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INTRODUCTION 

Theory of differential equations is a rich area of research . 

Several new contributions continue to enrich it further. New analytical 

methods, including application of abstract mathematics to study the 

qualitative properties of solutions, in the absence of their explicit 

representation* are being developed by differential equationists. In 

addition, the applications to physical problems yield new types of 

equations. In such situations it is necessary to generalize the existing 

theory to study the qualitative properties of new equations. The 

present thesis is an attempt to further this process so as to include the 

differential equations involving piecewise constant delays. 

Consider the initial value problem studied in [8 , 26] 

x' (t) = f (t,x(t)) , 	x(to  ) = xo  , 
x 

dx 
= d t • 

Here, the derivative of solution x (t) depends on t and x (t) (the present 

state of x) . For quite a long time, it was assumed that the physical 

system are determined only by present state. However, the experience 

has shown that this assumption is only a first approximation to the 

exact situation and for a better approximation, one needs to take into 

account the past history of the system. The continuous flow of 

contributions [14, 16, 22, 25] to equations involving past history during 

the last four decades is due to two reasons. Firstly, such equations 

are faithful mathematical representations of physical phenomena in 

several sciences and secondly, these equations are mathematically rich 

and therefore, need many analytical tools to exhibit their complex 

behaviour. 

• 

• 

• 
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The study of differential equations involving piecewise constant 

arguments, the subject of the present thesis, has been initiated recently 

by Cooke and Wiener [9, 10, 11] . This area of research is also now 

extended by the contributions of Aftabizadeh and Wiener [2, 3, 4, 35] 

and Shah and Wiener [27, 34] . 

There are very few research papers published so far on differential 

equations with piecewise constant arguments, since the work in this area 

began in the present decade. However, it will be noted through 

subsequent discussion that this area of research is rich in content and 

will attract large number of applications. 

It is seen that equations with piecewise constant deviating arguments 

(PCDA) are closely related to impulse and loaded equations and, especially, 

to difference equations of a discrete argument. In fact, these equations 

have the structure of continuous dynamical systems within an interval of 

certain length. Continuity of a solution at a point joining any two 

consecutive intervals then implies recursion relation for the values of the 

solution at such points. 

The equations with PCDA are similar in structure to those found in 

certain "sequential-continuous" models of disease dynamics treated by 

Busenberg and Cooke [6] . Thus, the so far known results show sufficient 

evidence of potential application of these kind of equations. 

Now we give a brief history of the present problem: 
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In [9], Cooke and Wiener develop some theory of equations of the 

form 

xt(t) = f(t, x(t), x(h(t))) 	 (0.1) .  

which are of retarded type. They have studied the equation (0.1) for 

h(t) = [t], h(t) = t-n[t], etc. Here the notation [ ] denotes greatest 

integer function. 

Cooke and Wiener also consider equations with two PCDA [t] and 

[t-1] (refer [9]), and [t-1] and [t+1] (refer [11]). 	In a similar manner, 

the results in [27] include the theory of equations with delay argument 

[t] and advanced argument [t+1]. For equations with two PCDA, the 

instrument of continued fractions plays an important role in computation 

of solutions and in the study of asymptotic behaviour of solutions [34]. 

Recently, Cooke and Wiener [10] studied an interesting differential 

equation alternately of retarded and advanced type 

x'(t) = ax(t)+bx(2[(t+1)/2]), x(0) = c o  . 	 (0.2)  

The argument deviation T  (t) = t-2,[(t+1)/2] is negative in [2n-1, 2n) 

and T(t) is positive in (2n, 2n+1), n is an integer. So the equation 

(0.2) is of advanced type on [2n-1, 2n) and of retarded type on 

(2n, 2n+1). They have established that all types of equations with PCDA 

have similar characteristics. Some stability properties have also been 

obtained in [9, 10]. 

• 
Aftabizadeh and Wiener have studied the oscillatory properties of 

scalar equations in [1, 2] and system of two first order linear differential 

equations in [3] with PCDA. In [33], oscillatory and periodic properties 

of the solutions of a linear system of differential equations with the 

• 

• 

• 



argument [ti- 1] are studied. Some oscillation results for the solution of 

linear differential equation with argument [t-1] have been obtained in 

[5]. 

Existence of a second order differential equation with PCDA is proved 

by Ladas, Parthemiadis and Evan [20]. In [4],the authors used monotone 

method to prove the existence of minimal and maximal solutions for the 

nonlinear differential equation (0.1) with PCDA h(t) = [t] 

As a generalization of the results in [10] Wiener and Aftabizadeh 

[35] discuss the existence and uniqueness of solutions of 

x'(t) = f(t,x(m[(t+k)/m]), x(0) =c o  

where k, m are positive integers and k<m. 

Based on the results known so far in this area of research, the 

author of the present thesis has made some new contributions. 

In the following chapters, we develop some basic tools needed in the 

study of qualitative properties of solutions. These include iterative 

method of finding solutions, variation of parameters formula, Gronwall 

type integral inequalities, oscillation result, stability, etc. 

Taking the clue from the books [14, 16] and the results incorporated 

in [9, 10], we study the equations with two types of delays, namely, 

continuous delay and piecewise constant argument. 

In the present thesis, the following types of equations are considered. 

(1) 	x'(t) = ax(t)+bx(ki) 

(ii) 	x' (t ) = ax(t) + bx(2 [ (t+1 )/2] ) 
• • 

• • 

• 
• 
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(iii)  

(iv)  

(v)  

	

x' (t) 	= 	ax(t)+bx([t])+cx(t- T ) 

	

(t) 	= 	ax(t)thx(Itn+L(x
t

) 

	

x'(t) 	= 	f(t,x(t),x(It])) 

(vi)  ut (x , t) = au 
xx 

 (x,t)+bu 
xx (x,[t]) 

(vii)  utt (x , t) = a
2
uxx (x.,t)+b

2
uXX (x,[t]) 

(viii)  
ut 	' 

(x t) = au 
xx 

 (x,t)+bu 
xx

(x,2[(t+1)/2]). 

We give below a brief summary of each chapter included in this thesis. 

In chapter 1, we organize together, as a prerequisite, some known 

relevant results, which have been published earlier. The results summarised 

are from the papers [9, 10, 1, 23] which include equations with constant 

coefficients involving PCDA, system of equations with PCDA, method of 

finding solutions of nonlinear equations, equations alternately of retarded 

and advanced type, some integral inequalities and variation of parameters 

formula. Many illstrative examples explaining the properties of solutions 

have been constructed which are not available elsewhere. 

In chapter 2, we present some basic tools to study the qualitative 

properties of differential equations. In section 2.3, we prove the 

existence and uniqueness of solution for equation with PCDA by using 

Banach fixed point theorem. We develop a variation of parameters formula 

for linear equations with PCDA in section 2.4. An extension of Gronwall's 



integral inequality is made in section 2.5. Applications of the results 

proved ih L1i earlier btaitAlb cart given in w?cttnn 2.6. 	ScL1.an 2.7 

generalizes an oscillatory result for the case of a system of equations 

with PCDA. In the last two sections, we introduce some equations with 

two types of delays, namely, continuous delay and piecewise constant 

deviating argument. 

In chapter 3, section 3.1 gives .closed form solution of an equation 

alternately of retarded and advanced type with variable coefficients. 

Variation of parameters formula is also developed in section 3.2 . In 

section 3.3, an integral inequality is proved. 

In chapter 4, we introduce some second order partial differential 

equations having PCDA. In section 4.2, we prove an existence theorem 

in the framework of semigroup theory. Many illustrative examples are 

presented giving explicit solution by using method of seperation of 

variables. General diffusion equation and general wave equation are 

discussed in section 4.3 and section 4.'4, respectively. 

Chapter 5 deals with the study of some nonlinear differential equations 

involving PCDA. In section 5.2, we extend the method of finding solution - 

of scalar equation to the case of system of equations. An existence 

theorem using Schauder's fixed point theorem is proved in section 5.3. 

Some comparison results are also included in this section. In section 5.4, 

we develop a nonlinear variation of parameters formula of Alekseev 

type [23]. 

Several illustrative examples have been constructed by the author 

to explain the theory. The thesis ends with a complete bibliography . 
• • 



CHAPTER 1 

SURVEY OF EXISTING LITERATURE  

1.1 INTRODUCTION 

Theory of ordinary differential equations with piecewise constant 

arguments has been studied during the last few years. It is seen that 

not many research papers in this area are published so far. However, 

this topic of research appears to be potentially rich, since some 

significant applications have been already noted. 

The present chapter includes some relevant results, which have been 

published earlier. The results summarised here forms the pre-requisite of 

the new work that the author intends to include in the present thesis. 

The contribution of the author is appearing in chapters 2 to 5. Below 

we quote the results from the papers [9, 10, 1, 23] which include 

equations with constant coefficients involving piecewise constant argument, 

system of equations with variable coefficients, method of finding solutions 

of nonlinear equations, equation alternately of retarded and advanced 

type, some integral inequalities and variation of parameters formula. 

It has been noted that not many illustrative examples have been 

included in the literature published so far in this area. The author felt 

that this gap needs to be filled up by adding suitable examples. This 

has been done throughout this chapter. 

• 	 • 
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1.2 EQUATION WITH CONSTANT COEFFICIENTS [9] 

Consider the scalar initial value problem (IVP ) 

y'(t) = ay(t)thy([t]), 	t E J = [0, co), 

y(0) = c
o

, 

where a, b, c
o are real constants. Here It) designates the greatest 

integer less than or equal to t. 

(1.2) 

This equation is very closely related to impulse and loaded equations. 

Indeed, write equation (1.1) as 

y' (t) = ay(t) by(i)(H(t-i)-H(t-i-1)) 

j=—co 

where H(t) = 1 for t>0 and H(t) = 0 for t<0. If we admit distributional 

derivatives, then by differentiating the latter equation, we get 

y"(t) = ay' (t)+ 	by(i)( (t-i)- d (t-1-1)) 

where 6 is the delta functional. This impulse equation contains the value 

of the unknown solution for the integral values of t. 

DEFINITION 1.1:  A solution of equation (1.1) on J = [0,03 ) is a function 

y(t) that satisfies the conditions: 

(1) 	y(t) is continuous on J, 

(ii) the derivative y' (t) exists at each point t E J except possibly 

at integral points, there rlonly one-sided derivatives exist, 

(iii) equation (1.1) is satisfied on each interval [n,n+1) CJ with 

integral end points. 

• 
The solution of the IVP (1.1), (1.2) is given in the following theorem. 

• • 

• 
• 

• 



THEOREM 1.1: The unique solution of IVP (1.1) , 1.2) is given by 

y(t) = x(t - [t])( x (1)) It3 c o , 	tEJ 

where 

x(t) =exp(at)(1+a -lb)-a -lb • 

REMARK 1.1: (1) If a = O. in (1.1), then the solution (1.3) becomes 

y(t) = (1+b(t - (0))(1+b) [t] c
o

, 	tEJ, 

(ii) if b = 0 in (1.1), then (1.3) has the form 

y(t) = exp(at)c o , 	tEJ. 

( 1 . 3.) 

REMARK 1.2: (i) If b = -a exp(a) , then in view of (1.3),y(t):-.* 0, 	t€J, 
eXTra)-1 

(ii) if b<  -a exp (a ) 	, then the solution (1.3) is oscillatory, 
exp(a)-1 

(iii) if b  = a ( 1+ exp (a )  ) then the zero solution of (1.1) is stable, 
1-exp(a) 

(iv) if 
	a ( 1+ exp (a )) < b  < 	a > 0, then the zero solution of (1.1) 

1-exp(a) 

is asymptotically stable. 

Next theorem establishes the fact that the IVP for equation (1.1) 

may be posed at any point, not necessarily at integer points. 

THEOREM 1.2: If X(1) 	0 and to EJ is such that X (t o 
 -[t

o 
 ) 0, 

then equation (1.1) with the initial condition• .  y(to ) = y o  has a unique 

solution on (- 00, 00) given by 

Y(t) = 	(t  [ t )  (A(1)) [t]-[t 0 ] y , 
x(t 

0 
 -[t 

0
]) 	 0 

• 
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where 

- 
X(t) = exp(at) (1+a 1b)-a lb. 

Clearly, for t o  = 0, y (t) reduces to the solution (1.3). 

It is interesting to study the oscillatory behaviour of solution of 

(1.1) which are caused by deviating arguments and which do not appear 

in the corresponding ordinary differential equation. Below we give a 

result which is proved in [1] . 

THEOREM 1.3: Consider the • delay differential inequality 

y' (t)+a(t)y(t)th(t)y(M) < 0, 	t 

where a and b are continuous functions on J. Assume that 

n  
lim sup 	r +1 

 b(t)expl 	
t 

a(s)dsf cit > 1, 
n---) 	

s 
 

(1.4) 

(1.5) 

then (1.4) has no eventually positive solutions. 

Under the same conditions it is proved that, if the assumption (1.5) 

is true, ,then 

y' (t)+ a(t)y(t)+b(t)y(lti ) > 0, 	t e J, 

has no eventually negative solution. 

It follows from these results that the delay differential equation 

y' (t)+a(t)y(t)+b(t)y( 	) = 0 

has oscillatory solutions only, if the condition (1.5) holds. 

EXAMPLE 1.1:  In the delay differential equation 

(t), = y(t)-exp(t)yat.1) • 

• 
• 

• 



the coefficients satisfy the condition (1.5). Hence the solution is 

oscillatory. 

EXAMPLE 1.2:  Consider the scalar equation (1.1) with a = 0 and c o  = 1. 

The solution is given biy 

y(t) = (1 b(t - M))(1+b)
Lt1 

 , 	tE J. 

This solution has interesting behaviour for various values of b. For 

any b < -1, the solution has infinity of isolated zeros on LT,c0 ), T > 0 

and hence it is oscillatory. For all other values of b, solution y(t) 

is nonoscillatory. 

'The solution y(t) is asymptotically stable for -2 < b < 0, -  it is stable 

for b = -2 and unstable for all other values of b. 

The nature of solution y(t) for some values of b is indicated in 

figures given in the next page. 

1.3 SYSTEM WITH VARIABLE COEFFICIENTS [9] 

This section deals with study of systems of differential equations 

of the form 

x' (t) = A(t)x(t), 	 (1.6) 

y'(t) = A(t)y(t)+B(t)ynti), 	 ,(1.7) 

J with 1nJtial conditions 

x(0) = y(9) = co , 	 (1.8) 

where A, B are n x n matrices with entries as real-valued continuous 



3 -  

2- 

o 
i 	2 	i r 

(a) For b -0.5 

(d) For b = -2.5 

(d) For b = -2 
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functions defined for t EJ, x, y are n-vectors and c o  is a real constant 

n-column vector. 

The following theorem shows that the solution of the IVP (1.7), 

(1.8) can be expressed in terms of the fundamental matrix ,I(t) of (1.6). 

THEOREM 1.4:  Let A, B be n x n matrices with entries as real-valued 

continuous functions defined on J. Then there exists a unique solution 

of (1.7), (1.8) given by 

where 

y(t) = ( (P(t, It) )+ 	f 	(t,$)B(s)ds)c
Et] ' 	

J, 
[t] 

1, 

crti= 	41r 	(k,k-1)+ 	,f 	(k,$)B(s)ds)c o' 

	

k=[t] 	 k-1 

(1.9) 

(1.10) 

(t) is the fundamental matrix of (1.6), 	(0) = E n , the identity matrix 

and (i (t,$) = i(t) (s), 0 < s < t < 

EXAMPLE 1.3:  Consider the system 

y' (t) = Ay(t)+By(lt1), 	y(0) = c o , 

with 

1 0 0 0 0 1 c
1 

A = 

[ 

0 1 0 B = 0 1 1 and c
o 

= c
2 

0 0 1 1 0 0 c
3 

The fundamental , matrix 	in this case is given by 
• 

l(t) = 

• 

exp(t) 	0 	 0 

0 	exp(t) 	0 

0 	0 	exp(t) 
• 

• 
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Using the relations (1.9) and (1.10), we get the solution 

y(t) = x(t - [t])(X(1)) [t] c , 
0 

where 

  

X ( t) = 

	

exp(t) 	0 	exp(t)-1 

0 	2exp(t)-1 exp(t)-1 

	

exp(t)-1 	0 	exp(t) 

  

  

The following theorem, provides us a pointwise bound for the 

solution of the IVP (1.7), (1.8) . The estimate obtained here illustrates 

the nature and growth of the solution. 

THEOREM 1.5:  Let A, B be n x n matrices with entries as continuous 

functions and let a(t) = max I A(s) I , b(t) = max IB(s) I , 0 < s < t, 

then the solution of (1.7), (1.8) satisfies the estimate 

IY (0 1 < exPi(t+1)a(t)1(b(t)+1) t+1 1c0 1, 	te J. 

1.4 METHOD OF FINDING SOLUTIONS OF NONLINEAR EQUATIONS [9] 

Let 

x ' (t ) = 	(x(t ),x((t .1) ) , x( 0 ) = co , 

where c
o is a constant and f is a piecewise continuous function on 11 x 11 

If the system with non zero parameter X is such that f(x, X ) 	0 

e verywhere , then 

F(x, A) = f 	dx 	= t+g( X ),  
f(x, X ) 

where g( x) is an arbitrary function. 
• 

• 
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For computing solution of (1.11), assume that x n (t) is a solution 

of (1.11) in in, n 4-1) with the condition x
n

(n) = c n
, 	n = 0, 1, 2 1  

By putting 	= cn , we obtain 

F(x
n (t),on ) = t+g(c n

), t€[n, n+1). 

Put t = n, to get 

F(c
n

,c
n

) = n4-g(c
n

). 

The two expressions above may be treated as equations for unknown 

g(cn ). By solving them, we get 

F(x
n

(t),c
n ) = F(cn

,c
n

)+t-n. 	 (1 .1 2) 

Clearly, by taking limit as t —>n+1 in (1.12), we obtain 

F(cn+1' c nn  ) = F(c.  ,c n )+ 1. 

Here (1.12) gives explicit solution of (1.11) in each interval in,n+1). 

EXAMPLE 1.4:  Choose f(x(t),x([t])) = -2x 2 (t)x([t]), t J in the IVP 

(1.11). Leta be a nonzero parameter, then the integral 

fi 	 F(x, ) =f dx  	-x 

-2x*  

The solution can be obtained using (1.12) as 

 x(t) = c Et3 (1 - (t-[t] )c[t])2 , 	t6.1, 

where 

1 	2 c [0]. = Ci t i_ 1 (1 - c [t] - 1 )  



REMARK 1.3:  If c
o 

= 1 ,x (t) tends to zero as t tends to 1 and 

x(t) = 0 for t > 1. 

1.5 EQUATION ALTERNATELY OF RETARDED AND ADVANCED TYPE [10] 

Another interesting class of differential equations, which have 

been studied recently is of the form 

y' (t) = ay(t)+by(2[(t+1)/2)),y(0) = 	
' 

	

c .
o 	teJ, (1.13) 

where a, b, c
o are constants. The argument deviation 

t(t) = t - 2[ (t+1)/2] is negative for 2n-1 < t < 2n and positive for 

2n < t < 2n+1 (n is an integer) . Equation (1.13) is of advanced type 

on [2n-1, 2n) and of retarded type on (2n, 2n+1) . 

DEFINITION 1.2:  A solution of equation (1.13) on J is a function y(t) 

that satisfies the conditions: 

(i) y(t) is continuous on J, 

(ii) the derivative y' (t ) exists at each point t €J, with possible 

exceptions of the points t = 2n-1, n = 1, 2, 3 ... where only one-sided 

derivative exists, 

(iii) equation (1.13) satisfies on each interval 2n-1 < t < 2n+1, 

n = 1, 2, 3 ... 

A closed form solution for the problem (1.13) is obtained in the 

following result. 

• 
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THEOREM 1.6:  The IVP (1.13) has a unique solution given by 

l(t+1)/2J 
y(t) = X(t - 2[(t+1)/2]) X(1)

X(-1 ) 
	 c

o 
if .  X(-1) 	0 	(1.14) 

) 

where 

x(t) = exp(at) at)(1+a -lb) - a -lb, 	t E J. 

One of the qualitative properties of this solution is established 

in the theorem stated below. In view of the representation (1.14) 

the proof immediately follows. 

THEOREM 1.7:  The zero solution of (1.13) is asymptotically stable if 

and only if 

< 1. 

The existence and uniqueness of solutions of (1.13) with variable 

coefficients is the consequence of the following result. 

THEOREM 1.8:  The IVP 

--t 	 y' (t) = a(t)y(t) 	b(t)y(2[(t+1)/21),y(0) = c o  

has a unique solution on J if a and b are continuous for t E .1, and 

2n 

r -1 
j u (t)b(t)dt 	u

-1
(2n), 	n = 1, 2, ..., 

2n-1 

where u
-1 

is the reciprocal of u and u(t) = exp( 
	

a(s)ds). 

0 

• 	 • 

• 
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REMARK 1.4: It can be easily shown that the solution y a 0 of (1.13) 

is asymptotically stable if and only if one of the conditions is satisfied.: 

(i) a < 0, b > - a(exp(2a)+1) 	or b < -a 

(exp(a) - 1) 2  

(ii) a > 0, - a(exp(2a)+1) < 

(exp(a) -72-  
< -a 

(iii) a = 0, b < O. 

EXAMPLE 1.5: Let us consider the IVP 

y' (t) = y(t) + 2y(2[(t+1)/2]), y(0) = 1, 	t € J. 

Here we have chosen a = 1, b = 2 and c
o 

= 1 in (1.13). Use the 

relation (1.14) to get the solution 

y(t) = (3exp(t-2[(t+1)/2]) - 2) 3exp(1) - 2 	
(t+i)/2] 	e J.  

, 	t 
3exp(-1) - 2 / 

EXAMPLE 1.6: In a similar way, as in the Example 1.2, we choose a = 0 

and co  = 1 in (1.13). The solution is given by 

Y(t) =(1 + b(t-21(t+1)/2J)) (1 + b )[(t+1)/2] 
1 - b 

t E J. 

For any b such that -1 > b or b > 1 the above solution is 

oscillatory. For all -1 < b < 1 it is nonoscillatory. The solution y(t) 

is asymptotically stable for b < 0 and it is stable for b = 0. y(t) is un-

stable for b > 0 and it is not defined at b = 1. 
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1.6 GRONWALLS INTEGRAL INEQUALITY 

In this section, we state Oronwall's integral incquallly 123J 

which is useful in the study of the qualitative behaviour of solutions 

of differential equations. 

THEOREM 1.9:  Let c be a, nonnegative constant and let m and v be 

nonnegative continuous functions on some interval t o  < t < t o  + a 

satisfying 

t 
m(t) < c + f v(s)m(s)ds, 

t
o 

Then , the inequality 

t E ft
o  ,t 0+a). 

t 
m(t) < c exp( f v(s)ds), t E ft o ,to+a ),  

t 
0 

holds. 

A minor modification of the above theorem is given in the 

following result. 

THEOREM 1.10: Let m and v be nonnegative continuous functions on 

o 
,t 

o 
 +a) and let n be a continuous function on lt o  ,t o+a) satisfying 

the inequality 

t 
m(t) <n(t) 	v(s)m(s)ds, 

t
o 

Then, we have 

t CIA 
o 
 ,t 

o
+a). 

m(t) <n(t) + 	f v(s)h(s)exp( 	v(r)dr)ds, 	tE lt o  ,t o  +a). 
to 

• 

• • 
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If , in addition, the derivative n' (t) exists for t 6 (t o ,to+a), then 

m(t) < n(t o )exp( f v(s)ds) + 
t 	 A 	,t 

exp( j v(r)dr)n' (s)ds. 

t
o 	 t

o 

1.7 VARIATION OF PARAMETERS FORMULA 

The method of variation of parameters is one of the most important 

techniques in the study of the qualitative properties of ordinary 

differential equations. 

Variation of parameters formula for linear differential equation 

is given below 1231. 

Consider the IVP 

x' (t) = a(t)x(t), x(t o )= xo  

and associated perturbed IVP 

(t) = a(t)y(t) + b(t), y(t o ) = xo , 

(1.15) 

(1.16) 

where a ,b are continuous functions on J and x
o 

is a real constant. 
• 

It can be verified that 

x(t,t 
o 
 ,x o

) = exp( S a(s)ds)x o 
t
o 

and 

r t 	 0 t 
y(t,t

o'
x

o
) = exp( j a(s)ds)x o 

+ f exp( 	a(r)dr)b(s)ds 
t

o 	
t
o 	s 

are solutions of (1.15) and (1.16), respectively. 

• 	 • 

• 

• 
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t 

If we denote 	1:P (t) = exp( 	a(s)ds) and 4) (t,$) = 	(t)(1)
-1 

 (s), 
t
o 

then the solution y(t,t o ,x0 ) = y(t) of (1.16) can be written as 

pt 
y(t) = 	(1)(t,t 0 )xo  + 	j 	(1) (t,$)b(s)ds, 

t 
0 

which is known as variation of parameters formula for linear differential 

equation. 

The generalization of variation of parameters technique for 

nonlinear case is not obvious which is also described below [23]. 

Consider the initial value problems 

x'(t) = f(t,x(t)), x(t o ) = xo , 	t E J 	 (1.17) 

yt(t) = f(t,y(t)) + F(t,y(t)),y(t o ) = xo , t E J, 	(1.18) 

where f, F are continuous functions defined on J X IR and xo  is a 

constant. Assume that f possesses continuous partial derivatives 

af on J x E. Let x(t,t 0 ,x0 ) and y(t,t 0 ,x0 ) be the solutions of (1.17) 
ax 

and (1.18), respectively. Denote H(t,t o 
 ,x

o 
 ) = 	a f . Then 

ri4(t,t 0 ,x0 ) 
	x(t,t

o ,xo ) 	exists, 	4)  (t0,t0,x0) = 1 
a xo  

and is the solution of the'linear equation 

y' (t) = H(t,t 0 ,x0 )y(t), 	t E J . 	 (1.19) 

• 	 • 

a x
o 
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ax(t,t ,x ) 
o o 

Also 	 exists and is a solution of (1.19) satisfying ato 

Dx(t,t
o ,xo ) 	= - 	(t,t ,x )f(t ,x ), 	t 

0 0 	0 0 

Now we state a theorem from L231 which is due to Alekseev. 

THEOREM 1.11:  Let f and F be continuous functions on J x R to R 

and let of exist and be continuous on 
ax 

J x R. 	If x(t,t 
0  ,x 

0
) is the 

solution of (1.17) existing for t > t
o 

any solution y(t,t o ,x0  ) of (1.18), 

satisfies the integral equation 

t  y(t,t 
0 
 ,x 0  ) = x(t,t 0 ,x0 ) + 	f oct,s,y(s,t0,x0))F(s,y(s,t 

0 
 ,x 0 ))ds, 

t 
0 

for t > t
o
, where 	4)(t,t 

0 
,x 

 0 
) = a x(t,t 0  ,x 0 ) 

x
o  

1.8 DELAY DIFFERENTIAL EQUATIONS 

In this section, we discuss some results on delay differential 

equations which are needed for the present work. 

Consider a linear delay differential equation of the form 

x' (t) = ax(t) + bx(t- T ), T > 0, 	t €J, 	 (1.20) 

with initial data 

x(t) = 	in 	-T 	< t 	< 0, - 	— 

where a, b are constants and (I) is a real-valued continuous function 

defined on [.- T , 0] . 

• 	 • 

a;t
0 



We need the following definition 1.16J . 

DEFINITION 1.3:  The solution 	4,1 (t),t > 0, of equation (1.20) with 

initial data .1 	0, 

	

1, 	

- 	t < 0 

t = 0; 

is called the fundamental solution. 

It is known in 116J that if h( x) = x -a bexp(- XT ) = 0 is 

the characteristic equation of (1.20), then the Laplace transform of 

1 
1 (t) is h -1 ( x), that is L(4 ) ( X) = h

-1 (X ).  

Further, > the solution y(t) of the perturbed equation 

y' (t) = ay(t) + by(t- 	cy(lt.1), 

with the same initial condition is given by 

t 
y(t) = x(t) 	

o
j 	4)

1
(t - s)cy(1sDds, 

where x(t) is the solution of the IVP (1.20). 
• 

The following known theorem from [16] is employed in a 

subsequent chapter. 

THEOREM 1.12:  Let h( X ) be the characteristic equation of (1.20); if 

ao 
= max tRe X ;h( x) =Of, then, for any a > o, there is a constant 

k = k( a) such that the fundamental solution 4 1 (t) of (1.20) satisfies 

the inequality 

4) 1 (t) I < k exp(a t), t > 0. 	 (1.21) 

(t) 	= 
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t 

Further, if x(t) is the solution of (1.20) with initial condition 4) , a 

real-valued continuous function on 1.- T,0], then 

lx(t)1 < k exp(a t)1 4)1, t > 0, 	 (1.22) 

where 

4,1 = sup 	I AP 8 )1. 
<8< 0 

In the case of functional. differential equations, a linear eqution 

is represented in the form 

x'(t) = ax(t) + bL(x(t+ 8)) 	 (1.23) 

and its perturbed equation is 

y' (t) = ay(t) + bL(y(t+ 9)) + cy(N) 
	

(1.24) 

with initial data 

x(t) = y(t) = (t), 	K <t < 0, 

where L is a linear operator on [-T ,0] to R., te J and 4) is a 

continuous function defined on L-T ,0], T > 0 a constant. 

• 

We need the following definition from[16] • 

DEFINITION 1.4:  The function 4) 
2
(t) satisfying the relation 

a  t=t)  = a 4 2 (t) +bL( 2 (t+e )), 	- T < eso, 

at 

with initial data . 

(t) 	= 
{ 

0 , - T < t < 

1 , 	t = 0; 

is called the fundamental solution of (1.23). 

• • 
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It is known that 4)
2 (t,$) =2 	2 (t) 4) 

1
(s) = 2

(t-s). 	By 

variation of parameters formula proved in [16], the solution y(t) 

of (1.24) has a representation 

f,t 
y(t) = x(t) 	

0
j 	4) 2 (t ' s)cy([s] )ds, 	t> 0, 

where x(t) is the solution of (1.23) and 4) 2 (t) is the fundamental 

solution of (1.23). 

• 



• 
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CHAPTER 2 

QUALITATIVE  PROPERTIES OF DIFFERENTIAL EQUATIONS INVOLVING 

PIECEWISE CONSTANT DEVIATING ARGUMENT 

2.1 INTRODUCTION 

Qualitative theory of ordinary differential equations is an 

interesting study because of its great practical utility in many branches 

of science and engineering. In this chapter, we prove an existence 

theorem, a variation of parameters formula, an integral inequality and 

an oscillation result which are some of the basic results to study 

further properties of differential equations. 

In section 2.3, we prove the existence and uniqueness of solution 

of a system with PCDA by using Banach contraction mapping principle. 

Section 2.4 gives the variation of parameters formula for piecewise 

• 
constant delay equations . Well known Gronwall' s integral inequality is 

extended in section 2.5. Applications of variation of parameters formula 

and Gronwall' s type integral inequality are given in section 2.6. In 

section 2.7, the oscillatory behaviour of solutions of the • system with 

PCDA is discussed. Equations with two types of delays, namely, 

continuous and piecewise constant deviating argument are introduced in 

section 2.8. Section 2.9, is concerned with the study of some 

functional differential equations. In the same section, we introduce a 

new class of delay and functional differential equations. 

• 
• 

• 

• 

• 	 • 
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x'(t) = ax(t) + bx([t]) + cx((t)) 

x'(t) = L(x [t] ), 

where the notation (t) designates fractional part of t. 

2.2 PRELIMINARIES 

We consider the following systems of differential equations 

x' (t) = A(t)x(t) 

Y' (t) = A(t)y(t) + B(t)y([tl) 

z' (t) = A(t)z(t) + B(t)z([t]) + c(t) 

for t E J = [0, 	) and with initial conditions 

x(0) = y(0) = z(0) = c o , (2.4) 

where A, B are n x n matrices with entries as real-valued continuous 

functions of t E J, c is an n-column vector with entries as real-valued 

continuous functions for t E J, x, y, z are n-vectors and c o  is a real 

constant n-column vector. Here the notation [ 	designates the 

greatest integer function. 

The definition of solutions of (2.2), (2.4) and (2.3), (2.4) now 

can be given with modification in the Definition 1.1. 

The following notations will be used in our subsequent discussion: 

n i IR is the space of Euclidean n-vectors and for x E R
n

, Ix! is the 

Euclidean vector norm. 

• • 

• 

• 

• 
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Let C[J,Rn ] or C(J) denotes the space of continuous functions 

mapping from J = [0, 	into 1Rn . BC(J) is the space of bounded 

continuous functions mapping from J into En  and for x E BC(J), 

I x i• 	sup Ix(t) 
tEJ 

It is known that BC(J) is a Banach space with the norm defined above. 

The norm of an n x n matrix M = (m.. ) is defined to be 

maxElmij I. 

j 

The notation E
n 

denotes the n x n identity matrix. 

DEFINITION 2.1:  A solution y(t) = (y 1 (t),y2 (t), 	yn (t)) of system 

(2.2) is said to be oscillatory if each of its component has arbitrary 

large number of zeros for t > T , 0 < T <0.. A solution of (2.2) is nonoscilla-

tbry 	atleast one 
	of its component is eventually of a constant sign. 

2.3 METHOD OF _ITERATION 

In this section we employ the method of iteration described in 

[13] to obtain the solution of the IVP (2.2), (2.4) . 

THEOREM  2.1: Let A, B be n x n matrices with entries as real-valued 

continuousHfunctions defined on J. Then there exists a unique solution 

to. the IVP (2.2), (2.4) and the solution is given by 

• 
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y(t) = um{ t(t,o) + f
t

(t,t i. )13(ti ) 
k 	 0 

t 	[t 

+of el 	t(t,t i )B (ti ) I ( 	,t2 )B (t2 ) (i t2 L O)dt2dti 	... 

	

t 	[t 

J 	• . • 

	

0 	0 

tk-1 ]  

(t,t i )B(t i ) 	( [t )B(t
2
) ... 

... Bak  )i ( [t k ] , 0)dtk ... dt2dti l c o 	(2.5) 

t E J, where fl(t) is a fundamental matrix of (2.1), (0) = E n  and 

Jj(t,$) = ,l(t) f l (s). 

PROOF:  Let A be any ,:compact interval in J, such that 0 E A . The 

space C( A) of continuous functions y : t —> y(t) from A into le, 

with norm 

1Y I = suply(t) I 
t6 ti 

is complete. Let us also-consider the space C ( ), X > 0 of continuous 

functions y : t —> y(t) from A into e n , with norm 

IYIx' 	
sup, { Iy(t) lexp(- . 	

t 	
Vt,$)B(s) Ids)} • 

tE 

Clearly C o ( A ) = 	A ) . It is seen that the norms 1 y 1 x are all 

equivalent for x > 0 so that C ( A) is also a complete space. Let us now 
X 

consider the mapping T : C (p ) 	 ( A) defined by 

(Ty)(t) = (t,O)c 0  + (t,$)B(s)V([s] )ds. 

• 
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r 

W@ allow that T 15 a contraction mapping. Observe that 

I (Ty 1 )(t) - (r y2 )(t) I < 	ft 	(t,$)13(s) I In us] 	y2 ( [s] ) ds 

= 
J t  I i(t,$)B(5) I Inas]) - y2Usi) I 

o 
 

• .exp( ,xf sl (s,r)B(r)ldr - x 	(s,r)B(r) I dr)ds 
t - o 

suPlYi (t)-y 2 (t)lexp(- A jr1
t
11 (t , $)B ( s)Ids) 

tee 	 0 

•
f I d (exp( X f s  I (t,r)B(r) I drnds 

 o A ds 

t 
I 	Y21 x 	1 exp( X f I c(t,$)13(s) I ds). 

7 	0 

Hence, it follows that 

I Ty i  - Ty2  I x 	< lly l - y 2 1 x  . 

For X > 1, T is a contraction map on C x  ( p ) 	Hence, by Banach 

contraction mapping theorem there exists a unique y in C ( A ) such 

that • 

„t 
(Ty)(t) 	y(t) = 	 j f(t,$)B(s)yaspds. o 0  

Defining 

y
o 
(t) = co 

yk (t) = i(t,o)c o  + 	
t 
t(t,$)13( 's'Yk-1 ([s])ds, 	k = 1, 2, ... 

and using the method of successive approximations, the required result 

(2.5) follows. 

• 
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REMARK  2.1:  If A(t) .4 0 in (2.2), then the solution (2.5) reduces to 

the form 
,t ,[t i ] 

y(t) = limiEn 	
j 13(t

1
)dt

1 
+ 	 B(t

1
)B(t

2
)dt

2
dt

1 
+ 

o o 

+ f
t 

f
[ t

1
] 

0 	0 

[t ie 1 ] 
f 	

1 )B(t2 • 
) ..B(tk )dt

k2 
dt

1o .  
0 

For computing solution of (2 .2),(2.4), we can use the method given in 

[9]. For this purpose, assume that y n (t) is a solution in the interval 

n < t < n 4  1, with the initial condition yn n  (n) = c, n = 0, 1, 2 

The unique solution of (2.2) on the given interval is 

t 

yn (t) = ( ( t,n) 	jr(t(t,$)13(s) ds)cn . 

Since 
Yn-1 (n) 

 = Yn(n)'' we obtain the recurrence relation 

n 
c
n 

= ( (n, n -1) +n-rf  it,(n,$)B(s)ds)c
n-1

. 

Hence, the solution of (2.2), (2.4) is given by 

t  y(t) = ( (1 (t, 	[t]) + [t]f 	(t,$)B(s)ds)c„ 
L 1' t E j  

where 

1 

c [t] = 	Tr 	( i(k,k-1) + r  ci(k,$)B(s)ds)c 

	

k=[t] 	 k-1 	 o• 

(2.6) 

(2.7) 

In order to study rturbation effects on the equation (2.2), we 

now treat (2.2) as our basic equation (in place of (2.1)). This approach 

leads us to the study of equation (2.3). For this purpose, we first 

define the fundamental matrix solution of (2.2) . 

• 
• 

• 

• • 
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DEFINITION 2.2:  The function 

,t 
1P( t) = ( Ot, [t] ) +[ 	j Ot,$ )B(s)d s) 

1 
. 	Tr ( 	+ 	f  (F(k,$)B(s)ds), 	t 6 J, 

k=[t] 	 k-1 

where 	 t 6 J is a fundamental matrix of (2.1), satisfies the matrix 

IVP 

Y' (t) = A(t)Y(t) + B(t)Y(ttn, "Y(0) = E
n 

We call matrix ID a fundamental matrix for the equation (2.2). We also 

use the notation 	(t, k) = 	(t) ip 
-1

(k), 	k = 0,1,2, ... [t]. 

It is seen that ,p (t)C where C is a nonsingular constant n x n 

matrix is also a fundamental matrix of (2.2). In view of Definition 2.2, 

it is clear from (2.6), (2.7) that any solution y(t) of (2.2) is given by 

y(t) = 	IF(t)c 	t e J. 	 (2.8) 

From (2.8) we can prove the following properties. 

(1) 	,p(t, 9)' (9,$) = 	(t,$) 

(ii) = 	(s,t) 

(iii) (t,t) 
	

E
n 

(iv) a  ,D(t,e) 
a t = A(t) 'k  (t,e) 	B(t) p  ( [t] ,e) , 

where t, 0,. s E J, t > 8 > s. 

• 
• 	 • 

• 



• 

• 
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2.4 VARIATION OF PARAMETERS METHOD 

Let x(t), y(t), z(t) be solutions of (2.1), (2.2), (2.3), respectively 1 

 satisfying the initial condition (2.4). The relationship between the solutions 

x, y, and z is established below through variation of parameters formula. 

THEOREM 2.2:  The unique solution of (2.3), (2.4) is given by 

z(t) = y(t) 
	

t(t,k) •(k,$)c(s)ds + 	I I (t,$)c(s)ds, t 6 J 
	

(2.9) 

k=1 k-1 	 [t] 

where cf and 1p are fundamental matrices of linear systems (2.1) and (2.2), 

respectively, and y(t) is the solution of (2.2), (2.4). 

PROOF:  It is enough to prove that 

[t] 

z(t) = 	E f (t,k) ,(k,$)c(s)ds 	(t,$)c(s)ds, 	t 6 J 

k=1 k-1 	 [t] 

is a solution of (2.3). We have for t E J, 

	

[t] 	k  

(t) = 	E f 1,' (t,k) i(k,i)c(s)ds + d( f t (t,$)c(s)ds) 

k=1 k-1 	 dt [t] 

[t] 	k 

•E 	(A(t)IP (t,k) B(t)T (co 	(k,$)c(s)ds tc(t) 
k=1 k-1 

Jr tmoI (t,$)c(s)ds 

[t] 

Attri(t)+B(t)2"([0)+c(t). 

The proof is complete. 

REMARK  2.2:  If A E 0 in (2.3) the solution (2.9) becomes 

[t] 	k 

z(t) = y(t) + E f (t,k)c(s)ds 	f c(s)ds, t E J 

k=1 k-1 	 [t] 

where y(t) is the solution of (2.2), (2.4) with A F. 0. 
• 

• 

• • 



t 

z(t) '= 	1(t i 0)o
o 	f'f (t,$)B(s)z ( [s] )ds + ,f §(t,$)c(s)ds. 	(2.13) 

0 	 0 
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We can arrive at the result (2.9) by another method by taking (2.1) as 

•basic'. - equation and using usual variation of parameters formula (refer 

section 1.7) to get the solution of (2.3). For this purpose, we prove the 

following theorem. 

THEOREM  2.3: Let 4) and ip be fundamental matrices of (2.1) and (2.2), 

respectively, then 

	

n 	k 

z(n) = y(n) 	E 	f (n,k)1 (k,$)c(s)ds 
k=1 k-1 

where n > 1 is an integer, 

(2.10) .  

n r  

(n,k) = 	 + 	 (n,$)B(s)ds, for n > k 
r=k+1 r-1 

and 

(n,k) = 	E 	for n = k, n = 1, 2, ...[t]. 

PROOF: Let y(t) and z(t) be solutions of (2.2), (2.4) and (2.3), (2.4), 

(2.11) 

respectively, for t E J. Using variation of parameters formula (refer 

section 1.7), we have , for t E J, 

-1, 

y(t) 	i(t,O)c
0 0f (t,$)B(s)y([s]) ds 

and 

(2.12) 

It is easy to see that ,for n = 1, 

1 
z(1) = y(1) + f 	(1,1) i(1,$)c(s)ds 

0 

where 

(1,1) = E
n

. 

• 

• 

• • 



z(m+1) = ci (m+1,0)c o  + 
m+,1  

f 
k-1 

• 
z(m+1) = y(m+1) 

t 

• 
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Assume that the result (2.10) is true for n = 1,2,...m. For t = m+1, 

we obtain from (2.13) 

z(m+1) = +(m+1,0)c + 	. 	t(m+1,$)IB(s)z(k-1) + c(s)Ids. 
I k-1 

In similar form we can write y(m+1) from (2.12) in terms of y(0),y(1), 

y(m). Since (2.10) holds for n = 1,2, ... m, we get 

k-1 	• 	r 
+B(s) 	f (k-1,r) (r,p)c(p)dp}ds 

r-1 

m+1 	k 

1 -1(m+1,$)c(s)ds, 

where 
• r 

,A(k - lor) l(r,p)c(p)dp = 0. 
r= r-1 

From the expression of z(rn+1), sum of the terms containing y(0),y(1), 

y(m) can be replaced by y(m+1), then 

m+1 	k k-1 	r 
f 1(m+1,$)B(s){ 

r 	r
f (k-1,r) (r,p)c(p)dpIds 

k-1 	 r-1 
k 

f /(m+1,k) (k,$)c(s)ds. 
k-1 

m+1 

By changing the order of integration in the second term on the right 

side, we obtain 

m+1 

z(m+1) = y(m+1) + 	1, 	f { ,§(m+1,k) 
k= k-1 

f (r - 1,k) (m+1,p)B(p)dpl 	(k,$)c(s)ds. 	(2.14) 
r-1 

• 
• 	 • 

• 	 • 
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Now use (2.11) in (2.14) to see the result 

m+1 	
k 

z(m+1) = y(m+1) + 
	

J 1(ns-1,1c) /(k,$)c(s)ds. 
k=1 k-1 

Hence the:theorem. 

In order to establish ,(2.9) ds a by product of the above theorem, it 

is necessary to get the solution z(t) for each t, t E J. Hence we need to 

`add the following steps. 

Use (2.10) for n = 1, 2, ... [t] in (2.13) to get z(t) In terms of 

y(0), y(1), ... y([t]). From the expression of z(t) we can replace the 

terms of (2.12) as y(t). Using the same argument as in the .case_ of above 

theorem, we get the result (2.9). 

In the following example, we verify the relation (2.9) for the one 

dimensional case. 

EXAMPLE 2.1: Consider (2.2) and (2.3) with scalar functions A(t) = a(t), 

B(t) z- b(0-. Assume that z n (t) is the solution of the perturbed equation 

z' (t) = a(t)z(t) + b(t)z(It]) + c(t) 	 (2.15) 

in the interval n < t < n+1, with the condition z
n

(n) = d
n' 

for n = 0, 1, 

2, 	. Hence, 

z
n

(t) 	d
nexp( j ta(p)dp) + j exp( 	a(p)dp){ b(s)d + c(s)Ids• 

n J 
(2.16 ) 

Since z
n-1

(n) = z
n

(n) = d
n

, we obtain the recursion relation 

,,n 	 ,. n 
d = d

n-1 
 lexp( j a(p)dp)+ j exp( fa(p)dp)b(s)dsl 

n-1 	 n-1 	s 

• 
+ f  exp( f a(p)dp)c(s)ds, 

n-1 

(2.171 

n = 1, 2, 3 • 
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Since co = do' we can write d [t]  in terms of c o by using the recursion 

relation (2.17). Now (2.16) and (2.17) yield 

z(t) = 
eb t 

d Aexp( j a(p)dp) + 	exp( 	a(p)dp)b(s)ds1 [t] 	[t] 	 [t 

[t
exp( f a(p)dp)c(s)ds. 	( 2.1 8) 

In view of the relation (2.17), (2.18),;can_be written as 

t 	 t 	t 

z(t) = {exp(
[t]` 

	 a(p)dp) +
[t] 

 f exp(-f a(p)dp)b(s)ds} 

1 

• Tr {exp( f a(p)dp) + f exp( f a(p)dp)b(s)dslc o 
k=[t] 	k-1 	 k-1 

k 
+ 	f {exp( f a(p)dp) + f exp( ra(p)dp)b( T )dt 1 

k=[t] k-1 	[t] 	 [t] 	• 

11] 
{exp( j a(p)dp) + f exp( f a(p)dp)b( T )d 

r=k+1 	r-1 	 r-1 

k 	 t 	t 
. exp( j a(p)dp)c(s)ds + f exp( f a(p)dp)c(s)ds, 

[t] 

where 

[t] 

	

IT 	{exp( f a(p)dp) + 

	

r=[t]+1 	r-1 
 f exp( 
fr 

 a(p)dp)b(T )dT 
r-1 

} = 1. 

It can be seen from (1.9), (1.10) that in the expression of z(t), first 

term on right side can be replaced by y(t). Since 

,t 
4(t) = exp( y a(p)dp) and 

o 

f 	
t 	

f 41 (t) = iexp( j a(p)dp) 	f exp( j a(p)dp)b( T )d T 1 
[t] 	 [t] 	T 

[t] 	 r 	 r 	r 

IT { exp( f a(p)dp) + f exp( f a(p)dp)b( 
r=1 	r-1 	 r-1 	T 

d • 
• 



for t 6 J, we obtqlJn 

• 

z(t) = y(t) 

[ t ] 

	

k 	 t 

Jr 4,(t,k) (p(k,$)c(s)ds + 	(I) (t,$)c(s)ds. 

k=1 k-1 	 [t] 

2.5 GRONWALL TYPE INTEGRAL INEQUALITY 

In this section, we extend the Theorem 1.9, the Gronwall's 

integral inequality, which is referred to as a fundamental 

inequality of differential equation. This has been done in the 

following theorem. 

THEOREM 2.4:  Let c
o

> 0 be a constant and u, a, b E C[J,R]. 

If the inequality 

r t 

	

u(t) < c
o

+ j 	{a(s)u(s) 	b(s)u( [s] ) Ids, 	t E J 	 (2.19) 

holds, then for t E J, 

	

Uj 	, k 	 ,k 	k 
< c 	 j u(t) 	 {exp( 	a(p)dp) + j exp( j' a(p)dp)b(s)dsi 0  TT 

	

k=1 	k - 1 	 k - 1 	s 

,t 	 A 	
f .{ exp( j' a(p)dp) + Ti exp(j a(p)dp)b(s)dsl-( 2 . 20 ) 

	

[0 	 [t 	s 

PROOF:  In the interval n < t <n+1. 

,t 	
f u(t) < u(n)(1 	j b(s)ds) 	j a(s)u(s)ds. 

Then by using Theorem 1.10,we get 

	

t 	 t 	t 

u(t) <u(n){exp( fa(p)dp) 	fexp( j- a(p)dp)b(s)ds}, 
	(2.21) 

n = 0, 1, 2, ... . 	Applying the inequality (2.21) successively 

for u(n), u(n -1 ), 	u(1), we get the desired conclusion (2.20). 

• 
• 	 • 

• 	 • 



39 

REMARK 2.3:  Observe that the right hand side of the inequality (2.20) 

is intact a solution of the related delay differential equation 

y' (t) = a(t)y(t) 	b(t)y([t] ), y(0) = c o . 

REMARK 2.4:  When b = 0 in (2.19) the inequality (2.20) reduces to 

,t 
u(t) < c oexp( j a(s)ds). 

Further, when a = 0 in (2.19) we get 

u(t) < c o (1+b(t-[t]))(1+b)
[t] 

< c 
o
expat+1]b). 

REMARK 2.5:  Assume a = 0 in (2.19). Replace b(t) by b( [t]) 

t = n in (2.19), then the inequality (2.20) becomes 

[t] 
u(n) < 	Tr (1+b(k)). 

k=1 

This estimate has been proved in [ 31 . 

and put 

2.6 APPLICATIONS 

Consider the system 

y' (t) = Ay(t) + By([t]) 

and the perturbed system 

z'(t) = Az(t) + Bz(itl) 	f(t,z(t),z([t])) 

where A, B are n x n constant matrices, A is nonsingular and 

(2.22) 

(2.23) 

1 E 	xR
n 

x R
n

, E
n
]. Assume that 

if(t,z ( t) ,z (E t l))1 < 	a(t)lz(t)I + 	s (0 1 zUtld 
	

(2'.24) 

. 	• 



Ito 

where a , fi are nonnegative continuous functions on J, satisfying 

o
..f (lc°  (s)ds < 

C 0 

Of (s)ds < (2.25) •  

Under suitable conditions, we prove the solution of (2.23) exists •  and 

further, if (2.22) has asymptotic stability property, then (2.23) also 

possesses the same. Similar results for ordinary differential equations 

are proved in [26]. 

THEOREM 2.5:  Assume the fundamental matrices 	and 	of (2.22) 

and (2.23), respectively, satisfy the conditions 

I 001 < N, I 	(t, s)1 < M
o

, 0 < s < t < cc, 

(t,k) 	(k,$) I < Mk  , k = 1, 2, ... 	0 < s < k < t < co 	(2.26) 

and M = max{M
o' 

 M 1, 
	

M
[t] 

, 

where N and M
k' 

k = 1, 2, ... [t] are constants. 

Let the conditions (2.24), (2.25) hold. Then all the solutions z(t) of 

(2.23) exists for t 6 J and there exists a constant K > 0 such that 

kW' < Kic 
o
I, t E J • 	 (2.27) 

Further, if y(t) is the solution of (2.22) with y(0) = c o  and y(t) 

satisfies lim y(t) = 0, then lim z(t) = 0. 
t-> co 	 t-> co 

PROOF:  Using Theorem 2.2, we have 

• 

• 

• 

• 	 • 



K
2 

= exp( f M (r)dr) 	ict (1 + fk  M 13(s)ds) 
ce 

o 	 k=1 	k-1 
(2.28 ) 

z(t) = y(t) 
	

k ,D(t,k) (1, (k,$)f(s,z(s),z([s]) ds 
k=1 k- 

f
t 

 (t,$)f(s,z(s),z(isi)) ds, t E J. 
[t] 

The conditions (2.24) and (2.26) yield for t E J , 

lz(t)I 5. Nic o l 	M f 	a(s) k(s) 	+ 13(s) lz(k)) ) ds . o   

—r/ 	 Applying the inequality (2.20), we obtain 

lz ( t )  I < K1N Icol 

where 

[t] 
= K 1 
	

{exp(M 	fjc. a (Odd+ 	exp(M f a(r)dr)M B(s)ds} 
k=1 

.{exp(M 	a (r)dr) + 	f exp(M f a (r)dr)M f3(s)ds). 

[t] 	 [t] 

Take 

Clearly, in view of (2.25) K 2  is a constant and is an upper bound 

of K 1  ,taking K = K2N , we get the required result (2.27) . The 

condition lim y(t) = 0 implies that, given any c > 0, there exist 
t-) 03  

a T( c) > 0 such that I y(t) I < c for all t > T( e) .Proceeding as before, 

for t > T( c),we get 

I z (t) I < c + M f
t 

( a(s) Iz(s) 	+ 13(s) lzUsn I )ds. 

Hence I z(t) I < 	where K 2  is given by (2.28) . Observe that 

K
2 

is finite and is independent of E and T. This implies 

iim z(t) = 0. 
t-) 

• 	 • 

-r 
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EXAMPI-•E 2,2; Conatdei the IVP 

(t) = -z(t)-2z( It] ) + z(t) + z( 	) 	; z(0) = 1. 

(1+z2 (t) ) (1+t) 2  

Clearly, the condition (2.26) is true. Since 

z(t) + zatl) 	< 	z(t) 	z(ft])  

(1+z
2
(t))(1+t)

2 	
(1+t)

2 
(1+t) 2 

and 

dt = 1 < 

the conditions (2.24) and (2.25) are true. Hence by using Theorem 2.5, 

the zero solution of the given IVP is asymptotically stable. 

Consider the system (2.2) and the perturbed system 

z' (t) = A(t)z(t) + B(t)z((t)) + f(t,z(t)) + g(t,z(t)), t E J, 	 (2.29) 

where f, g E ClJ xfin , Etn i. 

• 

Under suitable conditions, we prove (2.29) possesses a solution 

and further, if (2.2) has a stability property, then (2.29) also possesses 

a stability property. Some similar results for measure differential 

equations are proved in [24]. 

THEOREM 2.6:  Let (I and 	be fundamental matrices of (2.1) and (2.2), 

respectively, such that 

[t] 
sup{ 
tEJ 

f I Ot,k) (k,$) Ids + 	f I (t,$) Ids 	< a
o

, 

k=1 k-1 	 [t] 

where a
o 

is as positive constant. 

• 

• 

• 

• 	 • 
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Let (i) f, g E ClJ x E n , Ril l are integrable and g(t,0) = 0 

(ii) For each y > 0, there is a 6 > 0 such that I f(t,z) I < y Izl, 

uniformly in t 6 J, whenever I z1 < 6 

(iii) For each c > 0, there is an 	n > 0 such that 

g(t,z 1 ) - g(t,z 2 
 )1 	< E I z

1
-z2  uniformily in t 6 J,whenever 

zi  < n ' z2I<n 

Suppose y E BC (J )1 s . a solution of (2.2), then there is a number 

c
o 	

0 with the following property. For any E , j 0 < E < c 0 , there 

corresponds a 60  > 0 such that whenever y I* = sup I y(t) < 6 
tEJ 	

o 

there exists at least one solution z(t) of (2.29) such that z C BC(J) 

and IzI* < c 

PROOF: Fix a c > 0 such that C a
o 

< 1 and choose an . n > 0 such 

that condition (iii) holds. Let y = 1-iao 	for this y ,select a 

2a
o  

6 > 0 such that condition (ii) holds. Let Eo = min( n 6 ).For any c C (0, c o ); 

define S( ) = {z E BC(J), Izi *  <cl. Clearly S( E ) is a 

closed convex subset of BC(J) under the norm I I*. 

Define the operators P and 0 on .S( ) by 

[t] 	k 

(Pz)(t) = y(t) 	 f (t,k) i(k,$)f(s,z(s))ds 	f (t,$)f(s,z(s))ds, 

k-1 	 [t] 

and 

t  

(0z) (t) = 	 f k î( t,k) i(k,$)g(s,z(s))ds 	 (t,$)g(s,z(s))ds. 

k=1 k-1 [t] 

  

• 

 

• 

• 

• 

• 	 • 
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For z
l' 

z
2 	

S(c ), we have 

I P z + Oz * 
1 	21 	< sup I (Pz i ) (t) + (flz

2 )(t) I 
tEJ 

k 

f I  ,i(t,k) i(k,$)iy iz i (s) ids 
16t k-1 

+ sup 
[t
J]  I 	(t,$) I y I z i (s) Ids 

+ sup 
teJ 

	

tti 	k 

	

E 	i  ( t,k) i(k,$) l y 

k=1 k-1 

z2 (s) ds 

< . IYI* 
	

sup 
t€J 

• sup 
t€J [ef.  

t 
1( t,$) y 1 z2 (s) a s 

< 6 o  + Ye ao + 	a
o —  

< c provided d o  < (1- E  ao
) ( c /2) . 

This shows that Pz
1 

+ Oz
2 

E s( ) , for every 
zl,z2 

S( ). Next, 

	

Oz i  -,0z2 1* < 	ao lzi  - z 2 1 together with the fact 	a o  < 1 implies 

that 0 is a contration on :S( ) . We show that P is completely 

continuous. It is enough to prove that any bounded sequence tz kI in 

s( ) has a convergent subsequence. Since tPz it I is uniformily bounded 

and equicontinuous set of functions by Ascoli s theorem, there is a 

subsequence tz k 	which converges to some z E s( ) . Thus P maps 

bounded subset. of .5 ( ) into relatively compact subsets and so P is 

completely continuous. Therefore, by Krasnoselskii s fixed point 

theorem [28] , there exists z E 5( c) such that 

P + Oz, = 
• 

• 
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That is 

t 	k 

z (t) = y(t) 	 f li(t,k)i(k,$)tf(s,z(s)) 	g(s,z(s))}ds 
k=1 k-1 

+ 	ci(t,$)if(s,z(s)) + g(s,z(s))}ds . , 
[t 

From definition of S(c), z E S( c) and implies that Izi *  < c 

2.7 OSCILLATORY BEHAVIOUR 

In. 11] , Aftabizadeh and 'Wiener have obtained a result on 

oscillatory behaviour of solutions of scalar equations involving 

piecewise constant delays. In this section, we extend this result for 

a system of equation (2.2) . 

First we need the following definition [12] . 

DEFINITION 2.3:  The measure 	(B) of the matrix B is defined by 

P(B) = lim I En  + 013 1 - 1 

9-M3
+ 

 
e 

where. 	is the norm of the matrix . 

It is well known, if we adopt the following norm of matrix 

I B I = max lb ij 

then the corresponding measure is 

11(B) = max(b.. + 
j 	

i=1 

I b ij I )  

i?j 

In view of Theorem 1.3 of chapter 1 and Definition 2.3, we prove the 

following theorem. 

• • 

• 

• 

• 	 • 
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THEOREM  2.7: Let 1-1  (.) denote the matrix measure. Assume that the 

matrices A(t) and B(t) in (2.2) are such that 

m+1 
lim sup J -4(B(s))exp( f - ( A(r))dods > 1. 	 (2.30). 
m--> 	m 

Then every solution of (2.2) is oscillatory. 

PROOF:  Suppose that there exists a solution, say, Y(t) = (y 1 (t), .. • y n (t)), 

of (2.2) which is nonoscillatory. Then there exists a constant m > 0 

such that for t > m, no component of Si has a zero. In such a case, 

we have 

d  ( E iyi (01) < gmt)) E ly i ( t) I + p(B(t)) 
dt 	i=1 	 i=1 1= 1 

for sufficiently large t > T > m. Let u(t) 	Eth( )1 , then u(t) 
i=1 

satisfies the inequality 

d 	(u(t)) 	< 4 (A(t))u(t) + u (WO )u( [t] ) 
	

(2.31) 
dt 

• 
Since the solution 5(t) of (2.2) is nonoscillatory, u(t) > 0 for t > T. 

That is, the inequality (2.31) has a positive solution for t > T which 

contradicts Theorem 1.3 in view of the condition (2.30). Hence the 

theorem. 

EXAMPLE 2.3:  Consider the system 

y' (t) = Ay(t) 	By([t]) 	 (2.32) 

with 



A = 

[

-10 

1 

2 

3 

-8 

0 

3 

-5 

-15 

41 

and 13 = 

_ -14 

-3 

1 

-3 

-17 

1 

4 

2 

-18 

Here 	1-1(A) = -5 and 	p(B) = -10. The system (2.32) satisfies the 

contition (2.30) and hence every solution of (2.32) is oscillatory. 

2.8 RETARDED EQUATIONS INVOLVING TWO TYPES OF DELAYS 

This section deals with the study of differential equations 

involving piecewise constant dealy and continuous delay. Consider 

the following scalar retarded differential equations 

x' (t) = ax(t) + bx(t-T ) 
	

(2.33) 

y' (t) = ay(t) + by(t- T) 	cy([ti) 
	

(2.34) 

z'(t) = az(t) + bz(t- 	CZ([ti ) 	f(t) 
	

'(2.35) 

where 	T > 0, t E J , with initial functions 

x(t) = y(t) = z(t) = 4)(t) for - T < t < 0, 	 (2.36) 

where 4) is a real—valued continuous function and a,b,c are real constants. 

DEFINITION 2.4:  A solution of IVP (2.34), (2.36) on J is a function 

y : J 	R satisfying the following conditions: 

(1) 	y(t) is continuous on J, 

(ii) the derivative y` (t) exists at each point t C J except possibly 

at t = 0, 1, 2, ... where y' (0) represents right hand side derivative 

and at all other points only the left hand side derivative exists; and 

(iii) y(t) satisfies equation (2.34), for each interval En, n+1), it 

coincides with. (t) on - T < t < 0. 
• 



-t 
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By using the iterative method, we can get the existence and 

uniqueness of solution of (2.34) . We state the following theorem. 

THEOREM 2.8: Let x(t) be the solution of (2.33) , (2.36) and (t)i, (t) 

be the fundamental solution (see Definition 1.3) of (2.33) . Then, there 

exists unique solution to the IVP ( 2.34) , (2.36) and it is given by 

y (t) = 	

^ (t)- T < t < 0 

lim{x(t) + c j ct)
1 (t-ti 1 )x( [t 1

]) t 
,.t 

	

+ c2  f t 
 o
j r 	(I) 

[t i 
i (It i l-t2 )x([t 2 ])dt2dti  + 

	

It 1 ) 	[tk _ i ] 

	

ck  rof 	o f co 1 (t—t. 1 ) co 1 ([t. 1 ] --t 2 ) . • • 

• 

• • • g[tk-1 ) -tk
)x( [tit] )dtk...dt2dy, t > 0. 

PROOF: The proof can be formulated by following the argument of 

Theorem 2.1. The details are omitted. 

The following examples illustrates the method of steps to solve 

equation (2.34) . 

EXAMPLE 2.4:  Consider the equation (2.34) , with 	T = 1 and initial 

function 

0 , -1 y t < 0, 
4) (0 	= 

1 	t = 0. 

The solution y(t) in [0,1) is given by 

y(t) = exp (at) (1+a -lc) - 

and hence 

y(1) = exp(a)(1+a -lc)-a -lc. • 

• 	 • 
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In [1,2), we obtain the solution y(t) as 

Y t 	y(1){exp(a(t-1))(1+a -lc)-a _ l c } 
t 

- 	- 
+ b 	exp(a(t-s)){exp(a(s-1))(1+a 1c)-a lcIds 

1 

y(1){exp(a(t-1))(1+a -lc)-a-lc} + 

2 
bexp(a(t-1))(1+a -lc)(t-1)-b a ci1-exp(a(t-1))}. 

Continuing the same procedure, we get the solution for any 

t C [n,n+1), n is a positive integer. 

EXAMPLE 2.5: Consider the delay differential equation 

x'(t) = bx(t-1) + cx(ltl), 	t > 0 

where b, c are constants, with initial function x(t) = 1 in -1 < t < 0. 

In [0,1), the above equation becomes x' (t) = b+c 

t 

Hence x(t) = x(0) + (b+c)t. 

Clearly x(1) = 1 + b + c. 

In [1,2), 

x'(t) = b(x(0) + (b+c)(t-1)) 

Hence 

+ cx(1 ) 

x(t) = x(1) + bx(0)(t-1) + (b+c)(t-1)
2 

+ cx(1)(t-1). 
2 

Following the same way, that is by using 'method of steps' we obtain 

the solution 

• 



§ t1 

[t] 

x(t) bi x([0-j){ (t-ttn i  + c(t-W) 1+1  } 	bk 3 +
1 (t-to)  L t 1 + 1  

([ 0+1) ! 	
t > 0, 

! 	(j+1) 

where 

[t]-j-1 
x([t]-j) = 	E 	 { 1 	+ c 	+ b[t]  

k=0 	 ft. ■ 	( k+i)! 	( rtrj)! 

for j = 0, 1, 2, 	[t]-1, and x(0) = 1. 

REMARK  2.6:  When b = 0, we obtain 

x( t) = (i+ c (t- E t1))(1+ c )
to

. 

REMARK  2.7:  When c = 0, we have 

x(t) = L b3x(tt]-j)ct-lt] ) j+ b [0 + 1 (t-RD
W+1 

J =o 	j ! 	 (W+1)! 

where 

t > 0 

.([0-1) = E 	x( [t]-L-k-1) for j 	0, 1, 2, ... [t]-1 
k k=0 

and ic(-1) =1. 

EXAMPLE  2.6:  Consider the scalar delay differential equation 

x' (t) = bx(t-2) + cx( [t]) 

where b, c are constants and t > 0, with initial function 

x(t) = 1 in'-2 < t < 0. 

Using the Method of steps, we obtain the solution 



x(n) 

b
(n+.1)/2 

((n+1)/2)! 

)/2 
x(n-2j-1)bi { 1 	+ o 	} 

1 	(j+1) I 

if n is odd. 

51 

x(It]-2k)bkl (t-[t] ) k  + c(t-[t] k+1  
k 	(k+1)t  

k=0 

(I0/2)+1 
+ (t-[t] )

(W/2)+1 

(([t]/2)+1) 

if [t] is even 
x ( t) = 

( t -1)/2 x([t]-2k)bk{ (t-[t]) k 

 • 

c(t - Lt] k+1 4 
k=0 
	 k 1 	(k+1) 

+ b
([t]+1)/2 (t - [t]) ([0+1)/2 

(([t]+1)/2) 
if [t] is odd. 

Inrforder to calculate x([t]-2k) = x(n) (say), we use 

( n/2 
x(n-2j-1)b3{ 1 { 	c 	

b 

3! 	 (n/2)I 

 

i= 0  

if n is even 

The following result gives an estimate on the growth of the 

solution of (2.34), (2.36). In the proof, we use the inequalities 

(1.21) and (1.22) given in chapter 1. 

THEOREM 2.9: Let k be a constant given in (1.21) and (1.22). Then 

the solution y(t) of (2.34),(2.36) satisfies the estimate 
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IY(t) I < kexp ( at) 1 to 1 (1-1silt{exp( ) - 1]) -1  
a 

.(1-1c . ik  {exp(a )-exp( a (t - [t])))) • 
a 

PROOF:  By using relation (6.1) of [16, page 21], we can write the 

solution y(t) of (2.34) in the interval [n,n+1) 

y(t) = x(t) + 	I _r 1 (t -s)y(n)ds, 
n 	1 

where x(t) is the solution .of (2.33) and 	4) 1 (t) is its fundamental 

solution with 	4) 1 
 (0) = 1. 

Hence, 

I y(t) I < I x(t) I  + ICI S I (0 1 (t-s) I Iy(n) Ids 	 (2.37) 
n 

From (2.37), it follows that 

ly(r) I < Ix(r) 	Idl 	j I 4)i (r-s) IlY(r - 1)Ids 	 (2.38) 
r-1 

for r = 1, 2, ... n. Use the recurrence relation (2.38) successively 

to get a bound for I y(n) I interms of I x(n) I , I 4) 1 1 and I 4) I . 	In 

view of the estimates (1.21) and (1.22), we get 

Iy(n) I < kexp( an) I 4) I (1-1c1M{exp( )-1}) -1 . 
a 

Substitute I y(n) I in (2.37) and use the estimates for x(t) from (1.22) 

and for 	4)1 
 (t) from (1.21) to obtain the required result. 

REMARK  2.8:  When c = 0, in the above estimate of y(t), we get 

estimate (1.22). 

Next we state a theorem which gives the solution of the perturbed 

equation (2.3). 	 • 
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THEOREM 2.10:  If y(t) is the solution of (2.34), ( 2 . 36 ), then the 

unique solution z(t) of (2.35), (2.36) is given by 

z(t) = y(t) + 
r

k 

k=1 k-1 

(t ,k) 41 (k,$)f(s)ds + f
t 

j 	1 (t,$)f ( s)ds, 

[t] 

where
1 (t) is the fundamental solution of (2.33), 

1 (t s ) = 4 1 (t- s) , 	0 < s < t. 

1' (t k) = 4)
1

(t
'
k) + c 	([s],k) 4) 1 (t '

s)ds 	for t > k 

and yt,k) = 1 	for t = k. 

2.9. FUNCTIONAL DIFFERENTIAL EQUATIONS 

In this section, we have obtained some similar results as in the 

previous section for the following equations 

(2.39) 

(2.40) 

(2.41) 

x' (t) = ax(t) + bL(x(t+9)) 

y'(t) = ay(t) + bL(y(t+9)) + cy([t]) 

z' (t) = az(t) + bL(z(t+9)) + cz([t]) 	f(t) 

with initial conditions 

x(t) = y(t) = z(t) = 4(t), 	T < t < 0, (2.42) 

where L is a linear operator mapping CH-T ,0],R) —>R for each 

t > 0, a, b, c are real constants, 4) is a continuous real-valued 

function defined on [ 	,0], T being a constant and f is a continuous 

function on J. 

• 
• 

• 
• 

• 

• 
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By iterative method we can get the: solution. -  of (2'.,40) 

THEOREM 2.11:  Let x(t) be solution of (2.39), (2.42) and 4) 2 ( t,$) 

is its fundamental solution (See Definition 1.4) . Then there exists 

a unique solution to the IVP (2.40), (2.42) given by 

• 

y(t) = lim{x(t) + c dr t (1) 2 (t ' t 1 )x(it 1 ildt1 

[t
1

] 

	

+ c2 	f 	2 2' (t t 1  )4) (It 1  Lt2  )x(tt 	dt2dt1 
+ 

o 	o 

[t
1

) 	[t
k-1 

	

ck 	t 	. . . 	 4) 2 (t,t 1 ) 4) 2
Ut 1

],t
2

) 
o o 

... 	([t
k-1'

tk )x([tk l  )dtk
dt

2
dt

1
1

' 	
t > 0. 

The details of proof are omitted. 

The next theorem provides a variation of parameters formula 

for the equation (2.41), (2.42). The proof is not given. 

THEOREM 2.12:  Let y(t) be the solution of (2.40), (2.42) . Then the 

unique solution of (2.41) with (2.42) is given by 

t 	k 	 t 

z(t) = y(t) + 	i * 2 (t,k) 4) 2 (k,$)f(s)ds + 	f 4) 2 (t,$)f(s)ds, 

;-7-1 k-1 	 [t] 

t > 0, where 	2(t
'
s) = 0

2
(t-s) is the fundamental solution of (2.39), 

4J 2 (t,k) = 	l2 (t,k) + c f t  2(isl,k) l 2 (t,$)ds for t > 

and 

' 2 (t,k) = 1 	for t = k. 

• 
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Here we introduce a new class of delay and functional differential' 

equations of the form 

x' (t) = ax(t) + bx([t]) + cx((t)) 
	

(2.431 

x' (t) = L(x
It3 ) 
	

(2.44) 

where a, b, c are real constants and the notation (t) denotes the 

fractional part of t. L is a linear operator on a Banach space 

C[ [-1,0] ,R] with supnorm. As in [16] , we define 

x io (e) = x((t) + e), t c [0,03 ) = J, 9 e [-1,0]. 

Thus for each t E J, x [t] defines an element of the space C[ [-1,0] ,R] . 

To avoid 	repeatation, we omit existence of solution, variation 

of parameters formula for these equations. The following two examples 

are Illustrative., 

EXAMPLE  2.7: Consider (2.43) with initial condition x(0) = 1. For 

computing solution of (2.43) , we use method of steps in each interval. 

In [0,1) , we have 

x' (t) = (a+c)x(t) + b. 

Hence 

x(t) = exp((a+c)t)(1+(a+c) -1b) - (a+c) -1b. 

In the limit, 

x(1) = exp(a+c)(1+(a+c) -1b) 	(a+c) -1b. 

• 	 • 

• 
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in the interval 11,2), 

x' (t) a ax(t) 	bit(i) 	ex(t-1). 

Hence 

x(t) 	x(1)exp(a(t-1)) + f (bx(1) + cx(s-1))exp(a(t-s))ds 
1 

ft  = x(1)exp(a(t-1)) + j bx(1)exp(a(t-s))ds 
1 

t ,. 
+ 	cexp(at+cs-a-c)(1+(a+c) 1 b)ds - 

1 
c(a+c) bexp(a(t-s))ds 

= x(1)exp(a(t-1)) + a -lbx(1){1-exp(a(t-1))) 

- 
+ {exp( (a+c)(t-1)) - exp(at-a)}(1+(a c) lb) 

-1 
- a (a+c)

- 1
cb{1 -exp(a(t-1))} . 

In the same way, we can get the solution in the interval [n,n+1), 

n = 2,3,... • 

EXAMPLE  2.8: Let the operator L in (2.44) be defind by 

L(x
[tr

)  = 
-1 f 

	x[t]  (u)du. 
0 

Suppose x(t) satisfies the initial function CO = exp(t),-1 < t < 0. 

The solution of (2.44) in [0,1) is the solution of 

, 	

-1

0 	 ,0 

-1 
x' (t) = 	j x(u)du = 	exp(u)du. 

Hence 

x(t) = 1 + (1 - exp(-1))t . 

• 
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In the limit 

x(1) = 2-exp(-1). 

In [1,2), the equation becomes 

x ( t ) = 	x(u+1)du 

Ao 
11+(l -exp( - 1))(u+1)}du. 

-1 

Hence 

x(t) = ( 3/2){1-exp(-1)} + (1/2){3- exp(-1)}t. 

Following the same method of steps we get the solution in each interval 

[n, n+1), n = 2, 3, ... . 

• • 
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CHAPTER 3 

ON DIFFERENTIAL EQUATION ALTERNATELY OF RETARDED  

AND ADVANCED TYPE 

3 .1 INTRODUCTION 

In [10], Cooke and Wiener studied an interesting differential 

equation alternately of retarded and advanced type. They have shown 

that all types of equations with piecewise constant arguments have 

similar characteristics. 

The method of variation of parameters is one of the most important 

technique in the study of the qualitative properties of ordinary 

differential equations. In particular, perturbation theory heavily depends 

on this method. Integral inequalities also play a useful role in the 

qualitative behaviour of solutions of differential equations. 

In section 3.2, we establish variation of parameters formula for 

the equation (3.3), which is given below. In section 3.3, the well 

known Gronwall's integral inequality is extended for the equation 

alternately of retarded and advanced type. Equations with two types 

of delays are studied in section 3.4. 

Consider the following equations 

x'(t) = a(t)x(t) 

= a(t)y(t) + b(t)y(2[(t+1)/2]) 

z'(t) = a(t)z(t) + b(t)z(2[(t+1)/2]) + f(t) 

• 

• 

• 
• • 



[(t+1)/2]-1 

TT 	x(2k+1,2k) 

y(t) = c
o 

k=0  A(t,2[(t+1)/2]), 	t e J, 
[a+1)/2] 

1T 	x(2k-1,2k) 
k=1 

5q 

for t 6 J, with the initial conditions 

x(0) = y(0) = z(0) = c o 	 (3.4) 

where a, b, f are real-valued continuous functions of t defined on J • 

and c o  is a real constant. 

We use the following notations. 

x(t) = (1+a -1
b)exp(at)-a

-l
b 

,t 
x(t,2n) = exp( j a(p)dp) + f exp( f a(p)dp)b(s)ds. 

2n 	 2n 

(3.5) 

(3.6) 

The existence of solution of (3.2), (3.4) is already mentioned in 

section 1.5 of chapter 1. To obtain closed form solution of (3.2`), (3.4), 

we prove the :following theorem. 

THEOREM 3.1:  The IVP (3.2), (3.4) has a unique solution 

if 	A(2k-1,2k) # 0 for k = 1, 2, ... [(t+1)/2]. 

PROOF:  Assume that y n (t) is a solution of (3.2), (3.4) in [2n-1,2n+1). 

Further, let y n (2n) = c2n  for n = 0, 1, 2, .... It can be verified 

that the solution of (3.2) in [2n-1, 2n+1) is 

yn (t) = c21.1 A(t,2n). 	 (3.7) 

Put t = 2n-1, to get 
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y (2n-1) = c 2n-1 = c2n X(2n-1,2n) 
	

(3.8) 

In the limit as t > 2n+1, 

Y n
(2n+1) = c

2n+1 	
c2n  X(2n+1,2n) . 	 (3.9) 

Eliminate c
2n 

from (3.8) and (3.9), we obtain 

c2n+1 = 	
x(2n+1,2n)  
x (2n-1,2n) 
	 (3.10) 

Application of (3.10) repeatedly for c
2n-1 ,  c2n-3, 
	c3 , yields 

n 
c2n+1 = 

c
1 	

A(21,41,2k)  

A (2k-1,2k) 
k=1 

Observe that 

c 1 = y
o
(1) = c

o 
X(1,0). 

, n = 1, 2 ,.. 	 (3.11) 

(3.12) 

Use (3.11) to obtain the value of 
c2n-1 

and then use (3.8) and (3.12) 

to find 

• n-1 

	

c2n 

▪  

co 
 TI 	x(2k+1,2k) 	x(1,0) 	rr 

	

k=1 	X(2k-1,2k) 	X(2n-1,2n) 

Substitute for c
2n 

in (3.7), we obtain 

n-1 Tr 	x(2k+1,2k) 

yn
(t) = c

o 
k=0  

n 
x(t, 2n ), 	 (3.13) 

Tr 
	

X(2k-1,2k) 
k=1 

2n-1 < t < 2n+1. 

• • 
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If we take n = [ (t+1)/2), then (3.13) is true for any t C J and hence, 

write y n(t) = y(t) for t C J. Hence the theorem. 

3.2 VARIATION OF PARAMETERS METHOD 

It is of interest to determine the explicit form that the variation 

of parameters formula takes for the equation (3.3). 

Let 4) denote fundamental solution of (3.1) such that 4) (0) = 1. 

Next we define the fundamental solution of (3.2) . 

DEFINITION 3.1:  A solution 	4' (t) of (3.2) is said to be a fundamental 

solution if it satisfies (3.2) with the initial condition 4(0) = 1. 

	

We use below the notation 4) (t,k) = 	(t) 	-1 (k), k = 1, 2, ... 

In the following theorem, we develop the variation of parameters formula. 

THEOREM 3.2:  The unique solution of (3.3), (3.4) for t E J is given 

by 

t 1)/2)-1 
-1 	2k+1 1 

z(t) = y(t) + 	 ( 1  ) 	

(. 
	(t,2k) 4)(2k+1,$)f(s)ds 

k=0 	 '2k 

(t+1)/2] 	 2k-1 

f 	(t,2k) 4)(2k-1,$)f(s)ds 
2k 

t 
4)(t,$)f(s)ds 	 (3.14) 

2[ (t+lf/2) 

where 4) and 4) are fundamental solutions of (3.1) and (3.2), respectively, 

y(t) is the solution of (3.2), (3.4) and x (t) is given by . (3.5). 

• 	 • 



[(t+1)/2]-1 	 2k+1 

A 
1 
 (1) 	f 	(t,2k) (2k+1,$)f(s)ds 

2k 

2(t) = 
k=0 
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PROOF:  It is enough to prove that 

[( 1)/21 	-1 2k-1 
x 	(-1) f • (t,2k) (2k-1,$)f(s)ds 

k=1 	 2k 

t 

(t,$)f(s)ds, 
2[ (t+1)/2] 

is a solution of (3.3). Differentiate 2(t) and use (3.1) and (3.2), 

to find 

(t) = 
[ (t+ 1) / 2] -1 

k=0 

-1 	
,2k+1 

A 	(1) J 	la(t)4) (t,2k)+b(t)4 (2[(t+1)/2],2k)} 
2k 

. 	(2k+1, s)f (s )ds 

[(t+1)/2] 
	

2k-1 

X
-1

(-1) 	f 	{a(t)4) (t,2k)+b(t) 4)(2[(t+1)/2],2k)} 
k=1 
	

2k 

. 	(1) (2k - 1, s)f (s)ds 

2[ (t+1)/2 ,f 
t a(t)4) (t,$)f(s)ds + f(t) 

a(t)i(t) + b(t)2(t+1)/2)) + f(t). 

The proof is complete. 

For the purpose of simplicity, we prove the next theorem, which 

verifies 	relation (3.14) for equation (3.3) with constant coefficients. 

The result can be generalized to equations of the type (3.3) with minor 

modifications. 
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THEOREM 3.3: The unique solution z(t) of (3.3), (3.4) with constant 

functions a(t) = a, c(t) = c, on J is given by the relation (3.14), 	• 

where (1)(t) = exp(at) and AP(t) is given by (1.14) with c o= 1 and 

y(t) is the corresponding solution of (3.2), (3.4). 

PROOF: Assume that y n (t) and z
n
(0 are solutions of (3.2) and (3.3) 

in the interval [2n-1, 2n+1), respectively. Further, let z
n

(2n) = d
2n

, 

for n = 0, 1, 2 ... 	• 

It is easy to verify that, the solution of (3.3) in [2n - 1, 2n+1) 

is 

t 
z
n

(t) = d
2n 

a(t-2n) + Jr exp{a(t-s)}f(s)ds 
2n 

where X is given by (3.5). From (3.15), we obtain 

(3.15) 

2n-1 
z
n

(2n-1) = d
2n-1 

= d
2n 

X(-1) + Jexp{a(2n-1-s)}f(s)ds 	(3.16) 
2n 

and in the limit 

2n+1 
z

n (2n4,1) = d2n+1 = d2n "1)  + 	
expia(2n+1-s)lf(s)ds. 

2n 

Eliminating d2n  from (3.16) and (3.17), we get 

(3.17) 

2n-1 

d
2n+1 	

x(1) id2n-1 -2nf 	exp{a(2n-1-s)}f(s)ds} 
X(-1) 

2n+1 
+ 	expla(2n+1-s)lf(s)ds. 	 (3.18) 

2n 

Application of (3.18) repeatedly for d 2n-1 , 	 d3 , yields 



d
2n+1 

 • 

	

A(1) 	
d1 

+ 

),(-1) 

n 
x(i) 	)n-It 

It=l 	x(-1) 

71)  2k 

-A(1) 	jr2k-l
expia(2k-1-s)lf(s)ds 

• 77  

+ j 	expia(2k+1-s)lf(s)ds 	 (3.19) 
2k 

for n = 0, 1, 2, ... . 

Observe that from (3.15) for n = 0 and t = 1, one gets 

1 
d

1 
= z

o
(1) = 	A(1)do + Jexpia(1-s)if(s)ds. 

0 

(3.20) 

Now we obtain the value of 
d2n-1 

from (3.19) and then use (3.16) 

and (3.20), to obtain 

d
2n 

= 1■111) nd 
A(-1) 	° 

• 
2k-1 

A(1)  )n-k 	j( 
expIa(2k-l-s)lf(s)ds 

x(-1) / 	2k 

n-1 	 2k+1 
x -1 (..1)  	A (1) \n-k-1 	Jr  

/ 
expia(2k+1-s)if(s)ds. 	(3.21) 

k=0 	 2k 

Substitute (3.21) in (3.15) and use the fact d
o 
 = co , to find 

• 
• 
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zAt) = yn (t) 

n-1 

k=0 

2k+1 

X -1 (1) (1) 	j 	X (t-2n)( x(1)  )11-kexpta(2k+1-s)If(s)ds 

	

2k 	
x(-1) 

n 	 2k-1 

A -1 (-1) Jr 	X(t-2n)( X(1) r-kexp{a(2k-1-s)}fts)ds 

k=1 	 2k 	
X(-1) 

+ 	f exp{a(t-s)}f(s)ds, 2n-1 < t < 2n+1. 
2n 

(3.22) 

If we take n = [(t+1)/2], then (3.22) is true for any t and hence, 

write z
n
(t) = z(t), y

n
(t) = y(t), for t E J. 	Observe that 

X (t-2n)( X( 1 ) )n-k = 	(t,2k) 
X(-1) 

and hence, we get (3.22) in the form (3.14). 

3.3 GRONWALL TYPE INTEGRAL INEQUALITY 

In this section, we extend the well known Gronwall's integral 

inequality, which has got many applications in the theory of differential 

equations. 

THEOREM 3.4:  Let c
o
, a, b be nonnegative constants and u 6 C[J,R] 

If the inequality 

t 
u(t) < co 
	

, 
+ 	(au(s) 	bu(2[(s+1)/2])) ds, t C J , 

0 

holds and X(-1) / 0, then for t E J 

(3.23) 

• 
• 

• 
• 

• 

• 



Lt(t) s  c A (t-2C(ti1)/21)( x(*".
1 ) 

	C(t+1)/21 , 	 (3.24) 

where x is defined in (3.5). 

PROOF:  From (3.23), we have in [2n, 2n+1) 

,t 
u(t) < u(2n) + 	au(s)ds 	f bu(2n)ds. 

2n 	 2n 

Using the Theorem 1.10, we obtain 

t 
j bu(2n)exp( jrt  adp)ds 
, 

2n 

and hence 

u(2n+1) < u(2n) lexp(a)(1+a -lb)-a -ibl. 

Similarly, in the interval [2n-1,2n], we obtain 

u(2n) < u(2n-1)exp(a) + a -lbu(2n)(exp(a)-1) 

which leads to 

u(2n) .< u(2n-l)(exp(-a)(1+a -lb)-a -1b) -l . 

(3.25) 

(3.26) 

(3.27) 

Applying inequalities (3.26) and (3.27) repeatedly and using (3.5) 

yields 

u(2n) < u(0)(44) ) n 	 (3.28) 

Use (3.28) in (3.25) and put n = [(t+1)/2], we get the desired 

conclusion (3.24) for any t E J. 

fi 

• 
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REMARK  3.1:  Observe that the right hand side of the inequality (3.24) 

is infact the solution of 

y' (t) = ay(t) + by(2[(t+1)/2],,y(0) = c o . 

In this sense, (3.24) is the best estimate. When b = 0 in (3.23), 

(3.24) reduces to 

u(t) < c 
o
exp(at), 	t C J. 
 

REMARK  3.2:  For equation (3.2) and its corresponding pertuibed 

equation, results similar to Theorem 2.5 of chapter 2 can be proved 

by modifying the condition (2.26). 

3.4 EQUATIONS INVOLVING TWO TYPES OF DELAYS 

In this section, we consider the following more general equation 

involving two types of delays, namely, continuous and piecewise 

constant argument. 

x' (t) 	ax(t) + bx(t- 	 (3.29) 

y'(t) = ay(t) + by(t- T) + cy(2[(t+1)/2]) 	 (3.30) 

zi 	= az(t) + bz(t- T ) + cz(2[(t+1)/2]) + f(t) 	 (3.31) 

t E J, 	T > 0, with initial condition 

x(t) = y(t) = z(t) = (1) (t ) for 	< t < 0 	 (3.32) 

where 4) is a real-valued continuous function defined on [- T  ,0] , a, 

b, c are real constants and f is a real-valued continuous function 

defined on J. , 

• 
• 

• 

• 
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By using iterative method, we can get . the existence and uniqueness 

of solution . . of (3.30). For solving (3.30), we use method of steps. 

EXAMPLE 3.1:  Consider 

y' (t) = by(t-1) + cy(2[t+1)/21) 

with initial function 

-4;(t) = 1 in -1 < t < 0. 

For computing solution we use method of steps in each interval. 

Clearly, in (0,1) solution of the above equation is 

y(t) = 1 + (b+c)t. 

Taking limit at t tends to 1 

y(1) = 1 + (b+c). 

In the interval [1,2), 

• 
y(t) = y(1) + b j (1+(b+c)(s-1) )ds + f cy(2)ds 

1 	 1 

Taking limit as t tends to 2 

y(2)(1 -c) = 1 + b + c + b + b(b+c)/2 

i.e. y(2) = (1+2b+c+b(b+c)/2)/(1-c) • 

Hence, for t C [1,2) 

y(t) = 1+ b + c + b(t-1) + b(b+c)(t-1) 2  + c(t-1)11+2b+c+b(b+c)1, 
2 	1-c 	 2 
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In the same way, we can obtain the solution for any t E [n,n+1), 

n = 2, 3, ... . 

Theorem 5.1 given in [16, page 19] provides a method of 	• 

constructing the fundamental solution 4 1  ) of the equation (3.29). 

Also using the relation (6.1) of [16, page 21], we can construct 

the fundamental solution 	. Once the functions 41 and 	are 

available, the variation of parameters formula can be stated as follows. 

THEOREM 3.4: 	The unique solution of (3.31), (3.32) is given by 

z(t) = y(t) + 

[(t+1)/2]-1 

k=0 

[(t -t. /2] 

k=0 

2k+1 

	

-1
(1) 	f 	tli1(t,2k) 41(2k+1,$)f(s)ds 

2k 

2k-1 

	

A
-1

(-1) 	44t,2k)(1(2k-1,$)f(s)ds 

2k 

rt 
j 	(qt,$)f(s)ds t E J , 

2[(t+1)/2] 

where (p i and 	are fundamental solutions of (3.29) and (3.30) , 

respectively, and y(t) is the solution of (3.30) , (3,32),• 	Here 
• 

A(t) = exp(at)(1+a -lb) - a -lb , t E J. 

The proof is omitted. 

The procedure given above is applicable in respect of the 

functional differential equation of the form 

y' (t) = ay(t) + bL(y(t+8)) + cy(2[(t+1)/2]) ,t e J, 

y(t) = 	 - T < t < 0 

where L is a linear operator defined in [16, page 42]. We omit 

• 
these details. • 
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CHAPTER 4 

SOME EQUATIONS OF MATHEMATICAL PHYSICS INVOLVING  

PIECEWISE CONSTANT DELAY  

4.1. INTRODUCTION 

We have seen that, in the papers [9,10,11] authors developed 

some theory of ordinary differential equations with piecewise constant 

delays. But it is known that large number of physical phenomena in 

applied 'sciences is best described in terms of partial differential 

equations [7,29,32] . Recently, existence theory of hyperbolic partial 

differential equations involving PCDA have been studied in [36] . 

In this chapter, we aim to study some partial differential 

equations of second order with PCDA. It is natural to expect that 

these equations will play a vital role in many applications. In 

section 4.2, we prove an existence theorem and generalize some problems 

in [321 by considering equations with piecewise constant delays. 

Section 4.3, deals with the study of general diffusion ecization, which 

we solve by the method of separation of vatiables. Explicit solution 

is obtained for general wave equation by using the same method. 

4.2 EXISTENCE THEORY 

In this section, we consider some partial differential equations 

in the framework of semigroup theory. For this purpose, we introduce 

the following definitions [19] . 

DEFINITION 4.1:  A family {T(t), 0 < t < 	} of linear operators from 

• • 
• 

• • 



a Ranach space X to X Is call.ed a strongly continuous semigroup on 

X if 

(1) 	T(t) is continuous for each t E J = [0, 	) , 

(ii) T(t+s) = T(t)T(s) for t, s E J, 

(iii) T(0) = I, the identity operator, 

(iv) t —> T(t)x is continuous for each x E X. 

DEFINITION 4.2:  The infinitesimal generator A of {T(t), t E J} is 

the function from X to X defined by 

Ax = lim t
-1

(T(t)x-x) 
t—>0 

where x is in the domain D(A) of A if and only if this limit exists. 

We say an operator A : D(A) —> X, D(A) C X, 'generates a 

semigroup' iT(t), t 6 J1 if A is the infinitesimal generator of 

{T(t), t E J}. 

• 
Now consider the nonlinear IVP 

du(t)  - Au(t) + f(t,u(W)) 
dt 

u(0) = u
o 

(4.1) 

(4.2) 

where A is an operator from X to X with domain D(A) and for each 

u 6 X , t —> f(t,u([t])) is a piecewise continuous function and that 

u
o 

E D(A). 

• • 

• 
• 

• 

• 

• 
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DEFINITION 4.3:  A solution of IVP (4.1), (4.2) on. J is a function 

u : J —"> X satisfying the following conditions 

(i) u(t) is continuous on J, 

(ii) the derivative du(t)  exists at each point t E J, except possibly 
dt 

at integral points where at t = 0 the right hand side derivative exists 

and at t = 1, 2, 3, ... the left hand side derivative exists, 

(iii) u(t)satisfies (4.1), (4.2) for each interval [n,n+1) C. J, n is a 

positive integer. 

For each positive integer n and for fixed u E X define 

g n  : [n,n+1) —> X by g n (t) = f(t,u(n)). 

The following theorem is purely an existential result. 

THEOREM 4.1:  Suppose that the operator A in (4.1) generates a strongly 

continuous semigroup on X and u o  6 D(A). Assume that 

g
n

•
C

1
Kn, n+1 ) 	 , n = 0, 1, 	. and gn  is continuous in 

[n,n+1]. Then the IVP (4.1), (4.2) has a unique solution. 

PROOF:  In the interval [0,1), f(t,u([t])) = f(t,u 0 ) = g o (t). 

By a theorem in [15, page 84] the problem (4.1), (4.2) has a unique 

solution of the form 

rt 
u
o
(t) = T(t)u

o + j T(t-s)g o
(s)ds, 	t 6 [0,1). 

0 

By taking the limit t —> 1, we obtain 

1 
u

1 
= u

o
(1) = T(1)u

o 
+ f T(1-s)g

o
(s)ds. 

• • 
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Now consider the equation (4.1) with the initial condition 

u(1) = u1 . 

By the same theorem [15, page 84], it has a unique solution 

t 
u 1

(t) = T(t-1)u 1 
+ 	f T(t-s)g 1 (s)ds, 	t C [1,2), 

1 

(4 .2)' 

where g i (s) = f(s,u 1 ). Clearly u 0 (1) = u 1 (1) = u
1
. Thus, we have 

obtained a solution of (4.1), (4.2) ' in [1,2). Repeating the procedure, 

we get solution u n (t) in [n,n+1). 	Now, let 

u( t) = 	u
n

(t) 	X [n,n+1)(t)' 	
t C J; 

n=0 

where X is the characteristic function. Then it is seen that the 

function u(t) is the unique solution of (4.1), (4.2). 

In the following theorem, we would like to give an iterative 

procedure to 'approximate' the solution of (4.1), (4.2) in the case 

when f is a linear function with respect to the second variable. 
• 

THEOREM 4.2: If f(t,u([t])) = bu([t]) where b is a constant and 

u
o 	

D(A), then the unique solution of (4.1), (4.2) for t C J is given 

by 

t 
u(t) = lim {T(t) + b jn T(t-t )T([t ])dt + 

t 	[t ] 

b2 f Jr 
1 
 vt-t1)Tuy-t2)Tut2pdt2dt, 

0 0 

bn 	f 
] 

Jr [t n-1T(t-t )Tilt ] - t ) 1 	2 	• • 
0 

• 

T ilt nndtn ... dt2dt1 l u 0  • 	 ( 4.3) 

n-)°° 	 0 	1 	1 	1 

• 
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PROOF: TR is known that CUO, al, X 1 , the space of continuous functions, 

is complete with supnornn. Let us consider the space C x[  1 [0 I a] X J = C , 

a > 0, A > 0 of continuous functions with norm 

Ix I, = sup 
tF[0.F1 

t 

Ix(t) lexp(- A f IbT(t-s) Ids)] . 
0 

• 

So that C
o 	C. Obtoryv that tht norms lx l a 	area all equivalent for 

X > 0, to that C x  it also complete: Now consider the mapping 

P : C
x 

—> C
x 

defined by 

t 
(Pu) (t) = T(t)u + b 	T(t-s)u( [sdt. 

° 	
n 

 0 
It is easy to show that 

11 1Pu
1  -Pu2  1 	A iu1  -u2  1 	for X> 0, so that P is a contraction - 	x 

for X > '1. Hence by Banach fixed point theorem, there exists a 

unique u in C A  such that 

t 

(Pu)(t) = u(t) = T(t)u
o + b f T(t-s)ugsnds. 

Defining 
• 

u 0 (t) = u
o 

u
n

(t) = T(t)u
o 

+ b J  T(t-s)u
n-1

(Esnds, n =1, 2, ... 
0 

and by using successive approximations the required result (4.3) 

now follows. 

EXAMPLE 4.1:  Consider the functional differential equation 

• 

• 
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u
t
(x,t) = a

2
u 

xx
(x,t) + f(t,u(x,[t])), t E J 

	
(4.4) 

satisfying the conditions 

u(0,t) = u(L,t) = 0, u(x,0) = u o (x), L > 0, 	 (4.5) 

where f satisfies the condition of Theorem 4.1 and a is a nonzex . 0 real 

number. If we write u(.,t) = 	(4.4), (4.5) can be viewed as 

the problem (4.1), (4.2). 

Let X = L2 " [0 Ll A = a
2 

d
2 
2 with domain 

—  
dx 

D (A) = 	cpE X, cp and dq) 	are absolutely continuous, 
dx 

d
2
42 	

E X, 	4)(0) = 	(L) = 0} . 
dx 

A generates a strongly continuous semigroup T(t) such that I T(t) I < 1 

on X. Here T(t) is given by 

(T(t)i)(x) = 
2a fit 	

r exp(-y
2
/4a

2
t)g(x-y)dy. 

_ 

Using Theorem 4.1, we conclude that (4.4), (4.5) has a unique solution. 

In [32, page 280-288], the author solves two problems 

(i) diffusion of moisture through porous solid, and 

(ii) diffusion theory used for qualitative understanding of the physical 

characteristics of nuclear rectors. We generalize these results below 

by considering equations with PCDA. Definition 4.1 can be suitably 

modified for equations considered below. 

• • 
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EXAMPLE 4.2:  The diffusion of moisture through porous solid can be 

studied by means of diffusion equation. 

Assume the following 

(i) t he rate of diffusion across an element of surface is proportional 

to the area and to the space rate of change of concentration normal 

to the area, 

(ii) the diffusion takes place from regions of higher concentration 

to those of lower concentration, 

(iii) the medium is homogenous and isotropic, 

(iv) the diffusion coefficient is constant. 

Then, in cylindrical co-ordinates, the diffusion equation is 

- K 1 1 	(r —a  ) 	
1 	a

2 
a 	a

2 
 CI , 

a t 	r 8 r 	8r 	 8 e2 + 
a z

2 

where K is diffusion coefficient and a = a (t,13,z,r) . The corresponding 

perturbed equation can be written as 

aa 	• 	1 a 	aa 	1 	82 a 	82  a  
= K { 	-- (r 	)+ — + 	+ 	x a (1t] ,r,e,z), (4.6) 

a t 	r a r 	a r 	r
2 a 9

2 a z 2 

where x is a constant. Since there is no physical factor which can 

introduce an asymmetry in the 8 direction, the required solution will 

be independent of 8, we assume 

a = 	T(t)R(r)Z(z). 	 (4.7) 

By putting (4.7) in (4.6), we obtain 

• 	 • 
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1 ( dT(t) - T(Ltl )1 e 
K 	 d (r  dR(r)) + 1 	d

2
Z(z) ) 	(4.8)  - 

2 

By making the assumptions 

1 	d 	dR(r)_ - 2 
rR(r) dr (r dr 	)  (4.9) 

T(t) dt 	 rR(r) dr 	dr 	Z(z) dz 

1 	d2 Z(z)  

Z(z) dz 2 8
2 

(4.10 ) 

(4.8) becomes 

dT(t) 
dt 	= -K( a

2
+ f3

2
)T(t) 	X T( [t]). (4,11) 

It is known that solution; of (4.9) are Besl's functions and solutions 

of (4.10) are sine and cosine functions. Theorem 1.1 (..'proved for a 

scalar case)gives '':solution of (4.11). Hence, the product solution is 

(r,t,z) = 6(t-itn(ecin [t] ic Jo ( or) + c2  Y o (a r)) 

• 

. {c3
cos f3z + c 4 sin f3z} 

where 

9(t) = exp(-K( a2+ f32 ) t) (1-(K( 
01 2+ 8 2 )) -1 x  ) 	(K( 01 2+  

and c1,  c2,  c3, c4 
are arbitrary constants. 

REMARK 4.1:  (i) For fixed r and z, the solution a is zero if 

• 	 • 

• 
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x = 

	

	-K( (r(
2

4. 0
2

) expt-K( a 
2

+ 0
2 

1-exp{-K( (1 2+ 02 )] 

(ii) the zero solution of (4.4) is stable, if 

- 

-K( (1
2
+ 0

2
)(1+exp{-K( (12+

2
)))  

1-exp{-K( 
(1 2 + 82 )}  

(iii) further, when x = 0 

a(t,r,z) = exp{-K( c( 4.  03t} {c 1 J o ar) + c2Yo ( ad} 

. {c3cos az + c 4sin a 	, 

which is established in [32]. 

EXAMPLE 4.3:  Linear diffusion theory can be used to study qualitative 

understanding of physical characteristics of nuclear reactors. Let 

u(P,t) be neutron density at a point P and time t, K(P) be diffusion 

coefficient at point P, v be neutron speed, x c  total neutron capture 

mean free path and k c  be average number of neutrons produced per 

capture by fission. 

"r" 	 If we make the following assumptions 

(i) Neutrons diffuse from regions of higher concentration to those 

of lower concentration. 

(ii) The rate of diffusion across an element of surface will be 

proportional to' the area of that surface element and to the space rate 

of change of neutron density normal to the surface element. 

(iii) The diffusion coefficient depends only on the position within the 

body. 

• 	 • 

• 

• 

• 
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a 2
u(x,t) - 2 

+ b u(x,t), 
a x2 

1 au(x,t) 
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(iv) Neutron absorption is given by uv / A c . 

(v) Neutron production due to fission is k c iav / A c . 

(vi) There is no distribution of neutron sources; 

then the diffusion equation representing the physical situation taking 

K as a constant . 1.s given by 

where b
2 

= (k
c
-1)v /K 

c 
is a constant. Let the perturbed equation 

• 

be 

2 1  au(x,t)  = a u(x,t)  
+ b

2
u(x,t) + A u(x,[t]) 	 (4.12) 

K a t 	ax2 

where A is a constant. We use the method of separation of variables 

to obtain its solution. Assume that u(x,t) = X(x)T(t). It then 

follows that 

d
2
X(x) _ 

( a-b2)X(x) 
dx

2 

dT(t) - K( aT(t) + A T([t))). dt (4.13) 

Theorem 1.1 gives solution T(t) of the equation (4.13). Hence the 

product solution is given by 

u(x,t) = 8(t-ftn(eki.), [t]  {c 1 cos,g-T, x + c
2
sin lir- ;x} 

f (4.14) 

where cc
2 

are arbitrary constants and 

• 	 • 

• 

• 

• 



-a x + c
2sin 	

2
-a x) 

LIU 

9(t) • exp( oKt)(1+ a 1  )n
-]. A

. 

REMARK  4.2:  (i) For a fixed x, solution (4.14) is zero if 

X = a exp( aK)  
1-exp(a K) 

(ii) the zero solution of (4.14) is stable if 

X = 	a (1+exp(  aK)) 
1-exp( aK) 

(iii) further, if 	A = 0 

u(x,t) = exp( aKt){c icos 

which is given in [32]. 

4.3 GENERAL DIFFUSION EQUATION 

In this section, we consider the following equations 

ut (x,t)= 	au xx  (x,t) 	+ bu xx (x,(ti) •  
(4.15) 

• 

u t (x , t) 	= 	au xx  (x,t) 	+ 	bu xx (x,[t]) 	+ 	h(x,t) (4.16) 

u t (x , t) 	= 	au xx  (x,t) 	+ bu xx (x,2[(t+1)/2]) 

with boundary conditions 

(4.17) 

U(0,t) 	= 	,t) 	= 	0, 	u(x,0) 	= 	f(x), 	t . E 	J, (4.18) 

where a,b are constants, f is a real-valued continuous function 

defined on [0, Tr ] such that f' is piecewise continuous and 

• 

• 

• 
• 
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h : [0, it J x J —) R is a given continuous function. 

Below, we use the method of separation of variables to get 

explicit solution of (4.15), (4.18). 

THEOREM 4.3:  The unique solution of (4.15) together with condition 

(4.18) is given by 

u(x,t) = 	c
n
ect-iti) (8w) 1, t3 sinnx 

where 

9(t) = exp(-an 2t)(1+a -lb)-a -lb 

ir 
c
n 

= 	f f(x)sin nxdx . 
n o 

(4.19) 

(4.20) 

PROOF:  Since u(x,t) = X(x)T(t) satisfies the equation (4.15), we get 

the separated equations 

dT(t) 
X (aT(t) + bT(Eti)) dt 

d
2
X(x) 

 = -A X(x) 

where A is a constant. If X(x)T(t) is to satisfy the conditions of 

(4.18), then it follows that X(0) = 0, X( it  ) = 0. However, if we 

consider the above equation in X(x) with the same boundary conditions 

then it has nontrivial solutions X(x) = c
1  sin nx, when A = n

2
, where 

n is a positive integer. Application of Theorem 1.1 , 	scalar case) 

gives the solution of above equation in T(t) with T(0) = 1. Hence, 

• • 

• 

dx
2 

• 

• 



dx (t) 
= -an

2
x

n
(t) - bn

2
x

n 	) 
dt 

(4.21) 

62 

the product solution is given by 

u
n

(x,t) = 9(t-[t] )(AW)
[t]

sin nx, 	n = 1, 2, ... 

Clearly a linear combination of u
n
(x,t), n = 1, 2, ... also satisfies 

(4.15) . In order to satisfy the condition u(x , 0 ) = f(x), f(x) has to 

be in the form 

0, 
f(x) = E c

n 
s in nx 

n=1 

and the coefficients c
n 

should have the values given in (4.20) . 

Hence the theorem. 

REMARK 4.3: For each x E [0, 11  

(i) t he zero solution of (4.15) is stable if 

b = -a (1+exp (-an 2 ) )  

1-exp(-an2 ) 

(ii) the zero solution of (4.15) is asymptotically stable if 

-a (1+exp (7an 2 ) )  

1-exp(-an2 ) 
< b < a, 	a > 0. 

In the following theorem, we use the same method, 	separation 

of variables, to find the solution of the perturbed equation (4.16) . 

THEOREM 4.4: Let x
n

(t) be the solution of the IVP 

x
n

(0) = f(x) (4.22) • 
• • 

• 
• 
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n
(t) be the fundamental solution of (4.21) with 4)

n
(0) = 1 and 

(t) be the fundamental solution of 

dx
n

(t) 

dt 

with 	4) 
n
(o) = 1. Then the unique solution of (4.16), (4.18) is 

given by 

u(x,t) = E y
n

(t)sin nx, t e J, x e [O,ir ), 
n=1 

where 

[t] 

yr il (t) = xn (t) + E 	J 	n (t,k) n
(k,$)h

n
(s)ds 

k=1 	k-1 

	

rt 
4 n (t,$)hn (s)ds, 	 (4.23) 

[t] 

n (t,k) = 	4)
n 

 (t) 	4)
n 
-1 

 (k) 	,
n (k,t) = 	(k) 4)1(t), k = 1, 2,, :.. 

n 	n 

and h is defined in (4.26) below. 
n 

PROOF:  Solution of (4.15) is given by (4.19). Therefore, we assume 

the solution of (4.16) in the form 

u(x,t) = 	y
n

(t)sin nx . 	 (4.24) 

n= 

Our aim is now to determine y n (t). Further, assume that 

h(x,t) = 

	

	
h (t)sin nx 
	

(4.25) 

n=1 

• 	 • 

=
2
x

n
(t) 



dy
n

(t) 
-an

2
y

n
(t)-bn

2
y

n ( [t]) 	hn (t). 
dt 

(4.27) 
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where 

h
n
(t) = 2- f h(x,t)sin nx dx. 

0 
(4.26) 

Substitute (4.24) and (4.25) in (4.16), to find that the functions 

y
n

(t) must satisfy the ordinary differential equation 

Note that u(x,0) = y n (0) = f(x). Apply Theorem 2.2 for a scalar case 

to get the solution of (4.27) which is given by the expression (4.23) 

and hence, the theorem. 

In the following theorem, we apply finite sine transform method 

to get the solution of (4.17). 

THEOREM 4.5:  The unique solution of (4.17), (4.18) is given by 

u(x,t) c
n
9(t-2[(t+1)/2])( 9  (1 ) 	[(t+1)/2] sin nx, 9(-1) /0 (4.28) 

9(-1) 

t E J, x E[0, ], where 8(t) and c n  are given in (4.20). 

PROOF:  Finite sine transform of u(x,t) is 

U(n,t) = fr u(s,t)sin ns ds, n = 1, 2, ... 	is a parameter. 
0 

Its inversion is 

00 

u(x,t) = 2— 
	

ii(n,t)sin nx. 
n=1 

• 	 • 
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OS 

Using finite sine transform on both sides of (4.17) and applying 

the initial condition, we get 

dirt(n,t) 	2_ 	 2_ 
= an u(n,t) + bn u(n,2[(t+1)/2]). 

dt 

Solution of this equation is given by 

ti(n,t) = i(n)e(t-2[(t+1)/2])( 9  (1) 	[ (t+1)/2], 9(-1) # 0 
G(-1) 

where 

T(n) = crrf(s)sin ns ds • 

Using the inversion of sine transform, we get the required result 4.28). 

4.4 GENERAL WAVE EQUATION 

Consider a more general wave equation of the form 

u
tt

(x,t) = a
2 

 u 
xx 

 (x,t) + b
2
u 

xx
(x,[t]), x e [0, 	t C 

	
(4.29) 

with lopundary conditions 

u(0,t) = u( n ,t) = 0, u(x,0) = 	f (x), u t (x,0) = 0, 	 (4.30) 

where f (x) is a real-valued continuous function on [0, Tr 	such that 

f' is continuous and a, b are nonnegative constants. 

THEOREM 4.3:  The problem (4.29), (4.30) has a solution for t 
• 

and x E [0, Tr , and is given by 

• • 

• 

• 

• 



,2 	 , 2 
(l+m )cos na- D 	sin na 

a 2 	a 2 	na 

-na(1+ 132  )sin na 
a 

 
cos na 

where 

C [t] 

d
[t] 

L-t1 

0 
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u(x,t) = (1+b 2 )cos na(t-[t])-b
2 

a
2 	 :2 

sin na(t-(tn 

 

 

 

na 

 

   

. sin nx 	 (4.31) 

and 
it 

b = 	f f(x)sin nx. dx 
n 	Tr  

PROOF:  As before, we obtain, the following two related second order 

ordinary differential equations 

d
2
T(t)  = - X (a2

T(t) + b
2
T([tl)) 

dt2 	• 
(4.32) 

d
2
X(x) 

dx
2 

(4.32) 

0 

-Xa
2 

in a 

1 

0 

matrix 

• 

form 

T(t) . 1 

T' (t) 

as follows: 

r 
0 	0 

-X b
2 	

0 

T ( [ t ])  

T' ([t]) 

Express 

T ( t ) 

.. T' (t) 

• 	 • 

• 

• 
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Theorem 1.4 yields the product solution in the form (4.31). 

Note:  We can also consider the equations 

u
t
(x,t) = au(x,t) + bu 

XX  (x,itl) + cu XX
(x,t- T ), T > 0 

u (x,t) = auxx (x,t) + buxx (x,2[(t+1)/2l)+cu xx (x,t-T ) 	T > 0 

u
tt

(x
'
t) = au XX  (x,t) + buxx (x; ttn + cu XX (x,t—c ), T > 0 

or several other similar modified equations with suitable initial and 

boundary conditions which take care of two types of delays. 

After using the method of separation of variables we get an IVP 

involving t-variable only. At this stage we recall the method 

employed in solving Examples 2.4 to 2.6. Thus it is seen that explicit 

solution is available for partial differential equations of the above 

type. The details are omitted. 

• 

-r 

• 
• 

• 

• 

• 

• 
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CHAPTER  5 

NONLINEAR DIFFERENTIAL EQUATIONS WITH PIECEWISE  

CONSTANT DELAYS  

5.1 INTRODUCTION 

The purpose of the present chapter is to study one of the 

important problems in the theory of differential equations, namely, 

existence of solutions. The fixed point method is known as a handy 

tool to settle the problems of existence. The comparison principle is 

another area of investigation which we do here for differential 

equations with PCDA. The variation of parameters formula is useful 

in solving the perturbation problems in differential equations. Much 

work [23] has been done in nonlinear variation of parameters formula 

for ordinary differential equations. We extend some results of this 

kind to differential equations with PCDA. 

A method to solve a scalar nonlinear equation is included 

in the first chapter. In section 5.2, we extend the method to solve 

a system of nonlinear equations. Existence of solutions of nonlinear 

equations with PCDA using Schauder' s fixed point theorem is given 

in section 5.3. Some comparison results and its applications also form 

a part of this section. The last section is devoted to establish a 

nonlinear variation of parameters formula of Alakseev type [23] for 

differential equations with PCDA. 

5.2 METHOD OF FINDING SOLUTIONS OF A SYSTEM OF NONLINEAR EQUATIONS 

Consider a nonlinear coupled system of differential equations 

• • 

• 
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Involving pi@cow15o conotant deIelya 

xi (t) = f1  (x(t),x(Itn,y(Itn) 

y' (t) = f2 (y(t) ' y(itn,x(Et1) 

t C J = [0, 	), with initial condition 

(x(0),y(0)) = (c o ,d0 ) 

(5.1) 

(5.2) 

where c
o' 

d
o 

are real constants and f 1 , f2  are piecewise continuous 

functions on R x R x R. 

If the system with nonzero parameters X1 	2 and x is such that 

f1 (x, X i , x 2 ) / 0 and f2 (y,  , x i , x 2
) / 0 everywhere, then there exists 

general integrals of f 1  and f2  denoted by F 1  and F2  given by 

F 1 (x , 
x1, x 	r dx 	f dx 

2' 	t1 (x ' x 1 , x 2 ) 

• = t+g 1 ( x 1., x 2 ) 

and 

F2 (y, x 2 , x 1 ) = , d
(Y f2' X  2' X  1 

= f 
Y 

= t+g2 ( x 	x 

with arbitrary functions g 1 ( X 1 , x2 ) and g2 ( x 2 , 

For computing a solution of (5.1),(5.2), assume that 

• 

• 

• 

• 

• 

• 



F1 (c
n' 

 c d 
n

) = 	gi (on ,dn  ) 

F 2 (d n ,dn ,on ) = n + g2 (dn , on ) 
} 

	

(5.4) 

90 

(xn (t),y n (t)) is a solution of (5.1) in the interval In, n+1), with 

condition (xn (n), yn (n)) = (o n , dn
) for n = 0, 1, 2, ... 	. 	If we 

put 1  = on , 	2= dn , then in In, n+1) , we have 

F i (xn (t), on ,dn ) = t+g i ( on  

(5.3) 

'f 	 F 2 (y n (t),dn , n ) = t+g2 (dn ,on ) . 

To get the solution in In, n+1), first, we have to find the values of 

unknown functions g 1  and g
2
• For this purpose, put t = n in (5.3) 

to obtain 

1 

After solving for gl and g2 , using (5.3) and (5.4), we obtain for 

t E In,n+1) 

F 1 (xn.(t),o n ,dn ) = t + yon ,on ,dn ) - n 

(5.5) 

F
2

(y
n (t)

'
d

n'
o

n
) = t + F2(dn'dn'on) 

 - n. 

Here (5.5) gives x nand y n in. terms of c nand dn . In view of our 

assumptions, we have (xn-1 (n) ' Yn-1 (n)) 	 Further, 

note that x(n) = x n
(n) and y n-1 (n) = y n

(n) . These considerations 

yield the recursion relation 

• • 

• 



F2 ( Y' x2, x1) = f= 1z. 
2 

Y A l  

1 
3 

y A l 

F
1

(c
n,

c
n-1,

d
n-1

) = F 1 (c
n-1,

c
n-1'

d
n-1

) + 1 

F
2 

d
n

d
n-1'

c
n- 	

= F2 (dn-1' dn-1'
c
n-1

) + 1 

(5.6) . 

From (5.6) we can calculate (cn'dn)  for n > 1, if the initial value 

-"( c o  ,d o
) is given . The expression (5.5) gives solution (x n (t),y n (t) ) 

explicitly in each interval in ,n+1) , n = 0, 1, 2,. . 

Below we give an illustrative example. 

EXAMPLE  5.1:  Consider the system 

x' (t) = (1/2)x(t)y 2 ([t]) 

y'(t) = (1/3)y 2 (t)x([ti), 	t 

with initial condition (x(0),y(0)) = ( c o , d o ) . 

Clearly, the system with nonzero parameters A l 
and 	A 2 is such 

that (1/2)x A22 	0 and (1/3)y
2 

x 1  f 0 everywhere. The integrals 

T 	 denoted by F 1  and F2  are now as follows. 

F1(x, 	A 2 )  = 
f 2 dx 	 1 
 , 2 2  

	

X X -
2 	

X X
2 



c
o 	

d
o C

1 
 = 

(1-d2 c2 )2 
o o 

(1-dc 
0

)
i 

0  
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The expression (5.5) now becomes 

1  
2

d 
 2 

x
nn 

 

= t-n 
1  

c
2

d
2 

n n 

 

1 	 1 
= t-n 3 

y
n  cn 	

d
n

c
n 

which leads to a solution (x
n

,y
n

) in [n,n+1) and is given by 

c
n  n  x (t) = 

(1 - d
n
2

c
2
(t -n)) 2  

y n (t) = 	d o  

(1-d
3
c (t-n)) n n 

where 

C 2  = 
	

d
2 
	 d1  

     

T 
2 

(1-di  ci 
2 

) (1-d 1
3 

 c 1 ) 

and 

C
n 
 = 

e
n-1 	 d 

do 
	

= 	n-1 
(1-d

2 
c

2 
;
A 1 

n-1 n-1 	 (1 d
-3 

c 	) 3  
n-1 n-1 

• 

• 

• 

• 
• 
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5.3 EXISTENCE OF SOLUTION 

In this section, we consider the nonlinear differential equation 

x , (0 = f(t.x(t),x(W)), x(o) = xo , t e 	 (5.7) 

-1( 

where x
o 

is a given real constant and f is a piecewise continuous 

function defined on J x13 x R. 

The following theorem gives the existence of solutions of (5.7) 

using Schauder ' s fixed point theorem. 

THEOREM 5.1: Let the function f(t,x(t) ,x( [t] )) be piecewise 

continuous and bounded in a cube D : 0 < t < a, a > 0, I x-x o
I < b, 

x-x
o 
 I < b, b > 0, then there exists atleast one solution x(t) of (5.7) 

on 0 < t < 	13 < a for some 0 > 0. 

PROOF: Assume a to be sufficiently large. Let C(I) be the space of 

all continuous functions on I = [0,a) taking values in R. Define 

the norm I 1
0 

of a function x E C(I) by 

= sup I x(t) -x
o

I 
ttI 

plearly,C(I) is a Banach space with the above norm. Since f is 

bounded in D there exists a positive number M such that 

If(t,x(t),x(W)) I 	< 	M for (t,x(t),x( [t] )) e D. 

Choose S  and p such that 0 , < 13 
	a, 0< p< b and MO < p. 

Define 

• 	 • 

• 
• • 



A 
94 

s( P ) = { x e C(I), lx1 0  < P } 

It is clear that s( p ) is a closed, convex, bounded subset of the Banach 

space C(I). Let T be an operator defined by 

r t 
(Tx) ( t) = x(m ) + 	f( s, x( s) ,x( m))ds 

for x E s( p), t 6 [m,m+1), m= 0,1,2 ... n, n< a< n+1 

where 

m 
x(m) = x(m-1) + 	f f(s ,x(s) ,x(m-l))ds , m = 1, 2, .. 

m-1 

Observe that lira Tx(t) = Tx(m+1), m = 0, 1, 	n. 
m+1 

Clearly, T is a continuous operator from s( p ) to C(I) . Further, we 

have 

1(Tx)(t) - x o l 	< NI 0 < P . 

This implies that T maps s( ) into itself. Therefore by Schauder's 

fixed point theorem, there exists atleast one x E C(I) such that 

(Tx) (t) = x(t) . 

Hence the theorem. 

Next we give definitions of upper and lower solutions of (5.7) 

which is needed in our subsequent discussions. 

DEFINITION 5.1:  A function v C C[I,R] is said to be an upper 

solution of (5.7) if v' (t) exists excei5t possibly at integral points 



g5 

where only one-sided derivatives exist; and if 

vi (t) > f(t,v(t),v([t])) on I. 

A lower solution w(t) may be defined similarly by reversing the 

inequality. 

EXAMPLE  5.1:  Consider the differential equation 

x' (t) = x(t) sinx(M), x(0) =- c
o

. 

Clearly, x(t) = c oexp(t) is an upper solution while 

x(t) = c
o
exp(-t) is a lower solution. 

The theory of existence of maximal and minimal solutions heavily 

depends on the use of upper and lower solutions. The methods are 

well established and are given in [23] . Below, we extend this method 

to prove the existence of extremal solutions of the equation (5.7) . 

For this purpose, we need the following definition. 

DEFIIIITION 5.2:  Let r(t) be a solution of the scalar differential 

equation (5.7) on I = [0,a) . Then r(t) is said to be a maximal 

solution of (5.7) if, for every solution x(t) of (5.7) existing on I, the 

inequality x(t) < r(t), t C I holds. 

A minimal solution P ( t) may be defined similarly by reversing the 

above inequality ' 	(t) < x(t) 

The following example illustrates it. 

• • 

• 

• 

• 
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EXAMPLE 5.2:  Consider the nonlinear IVP 

x'(t) = x 2 (t), x(0) = 0, t e J = [0, co). 

It is known that it has infinite number of solutions 

0 	 0 < t < c , 

x(t) 	= 

(t -c ) 2  c < t < 	op 	; 

where c is a real number. 

Now consider the related IVP 

x' 	= xl (t) + kx( [t ]), x(0) = O. 

Observe that x(t) = 0, t E J is a solution on the IVP. For t E [0,1), 

the equation coincides with the above equation x' (t) = x 1 (0 . Clearly, 

it has infinite number of solutions. In the interval [n,n+1), we use 

the method given in [9] and show that solution x n (t) satisfies the 

relation 

1 
2(x n(t) + c 

n  )-2cn 	n 
klog(xlft 	=.2(c

n  
C
n

1  
2+c 
nn 

 )-2cnklog(c 2 +c 
n

) + t-n 

t E [n,n+1), n = 0, 1, 2, ... . 

Intervalwise, we can show that this implicit relation gives a nonzero 

solution. 

For k = 0, 

x(t) = t2/4. 

• • 

• 
• 

• 
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The following result on differential inequalities is profitably 

used subsequently. It is an extension of the corresponding result 

proved in [23] . 

THEOREM 5.2: Let v, w E C[I,11], I = [0,a) with property that 

v(0) < w(0) and let f(t,x(t),1- 1  ) be nondecreasing in µ . Further, 

v'(t) < f(t,v(t),v(Itn), t e I 

w'(t) > f(t,w(t),w([t] )), t C I. 

Then 

v(t) < w(t) for all t C I. 

PROOF:  Suppose (5.10) does not hold. Then there exists a t 1  > 0 

(first t
1 
 away from zero) such that v(t 1  ) = w(t 1  ) and v(t) < w(t), 

t C (0,ti ) . For sufficiently small h < 0, it then follows that 

v' (t ) > w' (t 1 ). 	Using (5.8), (5.9), we get 

v([ti n) > f(t 1 ,w(t1 ),w([t1 ])) 

which is a contradiction in view of the fact that f (t ,x, µ ) is 

nondecreasing in p. . Hence v(t) < w(t) on I. 

REMARK 5.1:  Theorem 5.2 follows if we replace the inequalities 

(5.8),(5.9) by 

v' (t) < f( t, v(t ) ,v(Et ] )) 

w' (t) > f(t,w ( t),w (( t])), 
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re5pectively . 

REMARK 5.2: The results of Theorem 5.2 have also been established 

by Aftabizadeh and Wiener in [4] . The present author proVed the 

inequality independently however, got this paper only when this 

chapter was on the typewriter and • hence it is included here. 

Next we state a result giving the existence of maximal solution 

of (5.7) . The case of minimal solution is similar. 

THEOREM 5.3:  Let I = [0, a) . Under the hypothesis of Theorem 5.1 

there exists a maximal solution r(t) for the IVP (5.7) . 

PROOF:  The proof can be formulated by following the argument of 

Theorem 1.3.1 in [23] and the conclusion of Theorem 1.3.1 in each 

interval In, n+1) , n = 0,1,2 ... . 	The details are omitted. 

One of the result 	widely used is the following comparison 

theorem. 

• 

THEOREM 5.4:  Let r(t) be the maximal solution of (5.7) on I. Let 

m E C[I,11], m(0) < r(0) and if 

m'(t) < f(t,m(t),m([t])), t e I, 	 (5.11) 

then 

m(t) < r(t), t E I. 

PROOF:  In view of Theorem 5.3, it can be proved that the maximal 

solutions 	E ) of 

• • 

• 

• 

• 
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X (t) = f(t,X(t),X( it))) 	a 	, x(0) = x 	E 	 (5.12) 

exist on [0, T ) for all c > 0 sufficiently small and 

r(t) = lim r(t, c ) uniformly on [0, T ). 	Using (5.11) and (5.12) and 
c -> 0 

applying Theorem 5.2, we derive that m(t) < r(t, c ), t E [0, T ). 

The last inequality together with r(t) = lim r(t, c ), proves the 
-> 0 

assertion of the theorem. 

This section ends with a result illustrating the usefulness of 

the inequalities proved above. 

'Consider a differential equation 

y' (t) = a(t)y(t) + b(t)y([t]) 	 (5.13) 

and corresponding perturbed equation 

z'(t) = a(t)z(t) + b(t)z(N) + f(t,z(t)) 	 (5.14) 

• 
with initial condition z(0) = x

o 
where a, b are continuous functions 

of t E J, x
o 

is a real constant and f :JxR —> R is a continuous 

function satisfying some conditions stated in the next theorem. 

We prove the following theorem which is useful to discuss the 

stability and boundedness for cases when the function f(t,z(t)) in 

(5.14) is not necessarily small. 

THEOREM 5.5:  Let 4)(0 be the fundamental solution of (5.13) with b=0 

and 4)(0 be the fundamental solution of (5.13) satisfying 	 • 

• 	 • 

• 
• 

• 
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4)(0) = 1. 	Let 1 IR (t) 1 < a(t), where 	a (t) is a positive real- 

valued function defined on J = (0, 0 ,  ), and let a (0) = a 
o
. Suppose . 

also that the function f(t,z(t)) : J x tl —> t3 satisfies the inequalities 

1 (k) 0 ( k ,$)f(s,z(s))1 < 	 1z(k-1) I), k-1 < s < k, k=1,2,... 
a(s) 	a(k-1) 

and 

1 0(t,$)f(s,z(s))1 < 	a(t)Vi(s,I z(s)1 	,.1.111111N ,  ) 	k= (t] < s < t, 
aUtl) a(s) 

where W(t,r(t),r( It]) ) is monotone increasing function in second and 

third variable. Let r(t,O,r 0 ) be a solution of 

r' (t) = W(t,r(t),r(W)), r(0) = r o . 

Then the solution z(t,0,x 0 ) of (5.14) satisfies 

lz(t,0,x0 )1 < a(t)r(t), 	t 	E 3, 

if z(t,0,x0 ) is such that 1x0 1 < cto  ro . 

(5.15) 

PROOF:  Using Theorem 2.1, 	solution z(t,0,x 0 ) of (5.14) is given by 

It] 
z(t,0,x0 ) = y(t,0,x0 ) 	 f 1 (t,k) • 0(k,$)f(s,z(s))ds 

k=1 k-1 

t f (t,$)f(s,z(s))ds, 
[t] 

where y(t,0,x0 ) is the solution of (5.13) and co is the fundamental 

solution of 

x' (t) = a(t)x(t). 

• 	 • 

• 

• 

• 

• 
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Then 

z(t,0,x
o

) I a (t)Ixo l 	a (t) 	 w 	, 
k=1 k-1 

1z(s) I 	jz(k-1) I  )ds 
a(s) ' 	a (k - 1) 

a(t) 	r w(s  iz(s)1  , li(ItIn ds 
[tr 	' a (s) 	a ([t]) 

a(t){ ix. 	f w(s, 
0 	- 	a(s) 

lz(s) I 	lz( is]) 1)ds) 	. 
a(ts]) 

= 	
' 

Put 

u(t) = 1)(0 1 + of w(s, lz j ssl  , lazas1;1)ds, 

then we obtain 

u'(t) = w(t, z(t)1 , I z( it) ) I  ) 
a(t) 	a( Itl ) 

Since 

Iz(t, 0, xo ) I 
< u(t) 

aht) 

 

and W is increasing in second and third variables, we can see that 

u'(t) < W(t,u(t),u([t])), 	t e J. 

Hence by Theorem 5.4, the function u(t) satisfying the above inequality 

is dominated by a solution of (5.15). Then we have 

o )1 	
< u(t) < r. (t)' 

a(t ) 

• 
• 	 • 

• 

• • 
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That is 
lz(t,0,x0 )1 < a(t)r(t), 	t e J. 	The proof is complete. 

Here we note that the above inequality implies the boundedness of 

I z(t,0,x 0 ) I if a (t)r(t) is bounded. 

REMARK 5.3:  If we replace b(t) by b( [t] ) and take t = n, then this 

result reduces to the work done by Sugiyamma [31] . 

5 -4 NONLINEAR VARIATION OF 'PARAMETERS FORMULA 

Consider the nonlinear equations 

x'(t) = f(t,x(t)) 

y' (t) = f(t,y(t)) + g(y([t])) 

z'(t) = f(t,z(t)) + g(z([t])) + c(t) 

t C [t
o
, ) , t

o  > 0, where f and c are continuous functions and g is 

a piecewise continuous function. Let the initial conditions at t = t o  be 

given by 

x(to ) = y(to ) = z(t o ) = xo , 	t> to  > o. 

Further, we assume that 

x(Itol) = y([tol) = z(Et01) = c , 

where c is a real constant. 

We state and prove the following two results. 

(5.19) 

• 

• 	 • 

• 
• 
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LEMMA  5.1:  Let g(y([tl)) be a piecewise continuous function on R 

and let ag(y([t]))  exist and be piecewise continuous on It 	Then 
ay([t]) 

g(Y2([t])) - g(yi ([t])) = ( jr 1 ag ( sY2 ([ t ]) 	(1-s)Yl([tl)) ds ) 

o 	ay(Itl) 

. (y2 ([0) 	yl ([tl)) 

PROOF:  Setting 

G(s) = g(sy 2 ([t]) 	(1-s)y 1 (it])), 	0 < s < 1, 

the convexity of R implies that G(s) is defined. Hence, 

dG 
ds 

ag ( sy2 ([t]) + (1-s)y 1 ([0))  
.y2  L 

ay([t] ) 
(5.20) 

Since G(1) = g(y 2 ([t])), G(0) = g(y i ([t])), the result follows by 

integrating (5.20) from° to 1. 

LEMMA  5.2:  Assume that f E C[J x R, R] and g is a piecewise 

continuous function on R and possesses partial derivatives 

af(t,y(t)) 	and _a_ly([t]))  • 
aY 	 ay([tl) 

Denote 

H (t to , x  ) 	afa,y(0)  
1 ' o' 	0 	a Y 

• 
• 	 • 

• 

• 
• 
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H2 ([t],to , x0 ) = 

Then 

(t, to , xo ) = 

ag(y(itn) 
 ay([t]) 

 

ay (t, 
to' 

 x 
o 	o) exists and is the solution of 

  

ax o 

z' (t) = 	H i (t, to , xo )z(t) + H2 ( [t] , t o , xo )z([t]) 	 (5.21) 

such thato' to'  x o
) = 1. 

PROOF:  Let h be scalar and for small h, let y(t,h) = y(t, t o ,x0  + h), 

t € J. It is known that lim y(t,h) = y(t, t o' xo ) = yO
(t), (say), 

h->0 

uniformily on J. In view of the Lemma 2.5.2 in [23] and Lemma 5.1, 

we get 

(y(t,h) - y o (t))' = 	
1 

 af(t,sy(ti ll) 	(1-s)yn(t)) ds(y(t,h)-yo(t)) 

—.194.1)4.12.21. 4. 	d6(yut],h)-y 0 ([0)). 
de 	8Y t 

If we write 

y
h

(t) 	y(t,h) 
 - 

yo (t)  , h # 0 
h 

the existence of  ay  (t, to , x0 ) is equivalent to the existence of 
ax 

lim yh (t). Thus, yh (t) is the solution of IVP 
h->0 

• • 

• 

• 

• 

• 
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z'(t) = H 1 (t,t o ,x 0 ,h)z(t) + H 2 ([t],t 0 ,x 0 ,h)z(Ltl),z(t o ) =1 	(5.22) 

where 

Wt ( ,syt,h) + (1 - s)Y n (t H (t t x h) = Jr 	 "ds 1 	' o' o' 	0 	3Y 

and 

l r 	r 	, r  
H4Mt o ,x 0 ,h) = j 	3gksYkitl,h) + ( 1- s)yo([ti)d s.  

	

0 	By([t]) 

y(t,h) —>y o (t) as h —> 0 

lim H1 
	' 
(t t o' xo' h) = H (t,t 

o 
 ,x 

o ) 
h->0 

and 

lim H
2 ([t],t o  ,x o  ,h) = H 2 ([t],t o  ,x o  ) h->0 

uniformily on J. Considering (5.22) as a family of initial 

value problems depending on a parameter h, and observing that 

solution of (5.22) is unique [23], it is clear that the solution 

of (5.22) is a continuous function of h. 	In particular, 

urn 	 = y(t) 
h->0 

exists and is the solution of (5.21). Hence the lemma. 

We now prove the variation of parameters formula. 

THEOREM 5.6:  Let y(t,t o ,x 0 ) be a solution of (5.17), (5.19) 

and 	(gt,t 0 ,x0 ) and 	11)(t,t 0 ,x0 ) be solutions of the variatiorial 

• 

• • 
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equations (1.19) and (5.22) , respectively, for t > t o . Then there 

exists a unique solution z(t) for (5.18), (5.19) given by 

+ j. t 

0 

'0  

4)( t ,s,z(s)) c ( s )ds , t E [t ,1), 0 < t
0.  < 1 

(5.23) 

Ot,1,y(1)) (1,s,z(s))c(s)ds 

z(t , t 
0 
 ,x 

0
) = 

k 
f (t,k,y(k)) (k,s,z(s))c(s)ds 

k=2 k-1 

4)(t,s,z(s))c(s)ds, t > 1. 
[t ] 

PROOF:  We prove the expression (5.23) in each interval. First consider 

the interval [0,1) and let 0 < t
o 
 < 1. By using the Theorem 1.11 of 

chapter 1 

y(t,t o  ,x o ) = x(t,t0 ,x0 ) + 	f 4)(t,u,y(u,t0 ,xo ))g(y(iul,t 0 ,xo ndu . (5.24) 

t
o 

Write z(t,t o ,x0 ) = z(t) , then from (5.24), we note that 

• 
dy(t,s,z(s)) 

• 	

dx(t,s,z(s)) _ 4)(t,s,y(s,s,z(s)))g(z([s])) 
ds 	 ds 

• - 	(t,s,z(s))f(s,z(s)) + 	(t,s,z(s))z' (s) 

- 	(t,s,z(s))g(z([s])) 

= 	4)(t,s,z(s))c(s). 

Integrate between t o  and t to get (5.23) in [0,1) . Now consider the 

second interval [1,2), 0 < to  < 1, we have 
- o 

• 7" 

• • 

• 
• 

• 
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rlity(t,s,z(s,t
o

,x0 )). ds = 	jr1L/(t,ly(1,s,z(s)))ds 

	

0 
t 	ds 	 t

o 	
ds 

since y(t,t 0 ,x0 ) = y(t,1,y(1,t o ,x0 )). 

r slIct,i, y (i,s,z(s))) ds 	r  ay(t,1,y(1)) 	cix(1,s,z (s)) 

	

t 	ds 	 t 	ay(1) 	 cis 	
ds 

	

0 	 0 

 

1 
4)(t,1,y(1)) (i)(1,s ,z(s) )c(s ) ds. 	(5.25) 

And 

r tgy(t,s,z(s,t 0 ,x0 )) ds = ds 
1 

rt dx(t,s,z(s)) 
{ds 	 4)(t,s,z(s))g(z([sl))1cis 

1 

Jr
t 
 (0,s,z(s))c(s)ds. 	 (5.26) 

1 

Adding (5.25) and (5.26) we get (5.23) in [1,2). That is, for t E [1,2) 

z(t,to ,x0 ) = y(t,t ,x 0 ) + 
t 

 
• 

Ct,1,y(1)) 	(1,s,z(s))c(s)ds 

+ 	
1j
r (1)(t,s,z(s))ccods. 

For getting (5.23) for t > 2, in each interval [n,n+1) use the fact 

y(t,n,z(n)) = y(t,n+1,y(n+1,n,z(n))), 	n = 1, 2, ... 

to obtain 
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fn+ci(t,s,z(s,t o ,x 
 o 	ds = )) 	(n+lciy(t,n,y(n,s,z(s))) ds  

n 	
j 

ds 	 n ds 

n+1 
Jr 	1)(t,n,y(n)) 4)(11,s,z(s))c(s)ds, n=1, 2, 064 

• 
Now following same steps as in the case of first two intervals , we 

prove (5.23) for any t > t o . 

REMARK  5.4:  If t
o 

= 0, then (5.23) becomes 

[t] 
z(t,0,x

o
) = y(t,0,x

o
) + I 	Jr tp(t,k, y (k)) cp(k,s,z(s))c(s)ds 

k=1 k-1 

„t 

[t] 

REMARK  5.5:  Replace f(t,y(t)) = a(t)y(t) and g(y([0)) = b(t)y([0) 

in (5.16), (5.17) and (5.18), further, take t
o 

= 0, then (5.23) takes 

the form 

[t] 	k 
z(t,0,x0 ) = y(t,0,x 0 ) 	 f 	(t,k) co(k,$)c(s)ds 	f co(t,$)c(s)ds, 

k=1 k-1 	 [t] 

Where 4 and 4) are the fundamental solUtioh's of (5.16) and (5-17), 

respectively. 

We present below a further generalization of variation of 

parameters formula proved above. For ordinary differential equations 

it has been proved by Ladde [21]. 

THEOREM  5.7: Suppose that V E C[J x R, ri] and the function V(t,y) 

is such that V (t,y) exists and is continuous for (t,y) in J x R. Let 

y(t) = y(t,t o ,x0 ) denote the solution of (5.17), (5.19) and 

• 	 • 
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z(t) = z(t,t o ,x0 ) 	 is a solution of (5.18), (5.19). 	Then 

,t 
j V (t,y(t,s,z(s)) 0(t,s,z(s))c(s)ds 

t
o 

y 

0 < t < t < 1 , 
o - 

'V(t,y(t)) + 

V(t,z(t)) (5.27) 6  
,1 

V(t,y(t)) + 	j V (t,y(t,s,z(s))) iy(t,l,y(1)) 

t 
• 0 (1,s,z(s))c(s)ds 

jr_v (t,y(t,s,z(s))) flt,k,y(k)) 
k=2 k-1 

. 0(k,s,z(s))c(s)ds 

+ 
	

V (t,y(t,s,z(s))) 0(t,s,z(s))c(s)ds, t > 1. 

[ t ] 

PROOF:  Let t 6 [0,1) and 0 < t
o 
 < 1. Since we know 

gy.(t,s,z(s)) 	
= 	c(t,s,z(s))c(s) , t e [0,1). 0 < t

o 
 < 1, 

ds  

the integration of 

dV(t,y(t,s,z(s))) di(t,s,z(s)) = V (t,y(t,s,z(s))) 
ds 	 ds 

• 

between t
o 

to t yields the result (5.27) in [0,1). For t C [1,2) split 

the integral t o  to t into two parts from t o  to 1 and 1 to t. Note the 

facts 

,1 	 1 
V y (t,y(t,s,z(s))) Ely(t,s,z(s))ds = t  Jr v (t,y(t,s,z(s))) 	(t,1,y(1)) 

to 	 ds 	 o 	Y 

.0(1,s,z(s))c(s)ds 	(5.28) 

and 

• • 
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jr V (t,y(t,s,z(s)))!IK(t,s,z(s))ds = 	V (t,y(t,s,z(s))) 
1 	 ds 	 1 

. q (t,s,z(s))o(s)ds. 	(5.29) 

Add (5.28) and (5.29) to get the required result (5.27) In (1,2).Continuing 

the same way the result (5.27) can be proved for any t. 

REMARK  5.6:  If V(t,y) = y, then (5.27) becomes (5.23). 

EXAMPLE  5.3:  Consider the differential equations 

x'(t) = -x 2 (t) 

y' (t) = -(y 2 (t) + y2 (Itl» 

z' = -(z
2
(t) + z

2
([0)) 	c(t) 

with initial conditions 

x(to ) = y(t o ) = z(to ) = xo  = x(Ltol) = y(Eto l) = z(R0]). 

(5.30) 

(5.31) 

(5.32) 

(5.33) 

Solution x(t,t ,x ) of (5.30), (5.33) is given by 

x ( t , t 0  ,x 0  ) = x 0  (x 0  ( t -t 0 ) 	1) -1 , 

Hence 

O(t,t ,x ) = 	ax 	= ( x0 (t-to ) + 1)
-2 . 

ax 
0 

Solution y(t,n,c n ) = yn (t) of (5.31) with y(n) = on  in each interval 

[n,n+1), n = 1,2, . . is given by 

• • 

, 	. 

• 

• 
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