items could be treated as outlier transactions. Different interesting criteria could be set to
filter data at this stage. Also, it loads data into the respective data warehouse. Interface
4/3 mines local patterns in each local data warehouse. There are two types of local
patterns: local patterns and suggested local patterns. A suggested local pattern is close but
fails to satisfy the requisite interestingness criteria. The reasons for considering suggested
patterns are given as follows: Firstly, we could synthesize patterns more accurately.
Secondly, due to the stochastic nature of the transactions, the number of suggested

patterns could be significant in some databases. Thirdly, there is a tendency that a sugges-
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ted pattern of one database to become a local pattern in another database. Thus, the
correctness of synthesizing global patterns would increase as the number of local patterns
increases. Consider a multi-branch company having » databases. Let LPB; and SPB; be
the local pattern base and suggested local pattern base for the i-th branch, respectively,
fori =1, 2, ..., n. Interface 5/4 synthesizes global patterns, or analyses local patterns to
meet real life challenges.

At the lowest layer, all the local databases are kept. We need to process these databases
as they may not be at the right state for the mining task: Various data preparation
techniques [65] like data cleaning, data transformaition, data integration, and data
reduction are applied to data in the local databases. We get the processed database PD;
corresponding to original database D;, for i = 1, 2, ..., n. Then, we retain all the data that
are relevant to the data mining applications. Using a relevance analysis, one could detect
outlier data [51] from processed database. A relevance analysis is dependent on the
context, and varies from one application to another application. Let OD; be the outlier
database corresponding to the i-th branch, for i = 1, 2, ..., n. Sometimes these databases
are also used in some other applications. After removing outlier data from the processed
database we get desired data warehouse, and the data in a data warehouse become ready
for data mining task. Let W; be the data warehouse corresponding to the i-th branch, for i
=1, 2, ..., n. Local patterns for the i-th branch are extracted from W, fori=1, 2, ..., n.
Finally, the local patterns are forwarded to the central office for synthesizing global
patterns, or analyzing local patterns. Many data mining applications could be developed
based on the local patterns in different databases. Figure 2.3.1 illustrates a model of
synthesizing global patterns from local patterns in different databases.

In particular, if we are interested in synthesizing global frequent itemsets then a
frequent itemset might not get extracted from all the databases under consideration. It
might be required to estimate the support of a frequent itemset in a database that fails to
report it. Thus, a global frequent itemset synthesized from local frequent itemsets is

approximate in nature. If any one of the local databases is too large to apply a traditional
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data mining technique then this model would fail. In this situation, one could apply an
appropriate sampling technique to reduce the size of a local database. Otherwise, the
database could be partitioned into sub-databases. As a result, the error of data analysis

would increase.
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Figure 2.3.1. A model of synthesizing global patterns from local patterns in different

databases
Though the above model introduces many layers and interfaces for synthesizing global
patterns, but in a real life application, many of these layers and interfaces might be

absent.

2.3.5 Synthesizing an association rule

Our technique of synthesizing heavy association rules is suitable for real databases,
where the trend of the customers’ behaviour exhibited in one database is usually present
in other databases. In particular, a frequent itemset in one database is usually present in
some transactions of other databases even if it does not get extracted. Our estimation
procedure captures such trend and estimates the support of a missing association rule in a
database. Let E;(r, DB) be the amount of error in estimating support of a missing

association rule » in database DB. Also, let Ex(r, DB) be the amount of error in assuming
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support as 0 for the missing association rule in DB. Then, E(r, DB) is usually less than
Ex(r, DB). The estimated support and confidence of a misvsing association rule usually
reduce the error of synthesizing heavy association rules in different databases. Thus, we
would like to estimate the support and confidence of a missing association rule rather
than missing its presence. If an association rule fails to get extracted from database DB,
then we assume that DB contributes some amount of support and confidence for the
association rule. The support and confidence of an association rule r in database DB
satisfy the following inequality: 0 < supp,(r, DB) < conf,(r, DB) < 1 2.3.1)
At a given a = oy, we observe that the confidence of an association rule » varies over the
interval [ay, 1].

Example 2.3.1. Let « = 0.333. Assume that database D; contains the following
transactions: {al, bl, cl}, {al, bl, cl}, {b2, c2}, {a2, b3, c3}, {a3, b4} and {c4}. The
support and confidence of association rule r: {al}—{bl} in D, are 0.333 and 1.0
(highest) respectively. Assume that database D, contains the following transactions: {al,
bl, cl}, {al,bl}, {al,cl}, {al}, {al, b2} and {al, b3}. The support and confidence of r
in D, are 0.333 and 0.333 (lowest) respectively. e

As the support of an association rule is the lower bound of its confidence, the confidence
goes up as support increases. The support of an association rule is distributed over [0, 1].
If an association rule is not extracted from a database, then the support falls in [0, o),
since the suggested association rules are also considered for synthesizing association
rules. We would be interested in estimating the support of such rules. Assume that the
association rule r: {c}—>{d} has been extracted from m databases, for 1 < m < n. Without
loss of generality, we assume that the association rule  has been reported from the first m
databases. We shall use the average behaviour of the customers of the first m branches to
estimate the average behaviour of the customers in remaining branches. Let D;; denote
the union of databases D;, D, ..., D, for 1 <i <j <n. Then, supp.({c, d}, D1 ») could be

viewed as the average behaviour of customers of the first m branches for purchasing
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2.3.5.1 Algorithm design

In this section, we present an algorithm for synthesizing heavy association rules in D. The
algorithm also notifies whether a heavy association rule is high-frequent or exceptional in
D. Let N and M be the number of association rules and the number of suggested
association rules in different local databases, respectively. The association rules and
suggested association rules are kept in arrays RB and SB, respectively. A rule in a local
database could be described by following attributes: ant, con, did, supp and conf. The
attributes ant, con, did, supp and conf represent antecedent, consequent, database
identification, support, and confidence of an association rule, respectively. An attribute x
of i-th association rule of RB could be accessed using notation RB(i).x, fori=1, 2, ...,
|RB|. All the synthesized rules are kept in array SR. A synthesized rule could be described
by following attributes: ant, con, did, ssupp and sconf. The attributes ssupp and sconf
represent synthesized support and synthesized confidence of a synthesized association
rule, respectively. In the context of the work presented here, an association rule in D has
the following additional attributes: heavy, highFreq, lowFreq and except. The attributes
heavy, highFreq, lowFreq and except are used to indicate whether an association rule is
heavy, high-frequent, low-frequent and exceptional in D, respectively. An attribute y of i-
th synthesized association rule of SR could be accessed using notation SR(7).y, fori=1, 2,
..., |SR|. An algorithm for synthesizing heavy association rules is presented below:
Algorithm 2.3.1. Synthesize heavy association rules in D. Also, indicate whether a heavy
association rule is high-frequent or exceptional in D.

procedure Association-Rule-Synthesis ( n, RB, SB, i, v, size, y1, y2)

Inputs:

n: number of databases

RB: array of association rules

SB: array of suggested association rules

. threshold of high-support for determining heavy association rules
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v. threshold of high-confidence for determining heavy association rules

size: array of total number of transactions in different databases

- threshold of low-frequency for determining low-frequent association rules
7. threshold of high-frequency for determining high-frequent association rules
Outputs:

Heavy association rules along with their high-frequency and exceptionality statuses
01: copy rules of RB and SB into array R;

02: sort rules of R based on attributes ant and con of a rule;

03: calculate total number of transactions in different databases into totalTrans;
04: let nSynRules = 1,

05: let curPos =1,

06: while ( curPos <|R| ) do

4

07:  calculate the number of occurtences of current rulé Ricu
09:
10:
11:
12:
13:
14:  SR(nSynRules).JowFreq = true;

15: end if

16: calculate supp(R(curPos), D) using formula (2.3.5);

17: calculate conf(R(curPos), D) using formula (2.3.8);

18: let SR(nSynRules).heavy = false;

19:  if ((supps(SR(nSynRules), D) > 1) and (conf(SR(nSynRules), D) = v)) then
20:  SR(nSynRules).heavy = true;

21: endif

22: et SR(nSynRules):except = false;
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23:  if ((SR(nSynRules) is low-frequent) and (SR(nSynRules) is heavy)) then
24:  SR(nSynRules).except = true;

25: endif

26: update index curPos for processing the next association rule;

27: increase index nSynRules by 1;

28: end while

29: for each synthesized association rule 7in SR do

30: if 7is heavy then

31: display 7 along with its high-frequency and exceptional statuses;
32: endif
33: end for

end procedure

The above algorithm works as follows. The association rules and suggested association
rules are copied into array R. All the rules in R are sorted on the pair of attributes ant and
con, SO that the same rule extracted from different databases becomes consecutive. Thus,
it would help synthesizing one rule at a time. The synthesizing process is kept in the
while-loop at line 6. Based on the number of extractions of a rule, we could determine its
high-frequency and low-frequency statuses. Number of extractions of current association
rule has been determined at line 7. The high-frequency status of current association rule
is determined using lines 8-11. Also, the low-frequency status of current association rule
is determined using lines 12-15. We synthesize support and confidence of current
association rule based on formula (2.3.5) and (2.3.8), respectively. Once the synthesized
support and synthesized confidence are calculated, one could identify the heavy and
exceptional statues of current association rule. The heavy status of current association
rule is determined using lines 18-21. Also, the exceptional status of current association
rule is determined using lines 22-25. At line 26, one determines the next association rule
in R for the synthesizing process. Heavy association rules are displayed along with their

high-frequent and exceptionality statuses using lines 29 - 33. The shaded regions have
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been added to report the high-frequency and exceptionality statuses of heavy association
rules.

Theorem 2.3.1. The time complexity of procedure Association-Rule-Synthesis is
maximum{ O(M + N) x log(M + N)), O(n x (M + N))}, where N and M are the number
of association rules and the number of suggested association rules extracted from n
databases. ,

Proof. The lines 1 and 2 take time in O(M + N) and O((M + N) x log(M + N))
respectively, since there are M + N rules in different local databases. The while-loop at
line 6 repeats maximum M + N times. Line 7 takes O(n) time, since each rule is extracted
maximum » number of times. Lines 8-15 take O(1) time. Using formula (2.3.2), one
could calculate the average behaviour of customers of the first m databases in O(n) time.
Also, each of lines 16 and 17 takes O(#) time. Lines 18-25 take O(1) time. Line 26 could
be executed during execution of line 7. Thus, the time complexity of while-loop 6-28 is
O(n x (M + N)). The time complexity of lines 29-33 is O(M + N), since the number of
synthesized association rules is less than or equal to M + N. Thus, the time complexity of
procedure Association-Rule-Synthesis is maximum{ O((M + N) x log(M + N)), O(n x (M
+N)), O(M+ N)} = maximum{ O((M + N) x log(M + N)), O(n x (M + N))}. o

Wu and Zhang [81] have proposed an algorithm for synthesizing high-frequent
association rules in different databases. This algorithm is based on the weights of the
different databases. Again, the weight of a database would depend on the association
rules extracted from the database. The proposed algorithm executes in O(n'x
maxNosRules x totalRulesz) time, where n, maxNosRules, and total}{ules are the number
of data sources, the maximum among the numbers of association rules extracted from
different databases, and the total number of association rules in different databases,
respectively. Algorithm Association-Rule-Synthesis could synthesize heavy association
rules, high-frequency association rules, and exceptional association rules in maximum {

O(totalRules x log(totalRules)), O(n x totalRules)} time. Thus, the algorithm takes much
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less time than the existing algorithm that synthesizes only high-frequent association rules.
Moreover, our algorithm is simple and direct in nature. We take an example to illustrate
the our algorithm.

Example 2.3.2. Let D;, D, and D; be three databases of sizes 4000 transactions, 3290
transactions, and 10200 transactions, respectively. Let D be the union of the databases
Dj, D;, and D;. Assume that «=0.2, #=0.3, 5 =0.4, 3 =0.7, u= 0.3 and v=0.4. The
following association rules have been extracted from the given databases. r;: {H} — {C,
G}, r: {C} = {G}, r3: {G} > {F}, ry: {H}> {E}, rs: {4} — {B}. The rulebases are
given as follows: RB; = {r,, r2}, SB; = {r3}; RB, = {rs}, SB> = {r;}; RB3 = {r;, rs}, SB3 =
{r,}. The supports and confidences of the association rules are given as follows. supp,(r;,
D)) =0.22, confi(r1, D;) = 0.55; supp(r1, D) = 0.25, confy(r1, D2) = 0.29; supp,(r;, D3) =
0.20, confy(r1, D3) = 0.52; suppa(r2, D;) = 0.69, confa(rz, D;) = 0.82; suppu(r2, D3) = 0.23,
confy(ra, D3) = 0.28; supp,(rs, D;) = 0.22, confy(rs, D;) = 0.29; suppu(rs, D2) = 0.40,
confy(rq, D7) = 0.45; supp,(rs, D3) = 0.86, confy(rs, D3) = 0.92. Also, let supp,({4}, D3) =
0.90, supp({C}, D1) = 0.80, suppa({C}, D3) = 0.40, suppa({G}, D) = 0.29, supp.({H},
D;)=0.31, supp({H}, Dy) = 0.33, and supp,({H}, D3) = 0.50.

Table 2.3.1. Heavy association rules in the union of databases given in Example 2.3.2

r. ant—> con | ant | con | supps(r,D) | confy(r,D) | heavy | high¥req | except
2 C| G 0.305466 0.664523 true false false
rs A | B 0.573235 0.899829 | true false true

The association rules r, and rs have synthesized support greater than or equal to 0.3 and
synthesized confidence greater than or equal to 0.4. So, r; and rs are heavy association
rules in D. The association rule 75 is exceptional, since it is heavy and low-frequent. But,
the association rule 7, is neither high-frequent nor exceptional. Though the association
rule 7, is high-frequent but it is not heavy, since suppy(r;, D) = 0.213980 and confy(r;, D)
=0.483589. o
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2.3.5.2 Finding expected lower bound of the number of suggested association rules
A frequent itemset X might fail to generate an association rule under some conditions, for
IX| > 2. Let {c, d} be a frequent itemset in database D. The association rule r: {c} — {d}

fails to get extracted from D if the following conditions are satisfied.

supp . ({e,d}, D)> @, and SPPaU6d0 D) g (2.3.9)
supp ,({c}, D)

i.e., a<supp.{c, d}, D) < fx supp,({c}, D). The frequent itemset {c, d} fails to produce
an association rule if S x supp,({c}, D) — supp.({c, d}, D) > 0. Consider a large database
containing items ¢ and d. We assume that supp,({c}, D) = 0.07 and supp.({c, d}, D) =
0.02. Let us consider the equation f(f8) = 0.07 x S — 0.02. Now, f{ff) = 0 implies =
0.28571. Thus, the association rule » gets extracted if 5> 0.28571.

The following theorem provides a lower bound of the expected number of suggested
association rules in a database at given « and f.
Theorem 2.3.2. Let m be the number of frequent itemsets of size greater than or equal to

2 in database DB. Let X and Y be any two disjoint frequent itemsets in DB. Assume that
suppo(X, DB) > supp,(Y, DB), if |X| <|Y|. Then, the expected lower bound of the number

of suggested association rules in DB is given by
2 2 2
2% mx (B -3xB+3)xa”+ Bx(B-3)xa+pf (2.3.10)
Ix(l-a)

where, a and B are use-defined minimum support and minimum confidence, respectively.

Proof. Let I be a frequent itemset in DB, for | I | > 2. Also, let the itemsets J and K be
proper subsets of 7, such that {J, K} forms a partition [53] of 1. The itemset [ fails to
generate any of the two association ruless J — K and K — J, if

supp,(1,DB) _ . supp,(1, DB)

: <
supp,(J, DB) supp,(K,DB) P
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i.e., if supp,(I, DB) < B x minimum { supp,(J, DB), supp«K, DB) } (2.3.11)
Without loss of generality, let |J] > |K]. Assume that supp,(J, DB) < supp«K, DB), for |J|
= |K]. Then, supp.(J, DB) < supp.(K, DB), by the assumption of the theorem.

Thus, the condition (2.3.11) is true if supp,(I, DB) <  x supp(J, DB)

or, B x suppa(J, DB) - supp, (I, DB) > 0 (2.3.12)
Let y = supp,(I, DB) and z = minimum { supp,(J, DB): J c I }. Consider the function f{z,
y)=pPxz—-y,suchthat1>z>y>a. Let4;,={(z,)): Az, y)>0and 1>z>y>a},

and 4= {(z,y): 1>z>y> a}. If (z, y) € 4, then the corresponding itemset / does not

generate an association rule in DB.
y ////
1

i;z‘.&y' Jz=1

@ 0o

0 o 1 z

Figure 2.3.2. Region 4 (shaded area)

A= j;a L/:X:(,sz-y)dydz (2.3.13)
= Q:g@((ﬂz -3><,B+3)><oe2 + ,Bx(,B-3)xa+,32) (2.3.14)
A;= (1-a)*/2 (2.3.15)

Let E be the event that a frequent itemset X does not generate an association rule in DB,
for |X] > 2. The event E is equivalent to the event that a frequent itemset X generates a

suggested association rule in DB, for |X| > 2. Then, supp«(E, D) could be expressed as

follows.

su (ED)=AreaA,= (B2-3x B+3)xat+ fx(B-3)xa+ [
PPAsTT Area 4, 3x(1-)

(2.3.16)
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Also, each frequent itemset X could generate at least two suggested association rules, for

|X] > 2. Thus, Theorem 2.3.2 follows.

2.3.6 Error calculation

To evaluate the proposed technique of synthesizing heavy association rules we have
measured the amount of error occurred in the experiments. Error of an experiment is
relative to the number of transactions, number of items, and the length of a transaction in
the databases. Thus, the error of an experiment needs to be expressed along with the ANT,
ALT, and ANI in the given databases, where ANT, ALT, and ANI denote the average
number of transactions, the average length of a transaction, and the average number of
items in a database, respectively. There are several ways one could define error of an
exﬁeriment. The definition of error of an experiment is based on the frequent itemsets
generated from heavy association rules. Let 7: {c}— {d} be a heavy association rule. The
frequent itemsets generated from association rule r are {c}, {d}, and {c, d}. Let {X;, X5,
...» Xm} be set of frequent itemsets generated from all the heavy association rules in D.

We define following two types of error of an experiment.

1. Average Error (AE)
AE(D, @, p, V)= — 7% |supp (X, D) - supp (X, D) (23.17)
m

2. Maximum Error (ME)

ME(D, e, u, v) = maximum{ |suppa(X,, D)-supp (X,,D),i=1,2,....,m } (2.3.18)

suppo(X;, D) and supps(X;, D) are actual (i.e., apriori) support and synthesized support of
the itemset X; in D, respectively.

Example 2.3.3. With reference to the Example 2.3.2, r,: C — G and r5: 4 — B are heavy
association rules in D. The frequent itemsets generated from r, and rs are 4, B, C, G, 4B
and CG. For the purpose of finding the error of an experiment, we need to find the actual
support of the itemsets generated from the heavy association rules. The actual support of

an itemset generated from a heavy association rule could be obtained by mining all the
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databases D;, D, and D; together. Thus, AED, 0.2, 03, 04) =
1
g{lsuppa(A,D)-supps(A,D)| + lsupp ,(B, D) - supp (B, D)| +

|supp,(C, D) - supp (C, D) + |supp, (G, D) - supp (G, D)) +
|supp,, (4B, D) - supp ,(AB, D)| + |supp,(CG, D) - supp ,(CG, D)| } .
ME(D, 0.2, 0.3, 0.4) = maximum {|Suppa(A, D) - supp (A4, D)
|supp (B, D) - supp (B, D)
|supp (G, D) - supp, (G, D)

|supp,,(CG, D) - supp (CG, D)\ }. o

b

, |supp ,(C, D) - supp ,(C, D)

, |supp ,(AB, D) - supp ,(AB, D)

2

2

2.3.7 Experiments

We have carried out several experiments to study the effectiveness of our approach. All
the experiments have been implemented on a 1.6 GHz Pentium processor with 256 MB
of memory using visual C++ (\;ersion 6.0) software. We present the experimental results
using three real databases. The database retail [34] is obtained from an anonymous
Belgian retail supermarket store. The databases BMS-Web-Wiew-1 and BMS- Web-Wiew-
2 can be found from KDD CUP 2000 [34]. We present some characteristics of these
databéses in Table 2.3.2. We use notations DB, NT, AFI, ALT, and NI to denote a
database, the number of transactions, the average frequency of an item, the average
length of a transaction, and the number of items in the corresponding database,
respectively.
Table 2.3.2. Database characteristics
Database NT ALT AFI NI

retail 88,162 | 11.30576 | 99.67380 | 10000
BMS-Web-Wiew-1 | 1,49,639 | 2.00000 | 155.71176 1922
BMS-Web-Wiew-2 | 3,58,278 | 2.00000 | 7165.56000 | 100
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Each of the above databases is divided into 10 databases for the purpose of carrying out
experiments. The databases obtained from retail, BMS-Web-Wiew-1, and BMS-Web-
Wiew-2 are named as R;, B;; and By, respectively, fori =0, 1, ..., 9. The databases R; and
Bj; are called branch databases, for i =1, 2, and j = 0, 1, ..., 9. Some characteristics of
these branch databases are presented in Table 2.3.3.

Outputs of three experiments using the Algorithm 2.3.1 are presented in Table 2.3.4.
The choice of different parameters is an important issue. We have chosen different « and
p for different databases. But, they are kept same for branch databases obtained from the
same database. For example, « and f are the same for branch databases R, , for i = 0, 1,
9, |

After mining a single branch database from a group of branch databases using a
reasonably low « and f, one could fix « and f for the purpose data mining task. If & and
p are smaller, the multi-database mining application would produce more correct result.
As we are constraint with the computing resources, we could choose « and g in such a
way that all the patterns could be handled effectively.

The choice of x and v are context dependent and subjective. Also, if x and v are kept
fixed then some databases might not report heavy association rules, while other databases
might report many heavy association rules. While generating association rule one could
estimate the average synthesized support and confidence based on the generated
association rules. Thus, it gives an idea of thresholds for high-support and high-
confidence for synthesizing heavy association rules in different databases. Also, the
choice of y and y are also context dependent and subjective. Good values of y and 7
could lie in the interval [0.3, 0.4] and [0.6, 0.7], respectively. We have taken y; = 0.35,

and » = 0.60 for synthesizing heavy association rules.
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Table 2.3.3. Branch database characteristics
DE| NT | 4IT AF] NI | DB | NT | ALT AFT | N
Ry | 9000 | 11.24389 | 12.07001 | 8384 | R; | 9000 | 10.85578 | 16.70977 | 5847
R, | 9000 | 1120922 | 12.26541 |8225| Rs | 9000 | 1120011 | 17.41552 | 5788
R | 9000 | 11.33667 | 14.59657 | 6990 | R, | 9000 | 11.15511 | 17.34554 | 5788
R; | 9000 | 1148978 | 16.66259 | 6206 | Rs | 9000 | 11.99711 | 18.69032 | 5777
R, | 9000 | 10.95678 | 16.03953 | 6148 | R, | 7162 | 11.69199 | 15.34787 | 5456
“Bio | 14000 | 2.00000 | 1404130 | 1874 | Bys | 14000 | 2.00000 | 280.00000 | 100
By, | 14000 | 2.00000 | 280.00000 | 100 | Brs | 14000 | 2.00000 | 280.00000 | 100
B;, | 14000 | 2.00000 | 280.00000 | 100 | Br, | 14000 | 2.00000 | 280.00000 | 100
By | 14000 | 2.00000 | 280.00000 | 100 | Bj; | 14000 | 2.00000 | 280.00000 | 100
By, | 14000 | 2.00000 | 280.00000 | 100 | Br | 23639 | 200000 | 472.78000 | 100
B | 35827 | 2.00000 | 1326.92590 | 54 | By | 35827 | 2.00000 | 716.54000 | 100
By | 35827 | 2.00000 | 1326.92590 | 54 | Bas | 35827 | 2.00000 | 716.54000 | 100
Bsr | 35827 | 2.00000 | 716.54000 | 100 | Bz | 35827 | 2.00000 | 716.54000 | 100
Bsy | 35827 | 2.00000 | 716.54000 | 100 | Bzs | 35827 | 2.00000 | 716.54000 | 100
Bor | 35827 | 2.00000 | 71654000 | 100 | Bz | 35835 | 2.00000 | 716.70000 | 100
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Table 2.3.4. First five heavy association rules reported from different databases (sorted in

non-increasing order on synthesized support).

Data Heavy assoc | ~Syn Syn High | Excep
base “ 4 a Y rules supp conf | freq | tional
Ul,R | 0.05 | 0.2 0.1 |05 {48}—>{39} | 0.33055 | 0.67629 | Yes No
{39} —>{48} | 0.33055 | 0.56333 | Yes No
{41}>{39} | 0.12910 | 0.62535 | Yes No
{38}>{39} | 0.11734 | 0.66069 | Yes No
{41}—>{48} | 0.10208 | 0.51495 | Yes No
"By | 001 | 02 | 0007 | 0.1] {1}—{5} | 0.00858 | 0.13422 | No No
{5}—>{1} | 0.00858 | 0.10873 | No No
{7}—>{5} | 0.00828 | 0.11503 | No No
{5}-->{7} | 0.00828 | 0.10843 | No No
{3}>{5} | 0.00746 | 0.12376 | No No
" oBy | 0006 | 001 | 001 |01] {3}>{1} | 0.02145 | 0.14431 | Yes No
{1}—){3} 0.02145 | 0.14295 | Yes No
{7}—>{1} | 0.02096 | 0.14039 | Yes No
{1}>{7} |0.020956 | 0.13999 | Yes No
{5}—>{1} |0.020758 | 0.14081 | Yes No

The experiments conducted on three databases result no exceptional association rule.

Normally, exceptional association rules are rare. Also, we have not found any association

rule which is heavy as well as high-frequent in multiple databases obtained from BAMS-
Web-Wiew-1.

In many applications, the suggested association rules are significant. While

synthesizing the association rules from different databases we might need to consider the

suggested association rules for the correctness of synthesizing association rules. We have
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observed that the number of suggested association rules in the set of databases {Ry, R,
..., R} and {Bm,. By, ..., Bjo} are significant. But, the set of databases {Byg, By, ..., B9}
do not generate any suggested association rule. We present the number of association
rules and the number of suggested association rules in these sets of databases in Table
2.3.5.

Table 2.3.5. Number of association rules and suggested association rules extracted from

multiple databases

Number of Number of suggested
Database a B o M/ (N+M)
association rules ( N) | association rules ( M)
ok | 005 | 02 821 519 0.387313
’ o By 0.01 0.2 50 96 0.657534
*oBy | 0.006 | 0.01 792 0 0.000000

The error of synthesizing association rules in a database is relative to the following
parameters: the number of transactions, the number of items, and the length of
transactions in the given databases. If the number of transactions in a database increases
the error of synthesizing association rules increases, provided other two parameters
remain constant. If the length of a transaction of a database increases the error of
synthesizing association rules is likely to increase, provided other two parameters remain
constant. Lastly, if the number of items increases the error of synthesizing association
rules is likely to decreasé, provided other two parameters remain constant. Thus, the error
of an experiment needs to be expressed along with the ANT, ALT, and ANI for the given

databases. The errors of different experiments are presented in Table 2.3.6.
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Table 2.3.6. Error of synthesizing the heavy association rules

Database a yij 7] 1% (AE, ANT, ALT, ANI) (ME, ANT, ALT, ANI)
o (0.002503, 8816.2, (0.003612, 8816.2,
o R 0.05 0.2 0.1 0.5

11.305755, 5882.1) 11.305755, 5882.1)
. (0.000365, 14963.9, (0.000759, 14963.9,
10 By 0.01 0.2 | 0.007 | 0.1
2.0,277.4) 2.0,277.4)
. (0.000118, 35827.8, (0.000285, 35827.8,
i 0.006 | 0.01 | 0.01 | 0.1
2.0, 90.8)

2.0, 90.8)

2.3.7.1 Comparison with existing algorithm

In this section we make a detailed comparison between the part of the proposéd algorithm
that synthesizes only high-frequent association rules and the algorithm RuleSynthesizing
[81]. Let the part of the proposed algorithm be High-Frequency-Rule-Synthesis that
synthesizes only high-frequent association rules in different databases. We conduct
experiments for comparing algorithms  High-Frequency-Rule-Synthesis  and
RuleSynthesizing. We compare these two algorithms on the basis of the following two

issues: (i) Average error, and (ii) Execution time.

2.3.7.1.1 Analysis of average error

Both the definitions of average errors are similar and use the same set of synthesized
frequent itemsets. But, the methods of synthesizing frequent itemsets for these two
approaches are different. Thus, the amount of error incurred in these two approaches
might differ. In RuleSynthesizing algorithm, if an itemset fails to get extracted from a
database then the support of the itemset is assumed as 0. But, in Association-Rule-
Synthesis algorithm, if an itemset fails to get extracted from a database then the support
of the itemset is estimated. Thus, the synthesized support of an itemset in the union of
concerned databases for these two approaches might differ. As the number of databases

increases the relative presence of a rule normally decreases. Thus, the error of synthesiz-
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ing a rule normally increases. So, the AE of an experiment is likely to increase if the

number of databases increases. We observe such phenomenon in Figures 2.3.3 and 2.3 4.
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Figure 2.3.3. AE versus number of databases from retail at (a, 5, ) = (0.05, 0.2, 0.6)
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Figure 2.3.4. AE versus number of databases from BMS-Web-Wiew-1 at (e, f, y) =
(0.005, 0.1, 0.3)

The proposed algorithm follows direct approach in identifying high-frequent association

rules as opposed to RuleSynthesizing algorithm. Here, we study AE of the experiments

for these two approaches. In Figures 2.3.3 and 2.3.4, we observe that AE error of an

experiment conducted using High-Frequency-Rule-Synthesis algorithm is less than that of

RuleSynthesizing algorithm.

2.3.7.1.2 Analysis of execution time

We have also conducted experiments to study the execution time by varying the number

of databases. The number of synthesized frequent itemsets increases as the number of
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databases increases. Thus, the execution time normally increases with the increase of

number of databases. We observe such phenomenon in Figures 2.3.5 and 2.3.6.
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Figure 2.3.5. Execution time versus number of databases from retail at (e, f, ) = (0.05,

0.2,0.6)
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Figure 2.3.6. Execution time versus number of databases from BMS-Web-Wiew-1 at (¢,
B, ») =(0.005, 0.1, 0.3)
RuleSynthesizing algorithm might be faster than High-Frequency-Rule-Synthesizing
algorithm for less number of databases. As the number of databases increases, High-

Frequency-Rule-Synthesizing algorithm executes faster than RuleSynthesizing algorithm.

2.3.8 Conclusions

Synthesizing heavy association rule is an important component of a multi-database

mining system. In this chapter, we present the notions of two new patterns in multiple
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databases viz., heavy association rule and exceptional association rule. Also, we presents
an algorithm for synthesizing three important patterns in multiple databases viz., heavy
association rules, high-frequent association rules, and exceptional association rules. It
also provides a better solution for synthesizing high-frequent association rules in multiple
databases. The algorithm presented here is simple and effective for synthesizing heavy

association rules in multiple real databases.
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Chapter 2.4

Clustering frequent items in multiple databases

Due to a liberal economic policy adopted by many countries across the globe, the number
of branches of a multi-national company as well as the number of multi-national
companies is increasing over time. Moreover, the economies of many countries are
growing at a faster rate. As a result the number of multi-branch companies within a
country is also increasing. Many of these companies collect a huge amount of data
through different branches. Consider a multi-branch company that transacts from
multiple branches. Each branch maintains a separate database for the transactions made at
the branch. Thus, the company deals with multiple transactional databases. Data mining
and knowledge discovery from large database is often considered as the basis of many
decision-support applications. But, the most of the previous pieces of data mining work
are based on a single database. Thus, it is necessary to study data mining on multiple
databases.

An itemset is a collection of items in a database. Each itemset in a database is
associated with a statistical measure called support [11]. Support of an itemset X in
database D is the fraction of transactions in D containing X, denoted by S(X, D). In
general, let S(E, D) be the support of a Boolean expression E defined on the transactions
in database D. An itemset X is called frequent in D if S(X, D) > o, where « is user defined
level of minimum support. If X is frequent then ¥ < X is also frequent, since S(Y, D) 2
S(X, D), for Y # ¢. Thus, each item of a frequent itemset is also frequent. Itemset could be
considered as a basic type of pattern in a transactional database. The collection of
frequent itemsets determines major characteristics of a database. Many interesting

algorithms [13], [39], [66] have been proposed to mine frequent itemsets in a database.
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Thus, there are many implementations [32] for extracting frequent itemsets from a
database. Itemset patterns influence heavily current KDD research. We observe the
influence of itemset patterns on KDD research in the following ways: Firstly, many
aigorithms have been reported on mining frequent itemsets in a database. Secondly, many
patterns are based on the itemset patterns in a database. Thus, they could be called as
derived patterns in a database. For example, positive association rule [11] and high-
frequent association rule [81] are examples of some derived patterns. Considerable
amount of work have been reported on mining / synthesizing derived patterns in a
database [13], [39], [66], [89]. Finally, solutions of many problems could be based on the
analysis of patterns in a database [79], [83]. Such applications process patterns in a
database for the purpose of making some decisions. Frequent items are the ingredients of
most of the interesting patterns. Thus, the analysis and synthesis of frequent items is an
interesting as well as important issue. In multi-database environment, local frequent items
are interesting as well as important issue. They are used to construct the global patterns in
multiple databases. Thus, clustering of frequent items in multiple databases is an
important knowledge for a multi-branch company. Many important decisions could be
based on clustering of frequent items in multiple databases. In the following, we mention
a few such applications.
= Some of the frequent items (products) could be high profit making. Naturally, the
company would like to promote them. There are various ways one could promote an
item. An indirect way of promoting an item P is to promote items that are positively
associated with it. The implication of positive association between P and another item
Q is that if Q is purchased by a customer then P is likely to be purchased by the same
customer at the same time. Thus, P is indirectly promoted. Clustering of frequent
items could help identifying other items that promote a specific frequent item.
s Some frequent items could be of high standard. Thus, they bring goodwill for the
company. They help promoting other items. Thus, it is important to know how the

sales of these items affect the other items. Before making such analyses, one may need
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to cluster the frequent items.
= Again, some of the frequent items could be low-profit making. Thus, it is important to

know how they promote the sales of other items. Otherwise, the company could stop

dealing with such items. Clustering of frequent items could help identifying items that

do not promote other items.
Many corporate decisions could be taken effectively by incorporating knowledge inherent
in data across the branches. But, the effective management of multiple large databases
becomes a challenging issue. It creates not only opportunities but also risks. The risks
might involve significant amount of investment on hardware and software to deal with
the large volume of data. Our objective is to provide good solutions by minimizing the
risks.

In this chapter, we synthesize highly extracted itemsets based on local itemsets. Highly
extracted itemsets are defined in Section 2.4.4. We measure association among items in
synthesized highly extracted itemsets. We cluster frequent items based on associations
among items in highly extracted itemsets. Highly associated items could be put in the
same class. The motivation of proposed clusteriﬁg technique is given as follows.

Wu et al. [83] have proposed a technique for clustering a set of databases. The
principle of clustering could be stated as follows. It finds association between every pair
of objects (databases) using a measure of association. A set of m arbitrary objects form a
class, if "'C, association values corresponding to "C pairs of objects are close. The level
of association among the objects in this class is assumed as the minimum of "C,
association values. One could apply such technique for clustering frequent items in
multiple transactional databases. If the number of items in a class is more than two, then
we observe that this technique might fail to estimate the association among the items in
the class correctly. Then accuracy of the entire clustering process becomes low. The
proposed clustering technique follows a different approach and it clusters frequent items

with higher degree of accuracy as compared to the existing technique.
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Initially, we overview the existing measures association among a set of items in a data-
base. Afterwards, we overview the existing techniques of mining multiple databases. In
the context of mining multiple databases, we introduce the concept of highly extracted
itemsets. We design an algorithm for synthesizing support of each highly extracted
itemset. The algorithm also synthesizes association among items in a highly extracted
itemset. Based on the synthesized associations corresponding to different highly extracted
itemsets, we propose an algorithm for finding the best clustering of frequent items in
multiple databases. Finally, we present experimental results to show the effectiveness of
the proposed clustering technique.

The rest of the chapter is organized as follows. In Section 2.4.2, we study the existing
measures of association, and the existing techniques for mining multiple databases. We
also study different clustering techniques and other related issues. In Section 2.4.3, we
discuss some results. We propose an algorithm for synthesizing supports of highly
extracted itemsets in Section 4.2.4. The algorithm also synthesizes association among

items in a highly extracted itemset of size greater than one. In Section 2.4.5, we propose

~an algorithm for clustering frequent items in multiple databases. Finally, experimental

results are presented in Section 2.4.6 to show the effectiveness of the proposed clustering

technique.

2.4.2 Problem statement
Consider a multi-branch company that operates from » branches. Let D; be the database
corresponding to the i-th branch, for i = 1, 2, ..., n. Also, let D be the union of these

databases. In the context of clustering frequent items in multiple databases, first we

discuss work related to this issue.

2.4.2.1 Related work

Our clustering technique is based on itemset patterns in multiple databases. In this

context, one needs a technique for mining itemset patterns in multiple databases. After-
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wards, association among items in an itemset is studied using a measure of association.
Finally, one needs a clustering algorithm to cluster frequent items in multiple databases.
Thus, we divide related work broadly into three areas: measures of association,

techniques of mining multiple databases, and clustering algorithms.

2.4.2.1.1 Measures of association

A survey of different measures of association is provided in the first and second sections
of Chapter 1.4. Also, we have explained why the existing measures are not able to
capture association among a set of items in a database accurately. In Chapter 1.4, we have
also presented two generalized measures of association 4; and 4. We use measure 4, for

clustering frequent items in multiple databases.

2.4.2.1.2 Multi-database mining techniques

The first question comes to our mind whether a traditional data mining technique could
deal with multiple large databases. To apply a traditional data mining technique one
needs to amass all the databases together. A single computer might take unreasonable
amount of time to process the entire database. Sometimes, it might not be feasible to
mine large volume of data using a single computer. Another solution to this problem
would be to employ parallel machines. It might require high investment on hardware and
software. One needs to make a cost-benefit analysis before implementing such a decision.
In many situations, it might not be an acceptable solution to the management of the
company. Moreover, it might be difficult to find local patterns when a mining technique
is applied to the entire database. Thus, the traditional data mining techniques are not
suitable in this situation. So, it is a different problem. Hence, it is required to be dealt
with in a different way. In this situation, one could employ the model of local pattern
analysis [91] to deal with multiple large databases. In this case, each branch is required to

forward local patterns instead of original database to the central office for synthesis and
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analysis of local patterns. But, local pattern analysis might return approximate global
patterns.

For the purpose of mining multiple databases, one could apply partition algorithm
proposed by Savasere et al. [66]. The algorithm was designed to mine a very large
database by partitioning. The algorithm works as follows. It scans the database twice. The
database is divided into disjoint partitions, where each partition is small enough to fit in
memory. In a first scan, the algorithm reads each partition and computes locally frequent
itemsets in each partition using apriori algorithm [13]. In the second scan, the algorithm
counts the supports of all locally frequent itemsets toward the complete database. In this
case, each local database could be considered as a partition. Though partition algorithm
mines frequent itemsets exactly, it is an expensive solution to mining multiple large
databases, since each database is required to scan twice.

For mining multiple databases, there are three situations: (i) Each local database is
small, so that a single database mining technique (SDMT) could mine the union of all
databases. (ii) At least one of the local databases is large, so that a SDMT could mine
every local database, but fail to mine the union of all local databases. (iii) At least one of
the local databases is very large, so that a SDMT fails to mine every local database. We
face challenges to handle the cases (ii) and (iii). The challenges posed to us are due to
large size of some of the local databases.

A multi-database mining technique (MDMT) using local pattern analysis could be
viewed as a two-step process M+S, explained as follows.
= Mine each local database using a SDMT by following a model M (Step 1)
= Synthesize patterns using an algorithm S (Step 2)

We use notation MDMT: M+S to represent above multi-database mining technique.

In the context of Step 1 of a MDMT using local pattern analysis, Zhang et al. [89] have
proposed algorithm IdentifyExPattern (IEP) for identifying global exceptional patterns in
multi-databases. Every local database is mined separately at random order (RO) using a

SDMT for synthesizing global exceptional patterns.
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In the context of Step 2 of a MDMT using local pattern analysis, Zhang et al. [89] have
proposed a technique for synthesizing global patterns. In algorithm IdentifyExPattern, a
pattern in a local database is assumed as nonexistent, if it does not get reported. Let
supp.(p, DB) and supp(p, DB) be the actual (i.e, apriori) support and synthesized support
of pattern p in database DB. Support of pattern p in D has been synthesized as follows.

1 mum(py SUpp, (p, D,) - a
supp, (P, D)=mzi=l 1 g (2.4.1)

where, num(p) is the number of databases that report p at a given minimum support level
(@).

Adhikari and Rao [5] have proposed Association-Rule-Synthesis (ARS) algorithm for
synthesizing association rules in multiple real databases. For multiple real databases, the
trend of the customers’ behaviour exhibited in one database is usually present in other
databases. In particular, a frequent itemset in one database is usually present in some
transactions of other databases even if it does not get extracted. The estimation procedure
captures such trend and estimates the support of a missing association rule. Without loss
of generality, let the itemset X be extracted from first m databases, for 1 < m < n. Then

trend of X in first m databases could be expressed as follows.

trend"" (X |0) = g ——x 3" [ supp, (X, D)x| D, ] (2.4.2)

2D
One could use the trend of X in first m databases for synthesizing support of X in D. We
estimate support of X in each of the remaining databases by «a x trend""(X| a), forj=k+
1,k+2, ..., n. Thus, the synthesized support of X could be computed as follows.
trend"" (X | @)
2D

In synthesizing high-frequent association rule, Wu and Zhang [81] have proposed

supp (X, D)= x[(]-a)x DD |+ax). | D, |] (2.4.3)

RuleSynthesizing (RS) algorithm for synthesizing high-frequent association rule in
multiple databases. Based on the association rules in different databases, the authors have

estimated weights of different databases. Let w; be the weight of i-th database, for i = 1,
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2, ..., n. Without loss of generality, let the association rule r be extracted from first m
databases, for 1 < m < n. supp,(r, D;) has been assumed as 0, fori=m+ 1, m+2,..., n
Then support of 7 in D has been synthesized as follows.
supps(r,.D) = wy x supp(r.D;) + ... + Wn X suppa(r,Dm) (2.4.4)

Adhikari and Rao [8] have proposed pipelined feedback model (PFM) for mining
multiple databases. Let W, Wy, ..., W, be n local data warehouses. In PFM, W is mined
using a SDMT and local pattern base LPB; is extracted. While mining W, all the patterns
in. LPB; are extracted irrespective of their values of interestingness measures like,
minimum support and minimum confidence. Apart from these patterns, some new
patterns that satisfy user-defined threshold values of interestingness measures are also
extracted. In general, while minihg W, all the patterns in W, ; are mined irrespective of
their values of interestingness measures and some new patterns that satisfy user-defined
threshold values of interestingness measures, for i = 2, 3, ..., n. Due to this nature of
mining each data warehouse, the technique is called a feedback model. Thus, |LPB;./| <
ILPB), for i = 2, 3, ..., n. There are n! arrangements of pipelining for »n databases. All
arrangements of data warehouses would not produce the same mining result. If the
number of local patterns increases, we get more accurate global patterns and a better ana-
lysis of local patterns. An arrangement of data warehouses would produce near optimal
result if |[LPB,| is a maximal. Let size(W;) be the size of W; (in bytes), fori=1,2, ..., n
We shall follow the following rule of thumb regarding the arrangements of data
warehouses for the purpose of mining., The number of patterns in Wi is greater than or
equal to the number of patterns in W;, if size(W;.;) 2 size(W;), for i =2, 3, ..., n. For the
purpose of increasing number of local patterns, W, precedes W in the pipelined
arrangement of mining data warehouses if size(W,.;) > size(W)), fori=2,3, ..., n. Finally,
we analyze the patterns in LPB,, LPB, ..., and LPB, for synthesizing global patterns, or
analyzing local patterns.

For synthesizing global patterns in 1 we discuss here a simple pattern synthesizing

(SPS) algorithm. Without loss of generality, let the itemset X be extracted from first m
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databases, for 1 < m < n. Then synthesized support of X in D could be obtained as
follows.
]

2:1=1| Dl

There are two benefits of the PFM model. Firstly, it improves significantly the

supp (X, D) =

x 3 [supp,(X,D)x| D, |] (2.4.5)

accuracy of mining multiple large databases as compared to local pattern analysis.
Secondly, it scans each local database only once. Several experiments [8] have been
conducted using MDMT: PFM+SPS, and we have observed that MDMT: PFM+SPS
outperforms other MDMTs. Thus, for the purpose of clustering frequent items in multiple
databases, we shall use MDMT: PFM+SPS for mining multiple databases.

Liu et al. [55] have proposed multi-database mining technique that searches only the
relevant databases. Identifying relevant databases is based on selecting the relevant tables
(relations) that contain specific, reliable and statistically significant information
pertaining to the query. Zhang [88], Zhang et al. [93] studied various strategies for
mining multiple databases.

Existing parallel mining techniques [12], [26], [28] could also be used to deal with

multiple databases.

2.4.2.1.3 Clustering techniques

Zhang et al. [90] have proposed an efficient and scalable data clustering method BIRCH
based on in-memory data structure called CF-tree. Estivill-Castro and Yang [30] have
proposed an algorithm that remains efficient, generally applicable, multi-dimensional but
is more robust to noise and outliers. Jain et al. [44] have presented an overview of pattern
clustering methods from a statistical pattern recognition perspective, with a goal of
providing useful advice and references to fundamental concepts accessible to the broad
community of clustering practitioners. In this chapter, we present an algorithm based on

local patterns. Thus, the above algorithms might not be suitable in this situation.
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Ali et al. [15] have proposed a partial classification technique using association rules.
The clustering of frequent items using local association rules might not be a good idea.
The number of frequent itemsets obtained from a set of association rulf:s might be much
less than the number of frequent itemsets extracted using apriori algorithm [13]. Thus,

efficiency of the clustering process might be low.

2.4.2.2 Our approach
Before we state our problem formally, we define few notations. Let FI(D | &) and FIS(D |

@) be the set of frequent items and set of frequent itemsets in database D at a given «,
respectively. Let FI(1, n, @) be equal to U7]_, F](D,. |a) and FIS(1, n, @) be equal to
", FIS (D,. |a). We apply measure of association 4, and multi-database mining

technique MDMT: PFM+SPS for the purpose of clustering frequent items in multiple
databases. The proposed problem could be stated as follows.

There are n different databases D;, for i = 1, 2, ..., n. Find the best non-trivial partition
(if it exists) of FI(1, n, @) induced by FIS(1, n, ).

A partition [53] is a specific type of clustering. Formal definition of a non-trivial

partition is given in Section 2.4.5.

2.4.3 Measuring association among items

For clustering frequent items in multiple databases, one needs to measure association
among items in a database. We use measure A, in our clustering algorithm. For
computing 4,, we make use of Lemma 1.4.7 and it is restated as follows.

Lemma 2.4.1. Let X = {x;, x5, ..., Xn} be an itemset in database D, for m 2 2. Then
i[ i S({x,-}ﬂ{xj},D) - iS({x,}ﬂ{xj}ﬂ{xk},D)+...:tS({x,}ﬂ...ﬂ{xm},D)}
AJ(X, D)= = jﬂ"”im mef=1;J,lr¢r'

mx| Y 8(x}, D) - YSEx)NEx}, D)+ ... iS({x,}ﬂ{xz}n...n{xm},D)}

=1 i,j=li<)

(2.4.6)
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Proof. Please refer Lemma 1.4.7.

2.4.4 Synthesizing support of an itemset

In PFM, let the itemset X be extracted from k out of » databases, for 0 < £ < n. Let ybe
the minimum threshold of number of extractions of an itemset, for 0 < y < 1. We would
be interested about the itemset if it has been extracted from minir_n.um of n x y databases.
We call such itemsets as highly extracted itemsets (HEISs). If an itemset X is highly
extracted then an itemset Y < X is also a highly' extracted itemset, for ¥ # ¢. We define a
highly extracted itemset as follows. N

Definition 2.4.1. Let there are n databases. Let X be an itemset extracted from &
databases. Then X is highly extracted if k/ n> y. ®

A highly extracted itemset might not be frequent in all the databases under consideration.
After applying PFM model of mining multiple databases, we synthesize supports of
HEISs using formula (2.4.5). In Example 2.4.1, we, illustrate the procedure for
synthesizing support of a HEIS.

Example 2.4.1. Consider a multi-branch company that ‘has four branches. Let D; be the
database corresponding to the i-th branch, for i = 1, 2,‘3, 4. The branch databases are
given as follows. D; = {{a, b}, {a, b, ¢}, {a, b, ¢, d}, {c,d, e}, {c,d, [}, {c, d,i}}; D2=
{{a, b}, {a, b, g}, {g}}; Ds={{a, b, d}, {a, ¢, d}, {c, d}}, Ds={{a}, {a, b, c}, {c. d},
{c,d, i}}. Assume that « = 0.4, and y= 0.6. Let X(n) denotes the fact that the itemset X
has support 7 in the corresponding database. We sort databases in non-increasing order
on database size (in bytes). The sorted databases are given as follows: D;, Dy, D3, D,.
Applying PFM, the itemsets in different local databases are given as follows:

LPB(D;, @) = {{a}(0.5), {b}(0.5), {c}(0.833), {d}(0.667), {a, b}(0.5), {c, d}(0.667)},
LPB(Dy, @) = {{a}(0.667), {b}(0.25), {c}(0.75), {d}(0.25), {a, b}(0.333), {c,

d}(0.667)}, LPB(Ds, o) = {{a}(0.667), {b}(0.333), {c}(0.667), {d}(1.0), {a, b}(0.333),
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{c, d}(0.667)}, and LPB(D:, @) = {{a}(0.667), {b}(0.667), {c}(0.0), {d}(0.0), {a,
b}(0.667), {c, d}(0.0), {g}(0.667)}.

Let D = U}_, D;. Synthesized HEISs in D are given as follows: SHEIS(D, 0.4, 0.6) = {
{a}(0.563), {b}(0.438), {c}(0.563), {d}(0.563), {a, b}(0.438), {c, d}(0.5)}. e

The collection of SHEISs of size greater than 1 forms the basis of the proposed clustering
technique. We present below an algorithm to obtain synthesized association among items
in each SHEIS of size greater than 1. Let N be the number of itemsets in » databases. Let
AIS be a two dimensional array such that 41S(7) is the array of itemsets extracted from D,
fori=1, 2, ..., n. Also, let IS be the set of all itemsets in n databases. An itemset could
be described by the following attributes: itemset, supp, and did. Here, itemset, supp and
did represent the itemset, support and database identification of itemset, respectively. All
the synthesized itemsets are kept in the array SIS. Each synthesized itemsets has the
following attributes: itemset, ss, and sa. Here, ss and sa represent synthesized support and
synthesized association of the itemset, respectively. In the following algorithm, we
synthesize association among items of each SHEIS.

Algorithm 2.4.1. Synthesize association among items of each SHEIS of size greater than
1.

procedure SynthesizeAssociation (n, AIS, size, )

Input:

n: number of databases

AIS: two dimensional array of itemsets extracted during mining multiple databases

size: array of number of transactions in input databases

y. threshold for minimum number of extractions of an itemset

QOutput:

Synthesized association among items of each SHEIS

01: collect all local itemsets ipto array 1S,

02: sort itemsets of IS based on itemset attribute;

03: add sizes of all branch databases into variable totalTransactions;
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04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

let nSynltemSets = 0; let i = 1;
if (i< |IS]) then
let j = i; let count = 0;
while (j <i+ n) do
if (IS()).itemset = IS(i).itemset) then
process support of 1S(i);
increase count by 1; increase j by 1;
else go to line 14,
end if
end while
synSupp = supps(IS(i).itemset, D) using formula (2.4.5) and totalTransactions;
if (count / n > y) then '
SIS(nSynltemSets). ss = synSupp;
SIS(nSynltemSets). itemset = IS(i).itemset;
end if
update i by j;
increase nSynltemSets by 1,
go to line 5;
end if
initialize synthesized association to ¢ for each itemset in SIS;
for j = 1 to nSynltemSets do
if (|SIS(nSyniltemSets). itemset| > 2) then
SIS(nSynltemSets).sa =A(SIS(nSynltemSets).itemset, D) using formula (2.4.6);
end if

end for

end procedure

We sort itemsets of IS, so that processing of itemsets becomes easier. We find total

number of transactions in different databases into variable totalTransactions. The vari-
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ables nSynltemSets and i keep track of the number synthesized itemsets and the current
itemset of IS, respectively. The algorithm segment in lines 5 - 22 is repeated N times. An
itemset gets processed at each iteration. An itemset occurs maximum » times. Thus, the
‘while-loop in lines 7-13 repeats maximum » times. The variable count keeps track of
number of times an itemset is extracted. Based on variable count one could determine
whether an itemset is highly extracted. If an itemset is highly extracted then we store the
details into array SIS and increase nSynltemSets by 1. We update variable i by j for
processing the next itemset. We go back to line 5 for processing the next itemset. Using
lines 24-28, we calculate synthesized association using formula (2.4.6), for each
synthesized itemset of size greater than 1. In the next paragraph, we determine the time
complexity of above algorithm.

Line 1 takes O(N) time, since there are N itemsets in # databases. Line 2 takes O(N x
log(N)) time to sort N itemsets. Line 3 takes O(n) time, since there are n databases. The
while-loop at line 7 repeats maximum » times. The if-statement at line 5 repeats N times.
Thus, time complexity of program segment in lines 5-22 is O(n x N). Line 23 takes O(N)
time. Let the average size of a class be p. The time complexity for searching an itemset in
IS is O(N). The time-complexity for computing association of an itemset is O(N x pz),
and hence, the time complexity of program segment in lines 24-28 is O(N?* x p*) time.
Thus, the time complexity of procedure SynthesizeAssociation is equal to maximum

{O(V? x p?), O(N x log(N)), O(n x N)} = O(N? x p%), since N > log(N), and N > n.

2.4.5 Clustering of frequent items

Existing technique [83] for clustering multiple databases works as follows. A measure of
similarity between two databases is proposed. Let there are m databases to be clustered.

Then the similarities for "C, pairs of databases are computed. Based on a level of
similarity, the databases are clustered into different classes. For the purpose of clustering

databases, the following measure of similarity between two databases has been proposed
[83].
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_KD)NI(D,)
1(D)UI(D,)

In the context of similarity between two items in a database, we have observed in

sim,(D,, D,) (2.4.7)

Corollary 2.4.1 that a measure sim; could be obtained from similarity measure 4,, for X =
{x;, x2}. It could also be used to cluster frequent items in a database. In the following
example, we shall show that association among items of an itemset could not be
determined accurately using this approach. In particular, association among items of {a,
b, c} could not be correctly estimated by associations among items of {a, b}, {a, ¢}, and
{b, c}. We explain this issue in Example 2.4.2.

Example 2.4.2. Let Ds = { {a, b, ¢, d}, {a, b, c, e}, {a, b, d}, {a, e, f}, {b, c, e}, {d, e, g},
{d, f, g}, {e, f, g}, {e, f, h}, {g, h, i} }. Also, let & be 0.2. The supports of relevant
frequent itemsets are given as follows. S({a}, Ds) = 0.4, S({b}, Ds) = 0.4, S({c}, Ds) =
0.3, S({a, b}, Ds) = 0.3, S({a, ¢}, Ds) = 0.2, S({b, ¢}, Ds) = 0.3, S({a, b, ¢}, Ds) = 0.2.
Now, simy({a, b}, Ds) = 0.6, simx({a, c}, Ds) = 0.4, sim, ({b, ¢}, Ds) = 0.75. Using sim,,
the items a, b, and ¢ could be put in the same class at the level of similarity 0.4, i.e.,
minimum{0.6, 0.4, 0.75}. Using A4, we have Ax({a, b, c}, Ds) = 0.66667. Thus, the items
a, b, and ¢ could be put in the same class at the level 0.66667. We observe that the subset
of transactions { {a, b, ¢, d}, {a, b, c, e}, {a, b, d}, {a, e, f}, {b, ¢, e} } of D; results in the
amount of association among a, b, and ¢. Two out of five transactions contain two items
of {a, b, c}. Two out of five transactions contain all the items of {a, b, c}. The more
items of {a, b, ¢} occur together, higher is the association among items of {a, b, c}. Thus,
we observe that the amount of association among the items of {a, b, ¢} is close to
0.66667 rather than 0.4. Thus, we fail to measure association correctly among the items
of {a, b, c} based on the similarities between items of {a, b}, {a, c}, and {b, c}.

The above example shows that the existing clustering technique might cluster a set of
frequent items with low accuracy. Thus, we have the following observation.

Observation 2.4.1. Let X = {x;, x2, ..., Xm} be an itemset in database D. The existing

clustering technique [83] puts items of Xin a class at the level of association minimum
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{simyx;, x;, D): 1 < i <j<m}. The proposed clustering teéhnique puts items of X in a
class at the level of association Ay {x1, X3, ..., Xm}, D). ®

A clustering of items results in a set of classes of items. A class of frequent items over
FI(1, n, @) could be defined as follows. _

Definition 2.4.2. A class class’ formed at a level of association & under the measure of
association 4, over FI(1, n, @) in database D is defined as X < FI(1, n, @) such that 4,(X,
D) > 8, and one of the following conditions is satisfied: (i) Xe SHEIS(1, n, a, ), for |X] >
2,and (ii) Xe FI(1,n, ), for |X|=1.

Definition 2.4.3 enables us to define a clustering of frequent items over FI(1, n, @) as
follows.

Definition 2.4.3. Let 7° be a clustering of frequent items over FI(1, n, a) at level of
association & under the measure of association A,. Then, 72 = {X: X is a class of type
class® over FI(1, n, c) }. o

We symbolize the i-th class of 7° as CL e fori=1,2, ..., |7. A clustering may not

include all the frequent items in local databases. One might be interested in clustering of
all frequent items under consideration. A complete clustering of frequent items over FI(1,

n, @) is defined as follows.
Definition 2.4.4. A clustering #° = {CIL}, CL}*, ..., CI* } is complete, if U, CL* =
FI(1, n, @), where CL f’“ is a class of type class® over FI(l,n a),fori=1,2,...,m. e

Two classes in a clustering might not be mutually exclusive. One might be interested in
finding out a mutually exclusive clustering. A mutually exclusive clustering over FI(1, n,

@) could be defined as follows.

Definition 2.4.5. A clustering 72 = {CL‘;'“,CL‘}“,...,CL‘,’,;“} is mutually exclusive if
cL*N CL’;"‘ = ¢, CL" and CL'j.'“ are classes of type class® over FI(1, n, @), for i #J, i,

j=1,2,...,m.e



Chapter 2.4 Clustering frequent items in multiple databases 2.77

A9

We are interested in finding out such a mutually exclusive and complete clustering. In
fact, we are interested in finding the best non-trivial partition of frequent items. First, we
define a partition of frequent items as follows.

Definition 2.4.6. A complete and mutually exclusive clustering is called a partition. e

A clustering is not necessarily be a partition. In most of the cases, a trivial partition might
not be interesting to us. We define a non-trivial partition of frequent items as follows.
Definition 2.4.7. A partition 7is non-trivial if 1 <|7{ <n. e

A partition is based on SHEISs and associations among items in these itemsets. For this
purpose, we need to synthesize association among items of every SHEIS of size greater
than 1. We define synthesized association among items of a SHEIS as follows.

Definition 2.4.8. Let there are n different databases. Let X € SHEIS(D) such that |X] > 2.
Synthesized association among the items of X is obtained by formula (2.4.19), denoted by
SAX,D| a, 7). ®

To find goodness of a partition, we need to measure dispersion among items of a 2-item
SHEIS. We define synthesized dispersion SD of an itemset of size 2 as follows.
Definition 2.4.9. Let there are n different databases. Let X € SHEIS(D) such that |[X] = 2.
Synthesized dispersion SD among items of X is given by SD(X, D | a, y) = 1 - SA(X, D |
Q). e (2.4.8)
We calculate synthesized associations corresponding to all SHEISs of size greater than 1.
In Example 2.4.3, we calculate S4s of itemsets in SHEIS(D).

Example 2.4.3. We continue here the discussion of Example 2.4.1. Synthesized
associations among items of relevant SHEISs are given as follows: SA({a, b}, D) =
0.77798, SA({c, d}, D) = 0.79872. We arrange SHEISs of size greater than one in non-
increasing order on synthesized association. The arranged SHEISs are given as follows:
{c,d}, {a, b}. Also, FI ((1, n, @)) = {a, b, ¢, d, g}. There exist two non-trivial partitions.
They are given as follows: 2182 = ¢ 1a} (b}, {g}, {c, d}}, and 27 = { (g}, {a, b},
fe,d}}. o
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A frequent but not highly extracted item forms a singleton class. In above partitions, g is

an example of such item.

2.4.5.1 Finding the best non-trivial partition

In Example 2.4.3, we observe the existence of two non-trivial partitions. At the levels of
association 0.79872 and 0.77798, we get two non-trivial partitions. We would like to find
the best partition among available non-trivial partitions. The best partition is based on the
principle of maximizing the intra-class association and maximizing inter-class dispersion.
Intra-class association and inter-class dispersion are defined as follows.

Definition 2.4.10. The intra-class association of a partition 7 at the level of association &
under the measure of synthesized association S4 is defined as follows.

intra — class associatio n(n") = Z SA(C |a, y) . (2.4.9)

Cen, (Ci22

Definition 2.4.11. The inter-class dispersion of a partition 7 at the level of association &

under the measure of synthesized dispersion SD is defined as follows.

inter — class dispersion(n‘s) = Z ' ZSD ({a, b}| a, y). o (2.4.10)
C,.C,emp*q aeC, beC,;(a,b)eSHEIS

We would like to define goodness measure of a partition for the purpose of finding the

best partition among available non-trivial partitions. We define goodness measure of a

partition as follows.

Definition 2.4.12. goodness (ﬂ‘s) = intra- class association(ﬂ‘s) + inter-class

dispersion(7°) - |7].e (2.4.11)

Better partition is obtained at higher goodness value. In Example 2.4.4, we calculate the

goodness values of partitions obtained in Example 2.4.3.

Example 2.4.4. For the first partition, we get intra-class association (7r°'79872) = (.79872,

inter-class dispersion (777°%"%) = 0.22202, and  goodness (7"7%™%) = 1.02074. For the

second partition, we get intra-class association (77°%) = 1.57670, inter-class dispersion
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(7:0'77798) = 0.0, and  goodness (7z°'77798) = 1.57670. The goodness value of the second
partition is more than that of the first partition. Thus, the best non trivial partition of FI(1,
n, @)is { {a, b}, {c,d}, {g} }, and obtained at level 0.77798. o

Let us look back at the databases in Example 2.4.1. In most of the transactions, whenever
one item of {a, b} is there, then other item is also present. Also, items ¢ and d appear
together in most of the cases in a transaction. Thus, we find that partition 7”""® matches
the ground reality better than partition 7>"**"* and the output of clustering is consistent
with the transactions in the databases. It validates the clustering technique presented in
this chapter. In the following lemma, we provide a set of necessary and sufficient
conditions for the existence of a non-trivial partition.

Lemma 2.4.6. Let there are n different databases. There exits a non-trivial partition of
FI(1, n, @) if and only if there exists an itemset Xe SHEIS(I, n, &, ) such that (1) | X] > 2,
and (i1) SA(Y, D) #SA(Z, D), for allY, Z SHEIS(f, n o, p), and Y|, |Z| = 2.

Proof. We sort SHEISS in non-increasing order on synthesized association. Let SA(M, D)
= maximum {SA(X, D): X € HEIS(1, n, , %), and |X]| > 2 } . Before the itemset M, there
does not exist any SHEIS. Thus, itemset A is trivially mutually exclusive with the
previous SHEISs. Due to condition (ii), there exists a partition at the level SA(M, D). In
addition, the partition is non-trivial due to condition (i). This non-trivial partition contains
a single class M such that |[M] > 2. The remaining classes of this partition are singleton. o

At two different levels of association J;, and &, (# J;), we may get the same partition.

Definition 2.4.13. Let C ¢ FK1, n, ), and C # §. Two partitions 7” and z” are the

same if the following statement is true: Ce 7% if and only if Ce 7% for 8;# 5. o

There are 2™ elements in the power set of S. Also, there are two trivial partitions for a
non-null set. Thus, the number of distinct non-trivial partitions of a non-null set is always
less than or equal to 21512, for a non-null set S. In Lemma 2.4.7, we find the upper bound

of number of non-trivial partitions.
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Lemma 2.4.7. Let there are n different databases. Then the number of distinct non-
trivial partitions is less than or equal to |{X: |X] 2 2 and Xe SHEIS(D)}|. Equality holds
if and only if the following conditions are true.

(i) There does not exist a Xe SHEIS(D), for |X] = 3.

(ii)  YNZ=¢ forall Y, Z € SHEIS(D), and |Y), |Z| = 2.

(iii)  SA(Y, D) #SA(Z, D), for all Y, Z € SHEIS(D), and |Y), |Z| = 2.
Proof. We arrange SHEISs in non-increasing order based on synthesized association, for
all SHEIS of size greater than 1. Let the arranged SHEISs be X}, X>, ..., Xy, for integer m
> 1. There exists a partition at SA(X)), if conditions (ii) and (iii) are satisfied at ¥ = X (as
mentioned in Lemma 2.4.6). In general, there exists another partition at SA(Xy, D), if
conditions (ii) and (iii) are satisfied for X}, X>, ..., Xi.1. If X is a SHEIS then Y c X is also
a SHEIS, for Y # ¢. Two partitions could not exist at levels SA(X, D) and SA(Y, D), since
Y c X. Thus, condition (i) is necessary at the equality. The lemma follows. e
Corollary 2.4.3. Let there are n different databases. The set of all non-trivial partitions
of FK(1,n, d) is {#*™ D). X e SHEIS(D), |X| = 2, and #**  exists}. o
Based on Observation 2.4.1 and Corollary 2.4.3, one could obtain the difference in
similarity between the proposed clustering technique and the existing technique as
follows.
Definition 2.4.14. Let 7 be clustering of FI(1, n, @) at level &. Let X = {x}, X2, ..., Xm} €
SHEIS (D) such that 5= SA(X, D), for |X] = 2. The difference in similarity using measure
A3 is given by DS(X, D) = AxX{x}, X2, ..., Xm}, D) - minimum{simx(x;, x;, D) : 1 £i <j <
m}. e (2.4.12)
Using Algorithm 2.4.1, we obtain the synthesized association of each SHEIS of size

greater than 1. We use this information for finding the best non-trivial partition of

frequent items in multiple databases.
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Algorithm 2.4.2. Best non-trivial partition (if it exists) of frequent items in multiple
databases.

procedure BestPartition (m, S)

Input:

m: number of SHEISs of size greater than 1

S: array of SHEISs of size greater than 1

Output: ‘

Best non-trivial partition (if it exists) of frequent items in multiple databases
01: arrange the elements of S in non-increasing order on synthesized association;
02: let S(m +1) = ¢; let SA(S(m +1), D) = 0;

03: if (m=1) then

04: form a class using items in S(1);

05:  for each item in (FI(1, n, @) — S(1)) do

06: form a singleton class;

07:  end for

08:  apartition is formed at level SA(S(1), D);

09:  return the partition;

10: end if

11: let temp = ¢; let mExclusion = 0;

12: fori=1tomdo

13:  if (temp ) S(i) # #) then mExclusion = 1; end if

14:  if ((mExclusion = 0) and (SA(S(i), D) # SA(S(i +1), D))) then

15: forj=1toido

16: items in S(j) form a class;
17: temp = temp U S();
18: end for

19: for each item in (FI(1, n, ) — temp) do

20: form a singleton class;
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21: end for

22: store the classes formed and the level of partition as SA(S(i), D);
23:  else if (mExclusion = 1) then go to line 26; end if

24:  endif

25: end for

26: return the partition having maximum goodness;
end procedure
If m is equal to 1 then we have only one non-trivial partition. All the items of SHEIS form
a class and each of the remaining frequent items forms a singleton class. The partition is
formed at the level of synthesized association among items in SHEIS. The variable temp
accumulates all the items in previous SHEISs. The variable mExclusion is used to check
the mutually exclusiveness among the current SHEIS and all the previous SHEISs. Also,
we need to check another condition whether the synthesized association of current SHEIS
different than the synthesized association among items of the next SHEIS. The conditions
for existence of a partition are checked at line 14. If a partition exists at the current level
then the items in each of the previous SHEISs form a class. Each of the remaining items
forms a singleton class. If the current SHEIS is not mutually exclusive with each of the
previous SHEISs of S then no more partition exists. Some more useful explanations are
given in Lemma 2.4.8.

Line 1 takes O(mxlog(m)) time. The for-loop at line 5 takes O(|FI}) time. The for-loop
at line 12 repeats m times. Let the average size of a class be p. The for-loop at line 15
takes O(m x p) time. The for-loop at line 19 takes O(|F1}) time. Each of the statements at
line 13 and 17 takes O(p x |FI}) time for a single execution of line 11. Thus, the time
complexity of the program segment lines 15-18 is O(m x p x |F1|), for each iteration of
for-loop at line 12. Also, the for-loop at 19 takes O(|FI]) time. Thus, the time complexity
of program segment 12-25 is O(m* x p x |FI). Therefore, the time complexity of
algorithm BestPartition is O(m* x p x |FI)).
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Lemma 2.4.8. Algorithm BestPartition works correctly.

Proof: We arrange SHEISs of size greater than one in non-increasing order on
synthesized association. Existence of only one SHEIS of size greater than one implies the
existence of only one non-trivial partition (as mentioned in Lemma 2.4.6). By default, it
will be the best non-trivial partition.

Let there are m SHEISs of size greater than one, for an‘ integer m > 2. Let the arranged
SHEISs be X;, X», ..., Xin. Then we need to check for the existence of partitions only at
levels SA(X;, D), fori=1,2, ..., m (as mentioned in Corollary 2.4.3). So, we have used
a for loop at line 12 to check for partitions at m discrete levels SA(X;, D), fori=1,2, ...,
m. At the j-th iteration of for-loop at line 12, we check the mutually exclusiveness of the
itemset X; with itemset Xj, for k=1, 2, ...,j-1. If each of X; X}, ..., and X}.; is mutually
exclusive with X; and SA(X], D) = SA(X+1, D) then the current partition is not recorded.
At this point, we are not sure whether Xj4; is mutually exclusive with Xy, fork=1, 2, ...,
J. At the next iteration for i = +1, the partition is recorded (if it exists) and it contains the
itemsets X7 X, ..., Xj+1 as classes and each of the remaining frequent items forms a
singleton class, provided SA(Xj+1, D) > SA(Xj+2, D) . At the j-th iteration of for-loop at
line 12, if each of X; X, ..., and X} is not mutually exclusive with X; then no more

partition exists. Thus, the algorithm works correctly. e

2.4.5.2 Analysis of error

To evaluate our proposed clustering technique we have measured the amount of error
occurred in an experiment. The clustering is based on SHEISSs extracted from D, fori =1,
2, ..., n. Let the number of SHEISs be m. Supports of all SHEISs have been synthesized
during the clustering process. There are several ways one could define error of an

experiment. We have defined following two types of error of an experiment.
Average Error: AE(D,a, )= iz;”_, 1SS (X,, D)-S(X,, D)| (2.4.13)
i

Maximum Error: ME(D, @, y ) = maximum{|SS(X,, D) - S(X,, D), fori=1,2,..,m } (2.4.14)
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Notations SS(X, D) and S(X, D) denote synthesized support and (apriori) support of X in
D. Error of an experiment is relative to the number of transactions, number of items, and

the length of a transaction in local databases. Thus, the error of the experiment needs to
be expressed along with the average number of transactions (ANT), average number of

items (4NI), and the average length of a transaction (ALT) in D.

2.4.6 Experimental results

We have carried out several experiments to study the effectiveness of our approach. All
the experiments have been implemented on a 2.8 GHz Pentium D dual processor with
512 MB of memory using visual C++ (version 6.0) software. We present the
experimental results using three real databases. The database retail [34] is obtained from
an anonymous Belgian retail supermarket store. The database mushroom is also available
in [34]. The database ecoli is a subset of ecoli database [77] and has been processed for
the purpose of conducting experiments. For this purpose, we have omitted non-numeric
fields of ecoli database. We present some characteristics of these databases in Table
24.1.

Table 2.4.1. Database characteristics

Database (DB) | NT ALT AFT NI
retail 88,162 | 11.305755 | 99.673800 | 10,000

mushroom 8,124 | 24.000000 | 1624.800000 | 120

ecoli 336 7.000000 | 25.565217 92

Let NT, ALT, AFI, and NI denote the number of transactions, average length of a
transaction, average frequency of an item and number of items in the data source,
respectively. Each of the above databases is divided into 10 databases for the purpose of
conducting experiments. The databases obtained from retail(R), mushroom(M) and

ecoli(E) are named as R;, M; and E;, respectively, fori=0, 1, ..., 9. The databases R;, M;
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and E; are called input databases, for i = 0, 1, ..., 9. Some characteristics of these input
databases are presented in Table 2.4.2. We have carried out several experiments to study
the effectiveness of our approach for clustering the frequent items. We present results of
the experiments based on the above databases. We observe that a partition of frequent

items might not exist for some combination of input databases, «, and y.

2.4.6.1 Overall output

(a) For experiment with retail: The set of frequent items in different databases are given
as follows: FI(0, 9, 0.1) = { {0}, {13}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {32}, {38},
{39}, {41}, {48}}. SHEISs of size greater than 1 along with their synthesized
associations are given as follows: {39, 48} (0.443690), {39, 41, 48} (0.393977), {39, 41}
(0.263936), {41, 48} (0.251072), {38, 39} (0.181348). The best non-trivial partition is
given as follows: 72244 = ({0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {32}, {38},
{41}, {39, 48}}.

(b) For experiment with mushroom: The set of frequent items in different databases are
given as follows : FI(0, 9, 0.5) = {{1}, {2}, {3}, {6}, {7}, {9}, {10}, {11}, {23}, {24},
{28}, {293, {34}, {36}, {37}, {38}, {39}, {48}, {52}, {53}, {54}, {56}, {58 }, {59},
{61}, {63}, {66}, {67}, {76}, {85}, {86}, {90}, {93}, {94}, {95}, {99}, {101}, {102 },
{110}, {114}, {116}, {117}, {119} }. Top 10 SHEISs of size greater than 1 along with
their synthesized associations are given as follows: {34, 90} (0.999957), {34, 86}
(0.999458), {34, 85} (0.995638), {34, 36, 85} (0.989711), {34, 36, 90} (0.987932), {34,
85, 90} (0.980130), {34, 36, 86} (0.977787), {34, 86, 90} (0.977439), {34, 85, 86}
(0.968257), {85, 86} (0.962741).



Chapter 2.4 Clustering frequent items in multiple databases 2.86
Table 2.4.2. Input database characteristics
DB NT | ALT AFT NI |DB| NT | ALT AFT NI
Ro | 9000 | 11.24389 | 12.07001 | 8384 | Rs | 9000 | 10.85578 | 16.70977 | 5847
R, | 9000 | 11.20922 | 12.26541 | 8225 | Rs | 9000 | 11.20011 | 17.41552 | 5788
R> | 9000 | 11.33667 | 14.59657 | 6990 | R, | 9000 | 11.15511 | 17.34554 | 5788
R; | 9000 | 11.48978 | 16.66259 | 6206 | Rs | 9000 | 11.99711 | 18.69032 | 5777
Ry | 9000 | 10.95678 | 16.03953 | 6148 | Ry | 7162 | 11.69199 | 15.34787 | 5456
{Mp | 812 | 24.00000 | 29527272 | 66 | Ms | 812 | 24.00000 | 221.45454 | 88
“M; | 812 | 24.00000 | 286.58823 | 68 | M; | 812 | 24.00000 | 21653333 | 90
2, | 812 | 24.00000 | 249.84615 | 78 | My | 812 | 24.00000 | 191.05882 | 102
M; | 812 | 24.00000 | 28243478 | 60 | My | 812 | 24.00000 | 229.27058 | 85
T, | 812 | 24.00000 | 259.84000 | 75 | My | 816 | 24.00000 | 227.72003 | 86
E, | 33 | 7.00000 | 462000 | 50 | Es | 33 | 7.00000 | 3.91525 | 59
E; | 33 | 7.00000 | 5.13333 | 45 | Es | 33 | 7.00000 | 3.50000 | 66
E, | 33 | 7.00000 | 5.50000 | 42 | E, | 33 | 7.00000 | 3.91525 | 59
E; | 33 | 7.00000 | 4.81250 | 48 | Es | 33 | 7.00000 | 3.39706 | 68
E, | 33 | 7.00000 | 3.39706 | 68 | Es | 39 | 7.000000 | 4.55000 | 60

The transactions in different databases are highly similar, in the sense that two

transactions in a database have many common items. The best non-trivial partition is
given as follows. Z2°%%7 = {{1}, {2}, {3}, {6}, {7}, {9}, {10}, {11}, {23}, {24}, {28},
{29}, {36}, {37}, {38}, {39}, {48}, {52}, {53}, {54}, {56}, {58 }, {59}, {61}, {63},
{66}, {67}, {76}, {85}, {86}, {93}, {94}, {95}, {99}, {101}, {102 }, {110}, {114},
{116}, {117}, {119}, {34,90}}.
(c) For experiment with ecoli: The frequent items in different databases are given as
follows. FI(0, 9, 0.1) = {{0}, {20}, {23}, {24}, {25}, {26}, {27}, {28}, {29}, {30},
{31}, {32}, {33}, {34}, {35}, {36}, {37}, {38}, {39}, {40}, {41}, {42}, {43}, {44},
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{45}, {46}, {47}, {48}, {49}, {50}, {51}, {52}, {54}, {56}, {57}, {58}, {59}, {61},
{63}, {64}, {65}, {66}, {67}, {68}, {69}, {70}, {71}, {72}, {73}, {74}, {75}, {76},
{77}, {78}, {79}, {80}, {81}, {92}, {100}}. Top 10 SHEISSs of size greater than 1 along
with their synthesized associations are given as follows. {48, 50}(0.803571), {37, 48,
503(0.232143), {48, 50, 52}(0.229167), {40, 48, 50}(0.226190), {44, 48, 50}(0.226190),
{46, 48, 50}(0.193452), {37, 48}(0.190476), {44, 50}(0.190476), {48, 50,
51}(0.190476), {40, 48}(0.184524). The best non-trivial partition is given as follows.

8957 = (0}, (203, {23}, {24}, (25}, {26}, {27}, {28}, {29}, {30}, {31}, {32}, {33},
{34}, {35}, {36}, {37}, {38}, {39}, {40}, {41}, {42}, {43}, {44}, {45}, {46}, {47},
{49}, {51}, {52}, {54}, {56}, {57}, {58}, {59}, {61}, {63}, {64}, {65}, {66}, {67},
{68}, {69}, {70}, {71}, {72}, {73}, {74}, {75}, {76}, {77}, {78}, {79}, {80}, {81},
{92}, {100}, {48, 50} }.

2.4.6.2 Synthesis of highly extracted itemsets

(a) For experiment with retail: In Table 2.4.3, we present errors in synthesizing HEISs.
HEISs {32}, {38}, {379}, {48}, {38, 39} and {39, 48} are extracted from every branch
database. Thus, the error in synthesizing support of each of the above HEISs is zero.

Table 2.4.3. Error in synthesizing supports of HEISs at o = 0.1 and y = 0.6

HEIS [ ISSCCR) [ HEIS [ 1SSCCR) [ HEIS [ 1SS R [ [ 1SS R
X | -SRI | X | -SRI | X | -SXR) - S(X, R)|

{0} | 0.002925 | {5} | 0.001948 | {32} | 0.000000 | (38,39} | 0.000000

{1} 0.002064 {6} | 0.001949 | {38} | 0.000000 {39, 41} 0.003616

{2} | 0.001945 | {7} | 0.002006 | {39} | 0.000000 | {39, 48} | 0.000000

{3} 0.002030 {8} | 0.002016 | {41} | 0.003470 {41, 48} 0.003721

{4} | 0.002034 {9} | 0.001654 | {48} | 0.000000 | {39,41,48} | 0.003781
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(b) For experiment with mushroom: The transactions in local databases are highly
similar, in the sense that two transactions in a database have many common items. Thus,
we get many frequent itemsets in local databases even at a high value of a. The errors in
synthesizing some HFEISs are presented in Table 2.4.4.

Table 2.4.4. Error in synthesizing supports of selected HEISs at « = 0.5 and y= 0.7

(top 15)

aeisx | M ey | BEM ey | PO
- S(X, M)| - S(X, M)| - S(X, M)|

(24,85} | 0.003304 | (85,90} | 0.001278 | {34,39} | 0.0010866
(24,86} | 0.003282 (531 | 0001207 | {67} 0.001049
(24,90} | 0.002204 | {53,90} | 0.001107 | {34,67} | 0.001049
(85,86} | 0.001295 | {53,85) | 0.001107 | {39} 0.001081
(86,90} | 0.001290 | {53, 86} | 0.001007 | {34,90} | 0.001098

(c) For experiment with ecoli: For the local databases generated from ecoli, the average
size of databases, the average length of transactions in different databases are smaller.
Thus, the error of synthesizing a HEIS is comparatively higher. The errors in synthesizing

some HEISs are presented in Table 2.4.5.
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Table 2.4.5. Error in synthesizing supports of selected HEISs at = 0.1 and y= 0.6

(top 15)

HEIS X S8, B) HEIS X 155X, ) HEIS X IS5, £)
- S(X, E)| - S(X, E)| - S(X, B)|

{48,50, 51} | 0.003695 (44} 0.002381 | {48,51} | 0.001488
{46,48,50} | 0.003471 (46,48} | 0.002380 | {37} | 0.001390
{40,48, 50} | 0.003273 | {44,48,50} | 0.002083 | {52} | 0.001387
{37,48,50} | 0.002976 | {48,50,52} | 0.001785 | {40,50} | 0.001291
{50,513 | 0.002381 {40} 0.001785 | {50, 52} | 0.001261

2.4.7.3 Error of the experiment

The errors of different experiments are presented in Table 2.4.6. If the average number of

transactions in different databases increases then the average error of synthesizing HEISs

is likely to decrease, provided other two parameters remain constant. If the average

length of transactions in different databases increases then the average error of

synthesizing HEISS is likely to increase, provided other two parameters remain constant.

Lastly, if the average number of items in different databases increases then the error of

synthesizing HEISs is likely to decrease, provided other two parameters remain constant.

Table 2.4.6. Error of the experiments

08| o , AE ME

(ANT, ALT, ANT) (ANT, ALT, ANI)
Ur | o1 | 07 0.00120 0.00293
(8816.2, 11.30576, 5882.1) | (8816.2, 11.30576, 5882.1)
O | os | 07 0.00125 0.003304
(812.4,24.00000,80.7) | (812.4, 24.00000, 80.7)
Uz | os | os 0.00133 0.00370
=0 (33.6, 7.00000, 56.5) (33.6, 7.00000, 56.5)
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2.4.7.4 Average error versus ¥

We have conducted experiments to study the behaviour of AE over different js. In
general, we find that AE decreases as y increases. The purpose of the experiment wouid
be lost if we keep y at a high value, since the number of HEISs also decreases as y
increases. Thus, a decision based on HEISs would have low validity at a high value of y.
In Figures 2.4.1, 2.4.2 and 2.4.3, we present graphs of AE versus y for three experiments.
From the figures presented below, we find that the value of y around 0.7 would have been

a good choice for clustering frequent items in different databases.
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Figure 2.4.2. AE versus y at o= 0.5 (mushroom)
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Figure 2.4.3. AE versus yat = 0.1 (ecoli)

2.4.7.5 Average error versus o

We have also conducted experiments to study the behaviour of AE over different as. In
general, we find that AE increases as « increases. As « increases, the more number of
databases would fail to extract an itemset. Thus, the error of synthesizing an itemset is
likely to increase as « increases. In Figures 2.4.4, 2.4.5 and 2.4.6, we present graphs of

AE versus « for three experiments.
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Figure 2.4.4. AE versus a at y= 0.7 (retail)
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Figure 2.4.5. AE versus «a at y= 0.7 (mushroom)
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Figure 2.4.6. AE versus a at y= 0.7 (ecoli)

2.4.7.6 Clustering time versus number of databases

We have also studied the behaviour of clustering time required over the number of

databases used in an experiment. As the number of databases increases, the number of

frequent itemsets also increases. In general, we find that clustering time increases as the

number of databases increases. In Figures 2.4.7, 2.4.8 and 2.4.9, we present graphs of

clustering time versus number of databases for three experiments.
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Figure 2.4.7. Clustering time versus number of databases at = 0.1 and y= 0.7 (retail)
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Figure 2.4.8. Clustering time versus number of databases at = 0.5 and y= 0.7
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Figure 2.4.9. Clustering time versus number of databases at = 0.5 and y= 0.7 (ecoli)

2.4.7.7 Comparison with existing technique

The proposed clustering technique is likely to enhance the accuracy of clustering process,
if the clustering is performed at a level §such that &is a synthesized association of a class
containing more than 2 frequent items. In each of the Tables 2.4.7, 2.4.8 and 2.4.9, we
present an example of clustering that achieves higher level of accuracy.

Table 2.4.7. A sample clustering of frequent items in multiple databases (retail)

S (existing | & ( proposed
a |y Clustering ( g | o(prop DS

approach ) | approach )

{03, {1}, {2}, {3}, {4}, {5}, {6}, {7},
{8}, {9}, {32}, {38, 39}, {39,41, 48} }

0.1]0.7 0.251072 0.393977 | 0.142905
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Table 2.4.8. A sample clustering of frequent items in multiple databases (mushroom)

) O (existing | J(proposed
a | y clustering DS
approach ) | approach )
{1}, {2}, {3}, {6}, {7}, {9}, {10}, {11},
{23}, {24}, {28}, {29}, {37}, {38}, {39},
{48}, {52}, {53}, {54}, {56}, {58 }, {59},
05107 {61}, {63}, {66}, {67}, {76}, {86}, {90}, 0.842935 0.989711 0.146776
{93}, {94}, {95}, {99}, {101}, {102 },
{110}, {114}, {116}, {117}, {119}, {34,
90}, {34, 86}, {34, 36, 85} }
Table 2.4.9. A sample clustering of frequent items in multiple databases (ecoli)
a5 clustering S (existing | J(proposed DS
_ approach ) approach )
{{0}, {20}, {23}, {24}, {25}, {26},
{27}, {28}, {293}, {30}, {31}, {32},
{33}, {34}, {35}, {36}, {38}, {39},
{40}, {41}, {42}, {43}, {44}, {45},
0.1 |07 | OB WL L2080 e 1 0on143 | 0053572

{56}, {57}, {58}, {59}, {61}, {63},
{64}, {65}, {66}, {67}, {68}, {69},
{703, {713, {723, {73}, {74}, {75},
{763, {77}, {78}, {79}, {80}, {81},
{92}, {100}, {37, 48, 50} }
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2.4.8 Conclusion

Clustering relevant objects is an important task of many decision support systems. We
have observed that existing clustering technique might cluster frequent items in multiple
databases with low accuracy. We propose a new technique for clustering frequent items
in multiple databases. It clusters frequent items in multiple databases with higher degree
of accuracy.

The main problem with existing clustering technique is that it might not be able to
estimate similarity among items in a class with high accuracy. Thus, it might fail to
cluster frequent items with higher accuracy level. The experimental results show that the

proposed clustering technique is effective and promising.
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Conclusion

Recognizing patterns in multiple databases is an important theme of activities. Many
important decisions could be based on analysis of patterns in multiple databases. In Part
2, we have dealt with the following patterns in multiple databases: exceptional frequent
itemset, heavy association rule, exceptional association rule, high-frequent association
rule, and clustering items in multiple databases.

In Chapter 2.2, we have identified the shortcomings of existing concept of global
exceptional pattern and proposed a definition of a global exceptional frequent itemset.
We have designed an algorithm to identify global exceptional patterns in multiple
databases. Also, we have introduced the notion of exceptional sources for a global
exceptional frequent itemset. The proposed algorithm identifies global exceptional
frequent itemsets and their exceptional sources in multiple databases.

In Chapter 2.3, we present an algorithm for synthesizing three important patterns in
multiple databases viz., heavy association rule, high-frequent association rule, and
exceptional association rule. It also provides a better solution for synthesizing high-
frequent association rules in multiple databases.

In Chapter 2.4, we propose a new technique of clustering frequent items in multiple
databases. It clusters frequent items in multiple databases with higher degree of accuracy
as compared to the existing approaches. The main problem with an existing clustering
technique is that it might not be able to estimate similarity among items in a class
effectively. The experimental results show that the proposed clustering technique is

effective and promising.
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Chapter 3.1

Introduction

The sole purpose of Part 3 is to develop better multi-databases mining applications. We

have discussed a number of strategies to enhance the efficiency of a multi-database

mining system. The efficiency of a multi-database mining application could be enhanced

by choosing an appropriate multi-database mining model, an appropriate pattern

synthesizing technique, a better pattern representation technique, and an efficient

algorithm for solving the problem. In Part 3, we have made the following contributions.

= We propose a new technique, called pipelined feedback model (PFM), for mining
multiple databases.

= We propose a technique, called antecedent consequent pair (ACP) coding, for
representing rulebases corresponding to different databases with space efficiency. It
enables us to incorporate more association rules for synthesizing global patterns or
decision-making activities.

= We propose an index structure to access the coded association rules conveniently.

* We prove that ACP coding represents rulebases using the least amount of storage
space in comparison to any other rulebase representation technique.

= We propose a technique for storing rulebases corresponding to different databases in
the secondary storage.

» We propose an algorithm for clustering frequent items in multiple databases based on
measure of association 4, and multi-database mining technique PFM.

» A model of mining global patterns of select items in multiple databases is proposed.

» A measure of overall association (OA4), between two items in a database is proposed.
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* An algorithm is designed based on OA4 for the purpose of grouping frequent items in

multiple databases.
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Chapter 3.2

Mining multiple large databases

Many large companies operate from a number of branches located at different
geographical regions. Each branch might collect data continuously and data get stored
locally. Thus, the collection of all branch databases might be large. Many decisions of a
multi-branch company are based on data stored over the branches. The challenges
involve in making good quality of decisions based on large volume of data distributed
over the branches. It creates not only risks but also opportunities. One of the risks might
be significant amount of investment on hardware and software to deal with multiple large
databases. Our objective is to provide good quality of knowledge by minimizing the
risks.

The first question comes to our mind whether a traditional data mining technique [13],
[39] could provide a good solution in dealing with multiple large databases. To apply a
traditional data mining technique one needs to amass all the branch databases together. A
traditional data mining te.:chnique might not provide a good solution due to the following
reasons.

* The company might have to invest heavily on hardware and software to deal with a
large volume of data.

* A single computer might take unreasonable amount of time to mine a huge amount of
data.

* It might be difficult to identify local patterns if a traditional data mining technique is
applied on the entire database.

Thus, a traditional data mining technique might not be suitable in this situation. So, it is a

different problem. Hence, it is required to be dealt with in a different way. In this situa-
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tion local pattern analysis [91] could be a solution. Under this model of mining multiple
databases, each branch requires to mine its database using a traditional data mining
technique. Afterwards, each branch is required to forward the pattern base to the central
office. Then the central office would process the pattern bases collected from different
branches. Due to the following reason, the local pattern analysis alone might not be a
judicious choice for mining multiple large databases.
= A synthesized global pattern might differ considerably from true global patterns.
= The process of mining current database is independent of patterns extracted from the
previous databases. )
For the purpose of mining multiple databases, one could apply partition algorithm (PA)
proposed by Savasere et al. [66]. The algorithm was designed to mine a very large
database by partitioning. The algorithm works as follows. It scans the database twice. The
database is divided into disjoint partitions, where each partition is small enough to fit in
memory. In a first scan, the algorithm reads each partition and computes locally frequent
itemsets in each partition using apriori algorithm [13]. In the second scan, the algorithm
counts the supports of all locally frequent itemsets toward the complete database. In this
case, each local database could be considered as a partition. Though partition algorithm
mines frequent itemsets exactly, it is an expensive solution to mining multiple large
databases, since each local database is required to scan twice.

There are two benefits of PFM. Firstly, it improves significantly the accuracy of
mining multiple large databases as compared to local pattern analysis. Secondly, it scans
each local database only once.

For mining multiple databases, there are three situations: (i) Each of the local
databases is small, so that a single database mining technique (SDMT) could mine the
union of all databases. (ii) At least one of the local databases is large, so that a SDMT
could mine every local database, but fail to mine the union of all local databases. (iii) At

least one of the local databases is very large, so thata SDMT fails to mine it. We face
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challenges to handle the cases (ii) and (iii). The challenges are posed to us due to large
size of some local databases.

A multi-database mining technique (MDMT) using local pattern analysis could be
viewed as a two-step process M+S, explained as follows.
= Mine each local database using a SDMT by following a model M (Step 1)
= Synthesize patterns using an algorithm S (Step 2)
We use notation MDMT: M+S to represent above multi-database mining technique. We
propose a MDMT that improves the quality of both synthesized patterns and analysis of
local patterns. Our algorithm could handle the cases (ii) and (iii) reasonably well, and it
requires mining each local database only once.

The rest of the chapter is organized as follows. We discuss related work and define the
problem in Section 3.2.2. We propose a model for mining multiple databases in Section
3.2.3. We define error of an experiment in Section 3.2.4. In Section 3.2.5, we provide

experimental results.

3.2.2 Problem definition

Consider a multi-branch company that operates from » branches. Let D; be the database
corresponding to the i-th branch, for i = 1, 2, ..., n. Let D be the union of all branch
databases. Before presenting the proposed model, we shall first study work related to this

issue.

3.2.2.1 Related work
In Section 2.4.2.1.2, we have provided a survey of existing multi-database mining

techniques.
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3.2.2.2 Our approach

We need to process local databases as they may not be at the right state for the mining
task. Various data preparation techniques [65] like data cleaning, data transformation,
data integration, and data reduction are applied to branch databases. We get processed
database corresponding to (original) local database. Then we keep all the data that are
relevant to data mining applications. Using a relevance analysis, one could detect outlier
data [51] and store in a separate storage. After removing outlier data from a processed
database we get desired data warehouse and the data in a data warehouse become ready
for the mining task. Let W; be the data warehouse corresponding to the i-th branch, for i =
1, 2, ..., n. Then the local patterns for the i-th branch are extracted from W, fori =1, 2,
..., n. We mine each data warehouse using a SDMT. In Figure 3.2.1, we present a new

model of mining multiple databases [8].

A single detabase
mining technique

A single detabase
mitring technique

A single detabase
mining technique

Figure 3.2.1. Pipelined feedback model (PFM) of mining multiple databases
In PFM, W; is mined using a SDMT and local pattern base LPB; is extracted. While
mining W, all the patterns in LPB; are extracted irrespective of their values of
interestingness measures like, minimum support and minimum confidence. Apart from
these patterns, some new patterns that satisfy user-defined threshold values of
interestingness measures are also extracted. In general, while mining W, all the patterns
in W,.; are mined irrespective of their values of interestingness measures, and some new
patterns that satisfy user-defined threshold values of interestingness measures, for i = 2,
3, ..., n. Due to this nature of mining each data warehouse, the technique is called a
feedback model. Thus, |LPB;.i| < |LPBj|, for i = 2, 3, ..., n. There are n! arrangements of
pipelining for n databases. All the arrangements of data warehouses might not produce
the same mining result. If the number of local patterns increases, we get more accurate

global patterns and a better analysis of local patterns. An arrangement of data warehouses
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would produce near optimal result if |LPB,| is a maximal. Let size(WV,) be the size of W;
(in bytes), for i = 1, 2, ..., n. We shall follow the following rule of thumb regarding the
arrangements of data warehouses for the purpose of mining. The number of patterns in
Wi.1 1s greater than or equal to the number of patterns in W, if size(W,.;) > size(W;), for i =
2,3, ..., n. For the purpose of increasing number of local patterns, W, precedes W; in the
pipelined arrangement of mining data warehouses if size(W..,) 2 size(W;), fori=2,3, ...,
n. Finally, we analyze the patterns in LPB,, LPB,, ..., and LPB, for synthesizing global
patterns, or analyzing local patterns.

For synthesizing global patterns in D we discuss here a simple pattern synthesizing
(SPS) algorithm. Without loss of generality, let the itemset X be extracted from first m
databases, for 1 < m < n. Then synthesized support of X in D could be obtained as
follows.

1
supp (X, D) = szi][suppa(x, D)x| D, ] (3.2.1)
i=1 i

3.2.3 Mining multiple databases

In this section, we present a new algorithm for mining multiple databases [8]. The
algorithm is based on the pipelined feedback model discussed in Section 3.2.2.
Algorithm 3.2.1. Mine multiple data warehouses using pipelined feedback model.
procedure PipelinedFeedbackModel (W;, W, ..., W,)

Input: W, W, ..., W,

QOutput: local pattern bases

O0l:fori=1tondo

02: if W, does not fit in memory then

03: partition W;into W, , W,,, ...,and W, ;

04: elselet W, =W;

05:  end if

06: end for
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07: sort data warehouses on size in non-increasing order and the data warehouses are

renamed as DW;, DW,, ..., DWy, where N =%"_, p;;

08:let LPBy = ¢;

09:fori=1to Ndo

10:  mine DW; using a SDMT with input LPB,.;;

11: end for

12: return LPB;, LPB,, ..., LPBy;

end procedure

In above algorithm, the usage of LPB;.; during mining DW, has been explained in Section
3.2.2.2. Once a pattern is extracted from a data warehouse, then it gets extracted from the
remaining data warehouses. Thus, the algorithm PipelinedFeedbackModel improves

synthesized patterns and analysis of local patterns significantly.

3.2.4 Error of an experiment
To evaluate MDMT: PFM+SPS, we need to measure the amount of error of the
experiments. An experiment mines frequent itemsets in local databases using PFM, and
then synthesizes global patterns using SPS algorithm. We need to find how the global
synthesized support differs from the exact support of an itemset.

Let LPB, = {X1, X, ..., Xin}. There are several ways one could define error of an

experiment. We have defined following two types of error of an experiment.

1. Average Error (AE)
1

AE(D, @)= —X |supp,(X,, D) - supp,(X,, D)| (322)
m

2. Maximum Error (ME)

ME(D, &) = maximum {[supp,(X,, D) - supp, (X,, D) i=1,2,...m | (3.2.3)

supp.(Xi, D) is obtained by mining D using a traditional data mining technique, fori=1,

2, ..., m. suppy(X;, D) is obtained by SPS, fori=1, 2, ..., m.
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3.2.5 Experiments

We have carried out several experiments to study the effectiveness of our approach. All
the experiments have been implemented on a 2.8 GHz Pentium D dual core processor
with 512 MB of memory using visual C++ (version 6.0) software. We present
experimental results using synthetic database T77014D100K (T) [34] and two real
databases retail (R) [34] and BMS-Web-Wiew-1 (B) [34]. We present some characteristics
of these databases in Table 3.2.1.

Let NT, AFI, ALT, and NI denote the number of transactions, average frequency of an
item, average length of a transaction, and number of items in a database, respectively.

Table 3.2.1. Database characteristics

Database | NT ALT AFI NI
T 1,00,000 | 11.10228 | 1276.12413 | 870
R 88,162 | 11.30575 | 99.67380 | 10000
B 1,49,639 | 2.00000 | 155.71176 | 1922

Each of the above databases is divided into 10 databases for the purpose of carrying out
experiments. The databases obtained from 7, R and B are named as 7T, R, and B,
respectively, for i = 0, 1, ..., 9. The databases 7}, R;, and B; are called input databases
(DBs), fori =0, 1, ..., 9. Some characteristics of these input databases are presented in
the Table 3.2.2.
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Table 3.2.2. Input database characteristics

DB| NT | ALT AFI NI | DB| NT ALT AFI NI
T, | 10000 | 11.05500 | 127.65588 | 866 | T | 10000 | 11.13910 | 128.62702 | 866
T, | 10000 | 11.13330 | 12841176 | 867 | T, | 10000 | 11.10780 | 128.56250 | 864
T, | 10000 | 11.06700 | 127.64705 | 867 | T, | 10000 | 11.09840 | 128.45376 | 864
Ts | 10000 | 11.12260 | 12843649 | 866 | Ts | 10000 | 11.08150 | 128.55568 | 862
T, | 10000 | 11.13670 | 128.74797 | 865 | T, | 10000 | 11.08140 | 128.10867 | 865
Ry | 9000 | 11.24389 | 12.07001 | 8384 | Rs | 9000 | 10.85578 | 16.70977 | 5847
Ry | 9000 | 1120922 | 12.26541 | 8225 | Rs | 9000 | 11.20011 | 17.41552 | 5788
R; | 9000 | 11.33667 | 14.59657 | 6990 | B, | 9000 | 11.15511 | 17.34554 | 5788
R; | 9000 | 11.48078 | 1666259 | 6206 | Rs | 9000 | 11.99711 | 18.69032 | 5777
Rs | 9000 | 10.95678 | 16.03953 | 6148 | Ry | 7162 | 11.69199 | 15.34787 | 5456
B, | 14000 | 2.00000 | 14.94130 | 1874 | Bs | 14000 | 2.00000 | 280.00000 | 100
B, | 14000 | 2.00000 | 280.00000 | 100 | Bs | 14000 | 2.00000 | 280.00000 | 100
B, | 14000 | 2.00000 | 280.00000 | 100 | B; | 14000 | 2.00000 | 280.00000 | 100
B | 14000 | 2.00000 | 280.00000 | 100 | Bs | 14000 | 2.00000 | 280.00000 | 100
B; | 14000 | 2.00000 | 280.00000 | 100 | By | 23639 | 2.00000 | 472.78000 | 100

In Table 3.2.3, we present some outputs to show that the proposed technique improves

significantly the mining results. We have performed experiments using other MDMTs on

these databases for the purpose of comparing with MDMT: PFM+SPS.
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Table 3.2.3. Error of the experiments at a given o

Database T1014D100K retail BMS-Web-Wiew-1
a 0.05 0.11 0.19
Error type AE ME AE ME AE ME
MDMT: RO+IEP 0.01218 | 0.03730 | 0.00516 | 0.05825 | 0.04823 | 0.14490
MDMT: RO+RS 0.01017 | 0.03612 | 0.00502 | 0.05755 | 0.02319 | 0.13490
MDMT: RO+ARS | 0.00719 | 0.03599 | 0.00491 | 0.05730 | 0.02102 | 0.10514
MDMT: PFM+SPS | 0.00321 | 0.03583 | 0.00484 | 0.05725 0 0
MDMT: RO+PA 0 0 0 0 0 0
0.025 -
0.02
0015 - RO+EP
< 001 e —+—RO+RS
0.005 - RO+ARS
0 - ~%- PFM+SPS
FPHFISLLSSEISF S RO
Minimsm support

Figure 3.2.2. AE vs. o for experiments using database T

In the Figures 3.2.2, 3.2.3, and 3.2.4, we show average errors against different os.

From Figures 3.2.2, 3.2.3, and 3.2.4, one could conclude that AE normally increases as «

increases. The number of databases reporting a pattern decreases as « increases. Thus,

‘the AE of synthesizing patterns normally increases as « increases.
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Figure 3.2.3. AE vs. a for experiments using database R
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Figure 3.2.4. AE vs. o for experiments using database B

3.2.6 Conclusion

In this chapter, we present a new technique for mining multiple databases. It improves
significantly the accuracy of mining multiple databases as compared to existing
techniques that scan each database only once. The proposed technique could also be used
for mining a large database by dividing it into sub-databases. MDMT: PFM+SPS is

effective and promising,.
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Enhancing quality of knowledge synthesized from multi-database

mining

Many large organizations transact from multiple branches. The transactions made in a
branch are stored locally. Thus, many multi-branch companies possess multiple
databases. Consider a company that operates shopping malls from different places. These
malls are open at least 12 hours a day. All the transactions made in a mall are stored
locally. Thus, the company possesses multiple databases. A corporate decision based on
data distributed over the branches requires handling multiple databases effectively. Most
of the previous pieces of data mining work are based on a single database. Therefore, it is
important to study data mining on multiple databases.

Consider a multi-branch company that operates from different locations. Each branch
possesses a large database. Thus, the collection of all branch databases is very large. The
first question comes to our mind whether a traditional data mining technique could deal
with the multiple large databases. To apply a traditional data mining technique, one needs
to amass all the branch databases together. A single computer might take unreasonable
amount of time to process the entire database. Sometimes it might not be feasible to carry
out the mining task. Another solution would be to employ parallel machines. But, it
requires high investment on hardware and software. Moreover, it is difficult to identify
local patterns if the mining technique is applied on the entire database. Thus, a traditional
data mining technique is not suitable in this situation. So, it is a different problem. Hence,

it is required to be dealt with in a different way. In this case, one could employ the model
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of local pattern analysis [91]. According to this model of mining, the branches are
required to forward their local patterns to the central office for analysis and synthesis of
patterns. The central office collects the local patterns and stores them for further analysis
and synthesis. In particular, the company may need to identify the global association
rulcs in the union of all databases. Let X — Y be an association rule extracted from a few
databases. Then local pattern analysis might return approximate association rule X — Y in
the union of all databases, since it may fail to get extracted from all the databases. Using
a coding, discussed in this chapter, one could reduce further the values of minimum
support and minimum confidence for extracting local association rules. Thus, the
association rule X — Y might get extracted from more number of databases, since
minimum support and minimum confidence are lowered further. In that case, the
synthesized association rule X — Y might be more accurate than the earlier approach.
Multi-database mining has been recently recognized as an important research topic in
the KDD community. Many multi-database mining applications often handle a large
number of patterns. In multi-database mining applications, local patterns could be used in
two ways. In the first category of applications, global patterns are synthesized from local
patterns [5], [81], [89]. Synthesized global patterns could be used in various decision-
making problems. In the second category of applications, various decisions are taken
based on the local patterns in different databases [6], [83]. Thus, the available local
patterns could play an important role in finding a solution to a problem. For a problem in
the first category, the quality of a global pattern is influenced by the pattern synthesizing
algorithm and the available loczil patterns. Also, we observe that a global pattern
synthesized from local patterns might be approximate. At a given pattern synthesizing
algorithm, one could enhance the quality of synthesized patterns by increasing the
number of local patterns in a knowledge synthesizing process. For a problem in the
second category, the quality of decision is based on the quality of measure used in the
decision-making process. Again, the quality of measure is based on the correctncss of the

measure and the available local patterns. For the purpose of clustering databases, Wu et
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al. [83] have proposed two such measures of similarity between two databases. For a
given measure of decision-making, one could enhance the quality of decision by
increasing the number of local patterns in the decision making process. Thus, the number
of available local patterns plays a crucial role in building efficient multi-database mining
applications. Thus, one could make a better decision if the available patterns are more.
One could increase the number of local patterns by lowering further the user inputs, such
as minimum support and minimum confidence, given to a data mining algorithm. More
patterns could be stored in main memory by applying a space efficient pattern base
representation technique. In this chapter, we present a coding, called ACP coding [4], for
representing a set of association rules in different databases space efficiently. A similar
technique [6] could also be applied for representing frequent itemsets in different
databases space efficiently.

Consider a multi-branch company that transacts from » branches, for n > 2. Let D; be
the database corresponding to the i-th branch, for i = 1, 2, ..., n. Also, let D be the union
of these databases. The data mining model adopted in this chapter for association rule is
the support (supp)-confidence (conf) framework established by Agrawal et al. [11]. The
set of association rules extracted from a database is called a rulebase. Before we present
the problem, we introduce a few notations used frequently in this chapter. Let RB; be the
rulebase corresponding to database D; at the minimum support level o and minimum
confidence level B, for i = 1, 2, ..., n. Also, let RB be the union of rulebases

corresponding to different databases. Many interesting algorithms have been reported on

mining association rules in a database [13], [39], [66]. Let T be a technique for

'representing RB in main memory. Let ¢ and y denote the pattern synthesizing algorithm

and computing resource used for a data mining application, respectively. Also, let ARB |
T, a, B, ¢, ) denote the collection of synthesized patterns over RB at a given tuple (7, «,
B, ¢, w). The quality of synthesized patterns could be enhanced if the number of local
patterns increases. Thus, quality of ARB| T, ay, f1, ¢, w) < quality of &RB | T, 0, B>, ¢,
w),if op <oy and B, <. So, the problem of enhancing the quality of synthesized pat-
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terns boils down to the problem of designing a space efficient technique for representing
rulebases corresponding to different databases.

As the frequent itemsets are the natural form of compression for association rules, the
following reasons motivate us to compress association rules rather than frequent itemsets.
Firstly, applications dealing with the association rules could be developed efficiently.
Secondly, a frequent itemset might not generate any association rule at a given minimum
confidence.

In this chapter, we present a space efficient technique to represent RB in main memory.

Let SP’(RB | a, B, w) and SP "+ (RB | a, B, w) be the amount of space (in bits) and

minimum amount of space ( in bits) consumed by RB using a rulebase representation
technique 7, respectively. We observe that a rulebase representation technique might not
represent RB at its minimum level because of the stochastic nature of the set of
transactions contained in the database. In other words, a frequent itemset might not
generate all the association rules. For example, the association rule X—Y might not get
extracted from any one of the given databases, even if the itemset {X, ¥} is frequent in

T

some databases. Thus, SP!. (RB | «, B, v) < SP"(RB | a, B, y), for a given tuple (o, S,

w), where 0 < o < # < 1. Let I be the set of all techniques for representing a set of
association rules. We are interested in finding out a technique 7; € I for representing RB,

such that SP"" (RB| &, B, ) <SP " (RB | &, B, w), forall Te I Let SP, (RB| &, B, W) =

7

minimum {SP,. (RB | a, f, v): Te I'}. The efficiency of T for representing RB is judged

by comparing SP'(RB | a, B, ) with SP,. (RB| &, S, y). We would like to design an

efficient rulebase representation technique 7; such that SP" (RB | a, B, y) < SP” (RB| «,
By, for Terl.
Our work is based on RB;, fori =1, 2, ..., n. One could lower « and S further so that

each RB; represents the corresponding database reasonably well. The work is not

concerned with mining branch databases. ACP coding reduces RB significantly, so that
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the coded RB becomes available in the main memory during the execution of pattern

processing / synthesizing algorithm. The benefits of coding RB are given as follows.

Firstly, the quality of processed / synthesized knowledge gets enhanced, since the number

of local association rules participate in the pattern processing / synthesizing algorithm is

more. Secondly, the pattern processing / synthesizing algorithm could access all the local
association rules conveniently, since coded RB becomes available in the main memory.

This arrangement might be possible, since coded RB is reasonably small. For the purpose

of achieving latter benefit, we propose an index structure to access the coded association

rules conveniently. Finally, the coded RB and the corresponding index table could be
stored in the secondary storage for the usage of different multi-database mining
applications. The following issues are discussed in this chapter.

* We present a technique, called ACP coding, for representing rulebases corresponding
to different databases space efficiently. It enables us to incorporate more association
rules for synthesizing global patterns or decision-making activities.

= We present an index structure to access the coded association rules conveniently.

» We prove that ACP coding represents RB using least amount of storage space in
comparison to any other rulebase representation technique.

= We present a technique for storing rulebases corresponding to different databases in
the secondary storage.

=. We conduct experiments to judge the effectiveness of our approach.

The rest of the chapter is organized as follows. In Section 3.3.2, we discuss related
work. A simple coding, called SBV coding, for representing different rulebases is
presented in Section 3.3.3. In Section 3.3.4, we present ACP coding for representing

rulebases space efficiently. Experimental results are presented in Section 3.3.5.
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ferent databases. Thus, it is difficult to handle association rules in different databases
effectively during postmining of rulebases corresponding to different databases.
Ananthanarayana et al. [16] have proposed PC-tree to represent data completely and
minimally in main memory. It is built by scanning database only once. It could be used to
represent dynamic databases with the help of knowledge that is either static or changing.
It is not suitable for storing and accessing association rules. PC-tree also lacks the
capability of handling association rules in different databases during postmining of
rulebases corresponding to different databases.

The proposed work falls under the third category of solutions to reducing storage of
different rulebases. It is useful for handling association rules effectively during
postmining of association rules in different databases. No work has been reported so far
under this category.

In the context of mining good quality of knowledge from different data sources, Su et
al. [74] have proposed a framework for identifying trustworthy knowledge from external
data sources. Such framework might not be useful in this context. -

Zhang and Zaki [92] have edited a book on various problems related to multi-database
mining. Zhang [88], and Zhang et al. [93] studied various strategies for mining multiple
databases. Kum et al. [50] have presented a novel algorithm, ApproxMAP, to mine
approximate sequential patterns, called consensus patterns, from large sequence
databases in two steps. First, sequences are clustered by similarity. Then, consensus

patterns are mined directly from each cluster through multiple alignment.

3.3.3 Simple bit vector (SBV) coding

We need to process all the association rules in different local databases for synthesizing
patterns, or decision-making applications. We shall use tuple (ant, con, s, ¢) to symbolize
an association rule, where ant, con, s, and ¢ represent antecedent, consequent, support
and confidence of the association rule ant — con, respectively. We present a situation in

Example 3.3.1.
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Example 3.3.1. A multi-branch company has four branches. Let a = 0.35, and = 0.45.
Our discussion would be still complete without specification of the content of the branch
databases. The rulebases corresponding to different databases are given below.

RB; = {4, C, 1.0, 1.0), (C, 4, 1.0, 1.0), (4, B, 0.41877, 0.41877), (B, A, 0.41877,
0.73740), (B, C. 0.40341, 0.71035), (C, B, 0.40341, 0.40341), (4, BC, 0.36107, 0.
36107), (B, AC, 0.36107, 0.63580), (C, 4B, 0.36107, 0.36107), (4B, C, 0.36107,
0.74035), (4C, B, 0.36107, 0.36107), (BC, 4, 0.36107, 0.89504) }; RB, = { (4, C,
0.66667, 0.66667), (C, 4, 0.66667, 1.0) }; RB; = { (4, C, 0.66667, 0.66667), (C, 4,
0.66667, 1.0), (4, E, 0.66667, 0.66667), (E, 4, 0.66667, 1.0) }; RB, = { (F, D, 0.75000,
0.75000), (D, F, 0.75000, 1.0), (¥, E, 0.50000, 0.50000), (E, F, 0.50000, 1.0), (F, H,
0.50000, 0.50000), (H, F, 0.50000, 1.0) }. e

One could represent an associating rule conveniently using an object (or, a record). A
typical object representing an association rule consists of following attributes: database
identification, number of items in the antecedent, items in the antecedent, number of
items in the consequent, items in the consequent, support, and confidence. We caléulate
the space requirement of such an object using Example 3.3.2.

Example 3.3.2. The discussion of Example 3.3.1 is continued here. A typical compiler
represents an integer and a real number using 4 bytes and 8 bytes, respectively. An item
could be considered as an integer. Consider the association rule (4, BC, 0.36107,
0.36107) of RB,. Each of the following components of an association rule could consume
4 bytes: database identification, number of items in the antecedent, item A, number of
items in the consequent, item B, and item C. Support and confidence of an association
rule could consume 8 bytes each. The association rule (4, BC, 0.36107, 0.36107) of RB,
thus consumes 40 bytes. The association rule (4, C, 1.0, 1.0) of RB; could consume 36
bytes. Thus, the amount of space required to store four rulebases is equal to (18 x 36 + 6
x 40) bytes, i.e. 7104 bits. A technique without optimisation (TWO) could consume 7104

bits to represent these rulebases. o
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Let 7 be the set of all items in D. Let X, Y and Z be three itemsets such that ¥, Z c X.
Then {Y, Z} forms a 2-itemset partition of X if YUZ = X, and Y Z = ¢. We define size
of itemset X as the number of items in X, denoted by |X]. Then, we have 2* 2-itemset
partitions of X. For example, {{a}, {b, c}} is a 2-itemset partition of {a, b, c}. An asso-
ciation rule ¥ — Z corresponds to a 2-itemset partition of X, for ¥, Z < X. The antecedent
and consequent of an association rule are non-null. Thus, we have Lemma 3.3.1.

Lemma 3.3.1. An itemset X can generate maximum 2°\- 2 association rules, for |X| = 2.

Let there are 10 items. The number of itemsets using 10 items is 2'°. Thus, 10 bits
would be enough to represent an itemset. The itemset ABC, i.e. {4, B, C} could be
represented by the bit combination 1110000000. 2-itemset partitions of 4BC are {4,
ABC}Y, {4, BC}, {B, AC}, {C, AB}, {AB, C}, {AC, B}, {BC, A}, and {ABC, ¢}. Number
of 2-itemset partitions of a set containing 3 items is 2°. Every 2-itemset partition
corresponds to an association rule, except the partitions {¢, ABC} and {ABC, ¢}. For
example, the partition {4, BC} corresponds to the association rule A—> BC. Thus, 3 bits
are sufficient to identify an association rule generated from ABC. If the number of items
is large, then this method might take significant amount of memory space to represent
itemsets and the association rules generated from the itemsets. Thus, this technique is not

suitable to represent association rules in databases containing large number of items.

3.3.3.1 Dealing with databases containing large number of items

We explain SBV coding with the help of Example 3.3.3.

Example 3.3.3. We continue here the discussion of Example 3.3.1. Let the number of
items be 10000. One needs 14 bits to identify an item, since 2'° < 10000 < 2", We
assume that the support and confidence of an association rule are represented using 5
digits after the decimal point. Thus, support / confidence value 1.0 could be represented

as 0.99999. We use 17-bit binary number to represent support / confidence, since 2'¢ <
99999 <2'7.
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Let us consider the association rule (4, BC, 0.36107, 0. 36107) of RB;. There are 4
databases viz., D;, D,, D3, and D,. We need 2 bits to identify a database, since 2l <4<
2%. Also, 4 bits could be enough to represent the number of items in an association rule.
We put bit 1 at the beginning of binary representation of an item, if it appears in the
antecedent of the association rule. We put bit 0 at the beginning of binary representation
of an item, if it appears in the consequent of the association rule. Using this arrangement,
the lengths of the antecedent and consequent do not required to be stored. The following

bit vector could represent the above association rule.

12 3 4 5 6
00000000000001.101000110100001011 01000110100001011
7 8 9 10

The components of above bit vector are explained below.

Component 1 represents the first database (i.e., D;)

Component 2 represents the number of items in the association rule (i