
The thesis entitled

KNOWLEDGE DISCOVERY IN DATABASES WITH AN

EMPHASIS ON MULTIPLE LARGE DATABASES

Submitted to the

Goa University

For the degree of

Doctor of Philosophy in

Computer Science and Technology

By

0 05 • 71

Mr Animesh Adhikari

Department of Computer Science

S P Chowgule College

Margao, Goa 403 601

/4,

//)111-0

Under the guidance of 	 G 4. •

Dr P R Rao

Department of Computer Science and Technology

Goa University, Goa

May 30, 2008 	
428

11

4

Dedication

The thesis has been divided into the following three parts: Part 1, Part 2, and Part 3.

Part 1 is dedicated to my mother, Manorama Adhikari, and father, Radhaballav Adhikari.

Part 2 is dedicated to my sisters and brothers.

Part 3 is dedicated to my wife, Jhimli, and our son, Sohom.

of

iii

Acknowledgement

I would like to thank my advisor, Dr P R Rao, for his support and advices during past

three years.

I would like to thank State Government of Goa, India for sponsoring me on faculty

improvement program with leave to take up full time research.

I am grateful to Dr R V Gaonkar, Principal, S P Chowgule College, Goa, for processing

my study leave application at the right time.

I am also grateful to Dr A S Kanade, former Principal, S P Chowgule College, Goa, for

his encouragement and support for higher studies.

I would like to thank to my colleagues for their supports during the perit4 of my study

leave.

I am grateful to my wife, Jhimli, my sisters and my brothers for their moral supports.

)1'

iv

Statement from student

As required under ordinance OB-9.9 of Goa University, I state that the present Ph D

thesis entitled "Knowledge discovery in databases with an emphasis on multiple large

databases" is my original contribution and the same has not been submitted on any

previous occasion. To the best of my knowledge, the present study is the first

comprehensive work of its kind in the area of Data Mining and Knowledge Discovery.

The literature related to the problem investigated has been cited. Due

acknowledgements have been made whenever facilities and suggestions have been

availed of.

Animesh Adhikari

Department of Computer Science

S P Chowgule College

Margao, Goa 403 602

India

Date: 30/05/2008

CERTIFICATE

This is to certify that the thesis entitled "Knowledge Discovery in Databases
with an Emphasis on Multiple Large Databases", submitted by Mr.Animesh
Adhikari for the award of the degree of Doctor of Philosophy in Computer
Science and Technology is based on his original work carried out under my
supervision. The thesis or any part thereof has not been previously submitted
for any other degree or diploma in any University or Institute.

Place: Goa University 	 Dr. P. R. Rao
Department of Computer Science and Technology

Goa University, Taleigao Plateau
Goa-403206, India

Certified that all corrections suggested by the examiners have been
incorporated in the thesis.

OV\

C M#0 A R AS, M

Feb 2, 2-02 9

2_12-hr-cl

vi

List of publications

(1 research monograph, 7 journal papers, 1 book chapter and 4 conference papers)

1. List of published papers

1.1. Journal papers

[1] Animesh Adhikari, P R Rao, "Enhancing quality of knowledge synthesized from

multi-database mining", Pattern Recognition Letters 28(16), 2007, pp. 2312 - 2324.

[2] Animesh Adhikari, P R Rao, "Synthesizing heavy association rules from different

real data sources", Pattern Recognition Letters 29(1), 2008, pp. 59 - 71.

[3] Animesh Adhikari, P R Rao, "Efficient clustering of databases induced by local

patterns", Decision Support Systems 44(4), 2008, pp. 925 - 943.

[4] Animesh Adhikari, P R Rao, "Mining conditional patterns in a database", Pattern

Recognition Letters 29(10), 2008, pp. 1515-1523.

[5] Animesh Adhikari, P R Rao, "Capturing association among items in a database",

Data & Knowledge Engineering 67(3), 2008, pp. 430-443.

1.2. Book chapter

[1] Animesh Adhikari, P R Rao, "Association rules induced by item and quantity

purchased", J R Haritsa, R Kotagiri, and V Pudi (Eds.): Proceedings of

International Conference on Database Systems for Advanced Applications

(DASFAA), LNCS 4947, 2008, pp. 478 - 485.

vii

List of publications

(Continued)

1.3. Conference papers

[1] Animesh Adhikari, P R Rao, "Study of select items in multiple databases by

grouping", Proceedings of 3rd Indian International Conference on Artificial

Intelligence (IICAI), 2007, pp. 1699 - 1718.

[2] Animesh Adhikari, P R Rao, "Synthesizing global exceptional patterns in multiple

databases", Proceedings of 3rd Indian International Conference on Artificial

Intelligence (IICA1), 2007, pp. 512 - 531.

[3] Animesh Adhikari, P R Rao, "A framework for synthesizing arbitrary Boolean

expressions induced by frequent itemsets", Proceedings of 3rd Indian International

Conference on Artificial Intelligence (IICA1), 2007, pp. 5 - 23.

[4] Animesh Adhikari, P R Rao, Jhimli Adhikari, "Mining multiple large databases",

Proceedings of 10th International Conference on Information Technology (ICIT),

2007, pp. 80 - 84.

2. List of communicated papers / book

2.1. Research monograph

[1] Animesh Adhikari, P R Rao, W Pedrycz, Developing better multi-database mining

applications, Proposal submitted to Springer.

viii

List of publications

(Continued)

2.2. Journal Papers

[1] Animesh Adhikari, P R Rao, Bhanu Prasad, Jhimli Adhikari, "Mining multiple large

data sources", communicated to International Arab Journal of Information

Technology.

[2] Animesh Adhikari, P R Rao, W Pedrycz, "Study of select items in different sources

by grouping", communicated to Data & Knowledge Engineering journal.

ix

Different parts of thesis

Part 1. Association analysis and pattern recognition in a database

Chapter 1.1.

Chapter 1.2.

Chapter 1.3.

Chapter 1.4.

Chapter 1.5.

Chapter 1.6.

Introduction

Mining conditional patterns in a database

A framework for synthesizing arbitrary Boolean expressions induced by

frequent itemsets

Capturing association among items in a database

Association rules induced by item and quantity purchased

Conclusion

Part 2. Pattern recognition in multiple databases

Chapter 2.1.

Chapter 2.2.

Chapter 2.3.

Chapter 2.4.

Chapter 2.5.

Introduction

Synthesizing global exceptional patterns in multiple databases

Synthesizing heavy association rules from different real data sources

Clustering frequent items in multiple databases

Conclusion

Part 3. Developing better multi-database mining applications

Chapter 3.1.

Chapter 3.2.

Chapter 3.3.

Chapter 3.4.

Chapter 3.5.

Chapter 3.6.

Chapter 3.7.

Introduction

Mining multiple large databases

Enhancing quality of knowledge synthesized from multi-database mining

Efficient clustering of databases induced by local patterns

Study of select items in multiple databases by grouping

A framework for developing better multi-database mining applications

Conclusion

x

Synopsis

Discovering and processing of knowledge in databases are two important categories of

tasks. Many important themes of activities could fall under these categories of tasks. The

work done in this thesis could be divided into three parts. The theme of Part 1 has been

entitled as "Association Analysis and Pattern Recognition in a Database". Part 2 is based

on the theme "Pattern Recognition in Multiple Databases". Finally, the theme of Part 3

has been entitled as "Developing Better Multi-database Mining Applications". In the

following paragraphs, we describe the work performed in different chapters of these three

parts.

We have defined the notion of conditional pattern in a transactional database. It helps

us to study the association among the items in Y along with negation of items in X-Y at a

given itemset X, for all nonempty Y such that Y c X. We have designed an algorithm to

mine interesting conditional patterns in a database. Experiments are conducted on three

real databases. The results of the experiments show that conditional patterns store

significant nuggets of knowledge about a database.

Frequent itemsets determine major characteristics of a transactional database. Thus, it

is important to mine arbitrary Boolean expressions induced by frequent itemsets. From a

frequent itemset, one could generate Boolean expressions of members of the frequent

itemset connecting through Boolean operators. We have established a simple and elegant

framework for synthesizing arbitrary Boolean expressions using conditional patterns in a

database. It determines the supports of the Boolean expressions generated from a frequent

itemset. Experimental results are provided on both real and synthetic databases.

w.

Synopsis 	 xi

Many data analyses require a suitable metric to capture ss ciation among a set of

items in a database. Metri6 such as correlation, Jaccard/lcould be used to measure <—

association between two items in a database. On the other hand, metrics such as support,

collective strength, all-confidence have been used to measure interestingness of an

itemset. The major concern regarding computation of collective strength of an itemset is

that the computation is based on statistical independence of items of the itemset.

Moreover, metrics such as support and all-confidence do not consider the frequencies of

subsets of an itemset. In general, an existing metric might not be effective to serve as a

measure of association among a set of items in a database. We have presented two

measures of association, A l and A2, for capturing association among a set of items.

Measure A l is the proportion of the number of transactions containing all the items of the

itemset and the number of transactions containing at least one of the items of the itemset.

On the other hand measure A2 is based on a weighting model. The weight of a transaction

is proportion to the number of items of the itemset present in the transaction. For

example, if a transaction contains all the items of an itemset, then it has the maximum

weight for the given itemset so far as the association among items in the itemset is

concerned. Based on measure A2, we introduce the notion of associative itemset in a

database. We express A l and A2 in terms of supports of itemsets. We also provide

theoretical foundation of the work. Finally, we present experimental results on both real

and synthetic databases to show the effectiveness of A2.

Most of the real market basket data are non-binary in the sense that an item could be

purchased multiple times in the same transaction. In this case, there are two types of

occurrences of an itemset in a database: the number of transactions in the database

containing the itemset, called the transaction frequency of an itemset, and the number of

occurrences of the itemset in the database, called the database frequency of an itemset.

Traditional support-confidence framework might not be adequate for extracting

association rules in such a database. We have defined following three categories of

association rules: (i) Association rules induced by transaction frequency of an itemset,

Synopsis 	 xii

(ii) Association rules induced by database frequency of an itemset, and (iii) Association

rules induced by both transaction frequency and database frequency of an itemset. We

have established a framework based on traditional support-confidence framework for

mining each category of association rules. We have presented experimental results based

on two databases.

Multi-database mining has been recognized recently as an important area of research.

The first problem we present here is to identify global exceptional patterns in multiple

databases. A global exceptional pattern describes interesting individuality of few

branches. Therefore, it is interesting to identify such patterns. We have given a definition

of global exceptional frequent itemset in multiple databases. A global exceptional

frequent itemset has high support in multiple databases. But, it is reported from a few

data sources. Also, we have defined the notion of exceptional sources for a global

exceptional frequent itemset. The data sources that support a global exceptional frequent

itemset heavily are called exceptional sources for the global exceptional frequent itemset.

We have designed an algorithm for synthesizing global exceptional frequent itemsets.

Experimental results are presented on both artificial and real databases. We have

compared our algorithm with the existing algorithm theoretically and experimentally. The

experimental results show that the proposed algorithm is effective and promising.

We have defined two new patterns, called exceptional association rule and heavy

association rule in multiple databases. A heavy association rule has high support and high

confidence in multiple databases. An exceptional association rule is a heavy association

rule that is reported from a few data sources. On the other hand, a high-frequent

association rule is extracted from many data sources. We have designed an algorithm to

mine high-frequent, exceptional and heavy association rules in multiple databases. In this

connection, we have designed an extended model of local pattern analysis. In the

extended model, we have included many layers and interfaces. Thus, it helps us to mine

multiple databases systematically. In the extended model, a global pattern is synthesized

Synopsis 	 xiii

based on both local patterns and suggested local patterns. Thus, it improves the accuracy

of multi-database mining. We present experimental results on three real databases. Also,

we make a comparative analysis between our algorithm and an existing algorithm.

Frequent items could be considered as the basic ingredients of different types of

knowledge in a database. Based on measure A2 and a multi-database mining technique,

we have designed an algorithm for clustering frequent items in multiple databases. We

have conducted experiments on three databases to judge effectiveness of the clustering

technique.

Effective data analysis with multiple databases requires highly accurate patterns. Due

to large size of some local databases, a traditional data mining technique might not be

suitable for mining the collection of all local databases. Also, local pattern analysis might

extract low quality of patterns from multiple databases. Thus, it is necessary to improve

mining multiple databases. We have designed a new multi-databases mining technique,

called PFM + SPS. It combines pipelined feedback model (PFM) and simple pattern

synthesizing (SPS) algorithm for mining multiple large databases. In this technique, each

local database is mined using a traditional data mining technique in a particular order for

synthesizing global patterns. The technique improves quality of synthesized global

patterns significantly. We 'conduct experiments on both real and synthetic databases to

judge effectiveness of our technique.

Multi-database mining using local pattern analysis could be considered as an

approximate method of mining multiple large databases. Thus, it might be required to

enhance the quality of knowledge synthesized from multiple databases. Also, many

decision-making applications are directly based on the available local patterns in different

databases. The quality of synthesized knowledge / decision based on local patterns in

different databases could be enhanced by incorporating more local patterns in the

knowledge synthesizing / processing activities. Thus, the available local patterns play a

crucial role in building efficient multi-database mining applications. We represent pat-

LJ

Synopsis 	 xiv

terns in condensed form by employing a coding, called ACP coding. It allows us to store

more local patterns in the main memory. Accordingly, one could extract more patterns by

lowering further the user inputs, like minimum support and minimum confidence. The

proposed coding enables more local patterns participate in the knowledge synthesizing /

processing activities and thus, the quality of synthesized knowledge based on local

patterns in different databases gets enhanced significantly at a given pattern synthesizing

algorithm and computing resource.

For the purpose of mining relevant databases one may need to cluster the given

databases. It could help reducing the cost of searching relevant information in multiple

large databases. In this regard, we have defined two measures of similarity between a pair

of databases, called simii and simi2. Measure simii is the ratio of the number frequent

itemsets common to databases and the total number of distinct frequent itemsets in these

databases. But, the similarity measure simi2 is based on the supports of the frequent

itemsets in the databases. We have proved the metric properties of corresponding

distance measures. We have designed an algorithm for clustering a set of databases. For

the purpose of enhancing efficiency of the clustering process, we have presented a new

coding technique, called itemset (IS) coding, for representing frequent itemsets in

different databases. It allows more local patterns to participate in decision-making

measures. Efficiency of the clustering process has been improved using the following

strategies: reducing execution time of clustering algorithm, using more appropriate

similarity measure, and storing frequent itemsets space efficiently.

Many important decisions are based on a set of specific items, called the select items.

Thus, the analysis of select items in multiple databases is an important issue. For purpose

of studying select items in multiple databases, a model of mining global patterns of select

items in multiple databases has been designed. We have defined a measure of overall

association (OA) between two items in a database. Measure OA is based on both positive

and negative association between two items in a database. We have designed an algo-

Synopsis 	 xv

rithm based on OA for the purpose of grouping the frequent items in multiple databases.

Each group contains a select item, called the nucleus item of the group and the group

grows centring round the nucleus item. Experimental results are presented on real,

synthetic and artificial databases.

A multi-database mining application could be developed using a sequence of stages. It

might be possible to provide a framework for each stage of the development process.

Finally, we provide a framework for developing better multi-database mining

applications.

xvi

Table of contents

Dedication 	 ii

Acknowledgement 	 iii

Statement from student 	 . iv

Certificate from supervisor 	

List of publications 	 vi

	

Different parts of thesis ix

Synopsis 	

Table of contents 	 xvi

Part 1 Association analysis and pattern recognition in a database 	 1.1

Chapter 1.1 Introduction 	 . 1.2

Chapter 1.2 Mining conditional patterns in a database 	 1.4

1.2.2 Conditional pattern 	 1.7

1.2.3 Properties of conditional patterns 	 1.10

1.2.4 Mining conditional patterns 	 1.15

1.2.4.1 Algorithm design 	 1.16

1.2.5 Experiments 	 1.20

1.2.5.1 An application 	 1.27

1.2.6 Related work 	 1.27

1.2.7 Conclusion 	 1.28

Chapter 1.3 A framework for synthesizing arbitrary Boolean expressions induced by

frequent itemsets 	 1.30

1.3.2 Related results 	 1.34

1.3.3 Synthesizing generators 	 1.37

1.3.3.1 Algorithm design 	 1.37

1.3.3.2 Synthesizing first k Boolean expressions induced by top p frequent itemsets

	 1.41

xvii

Table of contents

(Continued)

1.3.4 Experiments 	 1.42

1.3.4.1 Application: Effect of a specific item on other items over time 	 1.49

1.3.5 Related work 	 1.50

1.3.6 Conclusion 	 1.50

Chapter 1.4 Capturing association among items in a database 	 1.52

1.4.2 Related work 	 1.54

1.4.3 New measures of association 	 1.55

1.4.4 Properties of A 1 and A2 	 1.57

1.4.4.1. Capturing association 	 ... 	1.66

1.4.5 An application: Clustering frequent items in a database 	 1.66

1.4.6 Experimental results 	 1.67

1.4.6.1 Top associative itemsets among frequent itemsets 	 1.68

1.4.6.2 Finding the difference in similarity 	 1.70

1.4.6.3 Execution time for measuring association 	 1.71

1.4.7 Conclusion 	 1.74

Chapter 1.5 Association rules induced by item and quantity purchased 	 1.75

1.5.2 Association rules in a TIMT type database 	 1.77

1.5.3 Frameworks for mining association rules under different categories 	 1.79

1.5.3.1 Framework for mining association rules under category I 	 1.79

1.5.3.2 Framework for mining association rules under category II 	 1.80

1.5.3.3 Framework for mining association rules under category III 	 1.81

1.5.3.4 Dealing with items measured in continuous scale 	 1.82

1.5.4 Properties of different interestingness measures 	 1.82

1.5.5 Mining association rules 	 1.83

1.5.6 Experiments 	 1.84

xviii

Table of contents

(Continued)

1.5.7 Related work 	 1.89

1.5.8 Conclusion 	 1.91

Chapter 1.6 Conclusion 	 1.92

Part 2 Pattern recognition in multiple databases 	 2.1

Chapter 2.1 Introduction 	 2.2

Chapter 2.2 Synthesizing global exceptional patterns in multiple databases 	 2.4

2.2.2 Problem statement 	 2.7

2.2.2.1 Related work 	 2.7

2.2.2.2 Our approach 	 2.10

2.2.3 Synthesizing support of an itemset 	 2.13

2.2.4 Synthesizing global exceptional itemsets 	 2.14

2.2.5 Error calculation 	 2.20

2.2.6 Experiments 	 2.20

2.2.6.1 Comparison with the existing algorithm 	 2.27

2.2.6.1.1 Average error 	 2.27

2.2.6.1.2 Synthesizing time 	 2.28

2.2.7 Conclusion 	 2.29

Chapter 2.3 Synthesizing heavy association rules from different real data sources .. 2.31

2.3.2 Problem statement 	 . 2.33

2.3.3 Related work 	 2.37

2.3.4 An extended model of synthesizing global patterns from local patterns in

different databases 	 2.39

2.3.5 Synthesizing an association rule 	 2.41

2.3.5.1 Algorithm design 	 2.44

2.3.5.2 Finding expected lower bound of the number of suggested association rules

xix

Table of contents

(Continued)

2.3.6 Error calculation 	

2.3.7 Experiments 	

2.3.7.1 Comparison with existing algorithm 	 ..

	 2.49

2.51

2.52

2.57

2.3.7.1.1 Analysis of average error 	 2.57

2.3.7.1.2 Analysis of execution time 	 2.58

2.3.8 Conclusions 	 2.59

Chapter 2.4 Clustering frequent items in multiple databases 	 2.61

2.4.2 Problem statement 	 2.64

2.4.2.1 Related work 	 2.64

2.4.2.1.1 Measures of association 	 2.65

2.4.2.1.2 Multi-database mining techniques 	 2.65

2.4.2.1.3 Clustering techniques 	 2.69

2.4.2.2 Our approach 	 2.70

2.4.3 Measuring association among items 	 2.70

2.4.4 Synthesizing support of an itemset 	 2.71

2.4.5 Clustering of frequent items 	 2.74

2.4.5.1 Finding the best non-trivial partition 	 2.78

2.4.5.2 Analysis of error 	 2.83

2.4.6 Experimental results 	 2.84

2.4.6.1 Overall output 	 2.85

2.4.6.2 Synthesis of highly extracted itemsets 	 2.87

2.4.7.3 Error of the experiment 	 2.89

2.4.7.4 Average error versus y 	 2.90

2.4.7.5 Average error versus a 	 2.91

XX

Table of contents

(Continued)

2.4.7.6 Clustering time versus number of databases 	 2.92

2.4.7.7 Comparison with existing technique 	 2.93

2.4.8 Conclusion 	 2.95

Chapter 2.5 Conclusion 	 2.96

Part 3 Developing better multi-database mining applications 	 3.1

Chapter 3.1 Introduction 	 3.2

Chapter 3.2 Mining multiple large databases 	 3.4

3.2.2 Problem definition 	 3.6

3.2.2.1 Related work 	 3.6

3.2.2.2 Our approach 	 3.7

3.2.3 Mining multiple databases 	 3.8

3.2.4 Error of an experiment 	 3.9

3.2.5 Experiments 	 .. 3.10

3.2.6 Conclusion 	 3.13

Chapter 3.3 Enhancing quality of knowledge synthesized from multi-database mining

	 3.14

3.3.2 Related work 	 3.19

3.3.3 Simple bit vector (SBV) coding 	 3.21

3.3.3.1 Dealing with databases containing large number of items 	 3.23

3.3.4 Antecedent-consequent pair (ACP) coding 	 3.25

3.3.4.1 Indexing rule codes 	 3.30

3.3.4.2 Storing rulebases in secondary memory 	 3.36

3.3.4.3 Space efficiency of our approach 	 3.39

3.3.5 Experiments 	 3.42

3.3.6 Conclusion 	 3.46

Table of contents

(Continued)

3.6.2.3 Re-mining 	 3.110

3.6.3 Improving multi-database mining applications 	 3.110

3.6.3.1 Preparation of data warehouses 	 3.111

3.6.3.2 Selection of databases 	3.112

3.6.3.3 Choosing appropriate technique of multi-database mining 	 3.113

3.6.3.4 Representing patterns space efficiently 	3.113

3.6.3.4.1 Representing association rules 	 3.114

3.6.3.4.2 Representing frequent itemsets 	 3.114

3.6.3.5 Designing a better algorithm for solving the problem 	 3.114

3.6.4 Conclusions 	 3.115

3.7 Chapter 3.7 Conclusion 	3.116

References 	 3.118

1 . 1

Part 1

Association analysis and pattern recognition in a database

1.2

Chapter 1.1

Introduction

Association analysis of items (variables) as well as patterns in a database could play

important roles in finding solutions to many problems. In the context of market basket

data, one could perform various types of association analyses of items purchased. Also,

there may exist new types of pattern useful in solving different problems. We get to know

interesting buying patterns of customers by analyzing a large volume of data. Previous

work on mining frequent itemsets, association rules, and negative association rules might

have not answered all the queries of a data miner, or a decision maker. Let X be a set of

items, called an itemset, purchased frequently in a database. We mention below some

issues that have not been addressed in the previous work.

■ Given an itemset X, we might be interested in the pattern where the items in Y are

purchased and the items in X-Y are not purchased, for nonempty Y c X.

■ Given an itemset X, we might be interested in mining arbitrary Boolean expressions

induced by items in X

■ Given an itemset X, we would like to measure the amount of statistical association

among the items in X

■ We might be interested in the association rules in a database where each transaction

contains the items and their quantities purchased.

In Part 1, we have addressed the above issues and made the following contributions.

■ The notion of conditional pattern in a database has been introduced.

■ An algorithm has been designed to extract interesting conditional patterns from a

database.

Chapter 1.1 	 Introduction 	 1.3

■ A simple and elegant framework has been proposed for synthesizing arbitrary Boolean

expressions.

■ We have proposed two measures of association A1 and A2 for capturing statistical

association among a set of items.

■ The notion of associative itemset is introduced.

■ Three categories of association rules have been introduced in a database containing

transactions of items and their quantities purchased. A framework based on traditional

support-confidence framework has been proposed for mining each category of

association rules.

There might be repetition of some pieces of information in different chapters of different

parts. There are two reasons behind such repetitions. Firstly, some chapters are correlated

in some sense. For example, a multi-database mining technique described is one chapter

and has been used to mine multiple databases for finding a solution to a problem in an

earlier chapter. Secondly, each chapter except the introductory and concluding chapters,

is made complete with respect to the problem discussed, and has been communicated, or

proposed to communicate as a paper to either an international journal, or an international

conference. Nevertheless, we have made efforts to reduce such repetitions.

1.4

Chapter 1.2

Mining conditional patterns in a database

Association analysis of items [11], [17], and selecting right interestingness measures [41],

[75] are two significant tasks being at the heart of many data mining problems. An

association analysis is generally associated with interesting patterns in a database. A

pattern would become interesting if the associated interestingness measures satisfy some

conditions. Association rules [11] and negative association rules [17] are examples of two

types of patterns that are synthesized from the itemset patterns in a database. An

association rule is expressed by a forward implication X —> Y, where X and Y are itemsets

in the database. Itemsets X and Y are called the antecedent and consequent of the

association rule, respectively. The meaning attached to this type of association rules is

that if all the items in X are purchased by a customer then it is likely that all the items in Y

are purchased by the same customer at the same time. On the other hand, a negative

association rule is expressed by one of the following three forward implications: X —>

—X 	Y, and —X —> 	where X and Y are itemsets in the given database. Let us

consider a negative association rule of the form X —> Y. The meaning attached to the

negative association rule of the form X —> 	is that if all the items in X are purchased by

a customer then it is unlikely that all the items in Y are purchased by the same customer at

the same time. Though an association rule expresses interesting association among items

in a frequent itemset, it might not be sufficient for all kinds of association analysis among

items in the itemset.

The importance of an itemset could be judged by its support [11]. Support (supp) of an

itemset X in database D is the fraction of transactions in D containing X. Itemset X is

Chapter 1.2
	

Mining conditional patterns in a database 	 1.5

frequent in D if supp (X, D)> a, where a is user-defined minimum support level. Itemset

X= {xi, x2, . . . , x,, } corresponds to Boolean expression xinx2A. Axm . Thus, if the itemset

{xi, x2, . . . , xm } contains in a transaction then the Boolean expression x1nx2A...Ax„, is true

for that transaction. On the other hand, if the itemset {xi, x2, ..., x m } does not contain in a

transaction then the Boolean expression X1AX2A...Ax m is false for that transaction. In

general, let E be a Boolean expression on the items in D. Then, supp(E, D) is the fraction

of transactions in D that satisfy E.

Frequent itemset mining has received significant attention in the recent time. Several

implementations of mining frequent itemsets [32] have been reported. Frequent itemsets

are important patterns in a database, since they determine major characteristics of a

database. Wu et al. [80] have proposed a solution of inverse frequent itemset mining.

Authors argued that one could efficiently generate a synthetic market basket database

from the frequent itemsets and their supports. Let X and Y be two itemsets in database D.

The characteristics of database D are revealed more by the pair (X, supp (X, D)) than that

of (Y, supp (Y, D)), if supp(X, D) > supp(Y, D). Thus, it is important to study frequent

itemsets more than infrequent itemsets. Negative association rules are generated from

infrequent itemsets. Thus, their applications in different problem domains are limited.

The goal of this chapter is to study some kind of association among items which is not

immediately available from frequent itemsets and association rules.

If X is frequent in D then every non-null subset of X is also frequent in D. Let us

consider the following example.

Example 1.2.1. Let D = {{a, b}, {a, b, c, 	{a, b, c, h}, {a, b, g}, {a, b, h}, {a, c}, {a,

c, d}, {b}, {b, c, d, h}, {b, d, g} }. Let X(17) denote frequent itemset X with support rl. The

frequent itemsets in D at minimum support level 0.2 are given as follows: {a} (0.7),

{b}(0.8), {c}(0.5), {d}(0.4), {g}(0.2), {h}(0.3), {a, b}(0.5), {a, c}(0.4), {a, d}(0.2), {a,

h}(0.2), {b, c}(0.3), {b, d}((0.3), {b, g}(0.2), {b, h}(0.3), {c, d}(0.3), {c, h}(0.2), {a, b,

c}(0.2), {a, b, h}(0.2), {a, c, d}(0.2), {b, c, d}(0.2), {b, c, h}(0.2).

Chapter 1.2
	

Mining conditional patterns in a database 	 1.6

Suppose we wish to study association among items in {a, b, c} . A frequent itemset

mining algorithm could mine the following details about the items in {a, b, c} .

Table 1.2.1. Frequent itemset {a, b, c} and its non-null subsets at a= 0.2

Itemset {a} {b} {c} {a, b} {a, c} {b, c} {a, b, c}

Support 0.7 0.8 0.5 0.5 0.4 0.3 0.2

Table 1.2.1 provides the information regarding how frequently a non-null subset of {a, b,

c} occurs in D. Such information might not be sufficient for all types of queries and

analyses of items in {a, b, c}. •

A positive association rule finds positive association between two disjoint non-null

itemsets. Positive association rules are generated from frequent itemsets in the database.

A positive association rule r: X- Y in D is characterized by its support and confidence

measures [11]. Support of association rule r: X—> Yin D is the fraction of transactions in

D containing both X and Y. Confidence (conf) of an association rule r in D is the fraction

of transactions in D containing Y among the transactions containing X An association

rule r in D is interesting if supp(r, D) a, and conf(r, D) /3, where 16 is the minimum

confidence level. The parameters a and are user-defined inputs to an association rule

mining algorithm. In Example 1.2.2, we generate interesting association rules from {a, b,

c}.

Example 1.2.2. We continue here the discussion of Example 1.2.1. The interesting

association rules generated from {a, b, c} are given in Table 1.2.2.

Table 1.2.2. Association rules generated from {a, b, c} at a= 0.2 and /3= 0.5

Association rule Support Confidence

{a, c} —> {b} 0.2 0.5

{b, c} --> {a} 0.2 0.66667

•

Chapter 1.2
	

Mining conditional patterns in a database 	 1.7

The rest of the chapter is organized as follows. In Section 1.2.2, we introduce the

notion of conditional pattern in a database. We discuss properties of conditional patterns

in Section 1.2.3. In Section 1.2.4, we propose an algorithm for extracting conditional

patterns from a database. Experimental results are given in Section 1.2.5. Also, we

present an application of conditional patterns. We discuss related work in Section 1.2.6.

1.2.2 Conditional pattern

The study of items in {a, b, c} might be incomplete if we know the supports of its non-

null subsets and the association rules with respect to the non-null subsets of {a, b, c}.

Thus, the information provided in Tables 1.2.1 and 1.2.2 might not be sufficient for all

types of queries and analyses related to items in {a, b, c} . In fact, there are some queries

related to items in {a, b, c} whose answers are not immediately available from Tables

1.2.1 and 1.2.2. A few examples of such queries are given below.

a Given a frequent itemset {a, b, c}, find the support of Boolean expression containing

item a but not items b and c.

° Given a frequent itemset {a, b, c}, find the support of Boolean expression containing

items a and b but not item c.

The above queries correspond to a specific type of pattern in a database. Some of these

patterns could have significant supports, since {a, b, c} is a frequent itemset. In general,

if we wish to study the association among the items in Y along with negation of items in

X-Y, then such analysis is not immediately available from frequent itemsets and positive

association rules, given the itemsets X in a database such that Y c X Such association

analyses could be interesting, since the corresponding Boolean expressions could have

high supports. Therefore, we need to mine such patterns for an effective analysis of items

in frequent itemsets.

Let (Y, X) be a pattern that a transaction in a database contains all the items of Y, but

not items of X-Y, for itemsets X and Yin the database such that 0 Y c X. Let supp (Y, X,

Chapter 1.2
	

Mining conditional patterns in a database 	 1.8

D) be the fraction of transactions in database D containing all the items of Y, but not the

items of X-Y, for itemset X in D such that Y c X. A pattern of type (Y, X) is called a

conditional pattern [9]. A conditional pattern (Y, X) has two components: pattern itemset

(Y) and reference itemset (X). Thus, a conditional pattern (Y, X) is associated with two

values: supp(Y, X, D) and supp(X, D). supp(Y, X, D) and supp(X, D) are called

conditional support and reference support of conditional pattern (Y, X) in D,

respectively. The conditional support and reference support of conditional pattern (Y, X)

in D are denoted by csupp(Y, X, D) and rsupp(Y, X, D), respectively. In other words, supp

(Y, X, D) and supp(X, D) are denoted by csupp (Y, X, D) and rsupp (Y, X, D), respectively.

A conditional pattern (Y, X) in D is interesting if csupp(Y, X, D) and rsupp(Y, X, D)

a, where 8 is the minimum conditional support. The parameters a and 8 are user-defined

inputs to a conditional pattern mining algorithm.

The following figures provide more information about given queries.

(i) (ii)

Figure 1.2.1. Shaded regions in (i) and (ii) correspond to conditional supports of ({a},

{a, b, c}) and ({a, b}, {a, b, c}) in D, respectively

The shaded region in Figure 1.2.1(i) is a set of transactions in D such that each

transaction contains item a but not items b and c, with respect to {a, b, c}. The shaded

region in Figure 1.2.1(ii) is a set of transactions in D such that each transaction contains

items a and b but not item c, with respect to {a, b, c} . Conditional support of a

conditional pattern could be synthesized using supports of relevant itemsets in the

database. For example, csupp({a}, {a, b, c} , D) and csupp({a, b} , {a, b, c}, D) could be

synthesized as follows.

Chapter 1.2
	

Mining conditional patterns in a database 	 1.10

Table 1.2.4. Non-trivial conditional patterns with respect to {a, b, c} at 8= 0.2 and a=

0.2

Conditional pattern csupp rsupp Conditional pattern csupp rsupp

({b}, {a, b, c}) 0.2 0.2 ({ a, c}, {a, b, c}) 0.2 0.2

({a, b} , {a, b,) 0.3 0.2

•

We observe that csupp(Y, X, D) supp(Y, D), for Y c X Nonetheless, csupp(Y, X, D)

could be high, if X is frequent in D. Thus, it is necessary to study such patterns in a

database for effective analysis of items in frequent itemsets. The problem could be stated

as follows.

We are given a database D of customer transactions. Extract interesting non-trivial

conditional patterns from D.

1.2.3 Properties of conditional patterns

In this section, we present some interesting properties of conditional patterns in a

database. Before presenting the properties, we introduce some notations. Let X = {xi, x'2,

xm } and Y = Y2, • ypl . Then, supp(XU Y, D) and supp(Xn Y, D) refer to

supp((x/Ax2A Axm) v (y iny2A Ay p), D) and supp((x i Ax 2A ... Ar m) A (y iny 2A Ay p),

D), respectively.

Lemma 1.2.1. Let E be a Boolean expression that a transaction contains at least one

item of itemset X in database D. Then, supp(E, D) = E yc, „0 csupp(Y, X, D) 	(1.2.3)

Proof. We re-state the theorem of total probability [31] in terms of supports as follows:

For any m Boolean expressions Xi, X2, ..., X m in database D, we have supp(U',"_, „ D)

= 	supp(X D) - E: n< j, , , J ., supp(X n x D) 	 supp((l ;"_, X ; , D). The

events (Y, X) and (Z, X) are mutually exclusive, for Y # Z, Y c X and Z c X. Thus,

supp((Y, X) n X), D)= 0, for Y # Z, Y c X and Z c X. •

Chapter 1.2
	

Mining conditional patterns in a database 	 1.11

Let X = {a, b, c} . With reference to Examples 1.2.1 and 1.2.3, supp(avbvc, D) = 1 and

supp(avbvc, D) = csupp({al, X, D) + csupp({b}, X, D) + csupp({c}, X, D) + csupp({a,

b}, X, D) + csupp({a, c}, X, D) + csupp({b, c}, X, D) + csupp(X, X, D). It validates

Lemma 1.2.1.

Lemma 1.2.2. supp(X, D) E y , y ,0 csupp(Y, X, , for any two itemsets X and Y in

database D such that Y c X

Proof. Let X = {x i , x2, ..., x m } . Then X corresponds to Boolean expression x Ax2A 	Ax,,

in D. Let E be a Boolean expression that a transaction contains at least one item of

itemset X in D. Then, supp(E, D) = Eycx y#0 csupp(Y, X, D) , by Lemma 1.2.1.

Therefore, supp(E, D) = csupp(X, X, D) + Q, where Q 0. Then, supp(E, D) = supp(X, D)

+ Q, since supp(X, D) = csupp (X, X, D). The lemma follows. •

With reference to Examples 1.2.1 and 1.2.3, let X = {a, b, c} . Then, supp(X, D) = 0.2.

Now, csupp({a}, X, D) + csupp({b}, X, D) + csupp({c}, X, D) + csupp({a, b}, X, D) +

csupp ({a, c}, X, D) + csupp({b, c}, X, D) + csupp(X, X, D) = 1.0 0.2. It validates

Lemma 1.2.2.

Lemma 1.2.3. The conditional supports of (X Y) and (X Z) in a database may not be

equal, for any three itemsets X Y and Z in the database such that X c Y and X c Z.

Proof. The itemsets Y-X and Z-X may not be the same. Thus, the lemma follows. •

With reference to Example 1.2.1, we get csupp({a, b}, {a, b, h}, D) = 0.3 and csupp({a,

b}, {a, b, d}, D) = 0.4. We observe that csupp({a, b}, {a, b, h}, D) # csupp({a, b}, {a, b,

d} , D). It validates Lemma 1.2.3.

Lemma 1.2.4. There is no fixed ordered relationship between conditional supports of (Y,

X) and (Z, X) in a database, for any three itemsets X Y and Z in the database such that Z

c Yc X

Proof. Let X, Y and Z be three itemsets in database D such that csupp(Y, X, D) 5 csupp(Z,

X, D), for some Z c Y cX Also, there may exist another three itemsets P, Q, and R in

Chapter 1.2
	

Mining conditional patterns in a database 	 1.12

database D such that csupp(R, P, D) csupp(Q, P, D), for some R c Q c P. The proof is

based on a counter example. With reference to Example 1.2.1, let X = {a, b, c}, Y = {a,

b} and Z = {a). Then, csupp(Z, X, D) = csupp({a}, {a, b, c}, D) = 0, and csupp(Y, X, D)

= csupp({a, b} , {a, b, c}, D) = 0.3. In this case, we observe csupp(Z, X, D) csupp(Y, X,

D), for Zc Yc X. Let A = {b, d, h}, B = {b, d} and C = {b}. Then, csupp(C, A, D) =

csupp({b}, {b, d, h}, D) = 0.3, and csupp(B, A, D) = csupp({b, d}, {b, d, = 0.2. In

this case, we observe csupp(B, A, D) csupp(C, A, D), for CcBc A. •

We could synthesize a set of frequent itemsets from a set of association rules. In

particular, let r1 : X-*Y and r2: X-Z be two positive association rules in D, where X, Y

and Z are three frequent itemsets in D. The set of frequent itemsets synthesized from {7'1,

r2 } is {X, XY, XZ} . In a similar way, we could synthesize a set of frequent itemsets from a

set of conditional patterns. In particular, let cpi: ({xi, x2}, {xi, x2, x3}), and cp2 : ({x i , x3 },

{x i , x2, x3}) be two conditional patterns in D, where x, is an item in D, for i = 1, 2, 3. The

set of frequent itemsets is synthesized from {cpl, cp 2 } is { {xi, x2}, {xi, x3}, {x], x2, x3}1.

Example 1.2.4. With reference to Table 1.2.2, the set of frequent itemsets synthesized

from the set of positive association rules is given as follows: { {a, c}(0.4), {b, 0(0.3), {a,

b, c}(0.2)}. With reference to Table 1.2.4, the set of frequent itemsets synthesized from

the set of conditional patterns is given as follows: {{a, b}(0.5), {a, c}(0.4), b,

c}(0.2)}. •

From Example 1.2.4, one could conclude that the association rules and conditional

patterns in a database may not represent the same information about a database, since the

amount of information conveyed by association rules in a database is dependent on 13, at a

given a. Also, the information conveyed by the conditional patterns in a database is

dependent on 6, at a given a. Thus, we have the following definition.

Chapter 1.2
	

Mining conditional patterns in a database 	 1.13

Definition 1.2.1. A set of association rules A and a set of conditional patterns C in a

database convey the same information about a given database if the set of frequent

itemsets synthesized from A is the same as the set of frequent itemsets synthesized from

C. •

Lemma 1.2.5. The set association rules in a database at = a and the set of conditional

patterns in the database at S = 0 represent the same information about the database at a

given a.

Proof. Let S be a set of frequent itemsets in database D. Also, let CLOSURE(S) = {s: (s E

S), or (s 0 and s c p E 5)). Let FIS(D, i) be the set of frequent itemsets in D of size i,

for an i = 1, 2, The set of frequent itemsets synthesized from association rules in D

at /3 = a is equal to CLOSURE (U i , 2 FIS(D, i)). Also, the set of frequent itemsets

synthesized from the conditional patterns in D at 8 = 0 is equal to

CLOSURE (u 12 EN(D, i)). •
With reference to Example 1.2.1, the frequent itemsets in D at a = 0.4 are given as

follows: {a, b}(0.5), {a, c} (0.4). The association rules in D at 13 = 0.4 are given in Table

1.2.5.

Table 1.2.5. Association rules in D at a = 0.4 and /3 = 0.4

Association rule r supp(r, D) conf(r, D)

{a} —> {b} 0.5 0.71429

{b} --> {a} 0.5 0.625

{a} —> {c} 0.4 0.57143

{c} —> {a} 0.4 0.8

The set of frequent itemsets synthesized from the above association rules is equal to

{{a}(0.7), {b}(0.8), {c}(0.5), {a, b}(0.5), {a, c}(0.4)}. The conditional patterns in D at

= 0.4 are given in Table 1.2.6.

Chapter 1.2
	

Mining conditional patterns in a database 	 1.14

Table 1.2.6. Conditional patterns in D at a= 0.4 and 8= 0

Conditional pattern csupp rsupp Conditional pattern csupp rsupp

({a}, {a, b}) 0.2 0.5 ({a}, {a, c}) 0.3 0.4

({b}, {a, b}) 0.3 0.5 ({c}, {a, c}) 0.1 0.4

The set of frequent itemsets synthesized from the above conditional patterns is equal to

{{a}(0.7), {b}(0.8), {c}(0.5), {a, b}(0.5), {a, c}(0.4)}. Thus, the set of frequent itemsets

synthesized from the above association rules and the set of frequent itemsets synthesized

from the above conditional patterns are the same at p= a and 8 = 0. Thus, it validates

Lemma 1.2.5.

Lemma 1.2.6. Let the conditional pattern (Y, X) in database D be interesting at

conditional support level Sand support level a. Then itemset Y is frequent at level a + 6

Proof. csupp(Y, X, D) 8 . and supp(X, D) a, since (Y, X) is interesting in D at

conditional support level 8 and support level a. The patterns X and (Y, X) in D cannot

occur in a transaction simultaneously. supp(X, D) a implies supp(Y, D) a, since Y

X Also, csupp(Y, X, D)?. S and thus, supp(Y, D) (a + 8). •

With reference to Example 1.2.3, ({b}, {a, b, c}) is interesting conditional pattern in D at

8 = 0.2 and a = 0.2. With reference to Example 1.2.1, supp({b}, D) = 0.8 0.2 + 0.2 =-

0.4. Thus, it validates Lemma 1.2.6.

Lemma 1.2.7. Let Xi, X2, ..., Xm be itemsets in database D such X, c X,+1, for i = 1, 2, ...,

m-1. Then, csupp(Y, X,, csupp(Y, X, +1, D), for Yc X, at every i = 1, 2, ..., m-1.

Proof. Let Y = {al, a2, ..., ap } . For i = k, let Z = Xk+i-Xk. Also let, Xk = {bi, b2, 	bq },

and Z = {ci, cz, 	Cr}. Consider the following two Boolean expressions: El =

and E2 =

A1C2A 	 The Boolean expressions E1 and E2 correspond to conditional patterns

Chapter 1.2
	

Mining conditional patterns in a database 	 1.15

(Y, Xk) and (Y, Xk+1), respectively. The expression E2 is more restrictive than the

expression El. Thus, supp(E D) ?_ sup(E2, D). •

With reference to database D of Example 1.2.1, let Y = {b}, XI = {a, b} and X2 = {a, b,

c} . We have csupp(Y, = 0.3 and csupp(Y, X2, = 0.2. We observe that csupp(Y,

X1, D) csupp(Y, X2, D).

1.2.4 Mining conditional patterns

For mining conditional patterns in a database, we need to find their conditional supports.

We calculate csupp(Y, X, D) in terms of supports of relevant frequent itemsets, for Y c X

Let X = YU Z, where Z = {al, a2, ap } . The following theorem [9] is useful for

synthesizing conditional supports using relevant frequent itemsets in D.

Lemma 1.2.8. Let X Y and Z are itemsets in database D such that X = YU Z, where Z =

{al, a2, 	ap}. Then, csupp(Y, X D) = supp(Y, D) 	supp(Yn{aj,D) +1

supp(Y n {ai , a j }, D) - 	j,k =1 supp(Y n {a„ 	ak } , 	+

xsupp(Yn{a l ,a2 ,...,ap },D) (1.2.4)

Proof. We shall prove the result using the method of induction on p. For p = 1, X =

Yn {ai}. Then, csupp(Y, X, D) = supp(Y, D) - supp(Yn {al}, D). Thus, the result is true

for p = 1. Let us assume that the result is true for p = m.

We shall prove that the result is true for p = m + 1. Let Z = {ar, a2, 	am+1 } . Due to

the addition of item 4,4_1, many supports are required to be added to or, subtracted from

the expression of csupp(Y, X, D) at p = m. For example, supp(Yn la m+11, D) is required

to be subtracted, supp(Yn 	am+11, D) is required to be added, for 1 i m, and so on.

Finally, the term (-1) rn+1 x supp(Y n 	a2 , am:fi b D) is required to be added. Thus, the

expression of csupp(Y, X, D) at p = m + 1, is given as follows.

Chapter 1.2
	

Mining conditional patterns in a database 	 1.16

csupp (Y, X, D) = supp(Y, D) 	supp (Y n{a,} , D) EnZ,i .1 suPP(Y n {a, a , D)

j , k supp(Y n {a, a J , a k } , D) + . + (1)m+l x supp (Y n 	a2 , ..., a ,,,+,} , D) . •

Formulas (1.2.1) and (1.2.2) validate above theorem. We shall use this formula in the

algorithm for computing conditional support of a conditional pattern.

Lemma 1.2.9. The maximum number of non-trivial conditional patterns is equal to

ExEFis(D) , ixi>2 2ixi- 2, where FIS(D) is the set offrequent itemsets in database D.

Proof. The number of nonempty subsets of X excluding X is equal to 2 - 2. Each such

subset of X corresponds to a non-trivial conditional pattern with reference to X. Thus, the

lemma follows. •

The interestingness of a conditional pattern is judged by its conditional support and

reference support. By combining both the measures one could define many

interestingness measures of a conditional pattern. An appealing measure of

interestingness of a conditional pattern (Y, X) in database D could be csupp(Y, X, D) +

rsupp(Y, X, D).

1.2.4.1 Algorithm design

For mining conditional patterns in a database, we make use of an existing frequent

itemset mining algorithm [13], [39], [66]. There are two approaches of mining

conditional patterns in a database.

In the first approach, one could synthesize conditional patterns from current frequent

itemset extracted during the mining process. As soon as a frequent itemset is found

during the mining process, one could call an algorithm for finding conditional patterns

using the current frequent itemset. When a frequent itemset is extracted, then all the non-

null subsets of the frequent itemest have already been extracted. Thus, one could

synthesize all the conditional patterns from the current frequent itemset extracted from

the database. In the second approach, one could synthesize conditional patterns from the

frequent itemsets in the given database after mining of all frequent itemsets. Thus, all

Chapter 1.2
	

Mining conditional patterns in a database 	 1.17

the frequent itemsets are processed at the end of mining task. These two approaches seem

to be the same so far as the computational complexity is concerned. In this chapter, we

have followed the second approach of synthesizing conditional patterns. During the

process of mining frequent itemsets, the frequent itemsets of smaller size get extracted

before the frequent itemsets of larger size. The frequent itemsets are stored in array FIS

and get sorted based on their size automatically. During the processing of current

frequent itemset, all the non-null subsets are available before the current itemset in FIS.

Before presenting the proposed algorithm of synthesizing the conditional patterns, we

first state how we have designed the synthesizing algorithm. The frequent itemsets of size

1 generate trivial conditional patterns. Thus, the algorithm skips processing frequent

itemsets of size 1. There are 2M-1 non-null subsets of an itemset X. Each non-null subset

of X may correspond to an interesting conditional pattern, for X > 2. The subset X of X

corresponds to a trivial conditional pattern. Thus, we need to process 2 1A1 -2 subsets of X

One could view a conditional pattern as an object having the following attributes:

pattern, reference, csupp, and rsupp. We use an array CP to store conditional patterns in

a database. The y attribute of i-th conditional pattern is accessed by notation CP(i).y.

Also, a frequent itemset could be viewed as an object described by the following

attributes: itemset and supp. Let N be the number of frequent itemsets in the given

database D. The variables i and j are used to index the frequent itemset being processed

and the conditional pattern being synthesized, respectively. An algorithm [9] for

synthesizing interesting non-trivial conditional patterns is presented below.

Algorithm 1.2.1. Synthesize interesting non-trivial conditional patterns in a database.

procedure ConditionalPatternSynthesis (N, FIS)

Input:

N: number of frequent itemsets in the given database

FIS: array of frequent itemsets in the given database

Chapter 1.2
	

Mining conditional patterns in a database 	 1.18

Output:

Interesting non-trivial conditional patterns in the database

1: let i =

2: let j = 1;

3: while (IFIS(i)I = 1) do

4: increase i by 1;

5: end while

6: while (i N) do

7: CP(/).rsupp = FIS(i).supp; CP(j).reference = FIS(i).itemset;

8: let sum = 0;

9: for k = 1 to (21FIS(1)
itemsetj 1) do

10: let templtemset = k-th subset of FIS(i).itemset;

11: if (FIS(i).itemset = templtemset) then go to line 24; end if

12: let kk = 1;

13: while (kk i) do

14: if (FIS(kk).itemset = templtemset) then

15: sum = sum + (-1)IFIS(kk) itemsetl — Itempltemsetl
X FIS(kk).supp;

16: go to line 21;

17: end if

18: increase kk by 1;

19: end while

20: end for

21: if (sum 8) then

22: CP(i).csupp = sum; CP(i).pattern = templtemset;

23: increase j by 1;

24: end if

25: increase i by 1;

26: end while

Chapter 1.2
	

Mining conditional patterns in a database 	 1.19

27: sort conditional patterns on (csupp + rsupp) in non-increasing order;

28: for k = 1 to j do

29: display k-th conditional pattern;

30: end for

end procedure

In this paragraph, we explain and justify the statements of the above algorithm. The

important parts of the algorithm are explained as follows. The frequent itemsets of size 1

generate trivial conditional patterns. Thus, we have skipped processing frequent itemsets

of size one using lines 3-5. We synthesize conditional patterns using lines 6-26. There are

2IA1 -1 non-null subsets for an itemset X. Each subset is considered using a for-loop in lines

9-20. The algorithm synthesizes conditional patterns with reference to a frequent itemset

X, for X 2. The algorithm bypasses processing itemset Y, if Y= X When we synthesize

conditional patterns with reference to a frequent itemset, we have already finished

synthesizing its subsets. All the non-null subsets appear on or before the frequent itemset

in FIS. Thus, if a frequent itemset X located at position i, then we search for a subset of X

from index 1 to i in FIS, since FIS is sorted in non-decreasing order on length of an

itemset. Thus, it justifies the condition of while loop at line 13. Formula (1.2.4) expresses

csupp X, D) in terms of supp(Y(1Z, D), for all Z c X-Y. The coefficient of supp(YnZ,

D) is (-1)14 in the expression of csupp(Y, X, D). Thus, csupp(Y, X, D)

Izgx-y(-1)1zi x csupp (Y, X, D) . This formula has been applied at line 15 to calculate

csupp(Y, X, D). A conditional pattern is interesting if the conditional support is greater

than or equal to 8, provided the reference support of the itemset is greater than or equal to

a. We need not check the reference support, since we deal with the frequent itemsets. In

line 21, we check whether the currently synthesized conditional pattern is interesting. The

details of a synthesized conditional pattern are stored using lines 7 and 22. At line 27, we

sort all interesting conditional patterns in the given database. Finally, we display interes-

Chapter 1.2
	

Mining conditional patterns in a database 	 1.20

ting conditional patterns using lines 28-30. We calculate time complexity of algorithm

ConditionalPatternSynthesis using Lemma 1.2.10.

Lemma 1.2.10. Algorithm ConditionalPatternSynthesis executes in 0(N 2 x 2P) time,

where N and p are the number of frequent itemsets and the average size of the frequent

itemsets of size greater than 1 in the database, respectively.

Proof. Lines 3-5 take 0(N) time. The while-loop at line 6 repeats maximum N times.

Thus, the for-loop at line 9 repeats 2P-1 times. The while-loop at line 13 repeats

maximum N times. Thus, the time complexity of lines 6-26 is equal to O(N 2 x 2P). The

time complexity of line 27 is equal to O(N x 2P x log(N x 2P)), since the number of

conditional patterns is equal to O(N x 2"). The time complexity of lines 28-30 is equal to

O(N x 2"). Therefore, the time complexity of the algorithm is maximum {O(N 2 x 2"), O(N

x 2' x log(N x 2P)) 1. •

1.2.5 Experiments

We have carried out several experiments to study the effectiveness of our approach. All

the experiments have been implemented on a 1.6 GHz Pentium processor with 256 MB

of memory using visual C++ (version 6.0) software. We present experimental results

using three real databases. Database retail [34] is obtained from an anonymous Belgian

retail supermarket store. Databases BMS-Web-Wiew-1 and BMS-Web-Wiew-2 can be

found from KDD CUP 2000 [34]. They are processed for the purpose of conducting

experiments. We present some characteristics of these databases in Table 1.2.7.

Table 1.2.7. Database characteristics

Database # transaction
Avg length

of a transaction

Avg frequency

of an item
items

retail 88,162 11.305755 99.673800 10000

BMS-Web-Wiew-1 1,49,639 2.000000 155.711759 1922

BMS-Web-Wiew-2 3,58,278 2.000000 7165.560000 100

Chapter 1.2 	 Mining conditional patterns in a database 	 1.21

Top five interesting conditional patterns of available categories are shown in Table 1.2.8.

We have implemented apriori algorithm for the purpose of mining conditional patterns in

the given databases. The conditional patterns in a database are ranked based on the sum

of conditional support and reference support.

Table 1.2.8. Top 5 conditional patterns of each category available in retail at a= 0.05

and 8= 0.03

Conditional pattern csupp rsupp

({39}, {1, 39}) 0.520451 0.066332

({39}, {8, 39}) 0.524421 0.062362

({39}, {0, 39}) 0.526871 0.059912

({39}, {2, 39}) 0.525612 0.061171

({39}, {3, 39}) 0.525714 0.061069

({39} 	{39, 41, 48}) 0210317 :0.083551

({39}, {32, 39, 48}) 0.221603 0.061274

({39} 	{38, 39, 48}) 0.208106 0.069213

({48}, {39, 41, 48}) 0.139482 0.083551

({32}, {32, 39, 48}) 0.049432 0.061274

({39,48}, {32, 39, 48}) 0.269277 0.061274

({39, 48}, {39, 41, 48}) 0.247000 0.083551

({39, 48}, {38, 39, 48}) 0.261337 0.069213

({38, 39}, {38, 39, 48}) 0.048127 0.069213

({32, 39}, {32, 39, 48}) 0.034629 0.061274

Chapter 1.2
	

Mining conditional patterns in a database 	 1.22

Table 1.2.9. Top 5 conditional patterns of each category available in BMS-Web-Wiew-1

at a= 0.01 and 8= 0.009

Conditional pattern csupp rsupp

({5}, {1, 5}) 0.235453 0.013740

({5}, {3, 7}) 0.236135 0.013058

({5}, {5, 7}) 0.235293 0.013900

({5}, {5, 9}) 0.236335 0.012858

({7}, {7, 9}) 0.203563 0.011568

Table 1.2.10. Top 5 conditional patterns of each category available in BMS-Web-Wiew-2

at a= 0.009 and 8 = 0.007

Conditional pattern csupp rsupp

“71, {1, 7}) 0.174072 0.022943

“71, {6, 7}) 0.185401 0.011614

({7}, {7, 9}) 0.175810 0.021204

({7}, {0, 7}) 0.185702 0.011312

({7}, {2, 7}) 0.185747 0.011268

In both BMS-Web-Wiew-1 and BMS-Web-Wiew-2, only one category of conditional

patterns is available, since the maximum length of a transaction in each of these two

databases is 2.

We have also conducted experiments for execution time needed for finding conditional

patterns in different databases. The execution time for finding conditional patterns in a

database increases as the size, i.e., the number of transactions contained in a database

increases. We observe this phenomenon in Figures 1.2.2 and 1.2.3. We have also

conducted experiments for execution time needed for synthesizing conditional patterns in

a database. The time required for synthesizing conditional patterns in each of the above

80 	
60 	
40 	
20 	

0

Q AC)
 N

b, 6 6 A 6 6

Number of transactions

E
xe

cu
ti

on
 t

im
e

(s
ec

.)

'0;9:

20
15
10
5

0

N
cb0

r)
oz

1).•

oz. 	oz 	oz. oz.
ti

cp <1, 	Ntl.,

Number of transactions

Chapter 1.2
	

Mining conditional patterns in a database 	 1.23

databases is equal to zero millisecond at the respective values of a and 8 shown in Tables

1.2.8, 1.2.9 and 1.2.10.

Figure 1.2.2. Execution time versus the number of transactions in retail

Figure 1.2.3. Execution time versus the number of transactions in BMS-Web-Wiew-1

We have also conducted experiments for finding the number of conditional patterns in

a database at a given a. The number of conditional patterns in a database decreases as a

increases. We observe this phenomenon in Figures 1.2.4 and 1.2.5.

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Alpha

N
u

m
be

r
of

 c
on

di
ti

on
a

800

1,2 600

ai 400

a 200

0

a

00^
0•

cf) 0 zo\ 6c\ ci\.(1' 6,.̂) z\b'
0• 	O. 	O• 	0• 	0• 	0•

6\43
0•

6\e\
0•

Alpha

25
20
15
10
5
0

a.

N
u

m
be

r
o

f
co

nd
iti

on
al

Chapter 1.2
	

Mining conditional patterns in a database 	 1.24

Figure 1.2.4. Number of conditional patterns versus a for retail

Figure 1.2.5. Number of conditional patterns versus a for BMS-Web-Wiew-1

We have also conducted experiments for finding execution time needed for mining

conditional patterns in a database at a given a. The execution time needed for mining

conditional patterns in a database decreases as a increases. We observe this phenomenon

in Figures 1.2.6 and 1.2.7.

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Alpha

ci
42) 500
4), 400

300
g 200

100
0

0\(.3
 0• 	O. 	0•

Alpha

• 400

300
• 200

2 100
0

ti

Chapter 1.2
	

Mining conditional patterns in a database 	 1.25

Figure 1.2.6. Execution time versus a for retail

Figure 1.2.7. Execution time versus a for BMS-Web-Wiew-1

Also, we have conducted experiments to study the relationship between the size of a

database and the number of conditional patterns in it. The experiments are conducted on

databases retail and BMS-Web-Wiew-1. The results of the experiments are shown in

Figures 1.2.8 and 1.2.9. From the graphs in Figures 1.2.8 and 1.2.9, we could conclude

that there is no universal relationship between the size of a database and the number of

conditional patterns in it.

100

80

60
40

20

0
■ I ■

o
0
0
7h

o
0
0
00
N

o
0
0
N
7

0
0
0
\O
Lc)

0 0
0 0
0 0
0 	71'
S 	00

0
0
0
00
O\

0
0
N

•—■

0
0
O
N

en
,4)
CN

Number of transactions

N
um

be
r o

f c
on

d
it

io
na

l

Chapter 1.2
	

Mining conditional patterns in a database 	 1.26

N
um

be
r

o
f

co
n

d
it

io
n

a

80

60
E: 40
•-•
• 20
• 0

10 ,6) 	Nco
rhb 0 4' gib 0' caN caca

Number of transactions

Figure 1.2.8. Number of conditional patterns versus the number of transactions in retail

Figure 9. Number of conditional patterns versus the number of transactions in BMS-Web-

Wiew-1

Also, we have conducted experiments to study the relationship between the number of

conditional patterns and conditional support. The experiments have been conducted on

databases retail and BMS-Web-Wiew-1. The number of conditional patterns in a database

decreases as S increases. We observe this phenomenon in Figures 1.2.10 and 1.2.11.

N 	 00 ON
C. 0 0 0 0 0 0 0 C. C. C.C.C.C.C.C. 6

O (:)

Delta

80

60

a) 40

a 20

0

N
u

m
be

r
of

 c
on

d
it

io
na

0\ 	,0`) 	 < 	fi;)
0• 	0• 	0• 	0• 	O. 	0• 	0•

Delta

25
20
15
10

5
0

N
um

be
r

o
f

co
n

di
tio

na
l

a.

Chapter 1.2
	

Mining conditional patterns in a database 	 1.27

Figure 1.2.10. Number of conditional patterns versus 8 for retail

Figure 1.2.11. Number of conditional patterns versus 8 for BMS-Web-Wiew-1

1.2.5.1 An application

Adhikari and Rao [3] have proposed a technique for mining arbitrary Boolean

expressions induced by frequent itemsets using conditional patterns in a database. In

Chapter 1.3, we have discussed how an arbitrary Boolean expression induced by frequent

itemsets could be synthesized using conditional patterns in a database.

1.2.6 Related work

Agrawal et al. [11] introduced association rule and support-confidence framework and an

algorithm to mine frequent itemsets. The algorithm is sometimes called AIS after the

authors' initials. Since then, many algorithms have been reported to generate association

Chapter 1.2
	

Mining conditional patterns in a database 	 1.29

database. Conditional patterns reveal more characteristics of a database. Also, we have

observed that conditional patterns store significant nuggets of knowledge about a

database that are not immediately available from frequent itemsets and association rules.

1.30

Chapter 1.3

A framework for synthesizing arbitrary Boolean expressions

induced by frequent itemsets

An itemset could be thought as a basic type of pattern in a transactional database. Itemset

patterns influence heavily KDD research in the following ways: Firstly, many interesting

algorithms have been reported on mining itemset patterns in a database [11], [39], [66].

Secondly, many patterns are defined based on the itemset patterns in a database. They

may be called as derived patterns. For example, positive association and negative

association rules are examples of derived patterns. A good amount of work has been

reported on mining / synthesizing such derived patterns in a database [13], [17], [81].

Thirdly, solutions of many problems are based on the analysis of patterns in a database.

Such applications [79], [83] process patterns in a database for the purpose of making

some decisions. Thus, mining and analysis of itemset patterns in a database is an

interesting as well as important issue. Also, mining Boolean expressions induced by

frequent itemsets could lead to significant nuggets of knowledge, with many potential

applications in market basket data analysis, web usage mining, social network analysis

and bioinformatics.

The support [11] of an itemset X in database D could be defined as the fraction of

transactions in D containing all the items of X, denoted by supp(X, D). The importance of

an itemset could be judged by its support. Itemset X is frequent in D if supp(X, D)

minimum support (a). Let FIS(D) be the set of frequent itemsets in D. Frequent itemsets

Chapter 1.3 	... Synthesizing arbitrary Boolean expressions ... 	1.31

determine major characteristics of a database. Wu et al. [80] have proposed a solution of

inverse frequent itemset mining. These authors argued that one could efficiently generate

a synthetic market basket database from the frequent itemsets and their supports. Let X

and Y be two itemsets in D. The characteristics of D are revealed more by the pair (X,

supp(X, D)) than that of (Y, supp(Y, D)), if supp(X, D) > supp(Y, D). Thus, it is important

to study frequent itemsets more than infrequent itemsets. In this chapter, we propose a

framework for synthesizing arbitrary Boolean expressions induced by frequent itemsets

in D. The proposed framework for synthesizing Boolean expressions is based on

conditional patterns in D. In Chapter 1.2, we have presented the notion of conditional

pattern in a database.

Let X = {al, a2, 	am } be a set of m binary variables (items). Let v, A and denote

the usual AND, OR and NOT operators in Boolean algebra, respectively. An arbitrary

Boolean expression induced by X could be constructed using the following steps:

(i) a, is a Boolean expression, for i = 1, 2, ..., m.

(ii) If a, is a Boolean expression then 	is a Boolean expression, for i = 1, 2, ..., m.

(iii) If a, and a, are Boolean expressions then (a,va,) and (a/nal) are Boolean expressions,

for i,j = 1, 2, ..., m.

(iv) Any expression obtained by applying steps (i), (ii) and (iii) finite number of times is

a Boolean expression.

Our objective is not to give a formal definition of a well formed Boolean expression

induced by X, but to understand how a Boolean expression induced by X could be

constructed using a step-by-step approach. There are some other non-fundamental

operators in Boolean algebra. Some examples of non-fundamental operators are NAND,

NOR, and XOR. Any Boolean expression could be expressed by the set of operators {-,,

A, v}. Thus, it is a functionally complete set of operators. Using De Morgan's laws, one

could show that A} and v} are the minimal sets of operators by which any

Boolean function could be expressed. Thus, 	Al and 	v} are also functionally corn-

Chapter 1.3 ... Synthesizing arbitrary Boolean expressions ... 	1.32

plete sets of operators. An elaborate discussion on Boolean algebra could be found in

Gregg [37].

The pattern itemset of a conditional pattern with reference to itemset X = [a], a2, • ••,

am } is of the form bin b2 A ...A bm , where b, = a„ or --,a„ for i = 1, 2, ..., m. Let y)(X) be

the set of all such pattern itemsets with reference to X. w(X) is called the generator of

Boolean expressions induced by X. y(X) contains 2m-1 pattern itemsets. A pattern itemset

of the corresponding conditional pattern is also called a minterm, or standard product.

Every Boolean expression of items of X could be constructed using pattern itemsets in

ip(X) (as mentioned in Lemma 1.3.3). In particular, let X = {a, b, c}. Then, tp(X) =

{anbnc, anbn—,c, an—bnc, —,anbnc, --,an—bncl. The Boolean

expression --,bnc could be re-written as (aA--ibnc) v (—an—b/w). Every Boolean

expression can be expressed as a sum of some pattern itemsets of the corresponding

generator. A Boolean expression expressed as a sum of pattern itemsets is said to be in

canonical form. Each pattern itemset corresponds to a set of transactions in D. In the

following, we show how each pattern itemset with reference to {a, b, c} corresponds to a
set of transactions in D.

(i) anbnc 	(ii) anbnc (iii) aA--,bnc 	(iv) an--,bn—,c

(v) —ianbnc 	(vi) 	 (vii)

Figure 1.3.1. Generator of {a, b, c}

Chapter 1.3 	... Synthesizing arbitrary Boolean expressions ... 	1.34

is better to mine the generator of an itemset and synthesize the desired Boolean

expressions afterwards. Zhao et al. [95] have proposed BLOSOM framework for mining

arbitrary Boolean expressions. The framework suffers from the following limitations:

■ It does not handle NOT operator.

■ Let {a, b, c} be a frequent itemset of our interest. We wish to mine some functions

induced by {a, b, c}. It proposes a framework to mine minimal generators of (i) closed

OR-clauses, (ii) closed AND-clauses, (iii) closed maximal min-DNF, and (iv) closed

maximal min-CNF. It requires establishing a mapping from the space of minimal

generators to the space of arbitrary Boolean expressions, so that we could study the

desired Boolean expressions induced by {a, b, c}. Thus, BLOSOM might not provide

the knowledge of Boolean expression that we wish to study.

■ A specific framework for a specific type of Boolean expressions is introduced.

Therefore, we propose here a simple and elegant approach for synthesizing arbitrary

Boolean expressions induced by frequent itemsets. We state our problem as follows.

We are given a database D of customer transactions. Mine all the members of y(X),

for all X E FIS(D) such that IX > 2.

The rest of the chapter is organized as follows. We discuss related results in Section

1.3.2. In Section 1.3.3, we propose an algorithm for mining members of different

generators. The results of the experiments are presented in Section 1.3.4. We discuss

related work in Section 1.3.5.

1.3.2 Related results

In this section, we discuss a few results related to discussion held in previous section.

Lemma 1.3.1. Let E be the event that a transaction contains at least one item of the

itemset X in database D. Then, the support of event E in D, supp(E, D) =

E,,,,,„o csupp(Y, X D).

Chapter 1.3 	... Synthesizing arbitrary Boolean expressions ... 	1.37

Proof. The number of non-null subsets of an itemset X is 2 - 1, for X e FIS(D). Each

non-null subset of X corresponds to a conditional pattern. Thus, the result follows. •

1.3.3 Synthesizing generators

Conditional patterns are derived from the frequent itemsets in a database. Let X be a

frequent itemset in D. We shall express csupp(Y, X, D) in terms of the supports of the

frequent itemsets in D, for Y c X Without loss of generality, let X = Y U Z, where Z =

(al, a2, ..., am }. The conditional support of i-th conditional pattern with reference to X is

same as the support of i-th member of cp(X), for i = 1, 2, ..., 2 1A1 - 1. Thus, the following

theorem [3] enables us to compute the supports of members of v(X) in D, for all X E

FIS(D), and X > 2.

Lemma 1.3.5. Let X Y and Z are itemsets in database D such that X = Y U Z, where Z =

{aj, a2, ..., am }. Then, csupp(Y, X D) = supp(Y, D) - E;n„supp(Yn {a,}, D) +

< ,,,,, =„ i supp(Yn fa„ 	D) - Em 	=isupp(Yn fa„ 	ak }, D) + 	+Or x

supp(Yn {a j, a2, 	am }, D) 	 (1.3.2)

Proof. Please refer Lemma 1.2.8. •

1.3.3.1 Algorithm design

For synthesizing arbitrary Boolean expressions induced by frequent itemsets in a

database, we make use of an existing frequent itemset mining algorithm. We synthesize

only the generator of Boolean expressions induced by a frequent itemset. The generator

of Boolean expressions induced by the frequent itemset X contains 2 1xI-1 pattern itemsets.

The proposed algorithm synthesizes all the members of all the generators. There are two

approaches for synthesizing generators of Boolean expressions induced by frequent

itemsets in a database. In the first approach, one could synthesize the generator from the

current frequent itemset. As soon as a frequent itemset is extracted, one could call an

Chapter 1.3 	... Synthesizing arbitrary Boolean expressions ... 	1.38

algorithm for synthesizing members of the corresponding generator. When a frequent

itemset is found, then all the non-null subsets of this frequent itemest have already been

extracted. Thus, one could synthesize all the members of the generator from the frequent

itemsets extracted so far. In the second approach, one could synthesize members of the

different generators after mining all the frequent itemsets. Thus, all the frequent itemsets

are processed after the mining task. These two approaches seem to be the same so far as

the computational complexity is concerned. In this chapter, we have followed the second

approach of synthesizing members of different generators. During the process of mining

frequent itemsets, the frequent itemsets of smaller size get extracted before the frequent

itemsets of larger size. The frequent itemsets are kept in array FIS. During the processing

of current frequent itemset, all the non-null subsets are available before the current

itemset in FIS.

There are 2Ixl - 1 non-null subsets of an itemset X. Each non-null subset of X

corresponds to a conditional pattern, and hence, it corresponds to a member of the

generator of Boolean expressions induced by X The subset X of X corresponds to a trivial

conditional pattern, and gets mined during the mining of frequent itemsets in D. Thus, we

need to process 2 - 2 subsets of X.

One could view each conditional pattern as an object having the following attributes:

pattern, reference, csupp, and rsupp. We use an array CP to store the conditional patterns

in a database. The reference attribute of the i-th conditional pattern is accessed by the

notation CP(i).reference. Similar notations are used to access other attributes of a

conditional pattern. Also, each frequent itemset could be viewed as an object with the

following attributes: itemset and supp. Let N be the number of frequent itemsets in the

given database D. The following algorithm SynthesizingGenerators [3] synthesizes all the

members of yi(X), for X E FIS(D).

Algorithm 1.3.1. Synthesize all the members of generator corresponding to each itemset

in. FIS(D).

Chapter 1.3 	... Synthesizing arbitrary Boolean expressions ... 	1.39

procedure SynthesizingGenerators (N, FIS)

Input:

N: number of frequent itemsets in the given database

FIS: set of frequent itemsets in the given database

Output:

Generators corresponding to the frequent itemsets

1: let i= 1;

2: let j = 0;

3: while (i /V) do

4: CP(j).rsupp = FIS(i).supp; CP(j).reference = FIS(i).itemset;

5: let sum = 0;

6: for k= 1 to (21F1s(1) 1temsell 1) do

7: let templtemset = k-th subset of FIS(i).itemset;

8: if (FIS(i).itemset = templtemset) then

9: sum = FIS(i).supp; go to line 19;

10: end if

11: let kk= 1; •

12: while (kk i) do

13: if (FIS(kk).itemset = templtemset) then

14: sum = sum + (-1)IFIS(kk) itemseti — 'tempi temsetlxFIS(kk).supp;

15: go to line 19;

16: end if

17: increase kk by 1;

18: end while

19: CP(j).csupp = sum; CP(j).pattern = templtemset;

20: increase j by 1; increase i by 1;

21: end for

22: end while

Chapter 1.3 	... Synthesizing arbitrary Boolean expressions ... 	1.40

23: let t = 0;

24: for i = 1 to N do

25: for k= 1 to (21FIS(1)
Itemsetl 1) do

26: display CP(t + k);

27: end for

28: t = t 	2IFIS(i) ztemseil
- 1 ;

29: end for

end procedure

Variable i keeps track of the current frequent itemset being processed. Variable j keeps

track of number of conditional patterns generated. Using lines 3-22, each frequent itemset

is processed. There are 2I A1 -1 non-null subsets of X. Each non-null subset corresponds to a

conditional pattern. The generator of an itemset X is synthesized using lines 6-21. Let Y

be a subset of X If Y = X then the algorithm bypasses from processing of Y (line 8).

When the algorithm synthesizes generator corresponding to a frequent itemset X, then it

has already finished the processing of its non-null subsets. All the non-null subsets appear

on or before X in the array FIS. Thus, if a frequent itemset X located at position i, then we

search for a subset of X from index 1 to i in array FIS, since the array is sorted non-

decreasing order on length of an itemset. Thus, it justifies the condition of the while loop

at line 12. Formula (1.3.2) expresses csupp(Y, X, D) in terms of supp(YnZ, D), for all Z

c X-Y. The coefficient of supp(YnZ, D) is (-1) 14 in the expression of csupp(Y, X, D).

Thus, csupp(Y, X, D) = E ,,x_y (-1)14 x supp(YnZ, D). This formula has been applied at

line 14 to calculate csupp(Y, X, D). We need to synthesize both interesting and non-

interesting conditional patterns with reference to frequent itemsets for the solution to the

given problem. Lines 25-27 display the generator corresponding to i-th the frequent

itemset, for i = 1, 2, ..., N. The generator corresponding to i-th frequent itemset contains
21FIS(;) itemsetl

- 1 members (i.e., pattern itemsets), for i = 1, 2, ..., N.

Chapter 1.3 	... Synthesizing arbitrary Boolean expressions ... 	1.41

Lemma 1.3.6. Algorithm SynthesizingGenerators executes in O(N 2x 2") time, where N

and p are the number of frequent itemsets and average size of frequent itemsets in the

database, respectively.

Proof. The while-loop at line 3 repeats N times. The for-loop at line 6 repeats 2P-1 times.

Also, the while-loop at line 12 repeats maximum of N times. Thus, the time complexity

of lines 3-22 is O(N2 x 2"). The time complexity of lines 24-29 is 0(N x 2"). Therefore,

the time complexity of algorithm SynthesizingGenerators is O(N2 x 2P). •

1.3.3.2 Synthesizing first k Boolean expressions induced by top p frequent itemsets

Using the truth table, one could determine the algebraic forms of Boolean expressions

induced by a frequent itemset. A Boolean expression could be synthesized by the

members of the corresponding generator. We classify the frequent itemsets in a database

into different categories. The frequent itemsets of the same size are put in the same

category. We sort the frequent itemsets of each category in non-increasing order by

support and top frequent itemsets in each category are considered for synthesis. We

perform experiments for synthesizing first k Boolean expressions induced by top p

frequent itemsets of each category.

Example 1.3.1. Let {a, b} and {a, b, c} be two frequent itemsets in D of size 2 and 3,

respectively. We would like to determine first k Boolean expressions induced by {a, b}

and {a, b, c}. Let Eu be the j-th Boolean expression induced by the frequent itemset of

size i, for j = 1, 2, ..., 2 1 -1, and i = 2, 3. Then, the truth tables for the first six Boolean

expressions are given in Table 1.3.1.

Chapter 1.3 	... Synthesizing arbitrary Boolean expressions ... 	1.42

Table 1.3.1 Truth tables for the first six Boolean expressions induced by {a, b} and

{a, b, c}

a b c E21 E22 E23 E24 E25 E26 E31 E32 E33 E34 E35 E36

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 1 1 0 0 0 0 0 0

0 1 1 0 0 0 0 1 1 0 0 0 0 0 0

1 0 0 0 0 1 1 0 0 0 0 0 0 0 0

1 0 1 0 0 1 1 0 0 0 0 0 0 1 1

1 1 0 0 1 0 1 0 1 0 0 1 1 0

1 1 1 0 1 0 1 0 1 0 1 0 1 0 1

First six Boolean expressions are based on items of {a, b}, and the rest of the Boolean

expressions are based on items of {a, b, c}. The algebraic expressions of first six Boolean

expressions are given as follows: E21 (a, b) = 0, E22(a, b)= anb, E23(a, b) = an—th, E24(a,

b) = a, E25(a, b) = E26(a, b) = b; E31 (a, b, c) = 0, E32(a, b, c) = anbnc, E33(a, b, c)

= anbn—,c, E34(a, b, c)= anb, E35(a, b, = an—ibAc, E36(a, b, c) = anc. We express Ens

in terms of members of the corresponding generator. Boolean expressions E22, E23, and

E25 have already been expressed in terms of the members of the concerned generator. We

need not compute E21 and E31, since E21(a, b) = E31(a, b, c) = 0. E24(a, b) —

(anb)v(an—,b), and E26(a, b) = (anb)v(--anb). Also, E34(a, b, c) = (anbAc)v(aAbn—ic),

and E36(a, b, c) = (anbAc)v(an—ibnc). Expressions E32, E33 and E35 have already been

expressed in terms of the members of the concerned generator. •

1.3.4 Experiments

We have carried out several experiments to study the effectiveness of our approach. All

the experiments have been implemented on a 1.6 GHz Pentium IV with 256 MB of me-

Chapter 1.3 	... Synthesizing arbitrary Boolean expressions ... 	1.43

mory using visual C++ (version 6.0) software. We present the experimental results using

three real and one synthetic databases. The database retail [34] is obtained from an

anonymous Belgian retail supermarket store. The databases BMS-Web-Wiew-1 and BMS-

Web-Wiew-2 can be found from KDD CUP 2000 [34]. They are processed for the

purpose of conducting experiments. The database T10I4D1OOK [34] was generated using

the generator from IBM Almaden Quest research group. We present some characteristics

of these databases in Table 1.3.2. Among four databases of Table 1.3.2, the first three

databases are real and the forth one is synthetic.

Table 1.3.2. Database characteristics

Database # transactions
Avg length

of a transaction

Avg frequency

of an item
items

retail 88,162 11.305755 99.673800 10000

BMS-Web-Wiew-1 1,49,639 2.000000 155.711759 1922

BMS-Web-Wiew-2 3,58,278 2.000000 7165.560000 100

T10I4D100K 1,00,000 11.10228 1276.12413 870

For the purpose of synthesizing Boolean expressions, we have implemented apriori

algorithm [13], since it is simple and easy to implement. In Tables 1.3.3, 1.3.4, 1.3.5 and

1.3.6, we present first six Boolean expressions induced top five frequent itemsets from

retail, BMS-Web-Wiew-1, BMS-Web-Wiew-2 and T10I4D100K, respectively.

Chapter 1.3 	... Synthesizing arbitrary Boolean expressions ... 	1.44

Table 1.3.3. First six Boolean expressions induced by top five frequent itemsets of size 2

in retail at a = 0.05

Frequent

itemset

supp

(E22, D)

supp

(E23, D)

supp

(E24, D)

supp

(E25, D)

supp

(E26, D)

{39, 48} 0.3306 0.2562 0.5868 0.1582 0.4888

{39, 41} 0.1295 0.4573 0.5868 0.0422 0.1717

{38, 39} 0.1173 0.0603 0.1776 0.4694 0.5868

{41, 48} 0.1023 0.0694 0.1717 0.3865 0.4888

{32, 39} 0.0959 0.0793 0.1752 0.4909 0.5868

Table 1.3.3(continued). First six Boolean expressions induced by top five frequent

itemsets of size 3 in retail at a= 0.05

Frequent

itemset •

supp

(E32, D)

supp

(E33, D)

supp

(E34, D)

supp

(E355 D)

supp

(E36, D)

{39,41,48} 0.0836 0.0459 0.1295 0.2470 0.3306

{38,39,48} 0.0692 0.0481 0.1173 0.0209 0.0901

{32,39,48} 0.0613 0.0346 0.0959 0.0299 0.0911

{1,39,48} 0.0449 0.0215 0.0663 0.0170 0.0618

{5,39,48} 0.0432 0.0197 0.0629 0.0162 0.0594

The Boolean functions E22 and E32 are not shown, since they are all equal to 0. The

Boolean expressions induced by frequent itemsets of size one are not studied here.

Chapter 1.3 	... Synthesizing arbitrary Boolean expressions ... 	1.45

Table 1.3. 4. First six Boolean expressions induced by top five frequent itemsets of size 2

in BMS-Web-Wiew-1 at a = 0.01

Frequent

itemset

supp

(E22, D)

supp

(E23, D)

supp

(E24, D)

supp

(E25, D)

supp

(E26, D)

{5,7} 0.0139 0.2353 0.2491 0.2012 0.2151

{1, 5} 0.0137 0.1761 0.1899 0.2355 0.2491

{3, 5} 0.0131 0.1953 0.2083 0.2361 0.2491

{5, 9} 0.0129 0.2363 0.2491 0.2014 0.2142

{1, 7} 0.0124 0.1774 0.1899 0.2027 0.2151

BMS-Web-Wiew-1 and BMS-Web-Wiew-2 do not report any frequent itemsets of size

greater than two.

Table 1.3.5. First six Boolean expressions induced by top five frequent itemsets of size 2

in BMS-Web-Wiew-2 at a= 0.009

Frequent

itemset

supp

(E22, D)

supp

(E23, D)

supp

(E24, D)

supp

(E25, D)

supp

(E26, D)

{1, 3} 0.0236 0.1695 0.1932 0.1710 0.1946

{1, 7} 0.0229 0.1702 0.1932 0.1741 0.1970

{3, 7} 0.0228 0.1719 0.1946 0.1743 0.1970

{3, 5} 0.0220 0.1726 0.1946 0.1572 0.1793

{1, 9} 0.0220 0.1712 0.1932 0.1512 0.1732

Chapter 1.3 	... Synthesizing arbitrary Boolean expressions ... 	1.46

Table 1.3.6. First six Boolean expressions induced by top five frequent itemsets of size 2

in TIOI4D1OOK at a = 0.01

Frequent

itemset

supp

(E22, D)

supp

(E23, D)

supp

(E24, D)

supp

(E25, D)

supp

(E26, D)

{217, 346} 0.0134 0.0405 0.0539 0.0214 0.0347

{789, 829} 0.0119 0.0335 0.0454 0.0690 0.0809

{368, 829} 0.0119 0.0665 0.0785 0.0690 0.0809

{368, 682} 0.0119 0.0665 0.0785 0.0319 0.0438

{39, 825} 0.0119 0.0307 0.0426 0.0237 0.0356

Table 1.3.6(continued). First six Boolean expressions induced by frequent itemsets of

size 3 in T 1 Ol4D1 OOK at a = 0.01

Frequent

itemset

supp

(E32, D)

supp

(E33, D)

supp

(E34, D)

supp

(E35, D)

supp

(E36, D)

{39, 704, 825} 0.0104 0.0004 0.0111 0.0015 0.0119

T1 0I4D1OOK reports only one frequent itemset of size 3. We observe that the proposed

framework is simple and elegant. It enables us to synthesize arbitrary Boolean

expressions induced by frequent itemsets in a database.

Also, we have conducted experiments to study the relationship between the size of a

database and the execution time required for mining generators. The execution time

required for mining generators in a database increases as the number of transactions

contained in a database increases. We observe this phenomenon in Figures 1.3.2 and

1.3.3.

"Y., 80
60

g 40
20

g o

Number of transactions

—11-11-11—

8

W

20

15

10

5

0

/)C) 	cbC.) (§) t,C) ,C)
\`1,

(c)
 Ntx

Number oftransactions

Chapter 1.3 	... Synthesizing arbitrary Boolean expressions ... 	1.47

Figure 1.3.2. Execution time versus the number of transactions from retail at a = 0.05

Figure 1.3.3. Execution time versus the number of transactions from BMS-Web-Wiew-1

at a = 0.01

We have also conducted experiments to find the execution time for synthesizing

generators in a database. The time required (only) for synthesizing generators for each of

the above databases is 0 millisecond at the respective value of a shown in each of the

Tables 1.3.3, 1.3.4, 1.3.5, and 1.3.6.

Also, we have conducted experiments to study the relationship between the size of a

database and the number of generators of Boolean expressions induced by frequent

itemsets of size greater than or equal to 2. The experiments are conducted on databases

retail and BMS-Web-Wiew-1. The results of the experiments are shown in Figures 1.3.3

and 1.3.4. From these figures, we could conclude that there is no universal relationship

between the size of the database and the number of generators in it.

0 0 0 0 0 Ca 0 0 0 eJ
0
0

0
0

0
0

0
0

0
<0

0
0

0
0

0
0

0
0

‘.0
,--.

0, 00
,--,

N
CI

,40
cn

v-1
Tr

v 4.
41

c n
,t)

N,—,
t-- 	00

co
00

Number of transactions

0
;11 30

20
to

q-c) 10

4'5 	0

z

Chapter 1.3 	... Synthesizing arbitrary Boolean expressions ... 	1.48

Figure 1.3.3. Number of generators versus the number of transactions from retail at a=

0.05

N
um

be
r

o
f

g
en

er
at

o
rs

50
40
30
20
10

0

6) 6) 6) ,„§) 	e e 1,k) 1,$)
N. 	N. 	N.

Number of transactions

Figure 1.3.4. Number of generators versus the number of transactions from BMS-Web-

Wiew-1 at a = 0.01

We have also conducted experiments for finding the number of generators

corresponding to frequent itemsets of size greater than or equal to 2 in a database at a

given a. The number of generators in a database decreases as a increases. We observe

this phenomenon in Figures 1.3.5 and 1.3.6.

•—•

'■.1." 	 ti° 0 	e 0 • 0• 	0. 	0•

Alpha

N
u

m
be

r
o

f g
en

er
at

or
s

15
10

5

0

Chapter 1.3 	... Synthesizing arbitrary Boolean expressions ... 	1.49

300

ft 200

° 100 a)
0

z 	0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Alpha

Figure 1.3.5. Number of generators versus a for retail

Figure 1.3.6. Number of generators versus a for BMS-Web-Wiew-1

1.3.4.1 Application: Effect of a specific item on other items over time

The proposed framework could be applied to study the effect of a specific item on other

items over time in a market basket data. Let D1 be the database at time t, for t = 1, 2, • • •,
n. We wish to study how a specific item, say A, helps promoting other items over time.

The proposed study is based on the frequent itemsets in these databases. Let the set of

frequent itemsets related with A be F/SA c FIS(D), for i = 1, 2, ..., n. In particular, let

FISA = {A, AB, AC, ABC, AD, AE}. We wish to study how the item A helps promoting

items B, C, D, E, and BC over time. To study the effect of item A on item B, the Boolean

expressions AAB and -,AAB would provide some useful information. In other words, the

expression effect (A, B, D,) = supp(AAB, D,) / supp(-,AAB, D) would provide some useful

information to study the effect of item A on item B in D„ for i = 1, 2, ..., n. Thus, to study

Chapter 1.3 	... Synthesizing arbitrary Boolean expressions ... 	1.51

induced by frequent itemsets. Thus, the generators enable us in synthesizing arbitrary

Boolean expressions induced by the frequent itemsets. It is a simple and elegant

technique. There is no need to introduce a specific framework for a specific type of

Boolean expressions. The proposed framework is effective and promising.

428

1.52

Chapter 1.4

Capturing association among items in a database

The analysis of relationships among variables is a fundamental task being at the heart of

many data mining problems. For instance, association rules [11] find relationships

between sets of items in a database of transactions. Such rules express buying patterns of

customers, e.g., finding how the presence of one item affects the presence of another and

so forth.

Many measures of association have been reported in the literature of data mining,

machine learning, and statistics. They could be categorized into two groups. Some

measures deal with a set of objects, or could be generalized to deal with a set of objects.

On the other hand, the remaining measures could not be generalized. Confidence [11],

conviction [22] are examples of the second category of measures. On the other hand,

measures such as Jaccard [75] could be generalized to find association among a set of

items in a database. We shall see later why measures such as support [11], generalized

Jaccard, and all-confidence [58] have not been effective in measuring association among

a set of items in a database.

Various problems could be addressed using association among a set of items in market

basket data. For example, a company might be interested in analyzing items that are

purchased frequently. Let the items P, Q, and R be purchased frequently. A few specific

problems are stated below involving these items.

Chapter 1.4
	

Capturing association among items in a database 	1.53

(i) Some items (products) could be high profit making. Naturally, the company would

like to promote them. There are various ways one could promote an item. An

indirect way of promoting an item P is to promote items that are highly associated

with it. The implication of high association between P and another item Q is that if

Q is purchased by a customer then P is likely to be purchased by the same customer

at the same time. Thus, P gets indirectly promoted.

(ii) Again, some items could be low-profit making. Thus, it is important to know how

they promote sales of other items. Otherwise, the company could stop dealing with

such items.

To solve the above problems, one could cluster the frequent items in a database. In the

context of (i), one could promote item P indirectly, by promoting other items in the class

containing P. In the context of (ii), the company could keep on dealing with R if the class

size containing R is reasonably large. Thus, a suitable metric for capturing association

among a set of items could enable us to cluster frequent items in a database. In general,

many corporate decisions could be taken effectively by incorporating knowledge inherent

in data. Later, we shall show that a measure of association based on a 2 x 2 contingency

table might not be effective in clustering a set of items in a database. Thus, we propose

measures of association for capturing association among a set of items in a database.

In this chapter, we present two measures of association among a set of items in a

database. The second measure of association is based on a weighting model. We provide

theoretical foundation of the work. For the purpose of measuring association among a set

of items, we express second measure in terms of supports of itemsets. The main

contributions of this chapter are given as follows: (1) We propose two measures of

association among a set of items in a database, (2) We introduce the notion of associative

itemset in a database, (3) We provide theoretical foundation of the work, and (4) We

express second measure in terms of supports of itemsets.

In the following section, we study some existing measures and explain why these

measures are not suitable for capturing association among a set of items in a database.

Chapter 1.4
	

Capturing association among items in a database 	1.54

The rest of the chapter is organized as follows. We discuss related work in Section

1.4.2. In Section 1.4.3, we propose two new measures of association among a set of items

in a database. We discuss various properties of proposed measures in Section 1.4.4. Also,

we express second measure in terms of supports of itemsets. In Section 1.4.5, we mention

an application of proposed measure of association. Experimental results are provided in

Section 1.4.6 to show the effectiveness of the second measure of association.

1.4.2 Related work

Tan et al. [75] have described several key properties of twenty one interestingness

measures proposed in statistics, machine learning and data mining literature. One needs

to examine these properties in order to select right interestingness measure for a given

application domain. Hershberger and Fisher [40] discuss some measures of association

proposed in statistics. Most of the existing measures are based on a 2 x 2 contingency

table. Thus, they might not be suitable for measuring association among a set of items.

Agrawal et al. [11] have proposed support measure in the context of finding

association rules in a database. To find support of an itemset, it requires counting

frequency of the itemset in the given database. An itemset in a transaction could be a

source of association among items in the itemset. But, support of an itemset does not

consider frequencies of it subsets. As a result, support of an itemset might not be a good

measure of association among items in an itemset.

Piatetsky-Shapiro [63] has proposed leverage measure in the context of mining strong

rules in a database. Adhikari and Rao [1] have proposed a measure called OA, to measure

overall association between two items in a database. They might not be suitable for

measuring of association among a set of items in a database.

Aggarwal and Yu [10] have proposed collective strength of an itemset. Collective

strength is based of the concept of violation of an itemset. An itemset X is said to be in

violation of a transaction, if some items of X are present in the transaction and others are

not. Collective strength of an itemset X has been defined as follows.

Chapter 1.4
	

Capturing association among items in a database 	1.55

1 - v(X) x E(v(X)) , where C(X)=
1 - E(v(X)) 	v(X)

v(X) is the violation rate of itemset X. It is the fraction of transactions in violation of

itemset X. E(v(X)) is the expected violation rate of itemset X. The major concern

regarding computation of C(X) is that the computation of E(v(X)) is based on statistical

independence of items of X

Cosine [38] and correlation [38] are used to measure association between two objects.

They might not be suitable as a measure of association among items of an itemset.

Confidence and conviction are used to measure strength of association between

itemsets in some sense. They might not be useful in the current context, since we are

interested in capturing association among items of an itemset. In the following section,

we introduce two measures to capture association among a set of items in a database.

1.4.3 New measures of association

Before we present our measures of association, we mention a few definitions and

notations used frequently in this chapter.

A set of items in a database is called an itemset. Every itemset X in a database is

associated with a statistical measure, called support. Support of an itemset X in database

D is the fraction of transactions in D containing X, denoted by S(X, D). In general, let

S(E, D) be the support of Boolean expression E defined on the transactions in database D.

An itemset X is called frequent in D if S(X, D) a, where a is user-defined level of

minimum support. If X is frequent then Y is also frequent, since S(Y, D) S(X, D), for 0 #

Y c X. Each item in a frequent itemset is called afrequent item. Let X denote the number

of items of itemset X. Let X be {x/, x2, ..., x,,,}. The following notations are used

frequently in this chapter:

■ Sx(Y, D): support of Boolean expression defined on the transactions in D such that it

contains all the items of Y, but not items of X-Y, for 0 Y c X

Chapter 1.4
	

Capturing association among items in a database 	1.56

■ S(U":_ i {x,}, D): support of Boolean expression defined on the transactions in D such

that it contains at least one item of X

■ s07_, lx,I,D): support of Boolean expression defined on the transactions in D such

that it contains all the items of X

A measure of association gives numerical estimate of magnitude of statistical

dependence among items in an itemset. Highly associated items are likely to be

purchased together. In other words, items in X are highly associated, if one of the items of

X is purchased then the remaining items of X are also likely to be purchased in the same

transaction. One could define association among a set of items in many ways. Our first

measure of association A i is defined as follows.

Definition 1.4.1. Let X = {xi, x2, ..., xm} be an itemset in database D. Let 8 be the

minimum level of association. The measure of association Al is defined as follows.

S(X, 	fx, 1, 14, for x I 2. °
(5, for I X I =1

Measure Ai is the proportion of the number of transactions containing all the items of X

and the number of transactions containing at least one of the items of X The association

among items of an itemset and the number of association rules generated from the itemset

are positively correlated, provided the support of the itemset is high. If the association

among items of an itemset is more then it is expected to generate more association rules

and vice versa. Palshikar et al. [59] have proposed heavy itemsets for mining association

rules. An itemset X is heavy for given support and confidence values, if all possible

association rules made up of items of X are present. Thus, items of heavy itemsets are

expected to have high association among themselves. Measure Ai could be considered as

a generalized Jaccard measure for capturing association among items of an itemset.

A transaction in a database D provides the following information regarding association

among items of X: (i) A transaction that contains all the items of X contributes maximum

value towards overall association among items of X We attach weight 1.0 to each such

A,(X ,D)= (1.4.1)

Chapter 1.4
	

Capturing association among items in a database 	1.57

transaction. (ii) A transaction that contains k items of X contributes some value towards

overall association among the items of X, for 2 X. We attach weight k / X to each

such transaction. (iii) A transaction that does not contain any item of X contributes no

information regarding association among the items of X (iv) A transaction that contains

only one item of X contributes maximum value towards overall dispersion among the

items of X At a given X, we attach a weight to each transaction that contributes some

value towards overall association among the items of X. Our second measure of

association A2 is defined as follows.

Definition 1.4.2. Let X = {xi, x2, ..., xn,} be an itemset in database D. Let 8 be the

minimum level of association. Our second measure of association A2 is defined as

follows. A 2 (D) =

A2 could be expressed

A,(X , D)= 	E 	{ CS

Yc;12

,g, for I X

as follows.

Sx (Y, D) y
(1.4.2)

(1.4.3)

x SO:=1{ ,x,}, D) 	x
1=1

x
Y D)

x (Y , 	= 	I
S

x (Y , D)xl-Y-1},where CS 	D)
I X 	 W, =1 {JO, D)

1.4.4 Properties of Al and A2

A1 and A2 could be used to measure association among a set of items in a database. Thus,

each of these measures could be considered as a generalized measure of association. The

following corollary is obtained from Definitions 1.4.1 and 1.4.2.

Corollary 1.4.1. Let X 	x2} be an itemset in database D. Then, AI(X, D) = A2(X, D)

= S4x,}n{x 2 }, 	sox, u {x2 }, D), for IX = 2. • 	 (1.4.4)

E s(y, D)-
{ Yc X, IYI=m-i

Chapter 1.4
	

Capturing association among items in a database 	1.58

The measure in (1.4.4) has been reported as a measure of similarity between two objects

[83], [84]. To judge goodness of proposed measures, we state below monotone property

of a measure of association.

Property 1.4.1. Given an itemset X if a subset Y occurs more frequently in the

transactions containing at least two items of X then the items of X have stronger

association, for Y c X and I r 2. •

A2 satisfies monotone property, for every Y c X, and I YI 2. But, Ai satisfies monotone

property, for Y = X, and IYI 2. Therefore, A2 is more appealing measure of association

than A 1 . The following example verifies that A2 measures association among items of an

itemset more accurately than A1.

Example 1.4.1: Consider the database D = {a, b, c, d}, {a, c}, {a, h}, {b, c}, {b, c, d},

{b, d, e}, {b, e}, {c, d, e}}. Here, A 1 ({b, c, d}, D) = 0.2857, and A2({b, c, D) =

0.5714. In D, we observe that association among items of {b, c, d} is closer to 0.5714

than 0.2857. •

In the context of monotone property of a measure of association, we discuss the

effectiveness of all-confidence measure. For an itemset X, all-confidence measure has

been defined as follows: all-confidence (X) = S(X, D) I maximum(S({x} , D)), for xEX.

Measure all-confidence satisfies monotone property, only for Y = X, where Y c X, and 111

2. Thus, measure all-confidence might not be effective in capturing association among

items in an itemset.

In Section 1.4.6, experimental results are provided using measure A2. The following

two lemmas are useful to show some interesting properties of A2.

Lemma 1.4.1. Let X = {xi, x2, ..., x m } be an itemset in database D. Also, let T(i)

S X , D), for i = 0, 1, ..., m-1. Then T(i) can be expressed as follows.
y.x,iyi=m-,

E S(Y , D)+ " 7-`+2 C„,., x 	1S(Y, D)
Yg x ,v1= +1 	 X, VI= 	+ 2

S(Y, D)± 0 1 X mCm _i X S(X, D)}
Yc X, IYI = m-1

(1.4.5)

Chapter 1.4
	

Capturing association among items in a database 	1.59

Proof. Let us consider the definition of T(i), for i = 0, 1, ..., m-1. In particular, T(k) is

defined in terms of Sx(Y, D) , for = m-k such that Y c X Sx(Y, D) could be expressed

by itemsets of size greater than or equal to m-k. There are m Cm _k distinct Ys, and thus, we

have m Cm _k distinct expressions for Sx(Y, D), one for each Y. Each expression of Sx(Y, D)

contains a S(X, D). Thus, the last term of T(k) is mCm _k x S(X, D). The second last term

contains itemsets of size m-1. Not all expressions of Sx(Y, D) contain a particular itemset

Yi of size m-1. Y./ is present in the expression of Sx(Y, D), if Yi c Y. The number of

expressions of Sx(Y, D) that contain Yi is m-1 Cm_k. Other terms could be obtained in a

similar way. •

We verify Lemma 1.4.1 with the help of following example. Let X = {x i , x2, x3 }. Then,

T(1) = Sx({xi, x2}, D) + Sx({xi, x3}, D) + Sx({x2, x3} , 	= S({x 1, x2} , D) - S({x 1, x2, x3} ,

D) + S({x 1, x3} , D) - S ({x1, x2, x3}, 	+ S({x2, x3}, 	- S({xt, x2, x3} , D) =

ES(Y, D) +(-1)1 x 3C3_ 1 xS(X, D) • Again, T(2) = Sx({xj}, D) + Sx({x2}, D) + Sx({x3}, D) =
1)1.3-1, Yc X

S({xj}, D) - S({x x2}, 	- S({xi, x3}, 	+ S({x I, x2, x 3 }, D) + S({x2}, 	- S({ri, x2} , D)

- S({x2, x3}, D) + S({xt, x2, x3} , D) + S({x3}, 	- S({x 1, x3}, D) - S({x2, x3} , D) + S({x 1,

x2, x3}, D) = 	s(y D) + (-1) 1 x 3-1 C 3 . 2 	E S (Y , D) + (-1) 2 X 3 C 3 _ 2 x S(X, D). Thus, the ex -

IYI =3-2, Yc X 	 IYI = 3 - I, Yc X

pressions of T(1) and T(2) verify Lemma 1.4.1. We prove Lemma 1.4.2 based on Lemma

1.4.1.

Lemma 1.4.2. Let X = {x i, x2, ..., x m } be an itemset in database D. Then

E {sx (y,D)xM}
Yg I 	.1X1 	 I X

m _ x y sox, D)
m 17;

(1.4.6)

Proof. E 	tsx (y, D)x 	=
Yg X,IYI=IXIdown to I 	 IXI 	i=0

x T(i), where i=m-I I (1.4.7)

=s(x,D)+ (Mx 	ES(Y,D)- mC,,,.,x S(X , D) + ...+
m 	y cx.in=m-'

(

1
11-) X E S(Y , D)- "' -1 C,,, . 2 x(E S(Y , D))+ m C„,.2 x S(X, D)
m ,Y cX, Ill =m-2 YgX. pl=m-1 /

4
	Chapter 1.4
	

Capturing association among items in a database 	1.60

r_jx(E 	
S(Y, D) - "'"2C„,.,x(E S(Y, D)) + 	„,., x(E S(Y, D))- 	S (X , D)] +

cx. Irk m-3 4 	 Y cX ,W1=in-2 	 Y X ,IY1=m-1

m - (m - 1))x
(

S (Y,D) - 2C, x(E S(Y , D)) + 	C1 X S , D)), [Lemma 1.4.1]
m) \s YgX,IY1=1 	 YcX,IYI=2

(1.4.8)

= S(X, D)x {1 - 	+ 	...± 1n4 C„, 4 }+ 	 1S(Y,D) { 1- 	+ - 2c2 	c„,-2 1+
gx gi=m-1

C
m-2 1x 	ES(Y,D))x{ 1 - m 3C, + m2C2 	+ 	C..3 }+ ...

x .1yr= m-2

(‘1)X (ES(Y,D) x {I- 'C,} 4=m1 lx / y 	=(I Y , D)) • m 	\,YgX.IY1.2

= (-1) x 	E S(Y, D)), since the coefficient of 	x 	E S(Y, D)
X ,iYI=1 	 Yg X,IYI=p

(1.4.9)

is zero, for 2 p m. •

We verify Lemma 1.4.2 with the help of following example. Let X = {xi, x2, x 3 }.

1 Then, 	E 	{S x (V , D) x L—Y = — {S x ({x 1 }, D) + S x Ox 2 1, + S x ({x 3 }, D)}
x,, sir' sixi 	 3

+ —
2

Isx (Ix„ x2 }, D) + S x ({x1 , x3 	+ S x ({x2 , 	Sx ({x 1 , x2 ,
3

=
3
 {s x (fx, D) - S x (Ix„ x2 1, D)- S x 	, x3 }, D) + S x (Ix„ x2 , x3 1, D) + ... } +

2 (
—
3

O'x ({x1 , x2 }, D) - S x ({x1 , x2 , x3 }, D) + ... } + S x ({x1 , x2 , x3 }, D)

=
3
- {Sx (fx, 	+ S x (fx 2 1, D) + S({x 3 . We prove Lemma 1.4.3 based on Lemma 1.4.2.

Lemma 1.4.3. Let X = {xi, x2, ..., z in } be an itemset in database D, for an integer m 2.

Then, A 2 (X , D)= 	 [1 1,3({x,},D)-S x ({x,}),D11,x , E X
m x 4.17

1

 7= , {x,} , D
(1.4.10)

Proof. I 	\
* A2 kX 1)) = 	

1
X

SO' = 1 {X D)

Esx (fx),
• E I Y I sx (y,D)x

ycx,,y,,,
(1.4.11)

-4-
Chapter 1.4 Capturing association among items in a database 	1.61

1

 S(U"/= , {x,}, D)
X

D) Es, ({x, },

, [Lemma 1.4.2] . •
(1.4.12)

m 	m

Lemma 1.4.3 gives a simple expression for A2. A few corollaries of Lemma 1.4.3 are

given below.

Corollary 1.4.2. Let X = {xi, x2, ..., x„,} be an itemset in database D. If all the items in X

have equal support then A2 (X, D)= q I S(U ", {x,} , D),

where q = S({x,}, D)- S x ({x,} , D), for i =1, 2, ..., n. • 	 (1.4.13)

Corollary 1.4.3. Let X = {xi, x2, ..., x, n} be an itemset in database D. Then,

A2 (X, D) = 	1m], where q, 	[S({x,}, D) - S x ({x,} , D)11S0, 7 1 {x,}, D) . q / m is the
.1

contribution of item x, towards overall association among items in X for i = 1, 2, ..., m. •

(1.4.14)

Based on measure A2, we define an associative itemset as follows.

Definition 1.4.3. Let X = {xi, x2, ..., z, n } be an itemset in database D. Also, let g be the

minimum level of association. X is associative at level 8 if A2(X, D) 8. •

From definition of A2, an itemset of size 1 is associative at level g. If 8 > a then a

frequent itemset X might not be associative at level g. This is because of the fact that the

association among items of X might lie in [a, 8). In many applications, we are interested

in the itemsets that are frequent as well as associative. In the next section, we mention

one such application. In Examples 1.4.2 and 1.4.3, we illustrate the difference between

associative itemsets and frequent itemsets.

Example 1.4.2. We consider the following three transactional databases. Let DI = { {a, b,

c, d}, {a, c}, {a, h}, {b, c}, {b, c, d}, {b, d, e}, {b, e}, {c, d, e}}, D2 = {{a, b, c, e}, {a, b,

J.}, {a, {a, g, h}, {b, d, g}, {b, f, g}, {b, g, {b, j}, {c, d}}, and D3 = {{a, b, c, e},

{a, b, g, i}, {a, b, j}, {a, c, d, e}, {b, d, g}, {c, d}, {f, g}, {g, h}}. Let a = 0.2, and 8=

0.4. In database D1 , S({a, b}, D I) = 1/8, and A i({a, b}, DI) = A 2({a, b} , D i) = 1/7. Thus,

Proof. A2 (X, D) =

(1.4.15) 	 +
S(Uni z.i {Xi}, 	YcX,IYI2 2

S(X , D)

Chapter 1.4
	

Capturing association among items in a database 	1.62

the itemset {a, b} is not frequent and also not associative. In database D2, S({a, b}, D2) =

2/9, and A Ma, b}, D2) = A2({a, b}, D2) = 1/4. Thus, the itemset {a, b} is frequent but not

associative. In database D3, S({a, b}, D 3) = 3/8, and Ai({a, b} , D3) = A2({a, b}, D3) = 3/5.

Thus, the itemset {a, b} is frequent as well as associative. •

An associative itemset not necessarily be frequent at level a. This is because of the fact

that the subsets of the itemset might be available frequently in different transactions.

Example 1.4.3. Consider the database Di of Example 1.4.1. Let a = 0.2, and 8 = 0.4.

S({c, d, e}, Di) = 0.125, and A2({c, d, e}, D i) = 0.429. Thus, the itemset {c, d, e} is

associative, but not frequent. •

Example 1.4.3 is another instance that shows that the support of an itemset could not

effectively measure association among items of an itemset. In the following lemma, we

shall prove that association among items of a frequent itemset is always greater than or

equal to a under A2. Thus, a frequent itemset is associative at level a.

Lemma 1.4.4. Let X = {x i, x2, ..., x„,} be a frequent itemset in database D, for an integer

m 2. Then, A2GY, 	a

S(X, D) a implies S(X, D)/4.17= 1 lx, I, D) a, since 0 < S(U",". 1 {x,}, D) 1.

Thus, A2(X,D) 	
Sx KY, D)

a+ I
I y

.• 	 (1.4.16)
ycx,13,12{ ,50":=, {xj, D) I X I

In the following lemma, we discuss an important property of A2. Association among

items of an itemset under A2 lies in (0, 1].

Lemma 1.4.5. Let X = {xi, x2, ..., x m } be a frequent itemset in database D, for an integer

m I. Then, 0 < A2(X, D) 1.

Chapter 1.4
	

Capturing association among items in a database 	1.63

Proof. From Definition 1.4.2, we get 0 < A2(X, D) 1, for m = 1. Thus, we need to prove

the result for m 2. Also from Definition 1.4.2, we get A2(X, D)> 0, for m 2. We shall

use the method of induction on X to show that A2(X, D) 1, for m 2. For m = 2, X =

{x 1 , x2 } . Then,

	

= 	D)- 	Sx ({x, }, D) + S({x2 1, D)- Sx ({x2 }, D)
 , 	. . [Lemma143] A AX, D) 	 (1.4.17)

2 x {S({x,}, D)+ S({x 2 }, D)
- Stx, n {x2}, I)))

Also, Sx ({x, } , D) = S({x, D) - Alx, In {x2), D), for i =1, 2.

Stxl, x2 }, 	 (1.4.18) Thus, A2 (X, D) = 	
+ A{x2}, I)) - S({x,} n {x2},

We 	have, 	SOxi}n{x2},D)5 s({x,},D) and S({x2 1, D)- s({x,}(1{x2 },D) 0. So, 	1.

Thus, the result is true for m = 2. We assume that the result is true for m k-1. Now, we

shall prove that it is true for m = k.

A2 (X D)= 	 X[±{S({Xi l 	S x ({XJ, D
kx S 	

)}
pk,.,{xj, D)

(1.4.19)

1

kx 	{xj, D) x

k-1
E 	D)- sx ({x,}, D)}1 	ki 	 D) - S x ({Xk },

=1 	 k x 	,=, {xj, D)

(1.4.20)

kx 	x D)

	

S(II 	x [c, x - 1)x SO -2, {x,}, D)+ c2 x SOxk }, A, 0 	ci, C2 	1, [induction
{ i l,

hypothesis] 	 (1.4.21)

< c1 x (k -1) c 2 	± I _
+ 	<

(k -1) 	
1. • 	 (1.4.22)

	

k 	k 	k 	k

Let X = {x i , 	x„,} be a frequent itemset in D. Let Y c X such that I Y1 = X-1, and X

3. Let Y = {x i , x2, ..., xm_1}. We try to establish the relationship between A2(X, D) and

A2(Y, D). Using formula (1.4.20) we get,

A2(X D)X MX S(r.1 {XI} D) =-- A2(1 D)X (in - 1)X *7:11 00 , D) -1- S({X m } ,D)-Sx ({Xm } ,D) (1.4.23)

or, A2(X, D) = A2(Y, D) x K1 + K2, where

Chapter 1.4
	

Capturing association among items in a database 	1.64

K,
(m - 1)x S(U7: 11 {xi} 	and K =

S({x„,} , D) - S x ({x„,} , D)
(1.4.24)

m x *", {xj, ,
	2 	

m x 4.17= , {x 1 }, D)

We note that, 0 < K1, K2 1. There does not exist any fixed relationship between A2(X,

D) and A 2(Y, D), for all Y c X such that I/1= X-1, and X 3. We consider the following

example.

Example 1.4.4. Consider the database D4 = {{a, b, c, d} , {a, b, d} , {a, b, e}, {a, b, f}, {a,

f}, {a, g}, {d, {i,j}}. A2({a, D4) = 0.66667, A2({a, c}, D4) = 0.16667, A2({a, b, c},

D4) = 0.5. We observe that, A2({a, b, c}, D4) < ,42({a, b}, D4), and A2({a, b, c}, D4)

A2({a, 	D4). •

We wish to express A2 in terms of supports of itemsets. Given an itemset X, the following

lemma expresses Sx({x,}, D) in terms of the supports of itemsets Yc X, for x, E X

Lemma 1.4.6. Let X = {xi, x2, ..., x,„} be an itemset in database D, for an integer m 1.

Then, Sx ({x; }, D) = 	D) - 	Sqx,} n {xi }, D) 	sqx,} n {x i } n {xk }, Dy •••
j=1;ji 	 j,k=1;j<k; j,k*i

(-1)M-I X s(n7= , {xi }, D), for i = 1, 2, ... , m. 	 (1.4.25)

Proof. We shall prove the result using the method of induction on m. The result trivially

follows for m = 1. For m = 2, X = {xi, x2} . Then, sx ({xj, 	= S({x, }, 	S({x, } n {x,}, D), for

i = 1, 2. Hence, the result is true for m = 2. Assume that the result is true for m = p. We

shall prove that the result is true for m = p + 1. Let X = {xi, .x2, • Xp+1}. Due to the

addition of xp+1, the following observations are made. s({x,}n{x p+,},D) is required to be

subtracted, for 1 i 	s({x,}n{x,} nlx, +i),D) is required to be added, for 1 i <j p.

Finally, the term (-1)P x S4x, } n {x2 } n n {xp+,},D) is required to be added. Thus,

+1 ,

Sx 4x,},D)=S(Ix i I,D) - 	qx,} n{xi }, D) + 	Sq.;11-1{x j } nfx D)+
j=-1,j#i 	 j,k=1;j<k;j,k#i

x s(fx,In

Thus, the induction step follows. Hence, the result follows. •

Chapter 1.4 •
	

Capturing association among items in a database 	1.65

The following lemma expresses association among items of X in terms of supports of

subsets of X.

Lemma 1.4.7. Let X = {x1, x2, ..., x m } be an itemset in database D, for m 2. Then

m
E s({x, ntx; }, D) - E sk{x,} n {x,} n {x, }, D)± -±s({x,}n...n{xm },D)1

l=1;j*/ 	 j,k=1;j,k*i

m x 	- 	 -± sox, n {x,} n n {xm }, D)

Proof. We state the theorem of total probability [60] as follows. For any m events xl, x2,

xm , we have SIUT, {x,}, DI= iS({x,},D) - Es({x,}n {x,},D) +...± s({x,}n{x,}n...n{x„,},D)
1=1 	 ISi<j5m

(1.4.28)

Result follows using Lemmas 1.4.3 and 1.4.6. •

A few corollaries of Lemma 1.4.7 are presented below.

Corollary 1.4.4. A2(X, D) = 	s({xl}n{x2},D) 	, for m = 2.• 	(1.4.29)
S({x, }, D)+ S({x2 }, 	- S({x,}n{x,} , D)

Corollary 1.4.5. For m = 3, A2(X, D) = El / E2, where

E, =2x {S({x,}n{x2 },D)+S({x,}n{x 3 },D)+S({x2 }(1{x3 },D)I- 3x S({x,}n{x,}n{x 3 },D), and

E2 = 3 x { S({x, } , D) + S({x2 } , D)+ S({x3 } , - Sqx,} n{x2 },D)-s({,}n{x3 }, D)1

3 x {- s({x2 } n {x3), D)A-sox,}n{x 2 }n{x3 },0. • 	 (1.4.30)

Thus, A2(X, D) could be computed when supports of subsets of X are available. In Lemma

1.4.8, we study some properties of measure Al.

Lemma 1.4.8. Let X be an itemset in database D. Then the measure of association Al

satisfies the following properties. (i) 0 <241(X, D) 5_ 1, (ii) Al(X, D) A l(Y, D), for Y c X,

and IY1 2, and (iii)Ai(X, D) a, if X is a frequent itemset.

Proof. (i) Aj(X, D) > 0, since S(X, D) > 0. Also, Aj(X, D) 	1, since

S(U y, {y}, D) S(X, D).

(ii) Let X = {x i , x2, ..., xm}. We consider an itemset Y c X, such that lr 2. Then, A i(X,

D) 5_ A1(Y, D), since S(X, D) 5_ S(Y, D) and SO zEx {z}, D) S(U zEy {z}, D).

A,(X , D)= 	
(1.4.27)

Chapter 1.4
	

Capturing association among items in a database 	1.66

(iii) A 1 (X , 	S(X , D)/S(UX,Ex (x ,D)?_S(X , D) a, since 0 < S(U .,,Ex {AD) I . •

The proposed measures of association could be used in many applications. In the

following section, we mention an application of proposed measures of association.

1.4.4.1 Capturing association

Let X = {xi, x2, ..., xk} be an itemset in the given database D. In finding association

among items in X, the following procedure could be followed [6], [83]. The algorithm

finds association between every pair of items. The items in X form a class, if kC2

association values corresponding to kC2 pairs of items are close. The level of association

among the items in this class is assumed as the minimum of kC2 association values. If the

number of items in a class is more than two, then we observe that this technique fails to

estimate correctly the association among the items in a group. Then the accuracy of

association among items in X becomes low. Instead of that, one could estimate the

association among items in X using measure A2. The difference in similarity using

measure A2 is given by DS(X, A2({x I, x2, ..., xk}, D) - minimum{EMS(x t, xj, D) : 1

i < j k}, where EMS is an existing measure of similarity that measures similarity

between two items in D. Due to the monotone property of A2, the amount of difference

could be significant (as reported in Tables 1.4.4 and 1.4.5). In particular, DS(X, D)

becomes 0, if k = 2 [Corollary 1.4.1].

1.4.5 An application: Clustering frequent items in a database

We have observed that the measure A2 is effective in finding association among items of

an itemset in a database. For the purpose of clustering frequent items in a database, we

could find associations among items of each frequent itemset of size greater than 1. Items

of a highly associative itemset could be put in the same class. Thus, one could cluster the

frequent items in a given database using A2.

4
	Chapter 1.4
	

Capturing association among items in a database 	1.67

Adhikari and Rao [6] have proposed a technique for clustering multiple databases. If a

cluster contains a class of size greater than 2, we have observed that the proposed

clustering technique might cluster frequent items with higher degree of accuracy, since A2

possesses monotone property. In the context of clustering data, an overview of different

clustering techniques is given by Jain et al. [44].

There are two approaches of measuring association among items of each itemset in a

database. In the first approach, one could synthesize association among items of the

current frequent itemset. As soon as a frequent itemset is found during the mining

process, one could call an algorithm of finding association among items of the current

frequent itemset. When a frequent itemset is extracted, then all the non-null subsets of the

frequent itemest might have been available [13]. Thus, one could synthesize association

among items of the current frequent itemset. Also, one could synthesize association

among items of each frequent itemsets after the mining task. In the second approach, all

the frequent itemsets could be processed at the end of mining task.

1.4.6 Experimental results

We have carried out several experiments to find association among items of each

frequent itemset in a database. All the experiments have been implemented on a 2.8 GHz

Pentium D dual processor with 512 MB of memory using visual C++ (version 6.0)

software. We present the experimental results using four databases. The databases retail

[34], mushroom [34] are real. The database ecoli is a subset of ecoli database [77] and

has been processed for the purpose of conducting experiment. Also, we have omitted

non-numeric fields of ecoli database for the purpose of conducting experiments. The

fourth database check is artificial. The database check contains the following transactions:

{34, 47, 62}, {34, 55, 62, 102}, {47, 62}, {47, 62, 90}, {55, 102}. We have introduced

database check for the purpose of verifying results. We present some characteristics of

these databases in Table 1.4.1.

4
	Chapter 1.4
	

Capturing association among items in a database 	1.68

Table 1.4.1. Database characteristics

Database # transactions
Avg length

of a transaction

Avg frequency

of an item
items

retail 88,162 11.30576 80.45880 10,000

mushroom 8,124 23.00000 1570.18487 119

ecoli 336 7.000000 25.565217 92

check 5 2.80000 2.33333 6

There are many interesting algorithms [13], [39], [66] reported to mine frequent itemsets

in a database. We have implemented apriori algorithm [13] for mining frequent itemsets

in a database, since it is simple and easy to implement.

1.4.6.1 Top associative itemsets among frequent itemsets

We have conducted experiments on different databases to mine itemsets that are frequent

as well as associative. Databases retail, mushroom, ecoli and check are mined at a 0.03,

0.1, 0.5, and 0.1, respectively. Top 10 associative itemsets among frequent itemsets in

these databases are given in Tables 1.4.2, and 1.4.3. Some itemsets in mushroom

database are highly frequent. Thus, associations among items in these itemsets are

significantly high.

Chapter 1.4
	

Capturing association among items in a database 	1.69

Table 1.4.2. Top 10 associative itemsets in databases retail and mushroom

retail mushroom

Itemset A2(Itemset) Itemset A2(Itemset)

{39,41,48} 0.39183 {85,86} 0.97538

{38,39,48} 0.38044 {34,85,86} 0.97530

{32,39,48} 0.36929 {34,85} 0.97415

{38,39,41 } 0.23977 {85,86,90} 0.96570

{39,41 } 0.21057 {34,85,90} 0.96455

{38,170} 0.19350 {34,86,90} 0.94847

{41,48} 0.18763 {36,85,86} 0.93763

{38,39} 0.18498 {34,36,85} 0.93755

{36,38} 0.17723 {85,90} 0.92171

{38,110) 0.17396 {34,36,86} 0.92114

Table 1.4.3. Top 10 associative itemsets in databases ecoli and check

ecoli check

Itemset A2(Itemset) Itemset A2(Itemset)

{48,50} 0.94152 {47,62} 0.75000-

{44,48,50} 0.68469 {47,62,90} 0.58333

{37,48,50} 0.68264 {34,55,102} 0.55556

{40,48,50} 0.68051 {34,47,62} 0.50000

{48,50,54} 0.67758 {34,62} 0.50000

{42,48,50} 0.67650 {55,62,102) 0.33333

{48,50,51) 0.66764 {34,62,102} 0.33333

{48,49,50} 0.65511 {34,55,62} 0.33333

{47,48,50} 0.65024 {47,90} 0.33333

{44,48} 0.14873 {34,102} 0.33333

Chapter 1.4
	

Capturing association among items in a database 	1.70

1.4.6.2 Finding the difference in similarity

We have conducted experiments on different databases to mine itemsets that are frequent

as well as associative. For the purpose of comparison, we take similarity measure sim i (x„

xj, D) = Sax,} n {x 2 }, DVS({x 1 } v {x 2 }, D) [83]. We present top 10 associative itemsets

along with their difference in similarities in Tables 1.4.4, and 1.4.5.

Table 1.4.4. Top 10 associative itemsets along with their difference in similarities for

retail, and mushroom

retail mushroom

Itemset DS(Itemset,
retail) Itemset DS(Itemset,

mushroom)
{39,41,48} 0.20419 {85,86} 0

{38,39,48} 0.22089 {34,85,86} 0.00115

{32,39,48} 0.22196 {34,85} 0

{38,39,41 } 0.09351 {85,86,90} 0.08861

{39,41} 0 {34,85,90} 0.06448

{38,170} 0 {34,86,90} 0.07138

{41,48} 0 {36,85,86} 0.12196

{38,39} 0 {34,36,85} 0.12490

{36,38} 0 {85,90} 0

{38,110} 0 {34,36,86} 0.10849

Some itemsets in the mushroom database are highly frequent. Thus, associations among

items in these itemsets are significantly high.

Chapter 1.4
	

Capturing association among items in a database 	1.71

Table 1.4.5. Top 10 associative itemsets along with their difference in similarities for

ecoli, and check

ecoli check

Itemset
DS(Itemset,

ecoli)
Itemset

DS(Itemset,
check)

{48,50} 0 {34,47,62} 0.50000

{44,48,50} 0.79279 {47,62} 0

{37,48,50} 0.54808 {47,62,90} 0.25000

{40,48,50} 0.54119 {34,55,102} 0.22222

{48,50,54} 0.55296 {34,62} 0

{42,48,50} 0.53718 {55,62,102} 0.13333

{48,50,51} 0.52654 {34,62,102} 0.13333

{48,49,50} 0.54366 {34,55,62} 0.13333

{47,48,50} 0.54048 {47,90} 0

{44,48} 0 {34,102} 0

1.4.6.3 Execution time for measuring association

We have studied execution time for measuring association among items in each frequent

itemset of size greater than one. In the first case, the execution time is studied with

respect to the number of transactions in a database. As the number of transactions in a

database increases, the number of frequent itemsets is likely to increase. Therefore,

execution time increases as the size of a database increases. We observe the phenomenon

in Figures 1.4.1, 1.4.2 and 1.4.3.

30
'25

M 20
‘75' 15
.g 10
H 5

0

ot, 	 4ce
Number of transactions

1

I 	 I

cb\r1' 	t20 0 (0z 	R,15, co ct

Number of transactions

300
250

cg) 200
150
100

50
0

—a

33 66 99 132 165 198 231 264 297 336

Number of transactions

0.8

0.6

0.4

0.2

0

4
	Chapter 1.4
	

Capturing association among items in a database 	1.72

'4*

Figure 1.4.1. Execution time versus database size at a= 0.03 (retail)

Figure 1.4.2. Execution time versus database size at a= 0.1 (mushroom)

Figure 1.4.3. Execution time versus database size at a= 0.1 (ecoli)

40

6 30 	
-s----0_,,

s- 20 	 1
E — 10 E—

o
0.026 0.027 0.028 0.029 0.03 0.031 0.032 0.033 0.034 0.035

Minimum support

	

) 	\I)‘ 	"lt)
CZY 	C)* 	CY 	CY 	C)' 	C)•

Minimum support

600
500
400
300
200

E- 100
0

Chapter 1.4
	

Capturing association among items in a database 	1.73

In the second case, the execution time is studied with respect to a. As we increase a, the

number of frequent itemsets is likely to decrease. Therefore, the execution time decreases

as a increases. We observe the phenomenon in Figures 1.4.4, 1.4.5, and 1.4.6.

Figure 1.4.4. Execution time versus a (retail)

Figure 1.4.5. Execution time versus a (mushroom)

0.8

0.6

"---• 0.4

0.2

0

0.1 	0.11 0.12 0,13 0.14 0.15 0.16 0.17 0.18 0.19

Minimum support

Figure 1.4.6. Execution time versus a (ecoli)

Chapter 1.4
	

Capturing association among items in a database 	1.74

1.4.7 Conclusion

In this chapter, we present two measures of association among items in an itemset in a

database. An existing measure might not be effective in capturing association among

items in an itemset of size greater than 2. Many research problems could boil down to

capturing association among items in an itemset. We have given an example of one such

application in Section 1.4.5.

We have introduced the notion of associative itemset in a database. We have provided

many useful lemmas and examples to make foundation of proposed measures strong and

clear. Using monotone property of a measure of association, we have shown that A2

measures association among items in an itemset more accurately than Ai.

For the purpose of computing A2, we express it in terms of supports of itemsets. The

measure of association A2 is effective in capturing statistical association among items in a

database.

4
1.75

Chapter 1.5

Association rules induced by item and quantity purchased

Pattern recognition [11], [81] and interestingness measures [41], [75] are two important

as well as interesting topics being at the heart of many data mining problems. Association

analysis using association rules [11], [17] has been studied well on binary data. A pattern

is normally associated with some interestingness measures. Thus, a pattern would

become interesting if the values of associated interestingness measures satisfy some

conditions. Positive association rules in a database are expressed in the form of a forward

implication, X —> Y, between two itemsets X and Y in the database such that X n Y = 0.

The meaning attached to association rule X —> Y is that if all the items in X are purchased

by a customer then it is likely that all the items in Y are purchased by the same customer

at the same time. On the other hand, negative association rules are expressed by one of

the following three forward implications: X —> —1 Y, —X —> Y, and —X for itemsets

X and Y in the database such that X n Y = 0. Let us consider the negative association

rules of the form X —> —.Y. The meaning attached with this implication is that if all the

items in X are purchased by a customer then it is unlikely that all the items in Y are

purchased by the same customer at the same time. Most of the real life transactional data

are non-binary, in sense that an item could be purchased multiple times in a transaction.

Thus, it is necessary to study the applicability of traditional support-confidence

framework for mining association rules in these databases.

Association rule mining in a binary database is based on support (supp)-confidence

(conf) framework established by Agrawal et al. [11]. Let I(BD) be the set of items in

binary database BD. A positive association rule in BD expresses positive association bet-

Chapter 1.5
	

Association rules induced by item and quantity purchased 	1.76

ween itemsets X and. Y, called the antecedent and consequent of the association rule,

respectively. Each itemset in BD is associated with a statistical measure, called the

support of the itemset. Support of itemset X in BD is the fraction of transactions in BD

containing X, denoted by supp(X, BD). The interestingness of an association rule is

expressed by its support and confidence measures. The support and confidence of an

association rule r: X -4 Y in a binary database BD are defined as follows: supp(r, BD) =

supp(XnY, BD), and conf(r, BD) = supp(XnY, BD) / supp(X, BD). In other words, the

support of association rule r in BD is the fraction of transactions in BD containing both X

and Y, and the confidence of association rule r in BD is the fraction of transactions in BD

containing Y among the transactions containing X. An association rule r in BD is

interesting if supp(r, BD) minimum support, and confir, BD) minimum confidence.

The parameters, minimum support and minimum confidence, are user inputs given to an

association rule mining algorithm.

Though association rule mining in a binary database has been studied well, it has got

limited usage, since in a real life transaction items are often purchased multiple times in

the same transaction. Let TIMT be the type of a database such that a transaction in the

database might contain an item multiple times. In this chapter, a database refers to a

TIMT type database, if the type of the database is unspecified. Then, the question comes

to our mind whether the traditional support-confidence framework still works for mining

association rules in a TIMT type database. Before answering to this question, first we

take an example of a TIMT type database DB as follows.

Example 1.5.1. Let DB = { {A(300), B(500), C(1)1, {A(2), B(3), E(2)}, {A(3), B(2),

E(1)}, {A(2), E(1)1, {B(3), C(2)}}, where x(77) denotes item x purchased ri numbers at a

time in the corresponding transaction. The number of occurrences of itemset {A, B} in

the first transaction is equal to minimum {300, 500}, i.e., 300. Thus, the total number of

occurrences of {A, B} in DB is 304. Also, {A, B} has occurred in 3 out of 5 transactions

in DB. Thus, the following attributes of itemset X are important consideration for making

Chapter 1.5
	

Association rules induced by item and quantity purchased 	1.77

association analysis of items in X: number of occurrences of X in DB, and number of

transactions in DB containing X. •

In Section 1.5.2, we have explained why the traditional support-confidence is not

adequate for mining association rules in a TIMT type database.

Rest of the chapter is organized as follows. In Section 1.5.2, we study association rules

in a TIMT type database and introduce three categories of association rules. In Section

1.5.3, we introduce a framework based on traditional support-confidence framework for

mining each category of association rules. We study the properties of proposed

interestingness measures in Section 1.5.4. In Section 1.5.5, we discuss a method for

mining association rules in a TIMT type database. Experimental results are provided in

Section 1.5.6. We discuss related work in Section 1.5.7.

1.5.2 Association rules in a TIMT type database

We are given a TIMT type database DB. A transaction in DB containing p items could be

stored as follows: fil(ni), i2(n2), • • ip(np)}, where item ik is purchased nk (1) numbers

at a time in the transaction, for i = 1, 2, ..., p. Also, a transaction is stored along with

other attributes: transaction id, date of purchase, and so forth. These attributes do not

have impact on association rules in a database and thus, we shall not deal with them.

Each itemset X in a transaction is associated with the following two attributes:

transaction-itemset frequency (TIF), and transaction-itemset status (TIS). These two

attributes are defined as follows:

TIF(X, r, DB) = m, if X occurs m times in transaction r in DB

TIS(X , r, DB)=. {
1, for X E r, and z- E DB

0, for X or, and r e DB

Also, each itemset X in DB is associated with the following two attributes: transaction

frequency (TF), and database frequency (DF). These two attributes are defined as

follows:

TF(X, DB) = Er EDBTIS(X, r, DB)

4-

Chapter 1.5
	

Association rules induced by item and quantity purchased 	1.78

DF(X, DB) = ET EDBTIF(X, r, DB)

Steinbach et. al [73] have proposed a generalized support measure using eval and norm

functions. Steinbach and Kumar [72] have also proposed a framework that encompasses

the traditional concept of confidence as a special case and can be used as the basis for

designing a variety of new confidence measures. When an item is purchased multiple

times in a transaction then the above generalized frameworks might not be adequate for

mining association rules, since they are based on a binary database. The following

example shows why the traditional support-confidence framework is not adequate for

mining association rules in a TIMT type database.

Example 1.5.2. There are three TIMT type databases DB], DB2, and DB3 containing five

transactions each. DB / = {{A(1000), B(2000), C(1)}, {A(5), C(2)}, {B(4), E(2)}, {E(2),

F(1)), {F(2)}}; DB2 = {{A(1), B(1), C(2)}, {A(1), B(1), E(2)}, {A(1), B(1), F(1)}, {A(1),

B(1), G(2)}, {H(3)}}; DB3 = { {A(500), B(600)}, {A(700), B(400), E(1)}, {A(400),

B(600), E(3)}, {G(3)}, {A(200), B(500), H(1)}}. The numbers of occurrences of itemset

{A, B) in transactions of different databases are given below.

Table 1.5.1. Distributions of itemset {A, B) in transactions of different databases

Database Trans #1 Trans #2 Trans #3 Trans #4 Trans #5

DB / 1000 0 0 0 0

DB2 1 1 1 1 0

DB3 500 400 400 0 200

From Table 1.5.1, we observe the following points regarding itemset {A, B):

■ It has high database frequency, but low transaction frequency in DB/.

■ In DB2, it has high transaction frequency, but relatively low database frequency.

■ It has high transaction frequency and high database frequency in DB3. •

Based on the above observations, it might be required to consider database frequencies

and transaction frequencies of {A}, {B} and {A, B) to study association between the

items A and B. Thus, one could have the following categories of association rules in a

Chapter 1.5
	

Association rules induced by item and quantity purchased 	1.79

TIMT type database [7].

I. Association rules induced by transaction frequency of an itemset

II. Association rules induced by database frequency of an itemset

III. Association rules induced by both transaction frequency and database frequency of

an itemset

1.5.3 Frameworks for mining association rules under different categories

In this section, we introduce a framework for each category of association rules discussed

in Section 1.5.2. Each framework is based on traditional support-confidence framework

for mining association rules in a binary database.

1.5.3.1 Framework for mining association rules under category I

Based on the number of transactions containing an itemset, we define transaction-support

(tsupp) [7] of the itemset as follows.

Definition 1.5.1. Let X be an itemset in TIMT type database DB. Transaction-support of

X in DB is given as follows: tsupp (X, DB) = TF(X, DB) / IDBI. •

Let X and Y be two itemsets in DB. An itemset X is transaction frequent in DB if tsupp

(X, DB) a, where a is the minimum transaction-support level. We define transaction-

support of an association rule r: X+ Y in DB as follows: tsupp(r, DB) = tsupp(XnY,

DB). In other words, the transaction-support of association rule r in DB is the fraction of

transactions containing both X and Y. We define transaction-confidence (tconfi of

association rule r in DB as follows: tconf(r, DB) = tsupp(XnY, DB) / tsupp(X, DB). In

other words, the transaction-confidence of association rule r in DB is the fraction of

transactions containing Y among the transactions containing X An association rule r in

DB is interesting with respect to transaction frequency of an itemset if tsupp(r, DB)

minimum transaction-support, and tconf(r, DB) minimum transaction-confidence (fl).

Chapter 1.5
	

Association rules induced by item and quantity purchased 	1.80

The parameters, minimum transaction-support and minimum transaction-confidence are

user-defined inputs, given to a category I association rule mining algorithm.

1.5.3.2 Framework for mining association rules under category II

The number of occurrences of an itemset in a database is also an important issue. Let X=

{x i , x2, ..., xk} be an itemset in database DB. Also, let r be a transaction in DB. Let item

x, be purchased numbers at a time in I., for i = 1, 2, ..., k. Then, TIF(X, r, DB) =

minimum{rp, 772, • • •, ilk} • Based on the frequency of an itemset in a database, we define

database-support (dsupp) [7] of the itemset as follows.

Definition 1.5.2. Let X be an itemset in TIMT type database DB. Database-support of X

in DB is given as follows: dsupp (X, DB) = DF(X, DB) I IDEA.

An item in a transaction could occur more than once. Thus, dsupp(X, DB) could be

termed as the multiplicity of itemset X in DB. An important characteristic of a database is

the average multiplicity of an item (AMI) in the database. Let m be the number of distinct

items in DB. We define AMI in a TIMT type database DB as follows: AMI(DB) =

Ei'n, i dsupp(„ DB)Im, where x, is the i-th item in DB, for i = 1, 2 An itemset X is

database frequent in DB if dsupp(X, DB) y, where y is the minimum database-support

level. Let Y be another itemset in DB. We define database-support of association rule r:

X--> Y in DB as follows: dsupp(r, DB) = dsupp(Xn Y, DB). In other words, database-

support of association rule r in DB is the multiplicity of xn Y in DB. Also, we define

database-confidence (dconf) of association rule r: X- Yin DB as follows: dconf(r, DB) =

dsupp(Xn Y, DB) I dsupp(X, DB). In other words, database confidence of association

rule r in DB is the multiplicity of Yin the transactions containing X An association rule r:

X---> Y is interesting with respect to database frequency of an itemset if dsupp(r, DB)

minimum database-support and dconf(r, DB) minimum database-confidence (6). The

Chapter 1.5
	

Association rules induced by item and quantity purchased 	1.81

parameters, minimum database-support and minimum database-confidence, are user

defined inputs given to a category II association rule mining algorithm.

1.5.3.3 Framework for mining association rules under category III

Interesting association rules under category III are based on interestingness measures

defined in Sections 1.5.3.1 and 1.5.3.2. An association rule r: X-* Y in TIMT type

database DB is interesting with respect to both transaction frequency and database

frequency of an itemset if tsupp(r, DB) a, tconf(r, DB) ,8, dsupp(r, DB) 7, and

dconfir, DB) ?_ 8 The parameters a, 16, y, and 8 are defined in Sections 1.5.3.1 and

1.5.3.2. They are user-defined inputs given to a category III association rule mining

algorithm. Based on the framework, we extract association rules in a database as follows.

Example 1.5.3. Let DB = {{A(1), B(1)}, {A(2), B(3), C(2)}, {A(1), B(4), E(1)}, {A(3),

E(1)}, {C(2), F(2)}}. Let a = 0.4, fl = 0.6, 7 = 0.4, and 8 = 0.5. Transaction-frequent

itemsets and database-frequent itemsets are given in Tables 1.5.2 and 1.5.3, respectively.

Table 1.5.2. Transaction-frequent itemsets in DB

Itemset A BCE AB AE

tsupp 0.8 0.6 0.4 0.4 0.6 0.4

Table 1.5.3. Database-frequent itemsets in DB

Itemset A B C E F AB AC AE BC CF ABC

dsupp 1.4 1.6 0.8 0.4 0.4 0.8 0.4 0.4 0.4 0.4 0.4

Interesting association rules under category III are given in Table 1.5.4.

Chapter 1.5
	

Association rules induced by item and quantity purchased 	1.82

Table 1.5.4. Interesting category III association rules in DB

r: X- Y tsupp (r, DB) tconf (r, DB) dsupp (r, DB) dconf (r, DB)

A—> B 0.6 0.75 0.8 0.57143

B—> A 0.6 1.0 0.8 0.5

•

The goal of this chapter is to provide frameworks for mining association rules under

different categories in a TIMT type database.

1.5.3.4 Dealing with items measured in continuous scale

The above framework works well for items that are measured in discrete scale. Now, we

discuss the issue of handling items that are measured in continuous scale using an

example. Consider the item milk in a departmental store. Let there four types of milk

packets: 0.5 kilolitre, 1 kilolitre, 1.5 kilolitres, and 2 kilolitres. The minimum packing

unit could be considered as 1 unit. Thus, 3.5 kilolitres of milk could be considered as 7

units of milk.

1.5.4 Properties of different interestingness measures

The following properties are based on a TIMT type database DB. Transactional support

measure is the same as the traditional support measure of an itemset in a database. Thus,

it satisfies all the properties that are satisfied by traditional support measure.

Property 1.5.1. 0 < tsupp (Y, DB) 5 tsupp (X DB) 5 1, for itemsets X Y in DB such that

X c Y. •

Transaction-support measure satisfies anti-monotone property [87] of traditional support

measure. Transaction-confidence measure is the same as the traditional confidence

measure of an association rule. Thus, it satisfies all the properties that are satisfied by

traditional confidence measure of an association rule.

Property 1.5.2. tconf (r, DB) lies in [tsupp(r, DB), 1], for an association rule r in DB. •

Chapter 1.5
	

Association rules induced by item and quantity purchased 	1.83

If an itemset X is present in a transaction r in DB then TIF(X, r, DB) 1. Thus, we have

the following property.

Property 1.5.3. tsupp (X DB) 5 dsupp (X DB) < 00, for an itemset X in DB. •

Let BD be a binary transactional database. Then the maximum database frequency of an

itemset in BD is equal to IBDI. Thus, database-support of an itemset in BD lies in [0, 1].

Hence, database-confidence of an association rule r in BD lies in [dsupp(r, BD), 1]. In the

context of a TIMT type database DB, database-confidence of an association rule r might

not lie in [dsupp(r, DB), 1.0], since database-support of an itemset in DB might be greater

than 1 (as reported in Table 1.5.3). But, the database confidence of an association rule r

in DB satisfies the following property.

Property 1.5.4. dconf (r, DB) lies in [0, 1], for an association rule r in DB. •

1.5.5 Mining association rules

Association rule mining has received a lot of attention in KDD community. Many

interesting algorithms have been proposed for mining positive association rules in a

binary database [13], [39], [66]. Thus, there are several implementations [32] of mining

positive association rules. In the context of mining association rules in a TIMT type

database, we shall implement apriori algorithm [13], since it is simple and easy to

implement. For mining association rules in a TIMT type database, one could apply

apriori algorithm directly. For mining association rules under category III, the pruning

step of interesting itemset generation requires testing on two conditions: minimum

transaction-support and minimum database-support. The interesting association rules

under category III satisfy the following two additional conditions: minimum transaction-

confidence and minimum database-confidence.

Association rules induced by item and quantity purchased 	1.84 Chapter 1.5
-4-

1.5.6 Experiments

We have carried out several experiments to extract association rules under proposed

frameworks. All the experiments have been implemented on a 2.8 GHz Pentium D dual

core processor with 512 MB of memory using visual C++ (version 6.0) software. We

present the experimental results using real databases retail (R) and ecoli (E). Also, we

have used an artificial database check (C) to verify the result of the experiment. The

database retail [34] is obtained from an anonymous Belgian retail supermarket store. The

database ecoli is a subset of ecoli database [77]. The database ecoli has been processed

for the purpose of conducting experiments. The database check contains the following

transactions: {34, 47, 62}, {34, 55, 62, 102}, {47, 62}, {47, 55, 75}, {55, 62, 120}. We

present some characteristics of these databases in Table 1.5.5.

Table 1.5.5. Database characteristics

Database # transactions
Avg length

of a transaction

Avg frequency

of an item
items

R 88,162 11.30576 99.67380 10000

E 336 7.00000 22.40000 90

C 5 3.00000 2.14286 7

Due to unavailability of TIMT type database, we have used above data by applying a

preprocessing technique. If an item is present in a transaction then the number of

occurrences of the item is generated randomly between 1 and 5. Thus, a binary

transactional database gets converted into a TIMT type database. Now, database check

contains the following transactions: {34, 2, 47, 1, 62, 5}, {34, 3, 55, 4, 62, 1, 102, 1},

{47, 2, 62, 3}, {47, 2, 55, 4, 75, 4}, {55, 1, 62, 5, 120, 3}. Each item in a transaction

follows its transaction frequency. Initially, we perform experiments to extract association

rules under category 1. A few transaction-frequent itemsets in different databases are

given in Table 1.5.6.

Chapter 1.5 	Association rules induced by item and quantity purchased 	1.85

Table 1.5.6. Top 5 transaction-frequent itemsets in different databases (sorted on

transaction-support)

Database a
Itemset

(transaction-support)

{39} {48} {39, 48} {38} {32}
R 0.05

(0.57479) (0.47793) (0.33055) (0.17690) (0.17204)

E 0.3
{50} {48} {48,50} {44} {40}

(1.00000) (0.97619) (0.95833) (0.15095) (0.15002)

C 0.1
{62} {47} {55} {34} {34, 62}

(0.80000) (0.60000) (0.60000) (0.40000) (0.40000)

A few association rules under category I in different databases are given in Table 1.5.7.

Table 1.5.7. Top 5 association rules in different databases under category I (sorted on

transaction-support)

Database
(a,

A

(antecedent, consequent,

transaction-support, transaction-confidence)

(48, 39, (39, 48, (41, 39, (39, 41, (38, 39,
(0.05,

R 0.33055, 0.33055, 0.12947, 0.12947, 0.11734,
0.2)

0.69163) 0.57508) 0.76373) 0.22524) 0.66331)

(48, 50, (50, 48, (44,48, (40, 50, (37, 48,
(0.1,

E 0.95833, 0.95833, 0.13988, 0.13691 0.13393
0.3)

0.98171) 0.95833) 0.40286) 0.41039) 0.39571)

(34, 62, (47, 62, (55, 62, (62, 34, (62, 47,
(0.1,

C 0.40000, 0.40000, 0.40000, 0.40000, 0.40000,
0.3)

1.00000) 0.66667) 0.66667) 0.50000) 0.50000)

Chapter 1.5
	

Association rules induced by item and quantity purchased 	1.86

Also, we have computed average multiplicity of an item in the given databases. In Table

1.5.8, we present AMI for each of the given databases.

Table 1.5.8. AMI for the given databases

Database R E C

AMI 0.00309 0.23062 1.17143

A few database-frequent itemsets in different databases are given in Table 1.5.9.

Table 1.5.9. Top 5 database-frequent itemsets in different databases (sorted on database-

support)

Database y
Itemset

(database-support)

R 0.07
{39} {0} {1} {8} {38}

(1.75906) (0.66511) (0.57741) (0.55327) (0.53030)

E 0.3
{50} {48} {48,50} {44} {40}

(3.00595) (2.98800) (2.75833) (0.30045) (0.28276)

C 0.1
{62} {55} {34} {47} {75}

(2.80000) (1.80000) (1.00000) (1.00000) (0.80000)

A few association rules under category II in different databases are given in Table 1.5.10.

4-
	Chapter 1.5
	

Association rules induced by item and quantity purchased 	1.87

Table 1.5.10. Top 5 association rules in different databases under category II (sorted on

database-support)

Database
(7,

(5)

(antecedent, consequent,

database-support, database-confidence)

R
(0.07,

0.4)

(48, 39,

0.72554,

0.50731)

(39, 48,

0.72554,

0.42078)

(41, 39,

0.28436,

0.55841)

(38, 39,

0.25744,

0.48475)

(41, 48,

0.22580,

0.44341)

E
(0.1,

0.2)

(48, 50,

2.75833,

0.92314)

(50, 48,

2.75833,

0.91762)

(44, 48,

0.30045,

1.00000)

(40, 50,

0.28276

1.00000)

(37, 48,

0.28393

1.00000)

C

.
(0.1,

0.3)

(75, 55,

0.80000,

1.00000)

(55, 75,

0.80000,

0.44444)

(120, 62,

0.60000,

1.00000)

(34, 55,

0.60000,

0.60000)

(34, 62,

0.60000,

0.60000)

We observe the following interesting points in database check.

(i) Though the itemset {55, 75} has high database-support, but it has low transaction-

support. It generates an interesting association rule under category II. But, it fails to

generate an interesting association rule under category I.

(ii) Both the association rules {34} —> {62} and {62} —> {34} are interesting when

transaction frequency of an itemset is considered. But, the association rule {62} —>

{34} is not interesting when database frequency of an itemset is considered.

The above observations show why we need to study association rules with respect to

transaction frequency of an itemset and database frequency of an itemset.

Also, we have obtained execution times for extracting association rules at different

database sizes. As the size of a database increases, the execution time also increases. We

have observed such phenomenon in Figures 1.5.1 and 1.5.2.

250

	

200 	

	

150 	

	

100 	

	

50 	

	

0 	

dp .6) („9 	,,,c3 e <4, cp,b At. 	,b9)'‘

Number of transactions

E
xe

cu
ti

on
 t

im
e

(s
ec

33 66 99 132 165 198 231 264 297 236

Number of transactions

4—
	Chapter 1.5
	

Association rules induced by item and quantity purchased 	1.88

Figure 1.5.1. Execution time versus size of database retail at a= 0.05, y= 0.07, p= 0.2,

and = 0.4

Figure 1.5.2. Execution time versus size of database ecoli at a= 0.1, 7= 0.1, p= 0.3, and

8 = 0.3

Also, we have obtained execution times for extracting association rules at different

minimum database-supports. As the value of minimum database-support increases, the

number of interesting itemsets decreases. Thus, the number of interesting category II

association rules decreases. So, the time required to extract category II association rules

also decreases. We have observed such phenomenon in Figures 1.5.3 and 1.5.4.

700
600
500
400
300

F-- 200
100

0

oPp'

Minimum database support

•

N'" Ng, N", No' Kt• 	nc" ∎1
0 	0 	0. 	0.- 0 	0• .0• 0 	0

Minimum database support

12

10

8

6

4

2

0

Chapter 1.5
	

Association rules induced by item and quantity purchased 	1.89

Figure 1.5.3. Execution time versus y at a= 0.04, 161 = 0.2, and 6= 0.4 (retail)

Figure 1.5.4. Execution time versus y at a= 0.08, /3= 0.3, and g= 0.2 (ecoli)

The graph of execution time versus a at a given tuple (y, 18, b) is similar to the graph of

execution time versus y at a given tuple (a, 8). As the value of minimum transaction-

support increases, the number of interesting itemsets decreases. Thus, the number of

interesting category I association rules decreases. So, the time required to extract

category I association rules also decreases.

1.5.7 Related work

Association rule mining finds interesting association between two itemsets in a database.

The notion of association rule is introduced by Agrawal et al. [11]. The authors have

proposed an algorithm to mine frequent itemsets in a database. Many algorithms have

been reported to extract association rules in a database. In the following we mention a

few interesting algorithms for extracting association rules in a database. Agrawal and

Chapter 1.5
	

Association rules induced by item and quantity purchased 	1.90

Srikant [13] have proposed apriori algorithm that uses breadth-first search strategy to

count the supports of itemsets. The algorithm uses an improved candidate generation

function, which exploits the downward closure property of support and makes it more

efficient than earlier algorithm. Han et al. [39] have proposed data mining method FP-

growth (frequent pattern growth) which uses an extended prefix-tree (FP-tree) structure

to store the database in a compressed form. FP-growth adopts a divide-and-conquer

approach to decompose both the mining tasks and databases. It uses a pattern fragment

growth method to avoid the costly process of candidate generation and testing. Savasere

et al. [66] have introduced partition algorithm. The database is scanned only twice. In the

first scan the database is partitioned and in each partition support is counted. Then the

counts are merged to generate potential frequent itemsets. In the second scan, the

potential frequent itemsets are counted to find the actual frequent itemsets. Wu and

Zhang [81] have proposed a weighting model for synthesizing high-frequent association

rules from different databases.

In the context of interestingness measures, Tan et al. [75] present an overview of

twenty one interestingness measures proposed in the statistics, machine learning and data

mining literature. The measures in general lack to agree with each other. However, the

authors show that if support-based pruning or table standardization (of the contingency

tables) is used, the measures become highly correlated. Brin et al. [22] introduce

measures conviction and lift as the improvements to confidence based on implication

rules. Aggarwal and Yu [10] point out weaknesses of the large frequent itemset method

using support and that lift gives only values close to one for items which are very

frequent, even if they are positively correlated. The authors have introduced collective

strength. Collective strength uses the violation rate for an itemset which is the fraction of

transactions which contains some, but not all items of the itemset.

Chapter 1.5
	

Association rules induced by item and quantity purchased 	1.91

1.5.8 Conclusion

The traditional support-confidence framework for mining association rules is based on a

binary database. It has limited usage in association analysis of items, since a real life

transaction might contain an item multiple times.

The traditional support-confidence framework is based on the frequency of an itemset

in a binary database. In a TIMT type database, there are two types of frequency of an

itemset viz., transaction frequency, and database frequency. Due to these reasons, we get

the following categories of association rules in a TIMT type database: (i) Association

rules induced by transaction frequency of an itemset, (ii) Association rules induced by

database frequency of an itemset, and (iii) Association rules induced by both transaction

frequency and database frequency of an itemset. We have introduced a framework for

mining each category of association rules. The proposed frameworks are effective for

studying association among items in real life market basket data.

4-

1.92

Chapter 1.6

Conclusion

It seems many interesting and useful patterns remain undiscovered. In Chapter 1.2, we

have proposed conditional patterns in a database. Conditional patterns provide interesting

knowledge about items in frequent itemsets in a database. They could be useful for

solving many problems. In Chapter 1.3, we have dealt with mining arbitrary Boolean

expressions induced by frequent itemsets using conditional patterns in a database. We

have provided a simple framework for synthesizing an arbitrary Boolean expression. In

future, we shall search for more applications of conditional patterns in a database.

Many data mining problems could be solved by capturing association among items in a

database. In Chapter 1.4, we have proposed measure A2 for this purpose. We have

observed that measure A2 is effective in capturing statistical association among items in a

database. Also, we have introduced the notion of associative itemset in a database. In

Chapter 2.4, we have proposed a technique for clustering frequent items in multiple

databases using the measure of association A2. In future, we shall search for more

applications of the measure of association A2.

Traditional support-confidence framework has not been effective in finding association

rules in real market basket data. An item in a database could be purchased multiple times

in a transaction. In this case, there are two types of frequency of an itemset in a database:

the number of transactions in the database containing the itemset, and the number of

occurrences of the itemset in the database. Thus, one could study association rules with

respect to these types of frequency of an itemset. We have proposed frameworks for three

different categories of association rules in a database. We believe that such framework

4—
	Chapter 1.6 	 Conclusion 	 1.93

would help studying association between a pair of itemsets in real market basket data.

_4-

2.1

Part 2

Pattern recognition in multiple databases

2.2
-Jr

Chapter 2.1

Introduction

There are various reasons why mining on multiple databases becomes an important issue

in the recent time. In the following paragraph, we mention a few reasons that motivate us

to work on mining multiple databases.

■ Due to a liberal economic policy adopted by many countries across the globe, the

number of branches of a multi-national company as well as the number of multi-

national companies is increasing over time. Moreover, the economies of many

countries are growing at a faster rate. As a result the number of multi-branch

companies within a country is also increasing. Many multi-branch companies deal

with multiple databases, since local transactions are stored locally. Thus, it is

necessary to study data mining on multiple databases. Many decision-making

problems are based on knowledge distributed across the branch databases.

■ Most of the previous pieces of data mining work are based on a single database. Thus,

it is necessary to study data mining on multiple databases.

■ The number of data mining solution providers is increasing over time. Please visit

http://www.kdnuggets.com/ for reference.

■ In addition, the number of data mining products is also increasing over time. Please

see the above site for reference.

■ In the year 2002, Dr Shichao Zhang has submitted his thesis on multi-database mining.

His research has made significant impact on data mining community. So, it is a recent

topic in data mining, and thus it deserves much attention.

In discovering knowledge in a database, we have come across various types of patterns.

Some examples of patterns in a database are frequent itemset, positive association rule,

Chapter 2.1 	 Introduction 	 2.3

negative of association rule, and conditional pattern. In Part 2, we have studied various

patterns originated due to a study of multiple databases. These patterns are not only

interesting, but also help solving different problems. We have made the following

contributions in Part 2.

■ We have proposed a definition of global exceptional frequent itemset in multiple

databases.

■ The notion of exceptional sources for a global exceptional frequent itemset is

introduced.

■ We have designed an algorithm for synthesizing global exceptional frequent itemsets.

■ An extended model is proposed for synthesizing global patterns from local patterns in

different databases.

■ The notion of heavy association rule in multiple databases is introduced, and an

algorithm for synthesizing such association rules in multiple databases is thus

proposed.

■ The notion of exceptional association rule in multiple databases is introduced, and an

extension is made to the proposed algorithm to notify whether a heavy association rule

is high-frequent or exceptional.

■ We have designed an algorithm for clustering frequent items in multiple databases.

2.4

Chapter 2.2

Synthesizing global exceptional patterns in multiple databases

Many multi-branch companies transact from different locations. Many of them collect a

huge amount of transactional data continuously through their different branches. Due to a

growth-oriented and liberal economic policy adopted by many countries across the globe,

the number of such companies as well as the number of branches of such a company is

increasing over time. Moreover, most of the pieces of data mining work are based on a

single database. Thus, it is important to study data mining on multiple databases.

Analysis and synthesis of patterns in multiple databases is an important as well as

interesting issue.

Based on the number of data sources, patterns in multiple databases could be classified

into three categories. They are local patterns, global patterns, and patterns that are neither

local nor global. A pattern based on a branch database is called a local pattern. On the

other hand, a global pattern is based on all the databases under consideration. Global

patterns are useful for global data analyses and global decision making problems [6],

[79], [83]. There exist other types of patterns in multiple databases. For example,

frequent itemset, positive associative rule and clustering of relevant objects. There is no

fixed set of attributes to describe these patterns, since there are different types of pattern

in a database. Each type of pattern could be described by a specific set of attributes.

Chapter 2.2 	Synthesizing global exceptional patterns in multiple databases 	2.5

Itemset patterns influence KDD research heavily in following ways: Firstly, many

interesting algorithms have been reported on mining itemset patterns in a database [13],

[39], [66]. Secondly, an itemset could be considered as a basic type of pattern in a

transactional database, since many patterns are derived from the itemset patterns in a

database. Some examples of derived patterns are positive association rule [11], negative

association rule [82], conditional pattern [9] in a database and high-frequent association

rule [81], heavy association rule [5], exceptional association rule [5] in multiple

databases. Considerable amount of work have been reported on mining / synthesizing

such derived patterns in databases. Thirdly, solutions of many problems are based on the

analysis of patterns in a database. Such applications [83], [79] process patterns in a

database for the purpose of making some decisions. Thus, mining and analysis of itemset

patterns in a database is an interesting as well as important issue. Each itemset in a

database is associated with a statistical measure, called support [11]. The support (supp)

of an itemset X in database D could be defined as the fraction of transactions in D

containing all the items of X, denoted by supp(X, D). In most of the cases, the importance

of an itemset is judged by its support. The itemset X is frequent in D if supp (X, D)> a,

where a is user defined minimum support. Let FIS(D) be the set of frequent itemsets in

D. Frequent itemsets determine major characteristics of a database. Wu et al. [80] have

proposed a solution of inverse frequent itemset mining. They argued that one could

efficiently generate a synthetic market basket database from the frequent itemsets and

their supports. Let X and Y be two itemsets in D. The characteristics of D are revealed

more by the pair (X, supp(X, D)) than that of (Y, supp (Y, D)), if supp(X, D) > supp(Y, D).

Thus, it is important to study frequent itemsets more than infrequent itemsets. Here, we

study frequent itemsets in multi-databases.

In the next section, we have defined global exceptional frequent itemset in multi-

databases. Also, we have designed an algorithm for synthesizing global exceptional

frequent itemsets in multiple databases. There are useful applications of global excep-

Chapter 2.2 	Synthesizing global exceptional patterns in multiple databases 	2.6

tional frequent itemsets. For example, the company might plan to collect the feedback of

customers for the global exceptional products and implement similar strategies to

increase the sales of other products. Also, the company could identify the branches

having high sales of the global exceptional items. It might plan to manufacture and / or

procure such items locally to reduce the transportation cost. The global exceptional

frequent itemsets would affect many such decisions of a multi-branch company.

The first question comes to our mind whether a traditional data mining technique could

deal with the multiple large databases. To apply a traditional data mining technique we

need to amass all the databases together. A single computer might take unreasonable

amount of time to process the entire database. Sometimes, it might not be feasible to

carry out the mining task. Another solution would be to employ parallel machines and the

associated software. But, it requires high investment on hardware and software.

Moreover, it is difficult to find local patterns when mining techniques are applied on the

entire database. Thus, a traditional data mining techniques is not suitable in this situation.

So, it is a different problem. Hence, it is required to be dealt with in a different way. We

would employ the model of local pattern analysis [91] for mining multiple databases.

Under this model of mining multiple databases, each branch requires to mine local

database using a traditional data mining technique. Afterwards, each branch is required to

forward the pattern base to the central office. Then, the central office would process the

pattern bases collected from different branches for synthesizing the global patterns, or

making decisions related to some problems.

The rest of the chapter is organized as follows. We discuss related work and state the

problem in Section 2.2.2. In Section 2.2.3, we discuss a simple method for synthesizing

support of an itemset in the union of all databases. In Section 2.2.4, we design an

algorithm to synthesize global exceptional frequent itemsets in multi-databases. In

Section 2.2.5, we define two types of errors for synthesizing global exceptional frequent

itemsets. We present experimental results in Section 2.2.6.

Chapter 2.2
	

Synthesizing global exceptional patterns in multiple databases 	2.7

2.2.2 Problem statement

Consider a multi-branch company that has n branches. Let D, be the database

corresponding to the i-th branch, for i = 1, 2, ..., n. Also, let D be the union of these

databases. In the context of multiple databases, one could conceive the idea of global

exceptional frequent itemset in two ways: Firstly, a frequent itemset extracted from most

of the databases might have moderate support in D. Secondly, a frequent itemset

extracted from a few databases might have high support in D. We are interested in the

second category of frequent itemsets and call them as global exceptional frequent

itemsets henceforth. Before we define a global exceptional frequent itemset formally, we

first study work related to this issue.

2.2.2.1 Related work

Multi-database mining has been recently recognized as an important research topic in

KDD community. Zhang et al. [93] studied knowledge discovery in multiple databases

using local pattern analysis.

Zhang et al. [94] have proposed a strategy for mining local exceptions in multiple

databases. The authors have defined an exceptional pattern as follows:

A pattern p in local instances is an exceptional pattern if EPI(p) minEP, where

EPI(p) is an interestingness measure of p and has been defined as follows:

EP (p) =
nExtrn(p) - avgNoExtrn

• (2.2.1)
- avgNoExtrn

where, nExtrn(p) and avgNoExtrn are the number of times p gets extracted and the

average number times a pattern gets extracted from different data sources,

respectively.

■ minEP is the user-defined threshold for minimum interest degree.

Also, the authors have defined interestingness of a pattern in a branch as follows:

A pattern p in i-th branch is of interest if RI,(p) 	minEPsup, where RI,(p) is

interestingness degree ofp in i-th branch and has been defined as follows:

Chapter 2.2 	Synthesizing global exceptional patterns in multiple databases 	2.8

■ RI,(p)=(supp(p, D,)-a,)/a, 	 (2.2.2)

a, is the minimum support given for mining D,, for i = 1, 2, ..., n.

■ minEPsup is the user-defined threshold for minimum interest degree.

From the above two definitions, we observe the following points:

■ The definition of exceptional pattern is considered with respect to all the databases.

The definition of interestingness of a pattern is considered with respect to a local

database. Thus, an exceptional pattern in multiple databases and interestingness of the

pattern in a local branch are of two different issues.

■ For a pattern p in local instances, the authors have shown that 0 < EP/(p) 	We take

the following example to show that the above property does not hold always. Let there

are only 4 patterns in 15 databases. The number of extractions of 4 patterns are given

as follows: nExtrn(m) = 2, nExtrn(p2) = 15, nExtrn(p3) = 4, nExtrn(p4) = 5. Thus,

avgNoExtrn= 26/4 = 6.5. EPI(p1) -= (2-6.5)/(-6.5) = 0.69, EPI(p2) = (15-6.5)/(-6.5) = -

1.31, EPI(p3)= (4-6.5)/(-6.5) = 0.38, EPI(p4)= (5-6.5)/(-6.5) = 0.23. Thus, EPI(p2)

(0, 11.

■ An interesting exceptional pattern might not emerge as a global exceptional pattern,

since the support of the pattern is not considered in the union of all databases.

We feel that an exceptional global frequent itemset should be constrained on the number

of times it gets extracted and its support in the union of all databases. Thus, none of the

above two definitions, nor the both the definitions together does serve as a definition of

exceptional global frequent itemset in multiple databases.

Zhang et al. [89] have proposed a technique for identifying global exceptional patterns

in multiple databases. The authors have described global exceptional pattern as follows:

Global exceptional patterns are highly supported by only a few branches, that is to

say, these patterns have very high support in these branches and zero support in other

branches.

From the above descriptions, we observe the following points:

Chapter 2.2 	Synthesizing global exceptional patterns in multiple databases 	2.9

a Let there are ten branches of a multi-branch company. A pattern p has very high

support in first two databases that have small sizes. Also, p does not get extracted from

the remaining databases. According to the above description, p is a global exceptional

pattern. We observe that pattern p might not have high support in the union of all

databases. Thus, such description does not serve the purpose.

a Also, it is not necessarily true that an exceptional pattern will have zero supports in the

remaining databases.

Thus, the above description does not describe a global exceptional pattern in true sense.

Also, we observe the following points regarding algorithm Identij;ExPattern [89] for

identifying exceptional patterns in multiple databases.

a We believe that the size (i.e., the number of transactions) of a database and support of

an itemset in the database are two important parameters for determining the presence

fr of an itemset in a database, since the number of transactions containing the itemset X

in a database Di is equal to supp(X, D i) x size(D i). The algorithm does not consider

size of a database to synthesize the global support of a pattern. Global support of a

pattern has been synthesized using only supports of the pattern in concerned databases.

We take following example to illustrate this issue. Let there are two databases Di and

D2, where size(Di) is significantly larger than size(D2). At a given a, we assume that

pattern p does not get extracted from D2, and pattern q does not get extracted from D1.

Thus, supp(p, D2) and supp(q, Di) both are assumed as Os. Then, supp(p, DI U D2)

could be synthesized by [supp(p, DI) x size(Di) + 0 xsize(D2)] / size(DIU D2). If

supp(p, Di) < supp(q, D2) then it might so happen that supp(p, DI U D2) > supp(q,

D1 U D2). In particular, let size(DI) = 10000, size(D2) = 100. At a = 0.05, let supp(p,

Di) = 0.1, supp(q, DI) = 0, supp(p, D2) = 0, and supp(q, D2) = 0.2. We note that

supp(p, Di) < supp(q, D2). But, supp(p, D 1U D2) = 0.99, and supp(q, D1 U D2) = 0.002.

So, supp(p, DI U D2) > supp(q, D1 U D2). Thus, the size of a database is an important

parameter for synthesizing the support of a pattern in the union of all databases.

Chapter 2.2 	Synthesizing global exceptional patterns in multiple databases 	2.10

■ The algorithm does not identify global exceptional patterns correctly in all the

situations. For example, let there are 10 similar databases. Assume that the number of

times each pattern gets extracted is either 8, or 9, or 10. Thus, these patterns are

supported by most of the databases. According to the nature of global exceptional

patterns, a high voted pattern is not a global exceptional pattern. But, the algorithm

would report some of them as global exceptional patterns.

■ The algorithm returns patterns that have high supports among the patterns that are

extracted less than average number of times. We feel that a global exceptional pattern

should have the following properties: (i) the support of a global exceptional pattern in

the union of all databases is greater than or equal to a threshold value, and (ii) the

number of extractions of a global exceptional pattern is less than another threshold

value, where these threshold values are user-defined.

In the context of association rule in multiple databases, Wu and Zhang [81] have

proposed a technique for synthesizing high-frequent association rules in different data

sources.

In the context of support estimation of frequent itemsets, Jaroszewicz and Simovici

[45] have proposed a method for estimating supports of frequent itemsets using

Bonferroni-type inequalities [35]. Also, the maximum-entropy approach to support

estimation of a general Boolean expression is proposed by Pavlov et al. [62]. But, these

support estimation techniques are suitable for problems that deal with single database.

Existing parallel mining techniques [12], [26], [28] could also be used to deal with

multiple databases.

2.2.2.2 Our approach

The difficulty of synthesizing global exceptional frequent itemsets is that a frequent

itemset in a database may not get extracted from all the databases. Apart from

synthesized support of an itemset in D, the number of extractions of the itemset is an

important issue. An itemset may be high-frequent or, low-frequent, or neither high-frequ-

Chapter 2.2 	Synthesizing global exceptional patterns in multiple databases 	2.11

ent nor low-frequent. In this context, we need to consider only low-frequent itemsets. We

could arrive in such a conclusion only if we have predefined threshold of minimum

number of extractions. The problem of synthesizing global exceptional frequent itemsets

is similar to awarding distinction grade to students in our examination system. In

particular, a student could be awarded distinction grade if he/she gets average marks

greater than or equal to 70%, and attends more than 75% of classes, provided the student

passes all the papers. In a similar way, an exceptional frequent itemset in multiple

databases could be judged against two thresholds, viz., high support and low extraction.

We use the symbol y to denote the threshold of low extraction of an itemset, where 0 < y

1. Thus, we define a low-voted frequent itemset as follows.

Definition 2.2.1. An itemset X has been extracted from k out of n databases. Then X is

low-voted, if k < n x y, where y is the user defined threshold of low extraction. 0

Among low-voted itemsets, we shall search for global exceptional frequent itemsets. An

itemset may not get extracted from all the databases. Sometimes we need to estimate the

support of an itemset in a database to synthesize the support of the itemset in D. Let

suppa(X, D) and suppe(X, D,) be the actual and estimated support of an itemset X in D„

respectively, for i = 1, 2, n. We use the symbol p to denote the threshold of high

support for an itemset in a database, where a < p 1. For a single database, we define an

itemset with high support as follows:

Definition 2.2.2. Let X be an itemset in database D„ for some i = 1, 2, ..., n. X possesses

high support in D, if suppa(X, D) > p, where p (> a) is the user defined threshold of

high support, for some i = 1, 2, ..., n.

The method of synthesizing support of an itemset is discussed in Section 2.2.3. Let

supps(X, D) denote the synthesized support of the itemset X in D. For multiple databases,

we define an itemset with high support as follows:

Definition 2.2.3. Let D be the union of all branch databases. An itemset X in D possesses

high support if supps(X, D)> p, where p is the user-defined threshold of high support. 0

Chapter 2.2 	Synthesizing global exceptional patterns in multiple databases 	2.12

Based on the concepts stated above, we define a global exceptional frequent itemset [2]

in D as follows:

Definition 2.2.4. Let D be the union of all branch databases. Let X be a frequent itemset

in some branch databases. Then X is global exceptional in D if it is low-voted and

possesses high support in D. •

Based on the above discussion, it might be worth noting the following points: (i) A global

exceptional frequent itemset in D is low-voted. (ii) A low-voted frequent itemset in D is

not necessarily be global exceptional. (iii) A global exceptional frequent itemset in D has

high support. (iv) An itemset with high support in D is not necessarily be global

exceptional.

Let X be a global exceptional frequent itemset in D. Without loss of generality, let X be

extracted from D1, D2, ..., Dk, for 0 < k < n. Support of X in D, is suppa(X, E9, for i = 1,

2, ..., k. Then the average of these supports is obtained by the following formula:

avg(supp(X), D 1 , D2 , ..., Dk)=(E,= , suppa(X, D,))Ik (2.2.3)

Database D, is called an exceptional source [2] with respect to the global exceptional

frequent itemset X, if suppa(X, D) avg(supp(X), D1, D2, ..., Dk), for some i = 1, 2, ..., k.

We take an example to explain this issue. Let X be a global exceptional frequent itemset

in D, and it has been extracted from D1, D2, and D3. SUPPAX, DI) = 0.09, suppa(X, D2) =

0.17, and suppa(X, D3) = 0.21. Then, avg(supp(X), D1, D2, D3) = (0.09 + 0.17 + 0.21) / 3

= 0.15667. The databases D2 and D3 are exceptional sources with respect to the global

exceptional frequent itemset X, since 0.17 > 0.15667, and 0.21 > 0.15667. We state the

problem as follows:

Let there are n databases D1, D2, ..., Dn, and D be the union of these databases. Let

FIS(D) be the set of frequent itemsets in D, for i = 1, 2, ..., n. Find the global

exceptional frequent itemsets in D using FIS(D), for i = 1, 2, ..., n. Also, report the

exceptional sources for the global exceptional frequent itemsets in D.

Chapter 2.2 	Synthesizing global exceptional patterns in multiple databases 	2.13

2.2.3 Synthesizing support of an itemset

Synthesizing support of an itemset in multiple databases is an important issue. A method

of synthesizing frequent itemsets in D has been proposed in [5]. It deals with multiple

real databases. The method is explained as follows.

The trend of the customers' behaviour exhibited in one database is usually present in

other databases, since databases are real. In particular, a frequent itemset in a database is

usually present in some transactions of other databases even if it does not get extracted

there. The estimation procedure captures such trend and estimates the support of an

itmset that fails to get extracted in a database. The estimated support of a missing itemset

usually reduces the error of synthesizing a frequent itemset in multiple databases. If an

itemset X fails to get extracted from database D1, then we assume that D1 contributes

some amount of support for X. The support of X in D1 satisfies the following inequality:

0 < suppa(X, D1) < a. The estimated support of such an itemset is called average low-

support (als). The procedure of estimating als is discussed below.

Let the itemset X be extracted from m databases, for 1 m < n. Without loss of

generality, we assume that X has been extracted from the first m databases. We shall use

the average behaviour of the customers of the first m branches to estimate the average

behaviour of the customers in remaining branches. Let Di" be the union of D1, D2, • • • ,

and Dm . suppa(X, Di,„,) could be viewed as the average behaviour of customers of the first

m branches with respect to X supp a(X, Di m?) could be obtained by the following formula.

suppa (X , „,)=. (E7,, suppa (X , D,)x size(D))/E1 size(D,) (2.2.4)

One could estimate the support of X for each of the remaining (n-m) databases as follows.

als(X, D 1) = a x suppa(X, Di"), for i = m + 1, m + 2, ..., n (2.2.5)

The technique discussed above might not be suitable for synthesizing global exceptional

frequent itemsets. The reason is given as follows. A global exceptional frequent itemset X

gets extracted from a few databases. During the process of synthesis, we need to estimate

the supports of X for the remaining databases. So, the number of actual supports of X is

k.

Chapter 2.2 	Synthesizing global exceptional patterns in multiple databases 	2.14

much less than the number of estimated supports of X. Thus, the error of synthesizing the

support of X in D would be high. Therefore, we shall follow a different strategy for

synthesizing support of an itemset in D. The strategy is explained as follows. We shall

mine each database at a reasonably low value of a. If the itemset X fails to get extracted

from D, then we assume that suppa(X, A) = 0, for some i = m + 1, m + 2, n. The

itemset X is present in A, for i = 1, 2, ..., m. Then, the number of the transactions

containing X in D, is suppa(X, D,) x size(D J), for i = 1, 2, ..., m. Also, the itemset X is not

present in A, for i = m + 1, m + 2, ..., n. We assume that the estimated number of the

transactions containing X in D, is 0, for i = m + 1, m + 2, ..., n. Thus, the estimated

support of X in a database is given as follows:

suppa (X , R), for i =1, 2, ..., m
suppe (X , D,)= 	 (2.2.6)

0, for i = m +1, m +2, ..., n

The synthesized support of X in D could be obtained by the following formula.

supps (X , D)=(E7=i suppe (X , D z)x size(R))1E: 1,1 size(R) 	 (2.2.7)

2.2.4 Synthesizing global exceptional itemsets

In this section, we present an algorithm for synthesizing global exceptional frequent

itemsets in D. We discuss here various data structures required to implement the

algorithm. Let N be the number of frequent itemsets in DI, D2, ..., and Dn . The frequent

itemsets are kept in a 2-dimensional array FIS. The (i, j)-th element of FIS stores the j-th

frequent itemset extracted from D„ for j = 1, 2, ..., 1F/S(01, and i = 1, 2, ..., n. An itemset

could be described by the following attributes: itemset, supp and did. The attributes

itemset, supp and did represent itemset, support and database identification of the

corresponding frequent itemset, respectively. Synthesized global exceptional frequent

itemsets are kept in array synFIS. Each global exceptional itemset has been described by

the following attributes: itemset, ssupp, nSources, databases, nExSources, and exDbases.

The attributes itemset and ssupp represent the itemset and synthesized support of a global

Chapter 2.2
	

Synthesizing global exceptional patterns in multiple databases 	2.15

exceptional frequent itemset in D, respectively. The attributes nSources and databases

store the number of sources of exceptional frequent itemsets and the list of identifications

of source databases of a global exceptional frequent itemset, respectively. The attributes

nExSources and exDbases store the number of exceptional sources and the list of

identifications of exceptional sources for a global exceptional frequent itemset,

respectively. The algorithm [2] is given below:

Algorithm 2.2.1. Synthesize global exceptional frequent itemsets in the union of all

branch databases.

procedure ExceptionalFrequentItemsetSynthesis (n, FIS, p, size, y)

Input:

n: number of databases

FIS: array of frequent itemsets

p: threshold of high support

size: array of total number of transactions in different databases

y: threshold of low extraction

Output: 	 - -

Global exceptional frequent itemsets in D

1: collect all the frequent itemsets into array FIS;

2: sort frequent itemsets in FIS in non-decreasing order on itemset attribute;

3: calculate total number of transactions into totTrans;

4: let nSynFIS = 0; let curPos = 1;

5: while (curPos 5_ N) do

6: let i = curPos; let count = 0;

7: let nTransCurFIS = 0; totSupp = 0;

8: while (i curPos + n) do

9: if (FIS(i).itemset = FIS(curPos).itemset) then

10: update count, sources(count), totalSupp, nTransCurFIS, supports(count);

11: else break;

Chapter 2.2 	Synthesizing global exceptional patterns in multiple databases 	2.16

12: increase i by 1;

13: end if

14: end while

15: if ((count I n) < y) and (nTransCurFIS / totTrans p)) then

16: increase nSynFIS 1;

17: update attributes supp, itemset and nSources of synFIS(nSynFIS);

18: avgSupp = totalSupp I count; exCount = 0;

19: for j = 1 to count do

20: synFIS(nSynFIS).databases(j) = source(j);

21: if (supports(exCount) avgSupp) then

22 	increase exCount by 1;

23: synFIS(nSynFIS).exDbases(exCount) = sources(j) ;

24: end if

25: end for

26: synFIS(nSynFIS).nExSources = exCount;

27: end if

28: update curPos by i;

29: end while

30: sort itemsets of synFIS;

31: for i = 1 to nSynFIS do

32: display details of synFJS(i);

33: end for

end procedure

We explain here the above algorithm. The frequent itemsets having the same itemset

attribute are kept consecutive in FIS. It helps processing one itemset at a time. An

exceptional frequent itemset is synthesized using the lines 8-27. The array sources is used

to store the database identifications of all the databases that report the current frequent

itemset. Also, the array supports is used to store the supports of the current frequent item-

Chapter 2.2 	Synthesizing global exceptional patterns in multiple databases 	2.17

set in different databases. The information about the current itemset is obtained by the

while-loop in lines 8-14. The information includes the number of extractions, database

identifications of the source databases, supports in different databases, total supports, and

the number of transactions containing current frequent itemset in different databases. We

explain the update-statement at line 10 as follows. The number of extraction of current

frequent itemset i.e., count is increased by 1. The did of the corresponding database is

copied into cell sources(count). Variable nCurFIS is added by expression FIS(i).supp x

size(FIS(i).did). Variable totalSupp is also added by expression FIS(i).supp. The support

of frequent itemset in the current database is copied into supports(count). We also explain

the update-statement at line 17 as follows. The synthesized support of current global

exceptional frequent itemset is obtained by expression nCurFIS / totTrans. The itemset

attribute of current global exceptional frequent itemset is the same as the itemset attribute

of current frequent itemset. The variable count is copied into synFIS(nSynFIS).nSources.

The if-statement in lines 15-27 checks whether the current itemsets is a global

exceptional frequent itemset in multiple databases and it synthesizes each global

exceptional frequent itemset. All the frequent itemsets are processed using the lines 4-29.

We sort global exceptional itensets at line 30 for better presentation. All the global

exceptional itemsets are kept in non-decreasing order on the length of the itemset. Again,

the itemsets of the same length are sorted on non-increasing order on support of the

itemset. Finally, global exceptional itemsets are displayed using lines 31-33. We display

all the global exceptional itemsets and their synthesized supports. For every global

exceptional frequent itemset, we display the source databases from which it has been

extracted. Also, for every global exceptional frequent itemset, we also display the

exceptional source databases from which it has been highly supported.

Theorem 	2.2.1. 	The 	time 	complexity 	of 	the 	procedure

ExceptionalFrequentltemsetSynthesis is maximum{O(N x log(N)), 0(n x N)}, where N is

the number of frequent itemsets extracted from n databases.

Chapter 2.2
	

Synthesizing global exceptional patterns in multiple databases 	2.18

Proof. The time complexity of line 1 is 0(N), since there are N frequent itemsets in all

the databases. Line 2 sorts N frequent itemsets in 0(N x log(N)) time. The time

complexity of line 3 is 0(n), since there are n databases. The program segment lines 5-29

repeats maximum N times. Within this program segment, there is a while-loop and a for-

loop. The while-loop in lines 8-14 takes 0(n) time. Also, the for-loop in lines 19-25 takes

0(n) time. Thus, the time complexity of the program segment lines 5-29 is 0(n x A7).

Line 30 takes 0(N x log(N)) time for sorting maximum N synthesized global exceptional

itemsets. To display the details of a global exceptional itemset it takes 0(n) time, since

there are maximum n sources of the itemset. Thus, the program segment in lines 31-33

take 0(n x Al) time. Therefore, the time complexity of the procedure

ExceptionalFrequentitemsetSynthesis is maximum fO(N x log(N)), 0(n x /V)). •

In the following example, we manually execute the above algorithm and verify that it

works correctly.

Example 2.2.1. Let D,, D2 and D3 be three databases of sizes 4000 transactions, 3290

transactions, and 10200 transactions, respectively. Let D be the union of DI, D2, and D3.

Assume that a = 0.1, y= 0.4, and p = 0.25. Let X(77) denote the frequent itemset X with

support IT The sets of frequent itemsets extracted from these databases are given as

follows. FIS(D1) = {A(0.12), B(0.14), AB(0.11), C(0.20)}, FIS(D2) = {A(0.10), B(0.20),

C(0.25), D(0.16), CD(0.12), E(0.16)}, FIS(D3) = {A(0.11), C(0.60), F(0.77)}. We keep

frequent itemsets in array FIS and sort them on itemset attribute. The sorted frequent

itemsets are given in Table 2.2.1.

Table 2.2.1. Sorted frequent itemsets in different databases

itemsetA AA BBCCCDEFABCD

supp .12 .10 .11 .14 .20 .20 .25 .60 .16 .16 .77 .11 .12

did 1 2 3 1 2 1 2 3 2 2 3 1 2

Here, totTrans is 17490. We synthesize the frequent itemsets in FIS. Synthesized

frequent itemsets are given in Table 2.2.2.

Chapter 2.2 	Synthesizing global exceptional patterns in multiple databases 	2.19

Table 2.2.2. Synthesized frequent itemsets in multi-databases

itemset A B C D E F AB CD

synthesized supp 0.11 0.07 0.44 0.03 0.03 0.45 0.03 0.02

In Algorithm 2.2.1, we maintain synthesized global exceptional frequent itemset in array

synFIS. For the purpose of explanation, Table 2.2.2 has been introduced here. From Table

2.2.2, we find that the synthesized supports of C and F are high, since supps(C, D) p

and supps(F, D) p. Itemset F has been extracted from one out of three databases. Thus,

F is low-voted, since 1/3 < 7. Therefore, the itemset F is a global exceptional frequent

itemset in D. •

In the following theorem, we determine time complexity of algorithm

IdentiffxPattern [89] for the purpose of comparing algorithms IdentiffxPattern and

ExceptionalFrequentItemsetSynthesis theoretically.

Theorem 2.2.2. The algorithm Identi6/ExPattern takes O(n 2 x N x log(1V)) time, where N

is the number of frequent itemsets extracted from n databases.

Proof. Please refer to algorithm IdentiniExPattern. Step 5 of the algorithm ranks

candidate exceptional patterns based on their global supports. Step 4 calculates global

support of a candidate exceptional pattern based on the number of databases that support

the pattern. Step 1 counts the number databases that support a specific pattern. Thus, step

5 is based on step 4, and step 4 is based on step 1. Step 1 takes 0(n) time for a specific

pattern. This implies that step 4 takes 0(n x n) time for each candidate exceptional

pattern. Thus, step 5 takes O(n2 x N x log(/V)) time, and hence the theorem follows. •

From Theorems 2.2.1 and 2.2.2, one could conclude that the algorithm

ExceptionalFrequenatemsetSynthesis executes faster than algorithm IdentibiExPatter. We

also compare these two algorithms experimentally in Section 2.2.6.1.

Chapter 2.2 	Synthesizing global exceptional patterns in multiple databases 	2.20

2.2.5 Error calculation

To evaluate the proposed technique for synthesizing global exceptional frequent itemsets,

we have measured the amount of error occurred in the experiments. Error of the

experiment is relative to the number of transactions (i.e., the size of the database),

number of items, and length of a transaction in a database. Let ANT, ALT, and ANI denote

the average number of transactions, average length of a transaction and average number

of items in the database, respectively. Then, the error of the experiment needs to be

expressed along with ANT, ALT, and ANI. The error of the experiment is based on the

global exceptional frequent itemsets in D. Let {Xi, X2, ..., X„,} be set of global

exceptional frequent itemsets in D. There are several ways one could define the error of

an experiment. We have defined following two types of error of an experiment.

1. Average Error (AE)

AE(D, a, p, y) = +7 E7 	a (X D) - supp s (X D)1 	 (2.2.8)

2. Maximum Error (ME)

ME(D, a, p,y)= maximum Ilsuppa (X D) - supp s (X, D),i =1, 2, ..., m 	(2.2.9)

Actual support of X, in D, suppa(X, D), is obtained by mining D using a traditional data

mining technique, for i = 1, 2, ..., m. Synthesized support of X, in D, supp,(X„ D), is

obtained by the technique discussed in Section 2.2.3, for i = 1, 2, ..., m. Then we

compute error of synthesizing support of X, in D as I suppA, - suPPAXI, D)I , for i =

1 , 2, ..., m.

Example 2.2.2. With reference to Example 2.2.1, the itemset F is the only global

exceptional frequent itemset present in D. Thus, AE(D, 0.1, 0.25, 0.4) = ME(D, 0.1, 0.25,

0.4) = Isuppci(F, D) - supps(F, Mi. •

2.2.6 Experiments

We have carried out several experiments to study the effectiveness of our approach. All

the experiments have been implemented on a 2.8 GHz Pentium D dual processor with

Chapter 2.2 	Synthesizing global exceptional patterns in multiple databases 	2.21

512 MB of memory using visual C++ (version 6.0) software. The experimental results are

presented on both artificial and real databases. We have constructed artificial database

check to verify that the proposed algorithm works correctly. Each item is represented by

an integer number to perform experiments more conveniently. Thus, a transaction in

check is a collection of integer numbers separated by commas. The database retail [34] is

obtained from an anonymous Belgian retail supermarket store. We present some

characteristics of these databases in Table 2.2.3.

Table 2.2.3. Characteristics of the databases

transactions Avg length of a Avg frequency # items
Database

(NT) transaction (ALT) of an item (AFI) (N1)

check(C) 40 3.025000 3.102564 39

retail(R) 88,162 11.305755 99.673800 10000

Each of the above databases has been divided into 10 databases for the purpose of

carrying out experiments. These databases are called input databases. The algorithm is

based on the frequent itemsets in the input databases. There are many algorithms [13],

[39], [66] for mining frequent itemsets in a database. Thus, there exist many

implementations [32] of mining frequent itemsets in a database.

Database check consists of 40 transactions. The input databases obtained from check

are given as follows: Co = 	{1, 4, 9, 31}, {1, 4, 7, 10, 50}, {1, 4, 10, 20, 24}, {1, 4, 10,

23}; Cj = {{1, 4, 10, 34}, {1, 3, 44}, {1, 2, 3, 10, 20, 44}, {2, 3, 20, 39}); C2 = {{2, 3,

20, 44}, {2, 3, 45}, {2, 3, 44, 50}, {2, 3, 20, 44, 50}}; C3 = {{ 3, 44},{3, 19, 50}, {5, 7,

21}, {5, 8}}; C4 = {{ 5, 41, 45}, {5, 49}, {5, 7, 21}, {5, 11, 21 }}; C5 = {{6, 41}, {6, 15,

19}, {11, 12, 13}, {11, 21, 49}}; C6= {{11, 19}, {21}, {21, 24, 39}, {22, 26, 38}}; C7 =

{{22, 30,31}, {24, 35}, {25, 39, 49}, {26, 41, 46}}; C8 = { {30, 32, 42}, {32, 49}, {41,

45, 59), {42, 45)); C9 = { {42, 47},{45, 49), {47, 48, 49), {49}). The input databases

obtained from retail are named as R„ for i = 0, 1, ..., 9. For the purpose of mining

Chapter 2.2 	Synthesizing global exceptional patterns in multiple databases 	2.22

input databases, we have implemented apriori algorithm [13], since it is simple and

popular. Some characteristics of these input databases are presented in the Table 2.2.4.

Table 2.2.4. The characteristics of databases obtained from retail

Input

database
transactions

Avg length

of a transaction

Avg frequency

of an item
items

Ro 9000 11.24389 12.07001 8384

R1 9000 11.20922 12.26541 8225

R2 9000 11.33667 14.59657 6990

R3 9000 11.48978 16.66259 6206

R4 9000 10.95678 16.03953 6148

R5 9000 10.85578 16.70977 5847

R6 9000 11.20011 17.41552 5788

R7 9000 11.15511 17.34554 5788

R8 9000 11.99711 18.69032 5777

R9 7162 11.69199 15.34787 5456

The global exceptional frequent itemsets corresponding to check and retail are presented

in Tables 2.2.5 and 2.2.6, respectively.

-Y-
Chapter 2.2 	Synthesizing global exceptional patterns in multiple databases 	2.23

Table 2.2.5. Global exceptional frequent itemsets in {Co, C], 	C9 } at a= 0.05, y= 0.4

and p= 0.1

itemset ssupp sources
exceptional

sources
itemset ssupp sources

exceptional

sources

{1} .17500 Co, CI Co {1,10} .12500 Co, C] CI

{2} .17500 Cl, C2 C2 {2,3} .15000 CI, C2 C2

{3} .20000 C1, C2, C3 CI, C2 {2,20} .12500 CI, C2 C2

{4} .12500 Co, Ci Co {2,44} .12500 CI, C2 C2

{5} .15000 C3, C4 C4 {3,20} .10000 CI, C2 C2

{10} .12500 Co, C1 Co {3,44} .15000 Cl, C2, C3 C2, C3

{11} .10000 C4, C5, C6 C5 {4,10} .10000 Co, CI CI

{20} .12500 Co, Ch C2 Cl, C2 {1,4,10} .10000 Co, Ci Co, CI

{44} .15000 Cl, C2, C3 CI, C2 {2,3,20} .10000 Cl, C2 Cl, C2

{50} .10000 CO, C2, C3 C2 {2,3,44} .10000 CI, C2 CI, C2

{1,4} .12500 Co, CI C,

A global exceptional frequent itemset might not be supported with equal degree from

each of the source databases. For example, the global exceptional frequent itemset {50}

has been extracted from databases Co, C2, and C3. But, the database C2 reports itemset

{50} exceptionally more.

Chapter 2.2 	Synthesizing global exceptional patterns in multiple databases 	2.24

Table 2.2.6. Global exceptional frequent itemsets in {Ro, R1, 	R9} at a= 0.02, y=

0.4 and ,u = 0.1

itemset ssupp sources exceptional sources

{2,6,9} 0.10228 Ro, RI Ro, RI

{2,9,41} 0.10272 Ro, RI, R7 Ro, Ri, R7

{6,9,41} 0.10662 Ro, RI, R3 Ro, R1, R3

{8,9,271} 0.10184 Ro

{9,41,48} 0.10184 RI R1

We observe that some databases do no report any global exceptional frequent itemsets.

On the contrary, some other databases are the source of many global exceptional frequent

itemsets. In Tables 2.2.7 and 2.2.8, we present the distributions of global exceptional

frequent itemsets in {Co, C1, ..., C9} and {Ro, RI, ..., R9}, respectively.

Table 2.2.7. Distribution of global exceptional frequent itemsets in {Co, Cl, ..., C9} at

a = 0.05, y= 0.4 and ,u = 0.1

Database CO CI C2 C3 C4 C5 C6 C7 C8 C9

global exceptional

frequent itemsets
9 18 12 5 2 1 1 0 0 0

In Table 2.2.7, we observe that three out of ten databases do not report any global

exceptional frequent itemsets. We have also conducted experiments on synthetic

databases. The items in most of the synthetic databases are more or less uniformly

distributed. Thus, a set of synthetic databases rarely reports global exceptional frequent

itemsets.

---11-1111-111-*-111-115-111--111-111H11-

njb 	t". 	t‘̀I' 	bix 	t)t3 	Irx`b 	p(-).
0 • 	O• 0 • 0 •

Gamm a

N
u

m
be

r
o

f

Chapter 2.2 	Synthesizing global exceptional patterns in multiple databases 	2.25

Table 2.2.8. Distribution of global exceptional frequent itemsets in {Ro, R1, ..., R9} at

a=0.02, y= 0.4 and ,u = 0.1

Database R 0 R 1 R2 R3 R4 R5 R6 R 7 R8 R9

global exceptional

frequent itemsets
4 4 0 0 0 0 0 1 0 0

The distribution of global exceptional frequent itemsets in {Ro, R1, ..., R9} is different

from that in {Co, C1, ..., C9}. In Table 2.2.8, we notice that three out of ten databases

report global exceptional frequent itemsets. The items in retail are more uniformly

distribtited than that in check, since the number of global exceptional frequent items in

retail is much less than that in check.

Also, we have studied the number of global exceptional frequent itemsets in multi-

databases at different ys. As we increase y, we allow more frequent itemsets to be global

exceptional. In Figures 2.2.1 and 2.2.2, we study the relationship between y and the

number of global exceptional frequent itemsets in multiple databases.

Figure 2.2.1. Number of global exceptional frequent itemsets in {Co, C1, ..., C 9 } at a

= 0.05, and ,u = 0.1

We have observed that the number of global exceptional frequent itemsets do not vary

much at different ys. In fact, there is only one change in both the graphs of Figures 2.2.1

and 2.2.2.

Gamma

10

5

0

o")
) 	cb N 	Nk 	N 	cz, •

0 • 0

Chapter 2.2 	Synthesizing global exceptional patterns in multiple databases 	2.26

Figure 2.2.2. Number of global exceptional frequent itemsets in {Ro, R1, ..., R 9 } at a=

0.02, and ,u = 0.1

Also, we have studied the number of global exceptional frequent itemsets in multiple

databases at different as. We present experimental results in Figures 2.2.3 and 2.2.4. The

number of global exceptional frequent itemsets in {Co, CI, ..., C9} remains fixed at 21

over different as.

Figure 2.2.3. Number of global exceptional frequent itemsets in {Co, C1, ..., C9} at y=

0.4, and p= 0.1

But, we find a different trend with respect to the number of global exceptional frequent

itemsets in {Ro, R1 , ..., R 9 }. At lower and upper values of a, the number of global

exceptional frequent itemsets is 0. Again, we get few global exceptional frequent itemsets

for some middle values of a. Thus, there is no fixed relationship between the number of

global exceptional frequent itemsets and a.

1=1 ° f 	8 'a'. . 	6
x 	4 0 ,..... — 2 0 ,... 	0) 	0 ■ • Ill

,

I 4%) 	
0 0

Nlo N.
z 	0• 	0•

ti
O. 	0• 	O.

01°(3

Alpha

Chapter 2.2 	Synthesizing global exceptional patterns in multiple databases 	2.27

Figure 2.2.4. Number of global exceptional frequent itemsets in {Ro, RI, ..., R9} at 7—

0.4, and p= 0.1

Also, we have calculated the error of the experiments. In Table 2.2.9, we present the

error of the experiments at a given value of triplet (a, y, p).

Table 2.2.9. Errors of the experiments at a given value of triplet (a, y, p)

Experimental

databases
a y p

(AE, Avg NT,

ALT, Avg NI)

(ME, Avg NT,

ALT, Avg NI)

(0, 4, (0, 4,
Co, C1, ..., C9 0.05 0.4 0.1

3.025000, 8.4) 3.025000, 8.4)

(0.08359, 8816.2, (0.085015, 8816.2,
Ro, R I , ..., R9 0.02 0.4 0.1

11.305755, 5882.1) 11.305755, 5882.1)

2.2.6.1 Comparison with the existing algorithm

In this section, we make comparison between algorithms IdentiftExPattern [89] and

Exceptional-Frequentltemset-Synthesis [2] experimentally. We analyze and compare

these two algorithms on the basis of experiments conducted on the following two issues:

(i) average error versus a, and (ii) synthesizing time versus number of databases.

2.2.6.1.1 Average error

We have calculated AEs at different as to study the relationship between them.

Experimental results are presented in Figures 2.2.5 and 2.2.6. We observe that there is no

fixed relationship between AE and a.

0.018 0.019 0.02 0.021 0.022 0.023

Alpha

AE using algm
Breptional-
Freq uentltems et-
Synthesis
AE us ing algm
Identify ExPattem

—4— —111

Chapter 2.2 	Synthesizing global exceptional patterns in multiple databases 	2.28

0.5 6 0.4
a.)0.3
be 0.2

0.1
< 0

ON 	0') 	.) 	0))
O . 	O• 	O• 	O . 	O . 	O•

Alpha

AE using algm
Exceptional-
Frequenthems et-
Synthes is

- AE using algm
ldentifyWattem

1

Figure 2.2.5. Average error versus a for check at 7= 0.4, and p= 0.1

Figure 2.2.-6. Average error versus a for retail at y= 0.4, and p= 0.1

For both the databases, algorithm ExceptionalFrequentItemsetSynthesis performs better

than algorithm Identifi)ExPattern. In database check, the global exceptional frequent

itemsets are not uniformly distributed. The global exceptional frequent itemsets appear

only in few databases, while they remain absent in the remaining databases. Algorithm

ExceptionalFrequentItemsetSynthesis finds average error 0 at different as, since the error

of synthesizing each global exceptional frequent itemset in {Co, Ci, ..., Co} is 0.

2.2.6.1.2 Synthesizing time

Also, we have calculated the time for synthesizing global exceptional frequent itemsets

by varying the number of databases. In Figures 2.2.7 and 2.2.8, we show time (in ms.)

required to synthesize global exceptional frequent itemsets in multiple databases. In case

of the experiment conducted on {Co, Cl, ..., C9}, we observe that the synthesizing time

does not increase as the number of databases increases. This is due to the fact that the size

Number of databases

-4—Synthesizing time
for algm
Exceptional-

Synthesizing time
for algm
IdentifyExPattem

a 1
0.8
0.6

tg 0.4
SR 0.2
ra, 0 IS

	
/1
	 •

4 	5 	6 	7 	8
	

9
	

10

—0— Synthesizing time
for algm
Exceptional-
Fre q u en tItems et-
Synthesizing time
for algm
IdentifyExPattem

g 150

100
op

50

0

‘ S 	

4 	5 	6 	7 	8 	9 	10

Number of databases

Chapter 2.2 	Synthesizing global exceptional patterns in multiple databases 	2.29

of each of the databases is very small. In fact, the time required to synthesize global

exceptional frequent itemsets in {Co, 	C9}is 0 ms., for both the algorithms.

Figure 2.2.7. Synthesizing time versus number of databases obtained from check at y=

0.4, and p = 0.1

Figure 2.2.8. Synthesizing time versus number of databases obtained from retail at a =

0.02, 7= 0.4, and ,u= 0.1

Considering the results presented in Figures 2.2.7 and 2.2.8, one could conclude that

algorithm Exceptional -Frequentltemset-Synthesis executes faster than algorithm

Identi&ExPattern. Also, this observation matches with the theoretical results presented.

In general, the time for synthesizing global exceptional frequent itemsets either remains

the same or, increases as the number of databases increases.

2.2.7 Conclusion

Synthesis of global exceptional patterns is an important component of a multi-database

mining system. Many corporate decisions of a multi-branch company would depend on

Chapter 2.2 	Synthesizing global exceptional patterns in multiple databases 	2.30

global exceptional patterns in branch databases. Though previous work discussed issues

related to this problem, we believe that we have presented a better analysis.

We have identified the short-comings of the existing concepts and the algorithm to

identify global exceptional patterns. We have proposed a definition of a global

exceptional frequent itemset. Also, we have introduced the notion of exceptional sources

for a global exceptional frequent itemset. The proposed algorithm identifies global

exceptional frequent itemsets and their exceptional sources in multiple databases. We

have also compared our algorithm with the existing algorithm. Our algorithm performs

better than the existing algorithm on the following issues: (i) error of the experiment, and

(ii) execution time. We have observed that our algorithm executes faster than the existing

algorithm when the number of databases increases. Also, we have shown theoretically

that our algorithm executes faster than the existing algorithm. The solution presented here

is simple and effective in synthesizing global exceptional frequent itemsets in multiple

databases.

2.31

Chapter 2.3

Synthesizing heavy association rules from different real data

sources

Improved communication technology has been a major influential factor to rapid

industrial growth and business activities. Also, many countries across the globe are

adopting slowly a liberal economic policy. Due to the influence of a number of such

factors, many countries are experiencing rapid economic growth. As a result, the number

of companies is increasing over time. Many large companies have multiple branches.

They operate from different branches located at different places. Some of these branches

are fully operational and collect transactional data continuously. Consider the shopping

malls owned by a company. These malls are open at least 12 hours a day. All the

transactions made in a mall are stored locally. Thus, the company possesses multiple

databases. Most of the pieces of previous data mining work are based on a single

database. Thus, it is necessary to study data mining on multiple databases.

Many corporate decisions could be taken effectively by incorporating knowledge

inherent in data across the branches. But, the effective management of multiple large

databases becomes a challenging issue. It creates not only opportunities but also risks.

The risks might involve significant amount investment on hardware and software to deal

with a large volume of data. Our objective is to provide good quality of knowledge by

minimizing the risks. The first question comes to our mind whether a traditional data

mining technique could deal with multiple large databases. To apply a traditional data

mining technique we need to amass all the databases together. A single computer might

take unreasonable amount of time to process the entire database. Sometimes, it might not

Chapter 2.3 	 Synthesizing heavy association rules ... 	 2.32

be feasible to carry out the data mining task using a single computer. Another solution to

this problem would be to employ parallel machines. It might require high investment on

hardware and software. One needs to make a cost-benefit analysis before implementing

such a decision. In many situations, it might not be an acceptable solution to the

management of the company. Moreover, it might be difficult to find regional patterns

when a traditional data mining technique is applied on the entire database. Thus, the

traditional data mining techniques are not suitable in this situation. So, it is a different

problem. Hence, it is required to be dealt with in a different way. In this situation, we

would employ the model of local pattern analysis [91] to deal with multiple large

databases. Under this model, the branches are required to forward their local patterns

instead of original databases to the central office for synthesis of global patterns.

Association rule mining has received a lot of attention to KDD community. An

association rule becomes more interesting if it possesses higher support and higher

confidence. In this chapter, we present the notion of heavy association rule. Heavy

association rules are sometimes more useful than high-frequent association rules [81].

Many corporate decisions could be influenced by heavy association rules. Thus, it is

important to mine heavy association rules in multiple databases. It could be difficult to

extract heavy association rules in the union of all branch databases by employing a

traditional data mining technique. Therefore, we synthesize heavy association rules from

the association rules in local databases. We present an algorithm to synthesize heavy

association rules from local association rules. We have extended the algorithm to notify

whether a heavy association rule is high-frequent.

Also, we introduce the notion of exceptional association rule in multiple databases. We

have also extended the algorithm to notify whether a heavy association rule is

exceptional. Thus, our extended algorithm not only synthesizes heavy association rules,

but also it notifies whether a heavy association rule is high-frequent or exceptional in

multiple databases.

Chapter 2.3 	 Synthesizing heavy association rules ... 	 2.33

The rest of the chapter is organized as follows. We state the problem in Section 2.3.2.

We discuss work related to the problem in Section 2.3.3. In Section 2.3.4, we present an

extended model of synthesizing global patterns from local patterns in different databases.

In Section 2.3.5, we discuss a method of synthesizing an association rule in multiple

databases. We present an algorithm for synthesizing heavy association rules in multiple

databases. The algorithm also reports whether a heavy association rule is high-frequent or

exceptional in multiple databases. We have defined error of an experiment in Section

2.3.6. The experimental results on three real databases are presented in Section 2.3.7.

2.3.2 Problem statement

Consider a large company that transacts from n branches. Let D, be the transactional

database corresponding to the i-th branch of the multi-branch company, for i = 1, 2, ..., n.

Also, let D be the union of all branch databases. We present an algorithm for synthesizing

heavy association rules in D. The algorithm also notifies the high-frequency and

exceptionality statuses of heavy association rules in D. Heavy association rules, high-

frequent association rules and exceptional association rules are specific types of

association rules. It might be required to discuss some other concepts before we define

them.

Association rule mining is based on support (supp)-confidence (conf) framework

established by Agrawal et al. [11]. Let I be set of items in D. An association rule r has

been expressed symbolically as c —> d, where c = {ci, c2, cp}, and d = {d1 , d2, dq };

c1, di E I, for i =1, 2, ..., p, and j = 1, 2, ..., q. It expresses an association between the

itemsets c and d, called the antecedent and consequent of r, respectively. The meaning

attached to this implication could be expressed as follows: If the items in the itemset c are

purchased by a customer then the items in the itemset d are likely to be purchased by the

same customer at the same time. The interestingness of an association rule could be

expressed by its support and confidence. Let E be a Boolean expression of items in

database DB. Support of E in DB could be defined as the fraction of transactions in DB

Chapter 2.3 	 . Synthesizing heavy association rules ... 	 2.34

such that the Boolean expression E is true for each of these transactions. We denote

support of E in DB as suppa(E, DB). Then the support and confidence of association rule r

could be expressed as follows: suppa(r, DB) = suppa(cnd, DB), and confa(r, DB) =

suppa(cnd, DB) / supp a(c, DB). Later, we shall be dealing with synthesized support and

synthesized confidence of an association rule. Thus, it is required to differentiate between

actual support / confidence and their synthesized versions. The subscript a in the notation

of support / confidence refers to actual support / confidence of an association rule. On the

other hand, the subscript s in the notation of support / confidence refers to synthesized

support / confidence of an association rule. We shall discuss how to get synthesized

support and confidence of an association rule later. An association rule r in database DB

is interesting if suppa(r, DB) minimum support (a), and confa(r, DB) minimum

confidence (/3), for i = 1, 2, ..., n. The values of a and /3 are user-defined. The collection

of association rules extracted from a database at the given a and is called a rulebase.

Let RB, and SB, be the rulebase and suggested rulebase corresponding to database D„

respectively, for i = 1, 2, ..., n. An association rule r E RB„ if suppa(r, D,) a, and

confa(r, D) /3, for i = 1, 2, ..., n. An association rule r E SB„ if suppa(r, D) a, and

confa(r, D) < 13, for i = 1, 2, ..., n. There is a tendency of a suggested association rule in

a database to become an association rule in another database. Apart from the association

rules, we also consider the suggested association rules for synthesizing heavy association

rules in D. The reasons for considering suggested association rules are given as follows.

Firstly, we could synthesize support and confidence of an association rule in D more

accurately. Secondly, we could synthesize high-frequent association rules in D more

accurately. Thirdly, the experimental results (as reported in Table 2.3.5) have shown that

the number of suggested association rules could be significant for some databases. In

general, the accuracy of synthesizing an association rule increases as the number of

extractions of the association rule increases. Thus, we consider suggested association

Chapter 2.3 	 Synthesizing heavy association rules ... 	 2.35

-1-

rules also for synthesizing heavy association rules in D. In addition, the number of

transactions in a database would be required for synthesizing an association rule. We

define size of database DB as the number of transactions in DB, denoted by size(DB). In

the following, we define the concept of heavy association rule in multiple databases.

First, we define a heavy association rule in a single database. Afterwards, we shall define

a heavy association rule in multiple databases.

Definition 2.3.1. An association rule r in database DB is heavy if suppa(r, DB) > p, and

confa(r, DB) > v, where ,u (> a) and v (> ,8) are the user defined thresholds of high-

support and high-confidence for identifying heavy association rules in DB, respectively. e

If an association rule is heavy in a local database then it might not be heavy in D. An

association rule in D might have different statuses in different local databases. For

example, it might be a heavy association rule, or an association rule, or a suggested

association rule, or absent in a local database. Thus, we need to synthesize an association

rule for determining its overall status in D. The method of synthesizing an association

rule is discussed in Section 2.3.5. After synthesizing an association rule, we get

synthesized support and synthesized confidence of the association rule in D. Let supps(r,

DB) and confs(r, DB) denote synthesized support and synthesized confidence of

association rule r in DB, respectively. Now, we define a heavy association rule in D as

follows.

Definition 2.3.2. Let D be the union of local databases under consideration. An

association rule r in D is heavy if supps(r, D) > p, and confAr, D) > v, where p and v are

the user-defined thresholds of high-support and high-confidence for identifying heavy

association rules in D, respectively. •

Apart from synthesized support and synthesized confidence of an association rule, the

frequency of an association rule is an important issue in multi-database mining. We

define frequency of an association rule as the number of extractions of the association

rule from different databases. If an association rule is extracted from k out of n databases

Chapter 2.3 	 Synthesizing heavy association rules ... 	 2.36

then the frequency of the association rule is k, for 0 k n. An association rule may be

high-frequent or, low-frequent, or neither high-frequent nor low-frequent in multiple

databases. We could arrive in such a conclusion only if we have user-defined thresholds

of low-frequency (n), and high-frequency (y2) of an association rule, for 0 < yj < 72 < I.

A low-frequent association rule is extracted from less than n x yi databases. On the other

hand, a high-frequent association rule is extracted from at least n x 72 databases. In multi-

database mining using local pattern analysis, we define a high-frequent association rule

and a low-frequent association rule as follows:

Definition 2.3.3. Let an association rule be extracted from k out of n databases. Then the

association rule is low-frequent if k < n x y, , where yi is the user-defined threshold of

low-frequency. •

Definition 2.3.4. Let an association rule be extracted from k out of n databases. Then the

association rule is high-frequent if k n x y2 , where 72 is the user defined-threshold of

high-frequency. •

While synthesizing heavy association rules in multiple databases, it may be worth noting

the other attributes of a synthesized association rule. For example, high-frequency, low-

frequency, and exceptionality are interesting as well as important attributes of a

synthesized association rule. We have already defined high-frequent association rule and

low-frequent association rule in multiple databases. We define an exceptional association

rule in multiple databases as follows.

Definition 2.3.5. A heavy association rule in multiple databases is exceptional if it is

low-frequent. •

It may be worth contrasting between a heavy association rule, a high-frequent association

rule and an exceptional association rule in multiple databases.

■ An exceptional association rule is also a heavy association rule.

■ A high-frequent association rule is not an exceptional association rule, and vice versa.

Chapter 2.3 	 Synthesizing heavy association rules ... 	 2.37

▪ A high-frequent association rule is not necessarily be a heavy association rule.

▪ There may exist heavy association rules that are neither high-frequent nor exceptional.

The proposed problem could be stated as follows:

Let there are n distinct databases DI, D2, ..., D,. Let RB, and SB, be the set of

association rules and suggested association rules in Db respectively, for i = 1, 2, ..., n.

Synthesize heavy association rules in the union of all databases (D) based on RB, and

SB,, for i = 1, 2, ..., n. Also, notify whether each heavy association rule is high frequent

or exceptional in D.

2.3.3 Related work

Association rule mining finds interesting association between two itemsets in a database.

The notion of association rule is introduced by Agrawal et al. [11]. The authors have

proposed an algorithm to mine frequent itemsets in a database. Many algorithms have

been reported to extract association rules in a database. In the following, we mention a

few interesting algorithms for extracting association rules in a database. Agrawal and

Srikant [13] have proposed apriori algorithm that uses breadth-first search strategy to

count the supports of itemsets. The algorithm uses an improved candidate generation

function, which exploits the downward closure property of support and makes it more

efficient than earlier algorithm. Han et al. [39] have proposed data mining method FP-

growth (frequent pattern growth) which uses an extended prefix-tree (FP-tree) structure

to store the database in a compressed form. FP-growth adopts a divide-and-conquer

approach to decompose both the mining tasks and databases. It uses a pattern fragment

growth method to avoid the costly process of candidate generation and testing. Savasere

et al. [66] have introduced partition algorithm. The database is scanned only twice. In the

first scan the database is partitioned and in each partition support is counted. Then the

counts are merged to generate potential frequent itemsets. In the second scan, the

potential frequent itemsets are counted to find the actual frequent itemsets.

Chapter 2.3 	 Synthesizing heavy association rules ... 	 2.38

In the context of pattern synthesis, Viswanath et al. [78] have proposed a novel pattern

synthesis method, called partition based pattern synthesis, which can generate an artificial

training set of exponential order when compared with that of the given original training

set.

Multi-database mining has been recently recognized as an important research topic in

KDD community. In the following, we mention a few important contributions in multi-

database mining Liu et al. [55] have proposed multi-database mining technique that

searches only the relevant databases. Otherwise, the mining process could be lengthy,

aimless and ineffective. A measure of relevance is thus proposed for mining tasks with an

objective to find patterns or regularities about certain attributes. Wu and Zhang [81] have

proposed a weighting model for synthesizing high-frequent association rules from

different databases. Zhang et al. [89] have proposed an algorithm to identify global

exceptional frequent itemsets in multiple databases. Zhang [88], Zhang et al. [93] studied

various strategies for mining different databases. Wu et at. [83] have proposed a database

clustering technique for multi-database mining. Yin and Han [86] have proposed a new

strategy for relational heterogeneous database classification. Zhang and Zaki [92] have

edited a book on multi-database mining. Aronis et al. [18] introduced a system, called

WoRLD, that uses spreading activation to enable inductive learning from multiple tables

in multiple databases spread across the network.

Existing parallel mining techniques [12], [26], [28] could also be used to deal with

multi-databases.

In the context of other applications of data mining, Hong and Weiss [42] have

examined a few successful application areas and their technical challenges to show how

the demand for data mining of massive data warehouses has fuelled advances in

automated predictive methods.

Chapter 2.3
	

Synthesizing heavy association rules ... 	 2.39

2.3.4 An extended model of synthesizing global patterns from local patterns

in different databases

Many multi-branch companies deal with multiple databases. As the number of such

companies increases, we need to prepare ourselves to develop various applications based

on patterns in multiple databases. There are following types of patterns in multiple

databases: local pattern, global patterns, and patterns that are neither local nor global. A

pattern based on a branch database is called a local pattern. On the other hand, a global

pattern is based on all the databases under consideration. Zhang et al. [91] designed a

local pattern analysis for synthesizing global patterns in multiple databases. We present

here an extension to this model and the extended model [5] is shown in Figure 2.3.1. The

extended model has a set of interfaces and a set of layers. Each interface is a set of

operations that produces database(s) (or, knowledge) based on the database(s) at the next

lower layer. There are four interfaces of the extended model for synthesizing global

patterns from local patterns in different databases. The functions of the interfaces are

described below.

Interface 2/1 applies different operations on data at the lowest layer. By applying these

operations, we get a processed database from a local (original) database. These operations

are performed on each branch database. Interface 3/2 applies a filtering algorithm on each

processed database to separate relevant data from outlier data [20]. In particular, if we are

interested in studying the durable items then the transactions containing only non-durable

items could be treated as outlier transactions. Different interesting criteria could be set to

filter data at this stage. Also, it loads data into the respective data warehouse. Interface

4/3 mines local patterns in each local data warehouse. There are two types of local

patterns: local patterns and suggested local patterns. A suggested local pattern is close but

fails to satisfy the requisite interestingness criteria. The reasons for considering suggested

patterns are given as follows: Firstly, we could synthesize patterns more accurately.

Secondly, due to the stochastic nature of the transactions, the number of suggested

patterns could be significant in some databases. Thirdly, there is a tendency that a sugges-

Chapter 2.3
	

Synthesizing heavy association rules ... 	 2.40

ted pattern of one database to become a local pattern in another database. Thus, the

correctness of synthesizing global patterns would increase as the number of local patterns

increases. Consider a multi-branch company having n databases. Let LPB, and SPB, be

the local pattern base and suggested local pattern base for the i-th branch, respectively,

for i = 1, 2, ..., n. Interface 5/4 synthesizes global patterns, or analyses local patterns to

meet real life challenges.

At the lowest layer, all the local databases are kept. We need to process these databases

as they may not be at the right state for the mining task: Various data preparation

techniques [65] like data cleaning, data transformation, data integration, and data

reduction are applied to data in the local databases. We get the processed database PD,

corresponding to original database D,, for i = 1, 2, ..., n. Then, we retain all the data that

are relevant to the data mining applications. Using a relevance analysis, one could detect

outlier data [51] from processed database. A relevance analysis is dependent on the

context, and varies from one application to another application. Let OD, be the outlier

database corresponding to the i-th branch, for i = 1, 2, ..., n. Sometimes these databases

are also used in some other applications. After removing outlier data from the processed

database we get desired data warehouse, and the data in a data warehouse become ready

for data mining task. Let W, be the data warehouse corresponding to the i-th branch, for i

= 1, 2, ..., n. Local patterns for the i-th branch are extracted from W,, for i = 1, 2, ..., n.

Finally, the local patterns are forwarded to the central office for synthesizing global

patterns, or analyzing local patterns. Many data mining applications could be developed

based on the local patterns in different databases. Figure 2.3.1 illustrates a model of

synthesizing global patterns from local patterns in different databases.

In particular, if we are interested in synthesizing global frequent itemsets then a

frequent itemset might not get extracted from all the databases under consideration. It

might be required to estimate the support of a frequent itemset in a database that fails to

report it. Thus, a global frequent itemset synthesized from local frequent itemsets is

approximate in nature. If any one of the local databases is too large to apply a traditional

Local Patterns
(Application k)

Layer 5

Interface 5/4

Layer 4

Interface 4/3

Layer 3

----- Interface 3/2

Layer 2

Interface 2/1

Layer 1

Chapter 2.3 	 Synthesizing heavy association rules ... 	 2.41

data mining technique then this model would fail. In this situation, one could apply an

appropriate sampling technique to reduce the size of a local database. Otherwise, the

database could be partitioned into sub-databases. As a result, the error of data analysis

would increase.

Figure 2.3.1. A model of synthesizing global patterns from local patterns in different

databases

Though the above model introduces many layers and interfaces for synthesizing global

patterns, but in a real life application, many of these layers and interfaces might be

absent.

2.3.5 Synthesizing an association rule

Our technique of synthesizing heavy association rules is suitable for real databases,

where the trend of the customers' behaviour exhibited in one database is usually present

in other databases. In particular, a frequent itemset in one database is usually present in

some transactions of other databases even if it does not get extracted. Our estimation

procedure captures such trend and estimates the support of a missing association rule in a

database. Let Ei(r, DB) be the amount of error in estimating support of a missing

association rule r in database DB. Also, let E2(r, DB) be the amount of error in assuming

Chapter 2.3 	 Synthesizing heavy association rules ... 	 2.42

support as 0 for the missing association rule in DB. Then, Ej(r, DB) is usually less than

E2(r, DB). The estimated support and confidence of a missing association rule usually

reduce the error of synthesizing heavy association rules in different databases. Thus, we

would like to estimate the support and confidence of a missing association rule rather

than missing its presence. If an association rule fails to get extracted from database DB,

then we assume that DB contributes some amount of support and confidence for the

association rule. The support and confidence of an association rule r in database DB

satisfy the following inequality: 0 < suppa(r, DB) < cont.*, DB) < 1 (2.3.1)

At a given a= °co, we observe that the confidence of an association rule r varies over the

interval [ao, 1].

Example 2.3.1. Let a = 0.333. Assume that database DI contains the following

transactions: {al, bl, cl}, {al, bl, cl}, {b2, c2}, {a2, b3, c3}, {a3, b4} and {c4}. The

support and confidence of association rule r: {a1}—>{b1} in DI are 0.333 and 1.0

(highest) respectively. Assume that database D2 contains the following transactions: {al,

bl, cl}, {al, bl }, {al, cl}, {al}, {al, b2} and {al, b3}. The support and confidence of r

in D2 are 0.333 and 0.333 (lowest) respectively. *

As the support of an association rule is the lower bound of its confidence, the confidence

goes up as support increases. The support of an association rule is distributed over [0, 1].

If an association rule is not extracted from a database, then the support falls in [0, a),

since the suggested association rules are also considered for synthesizing association

rules. We would be interested in estimating the support of such rules. Assume that the

association rule r: {c}—>{d} has been extracted from m databases, for 1 m < n. Without

loss of generality, we assume that the association rule r has been reported from the first m

databases. We shall use the average behaviour of the customers of the first m branches to

estimate the average behaviour of the customers in remaining branches. Let D11 denote

the union of databases D„ D,+1, ..., 4, for 1 < i <j < n. Then, suppa({c, d}, D 1 m) could be

viewed as the average behaviour of customers of the first m branches for purchasing

Chapter 2.3 	 Synthesizing heavy association rules ... 	 2.44

2.3.5.1 Algorithm design

In this section, we present an algorithm for synthesizing heavy association rules in D. The

algorithm also notifies whether a heavy association rule is high-frequent or exceptional in

D. Let N and M be the number of association rules and the number of suggested

association rules in different local databases, respectively. The association rules and

suggested association rules are kept in arrays RB and SB, respectively. A rule in a local

database could be described by following attributes: ant, con, did, supp and conf. The

attributes ant, con, did, supp and conf represent antecedent, consequent, database

identification, support, and confidence of an association rule, respectively. An attribute x

of i-th association rule of RB could be accessed using notation RB(i).x, for i = 1, 2, ...,

IRBI. All the synthesized rules are kept in array SR. A synthesized rule could be described

by following attributes: ant, con, did, ssupp and sconf. The attributes ssupp and sconf

represent synthesized support and synthesized confidence of a synthesized association

rule, respectively. In the context of the work presented here, an association rule in D has

the following additional attributes: heavy, highFreq, lowFreq and except. The attributes

heavy, highFreq, lowFreq and except are used to indicate whether an association rule is

heavy, high-frequent, low-frequent and exceptional in D, respectively. An attribute y of i-

th synthesized association rule of SR could be accessed using notation SR(i).y, for i = 1, 2,

ISRI. An algorithm for synthesizing heavy association rules is presented below:

Algorithm 2.3.1. Synthesize heavy association rules in D. Also, indicate whether a heavy

association rule is high-frequent or exceptional in D.

procedure Association-Rule-Synthesis (n, RB, SB, 1u, v, size, y,, 72)

Inputs:

n: number of databases

RB: array of association rules

SB: array of suggested association rules

,u: threshold of high-support for determining heavy association rules

kir

Chapter 2.3
	

Synthesizing heavy association rules ... 	 2.45

v. threshold of high-confidence for determining heavy association rules

size: array of total number of transactions in different databases

n: threshold of low-frequency for determining low-frequent association rules

12: threshold of high-frequency for determining high-frequent association rules

Outputs:

Heavy association rules along with their high-frequency and exceptionality statuses

1: copy rules of RB and SB into array R;

2: sort rules of R based on attributes ant and con of a rule;

3: calculate total number of transactions in different databases into totalTrans;

4: let nSynRules = 1;

5: let curPos = 1;

6: while (curPos 5_ IRS) do

7: calculate the number of occurrences of current rule R(curPos) to nExtrac09n.s*;

8: let SIZ(nSynR ules).highFreq

9: if ((nE.X 0.aciions I n) 	then

10: SR(nSynktiffs)., highFreq = true;

11: end if

12: let SR(nSynRules).lowFreq = false;

13: if ((nExtractions I n) < n) then

14: SR(nSiniiii/es)./owFreq = true;

15: 'end if

16: calculate supps(R(curPos), D) using formula (2.3.5);

17: calculate confs(R(curPos), D) using formula (2.3.8);

18: let SR(nSynRules).heavy = false;

19: if ((supps(SR(nSynRules), D) p) and (confs(SR(nSynRules), D) v)) then

20: SR(nSynRules).heavy = true;

21: end if

22: let SR(nSynRules)except = false;

Chapter 2.3
	

Synthesizing heavy association rules ... 	 2.46

23: if ((SR(nSynRules) is low-frequent) and (SR(nSynRules) is heavy)) then

24: SR(nSynRules).except = true;

25: end if

26: update index curPos for processing the next association rule;

27: increase index nSynRules by 1;

28: end while

29: for each synthesized association rule r in SR do

30: if r is heavy then

31: display r along with its high-frequency and exceptional statuses;

32: end if

33: end for

end procedure

The above algorithm works as follows. The association rules and suggested association

rules are copied into array R. All the rules in R are sorted on the pair of attributes ant and

con, so that the same rule extracted from different databases becomes consecutive. Thus,

it would help synthesizing one rule at a time. The synthesizing process is kept in the

while-loop at line 6. Based on the number of extractions of a rule, we could determine its

high-frequency and low-frequency statuses. Number of extractions of current association

rule has been determined at line 7. The high-frequency status of current association rule

is determined using lines 8-11. Also, the low-frequency status of current association rule

is determined using lines 12-15. We synthesize support and confidence of current

association rule based on formula (2.3.5) and (2.3.8), respectively. Once the synthesized

support and synthesized confidence are calculated, one could identify the heavy and

exceptional statues of current association rule. The heavy status of current association

rule is determined using lines 18-21. Also, the exceptional status of current association

rule is determined using lines 22-25. At line 26, one determines the next association rule

in R for the synthesizing process. Heavy association rules are displayed along with their

high-frequent and exceptionality statuses using lines 29 - 33. The shaded regions have

Chapter 2.3 	 Synthesizing heavy association rules ... 	 2.47

been added to report the high-frequency and exceptionality statuses of heavy association

rules.

Theorem 2.3.1. The time complexity of procedure Association-Rule-Synthesis is

maximum{ 0((M + 1V) x log(M + IV)), 0(n x (M + N))}, where N and M are the number

of association rules and the number of suggested association rules extracted from n

databases.

Proof. The lines 1 and 2 take time in 0(M + N) and 0((M + N) x log(M + N))

respectively, since there are M + N rules in different local databases. The while-loop at

line 6 repeats maximum M+ N times. Line 7 takes 0(n) time, since each rule is extracted

maximum n number of times. Lines 8-15 take 0(1) time. Using formula (2.3.2), one

could calculate the average behaviour of customers of the first m databases in 0(n) time.

Also, each of lines 16 and 17 takes 0(n) time. Lines 18-25 take 0(1) time. Line 26 could

be executed during execution of line 7. Thus, the time complexity of while-loop 6-28 is

0(n x (M + 1\)). The time complexity of lines 29-33 is 0(M + N), since the number of

synthesized association rules is less than or equal to M+ N. Thus, the time complexity of

procedure Association-Rule-Synthesis is maximum{ 0((M + IV) x log(M + 1V)), 0(n x (M

+ 1V)), 0(M+ IV)} = maximum{ 0((M+ IV) x log(M+ N)), 0(n x (M+ N))}. •

Wu and Zhang [81] have proposed an algorithm for synthesizing high-frequent

association rules in different databases. This algorithm is based on the weights of the

different databases. Again, the weight of a database would depend on the association

rules extracted from the database. The proposed algorithm executes in 0(n 4 x

maxNosRules x totalRules 2) time, where n, maxNosRules, and totalRules are the number

of data sources, the maximum among the numbers of association rules extracted from

different databases, and the total number of association rules in different databases,

respectively. Algorithm Association-Rule-Synthesis could synthesize heavy association

rules, high-frequency association rules, and exceptional association rules in maximum {

0(totalRules x log(totalRules)), 0(n x totalRules)} time. Thus, the algorithm takes much

Chapter 2.3 	 Synthesizing heavy association rules ... 	 2.48

less time than the existing algorithm that synthesizes only high-frequent association rules.

Moreover, our algorithm is simple and direct in nature. We take an example to illustrate

the our algorithm.

Example 2.3.2. Let D1, D2 and D3 be three databases of sizes 4000 transactions, 3290

transactions, and 10200 transactions, respectively. Let D be the union of the databases

D1, D2, and D3. Assume that a= 0.2, 16 = 0.3, n = 0.4, 72 = 0.7, p= 0.3 and v = 0.4. The

following association rules have been extracted from the given databases. r1 : { H} —> {C,

G} , r2: {C} —> {G} , r3: {G} ----> {F}, r4 : { E}, r5 : {A} --> {B} . The rulebases are

given as follows: R/3 1 = {rj , r2}, SBI = {r3}; RB2 = {r4}, SB2 = {r I} ; RB3 = {r j , r5 } , SB 3 =

IT2 1. The supports and confidences of the association rules are given as follows. suppa(r/,

Dj) = 0.22, confa(r 1, D1) = 0.55; suppa(rj, D2) = 0.25, confa(ri, D2) = 0.29; suppa(r 1 , D3) =

0.20, confa(rj, D3) = 0.52; suppa(r2, D1) = 0.69, confa(r2, Dj) = 0.82; suppa(r2, D3) = 0.23,

confa(r2, D3) = 0.28; suppa(r3, Dj) = 0.22, confa(r3, Di) = 0.29; supPa(r4, D2) = 0.40,

confa(r4, D2) = 0.45; suppa(r5, D3) = 0.86, confa(rs, D3) = 0.92. Also, let suppa({A}, D3) =

0.90, suppa({C}, Di) = 0.80, suppa({C}, D 3) = 0.40, suppa({G}, D i) = 0.29, suppa({11},

Dl) = 0.31, suppa({H}, D2) = 0.33, and suppa({H} , D3) = 0.50.

Table 2.3.1. Heavy association rules in the union of databases given in Example 2.3.2

r: ant-+ con ant con supps(r, D) confAr, D) heavy highFreq except

r2 C G 0.305466 0.664523 true false false

T5 A B 0.573235 0.899829 true false true

The association rules r2 and r5 have synthesized support greater than or equal to 0.3 and

synthesized confidence greater than or equal to 0.4. So, r2 and r5 are heavy association

rules in D. The association rule r5 is exceptional, since it is heavy and low-frequent. But,

the association rule r2 is neither high-frequent nor exceptional. Though the association

rule r1 is high-frequent but it is not heavy, since supps(rj, D) = 0.213980 and confs(r 1 , D)

= 0.483589. 0

Chapter 2.3
	

Synthesizing heavy association rules ... 	 2.49

2.3.5.2 Finding expected lower bound of the number of suggested association rules

A frequent itemset X might fail to generate an association rule under some conditions, for

2. Let {c, d} be a frequent itemset in database D. The association rule r: {c} —> {d}

fails to get extracted from D if the following conditions are satisfied.

supp a ({c,d}, D) 	
supp a ({c,d}, D) < 16,

a, and 	 (2.3.9)
supp a ({c}, D)

i.e., a 5 suppa({c, d}, D) < fi x suppa({c}, D). The frequent itemset {c, d} fails to produce

an association rule if # x suppa({c}, D) – supp a({c, d}, D)> 0. Consider a large database

containing items c and d. We assume that suppa({c}, D) = 0.07 and supPa({c, d}, D) =

0.02. Let us consider the equation f(fl) = 0.07 x /3 – 0.02. Now, f(13) = 0 implies fi =

0.28571. Thus, the association rule r gets extracted if /3> 0.28571.

The following theorem provides a lower bound of the expected number of suggested

association rules in a database at given a and /3.

Theorem 2.3.2. Let m be the number of frequent itemsets of size greater than or equal to

2 in database DB. Let X and Y be any two disjoint frequent itemsets in DB. Assume that

suppa(X, DB) supp a(Y, DB), if IX < Y. Then, the expected lower bound of the number

of suggested association rules in DB is given by

2x mx
[(162 -3x /3+3)xa 2 +fix(3-3)xa+ 182 1 (2.3.10)

3x(1-a)

where, a and 13 are use-defined minimum support and minimum confidence, respectively.

Proof. Let I be a frequent itemset in DB, for I I I 2. Also, let the itemsets J and K be

proper subsets of I, such that {J, K} forms a partition [53] of I. The itemset I fails to

generate any of the two association rules J --> K and K --> J, if

supp,(I , DB) 	suppa (I , DB) <

suppa (J, DB) <13,
and

suppa(K, DB)

Chapter 2.3 	 Synthesizing heavy association rules ... 	 2.50

i.e., if suppa(I, DB) < fi x minimum { supp a(J, DB), suppa(K, DB) } 	 (2.3.11)

Without loss of generality, let 1./1> IKI. Assume that suppa(J, DB) suppa(K, DB), for I./1

IN. Then, suppa(J, DB) suppa(K, DB), by the assumption of the theorem.

Thus, the condition (2.3.11) is true if suppa(I, DB) < fl x supp a(J, DB)

or, fi x suppa(J, DB) - suppa (I, DB)> 0 	 (2.3.12)

Let y = suppa(I, DB) and z = minimum { supp a(J, DB): J c I }. Consider the functionf(z,

y) = x z — y, such that 1 z ?y a. Let A = (z, y): Az, y)> 0 and 1 > z > y > a 1,

and A2 = { (z, y): 1 > z? .)/> a }. If (z, y) E Al then the corresponding itemset I does not

generate an association rule in DB.

Figure 2.3.2. Region A2 (shaded area)

A1 — 	f fixz (fi xz-y)dydz
fz=ce y=12

(1-a)a 2 kkfi -3X ig -1- 3)Xa 2 + x(13 -3)xa+ ,8 2)
6

A2 = (1-a) 2 /2

(2.3.13)

(2.3.14)

(2.3.15)

Let E be the event that a frequent itemset X does not generate an association rule in DB,

for WI 2. The event E is equivalent to the event that a frequent itemset X generates a

suggested association rule in DB, for X 2. Then, suppa(E, D) could be expressed as

follows.

suppa(E,D)=
Area A l _[(,32 -3x + 3)x a 2 +/3x(0-3)x a + (2.3.16)
Area A 2 	 3x(1-a)

Chapter 2.3 	 Synthesizing heavy association rules ... 	 2.51

Also, each frequent itemset X could generate at least two suggested association rules, for

2. Thus, Theorem 2.3.2 follows. •

2.3.6 Error calculation

To evaluate the proposed technique of synthesizing heavy association rules we have

measured the amount of error occurred in the experiments. Error of an experiment is

relative to the number of transactions, number of items, and the length of a transaction in

the databases. Thus, the error of an experiment needs to be expressed along with the ANT,

ALT, and ANI in the given databases, where ANT, ALT, and ANI denote the average

number of transactions, the average length of a transaction, and the average number of

items in a database, respectively. There are several ways one could define error of an

experiment. The definition of error of an experiment is based on the frequent itemsets

generated from heavy association rules. Let r: {c}—> {d} be a heavy association rule. The

frequent itemsets generated from association rule r are {c}, {d}, and {c, d}. Let {Xj, X2,

Xm } be set of frequent itemsets generated from all the heavy association rules in D.

We define following two types of error of an experiment.

1. Average Error (AE)

AE(D, a, ,u, v) = 1E7. 1 supp a (X , D) - supp ,(X D)I 	 (2.3.17)

2. Maximum Error (ME)

ME(D, a, p, v) = maximumIlsupp a (X, D)- supp,(X, D)1,i =1, 2, ..., rn 	(2.3.18)

supp„(X„ D) and supps(X„ D) are actual (i.e., apriori) support and synthesized support of

the itemset X, in D, respectively.

Example 2.3.3. With reference to the Example 2.3.2, r2: C G and r5 : A -* B are heavy

association rules in D. The frequent itemsets generated from r2 and r5 are A, B, C, G, AB

and CG. For the purpose of finding the error of an experiment, we need to find the actual

support of the itemsets generated from the heavy association rules. The actual support of

an itemset generated from a heavy association rule could be obtained by mining all the

Chapter 2.3
	

Synthesizing heavy association rules ... 	 2.52

databases DI, D2, and D3 together. Thus, AE(D, 0.2, 0.3, 0.4) =

1 (
—6 11supp a (A, D)- supp s (A, D)I 	 Isupp a (B , D) supp s (B , D)i

Isupp a (C , D)- supp s (C , D)I 	 Isupp a (G , D) - supp s (G, D)I

Isupp a (AB, D) - supp s (AB, D)I + I supp a (CG , D) - supp s (CG , D)1}.

ME(D, 	0.2, 	0.3, 	0.4) 	= 	maximum 	Ilsupp a (A, D)- supp s (A, D)1,

Isupp a (B , D) - supp s (B, D)I, 	 !sup', a (C , D) - supp ,(C , D) ,

!sup], a(G, D) - supp s (G, D)1, 	 Isupp a (AB , D)- supp s (AB , D) ,

Isupi a (CG , D)- supp s (CG , D)1} . •

2.3.7 Experiments

We have carried out several experiments to study the effectiveness of our approach. All

the experiments have been implemented on a 1.6 GHz Pentium processor with 256 MB

of memory using visual C++ (version 6.0) software. We present the experimental results

using three real databases. The database retail [34] is obtained from an anonymous

Belgian retail supermarket store. The databases BMS-Web-Wiew-1 and BMS-Web-Wiew-

2 can be found from KDD CUP 2000 [34]. We present some characteristics of these

databases in Table 2.3.2. We use notations DB, NT, AFI, ALT, and NI to denote a

database, the number of transactions, the average frequency of an item, the average

length of a transaction, and the number of items in the corresponding database,

respectively.

Table 2.3.2. Database characteristics

Database N T ALT AFI NI

retail 88,162 11.30576 99.67380 10000

BMS-Web-Wiew-1 1,49,639 2.00000 155.71176 1922

BMS-Web-Wiew-2 3,58,278 2.00000 7165.56000 100

Chapter 2.3 	 Synthesizing heavy association rules ... 	 2.53

Each of the above databases is divided into 10 databases for the purpose of carrying out

experiments. The databases obtained from retail, BMS-Web-Wiew-1, and BMS-Web-

Wiew-2 are named as R,, B1, and B2„ respectively, for i = 0, 1, ..., 9. The databases Rj and

By are called branch databases, for i = 1, 2, and j = 0, 1, ..., 9. Some characteristics of

these branch databases are presented in Table 2.3.3.

Outputs of three experiments using the Algorithm 2.3.1 are presented in Table 2.3.4.

The choice of different parameters is an important issue. We have chosen different a and

/3 for different databases. But, they are kept same for branch databases obtained from the

same database. For example, a and /3 are the same for branch databases R, , for i = 0, 1,

After mining a single branch database from a group of branch databases using a

reasonably low a and /3, one could fix a and /3 for the purpose data mining task. If a and

/3 are smaller, the multi-database mining application would produce more correct result.

As we are constraint with the computing resources, we could choose a and /3 in such a

way that all the patterns could be handled effectively.

The choice of p and v are context dependent and subjective. Also, if p and v are kept

fixed then some databases might not report heavy association rules, while other databases

might report many heavy association rules. While generating association rule one could

estimate the average synthesized support and confidence based on the generated

association rules. Thus, it gives an idea of thresholds for high-support and high-

confidence for synthesizing heavy association rules in different databases. Also, the

choice of 2,1 and 72 are also context dependent and subjective. Good values of 7./ and 12

could lie in the interval [0.3, 0.4] and [0.6, 0.7], respectively. We have taken yi = 0.35,

and 72 = 0.60 for synthesizing heavy association rules.

s.-

Chapter 2.3 	 Synthesizing heavy association rules ... 	 2.54

Table 2.3.3. Branch database characteristics

DB N T ALT AFI NI DB N T ALT AFI NI

Ro 9000 11.24389 12.07001 8384 R5 9000 10.85578 16.70977 5847

R1 9000 11.20922 12.26541 8225 R6 9000 11.20011 17.41552 5788

R2 9000 11.33667 14.59657 6990 R7 9000 11.15511 17.34554 5788

R3 9000 11.48978 16.66259 6206 R8 9000 11.99711 18.69032 5777

R4 9000 10.95678 16.03953 6148 R9 7162 11.69199 15.34787 5456

B10 14000 2.00000 14.94130 1874 B15 14000 2.00000 280.00000 100

/3/1 14000 2.00000 280.00000 100 B16 14000 2.00000 280.00000 100

B12 14000 2.00000 280.00000 100 B17 14000 2.00000 280.00000 100

B13 14000 2.00000 280.00000 100 B18 14000 2.00000 280.00000 100

B14 14000: 2.00000 280.00000 100 B19 23639. 2.00000 472.78000 100

B20 35827 2.00000 1326.92590 54 B25 35827 2.00000 716.54000 100

B21 35827 2.00000 1326.92590 54 B26 35827 2.00000 716.54000 100

B22 35827 2.00000 716.54000 100 B27 35827 2.00000 716.54000 100

B23 35827 2.00000 716.54000 100 B28 35827 2.00000 716.54000 100

B24 35827 2.00000 716.54000 100 B29 35835 2.00000 716.70000 100

Chapter 2.3
	

Synthesizing heavy association rules ... 	 2.55

Table 2.3.4. First five heavy association rules reported from different databases (sorted in

non-increasing order on synthesized support).

Data

base
a 16 p v

Heavy assoc

rules

Syn

supp

Syn

conf

High

freq

Excep

tional

U9,, R, 0.05 0.2 0.1 0.5 {48}->{39} 0.33055 0.67629 Yes No

{39}-4{48} 0.33055 0.56333 Yes No

{41}->{39} 0.12910 0.62535 Yes No

{38}->{39} 0.11734 0.66069 Yes No

{41}-3{48} 0.10208 0.51495 Yes No

U7=0 B, 0.01 0.2 0.007 0.1 {1}->151 0.00858 0.13422 No No

{5}->{1} 0.00858 0.10873 No No

{7}->{5} 0.00828 0.11503 No No

{5}-->{7} 0.00828 0.10843 No No

{3}->{5} 0.00746 0.12376 No No

U7 = , B2, 0.006 0.01 0.01 0.1 {3}->{1} 0.02145 0.14431 Yes No

{1}->{3} 0.02145 0.14295 Yes No

{7}->{1} 0.02096 0.14039 Yes No

{1} ->{7} 0.020956 0.13999 Yes No

{5}->{1} 0.020758 0.14081 Yes No

The experiments conducted on three databases result no exceptional association rule.

Normally, exceptional association rules are rare. Also, we have not found any association

rule which is heavy as well as high-frequent in multiple databases obtained from BMS-

Web-Wiew-1.

In many applications, the suggested association rules are significant. While

synthesizing the association rules from different databases we might need to consider the

suggested association rules for the correctness of synthesizing association rules. We have

I

Chapter 2.3 	 Synthesizing heavy association rules ... 	 2.56

observed that the number of suggested association rules in the set of databases {Ro, R,,

...,R9} and {Bio, B11, • • •, B19} are significant. But, the set of databases {B20, B21, • • •, B29}

do not generate any suggested association rule. We present the number of association

rules and the number of suggested association rules in these sets of databases in Table

2.3.5.

Table 2.3.5. Number of association rules and suggested association rules extracted from

multiple databases

Database a 13
Number of

association rules (N)

Number of suggested

association rules (M)
M / (N + M)

U9, 0 B, 0.05 0.2 821 519 0.387313

V, B 1 , 0.01 0.2 50 96 0.657534

L.19_ 0 B2, 0.006 0.01 792 0 0.000000

The error of synthesizing association rules in a database is relative to the following

parameters: the number of transactions, the number of items, and the length of

transactions in the given databases. If the number of transactions in a database increases

the error of synthesizing association rules increases, provided other two parameters

remain constant. If the length of a transaction of a database increases the error of

synthesizing association rules is likely to increase, provided other two parameters remain

constant. Lastly, if the number of items increases the error of synthesizing association

rules is likely to decrease, provided other two parameters remain constant. Thus, the error

of an experiment needs to be expressed along with the ANT, ALT, and ANI for the given

databases. The errors of different experiments are presented in Table 2.3.6.

Chapter 2.3 	 Synthesizing heavy association rules ... 	 2.57

Table 2.3.6. Error of synthesizing the heavy association rules

Database a 16 p v (AE, ANT, ALT, ANI) (ME, ANT, ALT, ANI)

U9,, R, 0.05 0.2 0.1 0.5
(0.002503, 8816.2,

11.305755, 5882.1)

(0.003612, 8816.2,

11.305755, 5882.1)

U7, 0 B,, 0.01 0.2 0.007 0.1
(0.000365, 14963.9,

2.0, 277.4)

(0.000759, 14963.9,

2.0, 277.4)

U7 =0 112, 0.006 0.01 0.01 0.1
(0.000118, 35827.8,

2.0, 90.8)

(0.000285, 35827.8,

2.0, 90.8)

2.3.7.1 Comparison with existing algorithm

In this section we make a detailed comparison between the part of the proposed algorithm

that synthesizes only high-frequent association rules and the algorithm RuleSynthesizing

[81]. Let the part of the proposed algorithm be High-Frequency-Rule-Synthesis that

synthesizes only high-frequent association rules in different databases. We conduct

experiments for comparing algorithms High-Frequency-Rule-Synthesis and

RuleSynthesizing. We compare these two algorithms on the basis of the following two

issues: (i) Average error, and (ii) Execution time.

2.3.7.1.1 Analysis of average error

Both the definitions of average errors are similar and use the same set of synthesized

frequent itemsets. But, the methods of synthesizing frequent itemsets for these two

approaches are different. Thus, the amount of error incurred in these two approaches

might differ. In RuleSynthesizing algorithm, if an itemset fails to get extracted from a

database then the support of the itemset is assumed as 0. But, in Association-Rule-

Synthesis algorithm, if an itemset fails to get extracted from a database then the support

of the itemset is estimated. Thus, the synthesized support of an itemset in the union of

concerned databases for these two approaches might differ. As the number of databases

increases the relative presence of a rule normally decreases. Thus, the error of synthesiz-

- High- Frequency-
Rule- Synthesis

- RuleSynthesizing

0.035
0.03

0.025
0.02

0.015
0.01

0.005
0

4 	5 	6 	7 	8 	9 	10

Number of databases

0.012

0.01

0.008
G.L)
< 0.006

0.004

0.002

0

High- Freq uency-
Rule- Synthesis
RuleSynthesizing

	•

4 	5 	6 	7 	8 	9 	10

N umber of databases

Chapter 2.3
	

Synthesizing heavy association rules ... 	 2.58

ing a rule normally increases. So, the AE of an experiment is likely to increase if the

number of databases increases. We observe such phenomenon in Figures 2.3.3 and 2.3.4.

Figure 2.3.3. AE versus number of databases from retail at (a, /3, = (0.05, 0.2, 0.6)

Figure 2.3.4. AE versus number of databases from BMS-Web-Wiew-1 at (a, /3, =

(0.005, 0.1, 0.3)

The proposed algorithm follows direct approach in identifying high-frequent association

rules as opposed to RuleSynthesizing algorithm. Here, we study AE of the experiments

for these two approaches. In Figures 2.3.3 and 2.3.4, we observe that AE error of an

experiment conducted using High-Frequency-Rule-Synthesis algorithm is less than that of

RuleSynthesizing algorithm.

2.3.7.1.2 Analysis of execution time

We have also conducted experiments to study the execution time by varying the number

of databases. The number of synthesized frequent itemsets increases as the number of

High-Frequency-
Rule-Synthesis
RuleSynthesizing

High-Frequency-
Rule-Synthesis

--a— RuleSynthesizing

Chapter 2.3 	 Synthesizing heavy association rules ... 	 2.59

databases increases. Thus, the execution time normally increases with the increase of

number of databases. We observe such phenomenon in Figures 2.3.5 and 2.3.6.

Figure 2.3.5. Execution time versus number of databases from retail at (a, /3, y) = (0.05,

0.2, 0.6)

Figure 2.3.6. Execution time versus number of databases from BMS-Web-Wiew-1 at (a,

/3, y) = (0.005, 0.1, 0.3)

RuleSynthesizing algorithm might be faster than High-Frequency-Rule-Synthesizing

algorithm for less number of databases. As the number of databases increases, High-

Frequency-Rule-Synthesizing algorithm executes faster than RuleSynthesizing algorithm.

2.3.8 Conclusions

Synthesizing heavy association rule is an important component of a multi-database

mining system. In this chapter, we present the notions of two new patterns in multiple

Chapter 2.3
	

Synthesizing heavy association rules ... 	 2.60

databases viz., heavy association rule and exceptional association rule. Also, we presents

an algorithm for synthesizing three important patterns in multiple databases viz., heavy

association rules, high-frequent association rules, and exceptional association rules. It

also provides a better solution for synthesizing high-frequent association rules in multiple

databases. The algorithm presented here is simple and effective for synthesizing heavy

association rules in multiple real databases.

2.61

Chapter 2.4

Clustering frequent items in multiple databases

Due to a liberal economic policy adopted by many countries across the globe, the number

of branches of a multi-national company as well as the number of multi-national

companies is increasing over time. Moreover, the economies of many countries are

growing at a faster rate. As a result the number of multi-branch companies within a

country is also increasing. Many of these companies collect a huge amount of data

through different branches. Consider a multi-branch company that transacts from

multiple branches. Each branch maintains a separate database for the transactions made at

the branch. Thus, the company deals with multiple transactional databases. Data mining

and knowledge discovery from large database is often considered as the basis of many

decision-support applications. But, the most of the previous pieces of data mining work

are based on a single database. Thus, it is necessary to study data mining on multiple

databases.

An itemset is a collection of items in a database. Each itemset in a database is

associated with a statistical measure called support [11]. Support of an itemset X in

database D is the fraction of transactions in D containing X, denoted by S(X, D). In

general, let S(E, D) be the support of a Boolean expression E defined on the transactions

in database D. An itemset X is called frequent in D if S(X, a, where a is user defined

level of minimum support. If X is frequent then Y c X is also frequent, since S(Y, D)

S(X, D), for Y # 0. Thus, each item of a frequent itemset is also frequent. Itemset could be

considered as a basic type of pattern in a transactional database. The collection of

frequent itemsets determines major characteristics of a database. Many interesting

algorithms [13], [39], [66] have been proposed to mine frequent itemsets in a database.

Chapter 2.4 	Clustering frequent items in multiple databases 	2.62

Thus, there are many implementations [32] for extracting frequent itemsets from a

database. Itemset patterns influence heavily current KDD research. We observe the

influence of itemset patterns on KDD research in the following ways: Firstly, many

algorithms have been reported on mining frequent itemsets in a database. Secondly, many

patterns are based on the itemset patterns in a database. Thus, they could be called as

derived patterns in a database. For example, positive association rule [11] and high-

frequent association rule [81] are examples of some derived patterns. Considerable

amount of work have been reported on mining / synthesizing derived patterns in a

database [13], [39], [66], [89]. Finally, solutions of many problems could be based on the

analysis of patterns in a database [79], [83]. Such applications process patterns in a

database for the purpose of making some decisions. Frequent items are the ingredients of

most of the interesting patterns. Thus, the analysis and synthesis of frequent items is an

interesting as well as important issue. In multi-database environment, local frequent items

are interesting as well as important issue. They are used to construct the global patterns in

multiple databases. Thus, clustering of frequent items in multiple databases is an

important knowledge for a multi-branch company. Many important decisions could be

based on clustering of frequent items in multiple databases. In the following, we mention

a few such applications.

Some of the frequent items (products) could be high profit making. Naturally, the

company would like to promote them. There are various ways one could promote an

item. An indirect way of promoting an item P is to promote items that are positively

associated with it. The implication of positive association between P and another item.

Q is that if Q is purchased by a customer then P is likely to be purchased by the same

customer at the same time. Thus, P is indirectly promoted. Clustering of frequent

items could help identifying other items that promote a specific frequent item.

° Some frequent items could be of high standard. Thus, they bring goodwill for the

company. They help promoting other items. Thus, it is important to know how the

sales of these items affect the other items. Before making such analyses, one may need

Chapter 2.4
	

Clustering frequent items in multiple databases 	2.63

to cluster the frequent items.

Again, some of the frequent items could be low-profit making. Thus, it is important to

know how they promote the sales of other items. Otherwise, the company could stop

dealing with such items. Clustering of frequent items could help identifying items that

do not promote other items.

Many corporate decisions could be taken effectively by incorporating knowledge inherent

in data across the branches. But, the effective management of multiple large databases

becomes a challenging issue. It creates not only opportunities but also risks. The risks

might involve significant amount of investment on hardware and software to deal with

the large volume of data. Our objective is to provide good solutions by minimizing the

risks.

In this chapter, we synthesize highly extracted itemsets based on local itemsets. Highly

extracted itemsets are defined in Section 2.4.4. We measure association among items in

synthesized highly extracted itemsets. We cluster frequent items based on associations

among items in highly extracted itemsets. Highly associated items could be put in the

same class. The motivation of proposed clustering technique is given as follows.

Wu et al. [83] have proposed a technique for clustering a set of databases. The

principle of clustering could be stated as follows. It finds association between every pair

of objects (databases) using a measure of association. A set of m arbitrary objects form a

class, if mC2 association values corresponding to m C2 pairs of objects are close. The level

of association among the objects in this class is assumed as the minimum of mC2

association values. One could apply such technique for clustering frequent items in

multiple transactional databases. If the number of items in a class is more than two, then

we observe that this technique might fail to estimate the association among the items in

the class correctly. Then accuracy of the entire clustering process becomes low. The

proposed clustering technique follows a different approach and it clusters frequent items

with higher degree of accuracy as compared to the existing technique.

Chapter 2.4 	Clustering frequent items in multiple databases 	2.64

Initially, we overview the existing measures association among a set of items in a data-

base. Afterwards, we overview the existing techniques of mining multiple databases. In

the context of mining multiple databases, we introduce the concept of highly extracted

itemsets. We design an algorithm for synthesizing support of each highly extracted

itemset. The algorithm also synthesizes association among items in a highly extracted

itemset. Based on the synthesized associations corresponding to different highly extracted

itemsets, we propose an algorithm for finding the best clustering of frequent items in

multiple databases. Finally, we present experimental results to show the effectiveness of

the proposed clustering technique.

The rest of the chapter is organized as follows. In Section 2.4.2, we study the existing

measures of association, and the existing techniques for mining multiple databases. We

also study different clustering techniques and other related issues. In Section 2.4.3, we

discuss some results. We propose an algorithm for synthesizing supports of highly

extracted itemsets in Section 4.2.4. The algorithm also synthesizes association among

items in a highly extracted itemset of size greater than one. In Section 2.4.5, we propose

an algorithm for clustering frequent items in multiple databases. Finally, experimental

results are presented in Section 2.4.6 to show the effectiveness of the proposed clustering

technique.

2.4.2 Problem statement

Consider a multi-branch company that operates from n branches. Let D, be the database

corresponding to the i-th branch, for i = 1, 2, ..., n. Also, let D be the union of these

databases. In the context of clustering frequent items in multiple databases, first we

discuss work related to this issue.

2.4.2.1 Related work

Our clustering technique is based on itemset patterns in multiple databases. In this

context, one needs a technique for mining itemset patterns in multiple databases. After-

Chapter 2.4 	Clustering frequent items in multiple databases 	2.65

wards, association among items in an itemset is studied using a measure of association.

Finally, one needs a clustering algorithm to cluster frequent items in multiple databases.

Thus, we divide related work broadly into three areas: measures of association,

techniques of mining multiple databases, and clustering algorithms.

2.4.2.1.1 Measures of association

A survey of different measures of association is provided in the first and second sections

of Chapter 1.4. Also, we have explained why the existing measures are not able to

capture association among a set of items in a database accurately. In Chapter 1.4, we have

also presented two generalized measures of association Al and A2. We use measure A2 for

clustering frequent items in multiple databases.

2.4.2.1.2 Multi-database mining techniques

The first question comes to our mind whether a traditional data mining technique could

deal with multiple large databases. To apply a traditional data mining technique one

needs to amass all the databases together. A single computer might take unreasonable

amount of time to process the entire database. Sometimes, it might not be feasible to

mine large volume of data using a single computer. Another solution to this problem

would be to employ parallel machines. It might require high investment on hardware and

software. One needs to make a cost-benefit analysis before implementing such a decision.

In many situations, it might not be an acceptable solution to the management of the

company. Moreover, it might be difficult to find local patterns when a mining technique

is applied to the entire database. Thus, the traditional data mining techniques are not

suitable in this situation. So, it is a different problem. Hence, it is required to be dealt

with in a different way. In this situation, one could employ the model of local pattern

analysis [91] to deal with multiple large databases. In this case, each branch is required to

forward local patterns instead of original database to the central office for synthesis and

Chapter 2.4 	Clustering frequent items in multiple databases 	2.66

analysis of local patterns. But, local pattern analysis might return approximate global

patterns.

For the purpose of mining multiple databases, one could apply partition algorithm

proposed by Savasere et al. [66]. The algorithm was designed to mine a very large

database by partitioning. The algorithm works as follows. It scans the database twice. The

database is divided into disjoint partitions, where each partition is small enough to fit in

memory. In a first scan, the algorithm reads each partition and computes locally frequent

itemsets in each partition using apriori algorithm [13]. In the second scan, the algorithm

counts the supports of all locally frequent itemsets toward the complete database. In this

case, each local database could be considered as a partition. Though partition algorithm

mines frequent itemsets exactly, it is an expensive solution to mining multiple large

databases, since each database is required to scan twice.

For mining multiple databases, there are three situations: (i) Each local database is

small, so that a single database mining technique (SDMT) could mine the union of all

databases. (ii) At least one of the local databases is large, so that a SDMT could mine

every local database, but fail to mine the union of all local databases. (iii) At least one of

the local databases is very large, so that a SDMT fails to mine every local database. We

face challenges to handle the cases (ii) and (iii). The challenges posed to us are due to

large size of some of the local databases.

A multi-database mining technique (MDMT) using local pattern analysis could be

viewed as a two-step process M+S, explained as follows.

▪ Mine each local database using a SDMT by following a model M (Step 1)

▪ Synthesize patterns using an algorithm S (Step 2)

We use notation MDMT: M+S to represent above multi-database mining technique.

In the context of Step 1 of a MDMT using local pattern analysis, Zhang et al. [89] have

proposed algorithm Ident0ExPattern (IEP) for identifying global exceptional patterns in

multi-databases. Every local database is mined separately at random order (RO) using a

SDMT for synthesizing global exceptional patterns.

Chapter 2.4 	Clustering frequent items in multiple databases 	2.67

In the context of Step 2 of a MDMT using local pattern analysis, Zhang et al. [89] have

proposed a technique for synthesizing global patterns. In algorithm Identifi)ExPattern, a

pattern in a local database is assumed as nonexistent, if it does not get reported. Let

suppa(p, DB) and supps(p, DB) be the actual (i.e, apriori) support and synthesized support

of patternp in database DB. Support of pattern p in D has been synthesized as follows.

1 	v num(p) suppa (p, D,)- a
suppc (p, D) = 	 (2.4.1)

num(p) i-d` 	1- a

where, num(p) is the number of databases that report p at a given minimum support level

(a).

Adhikari and Rao [5] have proposed Association-Rule-Synthesis (ARS) algorithm for

synthesizing association rules in multiple real databases. For multiple real databases, the

trend of the customers' behaviour exhibited in one database is usually present in other

databases. In particular, a frequent itemset in one database is usually present in some

transactions of other databases even if it does not get extracted. The estimation procedure

captures such trend and estimates the support of a missing association rule. Without loss

of generality, let the itemset X be extracted from first m databases, for 1 m < n. Then

trend of X in first m databases could be expressed as follows.

trend"' 	
1

(X I a) = 	xEm Jsuppa (X , D i)xj D, 	 (2.4.2)

One could use the trend of X in first m databases for synthesizing support of X in D. We

estimate support of X in each of the remaining databases by a x trendl ' n (X I a), for j = k +

1, k + 2, ..., n. Thus, the synthesized support of X could be computed as follows.

supps(X , D)= trend' 'm (X I a) x[(1-a)xEm ID 1+axr D 	 (2.4.3)

E,,, D, 	
=1 	, =1 	,

In synthesizing high-frequent association rule, Wu and Zhang [81] have proposed

RuleSynthesizing (RS) algorithm for synthesizing high-frequent association rule in

multiple databases. Based on the association rules in different databases, the authors have

estimated weights of different databases. Let w, be the weight of i-th database, for i = 1,

Chapter 2.4 	Clustering frequent items in multiple databases 	2.68

2, ..., n. Without loss of generality, let the association rule r be extracted from first m

databases, for 1 m < n. suppa(r, D,) has been assumed as 0, for i = m + 1, m + 2, ..., n.

Then support of r in D has been synthesized as follows.

supps(r,D) = WI x suppa(r,D1)+ • .. + Tv,n x suppa(r,D,n) 	 (2.4.4)

Adhikari and Rao [8] have proposed pipelined feedback model (PFM) for mining

multiple databases. Let WI, W25 • Wn be n local data warehouses. In PFM, WI is mined

using a SDMT and local pattern base LPBI is extracted. While mining W2, all the patterns

in LP131 are extracted irrespective of their values of interestingness measures like,

minimum support and minimum confidence. Apart from these patterns, some new

patterns that satisfy user-defined threshold values of interestingness measures are also

extracted. In general, while mining W, all the patterns in W,_, are mined irrespective of

their values of interestingness measures and some new patterns that satisfy user-defined

threshold values of interestingness measures, for i = 2, 3, ..., n. Due to this nature of

mining each data warehouse, the technique is called a feedback model. Thus, ILPB,41

ILPB,I, for i = 2, 3, ..., n. There are n! arrangements of pipelining for n databases. All

arrangements of data warehouses would not produce the same mining result. If the

number of local patterns increases, we get more accurate global patterns and a better ana-

lysis of local patterns. An arrangement of data warehouses would produce near optimal

result if is a maximal. Let size(W,) be the size of W, (in bytes), for i = 1, 2, ..., n.

We shall follow the following rule of thumb regarding the arrangements of data

warehouses for the purpose of mining. The number of patterns in W,_, is greater than or

equal to the number of patterns in W, if size(W fri) size(W,), for i = 2, 3, ..., n. For the

purpose of increasing number of local patterns, W,4 precedes W, in the pipelined

arrangement of mining data warehouses if size(W,_,) size(W,), for i = 2, 3, ..., n. Finally,

we analyze the patterns in LP.13 1 , LPB2, ..., and LPBn for synthesizing global patterns, or

analyzing local patterns.

For synthesizing global patterns in D we discuss here a simple pattern synthesizing

(SPS) algorithm. Without loss of generality, let the itemset X be extracted from first m

Chapter 2.4 	Clustering frequent items in multiple databases 	2.69

databases, for 1 m < n. Then synthesized support of X in D could be obtained as

follows.

supps (X , D) = 	xE m
'
 [suppa (X , D,)xl 	 (2.4.5)

E„ R
There are two benefits of the PFM model. Firstly, it improves significantly the

accuracy of mining multiple large databases as compared to local pattern analysis.

Secondly, it scans each local database only once. Several experiments [8] have been

conducted using MDMT: PFM+SPS, and we have observed that MDMT: PFM+SPS

outperforms other MDMTs. Thus, for the purpose of clustering frequent items in multiple

databases, we shall use MDMT: PFM+SPS for mining multiple databases.

Liu et al. [55] have proposed multi-database mining technique that searches only the

relevant databases. Identifying relevant databases is based on selecting the relevant tables

(relations) that contain specific, reliable and statistically significant information

pertaining to the query. Zhang [88], Zhang et al. [93] studied various strategies for

mining multiple databases.

Existing parallel mining techniques [12], [26], [28] could also be used to deal with

multiple databases.

2.4.2.1.3 Clustering techniques

Zhang et al. [90] have proposed an efficient and scalable data clustering method BIRCH

based on in-memory data structure called CF-tree. Estivill-Castro and Yang [30] have

proposed an algorithm that remains efficient, generally applicable, multi-dimensional but

is more robust to noise and outliers. Jain et al. [44] have presented an overview of pattern

clustering methods from a statistical pattern recognition perspective, with a goal of

providing useful advice and references to fundamental concepts accessible to the broad

community of clustering practitioners. In this chapter, we present an algorithm based on

local patterns. Thus, the above algorithms might not be suitable in this situation.

Chapter 2.4 	Clustering frequent items in multiple databases 	2.70

Ali et al. [15] have proposed a partial classification technique using association rules.

The clustering of frequent items using local association rules might not be a good idea.

The number of frequent itemsets obtained from a set of association rules might be much

less than the number of frequent itemsets extracted using apriori algorithm [13]. Thus,

efficiency of the clustering process might be low.

2.4.2.2 Our approach

Before we state our problem formally, we define few notations. Let FI(D I a) and FIS(D

a) be the set of frequent items and set of frequent itemsets in database D at a given a,

respectively. Let FI(1, n, a) be equal to Un,,_, FAD, I a) and FIS(1, n, a) be equal to

HO I a). We apply measure of association A2 and multi-database mining

technique MDMT: PFM+SPS for the purpose of clustering frequent items in multiple

databases. The proposed problem could be stated as follows.

There are n different databases D, for i = 1, 2, ..., n. Find the best non-trivial partition

(if it exists) of FI(1, n, a) induced by FIS(1, n, a).

A partition [53] is a specific type of clustering. Formal definition of a non-trivial

partition is given in Section 2.4.5.

2.4.3 Measuring association among items

For clustering frequent items in multiple databases, one needs to measure association

among items in a database. We use measure A2 in our clustering algorithm. For

computing A2, we make use of Lemma 1.4.7 and it is restated as follows.

Lemma 2.4.1. Let X = {xi, x2, ..., x m } be an itemset in database D, for m 2. Then

E[s({x;} nfx,I,D) - is({x/ } n{x,}n{x,),D)+...±s(fx,In...n{x,,),
A2(X,D)- 	j=1 ; ;=; 	 J,k=i ; j,k#i

mx[iS({xi l,D) - 	 DYE ... ±A{x l } n{x,}n...n{x„,},D)
1=1 	 i,J=1;,<.)

(2.4.6)

Chapter 2.4 	Clustering frequent items in multiple databases 	2.71

Proof. Please refer Lemma 1.4.7.

2.4.4 Synthesizing support of an itemset

In PFM, let the itemset X be extracted from k out of n databases, for 0 5 k 5 n. Let y be

the minimum threshold of number of extractions of an itemset, for 0 < y 5_ 1. We would

be interested about the itemset if it has been extracted from minimum of n x y databases.

We call such itemsets as highly extracted itemsets (HEISs). If an itemset X is highly

extracted then an itemset Y c X is also a highly extracted itemset, for Y 0. We define a

highly extracted itemset as follows.

Definition 2.4.1. Let there are n databases. Let X be an itemset extracted from k

databases. Then Xis highly extracted if k / n 7. •

A highly extracted itemset might not be frequent in all the databases under consideration.

After applying PFM model of mining multiple databases, we synthesize supports of

HEISs using formula (2.4.5). In Example 2.4.1, we, illustrate the procedure for

synthesizing support of a HEIS.

Example 2.4.1. Consider a multi-branch company that has four branches. Let Di be the

database corresponding to the i-th branch, for i = 1, 2, 3, 4. The branch databases are

given as follows. DI = {{a, b}, {a, b, c}, {a, b, c, d}, {c, d, e}, {c, d, f}, {c, d, i}}; D2 —

{ {a, b}, {a, b, g}, {g}}; D3= {{a, b, d}, {a, c, d}, {c, 6}1, D4= {{a}, {a, b, c}, {c, d},

{c, d, i}l. Assume that a = 0.4, and y= 0.6. Let X(77) denotes the fact that the itemset X

has support ri in the corresponding database. We sort databases in non-increasing order

on database size (in bytes). The sorted databases are given as follows: DI, D4, D3, D2.

Applying PFM, the itemsets in different local databases are given as follows:

LPB(D j , a) = {{a}(0.5), {b}(0.5), {c}(0.833), {d}(0.667), {a, b}(0.5), {c, d}(0.667)},

LPB(D4, a) = {{a}(0.667), {b}(0.25), {c}(0.75), {d}(0.25), {a, b}(0.333), {c,

d}(0.667)}, LPB(D3, a) = {{a}(0.667), {b}(0.333), {c}(0.667), {d}(1.0), {a, b}(0.333),

Chapter 2.4 	Clustering frequent items in multiple databases 	2.72

{c, d}(0.667)}, and LPB(D2, 	= {{a}(0.667), {b}(0.667), {c}(0.0), {d}(0.0), {a,

b}(0.667), {c, d}(0.0), {g}(0.667)}.

Let D = 	Synthesized HEISs in D are given as follows: SHEIS(D, 0.4, 0.6) =

{a}(0.563), {b}(0.438), {c}(0.563), {d}(0.563), {a, b}(0.438), {c, d}(0.5)}. •

The collection of SHEISs of size greater than 1 forms the basis of the proposed clustering

technique. We present below an algorithm to obtain synthesized association among items

in each SHEIS of size greater than 1. Let N be the number of itemsets in n databases. Let

AIS be a two dimensional array such that AIS(i) is the array of itemsets extracted from D„

for i = 1, 2, ..., n. Also, let IS be the set of all itemsets in n databases. An itemset could

be described by the following attributes: itemset, supp, and did. Here, itemset, supp and

did represent the itemset, support and database identification of itemset, respectively. All

the synthesized itemsets are kept in the array SIS. Each synthesized itemsets has the

following attributes: itemset, ss, and sa. Here, ss and sa represent synthesized support and

synthesized association of the itemset, respectively. In the following algorithm, we

synthesize association among items of each SHEIS.

Algorithm 2.4.1. Synthesize association among items of each SHEIS of size greater than

1

procedure SynthesizeAssociation (n, AIS, size, 7)

Input:

n: number of databases

AIS: two dimensional array of itemsets extracted during mining multiple databases

size: array of number of transactions in input databases

y. threshold for minimum number of extractions of an itemset

Output:

Synthesized association among items of each SHEIS

1: collect all local itemsets into array IS;

2: sort itemsets of IS based on itemset attribute;

3: add sizes of all branch databases into variable totalTransactions;

Chapter 2.4 	Clustering frequent items in multiple databases 	2.73

4: let nSynitemSets = 0; let i = 1;

5: if (i 	I/SI) then

6: let j = i; let count = 0;

7: while (j i + n) do

8: if (IS(j).itemset = IS(i).itemset) then

9: process support of IS(i);

10: increase count by 1; increase j by 1;

11: else go to line 14;

12: end if

13: end while

14: synSupp = supps(IS(i).itemset, D) using formula (2.4.5) and totalTransactions;

15: if (count 1 	7) then

16: SIS(nSynitemSets). ss = synSupp;

17: SIS(nSynitemSets). itemset = IS(i).itemset;

18: end if

19: update i by j;

20: increase nSynitemSets by 1;

21: go to line 5;

22: end if

23: initialize synthesized association to 6 for each itemset in SIS;

24: for j = 1 to nSynitemSets do

25: if (ISIS(nSynitemSets). itemsetl?.. 2) then

26: SIS(nSynItemSets).sa =A 2(SIS(nSynItemSets).itemset, D) using formula (2.4.6);

27: end if

28: end for

end procedure

We sort itemsets of IS, so that processing of itemsets becomes easier. We find total

number of transactions in different databases into variable totalTransactions. The vari-

Chapter 2.4 	Clustering frequent items in multiple databases 	2.74

ables nSynitemSets and i keep track of the number synthesized itemsets and the current

itemset of IS, respectively. The algorithm segment in lines 5 - 22 is repeated N times. An

itemset gets processed at each iteration. An itemset occurs maximum n times. Thus, the

while-loop in lines 7-13 repeats maximum n times. The variable count keeps track of

number of times an itemset is extracted. Based on variable count one could determine

whether an itemset is highly extracted. If an itemset is highly extracted then we store the

details into array SIS and increase nSynitemSets by 1. We update variable i by j for

processing the next itemset. We go back to line 5 for processing the next itemset. Using

lines 24-28, we calculate synthesized association using formula (2.4.6), for each

synthesized itemset of size greater than 1. In the next paragraph, we determine the time

complexity of above algorithm.

Line 1 takes 0(N) time, since there are N itemsets in n databases. Line 2 takes 0(N x

log(N)) time to sort N itemsets. Line 3 takes 0(n) time, since there are n databases. The

while-loop at line 7 repeats maximum n times. The if-statement at line 5 repeats N times.

Thus, time complexity of program segment in lines 5-22 is 0(n x /V). Line 23 takes 0(N)

time. Let the average size of a class be p. The time complexity for searching an itemset in

IS is 0(N). The time-complexity for computing association of an itemset is 0(N x p2),

and hence, the time complexity of program segment in lines 24-28 is 0(N 2 x p2) time.

Thus, the time complexity of procedure SynthesizeAssociation is equal to maximum

{0(N2 x p2), 0(N x log(N)), 0(n x N)} = 0(N2 x p2), since N> log(/V), and N> n.

2.4.5 Clustering of frequent items

Existing technique [83] for clustering multiple databases works as follows. A measure of

similarity between two databases is proposed. Let there are m databases to be clustered.

Then the similarities for "'Ca pairs of databases are computed. Based on a level of

similarity, the databases are clustered into different classes. For the purpose of clustering

databases, the following measure of similarity between two databases has been proposed

[83].

Chapter 2.4 	Clustering frequent items in multiple databases 	2.75

sim2(DI, D2)=
I(DI)n ./(D2)

(2.4.7)
I(DI)UI(D2)

In the context of similarity between two items in a database, we have observed in

Corollary 2.4.1 that a measure sim2 could be obtained from similarity measure A2, for X =

{xi , x2}. It could also be used to cluster frequent items in a database. In the following

example, we shall show that association among items of an itemset could not be

determined accurately using this approach. In particular, association among items of {a,

b, c} could not be correctly estimated by associations among items of {a, b}, {a, c}, and

{b, O. We explain this issue in Example 2.4.2.

Example 2.4.2. Let D5 = { {a, b, c, d}, {a, b, c, e}, {a, b, 	{a, e,f {b, c, e}, {d, e, g},

{d, f, g}, {e, f, g}, {e, f, h}, {g, h, 	}. Also, let a be 0.2. The supports of relevant

frequent itemsets are given as follows. S({a}, D 5) = 0.4, S({b}, D5) = 0.4, S({c}, D5) =

0.3, S({a, b}, D 5) = 0.3, S({a, c}, D5) = 0.2, S({b, c}, D5) = 0.3, S({a, b, c}, D5) = 0.2.

Now, sim 2({a, b}, D 5) = 0
. 6 , sim2({a, c}, D5) = 0.4, sim2 ({b, c}, D5) = 0.75. Using sim2,

the items a, b, and c could be put in the same class at the level of similarity 0.4, i.e.,

minimum {0.6, 0.4, 0.75}. Using A2, we have A2({a, b, c}, D 5) = 0.66667. Thus, the items

a, b, and c could be put in the same class at the level 0.66667. We observe that the subset

of transactions { {a, b, c, d}, {a, b, c, e}, {a, b, 	{a, e, 	{h, c, e}} of D i results in the

amount of association among a, b, and c. Two out of five transactions contain two items

of {a, b, c}. Two out of five transactions contain all the items of {a, b, O. The more

items of {a, b, c} occur together, higher is the association among items of {a, b, c}. Thus,

we observe that the amount of association among the items of {a, b, c} is close to

0.66667 rather than 0.4. Thus, we fail to measure association correctly among the items

of {a, b, c} based on the similarities between items of {a, b}, {a, c), and {b, c}. o

The above example shows that the existing clustering technique might cluster a set of

frequent items with low accuracy. Thus, we have the following observation.

Observation 2.4.1. Let X = {xi, x2, ..., x m } be an itemset in database D. The existing

clustering technique [83] puts items of X in a class at the level of association minimum

Chapter 2.4 	Clustering frequent items in multiple databases 	2.76

{sim2(x„ 	D): 1 	i < j m}. The proposed clustering technique puts items of X in a

class at the level of association A2({xj, x2, ..., 	D). •

A clustering of items results in a set of classes of items. A class of frequent items over

FI(l, n, a) could be defined as follows.

Definition 2.4.2. A class class° formed at a level of association g under the measure of

association A2 over FI(1, n, a) in database D is defined as X c FI(1, n, a) such that A2(X,

D) 8, and one of the following conditions is satisfied: (i) XE SHEIS(1, n, a, y), for X >

2, and (ii) XE FI(l, n, a), for X = 1. •

Definition 2.4.3 enables us to define a clustering of frequent items over FI(1, n, a) as

follows.

Definition 2.4.3. Let 	be a clustering of frequent items over FI(1, n, a) at level of

association 8 under the measure of association A2. Then, 7t5 = {X: X is a class of type

class's over FI(1, n, a) } . •

We symbolize the i-th class of 7, as CL 6:a , for i = 1, 2, ..., It A clustering may not

include all the frequent items in local databases. One might be interested in clustering of

all frequent items under consideration. A complete clustering of frequent items over FI(1,

n, a) is defined as follows.

Definition 2.4.4. A clustering 7, = {Cr a, Ce•a, 	CE„,a is complete, if U71 1 	=

FI(1, n, a), where CL'" is a class of type classg over FI(1, n, a), for i = 1, 2, ..., m. •

Two classes in a clustering might not be mutually exclusive. One might be interested in

finding out a mutually exclusive clustering. A mutually exclusive clustering over FI(1, n,

a) could be defined as follows.

Definition 2.4.5. A clustering tin 	 CL„; a} is mutually exclusive if

CL°,'a n 	= 0, CE,' and CV"' are classes of type c/assa over FI(1, n, a), for i #j,

j= 1, 2, ..., m. •

Chapter 2.4 	Clustering frequent items in multiple databases 	2.77

We are interested in finding out such a mutually exclusive and complete clustering. In

fact, we are interested in finding the best non-trivial partition of frequent items. First, we

define a partition of frequent items as follows.

Definition 2.4.6. A complete and mutually exclusive clustering is called a partition. •

A clustering is not necessarily be a partition. In most of the cases, a trivial partition might

not be interesting to us. We define a non-trivial partition of frequent items as follows.

Definition 2.4.7. A partition iris non-trivial if 1 < I < n. •

A partition is based on SHEISs and associations among items in these itemsets. For this

purpose, we need to synthesize association among items of every SHEIS of size greater

than 1. We define synthesized association among items of a SHEIS as follows.

Definition 2.4.8. Let there are n different databases. Let X E SHEIS(D) such that X 2.

Synthesized association among the items of X is obtained by formula (2.4.19), denoted by

SA(X, D I a, y) . •

To find goodness of a partition, we need to measure dispersion among items of a 2-item

SHEIS. We define synthesized dispersion SD of an itemset of size 2 as follows.

Definition 2.4.9. Let there are n different databases. Let X E SHEIS(D) such that X = 2.

Synthesized dispersion SD among items of X is given by SD(X, D I a, y) = 1 - SA(X, D

a). • (2.4.8)

We calculate synthesized associations corresponding to all SHEISs of size greater than 1.

In Example 2.4.3, we calculate SAs of itemsets in SHEIS(D).

Example 2.4.3. We continue here the discussion of Example 2.4.1. Synthesized

associations among items of relevant SHEISs are given as follows: SA({a, b} , D) =

0.77798, SA({c, d} , D) = 0.79872. We arrange SHEISs of size greater than one in non-

increasing order on synthesized association. The arranged SHEISs are given as follows:

{c, d}, {a, b} . Also, FI ((1, n, a)) = {a, b, c, d, g} . There exist two non-trivial partitions.

They are given as follows: 7P.79872 = { {a} ,{b} , {g}, {c, d}} , and RD 777" = {g }, {a, b},

{ c, 	1. •

Chapter 2.4 	Clustering frequent items in multiple databases 	2.78

A frequent but not highly extracted item forms a singleton class. In above partitions, g is

an example of such item.

2.4.5.1 Finding the best non-trivial partition

In Example 2.4.3, we observe the existence of two non-trivial partitions. At the levels of

association 0.79872 and 0.77798, we get two non-trivial partitions. We would like to find

the best partition among available non-trivial partitions. The best partition is based on the

principle of maximizing the intra-class association and maximizing inter-class dispersion.

Intra-class association and inter-class dispersion are defined as follows.

Definition 2.4.10. The intra-class association of a partition it at the level of association S

under the measure of synthesized association SA is defined as follows.

intra — class associatio n(e) = 	SA(C I a, y) .• 	 (2.4.9)
CErz,

Definition 2.4.11. The inter-class dispersion of a partition 7r at the level of association S

under the measure of synthesized dispersion SD is defined as follows.

inter — class dispersion(e) = 	 SD ({a, I a, y) . • 	 (2.4.10)
c,„c, 	q aec,„bEcq ,{a,b}EsHEis

We would like to define goodness measure of a partition for the purpose of finding the

best partition among available non-trivial partitions. We define goodness measure of a

partition as follows.

Definition 2.4.12. goodness 	= intra- class association 	+ inter-class

dispersion(- g 5̀1.• (2.4.11)

Better partition is obtained at higher goodness value. In Example 2.4.4, we calculate the

goodness values of partitions obtained in Example 2.4.3.

Example 2.4.4. For the first partition, we get intra-class association (710 79872s =) 0.79872,

inter-class dispersion (170.79872.) = 0.22202, and 	goodness (270.79872.) = 1.02074. For the

second partition, we get intra-class association (.77798) = 1.57670, inter-class dispersion

1

Chapter 2.4 	Clustering frequent items in multiple databases 	2.79

(1 . 77798) = 0.0, and 	goodness (i) 77798) = 1.57670. The goodness value of the second

partition is more than that of the first partition. Thus, the best non trivial partition of FI(1,

n, a) is { {a, b}, {c, d}, {g} }, and obtained at level 0.77798. •

Let us look back at the databases in Example 2.4.1. In most of the transactions, whenever

one item of {a, b) is there, then other item is also present. Also, items c and d appear

together in most of the cases in a transaction. Thus, we find that partition 71 9 77798 matches

the ground reality better than partition 7? 79872 and the output of clustering is consistent

with the transactions in the databases. It validates the clustering technique presented in

this chapter. In the following lemma, we provide a set of necessary and sufficient

conditions for the existence of a non-trivial partition.

Lemma 2.4.6. Let there are n different databases. There exits a non-trivial partition of

FI(1, n, a) if and only if there exists an itemset XESHEIS(1, n, a, y) such that (i) 2,

and (ii) SA(Y, D) SA(Z D), for all Y, Z E SHEIS(1, n, o y), and In IZI ?_ 2.

Proof. We sort SHEISs in non-increasing order on synthesized association. Let SA(M, D)

= maximum {SA(X, D): X e HEIS(1, n, a, 7), and X 2 } . Before the itemset M, there

does not exist any SHEIS. Thus, itemset M is trivially mutually exclusive with the

previous SHEISs. Due to condition (ii), there exists a partition at the level SA(M, D). In

addition, the partition is non-trivial due to condition (i). This non-trivial partition contains

a single class M such that IM 2. The remaining classes of this partition are singleton. •

At two different levels of association 61, and 62 (# 61), we may get the same partition.

Definition 2.4.13. Let C c FI(1, n, a), and C # 0. Two partitions 7z- 5̀1 and r'5 are the

same if the following statement is true: CE 7z -8' if and only if CE 71' 82 , for 61 # 62.

There are 2 151 elements in the power set of S. Also, there are two trivial partitions for a

non-null set. Thus, the number of distinct non-trivial partitions of a non-null set is always

less than or equal to 2I si - 2, for a non-null set S. In Lemma 2.4.7, we find the upper bound

of number of non-trivial partitions.

Chapter 2.4 	Clustering frequent items in multiple databases 	2.80

Lemma 2.4.7. Let there are n different databases. Then the number of distinct non-

trivial partitions is less than or equal to I{X: IX ?_ 2 and XE SHEIS(D)}I. Equality holds

if and only if the following conditions are true.

(i) There does not exist a XE SHEIS(D), for IX 3.

(ii) yn z = 0, for all Y, Z E SHEIS(D), and In izi 2.

(iii) SA(Y, D) #SA(Z D), for all Y, Z E SHEIS(D), and I Fl, IZI 2.

Proof. We arrange SHEISs in non-increasing order based on synthesized association, for

all SHEIS of size greater than 1. Let the arranged SHEISs be XI, X2, 	for integer m

1. There exists a partition at SA(X/), if conditions (ii) and (iii) are satisfied at Y= XI (as

mentioned in Lemma 2.4.6). In general, there exists another partition at SA(Xk, D), if

conditions (ii) and (iii) are satisfied for Xl, X2, ..., Xl c-i. If X is a SHEIS then Y c X is also

a SHEIS, for Y 0. Two partitions could not exist at levels SA(X, D) and SA(Y, D), since

Y c X. Thus, condition (i) is necessary at the equality. The lemma follows. •

Corollary 2.4.3. Let there are n different databases. The set of all non-trivial partitions

of FI(1,n, a) is {7t511(X D) : X E SHEIS(D), > 2, and ?Pi" exists}. •

Based on Observation 2.4.1 and Corollary 2.4.3, one could obtain the difference in

similarity between the proposed clustering technique and the existing technique as

follows.

Definition 2.4.14. Let A- be clustering of FI(1, n, a) at level 8 Let X = {xi, x2, ..., x m } E

SHEIS (D) such that 8= SA(X, D), for X 2. The difference in similarity using measure

A2 is given by DS(X, D) = A2({x1, x2, ..., , D) - minimum{sim2(x„ D) : 1 < i < j

m}. • (2.4. 1 2)

Using Algorithm 2.4.1, we obtain the synthesized association of each SHEIS of size

greater than 1. We use this information for finding the best non-trivial partition of

frequent items in multiple databases.

Chapter 2.4 	Clustering frequent items in multiple databases 	2.81

Algorithm 2.4.2. Best non-trivial partition (if it exists) of frequent items in multiple

databases.

procedure BestPartition (m, S)

Input:

m: number of SHEISs of size greater than 1

S: array of SHEISs of size greater than 1

Output:

Best non-trivial partition (if it exists) of frequent items in multiple databases

1: arrange the elements of S in non-increasing order on synthesized association;

2: let S(m +1) = 0; let SA(S(m +1), D) = 0;

3: if (m = 1) then

4: form a class using items in S(1);

5: for each item in (FI(1, n, a) — S(1)) do

6: form a singleton class;

7: end for

8: a partition is formed at level SA(S(1), D);

9: return the partition;

10: end if

11: let temp = 0; let mExclusion = 0;

12: for i = 1 to m do

13: if (temp n s(i)# 0) then mExclusion = 1; end if

14: if ((mExclusion = 0) and (SA(S(i), D) # SA(S(i +1), D))) then

15: for j = 1 to i do

16: items in S(j) form a class;

l 7: 	temp = temp U S(j);

18: end for

19: for each item in (FI(1, n, a) — temp) do

20: form a singleton class;

Chapter 2.4 	Clustering frequent items in multiple databases 	2.82

21: end for

22: store the classes formed and the level of partition as SA(S(i), D);

23: else if (mExclusion = 1) then go to line 26; end if

24: end if

25: end for

26: return the partition having maximum goodness;

end procedure

If m is equal to 1 then we have only one non-trivial partition. All the items of SHEIS form

a class and each of the remaining frequent items forms a singleton class. The partition is

formed at the level of synthesized association among items in SHEIS. The variable temp

accumulates all the items in previous SHEISs. The variable mExclusion is used to check

the mutually exclusiveness among the current SHEIS and all the previous SHEISs. Also,

we need to check another condition whether the synthesized association of current SHEIS

different than the synthesized association among items of the next SHEIS. The conditions

for existence of a partition are checked at line 14. If a partition exists at the current level

then the items in each of the previous SHEISs form a class. Each of the remaining items

forms a singleton class. If the current SHEIS is not mutually exclusive with each of the

previous SHEISs of S then no more partition exists. Some more useful explanations are

given in Lemma 2.4.8.

Line 1 takes O(mxlog(m)) time. The for-loop at line 5 takes 0(1F/1) time. The for-loop

at line 12 repeats m times. Let the average size of a class be p. The for-loop at line 15

takes O(m x p) time. The for-loop at line 19 takes OW) time. Each of the statements at

line 13 and 17 takes 0(p x IF/1) time for a single execution of line 11. Thus, the time

complexity of the program segment lines 15-18 is O(m x p x IF/D, for each iteration of

for-loop at line 12. Also, the for-loop at 19 takes O(IFM) time. Thus, the time complexity

of program segment 12-25 is O(m 2 x p x IFID. Therefore, the time complexity of

algorithm BestPartition is O(m2 x p x

Chapter 2.4 	Clustering frequent items in multiple databases 	2.83

Lemma 2.4.8. Algorithm BestPartition works correctly.

Proof: We arrange SHEISs of size greater than one in non-increasing order on

synthesized association. Existence of only one SHEIS of size greater than one implies the

existence of only one non-trivial partition (as mentioned in Lemma 2.4.6). By default, it

will be the best non-trivial partition.

Let there are m SHEISs of size greater than one, for an integer m 2. Let the arranged

SHEISs be Xi, X2, ..., X m . Then we need to check for the existence of partitions only at

levels SA(X„ D), for i = 1, 2, ..., m (as mentioned in Corollary 2.4.3). So, we have used

a for loop at line 12 to check for partitions at m discrete levels SA(X,, D), for i = 1, 2, ...,

m. At the j-th iteration of for-loop at line 12, we check the mutually exclusiveness of the

itemset Xj with itemset Xk, for k = 1, 2, ..., j -1. If each of X ,X2, ..., and Xj_ i is mutually

exclusive with X1 and SA(Xj, D) = SA(Xj+i, D) then the current partition is not recorded.

♦ At this point, we are not sure whether X +1 is mutually exclusive with Xk, for k = 1, 2, ...,

j. At the next iteration for i = j +1, the partition is recorded (if it exists) and it contains the

itemsets X1, X2, ..., X J4-1 as classes and each of the remaining frequent items forms a

singleton class, provided SA(Xj+i, D) > SA(XJ+2, D) . At the j-th iteration of for-loop at

line 12, if each of X1, X2, ..., and Xj_ i is not mutually exclusive with X then no more

partition exists. Thus, the algorithm works correctly. •

2.4.5.2 Analysis of error

To evaluate our proposed clustering technique we have measured the amount of error

occurred in an experiment. The clustering is based on SHEISs extracted from D„ for i =1,

2, ..., n. Let the number of SHEISs be m. Supports of all SHEISs have been synthesized

during the clustering process. There are several ways one could define error of an

experiment. We have defined following two types of error of an experiment.

Average Error: AE(D, a, y) = 1:n-1 I S'S (X/ D) - S(X D)I 	 (2.4.13)

Maximum Error: ME(D, a, 7)= maximum{1SS (X D) - S(X 1 , D)I, for i =1, 2, ..., m (2.4.14)

Chapter 2.4 	Clustering frequent items in multiple databases 	2.84

Notations SS(X, D) and S(X, D) denote synthesized support and (apriori) support of X in

D. Error of an experiment is relative to the number of transactions, number of items, and

the length of a transaction in local databases. Thus, the error of the experiment needs to

be expressed along with the average number of transactions (ANT), average number of

items (ANI), and the average length of a transaction (ALT) in D.

2.4.6 Experimental results

We have carried out several experiments to study the effectiveness of our approach. All

the experiments have been implemented on a 2.8 GHz Pentium D dual processor with

512 MB of memory using visual C++ (version 6.0) software. We present the

experimental results using three real databases. The database retail [34] is obtained from

an anonymous Belgian retail supermarket store. The database mushroom is also available

in [34]. The database ecoli is a subset of ecoli database [77] and has been processed for

the purpose of conducting experiments. For this purpose, we have omitted non-numeric

fields of ecoli database. We present some characteristics of these databases in Table

2.4.1.

Table 2.4.1. Database characteristics

Database (DB) N T ALT AFI NI

retail 88,162 11.305755 99.673800 10,000

mushroom 8,124 24.000000 1624.800000 120

ecoli 336 7.000000 25.565217 92

Let NT, ALT, AFI, and NI denote the number of transactions, average length of a

transaction, average frequency of an item and number of items in the data source,

respectively. Each of the above databases is divided into 10 databases for the purpose of

conducting experiments. The databases obtained from retail(R), mushroom(M) and

ecoli(E) are named as R„ M, and E„ respectively, for i = 0, 1, ..., 9. The databases R„ M,

Chapter 2.4 	Clustering frequent items in multiple databases 	2.85

and E, are called input databases, for i = 0, 1, ..., 9. Some characteristics of these input

databases are presented in Table 2.4.2. We have carried out several experiments to study

the effectiveness of our approach for clustering the frequent items. We present results of

the experiments based on the above databases. We observe that a partition of frequent

items might not exist for some combination of input databases, a, and 7.

2.4.6.1 Overall output

(a) For experiment with retail: The set of frequent items in different databases are given

as follows: FI(0, 9, 0.1) = {0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {32}, {38},

{39}, 1411, {48}). SHEISs of size greater than 1 along with their synthesized

associations are given as follows: {39, 48} (0.443690), {39, 41, 48} (0.393977), {39, 41}

(0.263936), {41, 48} (0.251072), {38, 39} (0.181348). The best non-trivial partition is

given as follows: ;z i3 44369 = {{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {32}, {38},

{41}, {39, 48}}.

(b) For experiment with mushroom: The set of frequent items in different databases are

given as follows : FI(0, 9, 0.5) = {{1}, {2}, {3}, {6}, {7}, {9}, {10}, {11}, {23}, {24),

{28}, {29}, {34}, {36}, {37}, {38}, {39}, {48}, {52}, {53}, {54}, {56}, {58 }, {59},

{61}, {63}, {66}, {67}, {76}, {85}, {86}, {90}, {93}, {94}, {95}, {99}, {101}, {102 },

{110}, {114}, {116}, {117}, {119} }. Top 10 SHEISs of size greater than 1 along with

their synthesized associations are given as follows: {34, 90} (0.999957), {34, 86}

(0.999458), {34, 85} (0.995638), {34, 36, 85} (0.989711), {34, 36, 90} (0.987932), {34,

85, 90} (0.980130), {34, 36, 86} (0.977787), {34, 86, 90) (0.977439), {34, 85, 86)

(0.968257), {85, 86) (0.962741).

Chapter 2.4 	Clustering frequent items in multiple databases 	2.86

4r-

Table 2.4.2. Input database characteristics

DB N T ALT AFI NI DB N T ALT AFI NI

R0 9000 11.24389 12.07001 8384 R5 9000 10.85578 16.70977 5847

R/ 9000 11.20922 12.26541 8225 R6 9000 11.20011 17.41552 5788

R2 9000 11.33667 14.59657 6990 R7 9000 11.15511 17.34554 5788

R3 9000 11.48978 16.66259 6206 R8 9000 11.99711 18.69032 5777

R4 9000 10.95678 16.03953 6148 R9 7162 11.69199 15.34787 5456

812 24.00000 295.27272 66 M5 812 24.00000 221.45454 88

MI 812 24.00000 286.58823 68 M6 812 24.00000 216.53333 90

M2 812 24.00000 249.84615 78 812 24.00000 191.05882 102

M3 812 24.00000 282.43478 69 M8 812 24.00000 229.27058 85

M4 812 24.00000 259.84000 75 M9 816 24.00000 227.72093 86

E0 33 7.00000 4.62000 50 E5 33 7.00000 3.91525 59

El 33 7.00000 5.13333 45 E6 33 7.00000 3.50000 66

E2 33 7.00000 5.50000 42 E7 33 7.00000 3.91525 59

E3 33 7.00000 4.81250 48 E8 33 7.00000 3.39706 68

E4 33 7.00000 3.39706 68 E9 39 7.000000 4.55000 60

The transactions in different databases are highly similar, in the sense that two

transactions in a database have many common items. The best non-trivial partition is

given as follows. Ir° 999957 = {{1}, {2}, {3}, {6}, {7}, {9}, {10}, {11}, {23}, {24}, {28},

{29}, {36}, {37}, {38}, {39}, {48}, {52}, {53}, {54}, {56}, {58 }, {59}, {61 }, {63},

{66}, {67}, {76}, {85}, {86}, {93}, {94}, {95}, {99}, {101 }, {102 }, 	{110}, {114},

{116}, {117}, {119}, {34,90}).

(c) For experiment with ecoli: The frequent items in different databases are given as

follows. F/(0, 9, 0.1) = {{0}, {20}, {23}, {24}, {25}, {26}, {27}, {28), {29}, {30},

{31}, {32}, {33}, {34}, {35}, {36}, {37}, 	{38}, {39}, {40}, {41}, {42}, {43}, {44},

Chapter 2.4 Clustering frequent items in multiple databases 2.87

{45}, {46}, {47}, {48}, {49}, {50}, {51}, {52}, {54}, {56}, {57}, {58}, {59}, {61},

{63}, {64}, {65}, {66}, {67}, {68}, {69}, {70}, {71}, {72}, {73}, {74}, {75}, {76},

{77}, {78}, {79}, {80}, {81}, {92}, {100}}. Top 10 SHEISs of size greater than 1 along

with their synthesized associations are given as follows. {48, 50}(0.803571), {37, 48,

50}(0.232143), {48, 50, 52}(0.229167), {40, 48, 50}(0.226190), {44, 48, 50}(0.226190),

{46, 48, 50}(0.193452), {37, 48}(0.190476), {44, 50}(0.190476), {48, 50,

51}(0.190476), {40, 48}(0.184524). The best non-trivial partition is given as follows.
;To 803571 = {{0}, {20}, {23 }, {24}, {25 }, {26}, {27}, {28}, {29}, {30}, {31}, {32}, {33},

{34}, {35}, {36}, {37}, {38), {39}, {40}, {41 }, {42}, {43}, {44}, {45 }, {46}, {47},

{49}, {51}, {52}, {54}, {56}, {57}, {58}, {59}, {61}, {63}, {64}, {65 }, {66}, {67},

{68}, {69}, {70}, {71}, {72}, {73}, {74}, {75 }, {76}, {77}, {78}, {79}, {80}, {81},

{92}, {100}, {48, 50}1.

2.4.6.2 Synthesis of highly extracted itemsets

(a) For experiment with retail: In Table 2.4.3, we present errors in synthesizing HEISs.

HEISs {32}, {38}, {39}, {48}, {38, 39} and {39, 48} are extracted from every branch

database. Thus, the error in synthesizing support of each of the above HEISs is zero.

Table 2.4.3. Error in synthesizing supports of HEISs at cc = 0.1 and y = 0.6

HEIS

X

ISS(X, R)

— SR (X, R)I

HEIS

X

ISS(X, R)

— S(X, R)I

HEIS

X

ISS(X, R)

— S(X, R)i
HEIS X

ISS(X, R)

— S(X, R)i

{0} 0.002925 {5} 0.001948 {32} 0.000000 {38, 39} 0.000000

{1} 0.002064 {6} 0.001949 {38} 0.000000 {39, 41} 0.003616

{2} 0.001945 {7} 0.002006 {39} 0.000000 {39, 48} 0.000000

{3} 0.002030 {8} 0.002016 {41} 0.003470 {41, 48} 0.003721

{4} 0.002034 {9} 0.001654 {48} 0.000000 {39, 41, 48} 0.003781

Chapter 2.4 	Clustering frequent items in multiple databases 	2.88

(b) For experiment with mushroom: The transactions in local databases are highly

similar, in the sense that two transactions in a database have many common items. Thus,

we get many frequent itemsets in local databases even at a high value of a. The errors in

synthesizing some HEISs are presented in Table 2.4.4.

Table 2.4.4. Error in synthesizing supports of selected HEISs at a = 0.5 and y= 0.7

(top 15)

HEIS X
ISS(X, 11/1)

- s(x, A4) I
HEIS X

Iss(x, Al)

- s(x, A4)1
HEIS X

ISS(X, M)

- s(x, A4)I
{24, 85} 0.003304 {85, 90} 0.001278 {34, 39} 0.0010866

{24, 86} 0.003282 {53} 0.001207 {67} 0.001049

{24, 90} 0.002204 {53, 90} 0.001107 {34, 67} 0.001049

{85,86} 0.001295 {53, 85} 0.001107 {39} 0.001081

{86,90} 0.001290 {53, 86} 0.001007 {34, 90} 0.001098

(c) For experiment with ecoli: For the local databases generated from ecoli, the average

size of databases, the average length of transactions in different databases are smaller.

Thus, the error of synthesizing a HEIS is comparatively higher. The errors in synthesizing

some HEISs are presented in Table 2.4.5.

Chapter 2.4 	Clustering frequent items in multiple databases 	2.89

Table 2.4.5. Error in synthesizing supports of selected HEISs at a = 0.1 and y= 0.6

(top 15)

HEIS X
ISS(X, E)

- S(X, E)I
HEIS X

1SS(X, E)

- S(X, E)I
HEIS X

ISS(X, E)

- S(X, E)I

{48,50, 51} 0.003695 {44} 0.002381 {48, 51} 0.001488

{46,48, 50} 0.003471 {46, 48} 0.002380 {37} 0.001390

{40,48, 50} 0.003273 {44, 48, 50} 0.002083 {52} 0.001387

{37,48, 50} 0.002976 {48, 50, 52} 0.001785 {40, 50} 0.001291

{50, 51} 0.002381 {40} 0.001785 {50, 52} 0.001261

2.4.7.3 Error of the experiment

The errors of different experiments are presented in Table 2.4.6. If the average number of

transactions in different databases increases then the average error of synthesizing HEISs

is likely to decrease, provided other two parameters remain constant. If the average

length of transactions in different databases increases then the average error of

synthesizing HEISs is likely to increase, provided other two parameters remain constant.

Lastly, if the average number of items in different databases increases then the error of

synthesizing HEISs is likely to decrease, provided other two parameters remain constant.

Table 2.4.6. Error of the experiments

DB a y
AE

(ANT, ALT, ANI)

ME

(ANT, ALT, ANI)

6 R,
,..o

0.1 0.7
0.00120

(8816.2, 11.30576, 5882.1)

0.00293

(8816.2, 11.30576, 5882.1)

0 m, -0
0.5 0.7

0.00125

(812.4, 24.00000, 80.7)

0.003304

(812.4, 24.00000, 80.7)

6 E,
1.0

0.5 0.7
0.00133

(33.6, 7.00000, 56.5)

0.00370

(33.6, 7.00000, 56.5)

Chapter 2.4 	Clustering frequent items in multiple databases 	2.90

2.4.7.4 Average error versus y

We have conducted experiments to study the behaviour of AE over different ys. In

general, we find that AE decreases as y increases. The purpose of the experiment would

be lost if we keep y at a high value, since the number of HEISs also decreases as y

increases. Thus, a decision based on HEISs would have low validity at a high value of y.

In Figures 2.4.1, 2.4.2 and 2.4.3, we present graphs of AE versus y for three experiments.

From the figures presented below, we find that the value of y around 0.7 would have been

a good choice for clustering frequent items in different databases.

Figure 2.4.1. AE versus y at a= 0.1 (retail)

Figure 2.4.2. AE versus y at a= 0.5 (mushroom)

0.008

0.004

0
0.4

0.5 	0.6 	0.7 	0.8
	

0.9

Gamma

♦ 	

Alpha

0.0025
0.002

0.0015
0.001

0.0005
0

Chapter 2.4 	Clustering frequent items in multiple databases 	2.91

Figure 2.4.3. AE versus yat a= 0.1 (ecoli)

2.4.7.5 Average error versus a

We have also conducted experiments to study the behaviour of AE over different as. In

general, we find that AE increases as a increases. As a increases, the more number of

databases would fail to extract an itemset. Thus, the error of synthesizing an itemset is

likely to increase as a increases. In Figures 2.4.4, 2.4.5 and 2.4.6, we present graphs of

AE versus a for three experiments.

Figure 2.4.4. AE versus a at y= 0.7 (retail)

Figure 2.4.5. AE versus a at y= 0.7 (mushroom)

Chapter 2.4 	Clustering frequent items in multiple databases 	2.92

Figure 2.4.6. AE versus a at y= 0.7 (ecoli)

2.4.7.6 Clustering time versus number of databases

We have also studied the behaviour of clustering time required over the number of

databases used in an experiment. As the number of databases increases, the number of

frequent itemsets also increases. In general, we find that clustering time increases as the

number of databases increases. In Figures 2.4.7, 2.4.8 and 2.4.9, we present graphs of

clustering time versus number of databases for three experiments.

Number of databases

Figure 2.4.7. Clustering time versus number of databases at a= 0.1 and 7= 0.7 (retail)

50

--.- 40

`',1 30

°4 20

10

0

4 	5 	6 	7 	8 	9 	10

Number of databases

Chapter 2.4 	Clustering frequent items in multiple databases 	2.93

Figure 2.4.8. Clustering time versus number of databases at a= 0.5 and y= 0.7

(mushroom)

2.5

2

N 1.5

;)

0.5

0

4 5 6 7 8 9 10

Number of databases

Figure 2.4.9. Clustering time versus number of databases at a= 0.5 and 7= 0.7 (ecoli)

2.4.7.7 Comparison with existing technique

The proposed clustering technique is likely to enhance the accuracy of clustering process,

if the clustering is performed at a level 6 such that 6 is a synthesized association of a class

containing more than 2 frequent items. In each of the Tables 2.4.7, 2.4.8 and 2.4.9, we

present an example of clustering that achieves higher level of accuracy.

Table 2.4.7. A sample clustering of frequent items in multiple databases (retail)

8 (existing 8 (proposed
a y Clustering

approach) approach)
DS

0.1 0.7
{{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7},

0.251072 0.393977 0.142905
{8}, {9}, {32}, {38, 39}, {39, 41, 48}1

tS

Chapter 2.4 	Clustering frequent items in multiple databases 	2.94

Table 2.4.8. A sample clustering of frequent items in multiple databases (mushroom)

a 7 clustering
8(existing

approach)

8 (proposed

approach)
DS

{{l}, {2}, {3}, {6}, {7), {9), {10), {11},

{23}, {24}, {28}, {29), {37}, {38}, {39},

{48}, {52}, {53}, {54}, {56}, {58 }, {59),

0.5 0.7 {61), {63), {66}, {67}, {76}, {86), {90), 0.842935 0.989711 0.146776

{93), {94), {95), {99}, {101}, {102 },

{110), {114), {116), {117), {119}, {34,

90}, {34, 86}, {34, 36, 85) }

Table 2.4.9. A sample clustering of frequent items in multiple databases (ecoli)

a y clustering
5 (existing

approach)

8 (proposed

approach)
DS

{{0), {20), {23), {24), {25}, {26},

{27}, {28), {29}, {30), {31), {32},

{33), {34), {35}, {36}, {38), {39},

{40), {41}, {42}, {43}, {44}, {45),

{46}, {47}, {49}, {51}, {52}, {54},
0.1 0.7 0.178571 0.232143 0.053572

{56}, {57}, {58), {59), {61), {63),

{64}, {65), {66}, {67), {68}, {69},

{70}, {71), {72}, {73), {74}, {75),

{76), {77), {78}, {79}, {80}, {81),

{92}, {100), {37, 48, 50}1

Chapter 2.4 	Clustering frequent items in multiple databases 	2.95

2.4.8 Conclusion

Clustering relevant objects is an important task of many decision support systems. We

have observed that existing clustering technique might cluster frequent items in multiple

databases with low accuracy. We propose a new technique for clustering frequent items

in multiple databases. It clusters frequent items in multiple databases with higher degree

of accuracy.

The main problem with existing clustering technique is that it might not be able to

estimate similarity among items in a class with high accuracy. Thus, it might fail to

cluster frequent items with higher accuracy level. The experimental results show that the

proposed clustering technique is effective and promising.

2.96

Chapter 2.5

Conclusion

Recognizing patterns in multiple databases is an important theme of activities. Many

important decisions could be based on analysis of patterns in multiple databases. In Part

2, we have dealt with the following patterns in multiple databases: exceptional frequent

itemset, heavy association rule, exceptional association rule, high-frequent association

rule, and clustering items in multiple databases.

In Chapter 2.2, we have identified the shortcomings of existing concept of global

exceptional pattern and proposed a definition of a global exceptional frequent itemset.

We have designed an algorithm to identify global exceptional patterns in multiple

databases. Also, we have introduced the notion of exceptional sources for a global

exceptional frequent itemset. The proposed algorithm identifies global exceptional

frequent itemsets and their exceptional sources in multiple databases.

In Chapter 2.3, we present an algorithm for synthesizing three important patterns in

multiple databases viz., heavy association rule, high-frequent association rule, and

exceptional association rule. It also provides a better solution for synthesizing high-

frequent association rules in multiple databases.

In Chapter 2.4, we propose a new technique of clustering frequent items in multiple

databases. It clusters frequent items in multiple databases with higher degree of accuracy

as compared to the existing approaches. The main problem with an existing clustering

technique is that it might not be able to estimate similarity among items in a class

effectively. The experimental results show that the proposed clustering technique is

effective and promising.

3.1

Part 3

Developing better multi-database mining applications

3.2

Chapter 3.1

Introduction

The sole purpose of Part 3 is to develop better multi-databases mining applications. We

have discussed a number of strategies to enhance the efficiency of a multi-database

mining system. The efficiency of a multi-database mining application could be enhanced

by choosing an appropriate multi-database mining model, an appropriate pattern

synthesizing technique, a better pattern representation technique, and an efficient

algorithm for solving the problem. In Part 3, we have made the following contributions.

■ We propose a new technique, called pipelined feedback model (PFM), for mining

multiple databases.

■ We propose a technique, called antecedent consequent pair (ACP) coding, for

representing rulebases corresponding to different databases with space efficiency. It

enables us to incorporate more association rules for synthesizing global patterns or

decision-making activities.

■ We propose an index structure to access the coded association rules conveniently.

■ We prove that ACP coding represents rulebases using the least amount of storage

space in comparison to any other rulebase representation technique.

■ We propose a technique for storing rulebases corresponding to different databases in

the secondary storage.

■ We propose an algorithm for clustering frequent items in multiple databases based on

measure of association A2 and multi-database mining technique PFM.

■ A model of mining global patterns of select items in multiple databases is proposed.

■ A measure of overall association (OA), between two items in a database is proposed.

3.3

■ An algorithm is designed based on OA for the purpose of grouping frequent items in

multiple databases.

3.4

Chapter 3.2

Mining multiple large databases

Many large companies operate from a number of branches located at different

geographical regions. Each branch might collect data continuously and data get stored

locally. Thus, the collection of all branch databases might be large. Many decisions of a

multi-branch company are based on data stored over the branches. The challenges

involve in making good quality of decisions based on large volume of data distributed

over the branches. It creates not only risks but also opportunities. One of the risks might

be significant amount of investment on hardware and software to deal with multiple large

databases. Our objective is to provide good quality of knowledge by minimizing the

risks.

The first question comes to our mind whether a traditional data mining technique [13],

[39] could provide a good solution in dealing with multiple large databases. To apply a

traditional data mining technique one needs to amass all the branch databases together. A

traditional data mining technique might not provide a good solution due to the following

reasons.

■ The company might have to invest heavily on hardware and software to deal with a

large volume of data.

■ A single computer might take unreasonable amount of time to mine a huge amount of

data.

■ It might be difficult to identify local patterns if a traditional data mining technique is

applied on the entire database.

Thus, a traditional data mining technique might not be suitable in this situation. So, it is a

different problem. Hence, it is required to be dealt with in a different way. In this situa-

Chapter 3.2
	

Mining multiple large databases 	 3.5

tion local pattern analysis [91] could be a solution. Under this model of mining multiple

databases, each branch requires to mine its database using a traditional data mining

technique. Afterwards, each branch is required to forward the pattern base to the central

office. Then the central office would process the pattern bases collected from different

branches. Due to the following reason, the local pattern analysis alone might not be a

judicious choice for mining multiple large databases.

• A synthesized global pattern might differ considerably from true global patterns.

• The process of mining current database is independent of patterns extracted from the

previous databases.

For the purpose of mining multiple databases, one could apply partition algorithm (PA)

proposed by Savasere et al. [66]. The algorithm was designed to mine a very large

database by partitioning. The algorithm works as follows. It scans the database twice. The

database is divided into disjoint partitions, where each partition is small enough to fit in

memory. In a first scan, the algorithm reads each partition and computes locally frequent

itemsets in each partition using apriori algorithm [13]. In the second scan, the algorithm

counts the supports of all locally frequent itemsets toward the complete database. In this

case, each local database could be considered as a partition. Though partition algorithm

mines frequent itemsets exactly, it is an expensive solution to mining multiple large

databases, since each local database is required to scan twice.

There are two benefits of PFM. Firstly, it improves significantly the accuracy of

mining multiple large databases as compared to local pattern analysis. Secondly, it scans

each local database only once.

For mining multiple databases, there are three situations: (i) Each of the local

databases is small, so that a single database mining technique (SDMT) could mine the

union of all databases. (ii) At least one of the local databases is large, so that a SDMT

could mine every local database, but fail to mine the union of all local databases. (iii) At

least one of the local databases is very large, so that a SDMT fails to mine it. We face

Chapter 3.2
	

Mining multiple large databases 	 3.6

challenges to handle the cases (ii) and (iii). The challenges are posed to us due to large

size of some local databases.

A multi-database mining technique (MDMT) using local pattern analysis could be

viewed as a two-step process M+S, explained as follows.

■ Mine each local database using a SDMT by following a model M (Step 1)

■ Synthesize patterns using an algorithm S (Step 2)

We use notation MDMT: M+S to represent above multi-database mining technique. We

propose a MDMT that improves the quality of both synthesized patterns and analysis of

local patterns. Our algorithm could handle the cases (ii) and (iii) reasonably well, and it

requires mining each local database only once.

The rest of the chapter is organized as follows. We discuss related work and define the

problem in Section 3.2.2. We propose a model for mining multiple databases in Section

3.2.3. We define error of an experiment in Section 3.2.4. In Section 3.2.5, we provide

experimental results.

3.2.2 Problem definition

Consider a multi-branch company that operates from n branches. Let D, be the database

corresponding to the i-th branch, for i = 1, 2, ..., n. Let D be the union of all branch

databases. Before presenting the proposed model, we shall first study work related to this

issue.

3.2.2.1 Related work

In Section 2.4.2.1.2, we have provided a survey of existing multi-database mining

techniques.

Chapter 3.2 Mining multiple large databases 	 3.7

3.2.2.2 Our approach

We need to process local databases as they may not be at the right state for the mining

task. Various data preparation techniques [65] like data cleaning, data transformation,

data integration, and data reduction are applied to branch databases. We get processed

database corresponding to (original) local database. Then we keep all the data that are

relevant to data mining applications. Using a relevance analysis, one could detect outlier

data [51] and store in a separate storage. After removing outlier data from a processed

database we get desired data warehouse and the data in a data warehouse become ready

for the mining task. Let W, be the data warehouse corresponding to the i-th branch, for i =

1, 2, ..., n. Then the local patterns for the i-th branch are extracted from W„ for i = 1, 2,

n. We mine each data warehouse using a SDMT. In Figure 3.2.1, we present a new

model of mining multiple databases [8].

A single database '
 minmgtechpicfue

LPB,

A single database'
munng technique „

W,

A single database
miningtechnique

LPB,

Figure 3.2.1. Pipelined feedback model (PFM) of mining multiple databases

In PFM, W1 is mined using a SDMT and local pattern base LPB1 is extracted. While

mining W2, all the patterns in LPB1 are extracted irrespective of their values of

interestingness measures like, minimum support and minimum confidence. Apart from

these patterns, some new patterns that satisfy user-defined threshold values of

interestingness measures are also extracted. In general, while mining W„ all the patterns

in ff,_ i are mined irrespective of their values of interestingness measures, and some new

patterns that satisfy user-defined threshold values of interestingness measures, for i = 2,

3, ..., n. Due to this nature of mining each data warehouse, the technique is called a

feedback model. Thus, ILPB,_11 _11,P13,1, for i = 2, 3, ..., n. There are n! arrangements of

pipelining for n databases. All the arrangements of data warehouses might not produce

the same mining result. If the number of local patterns increases, we get more accurate

global patterns and a better analysis of local patterns. An arrangement of data warehouses

Chapter 3.2
	

Mining multiple large databases 	 3.8

would produce near optimal result if ILPB„I is a maximal. Let size(W,) be the size of W,

(in bytes), for i = 1, 2, ..., n. We shall follow the following rule of thumb regarding the

arrangements of data warehouses for the purpose of mining. The number of patterns in

W,_1 is greater than or equal to the number of patterns in W„ if size(14/,_1) size(W,), for i =

2, 3, ..., n. For the purpose of increasing number of local patterns, W,_, precedes W, in the

pipelined arrangement of mining data warehouses if size(. 1) size(W,), for i = 2, 3, ...,

n. Finally, we analyze the patterns in LPB1, LPB2, ..., and LPB, for synthesizing global

patterns, or analyzing local patterns.

For synthesizing global patterns in D we discuss here a simple pattern synthesizing

(SPS) algorithm. Without loss of generality, let the itemset X be extracted from first m

databases, for 1 m < n. Then synthesized support of X in D could be obtained as

follows.

suPP s (X 	= 	xE7_,[suPP „(X Di)xl D, i] (3.2.1)

3.2.3 Mining multiple databases

In this section, we present a new algorithm for mining multiple databases [8]. The

algorithm is based on the pipelined feedback model discussed in Section 3.2.2.

Algorithm 3.2.1. Mine multiple data warehouses using pipelined feedback model.

procedure PipelinedFeedbackModel (WI, W2, • • •,

Input: WI, W2, • • •, Wn

Output: local pattern bases

1: for i = 1 to n do

2: if W, does not fit in memory then

3: partition W, into W,, , W, 2 , ..., and W

4: else let W .,' = W,;

5: end if

6: end for

Chapter 3.2
	

Mining multiple large databases 	 3.9

7: sort data warehouses on size in non-increasing order and the data warehouses are

renamed as DWI, DW 2, 	DWN, where N=E,"_, p;;

8: let LPBo =

9: for i = 1 to N do

10: mine DW, using a SDMT with input LPB,_1;

11: end for

12: return LPB1, LPB2, 	LPBN;

end procedure

In above algorithm, the usage of LPB,_i during mining DW, has been explained in Section

3.2.2.2. Once a pattern is extracted from a data warehouse, then it gets extracted from the

remaining data warehouses. Thus, the algorithm PipelinedFeedbackModel improves

synthesized patterns and analysis of local patterns significantly.

3.2.4 Error of an experiment

To evaluate MDMT: PFM+SPS, we need to measure the amount of error of the

experiments. An experiment mines frequent itemsets in local databases using PFM, and

then synthesizes global patterns using SPS algorithm. We need to find how the global

synthesized support differs from the exact support of an itemset.

Let LPB n = {X1, X2, . , Xm }. There are several ways one could define error of an

experiment. We have defined following two types of error of an experiment.

1. Average Error (AE)

AE(D, a) =
1

—E7, 1 supp „(X „ D) - supp s (X 1 , D) (3.2.2)

2. Maximum Error (ME)

ME(D, a) = maximum 	supp, (X D)- suPP,(X,, D),i =1, 2, ..., m (3.2.3)

suppc,(XE, D) is obtained by mining D using a traditional data mining technique, for i = 1,

2, ..., m. supps(X, D) is obtained by SPS, for i = 1, 2, ..., m.

Chapter 3.2
	

Mining multiple large databases 	 3.10

3.2.5 Experiments

We have carried out several experiments to study the effectiveness of our approach. All

the experiments have been implemented on a 2.8 GHz Pentium D dual core processor

with 512 MB of memory using visual C++ (version 6.0) software. We present

experimental results using synthetic database T10I4D100K (T) [34] and two real

databases retail (R) [34] and BMS-Web-Wiew-1 (B) [34]. We present some characteristics

of these databases in Table 3.2.1.

Let NT, AFI, ALT, and NI denote the number of transactions, average frequency of an

item, average length of a transaction, and number of items in a database, respectively.

Table 3.2.1. Database characteristics

Database N T ALT AFI NI

T 1,00,000 11.10228 1276.12413 870

R 88,162 11.30575 99.67380 10000

B 1,49,639 2.00000 155.71176 1922

Each of the above databases is divided into 10 databases for the purpose of carrying out

experiments. The databases obtained from T, R and B are named as T„ R,, and B„

respectively, for i = 0, 1, ..., 9. The databases T„ R„ and B, are called input databases

(DBs), for i = 0, 1, ..., 9. Some characteristics of these input databases are presented in

the Table 3.2.2.

Chapter 3.2 	 Mining multiple large databases 	 3.11

Table 3.2.2. Input database characteristics

DB NT ALT AFI NI DB NT ALT AFI NI

To 10000 11.05500 127.65588 866 T5 10000 11.13910 128.62702 866

T1 10000 11.13330 128.41176 867 T6 10000 11.10780 128.56250 864

T2 10000 11.06700 127.64705 867 T7 10000 11.09840 128.45376 864

T3 10000 11.12260 128.43649 866 T8 10000 11.08150 128.55568 862

7'4 10000 11.13670 128.74797 865 T9 10000 11.08140 128.10867 865

Ro 9000 11.24389 12.07001 8384 R5 9000 10.85578 16.70977 5847

Rl 9000 11.20922 12.26541 8225 R6 9000 11.20011 17.41552 5788

R2 9000 11.33667 14.59657 6990 9000 11.15511 17.34554 5788

R3 9000 11.48978 16.66259 6206 R8 9000 11.99711 18.69032 5777

R4 9000 10.95678 16.03953 6148 R9 7162 11.69199 15.34787 5456

Bo 14000 2.00000 14.94130 1874 B5 14000 2.00000 280.00000 100

B1 14000 2.00000 280.00000 100 B6 14000 2.00000 280.00000 100

132 14000 2.00000 280.00000 100 B7 14000 2.00000 280.00000 100

B3 14000 2.00000 280.00000 100 B8 14000 2.00000 280.00000 100

B4 14000 2.00000 280.00000 100 B9 23639 2.00000 472.78000 100

In Table 3.2.3, we present some outputs to show that the proposed technique improves

significantly the mining results. We have performed experiments using other MDMTs on

these databases for the purpose of comparing with MDMT: PFM+SPS.

•

e e 066 ob 06L e e
Minimum support

RO+IEP

RO+RS

RO+ARS

PFM+SPS

RO+PA

0.025

0.02

r_u 0,015

e(0.01

0.005

0

Chapter 3.2
	

Mining multiple large databases
	

3.12

Table 3.2.3. Error of the experiments at a given a

Database Ti 014D1 OOK retail BMS-Web-Wiew-1

a 0.05 0.11 0.19

Error type AE ME AE ME AE ME

MDMT: RO+IEP 0.01218 0.03730 0.00516 0.05825 0.04823 0.14490

MDMT: RO+RS 0.01017 0.03612 0.00502 0.05755 0.02319 0.13490

MDMT: RO+ARS 0.00719 0.03599 0.00491 0.05730 0.02102 0.10514

MDMT: PFM+SPS 0.00321 0.03583 0.00484 0.05725 0 0

MDMT: RO+PA 0 0 0 0 0 0

Figure 3.2.2. AE vs. a for experiments using database T

In the Figures 3.2.2, 3.2.3, and 3.2.4, we show average errors against different as.

From Figures 3.2.2, 3.2.3, and 3.2.4, one could conclude that AE normally increases as a

increases. The number of databases reporting a pattern decreases as a increases. Thus,

the AE of synthesizing patterns normally increases as a increases.

0.02

0

0.08

0.06

d • 0 04
R0+ ► EP

-4- RO+RS

RO+A RS

PFM+SPS

--6- RO+PA 0' 0' 0' 0• 0• 0' O• 0' 0'

Minimum support

RO+IEP

- RO+ R S

"fr' RO+ARS

- PFM+SPS

 0' 0' 0' 0' 0' 0' 0' 0' C) q:
	

RO+PA

Chapter 3.2
	

Mining multiple large databases 	 3.13

Figure 3.2.3. AE vs. a for experiments using database R

Figure 3.2.4. AE vs. a for experiments using database B

3.2.6 Conclusion

In this chapter, we present a new technique for mining multiple databases. It improves

significantly the accuracy of mining multiple databases as compared to existing

techniques that scan each database only once. The proposed technique could also be used

for mining a large database by dividing it into sub-databases. MDMT: PFM+SPS is

effective and promising.

3.14

Chapter 3.3

Enhancing quality of knowledge synthesized from multi-database

mining

Many large organizations transact from multiple branches. The transactions made in a

branch are stored locally. Thus, many multi-branch companies possess multiple

databases. Consider a company that operates shopping malls from different places. These

malls are open at least 12 hours a day. All the transactions made in a mall are stored

locally. Thus, the company possesses multiple databases. A corporate decision based on

data distributed over the branches requires handling multiple databases effectively. Most

of the previous pieces of data mining work are based on a single database. Therefore, it is

important to study data mining on multiple databases.

Consider a multi-branch company that operates from different locations. Each branch

possesses a large database. Thus, the collection of all branch databases is very large. The

first question comes to our mind whether a traditional data mining technique could deal

with the multiple large databases. To apply a traditional data mining technique, one needs

to amass all the branch databases together. A single computer might take unreasonable

amount of time to process the entire database. Sometimes it might not be feasible to carry

out the mining task. Another solution would be to employ parallel machines. But, it

requires high investment on hardware and software. Moreover, it is difficult to identify

local patterns if the mining technique is applied on the entire database. Thus, a traditional

data mining technique is not suitable in this situation. So, it is a different problem. Hence,

it is required to be dealt with in a different way. In this case, one could employ the model

Chapter 3.3 Enhancing quality of knowledge synthesized from multi-database ... 3.15

of local pattern analysis [91]. According to this model of mining, the branches are

required to forward their local patterns to the central office for analysis and synthesis of

patterns. The central office collects the local patterns and stores them for further analysis

and synthesis. In particular, the company may need to identify the global association

rulcs in the union of all databases. Let X --> Y be an association rule extracted from a few

databases. Then local pattern analysis might return approximate association rule X —> Yin

the union of all databases, since it may fail to get extracted from all the databases. Using

a coding, discussed in this chapter, one could reduce further the values of minimum

support and minimum confidence for extracting local association rules. Thus, the

association rule X -+ Y might get extracted from more number of databases, since

minimum support and minimum confidence are lowered further. In that case, the

synthesized association rule X —+ Y might be more accurate than the earlier approach.

Multi-database mining has been recently recognized as an important research topic in

the KDD community. Many multi-database mining applications often handle a large

number of patterns. In multi-database mining applications, local patterns could be used in

two ways. In the first category of applications, global patterns are synthesized from local

patterns [5], [81], [89]. Synthesized global patterns could be used in various decision-

making problems. In the second category of applications, various decisions are taken

based on the local patterns in different databases [6], [83]. Thus, the available local

patterns could play an important role in finding a solution to a problem. For a problem in

the first category, the quality of a global pattern is influenced by the pattern synthesizing

algorithm and the available local patterns. Also, we observe that a global pattern

synthesized from local patterns might be approximate. At a given pattern synthesizing

algorithm, one could enhance the quality of synthesized patterns by increasing the

number of local patterns in a knowledge synthesizing process. For a problem in the

second category, the quality of decision is based on the quality of measure used in the

decision-making process. Again, the quality of measure is based on the correctness of the

measure and the available local patterns. For the purpose of clustering databases, Wu et

Chapter 3.3 Enhancing quality of knowledge synthesized from multi-database ... 3.16

al. [83] have proposed two such measures of similarity between two databases. For a

given measure of decision-making, one could enhance the quality of decision by

increasing the number of local patterns in the decision making process. Thus, the number

of available local patterns plays a crucial role in building efficient multi-database mining

applications. Thus, one could make a better decision if the available patterns are more.

One could increase the number of local patterns by lowering further the user inputs, such

as minimum support and minimum confidence, given to a data mining algorithm. More

patterns could be stored in main memory by applying a space efficient pattern base

representation technique. In this chapter, we present a coding, called ACP coding [4], for

representing a set of association rules in different databases space efficiently. A similar

technique [6] could also be applied for representing frequent itemsets in different

databases space efficiently.

Consider a multi-branch company that transacts from n branches, for n 2. Let D be

the database corresponding to the i-th branch, for i = 1, 2, ..., n. Also, let D be the union

of these databases. The data mining model adopted in this chapter for association rule is

the support (supp)-confidence (conf) framework established by Agrawal et al. [11]. The

set of association rules extracted from a database is called a rulebase. Before we present

the problem, we introduce a few notations used frequently in this chapter. Let RB, be the

rulebase corresponding to database D, at the minimum support level a and minimum

confidence level fi, for i = 1, 2, ..., n. Also, let RB be the union of rulebases

corresponding to different databases. Many interesting algorithms have been reported on

mining association rules in a database [13], [39], [66]. Let T be a technique for

representing RB in main memory. Let co and W denote the pattern synthesizing algorithm

and computing resource used for a data mining application, respectively. Also, let (RB

T, a, 18, co, denote the collection of synthesized patterns over RB at a given tuple (T, a,

/3, co, v). The quality of synthesized patterns could be enhanced if the number of local

patterns increases. Thus, quality of (RBI T, a1 , /3j , co, yi) quality of 4(RB T, a2, i32, Co,

0, if a2 < al and < So, the problem of enhancing the quality of synthesized pat-

Chapter 3.3 Enhancing quality of knowledge synthesized from multi-database ... 3.17

terns boils down to the problem of designing a space efficient technique for representing

rulebases corresponding to different databases.

As the frequent itemsets are the natural form of compression for association rules, the

following reasons motivate us to compress association rules rather than frequent itemsets.

Firstly, application's dealing with the association rules could be developed efficiently.

Secondly, a frequent itemset might not generate any association rule at a given minimum

confidence.

In this chapter, we present a space efficient technique to represent RB in main memory.

Let SPT(RB I a, 18, v) and Skr„,(RB I a, /3, Ili) be the amount of space (in bits) and

minimum amount of space (in bits) consumed by RB using a rulebase representation

technique T, respectively. We observe that a rulebase representation technique might not

represent RB at its minimum level because of the stochastic nature of the set of

transactions contained in the database. In other words, a frequent itemset might not

generate all the association rules. For example, the association rule X-->Y might not get

extracted from any one of the given databases, even if the itemset {X, Y} is frequent in

some databases. Thus, S13' 1,, ,,,(RB I a 	tif) .5 SP' (RB I a, fi, yi), for a given tuple (a, le,

0, where 0 < a 5 /3 5. 1. Let I" be the set of all techniques for representing a set of

association rules. We are interested in finding out a technique T1 E [for representing RB,

such that SP'' (RB I a, /3, yt) SP T (RBI a, 	1,1!), for all T E F. Let SP „,; ,(RB I a, /3, 	=

minimum {SP",,, (RB I a, 	TE T}. The efficiency of T for representing RB is judged

by comparing SPT(RB I a, /3, yi) with SP „„(RB I a, /3, v). We would like to design an

efficient rulebase representation technique T1 such that SP T'(RB I a, 	SP' (RBI a,

vi), for TE L.

Our work is based on RB„ for i = 1, 2, ..., n. One could lower a and further so that

each RB, represents the corresponding database reasonably well. The work is not

concerned with mining branch databases. ACP coding reduces RB significantly, so that

Chapter 3.3 Enhancing quality of knowledge synthesized from multi-database ... 3.18

the coded RB becomes available in the main memory during the execution of pattern

processing / synthesizing algorithm. The benefits of coding RB are given as follows.

Firstly, the quality of processed / synthesized knowledge gets enhanced, since the number

of local association rules participate in the pattern processing / synthesizing algorithm is

more. Secondly, the pattern processing / synthesizing algorithm could access all the local

association rules conveniently, since coded RB becomes available in the main memory.

This arrangement might be possible, since coded RB is reasonably small. For the purpose

of achieving latter benefit, we propose an index structure to access the coded association

rules conveniently. Finally, the coded RB and the corresponding index table could be

stored in the secondary storage for the usage of different multi-database mining

applications. The following issues are discussed in this chapter.

■ We present a technique, called ACP coding, for representing rulebases corresponding

to different databases space efficiently. It enables us to incorporate more association

rules for synthesizing global patterns or decision-making activities.

■ We present an index structure to access the coded association rules conveniently.

■ We prove that ACP coding represents RB using least amount of storage space in

comparison to any other rulebase representation technique.

■ We present a technique for storing rulebases corresponding to different databases in

the secondary storage.

■ We conduct experiments to judge the effectiveness of our approach.

The rest of the chapter is organized as follows. In Section 3.3.2, we discuss related

work. A simple coding, called SBV coding, for representing different rulebases is

presented in Section 3.3.3. In Section 3.3.4, we present ACP coding for representing

rulebases space efficiently. Experimental results are presented in Section 3.3.5.

Chapter 3.3 Enhancing quality of knowledge synthesized from multi-database ... 3.21

ferent databases. Thus, it is difficult to handle association rules in different databases

effectively during postmining of rulebases corresponding to different databases.

Ananthanarayana et al. [16] have proposed PC-tree to represent data completely and

minimally in main memory. It is built by scanning database only once. It could be used to

represent dynamic databases with the help of knowledge that is either static or changing.

It is not suitable for storing and accessing association rules. PC-tree also lacks the

capability of handling association rules in different databases during postmining of

rulebases corresponding to different databases.

The proposed work falls under the third category of solutions to reducing storage of

different rulebases. It is useful for handling association rules effectively during

postmining of association rules in different databases. No work has been reported so far

under this category.

In the context of mining good quality of knowledge from different data sources, Su et

al. [74] have proposed a framework for identifying trustworthy knowledge from external

data sources. Such framework might not be useful in this context. —

Zhang and Zaki [92] have edited a book on various problems related to multi-database

mining. Zhang [88], and Zhang et al. [93] studied various strategies for mining multiple

databases. Kum et al. [50] have presented a novel algorithm, ApproxMAP, to mine

approximate sequential patterns, called consensus patterns, from large sequence

databases in two steps. First, sequences are clustered by similarity. Then, consensus

patterns are mined directly from each cluster through multiple alignment.

3.3.3 Simple bit vector (SBV) coding

We need to process all the association rules in different local databases for synthesizing

patterns, or decision-making applications. We shall use tuple (ant, con, s, c) to symbolize

an association rule, where ant, con, s, and c represent antecedent, consequent, support

and confidence of the association rule ant ---> con, respectively. We present a situation in

Example 3.3.1.

Chapter 3.3 Enhancing quality of knowledge synthesized from multi-database ... 3.22

Example 3.3.1. A multi-branch company has four branches. Let a = 0.35, and /3= 0.45.

Our discussion would be still complete without specification of the content of the branch

databases. The rulebases corresponding to different databases are given below.

RB I = { (A, C, 1.0, 1.0), (C, A, 1.0, 1.0), (A, B, 0.41877, 0.41877), (B, A, 0.41877,

0.73740), (B, C. 0.40341, 0.71035), (C, B, 0.40341, 0.40341), (A, BC, 0.36107, 0.

36107), (B, AC, 0.36107, 0.63580), (C, AB, 0.36107, 0.36107), (AB, C, 0.36107,

0.74035), (AC, B, 0.36107, 0.36107), (BC, A, 0.36107, 0.89504) } ; RB2 = { (A, C,

0.66667, 0.66667), (C, A, 0.66667, 1.0) } ; RB3 = (A, C, 0.66667, 0.66667), (C, A,

0.66667, 1.0), (A, E, 0.66667, 0.66667), (E, A, 0.66667, 1.0) }; RB4 = (F, D, 0.75000,

0.75000), (D, F, 0.75000, 1.0), (F, E, 0.50000, 0.50000), (E, F, 0.50000, 1.0), (F, H,

0.50000, 0.50000), (H, F, 0.50000, 1.0) }. 0

One could represent an associating rule conveniently using an object (or, a record). A

typical object representing an association rule consists of following attributes: database

identification, number of items in the antecedent, items in the antecedent, number of

items in the consequent, items in the consequent, support, and confidence. We calculate

the space requirement of such an object using Example 3.3.2.

Example 3.3.2. The discussion of Example 3.3.1 is continued here. A typical compiler

represents an integer and a real number using 4 bytes and 8 bytes, respectively. An item

could be considered as an integer. Consider the association rule (A, BC, 0.36107,

0.36107) of RBI. Each of the following components of an association rule could consume

4 bytes: database identification, number of items in the antecedent, item A, number of

items in the consequent, item B, and item C. Support and confidence of an association

rule could consume 8 bytes each. The association rule (A, BC, 0.36107, 0.36107) of RB I

 thus consumes 40 bytes. The association rule (A, C, 1.0, 1.0) of RB I could consume 36

bytes. Thus, the amount of space required to store four rulebases is equal to (18 x 36 + 6

x 40) bytes, i.e. 7104 bits. A technique without optimisation (TWO) could consume 7104

bits to represent these rulebases. o

Chapter 3.3 Enhancing quality of knowledge synthesized from multi-database ... 3.23

Let I be the set of all items in D. Let X, Y and Z be three itemsets such that Y, Z c X.

Then Y, Z} forms a 2-itemset partition of X if YU Z = X, and yn Z = 0. We define size

of itemset X as the number of items in X, denoted by X . Then, we have 2 2-itemset

partitions of X. For example, { {a}, {b, c} } is a 2-itemset partition of {a, b, c}. An asso-

ciation rule Y —> Z corresponds to a 2-itemset partition of X, for Y, Z c X. The antecedent

and consequent of an association rule are non-null. Thus, we have Lemma 3.3.1.

Lemma 3.3.1. An itemset X can generate maximum 2 1x1 - 2 association rules, for IX > 2.

Let there are 10 items. The number of itemsets using 10 items is 2 1° . Thus, 10 bits

would be enough to represent an itemset. The itemset ABC, i.e. {A, B, C} could be

represented by the bit combination 1110000000. 2-itemset partitions of ABC are { 0,

ABC}, {A, BC}, {B, AC}, {C, AB}, {AB, C}, {AC, B}, {BC, A }, and {ABC, 0}. Number

of 2-itemset partitions of a set containing 3 items is 2 3 . Every 2-itemset partition

corresponds to an association rule, except the partitions { 0, ABC} and {ABC, 0). For

example, the partition {A, BC} corresponds to the association rule A—* BC. Thus, 3 bits

are sufficient to identify an association rule generated from ABC. If the number of items

is large, then this method might take significant amount of memory space to represent

itemsets and the association rules generated from the itemsets. Thus, this technique is not

suitable to represent association rules in databases containing large number of items.

3.3.3.1 Dealing with databases containing large number of items

We explain SBV coding with the help of Example 3.3.3.

Example 3.3.3. We continue here the discussion of Example 3.3.1. Let the number of

items be 10000. One needs 14 bits to identify an item, since 2 13 < 10000 < 2 14 . We

assume that the support and confidence of an association rule are represented using 5

digits after the decimal point. Thus, support / confidence value 1.0 could be represented

as 0.99999. We use 17-bit binary number to represent support / confidence, since 2 16 <

99999 217.

.23

Chapter 3.3 Enhancing quality of knowledge synthesized from multi-database ... 3.24

Let us consider the association rule (A, BC, 0.36107, 0. 36107) of RBI. There are 4

databases viz., D1, D2, D3, and D4. We need 2 bits to identify a database, since 2 1 < 4

22. Also, 4 bits could be enough to represent the number of items in an association rule.

We put bit 1 at the beginning of binary representation of an item, if it appears in the

antecedent of the association rule. We put bit 0 at the beginning of binary representation

of an item, if it appears in the consequent of the association rule. Using this arrangement,

the lengths of the antecedent and consequent do not required to be stored. The following

bit vector could represent the above association rule.

000011100000000000001000000000000010

1 2 3 	4 	5 	6

00000000000001101000110100001011 01000110100001011

7 	8 	 9
	

10

The components of above bit vector are explained below.

Component 1 represents the first database (i.e., Di)

Component 2 represents the number of items in the association rule (i.e., 3)

Component 3 (i.e., bit 1) implies that the current item (i.e., item A) belongs to antecedent

Component 4 represents item A (i.e., item number 1)

Component 5 (i.e., bit 0) implies that the current item (i.e., item B) belongs to consequent

Component 6 represents item B (i.e., item number 2)

Component 7 (i.e., bit 0) implies that the current item (i.e., item C) belongs to consequent

Component 8 represents item C (i.e., item number 3)

Component 9 represents support of association rule

Component 10 represents confidence of association rule

The number of bits required for an association rule containing two items and three items

are 70 and 85, respectively. Therefore, the amount of storage space required to represent

different rulebases is equal to (18 x 70 + 6 x 85) bits, i.e., 1770 bits. A technique without

optimization could consume 7104 bits (as mentioned in Example 3.3.2) to represent the

Chapter 3.3 Enhancing quality of knowledge synthesized from multi-database ... 3.25

same. Thus, SBV coding reduces the amount of storage space for representing different

rulebases significantly. 0

In the following section, we consider a special case of bit vector coding. It optimizes the

storage space for representing different rulebases based on the fact that many association

rules have the same antecedent-consequent pair. Before we move on to the next section,

we consider the following lemma.

Lemma 3.3.2. Let there are p items. Let m be the minimum number of bits required to

represent an item. Then, m = rlog2 (p)l.

Proof. We have 2 m-1 <p 2m, for an integer m. Thus, we get m < log2 (p) + 1, and log2

(p) m, since logk(x) is a monotonic increasing function of x, for k> 1. Combining these

two inequalities we get, log2 (p) m < log2 (p) + 1. 0

3.3.4 Antecedent-consequent pair (ACP) coding

The central office generates sets of frequent itemsets from different rulebases. Let FIS, be

the set of frequent itemsets generated from RB,, for i = 1, 2, ..., n. Also, let FIS be the

union of all frequent itemsets reported from different databases. We symbolize a frequent

itemset by a pair (itemset, support). The association rules (F, D, 0.75000, 0.75000) and

(D, F, 0.75000, 1.0) of RB 4 generate the following frequent itemsets: (D, 0.75000), (F,

1.0) and (DF, 0.75000). In the following example, we generate FIS„ for i = 1, 2, ..., n .

Example 3.3.4. The discussion of Example 3.3.1 is continued here. The sets of frequent

itemsets generated by the central office are given below.

FIS1 = (A, 1.0), (C, 1.0), (B, 0.56790), (AC, 1.0), (AB, 0.41877), (BC, 0.40341), (ABC,

0.36107) } ; F/S2 = (A, 1.0), (C, 0.66667), (AC, 0.66667) }; F/S3 = 	(A, 1.0), (C,

0.66667), (E, 0.66667), (AC, 0.66667), (AE, 0.66667) }; F/S4 = 	(D, 0.75000), (E,

0.50000), (F, 1.0), (H, 0.50000), (DF, 0.75000), (EF, 0.5000), (FH, 0.50000) }. 0

The ACP coding is a special case of bit vector coding, where antecedent-consequent

pairs of the associations rules arc coded in a specific order. The ACP coding is lossless

de'

Chapter 3.3 Enhancing quality of knowledge synthesized from multi-database ... 3.26

[67] and similar to Huffman coding [43]. ACP coding and the Huffman coding are not

the same, in the sense that an ACP code may be a prefix of another ACP code. Then, how

does a search procedure detect antecedent-consequent pair of an association rule

correctly? The answer to this question would be available in Section 3.3.4.1.

Let X be a frequent itemset generated from an association rule. Also, let f(X) be the

number of rulebases that generate itemset X. Also, let f,(X) = 1, if X is extracted from the

i-th database, and f(X) = 0, otherwise; for i = 1, 2, ..., n. Then, f(X) E;_, f(X). The

central office sorts the frequent itemsets X using IX as the primary key and f(X) as the

secondary key, for X E FIS, and X 2. Initially, the itemsets are sorted on size in non-

decreasing order. Then, the itemsets of the same size are sorted on f(X) in non-increasing

order. Iff(X) is high then the number of association rules generated from X is expected to

be high. Therefore, we represent antecedent-consequent pair of such an association rule

using a code of smaller size. We shall explain the coding with the help of Example 3.3.5.

Example 3.3.5. We continue here the discussion of Example 3.3.4. We sort all the

frequent itemsets of size greater than or equal to 2. Sorted frequent itemsets are presented

in Table 3.3.1.

Table 3.3.1. Sorted frequent itemsets of size greater than or equal to 2

X AC AB AE BC DF EF FH ABC

j(X) 3 1 1 1 1 1 1 1

The coding process is described as follows. Find an itemset that has a maximal f-value.

Itemset AC has the maximum f-value. We code AC as 0. The maximum number of

association rules could be generated from AC is two. Thus, we code association rules A-4

C and C--> A as 0 and 1, respectively. Now, 1-digit codes are finished. Then, we find an

itemset that has a second maximal f-value. We choose AB. We could have chosen any

itemset from {AB, AE, BC, DF, EF, FR}, since every itemset in the set has the same size

and the same f-value. We code AB as 00. The maximum number of association rules

could be generated from AB is two. Thus, we code the association rules A-4 B and B -4 A

Chapter 3.3 Enhancing quality of knowledge synthesized from multi-database ... 3.27

as 00 and 01, respectively. We follow in the same way and code the association rules A-->

E and E —> A as 10 and 11, respectively. Now, 2-digit codes are finished. Finally, we

choose ABC. We code ABC as 0000. The association rules A---> BC, B C—>AB,

AB— ^ C, AC—*.B, and BC—>A get coded as 0000, 0001, 0010, 0011, 0100, and 0101,

respectively. Each frequent itemset receives a code. We call it an itemset code. Also, an-

tecedent-consequent pair of an association rule receives a code. We call it a rule code. •

Now, an association rule could be represented in the main memory using the following

components: database identification number, ACP code, support, and confidence. Let n

be the number of databases. Then we have 2 k-1 < n 2k, for an integer k. Thus, we need k

bits to represent the database identification number. We represent support / confidence

using p digits after the decimal point. If we represent a fraction f using an integer d and

then f could be obtained by the formula: f=dx IV. We represent support / confidence

by storing the corresponding integer. The following lemma determines the minimum

number of binary digits required to store a decimal number.

Lemma 3.3.3. A p-digit decimal number can be represented by a I - px log2101 -digit

binary number.

Proof. Let t be the minimum number of binary digits required to represent a p-digit

decimal number x. Then we have x < 10P < 2'. So, t > p x log210, since logk(y) is a

monotonic increasing function of y, for k> 1. Thus, the minimum integer t for which x <

2` is true is given by rpxlog210]. •

The following lemma determines the minimum amount of storage space required to

represent RB under some conditions.

Lemma 3.3.4. Let M be the number of association rules having distinct antecedent-

consequent pairs among N association rules extracted from n databases, where 2m-1 < M

.5_ 2m, and 2P-1 < n 2P, for some positive integers m and p. Suppose the support and

confidence of an association rule are represented by a fractions containing k digits after

the decimal point. Assume that a .frequent itemset X generates all possible association

Chapter 3.3 Enhancing quality of knowledge synthesized from multi-database ... 3.28

rules, for X E FIS, and IX 2. Then the minimum amount of storage space required to

represent RB in the main memory is given as follows.

SP ACP cod

	

min,mainng (RB a A 	= ivfx 	- - 2 x (2m 	m) + N x (p + 2 x[kxlog2101) bits,

if M < — 2; and

SP ,;;',P;ad,',,ng (RB I a, 18, cif) =Mx m-2x (2'n — m - I) +Nx(p+ 2 x(- k x log210 -1) bits,

otherwise .

Proof. p bits are required to identify a database. The amount of memory required to

represent database identifications of N association rules is equal to P = N x p bits. The

minimum amount of memory required to represent both support and confidence of N

association rules is equal to Q = N x 2x Fk x log2101 bits (as mentioned in Lemma 3.3.3).

Let R be the minimum amount of memory required to represent ACPs of M association

rules. The expression R could be obtained from the fact that 2 1 ACPs are of length 1, 2 2

 ACPs are of length 2, and so on. The expression of R is given as follows.

R = 	x 2' + (m -1)x 	- En:21 2)bits, if (M - E71: 21 	< 2' 1 ; and

R = 	i x 2' + m x 	- Erin: 11 2') bits, if (M - E;n2, 2' 	2m -1 . 	 (3.3.1)

R assumes second form of expression for a few cases. For example, if (M = 15) then R

assumes second form of expression. The ACP codes are given as follows: 0, 1, 00, 01, 10,

11, 000, 001, 010, 011, 100, 101, 110, 111, 0000. Then, the minimum amount of storage

space required to represent RB is equal to (P + Q + R) bits. Now,

E7-21 2' = 2 1" -1 - 2, and E:V., ix 2' = (m -3)x 2"2-1 + 2 . Thus, the lemma follows. •

In the following example, we calculate the amount of storage space required for

representing rulebases of Example 3.3.1.

Example 3.3.6. The discussion of Example 3.3.1 is continued here. The number of

association rules in RB is 24. With reference to Lemma 3.3.4, we have N = 24, M = 20,

and n = 4. Thus, m = 5, and p = 2. Assume that the support and confidence of an

association rule are represented by fractions containing 5 digits after the decimal point.

Chapter 3.3 Enhancing quality of knowledge synthesized from multi-database ... 3.29

Thus, k = 5. Then, the minimum amount of storage space required to represent RB is 922

bits. •

ACP coding may assign some codes for which there exist no associated rules. Let ABC be

a frequent itemset extracted from some databases. Assume that the association rule

AC-*B is not extracted from any one of the databases that extract ABC. Let the itemset

code corresponding to ABC is 0000. Then, the ACP code for AC-*B is 0100, i.e., the 4-th

association rule generated from ABC. Therefore, ACP coding does not always store

rulebases at the minimum level.

All rule codes are ACP codes. But, the converse of the statement is not true. Some

ACP codes do not have assigned association rules, since the assigned association rules do

not get extracted from any one of the given databases. An ACP code X is empty if X is not

a rule code.

Lemma 3.3.5. Let X E FIS such that IX 2. We assume that X generates at least one

association rule. Let m 2) be the maximum size of a frequent itemset in FIS. Let n, be

the number of distinct frequent itemsets in FIS of size i, for i = 2, 3, ..., m. Then, the

maximum number of empty ACP codes is equal to L7 2 (2' - 3) x n,

Proof. In the extreme case, only one association rule is generated for each frequent

itemset X in FIS, such that X 2. Using Lemma 3.3.1, a frequent itemset X could

generate maximum 2IA1-2 association rules. In such a situation, 2I A1 -3 ACP codes are

empty for X Thus, the maximum number of empty ACP codes for the frequent itemsets

of size i is equal to (2'-3) x n„ Hence the result follows. •

To search an association rule we maintain all the itemsets in FIS along with their

itemset codes in an index table such that the size of an itemset is greater than one. We

generate rule codes of the association rules from the corresponding itemset code. In

Section 3.3.4.1, we discuss a procedure for constructing index table and accessing

mechanism for the association rules.

Chapter 3.3 Enhancing quality of knowledge synthesized from multi-database ... 3.30

3.3.4.1 Indexing rule codes

An index table contains the frequent itemsets of size greater than one and the

corresponding itemset codes. These frequent itemsets are generated from different rule-

bases. Example 3.3.2 illustrates the procedure of searching an association rule in the

index table.

Example 3.3.7. We continue here the discussion of Example 3.3.5.

Table 3.3.2. Index table for searching an association rule

Itemset AC AB AE BC DF EF FH ABC

Code 0 00 10 000 010 100 110 0000

We construct the above index table as follows. The itemset code corresponding to AC is

0. The itemset code 0 corresponds to the set of association rules {A—* C, C—> A }. We

would like to discuss the procedure for searching an association rule in the index table.

Suppose we wish to search the association rule corresponding to rule code 111. We apply

binary search technique to find code 111. The binary search technique is based on the

length of an itemset code. The search might end up at the fourth cell containing itemset

code 000. Now, we apply sequential search towards the right side of the forth cell, since

value(000) < value(111). We find that 111 is not present in the index table. But, the code

111 lies between 110 and 0000, since 11111 < 100001 and value(111) > value(110). We

define value of a code co as the numerical value of the code, i.e. value(w) = (co) m . For

example, value (010) = 2. Thus, the sequential search stops at the cell containing itemset

code 110. In general, for a rule code co, we get a consecutive pair of itemset codes (code] ,

code2) in the index table, such that code, S w < code2. Then code, is the desired itemset

code. Let Y be the desired itemset corresponding to the rule code a>. Then, co corresponds

to an association rule generated by Y. Thus, the itemset code corresponding to the rule

Chapter 3.3 Enhancing quality of knowledge synthesized from multi-database ... 3.34

ing) is significantly less than that of other techniques. We illustrate this issue in. Example

3.3.8.

Example 3.3.8. The discussion of Example 3.3.7 is continued here. We have 8 frequent

itemsets in the index table. Let there are 10000 items in the given databases. Therefore,

14 bits are required to identify an item. Thus, the amount of storage space would require

for AC and ABC are equal to 2 x 14 = 28 bits, and 3 x 14 = 42 bits, respectively. The size

of index file is the size of itemsets plus the size of itemset codes. In this case, the index

table consumes (28 x 7 + 42 x 1) + 21 bits, i.e., 259 bits. The total space required

(including the overhead of indexing) to represent RB is equal to (259 + 922) bits (as

mentioned in Example 3.3.6) = 1181 bits. Based on the running example, we compare the

amounts of storage space required to represent RB using different rulebase representation

techniques.

Table 3.3.3. Amounts of storage space required for representing RB using different

rulebase representation techniques

Technique for representing RB TWO SBV ACP

Amount of space (bits) 7104 1770 1181

We observe that ACP coding consumes the least amount of space to represent RB. Let

0I(T) be the overhead of maintaining index table using technique T. A technique without

optimization (TWO) might not maintain index table separately. In this case, 0/(TWO) =

0 bit. But, ACP coding performs better than a TWO, because ACP coding optimizes

storage spaces for representing components of an association rule. •

We describe here the data structures used in the algorithm for representing rulebases

using ACP coding. A frequent itemset could be described by the following attributes:

database identification, itemset and support. The frequent itemset generated from RB, are

stored into array FIS„ for i = 1, 2, ..., n. We keep all the generated frequent itemsets into

array FIS. Also, we have calculatedf-value for every distinct frequent itemset X in FIS

Chapter 3.3 Enhancing quality of knowledge synthesized from multi-database ... 3.31

code 111 is 110. The frequent itemset corresponding to itemset code 110 is FH. Thus, the

association rule corresponding rule code 111 is H—> F. •

Initially, the binary search procedure finds an itemset code of desired length. Then, it

moves forward or backward sequentially till we get the desired itemset code. The

algorithm for searching an itemset code is presented below.

Algorithm 3.3.1. Search for the itemset code corresponding to a rule code in the index

table.

procedure itemset-code-search (co, T, i,j)

Inputs:

co: rule code (an ACP code)

T: index table

i: start index

j: end index

Outputs:

index of the itemset code corresponding to w

1: x = kol;

2: k = binary-search (x, T, i,j);

3: if (value(w) value((T(k).code)) then

4: q = forward-sequential-search (co, T, k + 1,j);

5: else

6: q = backward-sequential-search (co, T, k - 1, i);

7: end if

8: return(q);

end procedure

Chapter 3.3 Enhancing quality of knowledge synthesized from multi-database ... 3.32

The above algorithm is described as follows. The algorithm itemset-code-search [4]

searches index table T between the i-th and j-th cells, and returns the index of the itemset

code corresponding to the rule code co. The procedure binary-search returns an integer k

corresponding to rule code w. If value(co)?.. value((T(k).code) then we search sequentially

in T from index (k+1) to j. Otherwise, we search sequentially in T from index (k-1) down

to i. Let there are m cells in the index table. Then binary search makes maximum

Llog2(m)] + 1 comparisons [49]. The sequential search makes 0(1) comparison in this

case. Therefore, algorithm itemset-code-search takes O(log(m)) time.

Now, we need to find the association rule generated from the itemset corresponding to

the itemset code returned by algorithm itemset-code-search. We shall take an example to

illustrate the procedure for identifying association rule for a given rule code. Let us

consider the rule code 0100. Using above technique, we determine that 0000 is the

itemset code corresponding to rule code 0100. The itemset corresponding to the itemset

code 0000 is ABC. The association rules generated from itemset ABC could be numbered

as follows: 0-th association rule (i.e., A-->BC) has rule code 0000, 1-th association rule

(i.e., B-AC) has rule code 0001, and so on. Proceeding in this way, we find that the 4-th

association rule (i.e., AC—>B) has rule code 0100.

We shall now find the association rule number corresponding to rule code w. Let X be

the itemset corresponding to rule code co, and v be the itemset code corresponding to X.

Let RB(X) be the set of all possible association rules generated by X. From Lemma 3.3.1,

we have IRB(X)I = - 2, for X 2. If I = a wl then w corresponds to (cow — 0)-th

association rule generated from X, where Y1 0 denote the decimal value corresponding to

binary code Y. If I ij < I col then w corresponds to (2 111 — oho + vh 0)-th association rule

generated from X. In this case, v = 0000, co = 0100, and X = ABC. Thus, co corresponds to

4-th association rule generated from X.

Chapter 3.3 Enhancing quality of knowledge synthesized from multi-database ... 3.33

Algorithm 3.3.2. Find itemset and association rule number corresponding to a rule code.

procedure rule-generation (k, T, C, X)

Input:

k: index

T: index table

C: rule code (an ACP code)

Output:

itemset X corresponding to C

association rule number corresponding to C

1: let X = T(k).itemset;

2: if (I T(k).codel = ICI) then

3: return (C 1 0 — (T(k) . c o d e) o)

4: else
T(k) codel _ 5: return (2 1 	(C)10 + (T(k).code)io);

6: end if

end procedure

We assume that the algorithm itemset-code-search [4] returns k as the index of the

itemset code corresponding to rule code C. Using index table T and k, the algorithm rule-

generation returns the rule number and the itemset corresponding to rule code C. The

itemset is returned through argument X, and rule number is returned through the return

statement.

ACP coding maintains an index table in main memory. We shall take an example to

verify that the amount of space consumed by a rulebase (including the overhead of index-

Chapter 3.3 Enhancing quality of knowledge synthesized from multi-database ... 3.34

ing) is significantly less than that of other techniques. We illustrate this issue in Example

3.3.8.

Example 3.3.8. The discussion of Example 3.3.7 is continued here. We have 8 frequent

itemsets in the index table. Let there are 10000 items in the given databases. Therefore,

14 bits are required to identify an item. Thus, the amount of storage space would require

for AC and ABC are equal to 2 x 14 = 28 bits, and 3 x 14 = 42 bits, respectively. The size

of index file is the size of itemsets plus the size of itemset codes. In this case, the index

table consumes (28 x 7 + 42 x 1) + 21 bits, i.e., 259 bits. The total space required

(including the overhead of indexing) to represent RB is equal to (259 + 922) bits (as

mentioned in Example 3.3.6) = 1181 bits. Based on the running example, we compare the

amounts of storage space required to represent RB using different rulebase representation

techniques.

Table 3.3.3. Amounts of storage space required for representing RB using different

rulebase representation techniques

Technique for representing RB TWO SBV ACP

Amount of space (bits) 7104 1770 1181

We observe that ACP coding consumes the least amount of space to represent RB. Let

0I(7) be the overhead of maintaining index table using technique T. A technique without

optimization (TWO) might not maintain index table separately. In this case, 0/(TWO) =

0 bit. But, ACP coding performs better than a TWO, because ACP coding optimizes

storage spaces for representing components of an association rule. •

We describe here the data structures used in the algorithm for representing rulebases

using ACP coding. A frequent itemset could be described by the following attributes:

database identification, itemset and support. The frequent itemset generated from RB, are

stored into array FIS,, for i = 1, 2, ..., n. We keep all the generated frequent itemsets into

array FIS. Also, we have calculatedf-value for every distinct frequent itemset X in FIS

Chapter 3.3 Enhancing quality of knowledge synthesized from multi-database ... 3.35

such that X 2. The frequent itemsets and their f-values are stored into array IS Table.

We present below an algorithm for representing different rulebases using ACP coding

[4]

Algorithm 3.3.3. Represent rulebases using ACP coding.

procedure ACP-coding (n, RB)

Input:

n: number of databases

RB: union of rulebases

Output:

Coded association rules

1: let FIS = 0;

2: for i = 1 to n do

3: read RB, from secondary storage;

4: generate FIS, from RA;

5: FIS = FIS U FIS;;

6: end for

7: let j= 1;

8: let i = 1;

9: while (i < IF/SI) do

10: if (IFIS(i).itemsetl 2) then

11: compute f(X);

12: IS Table(j).itemset = X;

13: IS Table(j),0)= AX);

-4- -

Chapter 3.3 Enhancing quality of knowledge synthesized from multi-database ... 3.36

14: increase index j by 1;

15: update index i for processing the next frequent itemset in FIS;

16: end if

17: end for

18: sort itemsets in IS Table using X as the primary key andf(X) as the secondary key;

19: for i = 1 to IIS Table' do

20: C = ACP code of IS Table (i).itemset;

21: T(i) .itemset = ISTable(i).itemset;

22: T(i).code = C;

23: end for

end procedure

Using lines 1-6, we have generated frequent itemsets from different rulebases and stored

them into array FIS. We compute f-value for every frequent itemset X and store it into

IS Table using lines 7-17, for X 2. At line 18, we sort frequent itemsets in IS Table

for the purpose of coding. Index table T is constructed using lines 19-23.

We calculate time complexities of different statements except the shaded statement of

the above algorithm, since it involves reading data from secondary storage. Let the

maximum of {IF/S i ': 1 i 5 n} be p. Then the total number of itemsets is O(n x p).

Therefore, lines 7-17 take O(n x p) time. Line 18 takes O(n x p x log (n x p)) time to sort

O(n x p) itemsets. Lines 19-23 take O(n x p) time to construct the index table.

3.3.4.2 Storing rulebases in secondary memory

An association rule could be stored in main memory using the following components:

database identification, rule code, support, and confidence. Database identification, sup-

Chapter 3.3 Enhancing quality of knowledge synthesized from multi-database ... 3.37

port and confidence could be stored using the method described in Section 3.3.3. Also,

we need to maintain an index table in main memory to code / decode an association rule.

The rulebases corresponding to different databases could be stored in secondary

memory using a bit sequential file F. The first line of F contains the number of databases.

The second line of F contains the number of association rules in the first rulebase. The

following lines of F contain the association rules in the first rulebase. After keeping all

the association rules in the first rulebase, we keep number of association rules in the

second rulebase, and the association rules in the second rulebase thereafter. We illustrate

the proposed file structure in Example 3.3.9.

Example 3.3.9. Assume that there are 3 databases Dl, D2, and D3. Let the number of

association rules extracted from these databases be 3, 4, and 2, respectively. The coded

rulebases could be stored as follows.

<3><\n>

<3 ><\ n>

<rr 1><. s'11><c i><\n>

<r12><s 2><c12><\n>

<r 3><s 3><c 3><\n>

<4><\n>

<r21><s21><c21><\n>

<r22><s22><c22><\n>

<r23><s23><c23><\n>

"24><s 24><c 24><\n>

<2><\n>

Chapter 3.3 Enhancing quality of knowledge synthesized from multi-database ... 3.38

<r31><S31><C31><\n>

<r32><s32><c32><\n>

`\n' stands for the new line character. While storing an association rule in the secondary

memory, if it contains a bit combination as that of `\n', then we need to stuff one more

`\n' after the occurrence of `\n'. We need not store the database identification along with

an association rule, since the i-th set of association rules corresponds to the i-th database,

for i = 1, 2, 3. Notations ru, su , and cu denote the rule code, support, and confidence of j-

th association rule reported from i-th database, respectively, for j = 1, 2, ..., IR/3,1, and i =

1, 2, 3. •

Lemma 3.3.6. Let M be the number of association rules with distinct antecedent-

consequent pairs among N association rules reported from n databases, where 2m-1 < M

2m, for an integer m. Suppose the support and confidence of an association rule are

represented by fractions containing k digits after the decimal point. Assume that a

frequent itemset X in FIS generates all possible association rules, for IX 2. Then the

minimum amount of storage space required to represent RB in secondary memory is

given as follows.

SP A
CP

 mod
 ng
ndary 	ce (RB I , f-12xn+Mx (m —1) + N x (2 k x log21 + 8) — 2 x (2 m- - min,

m) + 12 bits, if M < 2m - 2, and

p
min ,
ACP

 se
codi

conda
ng ry (RBIa,fl)=12xn+Mxm+Nx(2x1 -kxlog 210 7+ 8)-2x(2 m -m-1)

+ 12 bits, otherwise .

Proof. We do not need to store the database identification in the secondary storage, as the

rulebases are stored sequentially one after another. A typical compiler represents `\n' and

an integer value using 1 byte and 4 bytes, respectively. The amount of memory required

to represent the new line characters is equal to P = 8 x (N + n + 1) bits. The amount of

memory required to store the number of databases and the number of association rules of

Chapter 3.3 Enhancing quality of knowledge synthesized from multi-database ... 3.39

each rulebase is equal to Q = 4 x (n + 1) bits. The amount of memory required to

represent the both the support and confidence of N rules is equal to R = N x 2x [k x

log2 101 bits (as mentioned in Lemma 3.3.3). Let S be the minimum amount of memory

required to represent the ACPs of M rules. Then, S = M x (m-1) — 2 x (2' 1 - m) bits, if M

< - 2, and S=Mx m — 2 x (2in - m -1) bits, otherwise (as mentioned in Lemma 3.3.4).

Thus, the minimum amount of storage space required to represent RB in the secondary

memory is equal to (P+Q+R+S) bits. •

3.3.4.3 Space efficiency of our approach

The effectiveness of a rulebase representation technique requires to be validated by its

storage efficiency. There are many ways one could define the storage efficiency of a

rulebase representation technique. We use the following definition to measure the storage

efficiency of a rulebase representation technique.

Definition 3.3.1. Let RB, be the rulebase corresponding to database D, at a given pair (a,

A, for i = 1, 2, ..., n. Let RB be the union of rulebases corresponding to different

databases. The space efficiency of technique T for representing RB is defined as follows.

SP„„n (RB I a,fi,v)
c(T , RBI a , ,O, v)= 	 for T E

SP T (RBI a , ,

with respect to the symbols and notations used in Section 3.3.1. •

We note that 0 < e 1. A rulebase representation technique is good if e is high. We

would like to show that ACP coding stores rulebases at higher level of efficiency than

that of any other representation technique.

Lemma 3.3.7. Let RB, be the set of association rules extracted from database D, at a

given pair (a, A, for i = 1, 2, ..., n. Let RB be the union of rulebases corresponding to

different databases. Also, let T be the set of all rulebase representation techniques. Then,

c (ACP coding, RB I a, la 6(T, RB a, yr),forT E T.

Chapter 3.3 Enhancing quality of knowledge synthesized from multi-database ... 3.40

Proof. We shall show that ACP coding stores RB using minimum storage space at a

given pair (a, A. A local association rule has the following components: database

identification, antecedent, consequent, support, and confidence. We classify the above

components into following three groups: {database identification}, {antecedent,

consequent}, and {support, confidence} . Among these three groups, the item of group 1

is independent of the items of other groups. If there are n databases, we need minimum

Flog2n1 bits to represent the item of group 1 (as mentioned in Lemma 3.3.2). Many

association rules may have the same antecedent-consequent pair. If an antecedent-

consequent pair appears in many association rules, then it receives a shorter code.

Therefore, the antecedent-consequent pair of association rule having highest frequency is

represented by a code of smallest size. ACP code starts from 0, and then follows the

sequence 1, 00, 01, 10, 11, 000, 001, Therefore, no other technique would provide

sizes of codes lesser than them. Therefore, the items of group 2 are expressed minimally

using ACP codes. Again, the items of group 3 are related with the items of group 2.

Suppose we keep p digits after the decimal point for representing an item of group 3.

Then, the representation an item of group 3 becomes independent of items of group 2.

We need minimum 2 x Fp x log2101 bits to represent support and confidence of an

association rule (as mentioned in Lemma 3.3.3). Thus, minimum {representation of an

association rule} = minimum {representation of items of group 1 + representation of

items of group 2 + representation of items of group 3} = minimum {representation of

items of group 1} + minimum {representation of items of group 2} + minimum{

representation of items of group 3}.

Also, there will be an entry in the index table for the itemset corresponding to an

association rule for coding / decoding process. Thus, minimum {representation of index

table} = minimum {representation of itemsets + representation of codes}. If there are p

items then an itemset of size k could be represented by k x Flog2 (p)] bits (as mentioned in

Chapter 3.3 Enhancing quality of knowledge synthesized from multi-database ... 3.41

Lemma 3.3.2). Also, ACP codes consume minimum space because of the way they have

been designed. Thus, minimum {representation of index table} = minimum

{representation of itemsets} + minimum {representation of codes}. Therefore, minimum

{representation of rulebases} = >r{representation of association rule r using ACP

coding} + representation of index table used in ACP coding. Hence, the lemma follows. •

Lemma 3.3.8. Let RB, be the set of association rules extracted from database D, at a

given pair (a, /3), for i = 1, 2, ..., n. Let RB be the union of rulebases corresponding to

different databases. Then, SP (RB 0, /3, v.. ,.)= nill(17: coding (RB

Proof. From Lemma 3.3.7, we conclude that ACP coding represents rulebases using

lesser amount of storage space than that of any other technique. Thus, SP nAiCin'P coding (RBI a,

,c, 	SP,,̀ (RBI a, 	0, for T e F. We observe that a rulebase representation

technique T might not represent rulebases at its minimum level because of the stochastic

nature of the set of transactions contained in a database. In other words, a frequent

itemset may not generate all the association rules in a database. For example, the

association rule X—>Y may not get extracted from some of the given databases, even if

itemset {X, Y} is frequent in the remaining databases. Thus, if ACP coding represents RB

using minimum storage space, then it would be the minimum representation of RB at a

given tuple (a, 0. •

There are many ways one could define the quality of synthesized patterns. We define

the quality of synthesized patterns as follows.

Definition 3.3.2. Let RB, be the rulebase extracted from database D, at a given pair (a,

3), for i = 1, 2, ..., n. Let RB be the union of rulebases corresponding to different

databases. We represent RB using a rulebase representation technique T. Let 4(RB I T, a,

q), 0 denote the collection of synthesized patterns over RB at a given tuple (T, a, fl, co,

yi). We define quality of (RBI T, a, fi, co, tit) as 6(T, RBI a, t0, with respect to the

symbols and notations used in Section 3.3.1. •

Chapter 3.3 Enhancing quality of knowledge synthesized from multi-database ... 3.42

Also, e (ACP coding, RB, a, /3) 	(T, RB, a, /3), for T E T (as mentioned in Lemma

3.3.7). Thus, quality of (RB ACP coding, a, /3, co, 	quality of (RB T, a, /3, (0, Y),

for T E T.

3.3.5 Experiments

We have carried out several experiments to study the effectiveness of ACP coding. All

the experiments have been implemented on a 1.6 GHz Pentium processor with 256 MB

of memory using visual C++ (version 6.0) software. The following experiments are based

on the transactional databases T10I4D1OOK (T1) [34], and T40I10D1OOK (T2) [34]. These

databases were generated using synthetic database generator from IBM Almaden Quest

research group. We present some characteristics of these databases in Table 3.3.4.

Table 3.3.4. Database characteristics

Database N T ALT AFI NI

T1 100000 11.10228 1276.12413 870

T4 100000 40.40507 4310.51698 942

For the purpose of conducting the experiments, we divide each of these databases into 10

databases. We call these two sets of 10 databases as the input databases. The database T,

has been divided into 10 databases of size 10000 transactions each, for j = 0, 1, 2, ...,

9, and i = 1, 4. We present the characteristics of the input databases in Table 3.3.5.

Chapter 3.3 Enhancing quality of knowledge synthesized from multi-database ... 3.43

Table 3.3.5. Input database characteristics

Database ALT AFI NI Database ALT AFI NI

T10 11.05500 127.65588 866 T40 40.56710 431.56489 940

T11 11.13330 128.41176 867 T41 40.58240 432.18743 939

T12 11.06700 127.64705 867 T42 40.63190 431.79489 941

T13 11.12260 128.43649 866 T43 40.62690 431.74176 941

T14 11.13670 128.74797 865 T44 40.66110 432.56489 940

T15 11.13910 128.62702 866 7'45 40.50630 430.46014 941

T16 11.10780 128.56250 864 T46 40.74350 433.44148 940

T17 11.09840 128.45376 864 7'47 40.62380 431.70882 941

T18 11.08150 128.55568 862 T48 40.52810 431.15000 940

T19 11.08140 128.10867 865 T49 40.57960 432.15761 939

The results of mining input databases are given in Table 3.3.6. The notations used in

the above tables are explained as follows. NT, ALT, AFI and NI stand for number of

transactions, average length of a transaction, average frequency of an item, and number

of items in the data source, respectively. Some results on association rule mining are

presented in Table 3.3.6.

Table 3.3.6. Result of data mining

Database a /.3 N2IR N3IR NkIR (k> 3)

UT,; 0.01 0.2 136 29 0

11,
U 7.<; 0.05 0.2 262 0 0

In the above table, NkIR stands for the number of k-item association rules from different

databases, for k 2. We present comparison among different rulebase representation

techniques in Table 3.3.7.

6"k 6") 45 6\ 66 6'1 Z 	C.) 	C.) 	Z C.) • 	Z • 	C)

Minimum support

o ACP

SBV

Sp
ac

e
ef

fi
ci

en
cy

0.9
0.8
0.7
0.6
0.5
0.4
0.3
02
0.1

0

Chapter 3.3 Enhancing quality of knowledge synthesized from multi-database ... 3.44

Table 3.3.7. Comparison among different rulebase representation techniques (contd.)

Database SP(TWO) SP(SBV) 01 SP(ACP) MSO A C(SBV) AC(ACP)

().J -r„
..,

48448

bits

10879

bits

619

bits

7121

bits

7051

bits
1.79640 1.17586

0 1'4, ,.,

75456

bits

16768

bits

549

bits

10681

bits

10661

bits
1.77778 1.13242

Table 3.3.7. Comparison among different rulebase representation techniques

Database s(TWO) £(SBV) c(ACP)

U T„ ,., 0.14554 0.64813 0.99017

0 7'4,
,-,

0.14129 0.63579 0.99813

In the above table, we use the following abbreviations: SP stands for storage space

(including overhead of indexing), MSO stands for minimum storage space for

representing rulebases including the overhead of indexing, and AC(T) stands for amount

of compression (bits/byte) using technique T. In Figure 3.3.1, we compare different

rulebase representation techniques at different levels of minimum support.

(a) For association rules extracted fromT h, for i = 0, 1, ..., 9.

G

0.9
0.8

ACP

x 	SBV

0.7
0.6 X X X

0.5
0.4
0.3

-TWO

0.2
0.I

0

';‘` 	 ,t.1) t.‘c3 oar ooh ,6"
o . o . 0 0' 0 ' 	 0• o•

Minimum support

Sp
ac

e
ef

fic
ie

nc
y

Chapter 3.3 Enhancing quality of knowledge synthesized from multi-database ... 3.45

(b) For association rules extracted fromT i„ for i = 0, 1, ..., 9.

Figure 3.3.1. Storage efficiency of different rulebase representation techniques

We have taken fi = 0.2 for all the experiments. The results show that the ACP coding

stores rulebases most efficiently among different rulebase representation techniques.

Also, we find that the SBV coding reduces the size of a rulebase considerably, but stores

less efficiently than ACP coding. ACP coding achieves maximum efficiency when the

following two conditions are satisfied: (i) All the databases are similar type and extract

identical set of association rules, and (ii) Each of the frequent itemsets of size greater than

one generates all possible association rules.

Nelson [57] studied data compression with the Burrows-Wheeler Transformation

(BWT) [23]. Experiments were carried out on 18 different files and average compression

obtained by techniques using BWT and PKZIP are 2.41 bits/byte and 2.64 bits/byte,

respectively. The commercial products like PKZIP, WINZIP would compress an

association rule as a string. Though we have 'studied the technique BWT, it might be

unfair to compare ACP coding with the compression technique using BWT.

The results of Figure 3.3.1(a) and Figure 3.3.1(b) are carried out at 11 different pairs of

(a,)3). Using ACP coding, we have obtained average compression 1.15014 bits/byte and

1.12190 bits/bytes for the experiments corresponding to Figure 3.3.1(a) and Figure

3.3.1(b), respectively.

Chapter 3.3 Enhancing quality of knowledge synthesized from multi-database ... 3.46

3.3.6 Conclusion

An efficient storage representation of a set of pattern bases builds the foundation of a

multi-database mining system. Many global applications could be developed effectively

upon this foundation. Similar technique could be employed to store frequent itemsets in

different databases efficiently. Experimental and theoretical results show that the

proposed rulebase representation technique is very efficient.

3.47

Chapter 3.4

Efficient clustering of databases induced by local patterns

Many large organizations operate from multiple branches. Some of the branches collect

data continuously and store data locally. Thus, the collection of all branch databases

might be very large. Effective data analysis using a traditional data mining technique on

multi-gigabyte repositories has proven difficult. A quick approximate knowledge from

large databases would be adequate for many decision support applications.

Consider a company that deals with multiple large databases. The company might need

to make an association analysis involving non-profit making items (products). The

objective is to identify the items that neither make much profit nor help promoting other

products. An association analysis involving non-profit making items might identify such

items. The company could then stop dealing with such items. Such analysis might require

identifying similar databases. Two databases are similar if they contain many similar

transactions. Again, two transactions are similar if they have many common items. We

shall observe latter that two databases containing many common items are not necessarily

very similar. First we define a few terms used frequently in this chapter.

Let I(D) be the set of items in database D. An itemset is a set of items in a database. An

itemset X in D is associated with a statistical measure called support [11], denoted by

supp(X, D), for X c I(D). Support of an itemset X in D is the fraction of transactions in D

containing X The importance of an itemset could be judged by its support. X is called a

frequent itemset (FIS) in D if supp(X, D)> a, where a is the user-defined minimum sup-

Chapter 3.4
	

Efficient clustering of databases induced by local patterns 	3.48

-411r-

port. A frequent itemset possesses higher support. Thus, the collection of frequent

itemsets determines major characteristics of a database. One could define similarity

between a pair databases in terms of their frequent itemsets. Thus, two databases are

similar if they have many common frequent itemsets.

Based on the similarity between two databases, one could cluster branch databases.

After the clustering process, one could mine all the databases in a class together to make

an approximate association analysis involving frequent items. An approximate

association analysis could be performed using the frequent itemsets in the union of all the

databases in a class. Clustering of databases thus helps reducing data for analyzing the

items. In this chapter, we study the problem of clustering transactional databases using

the local frequent itemsets.

For clustering transactional databases, Wu et at. [83] have proposed two similarity

measures simi, and sim2. Let D = {Di, D2, ..., Ai }, where D, is the database

corresponding to the i-th branch of a multi-branch company, for i = 1, 2, ..., n. situ] is

based on the items in the databases, and defined as follows.

simi(DI, D2) = II(DI)r) 1(D2) 1I(D,)u I(D2) 1
Let S, be the set of association rules in D„ for i = 1, 2, ..., n. sim 2 is based on the items

generated from Si, for i = 1, 2, ..., n. Let ASO be the set of items generated from Si , for i =

1, 2, ..., n. Similarity measure sim2 has been defined as follows:

simAD I , D2) = 	l(S2) As]) u I(s2)1
I(S,) c 1(D i), for i = 1, 2, ..., n. sim 1 estimates similarity between two databases more

correctly than sim2, since the number of items participate in estimating the similarity

between two databases under sim, is more than that of sim 2 . A database may not extract

any association rule at a given value of (a, fi), where # is the user-defined minimum

confidence level. In such situations, the accuracy of sim2 is low. In the following

example, we discuss a situation where the accuracy of sim, and sim2 are low.

Chapter 3.4
	

Efficient clustering of databases induced by local patterns 	3.49

Example 3.4.1. A multi-branch company possesses following three databases. DB 1 =

{a, b, c, e}, {a, b, d,f}, {b, c, g}, {b, d, g} }, DB2 = { {a, g}, {b, e}, {c, , {d, g} }, and

DB3 = {a, b, c}, {a, b, d}, {b, c}, {b, d, g} }. Here, I(DB 1) = {a, b, c, d, e, f, g}, I(DB2)

= {a, b, c, d, e, f, g}, I(DB3) = {a, b, c, d, g}. Thus, sim/(DBI, DB2) = 1.0 (maximum), and

sim i (DB 1 , DB3) = 0.71429. Ground realities are as follows: (i) The similarity between

DB 1 and DB2 is low, since they contain dissimilar transactions. (ii) The similarity

between DB1 and DB3 is more than the similarity between DB 1 and DB2, since DB 1 and

DB3 contain similar transactions. Thus, the similarity measures simi produces low

accuracy in finding the similarity between two databases. There is no frequent itemsets in

DB2 , if a > 0.25. Thus, I(S2) = 0, if a > 0.25. Hence, the accuracy of sim2 is low in

finding the similarity between DB 1 and DB2, if a> 0.25. 0

Thus, we have observed that the similarity measures based on items in databases might

not be appropriate in finding similarity between two databases. A more appropriate

similarity measure could be designed based on frequent itemsets in both the databases.

The frequent itemsets in two databases could find similarity among transactions in two

databases better. Thus, frequent itemsets in two databases could find similarity between

two databases more correctly.

Wu et al. [80] have proposed a solution of inverse frequent itemset mining. They

argued that one could efficiently generate a synthetic market basket database from the

frequent itemsets and their supports. Thus, the similarity between two databases could be

estimated more correctly by involving supports of the frequent itemsets. We propose two

measures of similarity based on the frequent itemsets and their supports. A new algorithm

for clustering databases is designed based on a proposed measure of similarity.

The existing industry practice is to refresh a data warehouse on a periodic basis. Let

be the periodicity of data warehouse refreshing. In this situation, an incremental mining

algorithm [52] could be used to obtain updated supports of the existing frequent itemsets

in a database on a periodic basis. But, there could be addition or, deletion of frequent

itemsets over time. Thus, we need to mine the databases individually again on a periodic

Chapter 3.4
	

Efficient clustering of databases induced by local patterns 	3.50

basis. Let A be the periodicity of data warehouse mining. The values of 2 and A could be

chosen suitably such that A > 2. Based on the updated local frequent itemsets, one could

cluster the databases afresh.

Another alternative for taming multi-gigabyte data could be sampling. A commonly

used technique for approximate query answering is sampling [19]. If an itemset is

frequent in a large database then it is likely that the itemset is frequent in a sample

database. Thus, one could analyze approximately a database by analyzing the frequent

itemsets in a sample database.

The rest of the chapter is organized as follows. We formulate the problem in Section

3.4.2. In Section 3.4.3, we discuss work related to this problem. In Section 3.4.4, we

cluster all the branch databases. The experimental results are presented in Section 3.4.5.

3.4.2 Problem statement

Let there are n branch databases. Also, let FIS(D„ a) be the set of frequent itemsets

corresponding to database D, at a given value of a, for i = 1, 2, ..., n. Thus, our problem

could be stated as follows.

Find the best non-trivial partition (if it exists) of {D1, D2, ..., D„} using FIS(D„ a), for i

= 1, 2, ..., n.

A partition [53] is a specific type of clustering. Formal definition of a non-trivial partition

is given in Section 3.4.4.

3.4.3 Related work

Jain et al. [44] have presented an overview of clustering methods from a statistical pattern

recognition perspective, with a goal of providing useful advice and references to

fundamental concepts accessible to the broad community of clustering practitioners.

Chan and Chong [25] have devised a novel quantitative model of non-textual World

Chapter 3.4
	

Efficient clustering of databases induced by local patterns 	3.51

Wide Web classification based on image information. A traditional clustering technique

[90] is based on metric attributes. A metric attribute is one whose values can be

represented by explicit coordinates in a Euclidean space. Thus, a traditional clustering

technique might not work in this case, since we are interested in clustering databases. Ali

et al. [15] have proposed a partial classification technique using association rules. The

clustering of databases using local association rules might not be a good idea. The

number of frequent itemsets obtained from a set of association rules might be much less

than the number of frequent itemsets extracted using apriori algorithm [13]. Thus, the

efficiency of the clustering process would be low. Liu et al. [55] have proposed multi-

database mining technique that searches only the relevant databases. Identifying relevant

databases is based on selecting the relevant tables (relations) that contain specific,

reliable and statistically significant information pertaining to the query. Our study

involves in clustering transactional databases. Yin and Han [86] have proposed a new

strategy for relational heterogeneous database classification. This strategy might not be

suitable for clustering transactional databases. Chen et al. [27] have proposed a method of

discovering customer purchasing patterns by extracting associations or co-occurrences

from stores' transactional databases.

In the context of similarity measures, Tan et al. [75] have presented an overview of

twenty one interestingness measures proposed in the statistics, machine learning and data

mining literature. Support and confidence measures [1] are used to identify frequently

occurring association rules between two sets of items in large databases. In this chapter,

we have presented two similarity measures. Our first measure, simi i , is similar to measure

Jaccard [75]. Measures such as support, interest [75], cosine [75] do not serve as good

measures of similarity, since their denominators are not appropriate. Other measures in

[75] might not be relevant in finding similarity between two databases.

Zhang et al. [91] designed a local pattern analysis for mining multiple databases.

Zhang et al. [93] studied various strategies for mining multiple databases. For utilizing

the low-cost information and knowledge on the internet, Su et al. [74] have proposed a

Chapter 3.4
	

Efficient clustering of databases induced by local patterns 	3.52

logical framework for identifying quality knowledge from different data sources. It helps

working towards the development of an agreed ontology.

Data mining serves as a tool for decision making as well as managing activities.

Accurate estimations of software size in the early stages of a software project are critical

in software project management because they lead to a good planning and reduce project

costs. Garcia et al. [36] have studied the relation between early software size measures as

the function points and measures of the final product as the lines of code.

3.4.4 Clustering databases

Our approach of finding the best partition of a set of databases has been explained in the

following steps: (i) Find FIS(D„ a), for i = 1, 2, ..., n. (ii) Determine the similarity

between each pair of databases using the proposed measure of similarity simi 2 . (iii) Check

for the existence of partitions at the required similarity levels (as mentioned in Theorem

3.4.5). (iv) Calculate the goodness values for all the non-trivial partitions. (v) Report the

non-trivial partition for which the goodness value is the maximum. All the steps (i) to (v)

will be followed and explained with the help of a running example. We start with an

example of a multi-branch company that has multiple databases.

Example 3.4.2. A multi-branch company has seven branches. The branch databases are

given below.

DI 	{(a, b, c), (a, c), (a, c, d)} ; D2 = {(a, c), (a, b), (a, c, e)} ; D3 = {(a, e), (a, c, e), (a, b,

c)} ; D4 = {(f, d), (f; d, h), (e, f, d), (e, f, h)}; D5 = {(g, h, i), (i, j), (h, i), (i, j, g)}; D6 r= { (g,

h, i), (i, j, h), (i, j)} ; D7 = { (a, b), (g, h), (h, i), (h, i, j) }. The sets of frequent itemsets are

given below.

FIS(D1, 0.35) = (a, 1.0), (c, 1.0), (ac, 1.0) }; FIS(D2, 0.35) = { (a, 1.0), (c, 0.67), (ac,

0.67) }; FIS(D3, 0.35) = { (a, 1.0), (c, 0.67), (e, 0.67), (ac, 0.67), (ae, 0.67) }; FIS(D4,

0.35) = { (d, 0.75), (e, 0.5), (f, 1.0), (h, 0.5), (df, 0.75), (ef; 0.5), (fh, 0.5) }; FIS(D5,

0.35) = { (g, 0.5), (h, 0.5), (i, 1.0)1, (j, 0.5), (gi, 0.5), (hi, 0.5), (ij, 0.5) }; FIS(D6, 0.35)

Chapter 3.4
	

Efficient clustering of databases induced by local patterns 	3.53

= (i, 1.0), (j, 0.67), (h, 0.67), (hi, 0.67), (ij, 0.67) }; FIS(D7,0.35) = { (h, 0.75), (1, 0.5),

(hi, 0.5) 1. •

Based on the sets of frequent itemsets in a pair of databases, one could define many

measures of similarity between them. We propose two measures of similarity between a

pair of databases. Our first measure simi 1 [6] is defined as follows.

Definition 3.4.1. The measure of similarity simii between databases DI and D2 is defined

as follows.

simi (D1, D2, a) =
I FIS(D,, a) n FIS (D2 , a)I
I FIS(D 1 , a)U FIS (D 2 , ce) I

where, the symbols n and U stand for the intersection and union operations of set

theory, respectively. •

The similarity measure simii is the ratio of the number frequent itemsets common to

DI and D2, and the total number of distinct frequent itemsets in D1 and D2. Frequent

itemsets are the dominant patterns that determine major characteristics of a database.

There are many implementations [32] of mining frequent itemsets in a database. Let X

and Y be two frequent itemsets in database DB. The itemset X is more dominant than the

itemset Y in DB if supp(X, DB) > supp(Y, DB). Therefore, the characteristics of DB are

revealed more by the pair (X, supp(X, DB)) than that of (Y, supp(Y, DB)). Thus, a good

measure of similarity between two databases is a function of the supports of the frequent

itemsets in the databases. Our second measure of similarity simi2 [6] is defined as

follows.

Definition 3.4.2. The measure of similarity simi2 between databases DI and D2 is defined

as follows.

minimum{supp(X , D 1), supp(X, D 2)}

SiMi 2 (D „ D2 , a) = Xe{FIS(D i ,a) nms(D 2 , .))

I maximum{supp(X , 	supp(X, D 2)
x.{ FIS(D,, a) U F1S(D2 , a)}

where, the symbols n and U stand for the intersection and union operations of set

theory, respectively. Assume that, supp(X, D ;) = 0, if X0 FIS(D i, a), for i = 1, 2. •

Chapter 3.4
	

Efficient clustering of databases induced by local patterns 	3.54

With reference to Example 3.4.1, the frequent itemsets in different databases are given

as follows: FIS(DB 1, 0.3) = { a(0.5), b(1.0), c(0.5), d(0.5), g(0.5), ab(0.5), bc(0.5),

bd(0.5) }, FIS(DB2, 0.3) = g(0.5) }, and FIS(DB 3 , 0.3) = a(0.5), b(1.0), c(0.5), d(0.5),

ab(0.5), bc(0.5), bd(0.5) }. We obtain simi / (DB J , DB2, 0.3) = 0.125, simi,(DB / , DB3 , 0.3)

= 0.875, simi2(DB,, DB 2, 0.3) = 0.111, and simi2(DB1, DB3, 0.3) = 0.889. Thus, our

proposed measures simij and simi2 match ground reality better than the existing

measures. Theorem 3.4.1 justifies the fact that simi2 matches ground reality better than

Theorem 3.4.1. The similarity measure simi2 has better discriminating power than that

of the similarity measure simi l .

Proof. The support of a frequent itemset could be considered as its weight in the

database. But, we attach an weight 1.0 to itemset X in database Di , under the similarity

measure simi 1 , if XEFIS(D,, a), for i = 1, 2. We attach an weight supp(X, D,) to the

itemset X in database D,, under the similarity measure simi2, if XEFIS(D„ a), for i = 1, 2.

The similarity measures sim j and sim 2 are defined as a ratio of two quantities. If

XEFIS(D„ a), and XeFIS(D„ a), then it is more justifiable to add minimum { supp(X,

D,), supp(X, D1) } (instead of 1.0) in the numerator and maximum { supp(X, D,), supp(X,

DI) } (instead of 1.0) in the denominator for the itemset X, for i, j E { 1, 2}. If XE FIS(D„

a), and XeFIS(DJ, a), then it is more justifiable to add 0 in the numerator and supp(X, D)

(instead of 1.0) in the denominator for the itemset X, for i,j E { 1, 2}. Hence, the theorem

follows. •

Example 3.4.3 verifies that simi2 matches ground reality better than simi1.

Example 3.4.3. With reference to Example 3.4.2, supp({a}, D 1) = supp({c}, D I) =

supp({a, c}, Di) = 1.0, supp({a}, D2) = 1.0, and supp({c}, D2) = supp({a, c}, D2) = 0.67.

simi2(D1, D 2, 0.35) = 0.78, and simi 1(D I, D2, 0.35) = 1.0. We observe that the databases

DI and D2 are highly similar, but not the same. Thus, the similarity obtained by simi2

matches the ground reality better. •

Chapter 3.4
	

Efficient clustering of databases induced by local patterns 	3.55

We study some interesting properties of simi / and simi2 using Theorems 3.4.2, 3.4.3 and

3.4.4.

Theorem 3.4.2. The similarity measure simik satisfies the following properties, (k = 1, 2).

(i) 0 < simik(D„ 4, a) 5 1, (ii) simik(D,, 4, a) = simik(4, D, a), (iii) simik(D, D, a) = 1,

fori,j=1,2,..., n.

Proof. The properties follow from the definition of simik, (k= 1, 2). •

We express the distance between two databases in term of their similarity.

Definition 3.4.3. The distance measure distk between two databases DI and D2 based on

the similarity measure simik is defined as diStk(D1, D2, a) = 1 — simik(D 1, D2, a), (k = 1,

2). •

A good distance measure satisfies the metric properties [21]. Higher the distance between

two databases, lower is the similarity between them. For the purpose of elegant

presentation, we use the notation I, in place of FIS(D„ a) in theorems Theorems 3.4.3 and

3.4.4, for i = 1, 2.

Theorem 3.4.3. dist/ is a metric over [0, 1].

Proof. We show that dist/ satisfies the triangular inequality. Other properties of a metric

follow from Theorem 3.4.2.

dist, (DI,D2,a)=1 - II n/21 	I/1-421+1/2411 (3.4.1)
I I/ U/2 I 	I /, U/2 U/3 I

> /1 	- /2 HI /2 	I -4- I /2 43 I 4- I /3 -12 1 Thus, disti (DI , D2, a) + distj(D2, D3, a) 	 (3.4.2)
U /2 U /3 1

ill ui2 w3 i-iii ni2 n/3 1+111 n13 1+1 2 1-1/1 n/ 2 1-1/ 2 n/ 3 1 (3.4.3)
1 /, U/2 U/3 1

= /, n/2 n 131 - 1 Iin/3 121+1-11I2 1+1 /2 n /3
/1 u I2U13 1

n

{II I n I2 n 13 1 +

	

	nI2 1 + 112 n/3 -{ 1 /, n I3 1 +1 12 1}
II1U 12U13 1

(3.4.4)

(3.4.5)

NI -N2

I I/U I2U I31

1
N1-N2

	,if 	/■/2
3 1 I,UI1

1 I/
n 	. 	< N2 	1- 111' 111-31 ifN <N

2

N,
	,if N I _>1■12
II,r1/3 1 (3.4.7)

Efficient clustering of databases induced by local patterns 	3.56 Chapter 3.4

(a) 	(b) 	(c) 	(d)

Figure 3.4.1. Simplification using Venn diagram

Let the number of elements in the shaded regions of Figures 3.4.1(c) and 3.4.1(d) be N1

and N2, respectively. Then the expression (3.4.5) becomes

N,- N2

U 12U -131'

if N

1

> N

	

2 	
(case 1)

1 	
II n1 	,if N, <N2 	(case 2)

I /, U12 U13 1

In case 1, the expression remains the same. In case 2, a positive quantity 41 n 13 has been

put in place of a negative quantity N1-N2. Thus, the expression (3.4.6) is

(3.4.6)

l- 1/1 n13 1 if N
2 , where, N1 =I1, n IZ n /3 I s I I, n/31

1 3
I
,if N,<N2

(3.4.8)

Therefore, irrespective of the relationship between N1 and N2, diStAD 1, D2, a) + diSt ADZ,

D3, a) > dist AD , D3, a). Thus, dist, satisfies the triangular inequality. •

We shall also show that dist2 satisfies the metric properties.

Theorem 3.4.4. dist2 is a metric over [0, 1].

Proof. We show that dist2 satisfies the triangular inequality. Other properties of a metric

follow from Theorem 3.4.2.

> X Eli - 12 	 xe1 2 - 1, 1 3 	 SE/ 3 -1 2

	

Imaxi2(x) 	 E max23 (x)
xel 2 U13 xel ,U1 2

(3.4.11)

Chapter 3.4
	

Efficient clustering of databases induced by local patterns 	3.57

Eminimum{supp(x, 	supp(x, D2)} 	min , 2 (x)
xel,f11 2 	 dist 2 (DI , D2 ,a) = 1- 	 1_ XE I n 	(3.4.9)
E rnaximum(supp(x, 	supp(x, D2)} 	E max 12(x)

xel,U12 	 xel, u],

where, max,./(x) = maximum{ supp(x, D,), supp(x, D I) }, and min u(x) = minimum{ supp(x,

D,), supp(x, Di) }, for i j. Also, let max123(x) = maximum{ supp(x, 	supp(x, D2),

supp(x, D3) }, and min 123(x) = minimum{ supp(x, D1), supp(x, D2), supp(x, D 3) }.

Thus, dist2(D j , D2, a) + diSt2(D2, D3, a)

E max, 2 (x) - Emin, 2 (x) 	E max23 (x) - Emin 23 (x)
XEI,U 12 	 xelin 1 2 	xel 2 U13 	 xe1 2 fv, 	 (3.4.10)

	

Imax 12 (x) 	 Imax2,(x)
xEi 	 x e /2 U/3

E max 12 (x) + Imax 12 (x) 	E max 23 (x) + Emax23 (x)

• max 12(x) + E max 12 (x) + E max 23 (x) + Imax 23 (x)

> 	 xE,2 _,, 	xe,,- / 3 	.E1 3 _1 2
E max 123 (X)

xel l UI,U1,

(3.4.12)

(a)
	

(b) 	(c) 	(d)

Figure 3.4.2. Simplification using Venn diagram

Using the simplification performed in Figure 3.4.2, the expression (3.4.12) becomes

E max, 23 (x)- N,+ N 2
xel,U121.113

I max , 23 (x)
	 (3.4.13)

where, N1 and N2 are the value of 	max 123 (x) over the shaded regions of Figures
x

3.4.2(c) and 3.4.2(d), respectively. The expression (3.4.13) is equal to

- N2

Emcanix)
xe,,u,u13

Emax] 23(X)
xEl lUI2U13

N -N 1 2 	, if NI <N2

EmaxI23 (X)

XE11U12U13

,ifN,

Chapter 3.4 	Efficient clustering of databases induced by local patterns 	3.58

E max,3 (x)
XEi n /3 	, if 	N

E maxi, (x)
„E,,u /2u 1 3 	 (3.4.14)

E max, 3 (x)
n 	, if N, <N2

E max123(x)
rEI,u12 u1 3

Therefore, irrespective of the relationship between N1 and N2, diStAD 1, D2, a) + dist2(D2,

D3, a)> dist2(D I, D3, a). Thus, dist2 satisfies the triangular inequality. •

Given a set of databases, the similarity between pairs of databases could be expressed by

a square matrix, called database similarity matrix (DSM). We define DSM of a set of

databases as follows.

Definition 3.4.4. Let D = (Di, D2, ..., Dn } be the set of all databases. The database

similarity matrix DSMk of D using the measure of similarity simi k , is a symmetric square

matrix of size n by n, whose (i, j)-th element DSMik'' (D, a) = simik(D„ 4, a); for D„

ED, and i,j = 1, 2, ..., n, (k= 1, 2). •

For n databases, there are nC2 pairs of databases. For each pair of databases, we compute

similarity between them. If the similarity is high then the databases may be put in the

same class. We define a class as follows.

Definition 3.4.5. Let D = {Di, D2, ..., Dri }. A class class 6k formed at the level of

similarity 8 under the measure of similarity simik , is defined as

simi k (A,B,a,for A,BEP
class:(D,a)={ 	

W
	 ,(k=1,2). •
P:PcD,IPI=1

A DSM could be viewed as a complete weighted graph. Each database forms a vertex. An

weight of an edge is the similarity between the pair of concerned databases. Let D=

D2, ..., a} be the set of all databases. During the process of clustering, we assume that

the databases DI, D2, ..., Dr have been included in some classes, and the remaining

databases are yet to be clustered. Then the clustering process forms the next class by find-

Chapter 3.4
	

Efficient clustering of databases induced by local patterns 	3.59

ing a maximal complete sub-graph of the complete weighted graph containing vertices

DH-1, Dr+2, • • Dn . A maximal complete sub-graph is defined as follows.

Definition 3.4.6. An weighted complete sub-graph g of a complete weighted graph G is

maximal at the similarity level 8 if the following conditions are true: (i) The weight of

every edge of g is greater than or equal to a (ii) The addition of one more vertex (i.e., a

database) to g leads to the addition of at least one edge to g having weight less than 8. •

We need to find out a maximal weighted complete sub-graph of the complete weighted

graph of the remaining vertices to form the next class. This process continues till all the

vertices are clustered. A clustering of databases could be defined as follows.

Definition 3.4.7. Let D be a set of databases. Let ir k̀) (D, a) be a clustering of databases in

D at the similarity level 8 under the similarity measure simile. Then, trk° (D, a) = {X: XE

p(D), and Xis a class ak (D, a)}, where p(D) is the power set of D, (k = 1, 2). •

During the clustering process one may like to impose the restriction that each database

belongs to at least one class. This restriction makes a clustering complete. We define a

complete clustering as follows.

Definition 3.4.8. Let D be a set of databases. Let 7T 6k (D, a) = IC ka 1 (D, a), C k 2 (D, a), ...,

C 6km (D, a)}, where Co (D, a) is the i-th class of 7ek , for i = 1, 2, ..., m. 7r6k is complete,

if U',"= , D, (k = 1, 2). •

In a complete clustering, two classes may have a common database. One may be

interested in finding out a clustering of mutually exclusive classes. A mutually exclusive

clustering could be defined as follows.

Definition 3.4.9. Let D be a set of databases. Let 7r 6k (D, a) = 	k6 1 (D, a), C 6k2 (D, a), ...,

km 	 k (D, a)} , where C ° i (D a) is the i-th class of 7l"k 	 i for i = 1, 2, ..., m. k is mutually

exclusive if C,(D, a) n C i (D, a) = 0, for i #j, 1 i,j m, (k = 1, 2). •

Chapter 3.4
	

Efficient clustering of databases induced by local patterns 	3.60

One may be interested in finding out such a mutually exclusive and complete clustering.

A partition of a set of databases is defined as follows.

Definition 3.4.10. Let D be a set of databases. Also, let 7-r6i, (D, a) be a clustering of

databases in D at the similarity level Sunder the similarity measure sirnik . If gka (D, a) is a

mutually exclusive and complete clustering then it is called a partition (k = 1, 2). •

Definition 3.4.11. Let D be a set of databases. Also, let n (D, a) be a partition of D at

the similarity level 8 under the similarity measure simik. 7rk (D, a) is called a non-trivial

partition if 1 <174, I < n (k = 1, 2). •

A clustering is not necessarily be a partition. In the following example, we wish to find

partitions (if they exist) of a set of databases.

Example 3.4.4. With reference to Example 3.4.2, consider the set of databases D = {Di ,

D2, ..., D7 }. The corresponding DSM2 is given as follows.

	

1.0 	0.780 0.539 0.0 	0.0 	0.0 	0.0

	

0.780 1.00 0.636 0.0 	0.0 	0.0 	0.0

	

0.539 0.636 1.0 	0.061 0.0 	0.0 	0.0

	

DSM2(D, 0.35) = 0.0 	0.0 0.061 1.0 0.063 0.065 0.087

	

0.0 	0.0 	0.0 	0.063 1.0 	0.641 0.353

	

0.0 	0.0 	0.0 	0.065 0.641 	1.0 	0.444

	

0.0 	0.0 	0.0 0.087 0.353 0.444 1.0

We arrange all non-zero and distinct DSilfif (D, 0.35) values in non-increasing order, for

1 i < j 7. The arranged similarity values are given as follows: 0.780, 0.641, 0.636,

0.539, 0.444, 0.353, 0.087, 0.065, 0.063, 0.061. We get many non-trivial partitions at

different similarity levels. At similarity levels 0.780, 0.641, 0.539, and 0.353, we get non-

trivial partitions as 4 780 = { {D1, D2}, {D 3 }, {D 4 }, {D5}, {D 6 }, {D 7} },

D2}, {D 3 }, {D 4 }, {D5, D 6 }, {D7} 1, R-02 539= { {D1, D2, D3} , {D 4}, {D5, D6}, {D 7 } }, and

7r
 .353

= {D 1 , D2, D3}, {D4 }, {D5, D6, D7} }, respectively. • 2

0.641 7.1. 2 	{

Chapter 3.4
	

Efficient clustering of databases induced by local patterns 	3.61

Our BestDatabasePartition algorithm (as presented in Section 3.4.4.1) is based on binary

similarity matrix (BSM). We derive binary similarity matrix BSMk from the

corresponding DSMk (k = 1, 2). BSMk is defined as follows.

Definition 3.4.12. The (i, j)-th element of the binary similarity matrix BSMk at the

similarity level 6 using the similarity measure simik is defined as follows.

{1, if simik (R, D i , a) __ 6
BSM k''' (D, a, 5) = 	 , for i,j = 1, 2, ..., n (k = 1, 2). •

0, otherwise

We take an example of BSM2 and observe the distribution of Os and ls.

Example 3.4.5. With reference to Example 3.4.4, the BSM2 at similarity level 0.353 is

given below.

BSM2(D, 0.35, 0.353) =

1

1

1

0

0

0

0

1

1

1

0

0

0

0

1

1

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

1

1

0

0

0

0

1

1

1

0

0

0

0

1

1

1

, where D = D2, ..., D71.•

There may exist two same partitions at two distinct similarity levels. Two partitions are

distinct if they are not the same. In the following, we define two same partitions at two

distinct similarity levels.

Definition 3.4.13. Let D be a set of databases. Let C c D, and C # 0. Two partitions

r (D, a) and Ica (D, a) are the same, if the following statement is true: CE a-k6' if and

only if CE z62 , for gi # 82. •

We would like to enumerate the maximum number of possible distinct partitions. In

Theorem 3.4.5, we find the maximum number of possible distinct partitions of a set of

databases [6].

Chapter 3.4
	

Efficient clustering of databases induced by local patterns 	3.62

Theorem 3.4.5. Let D be a set of databases. Let m be the number of distinct non-zero

similarity values in the upper triangle of DSM2. Then the number of distinct partitions is

less than or equal to m.

Proof. We arrange the non-zero similarity values of the upper triangle of DSM2 in non-

increasing order. Let 81 , 82, ..., 6, be m non-zero ordered similarity values. Let 6,, 6H: 1 be

two consecutive similarity values in the sequence of non-increasing similarity values. Let

x, ye [8, , 5H-1), for some i = 1, 2, ..., m, where 6,7,+1 = 0. Then BSM2(D, a, x) = BSM2(D,

a, y). Thus, there exists at the most one distinct non-trivial partition in the interval [6, ,

(5,+1), for i = 1, 2, ..., m. We have m such semi-closed intervals [8, , 8,4-1), for i = 1, 2, • • • ,

m. The theorem follows. •

For the purpose of finding partitions of the input databases, we shall first design a simple

algorithm that uses apriori property [13]. The similarity values considered here are based

on simi2 . Initially, we have n database classes, where n is the number of databases. At this

time, each class contains a single database object. These classes are assumed at level 1.

Based on the classes at level 1, we construct database classes at level 2. At level 1, we

assume that the i-th class contains database Di, for i = 1, 2, ..., n. i-th class and j-th class

of level 1 could be merged if simi2(D„ DI) > g, where g is the user defined level of

similarity. We proceed further until no more classes could be generated and no more

levels could be generated. The algorithm [6] is presented below.

Algorithm 3.4.1. Partitions (if they exist) of a set of databases using apriori property.

procedure AprioriDatabaseClustering (n, DSM2)

Input: n, DSM2

n: number of databases, DSM2: database similarity matrix

Output: Partitions (if they exist) of input databases

1: sort all the non-zero values that exist in the upper triangle of DSM2 in non-increasing

2: order into an array called simValues; let the number of non-zero values be m;

3: let k = 1; let simValues(m+l) = 0; let delta = simValues(k);

Chapter 3.4
	

Efficient clustering of databases induced by local patterns 	3.63

4: while (delta> 0) do

5: construct n classes, where each class contains a single database; // level: 1

6: repeat line 7 until no more level could be generated;

7: construct all possible classes at level (i +1) using lines 8-10; // level: i +1

8: let A and B be two classes at the i-th level such that IA n B1 = i -1 ;

9: let a E (A-B), and b E (B-A);

10: if DSAfi h > S then construct a new class A U B; end if

11: repeat line 12 from top level to level 1;

12: for each class at the current level do

13: if all databases of the current class are not included a class generated earlier then

14: generate the current class;

15: end if

16: end for

17: if the current clustering is a partition then store it; end if

18: increase k by 1; let delta = simValues(k);

19: end while

20: display all the partitions;

end procedure

Lines 1-2 take 0(m x log(m)) time to sort m data. While-loop at line 4 executes m times.

Line 5 takes 0(n) time. Initially (at line 5), n classes are constructed. At the first iteration

of line 6, the maximum number of classes generated is nC2. At the second iteration, the

maximum number of classes generated is nC3. Lastly, at the (n-1)-th iteration, the

maximum number of classes generated is "G. Thus, the maximum number of possible

classes is 0 (E n=i n CI), i.e., 0(2"). Let p be the average size of a class. Line 8 takes 0(p)

time. Also, line 11 takes 0(2") time, since the maximum number of possible classes is

0(2"). Thus, the time complexity of lines 4-19 is 0(m x p x 2"). The line 20 takes time

0(m x n), since the maximum number of partitions is m. Thus, the time complexity of the

Chapter 3.4
	

Efficient clustering of databases induced by local patterns 	3.64

procedure AprioriDatabaseClustering is maximum {O(m x log(m), O(m x p x 2"), O(m x

n)} , i.e., O(m x p x 2"), since p x 2'1 > 2" > n2 > m > log2(m), for p > 1 and n > 4. The

AprioriDatabaseClustering algorithm generates all possible classes level-wise. It is a

simple but not an efficient clustering technique, since the time-complexity of the

algorithm is an exponential function of n.

In Theorems 3.4.6, 3.4.7, 3.4.8, and 3.4.9, we discuss some properties of BSM2.

Theorem 3.4.6. Let D = {DI, D2, ..., D,„}. Let 7C 62 (D, a) be a clustering of databases in D

at the similarity level 6 7r 62 is a partition if and only if the corresponding BSM2 gets

transformed into the following form by inter-changing jointly a row and the

corresponding column with another row and the corresponding column.

U

0

0

0 	...

U 2

0

0

0

U

, U1 is a matrix of size n, x n b containing all elements as 1,

Em n =n 171-a
= m. =1 	, 	2

	

Proof. Let { 	 } be the i-th database class of the partition at the

similarity level 8, for i = 1, 2, ..., m. The row corresponding to D of BSM2 corresponds

to a unique combination of Os and 1s, for j = 1, 2, ..., n,. Similarly, the column

corresponding to Di., of BSM2 corresponds to a unique combination of Os and ls, for j =

1, 2, ..., n,. All such n, rows and columns may not be consecutive initially, for i = 1, 2,

m. We shall keep these n, rows and columns consecutive, for i = 1, 2, ..., m. Initially,

we keep n 1 rows and the corresponding columns of the first database class consecutively.

Then, we keep n2 rows and the corresponding columns of the second database class

consecutively, and so on. In general, to fix the matrix U, at the proper position, we

interchange jointly ((1,-1 nj + k)-th row and (E 11 -1 nj + k)-th column with D k -th row and

D ik -th column of BSM2, for 1 S k 5 n„ for i = 1, 2, • • •, m• •

Chapter 3.4
	

Efficient clustering of databases induced by local patterns 	3.65
4+-

With reference to BSM2 in Example 3.4.5, we apply Theorem 3.4.6, and conclude that a

partition exists at similarity level 0.353.

Theorem 3.4.7. Let D be a set of databases. Let Al (D, a) be a clustering of databases in

D at the similarity level 6 Let { 	D 12 , ..., 	} be the i-th database class of 74 (D,

a). Then D ik -th row (or, D ik -th column) of BSM2 contains n, I s, for k = 1, 2, ..., n„ i = 1,

2, ..., 	71-62.

Proof. If possible, let D'k -th row or, D ik -th column has (n, +1) ls. Then D ik -th database

would belong to two database classes. It contradicts mutually exclusiveness of classes of

a partition. If possible, let D ik -th row or, D 'k -th column contains (n,-1) ls. It contradicts

the fact that BSM 2 ' . = 1 for j =1, 2, ..., n„ and j # k. •

Theorem 3.4.8. Let D be a set of databases. Let 74 (D, a) be a clustering of databases in

D at the similarity level 6 Then, the rank of the corresponding BSM 2 is 71- 2

Proof. Let { , D I2 D in, } be the i-th database class of 77'62

, 	for 	D', Eolk E 	Di] , D 2 ' ,..., DI , }

. Then,

BSM 2 .1);̀ D, , for D; E 	D , 	D:} and 	D;

0 , for 	D ji 	{ D 	, D'2 ,..., 	} and 	D; E

{ D;

, D;

 D'n, }

, 	Din, I

The row corresponding to D 'j of BSM2 corresponds to a unique combination of Os and

1s, for j = 1, 2, ..., n,. So, all the rows of BSM2 are divided into 121- 2 I groups such that all

the rows in a group correspond to a unique combination of Os and 1 s. Thus, BSM2 has

171.82 I independent rows. •

Theorem 3.4.9. Let D = {DI, D2, ..., Dn }. At a given value of the triplet (D, a, 6), there

exists at the most one partition of D.

Proof. At a given value of the pair (D, a), the element DSMy is unique, for i, j = 1, 2,

n. Thus, at a given value of the tuple (D, a, b) the element BSMy is unique, for i,j =

Chapter 3.4
	

Efficient clustering of databases induced by local patterns 	3.66

1, 2, ..., n. There exists a partition if the BSM2 gets transformed into a specific form (as

mentioned in Theorem 3.4.6), by inter-changing jointly a row and the corresponding

column with another row and the corresponding column. Hence, the theorem follows. •

3.4.4.1 Finding the best non-trivial partition

We return back to Example 3.4.4. We observe that at different similarity levels there may

exist different partitions. We have observed the existence of four non-trivial partitions.

We would like to find the best partition among these partitions. The best partition is

based on the principle of maximizing the intra-class similarity and maximizing the inter-

class distance. The intra-class similarity and inter-class distance are defined as follows.

Definition 3.4.14. The intra-class similarity intra-sim of a partition r at the similarity

level B using the similarity measure simi2 is defined as follows:

intra — sim(n-62) = simi2 (D. 	a).• p

Ce4 D; ,D1 EC; i<j

Definition 3.4.15. The inter-class distance inter-dist of a partition at the similarity level

g using the similarity measure simi2 is defined as follows:

inter — dist(ir) = I dist2 (D„ Di , a). •
cp ,cq .765; p<q Di E Cp ; Di ECq ;i<j

The best partition among a set of partitions is selected on the basis of goodness value of a

partition. The goodness measure goodness of a partition is defined as follows.

Definition 3.4.16. The goodness of a partition n- at similarity level g using the similarity

measure simi2 is defined as follows: goodness(g62) = intra-sim(7-4) + inter-dist (n-62) -

Ircb2 j , where I n-a2 I is the number classes in 7r. •

We have subtracted I711 from the sum of intra-class similarity and inter-class distance to

remove the bias of goodness value of a partition. Higher the value of goodness, better is

Chapter 3.4
	

Efficient clustering of databases induced by local patterns 	3.67
a.-

the partition. Now, we would like to partition the set of databases D using the proposed

goodness measure.

Example 3.4.6. With reference to Example 3.4.4, we would like to calculate the

goodness value of each of the non-trivial partitions using simi2.

intra-sim(z°, 353) = 3.185, inter-dist(g° 353) = 15.276, 170.353 1 = 3, and goodness(4 353) =

15.461. intra-sim(7e2 539) = 2.596, inter-dist(g° 539) = 16.666, 1 74 539
1 = 4, and

goodness(71-°2 539) = 15.262. intra-sim(a-20 641 =

	

) 	1.421, inter-dist(7r°2 641) = 17.491, 171.02 641

5, and goodness(

	

0 	=
1TC 2

780
 1 6 , and goodness(z0 780 =

) 	11.898.

The goodness value corresponding to the partition 74 353 is the maximum. Thus, the

partition 21-°2 353 = { {Di, D2, D3}, {D 4 }, {D5, D6, D7} is the best among all the non-trivial

partitions. Let us look back into the databases of Example 3.4.2. We find that the

partition g C12 353 matches the ground reality best among the partitions reported. •

We shall now present an algorithm [6] for finding the best non-trivial partition of a set of

databases.

Algorithm 3.4.2. Best non-trivial partition (if it exists) of a set of databases.

procedure BestDatabasePartition (n, DSM2)

Input: n, DSM2

n: number of databases, DSM2: database similarity matrix

Output: The best partition (if it exists) of input databases

1: sort all the non-zero values that exist in the upper triangle of DSM2 in non-increas-

2: ing order into an array called simValues; let the number of non-zero values be m;

3: let k = 1; let simValues(m + 1) = 0; let delta = simValues(k);

4: while (delta > 0) do

5: for i = 1 to n do class(i) = 0; end for

71.02 641 =) 	13.912. intra-sim(n-°2 7") = 0.780, inter-dist(g°2 780) = 17.118,

Chapter 3.4
	

Efficient clustering of databases induced by local patterns 	3.68

6: construct the BSM2 at current level of the similarity delta;

7: let currentClass = 1; let currentRow = 1; let class(1) = currentClass;

8: for col = (currentRow + 1) to n do

9: if (Bsm c2urrentRow,c0/ = 1) then

10: if (class(col) = 0) then class(col) = currentClass;

11: else if (class(col) # currentClass) then go to line 24; end if

12: end if

13: end if

14: end for

15: let i = 1; let class(n +1) = 0;

16: while (class(i) # 0) do increase i by 1; end while

17: if (i = n +1) then

18: store the content of array class and current similarity level delta;

19: else

20: increase currentRow by 1;

21: if (class(currentRow)= 0) then increase currentClass by 1; end if

22: go to line 8;

23: end if

24: increase k by 1; let delta = simValues(k);

25: end while

26: for each non-trivial partition do

27: calculate the goodness value of the current partition;

28: end for

29: return the partition whose goodness value is the maximum;

end procedure

We have sorted all non-zero values in the upper triangle of DSM2 in non-increasing order

at step 1. Thus, the algorithm checks the existence of a partition starting with the

maximum of all the similarity values. At line 5, we initialize the class label of each data-

Chapter 3.4
	

Efficient clustering of databases induced by local patterns 	3.69

base to 0. The algorithm starts forming a class with DI (the first database) as the variable

currentRow is initialized with 1. Also, class label starts with 1 as the variable

currentClass is initialized with 1. Lines 8-14 are used to check the similarity of Dcurren1Row

with other databases. If the condition at line 9 is true then databases DcurrenIRow and Dcor

are similar. At line 10, Dc01 is put in the currentClass if it is still unlabelled. If Dcw is

already labeled with a class label not equal to current class label then Dc01 get another

label. Thus, partition does not exist at the current similarity level. Some useful

explanations of the algorithm are given in Theorem 3.4.10.

Line 1 takes 0(m x log(m) time. Line 3 repeats for m times. Line 6 constructs BSM2 in

0(n2) time as the order of BSM2 is n x n. Each of lines 5 and 16 takes 0(n) time. For-loop

at line 8, repeats maximum n times. Line 18 takes 0(n) time, since the time required to

store a partition is 0(n). Thus, the time complexity of lines 4-25 is 0(m x n2). Therefore,

the time complexity of the procedure best-database-partition is maximum { 0(m x

log(m), 0(m x n2) }, i.e., 0(m x n2), since n2 > m> log2(m).

Our BestDatabasePartition algorithm performs better than the BestClassification

algorithm [83]. BestClassification algorithm has the following drawbacks: (i) Step value

for assigning the next similarity level is user-input. Thus, it fails to find the exact

similarity level at which a partition exists. (ii) The algorithm BestClassification calls

procedure GreedyClass [83] at different places. There is a mistake in the procedure

GreedyClass. The following example shows that the procedure GreedyClass fails to

construct the correct classes at a given level of similarity.

Example 3.4.7. A multi-branch company has four branch databases D1, D2, D3, and D4.

Let D = {D1, D2, D3, D4}, and a = 0.05. Assume that the corresponding DSM2 has the

following form.

DSM2(D, 0.05) =

1.0 0.1 0.1 0.4

	

0.1 	1.0 	0.1 	0.1

	

0.1 	0.1 	1.0 	0.5

0.4 0.1 0.5 1.0

Chapter 3.4
	

Efficient clustering of databases induced by local patterns 	3.70

At the similarity level 0.3, we should get clustering as {{D,, D4}, {D2}, {D 3, D4 }1. But,

the GreedyClass procedure generates clustering as { {D I , D4}, {D2, D4}, {D3, D 4 } }. The

class {D 2 , D4} should not be formed, since simi2(D2, D4, 0.05) < 0.3. o

The proposed BestDatabasePartition algorithm reports the exact similarity level at

which a partition exists. Also, the algorithm works faster, since it is required to check for

the existence of partitions only at m similarity levels. In Theorem 3.4.10, we prove that

the proposed algorithm works correctly.

Theorem 3.4.10. Algorithm BestDatabasePartition works correctly.

Proof. Let D = {D1, D2, ..., D„}. Let there are m distinct non-zero similarity values in the

upper triangle of DSM2. Using Theorem 3.4.5, we could conclude that the maximum

number of partitions of D is m at a given value of pair (D, a). While-loop at line 4 checks

for the existence of partitions at m similarity levels. At each similarity level, we get a new

BSM2. The existence of a partition is determined from the BSM2 . We have an array class

that stores the class label given to each database under the current level of similarity. In a

partition, each database has a unique class label. The existence of a partition is checked

based on the principle that every database receives a unique class label. As soon as we

find that a labeled database receives another class label, we conclude that a partition does

not exist at the current level of similarity delta (at line 11). Initially, we put the class label

0 to all databases using line 5. Then, we start from the row 1 of BSM2 that corresponds to

database D1 . Thus, D1 is kept in the first database class. If there is a 1 in the j-th column

of BSM2, then we put class label of p, as 1 using line 10. We find a database D, that has

not been clustered yet using lines 15-16. Then, we start at row i of BSM2. If there is a 1 in

the j-the column of row i, then we put database pi in the current class. Thus, the

algorithm BestDatabasePartition works correctly. 0

3.4.4.2 Efficiency of clustering technique

The proposed clustering algorithm is based on the similarity measure simi2. Also, the

similarity measure simi2 is based on supports of the frequent itemsets in databases. If we

Chapter 3.4
	

Efficient clustering of databases induced by local patterns 	3.71

vary the value of a then the number of frequent itemsets in a database varies. The

accuracy of similarity between two databases increases as the number of frequent

itemsets increases. Therefore, a clustering process would be more accurate at a smaller

value of a. The frequent itemsets participate in the clustering process is limited by main

memory. If we can store more frequent itemsets in main memory then simi2 could

determine similarity between two databases more accurately. Thus, the clustering process

would be more accurate. This limitation begs a space efficient representation of the

frequent itemsets in main memory. For this purpose, we propose a coding for

representing frequent itemsets space efficiently. The coding allows more frequent

itemsets to participate in determining the similarity between two databases.

3.4.4.2.1 Space efficient representation of frequent itemsets in different branch databases

In this technique, we represent each frequent itemset using a bit vector. Each frequent

itemset has three components: database identification, frequent itemset, and support. Let

the number of databases be n. There exists an integer p such that 2P - < n 2P. Then p bits

are enough to represent a database. Let k be the number of digits after the decimal point

to represent support. Support value 1.0 could be represented as 0.99999, for k = 5. If we

represent the support s as an integer d containing of k digits then s = d x104. The number

digits required to represent a decimal number could be obtained by Theorem 3.4.11.

Theorem 3.4.11. A p-digit decimal number can be represented by a Fp x log2101 -digit

binary number.

Proof. Let t be the minimum number of binary digits required to represent a p-digit

decimal number x. Then x < 10P < 2`. So, t > p x log2 10, since logic(y) is a monotonic

increasing function of y, for k> 1. Thus, we find the minimum integer t for which x < 2'

is true as Fp x log2101. •

The proposed coding is described with the help of Example 3.4.8.

Example 3.4.8. We refer to Example 3.4.2. Sorted the frequent itemsets on number of

extractions in non-increasing order are given as follows: (h, 4), (a, 3), (ac, 3), (c, 3), (hi,

Chapter 3.4
	

Efficient clustering of databases induced by local patterns 	3.72

3), (i, 3), (ae, 2), (e, 2), (i j, 2), (ab, 1), (b, 1), (d, 1), (df, 1), (ef, 1), (f, 1), (fh, 1), (g, 1), (gi,

1), (j, 1). (X, p) denotes itemset X having number of extractions ,u. We code these

frequent itemsets left to right. These frequent itemsets are coded using a technique similar

to Huffman coding [43]. We attach code 0 to itemset h, 1 to itemset a, 00 to itemset ac,

01 to itemset c, etc. Itemset h gets a code of minimal length, since it has been extracted

maximum number of times. We call this coding as itemset (IS) coding. It is a lossless

coding [67]. IS coding and Huffman coding are not the same, in the sense that an IS code

may be a prefix of another IS code. Coded itemsets are given as follows: (h, 0), (a, 1),

(ac, 00), (c, 01), (hi, 10), (i, 11), (ae, 000), (e, 001), 010), (ab, 011), (b, 100), (d, 101),

(df, 110), (ef, 1111), (f, 0000), (fh, 0001), (g, 0010), (gi, 0011), (j, 0100). (X, v) denotes

itemset X having IS code v. •

3.4.4.2.2 Efficiency of IS coding

Using the above representation of the frequent itemsets, one could store more frequent

itemsets in the main memory during the clustering process. Thus, it enhances the

efficiency of the clustering process.

Definition 17. Let there are n databases DI, D2, ..., Dn . Let S T (U", =1 F/S(D,)) be the

amount of storage space (in bits) required to represent 	F/S(D,) by a technique T. Let

Snim (1.-*J ni = 1 FIS (0 be the minimum amount of storage space (in bits) required to

represent U7 =1 F/S(D,). Let T, K, and 2 denote a clustering algorithm, similarity measure,

and computing resource under consideration, respectively. Let T'be the set of all frequent

itemset representation techniques. We define efficiency of a frequent itemset

representation technique T at a given value of triplet (r, x , 2) as follows.

6(TI r, K, 2) = S „„n (U"=, FIS(D,))/ S 7 	FIS(I),)), for T E F. •

One could store an itemset conveniently using the following components: database

identification, items in the itemset, and support. Database identification, an item and a

Chapter 3.4
	

Efficient clustering of databases induced by local patterns 	3.73

support could be stored as a short integer, an integer and a real type data, respectively. A

typical compiler represents a short integer, an integer and a real number using 2 bytes, 4

bytes and 8 bytes, respectively. Thus, a frequent itemset of size 2 could consume (2 + 2 x

4 + 8) x 8 bits, i.e. 144 bits. An itemset representation may have an overhead of indexing

frequent itemsets. Let 0I(T) be the overhead of indexing coded frequent itemsets using

technique T.

Theorem 3.4.12. IS coding stores a set of frequent itemsets using minimum storage

space, if 0I(15 coding) 0I(T), for T E T.

Proof. A frequent itemset has three components, viz., database identification, itemset,

and support. Let the number of databases be n. Then, 2P-I < n 5 2", for an integer p. We

need minimum p bits to represent a database. The representation of database

identification is independent of the corresponding frequent itemsets. If we keep k digits to

store a support then Fk x log2 101 binary digits are needed to represent a support (as

mentioned in Theorem 3.4.11). Thus, the representation of support becomes independent

of the other components of the frequent itemset. Also, the sum of all IS codes is the

minimum because of the way they are constructed. Thus, the space consumed by IS

coding for representing a set of frequent itemsets is the minimum. •

Thus, the efficiency of a frequent itemset representation technique T could be expressed

as follows:
1.5 	Ay_ coding

	MOW S T (U7, 1 FIS(D)), provided 0/(IS coding) 0I(T),

for T e T. 	 (3.4.15)

If the condition in (3.4.15) is satisfied, then IS coding performs better than any other

techniques. If the condition in (3.4.15) is not satisfied, then IS coding performs better

than any other techniques in almost all cases. The following corollary is derived from

Theorem 3.4.12.

Chapter 3.4
	

Efficient clustering of databases induced by local patterns 	3.74

Corollary 3.4.1. Efficiency of IS coding is maximum, if 0I(IS coding) S OAT), for T E 17

Proof. g(IS coding I r, K,),) = 1.0. •

IS coding maintains an index table to decode/search a frequent itemset. In the following

example, we compute the amount of space required to represent the frequent itemsets

using an ordinary method and IS coding.

Example 3.4.9. With reference to Example 3.4.8, there are 35 frequent itemsets. Among

them, there are 20 itemsets of size 1 and 14 itemsets of size 2. Thus, an ordinary method

could consume (112 x 20 + 144 x 15) bits, i.e., 4400 bits. The amount of space required

to represent frequent itemsets in seven databases using IS coding is equal to P + Q bits,

where P is the amount of space required to store frequent itemsets, and Q is the amount

of space required to maintain the index table. Since there are seven databases, we need 3

bits to identify a database. The amount of memory required to represent the database

identification for 35 frequent itemsets is equal to 35x3 bits = 105 bits. Suppose we keep 5

digits after the decimal point for a support. Thus, F5 x log 2(10)1 bits, i.e., 17 bits are

required to represent a support. The amount of memory required to represent the supports

of 35 frequent itemsets is equal to 35 x 17 bits = 595 bits. Let the number of items be

10000. Therefore, 14 bits are required to identify an item. The amount of storage space

would require for itemsets h and ac are 14 bits and 28 bits, respectively. To represent 35

frequent itemsets, we need (20 x 14 + 15 x 28) bits = 700 bits. Thus, P = (105 + 595 +

700) bits = 1400 bits. There are 19 frequent itemsets. Using IS coding, 19 frequent

itemsets consume 54 bits. To represent 19 frequent itemsets, we need 14 x 10 + 28 x 9

bits, i.e., 392 bits. Thus, Q = 392 + 54 = 446 bits. The total amount of memory space

required (including the overhead of indexing) to represent frequent itemsets in 7

databases using IS coding is equal to P + Q bits, i.e., 1846 bits. The amount of space

saving in compared to an ordinary method is equal to 2554 bits, i.e., 58% approximately.

Chapter 3.4
	

Efficient clustering of databases induced by local patterns 	3.75

A technique without optimization (TWO) may not maintain index table separately. In this

case, 0/(TWO) = 0. In spite of that, IS coding performs better than a TWO in most of the

cases. •

Finally, we claim that our clustering technique is more accurate. There are two reasons

for this claim: (i) We propose more appropriate measures of similarity than the existing

measures. Thus, the similarity between two databases is estimated more accurately. (ii)

Also, the proposed IS coding enables us to mine local databases further at a lower level

of a to accommodate more frequent itemsets in main memory. As a result, more frequent

itemsets could participate in the clustering process.

3.4.5 Experiments

We have carried out several experiments to study the effectiveness of our approach. All

the experiments have been implemented on a 1.6 GHz Pentium processor with 256 MB

of memory, using visual C++ (version 6.0) software. We present experimental results

using two synthetic databases, and one real database. The synthetic databases

T1014D1OOK [34] and T40I10D1OOK [34] have been generated using synthetic database

generator from the IBM Almaden Quest research group. The real database BMS-Web-

Wiew-1 [47] could be found from KDD CUP 2000. We present some characteristics of

these databases in Table 3.4.1. Let NT, ALT, AFI, and NI denote the number of

transactions, the average length of a transaction, the average frequency of an item, and

the number of items in the database (DB), respectively.

Table 3.4.1. Database characteristics

DB N T ALT AFI NI

T10I4D100K (TI) 1,00,000 11.102280 1276.124138 870

T40110D100K (T4) 1,00,000 40.605070 4310.516985 942

BMS-Web-Wiew-1 (131) 1,49,639 2.000000 155.711759 1922

Chapter 3.4
	

Efficient clustering of databases induced by local patterns 	3.76

Each of the above databases is divided into 10 databases for the purpose of carrying out

experiments. The databases obtained from T10I4D100K, and T40110D1OOK are named as

Tij, and T4j, respectively, for j = 0, 1, ..., 9. The databases obtained from BMS-Web-

Wiew-1 are named as B ij, for j = 0, 1, ..., 9. The databases Tu and Bij are called input

databases, for i = 1, 4, and j = 0, 1, ..., 9. Some characteristics of these input databases

are presented in the Table 3.4.2.

Table 3.4.2. Input databse characteristics

DB N T ALT AFI NI DB N T ALT AFI NI

T10 10000 11.05500 127.65589 866 T15 10000 11.13910 128.62702 866

T11 10000 11.13330 128.41177 867 T16 10000 11.10780 128.56250 864

T12 10000 11.06700 127.64706 867 T17 10000 11.09840 128.45370 864

T13 10000 11.12260 128.43649 866 T18 10000 11.08150 128.55568 862

T14 10000 11.13670 128.74798 865 T19 10000 11.08140 128.10867 865

7'40 10000 40.56710 431.56489 940 T45 10000 40.50630 430.46015 941

T41 10000 40.58240 432.18743 939 T46 10000 40.74350 433.44149 940

T42 10000 40.63190 431.79490 941 T47 10000 40.62380 431.70882 941

T43 10000 40.62690 431.74176 941 T48 10000 40.52810 431.15000 940

7'44 10000 40.66110 432.56489 940 7'49 10000 40.57960 432.15761 939

B 1 0 14000 2.0000 14.94130 1874 B15 14000 2.0000 280.00000 100

B 11 14000 2.0000 280.00000 100 B16 14000 2.0000 280.00000 100

B12 14000 2.0000 280.00000 100 B17 14000 2.0000 280.00000 100

B13 14000 2.0000 280.00000 100 B18 14000 2.0000 280.00000 100

B14 14000 2.0000 280.00000 100 B,9 23639 2.0000 472.78000 100

At a given value of a, there may exist many partitions. Partitions of the set of input

databases are presented in Table 3.4.3. If we vary the value of a, the set of frequent item-

Chapter 3.4
	

Efficient clustering of databases induced by local patterns 	3.77

sets in a database varies. Thus, the similarity between a pair of databases changes over

the change of a.

Table 3.4.3. Partitions of the input databases at a given value of a

Databases a Non-trivial distinct partition (g) 8 goodness (it)

{Tio, ..., T19} 0.03
{{Tio},{Till,{T12},{T13},{T14,T18},

{T15},{T16},{T17},{T19} 1
0.880798 0.011031

{T40, • • • , T49} 0.1
{ { To}, { T41,T45} ,{T42}5{ T43} ,

{T44 }, {T46 }, { T47} ,{ T48} 5 { To } 1
0.949743 -3.977703

{ { T40}, { T41, T45} '{ 742} , { T43} ,

{T44},{T46},{T47},{T48,T49}}
0.943098 11.716271

{11401, {T41, T43, T45}, {T42}, {T44},

{T46}, {T47}, {T48, Toll
0.942427 24.206474

{B10,..., B19} 0.009
{{B/0},{Bn},{B12,B/4},{B./3},{131.5},

{B 16 }, {B17}, {B18}, {B19} 1
0.726502 11.702650

{ {B4O},{B11}, {B12,B14} , {B13}, {B15},

{B16,B19},{B17},{B18} }
0.698836 27.694834

{{B/0},1B/il,{B/2,B13, B14}, {B15},

{B16, B 19}413171 , {B18}}
0.684409 36.970604

{MO}, {B11},

{B12, B13, B14, B15, B16, B19, B17, B18} }
0.582443 55.984833

{{BM BO, {B12, B13, B14, B15, B16,

B17, B18, B19} }

0.535796 81.028792

At a smaller value of a, more frequent itemsets are reported from a database. So, we get a

more accurate value of similarity between a pair of databases. Thus, the partition

generated at a smaller value of a would be more correct. In Tables 3.4.4 and 3.4.5, we

Chapter 3.4
	

Efficient clustering of databases induced by local patterns 	3.78

have presented best partitions of a set of databases at different as. So, the best partition of

a set of databases may change over the change of a.

Table 3.4.4. Best partitions of {T1o, T11, • • •, T19}

a Best partition (pr) 8 goodness (A)

0.07 {{T]05113,T14,T16,717},{T11},{7"12,T15},{T185T19}} 0.724778 85.585823

0.06 {{Tio,711,T15,T16,T17,T18},{T12},{T13,T14,119}1 0.732767 81.077277

0.05 {{T/0},{T//},{T/2},{T/3},{T/4,T16},{T/5},{T17,T19}5{T18}} 0.889875 13.345596

0.04 {{T/0},{TH,T/3},{Ti2},1T141,{T1.5},{Ti6},{T17},1T181,1T1911 0.949766 -2.067990

0.03 {{T1 0},{T11 },{T12},{T13},{T14,T1 8},{T15 },{T16},{T17},{T19 }} 0.880798 0.011031

Table 3.4.5. Best partitions of {Bio, B11, • • B19}

a Best partition (g) 8 goodness (g)

0.020 { {B/0},1B/r,B12,B/3,B/4,Bis,Bi6,B/7,B/8,B/911 0.667728 51.897608

0.017 {{Bi0},11311,B12,1313,B14,B15,B16,B17,B18,B1911 0.664585 66.100075

0.014 { {B10},{B11,B12,B13,B14,B15,B16,B17,B18,B19}1 0.581388 72.153178

0.010 {{13/0,B//},1B/2,B/3,B,4,B15,B16,B17,B18,B/911 0.559567 63.671384

0.009 {{Bio,B/7},{-8/2,B1.3,B14},{B/5},{B/6,B/9},{B/7},{13/8}} 0.535796 81.028792

Thus, a partition may not remain the same over the change of a. But, we have observed a

general characteristic that the databases show more similarity over a larger value of a. As

the value of a becomes smaller, more frequent itemsets are reported from a database, and

databases become more dissimilar.

In Figure 3.4.3, we have shown how the execution time of an experiment increases as

the number databases increases. The execution time increases faster as we increase input

databases from database T1. The reason is that the size of each local database obtained

from T1 is larger than that of T4 and B.

40

30

20

g E. 10

0
3 4 5 6 7 8 9 10

Number of databases

--A-- Execution time
(TI)

—A-- Execution Time
(T4)

--A-- Execution Time
(B1)

Chapter 3.4
	

Efficient clustering of databases induced by local patterns 	3.79

Figure 3.4.3. Execution time versus the number of databases

The number of frequent itemsets decreases as the value of a increases. Thus, the

execution time of an experiment decreases as a increases. We observe such phenomenon

in Figures 3.4.4 and 3.4.5.

20
.5; 15
.g 10

5

0

0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04

Minimum support

Figure 3.4.4. Execution time versus a for experiment with {Tio, T11, ..., T19}

3.81

Chapter 3.5

Study of select items in multiple databases by grouping

The number of multi-branch companies is increasing over the time. Many of them

transact from different branches. Therefore, they possess multiple databases. Each branch

maintains a database for the transactions made at that branch. Such multi-branch

companies collect data continuously through their different branches. The challenges

involve in making a quality decision based on large volume of data that are distributed

over the branches. It creates not only risks but also opportunities. One of the risks might

be a significant amount investment on hardware and software to deal with the large

volume of data. Our objective is to provide good quality of knowledge by minimizing the

risks.

Many important decisions are based on a set of specific items called the select items. In

the following, we mention a few decision support applications where the decisions are

based on the performances of select items.

■ Consider a set of items (products) that are profit making. We could consider them as

the select items in this context. Naturally, the company would like to promote them.

There are various ways one could promote an item. An indirect way of promoting a

select item is to promote items that are positively associated with it. The implication of

positive association between a select item P and another item Q is that if Q is

purchased by a customer then P is likely to be purchased by the same customer at the

same time. Thus, P is indirectly promoted. It is important to identify the items that are

positively associated with a select item.

Chapter 3.5
	

Study of select items in multiple databases by grouping 	3.82
r'

■ Each of the select items could be of high standard. Thus, they bring goodwill for the

company. They help in promoting other items. Thus, it is important to know how the

sales of select items affect the other items. Before making such analyses, we need to

identify the items that are positively associated with the select items.

■ Again, each of the select items could be a low-profit making product. Thus, it is

important to know how they promote the sales of other items. Otherwise, the company

could stop dealing with those products.

In general, the performances of select items would affect many decision making

problems. Thus, a better analysis of select items leads to a better decision. We study the

select items based on the frequent itemsets extracted from multiple databases. The first

question comes to our mind whether a traditional data mining technique could provide a

good solution in dealing with multiple large databases. The traditional way of mining

multiple databases might not provide a good solution due to the following reasons.

■ The company might have to employ parallel machines to deal with a large volume of

data. It might involve high initial investment on setting up a new infrastructure and

recurring investment on hiring technical people.

■ A single computer might take unreasonable amount of time to mine a large volume of

data. Sometimes, it might not be feasible to carry out the mining task.

■ A traditional data mining algorithm might extract a large number of patterns of many

irrelevant items. Thus, the processing of patterns could be complex and time

consuming.

Therefore, the traditional way of mining multiple databases could not provide a good

solution to this problem. In this situation local pattern analysis [91] could be a solution.

Under this model of mining multiple databases, each branch requires to mine the local

Chapter 3.5
	

Study of select items in multiple databases by grouping 	3.83

database using a traditional data mining technique. Afterwards, each branch is required to

forward the pattern base to the central office. Then, the central office could process the

pattern bases collected from different branches for synthesizing the global patterns, or

making decisions related to some problems. Due to the following reasons, the local

pattern analysis would not be a judicious choice to solve the proposed problem.

Each local pattern base might contain a large number of patterns of many irrelevant

items. Thus, the data analysis becomes complicated and time consuming. In this situation,

a pattern of a select item might be absent in some local pattern bases. Thus, it might be

required to estimate, or ignore some patterns in some databases. Therefore, we may fail

to report the true patterns of select items in the union of all local databases.

Thus, the local pattern analysis alone might not provide a good solution for this

situation. The above difficulties motivate us to propose a model of mining global patterns

of select items from multiple databases. The model has been presented in Section 3.5.3.

There are two benefits of the proposed model of synthesizing global patterns of select

items. Firstly, the synthesized global patterns are exact in nature. In other words, there is

no necessity of estimating a pattern in different databases. Secondly, the company could

save funds for dealing with large volume of data. Thus, it minimizes risks involved in

decision making process.

Let 1(DB) be the set of items in database DB. A common measure of similarity [83],

[84] between two objects could be used as a measure of positive association between two

items in a database. Thus, we define positive association between two items in a database

as follows.

transacti on containing both x and y, DB
PA(x,y,DB)= 	 , for x, y E I(DB).

transacti on containing at least one of x and y, DB

(3.5.1)

where, # P, DB is the number of transactions in DB that satisfy the predicate P. PA

measures only positive association between two items in a database. It does not measure

Chapter 3.5
	

Study of select items in multiple databases by grouping 	3.84

negative association between two items in a database. In the following example, we show

that PA fails to compute overall association between two items.

Example 3.5.1. Let there
b
ay four branches of a multi-branch company. Let D, be the

database corresponding to the i-th branch of the company, for i = 1, 2, 3, 4. The company

is interested in analyzing a set of select items (SI) globally. Let SI = {a, b}. The contents

of different databases are given as follows: D1 = { {a, e}, {b, c, g}, {b, e, f}, {g, 1; D2

= lb, cl, {f; h} }; D3 = { {a, b, c} , {a, el , lc , dl, {g} }; D4 = { {a, e}, {b, c, g} I.

Initially, we wish to measure the association between two items in a single database, say

D1. Now, PA(a, b, DI) = 0, since there is no transaction in D1 containing both the items a

and b. In these transactions, if one of the items of {a, b} is present then the other item of

{a, b} is not present. Thus, the transactions {a, e}, {b, c, g} and {b, e, f} in D1 imply that

the items a and b are negatively associated. Thus, we need to define a measure of

negative association between two items in a database. In similar to the measure of

positive association, one could define a measure of negative association between two

items in a database as follows.

NA(x,y,DB)=
transaction containing exactly one of x and y, DB

, for x, y e I(DB).
transaction containing at least one of x and y, DB

(3.5.2)

Now, NA(a, b, D 1) = 1. We note that PA(a, b, D 1) < NA(a, b, D 1). Overall, we have to say

that the items a and b are negatively associated, and the amount of overall association

between the items a and b in D1 is PA(a, b, DI) - NA(a, b, D1) = -1.0. Thus, the accuracy

of association analysis might be low if we consider only the positive association between

two items. •

The analysis of relationships among variables is a fundamental task being at the heart

of many data mining problems. For example, metrics such as support, confidence, lift,

correlation, and collective strength have been used extensively to evaluate the

interestingness of association patterns [48], [70], [11], [71], [54]. These metrics are

defined in terms of the frequency counts tabulated in a 2 x 2 contingency table as shown

Chapter 3.5
	

Study of select items in multiple databases by grouping 	3.85
r-

in Table 3.5.1. Tan et al. [75] presents an overview of twenty one interestingness

measures proposed in statistics, machine learning and data mining literature. We continue

our discussion with the examples cited in [75], and show that none of the proposed

measures is effective in finding the overall association by considering both positive and

negative associations between two items in a database.

Table 3.5.1. A 2 x 2 contingency table for variables x and y

y —iy Total

x fir fro fi

—ix fo r foo fo .

Total f 1 fo f .

Table 3.5.2. Examples of contingency tables

Example fir fro for foo

El 8123 83 424 1370

E2 8330 2 622 1046

E3 9481 94 127 298

E4 3954 3080 5 2961

E5 2886 1363 1320 4431

E6 1500 2000 500 6000

E7 4000 2000 1000 3000

E8 4000 2000 2000 2000

E9 1720 7121 5 1154

E10 61 2483 4 7452

From the examples in Table 3.5.2, we notice that the overall association between two

items could be negative as well as positive. In fact, a measure of overall association

between two items in a database lies in [-1, 1]. We consider the following five out of

Chapter 3.5
	

Study of select items in multiple databases by grouping 	3.86

twenty one interestingness measures, since the association between two items calculated

using one of these five measures lies in [-1, 1]. Thus, we shall study their usefulness for

the specific requirement of the proposed problem. These five measures are presented in

Table 3.5.3.

Table 3.5.3. Relevant interestingness measures for association patterns

Symbol Measure Formula

P({x} U IYI) - P(IxI) x PQM
0-coefficient VP({x}) x P({y}) x (1 - P({x}) x (1- P({y}))

Q Yule's Q P({x} U {Y})x P(—,({x} (l {y}))- P({x} U -{y})x P(-i{x} U {A)
P({x}U {y})x p(-4{x} n {y}))- P({x}U —,{y})x P(-- , {x} U {y})

Y Yule's Y VP({x}U {y})x P(-4{x} n {y})) - JP({x} U .-{y})x P(-- ,{x} U {y})
,JP({x} U IA x P(-,({x} n {y})) - VP({x} u -- ,{y})x 0-,{x} U {y})

K Cohen' s K
P({x} u {y})-F- P(-4x}u -- ,{y})- P({x}) x P({Y}) - P(—,{x}) x P(—,011)

1- P({x})x P({y}) - P(--,{x})x P(--,{y})

F Certainty factor max ' P({Y} I {x}) - P({Y}) 	P({x} I {Y}) - P({x})

I - PQM 	' 	1- P({x})

In Table 3.5.4, we rank the contingency tables using each of the above measures.

Table 3.5.4. Ranking of contingency tables using above interestingness measures

Example El E2 E3 E4 E5 E6 E7 E8 E9 E10

0 1 2 3 4 5 6 7 8 9 10

Q 3 1 4 2 8 7 9 10 5 6

Y 3 1 4 2 8 7 9 10 5 6

is 1 2 3 5 4 7 6 8 9 10

F 4 1 6 2 9 7 8 10 3 5

Chapter 3.5
	

Study of select items in multiple databases by grouping 	3.87

Also, we rank the contingency tables based on the concept of overall association

explained in Example 3.5.1. In Table 3.5.5, we present the ranking of contingency tables

using overall association.

Table 3.5.5. Ranking of contingency tables using overall association

Example Overall association Rank

El 0.7616 3

E2 0.7706 2

E3 0.9260 1

E4 0.0869 5

E5 0.0203 6

E6 -0.1000 8

E7 0.1000 4

E8 0 7

E9 -0.5406 10

El 0 -0.2426 9

None of the five measures ranks contingency tables like the rank given in Table 3.5.5.

Thus, none of the above five measures serves the special requirement of the proposed

problem. Based on the above discussion, we present the following measure OA [1] as an

overall association between two items in a database.

Definition 3.5.1. OA(x, y, DB) = PA(x, y, DB) - NA(x, y, DB), for x, y E I(DB). •

If OA(x, y, DB) > 0 then the items x and y are positively associated in DB. If OA(x, y, DB)

< 0 then the items x and y are negatively associated in DB. The problem discussed here is

not concerned about the association between two items in a group, where none of them is

a nucleus item. Thus, it could be considered as a problem of grouping rather than a

problem of classification, or clustering.

Chapter 3.5
	

Study of select items in multiple databases by grouping 	3.88

The rest of the chapter is organized as follows. We state our problem formally in

Section 3.5.2. In Section 3.5.3, a model of mining global patterns of select items from

multiple databases is proposed. The properties of different measures are discussed in

Section 3.5.4. We discuss a method of grouping frequent items in multiple databases in

Section 3.5.5. The experimental results are presented in Section 3.5.6. In Section 3.5.7,

we discuss work related to this problem.

3.5.2 Problem statement

Consider a multi-branch company that has n branches. Each branch maintains a separate

database for the transactions made in that branch. Let D, be the database corresponding to

the i-th branch of the multi-branch company, for i = 1, 2, ..., n. Also, let D be the union

of all branch databases. A large section of a local database might be irrelevant to the

current problem. Thus, we divide database D, into FD, and RD,, where FD, and RD, are

called the forwarded database and remaining database corresponding to the i-th branch,

respectively, for i = 1, 2, ..., n. We are interested in the forwarded databases, since every

transaction in a forwarded database contains at least one select item. The database FD, is

forwarded to the central office for mining global patterns of select items, for i = 1, 2, ...,

n. All the local forwarded databases are amassed into a single database (FD) for the

purpose of mining task. We note that the database FD is not large as it contains

transactions related to select items. Before stating our problem, we first give some formal

definitions.

A set of items is referred to as an itemset. An itemset containing k items is called a k-

itemset. The support (supp) [11] of an itemset refers to the fraction of transactions

containing the itemset. If an itemset satisfies the user-specified minimum support (a)

criterion, then it is called a frequent itemset (FIS). Similarly, if an item satisfies the user-

specified minimum support criterion, then it is called a frequent item (F1). If a k-itemset

is frequent then every item in the k-itemset is also frequent. In this chapter, we study the

items in SL Let SI = {s1, s2, s,n }. We wish to construct m groups of frequent items in

Chapter 3.5
	

Study of select items in multiple databases by grouping 	3.89

such a way that the i-th group grows centering round the nucleus item s„ for i = 1, 2, ...,

m. Let FD be the union of FD„ for i = 1, 2, ..., n. Also, let FISk(DB I a) be the set of

frequent k-itemsets in database DB at the minimum support level a, for k = 1, 2. We state

our problem as follows:

Let G, be the i-the group of frequent items containing the nucleus item s, E SI, for i =

1, 2, ..., m. Construct G, using FIS2(FD I a) and local patterns in D, such that x E G,

implies 0A(s„ x, D)> 0, for i = 1, 2, ..., m.

Two groups may not be mutually exclusive, as our study involves identifying pairs of

items such that the following conditions are true: (i) the items in each pair are positively

associated between each other in D, and (ii) one of the items in a pair is a select item.

Thus, our study is not concerned with the associativity between a pair of items in a group

such that none of them is a select item. The above problem actually results in m +1

groups, where (m +1)-th group G„,+1 contains the items that are not positively associated

with any one of the select items. The proposed study is not concerned with the items in

Gm+i•

The crux of the proposed problem is to determine the supports of the relevant frequent

itemsets in multiple large databases. A technique of estimating support of a frequent

itemset in multiple real databases has been proposed by Adhikari and Rao [5]. To

estimate the support of an itemset in a database, this technique makes use of the trend of

supports of the same itemset in other databases. The trend approach for estimating

support of an itemset in a database could be stated as follows: Let the itemset X gets

reported from databases Dl, D2, ..., Dm . Also, let supp(X, U",". 1 D) be the support of X in

the union of DI, D2, ..., Dm . Let Dk be a database that does not report X, for k = m + 1, in

+ 2, ..., n. Then the support of X in Dk could be estimated by a x supp(X, 	D). Given

an itemset X, some local supports of X are estimated and the remaining local supports of

X are obtained using a traditional data mining technique. The global support of X is

obtained by combining these local supports with the numbers of transactions (i.e., sizes)

Chapter 3.5
	

Study of select items in multiple databases by grouping 	3.90

of the concerned databases. The proposed technique synthesizes relevant frequent

itemsets exactly in multiple databases.

We have discussed the limitations of traditional way of mining multiple large

databases at the beginning of this chapter.•Also, we have observed that local pattern

analysis alone could not provide an effective solution to this problem. Thus, we propose a

model of mining global patterns of select items from multiple databases. A pattern based

on all the local databases is called a global pattern. A global pattern containing at least

one select item is called a global pattern of select item.

3.5.3 A model of mining global patterns of select items from multiple

databases

The model of mining global patterns of select items is presented in Figure 3.5.1 [1]. The

model could be explained using the following steps:

1. Each branch office constructs the forwarded database and sends it to the central office.

2. Also, each branch extracts patterns from its local database.

3. The central office clubs these forwarded databases into a single database FD.

4. A traditional data mining technique is applied to extract patterns from FD.

5. The global patterns of select items could be extracted effectively from local patterns

and the patterns extracted from FD.

The local databases are kept at the bottom level of the proposed model. We need to

process these databases as they may not be at the right state for the mining task. Various

data preparation techniques [65] like data cleaning, data transformation, data integration,

data reduction etc. are applied to data in local databases. We get local processed database

PD, for the i-th branch, for i = 1, 2, ..., n. The proposed model has a set of interfaces and

a set of layers. Each interface is a set of operations that produces database(s) (or,

knowledge) based on the lower level database(s). There are five distinct interfaces in the

proposed model. The functions of the interfaces are described below.

Chapter 3.5
	

Study of select items in multiple databases by grouping 	3.91

Interface 2/1 cleans / transforms / integrates / reduces data at the lowest level. By

applying these procedures we get processed database from the original database. These

operations are performed at the respective branch. At interface 3/2, we apply an

algorithm to partition a local database into two parts: forwarded database and remaining

database. It is easy to find the forwarded database corresponding to a given database. In

the following paragraph, we discuss how to construct FD„ from D„ for i = 1, 2, ..., n.

Initially, FD, is kept empty. Let Ty be the j-the transaction of D„ for j = 1, 2, ..., ID,1.

For D„ a for-loop on j would run for ID,1 times. At the j-th iteration, the transaction Ty is

tested. If Ty contains at least one of the select items then FD, is updated by FD, U {TO.

At the end of the for-loop on j, FD, gets constructed.

A transaction related to select items might contain items other than the select items. A

traditional data mining algorithm could be applied at the interface 5/4 to extract patterns

from FD. Let PB be the pattern base returned by a traditional data mining algorithm.

Since, the database FD is not large, we could lower further the values of user-defined

inputs, like minimum support, minimum confidence, so that PB contains more patterns of

select items. Therefore, we could get a better analysis of select items. If we wish to study

the association between a select item and other frequent items then the exact support

values of other items might not be available in PB. Then the central office sends a request

to each branch office to forward the details (like support values) of some items that

would be required to study the select items. Each branch then applies a traditional mining

algorithm (at interface 3/2) on its local database and forwards the details of local patterns

requested by the central office. Let LPB, be the details of i-th local pattern base requested

by the central office, for i = 1, 2, ..., n. A global pattern mining application of select

items might be required to access the local patterns and the patterns in PB. Thus, a global

pattern mining application (interface 6/5) could be developed based on the patterns in PB

and LPB„ for i = 1, 2, ..., n. The proposed model of mining global patterns of select items

is efficient due to the following reasons:

KnoWedge based on global
patterns of salad Items

P8

Layer 6

Interface 6/5

Layer 5

Interface 5/4

Layer 4

Interface 413

Layer 3

Interface 32

POn 	Layer 2

	 Interface 2/1

D,, 	
Layer 1

.1,
	 Chapter 3.5
	

Study of select items in multiple databases by grouping 	3.92

■ One could extract more patterns of select items by lowering further the input

parameters like minimum support, minimum confidence, based on the level of data

analysis of select items, since FD is reasonably small.

■ One gets true global patterns of select items as there is no need of estimating them.

Thus, the quality of global patterns is high.

3.5.3.1 An application

We discuss here an application of above model in a real world situation. A multi-branch

company wishes to promote two household products 111 and H2 with a view to become

market leader in the respective category of products. Suppose products H1 and H2 are

launched before four and six years back, respectively. The company might take a number

Figure 3.5.1. A model of mining global patterns of select items from multiple databases

of initiatives to increase sales of these two products. Some initiatives are direct in nature.

For example, offering some free gifts with these products, advertising in popular news

papers, etc. Other initiatives could be based on knowledge available in data across the

databases. Using the proposed model, the Company could analyze the transactions during

last six years in different branches and find the items that are positively associated with

H1 and 112. As a part of new initiatives, the company could also promote items that are

Chapter 3.5
	

Study of select items in multiple databases by grouping 	3.93

positively associated with H1 and H2.

3.5.4 Properties of different measures

If the itemset {x, y} is frequent in DB then OA(x, y, DB) is not necessarily be positive,

since the number of transactions containing only one of the items of {x, y} could be more

than the number of transactions containing both the items x and y. OA(x, y, DB) could

attain maximum value for an infrequent itemset {x, y} also. Let {x, y} be infrequent. The

distributions of x and y in DB are such that items x and y occur together in some

transactions in DB. Thus, OA(x, y, DB) = 1.0. In the following, we discuss a few

properties of different measures.

Lemma 3.5.1. (i) 0 PA(x, y, DB) 1; (ii) 0 NA(x, y, DB) 1; (iii) -1 OA(x, y, DB)

1; (iv) PA(x, y, DB) + NA(x, y, DB) = 1; for x, y I(DB). •

A characteristic of a good distance measure is that it satisfies metric properties [21] over

the concerned domain.

Lemma 3.5.2. NA(x, y, DB) = 1- PA(x, y, DB) is a metric over [0, 1], for x, y E I(DB).

Proof. In the following, we prove only the property of triangular inequality, since the

remaining two properties of a metric are trivially true. Let I(DB) = 	a2, 	aN} . Also,

let ST, be the set of transactions containing item a, E I(DB), for i = 1, 2, ..., N.

	

I ST n ST I 	IST - ST I+IST - ST
1- PA(ap ,aq ,DB)=1 P 	 qP 	 (3.5.3)

	

STp U SI; I 	I STp U SI; STr I

Thus, 	1- 	PA(ap, 	aq , 	DB) 	1- 	PA(aq, 	ar, 	DB)

I ST p - STq I + STq - STp I +I STq - STr I+ST,-ST9 I

I ST p U STq U STr

STp USTq UST;I — I STp nSTq nsTr i +1 STp nSTr 1+1 STq l—I STp nST1 1— I SI; nST.I

STp UST,USTr l

(3.5.4)

(3.5.5)

Study of select items in multiple databases by grouping 	3.94 Chapter 3.5

isT„nsTq nsTc HsTprIsTs t-isT,HisusT,i+IsT,nsTs i
ST p U ST PST, I

= 1 {IsicnsTq nsTs 1+1sTpilserg l +IsTq nsTs 1}-{IsTpilsTs 1+1sT,1}
I ST, USTq UST, I

(3.5.6)

(3.5.7)

ST0 	S To S T 	 ST, 	S T. 	ST0 	ST0 	S T. ST,

Impr ST, 	 T,
NNW►

(a) 	(b) 	(c) 	(d)

Figure 3.5.2. Simplification using Venn diagram

Let the number of elements in the shaded region of Figures 3.5.2(c) and 3.5.2(d) be N1

and N2 respectively. Then, the expression (3.5.7) becomes

1- 	
N - N,

1 	
N - N

2 	if N 	N, (Case 1)

(Case 2)

(3.5.8) IST; USTq UST I" 	-

I STp nsTr l 1 ST„U ST,U ST I if N, <N2
I ST p U ST,U ST,1' 	-

In Case 1, the expression remains the same. In Case 2, a positive quantity STp n STr has

been put in place of a negative quantity N1 -N2. The expression (3.5.8) is

N - N2
N N , if 	2 1 - 	 N1 	if N i .N2 sTp n STr 1 if N > N

I STp U STr I I STp U ST. 1'
2 I ST p U STr

>

1
1ST

P
nsTr I

if N,
1ST nsT r 1

1STpnSTr I
<N,

1 STp U ST1'
N, ,if 	<N2

I STp U STr 1
NI , if 	<N,

I STpU STr I

(3.5.9)

where, N1 = I STp n STq n STr STp n STr I. Therefore, irrespective of the relationship

between N1 and N2, 1- PA(ap, aq, DB) + 1- PA(aq, ar, DB) > 1- PA(ap, ar, DB). Thus, 1-

PA(x, y, DB) satisfies triangular inequality. •

To compute overall association between two items, we need to express OA in terms of

supports of frequent itemsets.

Lemma 3.5.3. For any two items x, y E J(DB), OA(x, y, DB) can be expressed as follows.

T, S T,

Chapter 3.5
	

Study of select items in multiple databases by grouping 	3.95

OA(x, y, DB) =
3 x supp({x, y}, DB) - supp({x} , DB) - supp({y} , DB)

supp({x}, DB) + supp({y}, DB) - supp({x, y}, DB)
(3.5.10)

Proof. OA(x, y, DB) = PA(x, y, DB) - NA(x, y, DB)

Now, PA(x, y, DB) = 	
supp({x, y} , DB)

supp({x}, DB) + supp({y}, DB) - supp({x, y}, DB)

supp({x}, DB) + supp({y}, DB) - 2 x supp({x, y), DB)

supp({x}, DB) + supp({y}, DB) - supp({x, y}, DB)

Thus, the lemma follows. •

Also, NA(x, y, DB) ,

3.5.5 Grouping of frequent items

For the purpose of explaining the grouping process we continue our discussion of

Example 3.5.1.

Example 3.5.2. With reference to Example 3.5.1, the forwarded databases are given as

follows: FD/ = { {a, e}, {b, c, g}, {b, I ; FD2 { b, c} }; FD3 = { {a, b, c}, {a, e}

}; FD4 = {a, e}, {b, c, g} I. Let size(DB) be the number of transactions in DB. Then,

size(Di) = 4, size(D2) = 2, size(D3) = 4 and size(D4) = 2. Let FD be the union of all

forwarded databases. Then, FD = {a, e}, {b, c, g}, {b, e, f 	b, c}, {a, b, c}, {a, e},

{a, e}, {b, c,) . The transaction {a, e} has been shown thrice, since it originated from

three data sources. We minc the database FD and get the following set of frequent

itemsets: FIS1(FD I 1/14) = {a} (4/12), {b} (5/12) }, and FIS2(FD 1 1/14) = { {a, b}

(1/12), {a, c} (1/12), {a, e} (3/12), {b, c} (4/12), {b, e} (1/12), {b,/} (1/12), {b, g}

(2/12) }, where X(77) denotes the fact that the frequent itemset X has support i. All the

transactions containing item x SI might not be available in FD. Thus, other frequent

itemsets of size one could not be mined correctly from FD. Thus, they are not shown in

FISAFD). Each frequent itemset extracted from FD contains an item from SL The

collection of patterns in FISKFD 1 1/14) and FIS2(FD 1 1/14) could be considered as PB

with reference to Figure 3.5.1. Using the frequent itemsets in FIS i(FD 1 a) and FIS2(FD I

a) we might not be able to compute the value of OA between two items. The central

Chapter 3.5
	

Study of select items in multiple databases by grouping 	3.96

office requests each branch for the supports of the relevant items (RIs) to calculate the

overall association between two items. Such information would help the central office to

compute the value of overall association in the union of all databases exactly. Relevant

items are the items in FIS2(FD I a) that do not belong to SI. In this example, RIs are c, e, f

and g. The supports of relevant items in different databases are given below.

RAD ') = {c} (1/4), {e} (2/4), (1/4),. {g} (2/4) }, RI(D2) = {c} (1/2), {e} (0),

{f} (1/2), {g} (0) }, RI(D3) = { {c}(2/4), {e}(1/4), {n(0), {g}(1/4) }, R/(D 4) = { {c}

(1/2), {e} (1/2), {i} (0), {g} (1/2) }. •

RI(D,) could be considered as LPB, with reference to Figure 3.5.1, for i = 1, 2, ..., n. We

follow here a grouping technique based on the proposed measure of overall association

OA. If OA(x, y, D)> 0 then y could be put in the group of x, for x E Si = {a, b}, y e I(D).

We explain the procedure of grouping frequent items with the help of Example 3.5.3.

Example 3.5.3. We continue here the discussion of Example 3.5.2. Based on the

available supports of local 1-itemsets, we synthesize 1-itemsets in D as mentioned in

Table 3.5.6.

Table 3.5.6. Supports of relevant 1-itemsets in D

Itemset ({x}) {a} {b} {c} {e} {J} {g}

supp({x} , D) 4/12 5/12 5/12 4/12 2/12 4/12

We note that the supports of {a} and {b} do not required to be synthesized, since they

could be determined exactly from mining FD. OA values corresponding to itemsets of

FIS2 are presented in Table 3.5.7.

Table 3.5.7. Overall association between two items in a frequent 2-itemset in FD

Itemset ({x, y}) {a, b} {a, c} {a, e} {b, c} {b, e} {b, fl {h, g}

0A(x,y,D) -3/4 -3/4 1/5 1/3 -3/4 -2/3 -3/7

Chapter 3.5
	

Study of select items in multiple databases by grouping 	3.97

In Table 3.5.7, we find that the items a and e are positively associated. Thus, item e could

be put in the group containing nucleus item a. Also, items b and c are positively

associated. Thus, item c could be put in the group containing nucleus item b. Thus, the

output grouping Ir using this technique is given as follows: 7T (FISAD) { a, b}, 1/12) =

Group 1, Group 2 } , where, Group 1 = { (a, 1.0), (e, 0.2) }, Group 2 = (b, 0.1), (c,

0.33333) }. Each item in a group is associated with a real number. This real number

represents the amount of overall association between the item and the nucleus item of the

group. The proposed grouping technique also constructs the third group of items, i.e., {f,

g} . The proposed study is not concerned with the items in {f, g} . •

Each group grows centering round a select item. The i-th group (G1) grows centering

round the i-th select item s„ for i = 1, 2, ..., m. With respect to group G„ the item s is

called the nucleus item of G,, for i = 1, 2, ..., m. We define a group as follows.

Definition 3.5.2. The i-th group is a collection of frequent items a, and the nucleus item s,

E S/ such that 0A(s„ aj, D) > 0, for, j = 1, 2, and i = 1, 2, ..., m. •

We describe here the data structures used in the algorithm for finding groups. The set

of frequent k-itemsets is maintained in an array FISk, for k = 1, 2. After finding OA value

between two items in a 2-itemset, it is kept in array 152. Thus, the number of itemsets in

IS2 is equal to the number of frequent 2-itemsets extracted from. FD. A two-dimensional

array Groups is maintained to store m groups. The i-the row of Groups stores the i-th

group, for i = 1, 2, ..., m. The first element of i-th row contains the i-th select item, for i --

1, 2, ..., m. In general, the j-th element of the i-th row contains a pair (item, value), where

item refers to the j-th item of the i-th group and value refers to the amount of OA value

between the i-th select item and item, for j = 1, 2, ..., IG,1. The algorithm [1] for grouping

technique is presented as follows.

Algorithm 3.5.1. Construct m groups of frequent items in D such that i-th group grows

centering round the i-th select item, for i = 1, 2, ..., m.

Chapter 3.5
	

Study of select items in multiple databases by grouping 	3.98

procudure m-grouping (m, SI, N 1 , FIS1 , N2, FIS2, GSize, Groups)

Input: m, SI, NI, FIS1,W2, FLU

m: the number of select items

SP set of select items

Nk: number of frequent k-itemsets

FISk: set of frequent k-itemsets

Output: GSize, Groups

GSize: array of number of elements in each group

Groups: array of m groups;

1: for i = 1 tO N2 do

2: IS2(i).value = 0A(FIS2(i).iteml , FIS2(i).item2, D);

3: IS2(0.iteml = FIS2(i).iteml; IS2(i).item2 = FIS2(i).item2;

4: end for

5: for i = 1 to m do

6: Groups(i)(1).ilem = SI(i); Groups(i)(1).value = 1.0; GSize(i) = 1;

7: end for

8: for i = 1 tO N2 do

9: for j = 1 to m do

10: if ((IS2(0.item 1 = SI(j)) and (IS2(i).value > 0)) then

1. 1: 	GSize(j) = GSize(j) + 1; Groups(j)(GSize(j)).item = IS2(i).item2;

12: Groups(j)(GSize(j)).value = IS2(i).value;

13: end if

14: if ((IS2(i).item2 = SI(j)) and (IS2(i).value > 0)) then

15: GSize(j) = GSize(j) + 1; Groups(j)(GSize(j)).item = IS2(i).item 1 ;

16: Groups(j)(GSize(j)).value = IS2(i).value;

17: end if

18: end for

19: end for

Chapter 3.5
	

Study of select items in multiple databases by grouping 	3.99

20: for i = 1 to m do

21: sort items of group i in non-increasing order on OA value;

22: end for

end procedure

The algorithm works as follows. Using formula (3.5.10), we compute OA value for each

itemset in FIS2. After computing OA value for each itemset, we store the details of the

itemset in IS2. The algorithm performs these tasks using the for-loop at line 1. We

initialize each group with the corresponding nucleus item using lines 05-07. A relevant

item or an item in SI could belong to one or more groups. Thus, we check for the

possibility of including each of relevant items and items in SI to each group using the for-

loop at line 9. All the relevant items and items in SI are covered using for-loop at line 8.

For the purpose of better presentation, we finally sort items of i-group in non-increasing

order on OA value, for i = 1, 2, ..., m.

Assume that the frequent itemsets in FIST and FIS2 are sorted on items. Thus, the time

complexities for searching an itemset in FIST and F152 are 0(log(Ni)) and 0(log(N2)),

respectively. The time complexity of line 02 is 0(log(NO), since N1 > N2. Thus, the time

complexity of lines 01-04 is 0(/V2 x log(Nj)). Lines 05-07 do necessary initialization. The

time complexity of this program segment is 0(m). Lines 08-19 process frequent 2-

itemsets and construct m groups. If one of the two items in a frequent 2-itemset is a select

item, then other item could be placed in the group of the select item, provided the overall

association between them is positive. The time complexity of this program segment is

0(m x N2). Lines 20-22 sort m groups. Each group is sorted in non-increasing order on

OA value. The association of nucleus item with itself is 1.0. Thus, the nucleus item is

kept at the beginning of the group (line 06). Let the average size of a group be k. Then,

the time complexity of this program segment is 0(m x k x log(k)). The time complexity

of the procedure m-grouping is maximum { 0(N2 x log(Nj)), 0(m), 0(m x N2), 0(m x k x

log(k)) }, i.e., maximum { 0(N2 x log(Nj)), 0(m x N2), 0(m x k x log(k)) }.

Chapter 3.5
	

Study of select items in multiple databases by grouping 	3.100

3.5.5.1 Error of grouping experiment

Let {XI, X2, ..., Xi f } be set of relevant frequent itemsets used to study select items in D.

One could define the error of experiment in many ways. We define following two types

of errors of an experiment:

1. Average Error (AE)

AE(S/ , a) = 1E7)=. supp a (X ,, D)- supp (X , , D) (3.5.13)

2. Maximum Error (ME)

AE(SI, a) = maximum 	suppe,(X D) - supp, (X D),i =1, 2, ..., m (3.5.14)

where, suppc,(X„ D) and supp,(X„ D) are the actual support and synthesized support of

itemset X, in D, respectively.

The value of synthesized support of an itemset might differ from one synthesizing

method to another synthesizing method. Again, the synthesized support and actual

support of itemset X, in D might differ when some databases fail to extract the itemset X,

at a given support. The process of synthesis would affect the synthesized support of an

itemset. The model in Figure 3.5.1 enables us to find the actual supports of the relevant

itemsets in D. Thus, both the AE and ME are Os, and become independent of the

concerned database. Therefore, the technique discussed above is efficient.

3.5.6 Experiments

We have carried out several experiments to study the effectiveness of our approach. All

the experiments have been implemented on a 1.6 GHz Pentium IV with 256 MB of

memory using visual C++ (version 6.0) software. We present the experimental results

using four databases, viz., retail [34], mushroom [34], T10I4D1OOK [34], and check. The

database retail is real and obtained from an anonymous Belgian retail supermarket store.

The database mushroom is real and obtained from UCI databases. The database

T1014D100K is synthetic and obtained using generator from IBM Almaden Quest re-

-.As- "7,

Chapter 3.5
	

Study of select items in multiple databases by grouping 	3.101

search group. The database check is artificial whose grouping is already known. We have

experimented on database check to verify that our grouping technique works correctly.

We present some characteristics of these databases in Table 3.5.8. Let NT, AFI, ALT, and

NI denote the number of transactions, average frequency of an item, average length of a

transaction, and number of items in the data source, respectively.

Table 3.5.8. Characteristics of databases

Database N T ALT AFI NI

retail (R) 88,162 11.305755 99.673800 10000

mushroom (M) 8,124 24.000000 1624.800000 120

T10I4D100K (7) 1,00,000 11.10228 1276.12413 870

check(C) 40 3.025000 3.102564 39

For the purpose of conducting the experiments, we divide each of these databases into ten

databases called input databases. The input databases obtained from R, M, T and C are

names as R,, M,, T„ and C„ respectively, for i = 1, 2, ..., 10. We present some

characteristics of the input databases in Table 3.5.9.

Chapter 3.5 	Study of select items in multiple databases by grouping 	3.102

Table 3.5.9. Characteristics of input databases obtained from retail and mushroom

DB NT ALT AFI NI DB NT ALT AFI NI

R1 9000 11.24389 12.07001 8384 MI 812 24.00000 295.27272 66

R2 9000 11.20922 12.26541 8225 M2 812 24.00000 286.58823 68

R3 9000 11.33667 14.59657 6990 M3 812 24.00000 249.84615 78

R4 9000 11.48978 16.66259 6206 M4 812 24.00000 282.43478 69

R5 9000 10.95678 16.03953 6148 M5 812 24.00000 259.84000 75

R6 9000 10.85578 16.70977 5847 M6 812 24.00000 221.45454 88

R7 9000 11.20011 17.41552 5788 M7 812 24.00000 216.53333 90

R8 9000 11.15511 17.34554 5788 M8 812 24.00000 191.05882 102

R9 9000 11.99711 18.69032 5777 M9 812 24.00000 229.27058 85

R 10 9000 11.69199 15.34787 5456 Mto 816 24.00000 227.72093 86

Table 3.5.9(continued). Characteristics of input databases obtained from T1014D100K

DB ALT AFI NI DB ALT AFI NI

T1 11.05500 127.65588 866 T6 11.13910 128.62702 866

T2 11.13330 128.41176 867 T7 11.10780 128.56250 864

T3 11.06700 127.64705 867 T8 11.09840 128.45376 864

T4 11.12260 128.43649 866 T9 11.08150 128.55568 862

T5 11.13670 128.74797 865 T10 11.08140 128.10867 865

The input databases obtained from database check are given as follows: C., = { { 1, 4, 9,

31}, {2, 3, 44, 50}, {6, 15, 19}, {30, 32, 42} }; C2 = { {1, 4, 7, 10, 50}, {3, 44}, 01, 21,

49}, {41, 45, 59} }; C3 = { {1, 4, 10, 20, 24}, {5 ,7, 21}, {21, 24, 39}, {26, 41, 46} }; C4

= {1, 4, 10, 23}, {5, 8}, {5, 11, 21}, {42, 47} }; C5 = {1, 4, 10, 34}, { 5, 49}, {25, 39,

Chapter 3.5 	Study of select items in multiple databases by grouping 3.103

49), {49} }; C6 = { {1, 3, 44}, {6, 41}, {22, 26, 38}, {45, 49} }; C7 = { {1, 2, 3, 10, 20,

44}, {11, 12, 13}, {24, 35}, {47, 48, 49} }; C8 = { {2, 3, 20, 39}, {2, 3, 20, 44, 50}, {32,

49}, {42, 45} }; C9 = {2, 3, 20, 44), {3, 19, 50), {5, 41, 45}, {21} }; C10 = { {2, 20,

45}, {5, 7, 21}, {11, 19}, {22, 30, 31} 1.

In Table 3.5.10, we present some relevant information regarding different experiments.

We have chosen the first 10 frequent items as the select items, except for the last

experiment. One could choose select items as the items whose data analyses are of urgent

need.

Table 3.5.10. Some relevant information regarding experiments

Database a SI

R 0.03 i {0,1,2,3,4,5,6,7,8, 9}

M 0.05 {1, 3, 9, 13, 23, 34, 36, 38, 40, 52}

T 0.01 {2, 25, 52, 240, 274, 368, 448, 538, 561, 630}

C 0.07 {1, 2, 3}

The first experiment is based on database retail. The grouping of frequent items in retail

is given below:

g (FAretail) I SI, a) = 0 (1.000000); 1 (1.000000); 2 (1.000000); 3 (1.000000); 4

(1.000000); 5 (1.000000); 6 (1.000000); 7 (1.000000); 8 (1.000000); 9 (1.000000) }.

Two groups are separated by semicolon (;). The nucleus item in each group is underlined.

Each item in a group is associated with a real number and shown in bracket. This value

represents the amount of overall association between the item and the nucleus item. The

groups are shaded alternately for the purpose of clarity of visualization. We observe that

no item in database retail is positively associated with the select items using the measure

OA.

Chapter 3.5
	

Study of select items in multiple databases by grouping 	3.104

The second experiment is based on database mushroom. The grouping of frequent

items in mushroom is given below:

(FI(mushroom) I SI, a) = 	1 (1.000000), 24 (0.225614), 110 (0.115114). 29

(0.103166), 	36 (0.098787), 61 (0.097537), 38 (0.058040), 66 (0.064039), 90

(0.002633); 3 (1.000000); 9 (1.000000); 13 (1.000000); 23 (1.000000), 93 (0.530769), 59

(0.215038), 2 (0.139073), 39 (0.010047), 63 (0.153263); 34 (1.000000), 86 (0.993444),

85 	(0.948301), 	90 	(0.800148), 	36 	(0.625308), 	39 	(0.329887), 	59 	(0.229706), 	63

(0.170491), 53 (0.164519), 67 (0.128127), 24 (0.117184), 76 (0.107910); 36 (1.000000),

85 	(0.677006), 90 (0.649821), 86 (0.631345), 34 (0.625308), 59 (0.169751), 39

(0.158109), 63 (0.106293), 	110 (0.098801), 1 (0.098787); 38 (1.000000), 48

(0.375796), 102 (0.185956), 	58 (0.135678), 	1 (0.058040), 	94 (0.046083), 110

(0.011029); 40 (1.000000); 52 (1.000000) 1.

We observe that some frequent items are not included in any of these groups, since their

overall associations with each of the select items are non-positive.

The third experiment is based on database T10I4D100K. The grouping of frequent

items in T10I4D100K is given below:

7 (PA 	OPIDI 00K) I SI, = { 2 (1.000000); 25 (1.000000); 52 (1.000000); 240

(1.000000); 274 (1.000000); 368 (1.000000); 448 (1.000000); 538 (1.000000); 561

(1.000000); 630 (1.000000) 1.

We observe that databases retail and T10I4D1OOK are sparse. Thus, the grouping

contains groups of singleton item for these two databases. The overall association

between a nucleus item and itself is 1.0. Otherwise, the overall association between a

frequent item and a nucleus item is non-positive for two databases.

The fourth experiment is based on database check. The database check is constructed

artificially to verify the following existing grouping.

7 (FAcheck) I SI, 	= (1, 1.000000), (4, 0.428571), (10, 0.428571); (2, 1.000000), (20,

0.428571), (3, 0.111111); (3, 1.000000), (44, 0.500000), (2, 0.111111) 1.

—4— Proposed
approach

Trend
approach

0.001 -

0.0005
ma-0—a

0

4 5 6 7 8 9 10

Number of databases

Proposed
approach

—IS— Trend
approach

Chapter 3.5
	

Study of select items in multiple databases by grouping 	3.105

We have calculated average errors using both trend and proposed approaches. Figures

3.5.3, 3.5.4 and 3.5.5 show the graphs of AE versus the number databases for the first

three databases. The proposed model enables us to find actual supports of all the relevant

itemsets in a database. Thus, the AE of an experiment for the proposed approach remains

0. As the number of databases increases, the relative presence of a frequent itemset

normally decreases. Thus, the error of synthesizing an itemset also increases. So, the AE

of an experiment using trend approach is likely to increase as the number of databases

increases. We observe such phenomenon in Figures 3.5.3, 3.5.4 and 3.5.5.

Figure 3.5.3. Average error versus the number of the databases from retail

Figure 3.5.4. Average error versus the number of databases from mushroom

Chapter 3.5
	

Study of select items in multiple databases by grouping 	3.106

Figure 3.5.5. Average error versus the number of databases from Ti 0I4D1 00K

3.5.7 Related work

Multi-database mining has been recognized recently as a research area in KDD

community. The work reported so far could be classified broadly into following two

categories: mining / synthesizing patterns in multiple databases and postprocessing of

local patterns. We mention some work related to firsi category. Wu and Zhang [81] have

proposed a weighting method for synthesizing high-frequency rules in multiple

databases. Zhang et al. [89] have proposed an algorithm to identify global exceptional

patterns in multiple databases. Now, we mention some work related to second category.

Wu et al. [83] have proposed a technique for clustering multiple databases for multi-

database mining. Adhikari and Rao [6] have proposed an efficient technique for

clustering multiple databases using local patterns.

In the context of estimating support of itemsets in a database, Jaroszewicz and

Simovici [45] have proposed a method using Bonferroni-type inequalities [35]. Also, the

maximum-entropy approach to support estimation of a general Boolean expression is

proposed by Pavlov et al. [62]. But, these support estimation techniques are suitable for a

single database.

Zhang et al. [93], Zhang [88] have studied various strategies for mining multiple

databases. Proefschrift [64] has studied data mining on multiple relational databases.

Chapter 3.5
	

Study of select items in multiple databases by grouping 	3.107

Existing parallel mining techniques [12], [26], [28] could also be used to deal with

multi-databases. These techniques provide expensive solutions for studying select items

in multiple databases.

3.5.8 Conclusion

The measure of overall association OA is effective as it considers both positive and

negative association between two items. Association analysis of select items in multiple

market basket databases is important as well as promising issue, since many data analyses

of a multi-branch company are based on select items. The model of mining global

patterns of select items in multiple databases is efficient, since it is not required to

estimate the patterns in multiple databases.

3.108

Chapter 3.6

A framework for developing better multi-database mining

applications

In the recent years, a number of multi-database mining applications [1], [6], [50], [81],

[83], [85] have been reported. There are many strategies by which one could develop a

multi-database mining application. All the solutions for a particular application might not

produce good result. The goal of this chapter is to provide a framework to develop better

multi-database mining applications systematically. A multi-database mining application

could be developed using a number of stages. It might be possible to provide a frame

work for each stage of the development process. Before we discuss them, first we discuss

some existing approaches for mining multiple large databases.

3.6.2 Existing approaches of multi-database mining

In a distributed data mining environment, one may encounter different types of data. For

example, stream data, geographical data, image data, transactional data are quite

common. In this thesis, we deal with multiple transactional databases. One of the main

hurdles for developing better multi-database mining applications is to mine multiple

databases with high accuracy. In the following sections, we discuss three approaches to

mining multiple large databases.

3.6.2.1 Local pattern analysis

A convenient way to mine global patterns is to mine each local database, and then

analyze all the local patterns to synthesize global patterns. This technique is called local

Local Patterns
(Application k)

Chapter 3.6 	... developing better multi-database mining applications 	3.109

pattern analysis. Zhang et al. [91] designed local pattern analysis for the purpose of

addressing various problems related to multiple large databases. Let there are n branches

of a multi-branch company. Also, let D, be the database corresponding to the i-th branch,

for i = 1, 2, ..., n. Mining multiple databases using local pattern analysis could be

explained using Figure 3.6.1.

Figure 3.6.1. Mining patterns in multiple databases using local pattern analysis

Let LPB, be the local pattern base corresponding to D„ for i = 1, 2, ..., n. In mult-

database environment, local patterns could be used in three ways: (i) Analyzing local

data, (ii) Synthesizing non-local patterns, and (iii) Measuring relevant statistics for

decision making problems. Multi-database mining using local pattern analysis could be

considered as an approximate method of mining multiple large databases. Thus, it might

be required to enhance the quality of knowledge synthesized from multiple databases.

3.6.2.2 Sampling

In multi-database environment, the collection of all branch databases might be very large.

Effective data analysis using a traditional data mining technique on multi-gigabyte

repositories has proven difficult. A quick approximate knowledge from a large database

would be adequate for many decision support applications. In these cases, one could tame

multiple large databases by sampling. A commonly used technique for approximate

pattern answering is sampling [76]. If an itemset is frequent in a large database then it is

likely that the itemset is frequent in a sample database. Thus, one could analyze approxi-

Chapter 3.6 	... developing better multi-database mining applications 	3.110

mately the database by analyzing the frequent itemsets in a representative sample data. A

combination of sampling and local pattern analysis could be a useful approach for mining

multiple databases for addressing many decision support applications. Multi-database

mining using sampling might not be satisfactory, since we may need good precision of

output patterns in many occasions.

3.6.2.3 Re-mining

For the purpose of mining multiple databases, one could apply partition algorithm

proposed by Savasere et al. [66]. The algorithm is designed for mining a very large

database by partitioning. The algorithm works as follows. It scans the database twice. The

database is divided into disjoint partitions, where each partition is small enough to fit in

memory. In a first scan, the algorithm reads each partition and computes locally frequent

itemsets in each partition using apriori algorithm [13]. In the second scan, the algorithm

counts the supports of all locally frequent itemsets toward the complete database. In this

case, each local database could be considered as a partition. Though partition algorithm

mines frequent itemsets in a database exactly, it might be an expensive solution to mining

multiple large databases, since each database is required to scan twice. During the time of

second scanning, all the local patterns obtained at the first scan are analyzed. Thus, the

partition algorithm used for mining multiple databases could be considered as another

type of local pattern analysis. Multi-database mining using re-mining strategy could be

expensive in many cases, since the sizes of the available databases could be large.

3.6.3 Improving multi-database mining applications

One could mine multiple databases using one the following approaches: (i) a traditional

data mining approach, (ii) a non-traditional data mining approach. Some examples of

traditional data mining approaches are apriori algorithm [13], FP-growth algorithm [39],

and P-tree algorithm [29]. For applying a traditional data mining approach, one needs

Chapter 3.6 	... developing better multi-database mining applications 	3.111

to amass all the databases together. Thus, the collection of branch databases could be

considered as a single source of data. In this case, the extracted patterns are exact in

nature. Thus, no improvement of patterns (output) is required. But, it might be possible to

improve different traditional data mining algorithms with respect to time complexity,

space complexity, and other parameters of different mining algorithms. Though these are

interesting topics, but we do not discuss these issues here. Some examples of non-

traditional data mining approaches that could be used for mining multiple databases are

partition algorithm [66], local pattern analysis [91], and sampling technique [76]. In

Section 3.6.2, we have observed drawbacks of each of these non-traditional data mining

approaches. We propose various strategies for improving multi-database mining

applications. Some improvements are general in nature, while others are specific. The

efficiency of a multi-database application could be enhanced by choosing an appropriate

multi-database mining model, an appropriate pattern synthesizing technique, a better

pattern representation technique, and a better algorithm for solving the problem. In this

thesis, we have illustrated each of these issues either in the context of a specific problem,

or in general. We do not discuss an efficient implementation of different algorithms,

since the topic has been well studied.

3.6.3.1 Preparation of data warehouses

It might be possible that all the data sources are not of the same format. One needs to

process them before the mining task resumes. Relevant data are required to be retained.

Also, the definitions of data are required to be the same at every data source. Thus, the

preparation of data warehouse could be a significant task for handling multiple large

databases. Adhikari and Rao [5] have proposed an extended model of synthesizing global

patterns from local patterns in different databases. In Chapter 2.3, we have discussed how

this model could be used for mining heavy association rules in multiple databases. Also,

it shows how the task of data preparation could be broken into sub-tasks so that the data

--••■ ^16"

Chapter 3.6 	... developing better multi-database mining applications 	3.112

preparation task becomes easy and systematic. Though the above model introduces many

layers and interfaces for synthesizing global patterns, but in a real life application, many

of these layers and interfaces might not be useful.

3.6.3.2 Selection of databases

Selection of databases could be based on the inherent knowledge in the databases. Thus,

one needs to mine each of the local databases. One could then process the local patterns

in different databases for the purpose of selecting relevant databases. Local patterns help

selecting relevant databases. In other words, the clustering of databases is based on a

measure of similarity between two databases. Thus, the measure of similarity between

two databases is an important issue. It could be based on local patterns in the databases.

Wu et al. [83] have proposed a similarity measure sim 1 to identify similar databases

based on item similarity. The authors have designed a clustering algorithm based on

measure sim i to cluster databases for the purpose of selecting relevant databases. Such

clustering is useful when the similarity is based on items in different databases. Such

similarity measure might not be useful for many multi-database mining applications

where clustering of databases might be based on other criteria. For example, if we are

interested in the databases based on transaction similarity then the above measures might

not be appropriate. Adhikari and Rao [6] have proposed database clustering based on

transaction similarity of different databases. The authors have proposed a similarity

measure simi l to cluster databases. Also, the authors have designed a clustering algorithm

based on simi, for the purpose of selecting relevant databases. In Chapter 3.4, we have

discussed all these issues.

A quick approximate knowledge from large databases would be adequate for many

decision support applications. Thus, the selection of databases might be important in

many decision support applications. It reduces the cost of searching necessary

information.

Chapter 3.6 	... developing better multi-database mining applications 	3.113

3.6.3.3 Choosing appropriate technique of multi-database mining

A particular technique of mining multiple databases might not be appropriate in all the

situations. Adhikari and Rao [8] have proposed a multi-database mining technique,

MDMT: PipelinedFeedbackModel + simple pattern synthesizing, for mining multiple

large databases. It improves multi-database mining significantly as compared to an

existing technique. We have shown in Chapter 3.2, the effectiveness of MDMT:

PipelinedFeedbackModel + simple pattern synthesizing, by conducting relevant

experiments.

But, MDMT: PipelinedFeedbackModel + simple pattern synthesizing might not be the

best at all the situations. For example, Adhikari and Rao [1] have proposed a technique

for mining multiple large databases to study problems involving a set of specific items in

multiple databases. This technique performs better than MDMT:

PipelinedFeedbackModel + simple pattern synthesizing. It extracts patterns related to a

set of specific items from multiple databases exactly. In Chapter 3.5, we have discussed a

multi-database mining technique for studying a set of specific items in multiple

databases.

Thus the choice of a multi-database mining technique is an important issue. One could

obtain better solution by choosing an appropriate multi-database mining technique.

3.6.3.4 Representing patterns space efficiently

Multi-database mining using local pattern analysis could be considered as an approximate

method of mining multiple large databases. Thus, it might be required to enhance the

quality of knowledge synthesized from multiple databases. Also, many decision-making

applications are directly based on the available local patterns in different databases. The

quality of synthesized knowledge / decision based on local patterns in different databases

could be enhanced by incorporating more local patterns in the knowledge synthesizing /

processing activities. Thus, the available local patterns play a crucial role in building effi-

Chapter 3.6 	... developing better multi-database mining applications 	3.114

cient multi-database mining applications. One could represent patterns in condensed form

by employing a suitable coding. It allows us to consider more local patterns by lowering

further the user inputs, like minimum support and minimum confidence. The coding

enables more local patterns participate in the knowledge synthesizing / processing

activities and thus, the quality of synthesized knowledge based on local patterns in

different databases gets enhanced significantly at a given pattern synthesizing algorithm

and computing resource.

3.6.3.4.1 Representing association rules

Adhikari and Rao [4] have proposed ACP coding to represent association rules in

multiple databases. In Chapter 3.3, we have discussed ACP coding and presented

experimental results to show the effectiveness of ACP coding for representing association

rules in multiple databases.

3.6.3.4.2 Representing frequent itemsets

Adhikari and Rao [6] have proposed IS coding to represent frequent itemsets in multiple

databases. In Chapter 3.4, we have discussed theoretically the effectiveness of IS coding.

3.6.3.5 Designing a better algorithm for solving the problem

Using suitable data structures and an algorithm [14] one could develop a better multi-

database mining application. In the context of developing better multi-database mining

applications, Adhikari and Rao [5] have proposed a better algorithm for extracting high-

frequent association rules in multiple databases. In Chapter 2.3, we have presented

experimental results to show effectiveness of the algorithm. Also, Adhikari and Rao [6]

have designed a better algorithm for clustering the databases. In Chapter 3.5, we have

discussed different issues including designing an efficient algorithm for clustering

databases. The execution time of the algorithm has been improved using Theorem 3.4.5.

Chapter 3.6 	... developing better multi-database mining applications 	3.115

These are a few instances of how a multi-database mining application could be developed

in a better way.

3.6.4 Conclusions

Multi-database mining applications might come with different types and complexities. It

might be difficult to give a generalized framework for developing better multi-database

mining applications. Nevertheless, it might be possible to identify some important stages

of the development process. Thus, our framework has attempted to provide a better

solution to each stage of the development process. We believe that such framework might

help practitioners of data mining to develop systematically better multi-database mining

technologies.

3.116

Chapter 3.7

Conclusion

In the context of mining multiple large databases, we have presented MDMT: PFM+SPS

for mining multiple databases. It improves significantly the accuracy of mining multiple

databases as compared to existing techniques that scan each database only once.

An efficient storage representation of a set of pattern bases builds the foundation of a

multi-database mining system. In this regard, we have proposed a space efficient

represent of association rules, called ACP coding. Many global applications could be

developed effectively upon this foundation.

Clustering a set of databases is an important activity. It reduces cost of searching

relevant information for many problems. We provide an efficient solution to this problem

in three ways. Firstly, we propose more appropriate measures of similarity between two

databases. Secondly, we need to find the existence of the best clustering only at few

similarity levels. Thus, the proposed clustering algorithm executes faster. Lastly, we

introduce IS coding for storing frequent itemsets in main memory space efficiently. It

allows more frequent itemsets to participate in the clustering process. IS coding enhances

the accuracy of the clustering process.

We have proposed a measure, called OA, for measuring overall association between

two items in a database. The proposed measure of association OA is effective as it

considers both positive and negative association between two items. Association analysis

of select items in multiple market basket databases is important as well as promising

issue, since many data analyses of a multi-branch company are based on select items.

Chapter 3.7 	 Conclusion 	 3.1 1 7

We have worked on theory and application of multi-database mining. Also, we have

made significant contribution towards designing an efficient multi-database mining

system. We believe that our efforts would help building efficient multi-database mining

technologies as explained in Chapter 3.6.

1
	 3.118

References

[1] A. Adhikari, P. R. Rao, "Study of select Items in multiple databases by grouping",

Proceedings of 3rd Indian International Conference on Artificial Intelligence, 2007,

pp. 1699 - 1718.

[2] A. Adhikari, P. R. Rao, "Synthesizing global exceptional patterns in multiple

databases", Proceedings of 3rd Indian International Conference on Artificial

Intelligence, 2007, pp. 512 - 531.

[3] A. Adhikari, P. R. Rao, "A framework for synthesizing arbitrary Boolean

expressions induced by frequent itemsets", Proceedings of 3rd Indian International

Conference on Artificial Intelligence, 2007, pp. 5 - 23.

[4] A. Adhikari, P. R. Rao, "Enhancing quality of knowledge synthesized from multi-

database mining", Pattern Recognition Letters 28(16), 2007, pp. 2312 - 2324.

[5] A. Adhikari, P. R. Rao, "Synthesizing heavy association rules from different real

data sources", Pattern Recognition Letters 29(1), 2008, pp. 59-71.

[6] A. Adhikari, P. R. Rao, "Efficient clustering of databases induced by local patterns",

Decision Support Systems 44(4), 2008, pp. 925 - 943.

[7] A. Adhikari, P. R. Rao, "Association Rules Induced by Item and Quantity

Purchased", J. R. Haritsa, R. Kotagiri, and V. Pudi (Eds.): Proceedings of

International Conference on Database Systems for Advanced Applications, LNCS

4947, pp. 478 - 485, 2008.

[8] A. Adhikari, P. R. Rao, J. Adhikari, "Mining Multiple Large Databases",

Proceedings of 10th International Conference on Information Technology, 2007, pp.

80 - 84.

[9] A. Adhikari, P. R. Rao, "Mining Conditional Patterns in a Database", Pattern

Recognition Letters 29(10), 2008, pp. 1515-1523.

References 	 3.119

[10] C. Aggarwal, P. Yu, "A new framework for itemset generation", Proceedings of the
,th
/ Symposium on Principles of Database Systems, 1998, pp. 18-24.

[11] R. Agrawal, T. Imielinski, A. Swami, "Mining association rules between sets of

items in large databases", Proceedings of ACM SIGMOD Conference, 1993, pp. 207

- 216.

[12] R. Agrawal, J. Shafer, "Parallel mining of association rules", IEEE Transactions on

Knowledge and Data Engineering 8(6), 1999, pp. 962 - 969.

[13] R. Agrawal, R. Srikant, "Fast algorithms for mining association rules", Proceedings

of International Conference on Very Large Data Bases, 1994, pp. 487 - 499.

[14] A. V. Aho, J. E. Hoperoft, J. D. Ullman, Data structures and algorithm, Addison-

Wesley, 1987.

[15] K. Ali, S. Manganaris, R. Srikant, "Partial classification using association rules",

Proceedings of the 3rd International Conference on Knowledge Discovery and Data

Mining, 1997, pp. 115-118.

[16] V.S. Ananthanarayana, M. N. Murty, D. K. Subrarnanian, "Tree structure for

efficient data mining using rough sets", Pattern Recognition Letters 24(6), 2003, pp.

851 - 862.

[17] M.-L. Antonie, O.R. Zaiane, "Mining positive and negative association rules: An

approach for confined rules", Proceedings of PKDD, 2004, pp. 27 - 38.

[18] J. Aronis, V. Kolluri, F. Provost, B. Buchanan, "The WoRLD: Knowledge

discovery from multiple distributed databases", Proceedings of the Tenth

International Florida AI Research Symposium, 1997, pp. 337 - 341.

[19] B. Babcock, S. Chaudhury, G. Das, "Dynamic sample selection for approximate

query processing", Proceedings of ACM SIGMOD Conference Management of

Data, 2003, pp. 539 - 550.

References 	 3.120

[20] V. Barnett, T. Lewis, Outliers in statistical data, 3rd edition, Vol. 2, Wiley, 1995.

[21] R. G. Barte, The elements of real analysis, 2nd edition, John Wiley & Sons, 1976.

[22] S. Brin, R. Motwani, J. D. Ullman, S. Tsur, "Dynamic itemset counting and

implication rules for market basket data", Proceedings of ACM SIGMOD

Conference, 1997, pp. 255 - 264.

[23] M. Burrows, D. J. Wheeler, "A block-sorting lossless data compression algorithm",

DEC, Digital Systems Research Center, Research Report 124, 1994.

:24] A. Bykowski, C. Rigotti, "A condensed representation to find frequent patterns for

efficient mining", Information Systems 28(8), 2003, pp. 949 - 977.

25] S. W. K. Chan, M. W. C. Chong, "Unsupervised clustering for nontextual web

document classification", Decision Support Systems 37(3), 2004, pp. 377 - 396.

:26] J. Chattratichat, J. Darlington, M. Ghanem, Y. Guo, H. Huning, M. Kohler, J.

Sutiwaraphun, H. W. To, D. Yang, "Large scale data mining: Challenges, and

responses", Proceedings of the Third International Conference on Knowledge

Discovery and Data Mining, 1997, pp. 143 - 146.

27] Y. -L. Chen, K. Tang, R. -J. Shen, Y. -H. Hu, "Market basket analysis in a multiple

store environment", Decision Support Systems 40(2), 2005, pp. 339 - 354.

[28] D. Cheung, V. Ng, A. Fu, Y. Fu, "Efficient mining of association rules in distributed

databases", IEEE Transactions on Knowledge and Data Engineering 8(6), 1996,

pp. 911 - 922.

[29] F. Coenen, P. Leng, S. Ahmed, "Data structure for association rule mining: T-trees

and P-trees", IEEE Transactions on Knowledge and Data Engineering 16(6), 2004,

pp. 774 - 778.

[30] V. Estivill-Castro, J. Yang, "Fast and robust general purpose clustering algorithms",

Data Mining and Knowledge Discovery 8(2), 2004, 127 - 150.

References 	 3.121

[31] W. Feller, An introduction to probability theory and its applications, 3rd edition,

Vol 1, Wiley, 1968.

[32] FIMI 2004, http://fimi.cs.helsinki.fi/src/

[33] J. B. Fraleigh, A first course in abstract algebra, third edition, Addision-Wesley,

1982.

[34] Frequent itemset mining dataset repository, http://fimi.cs.helsinki.fi/data.

[35] J. Galambos, I. Simonelli, Bonferroni-type inequalities with applications, Springer,

1996.

[36] M. N. M. Garcia, L. A. M. Quintales, F. J. G. Perialvo, M. J. P. Martin, "Building

knowledge discovery-driven models for decision support in project management",

Decision Support Systems 38(2), 2004, pp. 305 - 317.

[37] J. R. Gregg, Ones and zeros: Understanding Boolean algebra, digital circuits, and

the logic of sets, Wiley-IEEE Press, 1998.

[38] J. Han, M. Kamber, Data Mining: Concepts and techniques, Morgan Kauffmann

It
Publishers, 2001.

9] J. Han, J. Pei, Y.Yiwen, "Mining frequent patterns without candidate generation",

Proceedings of ACM SIGMOD Conference on Management of Data, 2000, pp.1 -

"` 	12.

[40] S. L. Hershberger, D. G. Fisher, Measures of association, encyclopedia of statistics

in behavioral science, John Wiley & Sons, 2005.

[41] R. J. Hilderman, H. J. Hamilton, "Knowledge discovery and interestingness

measures: A survey", Technical Report CS-99-04, Department of Computer

Science, University of Regina, 1999.

[42] S. J. Hong, S. M. Weiss, "Advances in predictive models for data mining", Pattern

Recognition Letters 22(1), 2001, pp. 55 - 61.

References 	 3.122

[43] D. A. Huffman, "A method for the construction of minimum redundancy codes",

Proceedings of the IRE 40(9), 1952, pp. 1098 - 1101.

[44] A. K. Jain, M. N. Murty, P. J. Flynn, "Data clustering: A review", ACM Computing

Surveys, 31(3), 1999, pp. 264 - 323.

[45] S. Jaroszewicz, D. A. Simovici, "Support approximations using Bonferroni-type

inequalities", Proceedings of Sixth European Conference on Principles of Data

Mining and Knowledge Discovery, 2002, pp. 212 - 223.

[46] B. Jeudy, J. F. Boulicaut, "Using condensed representations for interactive

association rule mining", Proceedings of PKDD, LNAI 2431, 2002, pp. 225 - 236.

[47] KDD CUP 2000, http://www.ecn.purdue.edu/KDDCUP.

[48] M. Klemettinen, H. Mannila, P. Ronkainen, T. Toivonen, A. Verkamo, "Finding

interesting rules from large sets of discovered association rules", Proceedings of the

3rd International Conference on Information and Knowledge Management, 1994,

pp. 401 - 407.

[49] D. E. Knuth, The art of computer programming, Vol. 3, Addision-Wesley, 1973.

i0] H. -C. Kum, H. J. Chang, W. Wang, "Sequential pattern mining in multi-databases

via multiple alignment", Data Mining and Knowledge Discovery 12(2-3), pp. 151 -

180, 2006.

[5 	v1. Last, A. Kandel, "Automated detection of outliers in real-world data",

)roceedings of the Second International Conference on Intelligent Technologies,

!001, pp. 292 - 301.

[52] C. -H. Lee, C. -R. Lin, M. -S. Chen, "Sliding-window filtering: An efficient

algorithm for incremental mining", Proceedings of 10th International Conference

on Information and Knowledge Management, 2001, pp. 263 - 270.

References 	 3.123

[53] C. L. Liu, Elements of discrete mathematics, 2nd edition, McGraw-Hill, 1985.

[54] B. Liu, W. Hsu, Y. Ma, "Pruning and summarizing the discovered associations",

Proceedings of the 51h International Conference on Knowledge Discovery and Data

Mining, 1999, pp. 125 - 134.

[55] H. Liu, H. Lu, J. Yao, "Toward multi-database mining: Identifying relevant

databases", IEEE Transactions on Knowledge and Data Engineering 13(4), 2001,

pp. 541 - 553.

[56] J. Muhonen, H. Toivonen, "Closed non-derivable itemsets", Proceedings of PKDD,

pp. 601 - 608, 2006.

[57] M. R. Nelson, "Data compression with the Burrows-Wheeler transformation", Dr.

Dobb 's Journal, September, 1996, pp. 46 - 50.

[58] E. R. Omiecinski, "Alternative interest measures for mining associations in

databases", IEEE Transactions on Knowledge and Data Engineering 15(1), pp. 57-

69, 2003.

[59] G. K. Palshikar, M. S. Kale, M. M. Apte, "Association rule mining using heavy

itemsets", Proceedings of Eleventh International Conf on Management of Data,

2005, pp. 148 - 155.

[60] A. Papoulis, Probability, random variables, and stochastic processes, 2nd edition,

McGraw-Hill, 1984.

[61] N. Pasquier, R. Taouil, Y. Bastide, G. Stumme, L. Lakhal, "Generating a condensed

representation for association rules", Journal of Intelligent Information Systems

24(1), pp. 29 - 60, 2005.

References 	 3.124

[62] D. Pavlov, H. Mannila, P. Smyth, "Probabilistics models for query approximation

with large sparse binary data sets", Proceedings of Sixteenth Conference on

Uncertainty in Artificial Intelligence, 2000, pp. 465-472.

[63] G. Piatetsky-Shapiro, "Discovery, analysis, and presentation of strong rules",

Proceedings of Knowledge Discovery in Databases, 1991, pp. 229 - 248.

[64] Proefschrift, Multi-relational data mining, Ph D thesis, Dutch Graduate School for

Information and Knowledge Systems, Aan de Universiteit Utrecht, 2004.

[65] D. Pyle, Data preparation for data mining, Morgan Kufmann, San Francisco, 1999.

[66] A. Savasere, E. Omiecinski, S. Navathe, "An efficient algorithm for mining

association rules in large databases", Proceedings of the 21st International

Conference on Very Large Data Bases, 1995, pp. 432 - 443.

[67] K. Sayood, Introduction to data compression, Morgan Kaufmann, 2000.

[68] P. Shenoy, J.R. Haritsa, S. Sudarshan, G. Bhalotia, M. Bawa, D. Shah, "Turbo-

charging vertical mining of large databases", Proceedings of ACM SIGMOD

Conference on Management of Data, 2000, pp. 22 - 33.

[69] Y. Shima, S. Mitsuishi, K. Hirata, M. Harao, E. Suzuki, S. Arikawa, "Extracting

minimal and closed monotone dnf formulas", Proceedings of International

Conference on Discovery Science, Vol. 3245, 2004, pp. 298 - 305.

[70] A. Silberschatz, A. Tuzhilin, "What makes patterns interesting in knowledge

discovery systems", IEEE Transactions on Knowledge and Data Engineering 8(6),

1996, pp. 970 - 974.

[71] C. Silverstein, S. Brin, R. Motwani, "Beyond market baskets: Generalizing

association rules to dependence rules", Data Mining and Knowledge Discovery 2(1),

1998, pp. 39 - 68.

References 	 3.125

[72] M. Steinbach, V. Kumar, "Generalizing the notion of confidence", Proceedings of

ICDM, 2004, pp. 402 - 409.

[73] M. Steinbach, P.-N. Tan, H. Xiong, V. Kumar, "Generalizing the notion of support",

Proceedings of KDD, 2004, pp. 689 - 694.

[74] K. Su, H. Huang, X. Wu, S. Zhang, "A logical framework for identifying quality

knowledge from different data sources", Decision Support Systems 42(3), 2006, pp.

1673 - 1683.

[75] P. -N. Tan, V. Kumar, J. Srivastava, "Selecting the right interestingness measure for

association patterns", Proceedings of SIGKDD Conference, 2002, pp. 32 - 41.

[76] H. Toivonen, "Sampling large databases for association rules", Proceedings of the

22-th International Conference on Very Large Data Bases, 1996, pp. 134 - 145.

[77] UCI 	ML 	repository 	content 	summary,

http://www.ics.uci.edui —mlearn/MLSummary.html.

[78] P. Viswanath, M. N. Murty, S. Bhatnagar, "Partition based pattern synthesis

technique with efficient algorithms for nearest neighbor classification", Pattern

Recognition Letters 27(14), 2006, pp. 1714 — 1724.

[79] K. Wang, S. Zhou, Y. He, "Hierarchical classification of real life documents",

Proceedings of the 1st (SIAM) International Conference on Data Mining, 2001, pp.

1 - 16.

[80] X. Wu, Y. Wu, Y. Wang, Y. Li, "Privacy-aware market basket data set generation:

A feasible approach for inverse frequent set mining", Proceedings of SIAM

International Conference on Data Mining, 2005, pp. 103 - 114.

[81] X. Wu, S. Zhang, "Synthesizing high-frequency rules from different data sources",

IEEE Transactions on Knowledge and Data Engineering 14(2), 2003, pp. 353 - 367.

References 	 3.126

[82] X. Wu, C. Zhang, S. Zhang, "Efficient mining of both positive and negative

association rules", ACM Transactions on Information Systems 22(3), 2004, pp. 381 -

405.

[83] X. Wu, C. Zhang, S. Zhang, "Database classification for multi-database mining",

Information Systems 30(1), 2005, pp. 71-88.

[84] D. Xin, J. Han, X. Yan, H. Cheng, "Mining compressed frequent-pattern sets",

Proceedings of the 31 s1 VLDB Conference, 2005, pp. 709-720.

[85] J. Yan, N. Liu, Q. Yang, B. Zhang, Q. Cheng, Z. Chen, 2006. Mining adaptive ratio

rules from distributed data sources. Data Mining and Knowledge Discovery 12 (2-

3), pp. 249 - 273.

[86] X. Yin, J. Han, "Efficient classification from multiple heterogeneous databases",

Proceedings of 9-th European Conf on Principles and Practice of Knowledge

Discovery in Databases, 2005, pp. 404 - 416.

[87] M. J. Zaki, M. Ogihara, "Theoretical foundations of association rules", Proceedings

of the DMKD Workshop on Research Issues in Data Mining and Knowledge

Discovery, 1998, pp. 7:1 - 7:8.

[88] S. Zhang, Knowledge discovery in multi-databases by analyzing local instances, Ph

D thesis, Deakin University, 2002.

[89] C. Zhang, M. Liu, W. Nie, S. Zhang, "Identifying global exceptional patterns in

multi-database mining", IEEE Computational Intelligence Bulletin 3(1), 2004, pp.19

- 24.

[90] T. Zhang, R. Ramakrishnan, M. Livny, "BIRCH: A new data clustering algorithm

and its applications", Data Mining and Knowledge Discovery 1(2), 1997, pp. 141 -

182.

[91] S. Zhang, X. Wu, C. Zhang, "Multi-database Mining", IEEE , Computational

Intelligence Bulletin 2(1), 2003, pp. 5 - 13.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249
	Page 250
	Page 251
	Page 252
	Page 253
	Page 254
	Page 255
	Page 256
	Page 257
	Page 258
	Page 259
	Page 260
	Page 261
	Page 262
	Page 263
	Page 264
	Page 265
	Page 266
	Page 267
	Page 268
	Page 269
	Page 270
	Page 271
	Page 272
	Page 273
	Page 274
	Page 275
	Page 276
	Page 277
	Page 278
	Page 279
	Page 280
	Page 281
	Page 282
	Page 283
	Page 284
	Page 285
	Page 286
	Page 287
	Page 288
	Page 289
	Page 290
	Page 291
	Page 292
	Page 293
	Page 294
	Page 295
	Page 296
	Page 297
	Page 298
	Page 299
	Page 300
	Page 301
	Page 302
	Page 303
	Page 304
	Page 305
	Page 306
	Page 307
	Page 308
	Page 309
	Page 310
	Page 311
	Page 312
	Page 313
	Page 314
	Page 315
	Page 316
	Page 317
	Page 318
	Page 319
	Page 320
	Page 321
	Page 322
	Page 323
	Page 324
	Page 325
	Page 326
	Page 327

