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A Psalm of David 

The Lord is my shepherd, 

I shall not want; 

he makes me lie down in green pastures. 

He leads me beside still waters; 

he restores my soul. 

He leads me in paths of righteousness 

fOr his name's sake. 

Even though I walk through the 

valley of shadow of death, 

I fear no evil; 

for thou art with me; 

thy rod and thy staff, 

they comfort me. 

Thou preparest a table before me 

in the presence of my enemies; 

thou anointest my head with oil, 

my cup overflows. 

Surely goodness and mercy 

shall follow me 

all the days of my life; 

and I shall dwell in the house of the Lord 

for ever. 



Abstract 

In this thesis, we attempt the study of the dynamics of a quantum 

spin glass with the help of two models, one a quantum system on 

an infinite connected graph with deterministic nearest neighbour type 

of interactions, and the other a quantum spin system on an infinite 

lattice with random interactions. The problem to which we address 

ourselves is that of explaining the behaviour of a quantum spin glass 

through the dynamics of the quantum spin systems studied by us and 

the associated KMS states. 

We construct the global dynamics for the quantum spin system on 

an infinite connected graph with countably infinite number of vertices. 

As expected, the existence of an equilibrium state at a fixed temper-

ature T, is established. The equilibrium state satisfies the KMS con-

dition and is invariant under the action of the time evolution group. 

However, all attempts to establish the maximum entropy principle 

for the infinite system were thwarted due to the absence of spatial 

homogeneity. 

In the case of the quantum spin system on an infinite lattice Z" 

with random interactions. we establish the existence of a family of 

strongly continuous, one—parameter groups of automorphisms Iri(w)), 

of the quasi—local algebra A associated with the spin system, where 

co lives in a probability space (S2, S, P). These automorphism groups 



rf  (w) determine the evolution of the infinite spin system. The joint 

measurability of the map (t,w) 1-4 rt (w)(A) for all A E A is also 

proved. Some interesting algebraic properties of the generators b(w) 

of these automorphism groups have been derived. The notion of er-

godicity of a measure preserving group of automorphisms of S2 , is 

used to prove the almost sure independence of the Arveson spectrum 

Sp(r(w)), of the evolution group rt (w). Next, the existence of a family 

of states {p(4.4)}, which are (7(w), /3)-KMS states of A with respect 

to the evolution groups rt (w), and satisfy p(w)(A) = p(T_ aw)(ol a (A)), 

for A E A and all a E Z v , is established for all f3 E IR \ {0}. It 

is assumed that there exists one such family of er(w),f3)—KMS states 

{p(w)}, where w y p(w)(A) is measurable for all A E A. We show that 

the spin system on the infinite lattice with random interactions, ex-

hibits a phase structure. In fact, we establish that there is an unique 

KMS state p(c.,..,) with respect to the evolution group r t (w), above a 

certain critical temperature T, almost surely independent of w. 

Now, the Arveson spectrum of the evolution group r t (w) is closely 

connected with the spectrum of the generator of the unitary group 

Ut (c.,;), which implements rt (w) in the cyclic representation 7tw  asso-

ciated with the (r(w), 0)—KMS state p(w). We exploit this fact to 

establish the almost sure independence of the spectrum of the gener-

ators. 

Next, the cyclic representations 7r„ associated with the (7-(co),,3)— 

KMS states p(w), give rise to an ensemble of von Neumann algebras 



Pr „JAY' } . Each of these von Neumann algebras acts on a separable 

Hilbert space It,. Thus, given this structure, we are obliged to invoke 

the theory of measurable fields of von Neumann algebras. Using the 

cyclicity of the representation 7r,„ we construct a collection of measur-

able vector fields F , which endows the field of separable Hilbert spaces 

co 1-4 7-1,,. with a measurable structure. Equipped with this structure, 

we construct the direct integral Hilbert space 7-1 = 	7-1,c1P(co). We 

also show that for each t E IR, w 	Uf  (co) is a measurable field of uni- 

tary operators. The joint measurability of (t, w) 1-4 (Ut (w)e(w), 77(co)), 

for all E , is also established. Here (., .), denotes the inner prod-

uct on the Hilbert space 7-1,. By using the theory of measurable fields 

of operators, we derive some interesting ergodic properties of the spec-

tra of the generators H(w), of the unitary groups Ut  (co). 

In the final part of the thesis, we prove that the field of von Neu-

mann algebras w , is a measurable field of von Neumann 

algebras and construct a direct integral von Neumann algebra 

A4 = f 	dP(co). 

The existence of a strongly continuous, one parameter group of uni-

taries Ut , on the direct integral Hilbert space 7-1. is established. More-

over, this group of unitaries in turn gives rise to a a—weakly continu-

ous group of automorphisms ft , of the von Neumann algebra M. We 

construct a faithful normal state 16 of M from the measurable field 

co 1—* kw), of faithful normal KMS states kw), which are extensions 

of the KMS states p(w) to the von Neumann algebras r„(A)'' . Finally, 



this faithful normal state f) is shown to be a (f, i3)—KMS state of the 

direct integral von Neumann algebra M. 



Contents 

1 Introduction 	 4 

2 Mathematical Preliminaries 	 12 

2.1 Analysis in Normed Linear Spaces 	  12 

2.1.1 Analytic Functions 	  12 

2.1.2 Measure Theoretic Preliminaries 	  14 

2.2 Operator Theoretic Preliminaries 	  18 

2.3 Operator Algebraic Preliminaries 	  21 

2.3.1 Standard Results in the Theory of C*--Algebra.s and 

von Neumann Algebras 	   21 

2.3.2 KMS States and Associated Representations 	 29 

2.3.3 Arveson Spectrum 	  31 

2.4 Standard Results in the Theory of Direct Integrals and De- 

compositions 	   31 

2.4.1 Measurable Vector Fields 	  32 

2.4.2 Square Integrable Vector Fields 	  34 

1 



3 

	

2.4.3 	Measurable Fields of Operators 	  

	

2.4.4 	Measurable Fields of von Neumann Algebras 	 

Dynamics of a Quantum Spin Glass 

36 

39 

41 

3.1 A Quantum Spin System on an Infinite Graph 	  43 

3.2 Interactions 	  45 

3.3 Time Evolution 	  46 

3.4 Equilibrium State and the KMS Condition 	  52 

3.5 Description of the Random Model 	  60 

3.6 Random Interactions 	  63 

3.7 Random Evolution 	  68 

4 Ergodic Properties of Spectra of Evolution Groups 84 

4.1 Arveson Spectrum 	  84 

4.2 KMS States 	  88 

4.2.1 	Construction of a Family of KMS States 	 89 

4.2.2 	Uniqueness of KMS States 	  93 

4.2.3 	Representations Associated with the KMS States 	. 106 

4.3 Direct Integral von Neumann Algebra. 	  112 

4.3.1 	Measurable Field of Hilbert spaces 	  113 

4.3.2 	Measurable Field of von Neumann Algebras 	 119 

4.3.3 	Automorphism Group of the Direct Integral von Neu- 

mann Algebra 	  123 

2 



4.3.4 Construction of a 1(1\1S State of the Direct Integral von 

Neumann Algebra 	  127 

5 Summary 	 133 

3 



Chapter 1 

Introduction 

Spin glasses still present something of a mystery. In fact, spin glasses are 

among the least understood systems in equilibrium statistical mechanics. In 

particular, their low temperature regime and critical behaviour are extremely 

complex. Spin glasses, which usually occur as dilute solutions of atoms with 

large magnetic moments (e.g. Fe, Co and Mn) in paramagnetic substrates 

(e.g. Cu and Au), have a number of interesting physical properties. The ba-

sic ingredient of a spin glass is the random distribution of the impurity in the 

form of magnetic atoms. At very low temperatures, there is a freezing of the 

magnetic moments in random directions which leads to an increase in suscep-

tibility. The spin—glass phase may therefore be regarded as an arrangement 

of blocks of spins, each block with its own characteristic orientation in such a 

way that, there is no net magnetic moment [Bin 86]. More details concerning 

the physics of a spin glass can be obtained from the review article by Binder 

and Young [Bin 86]. 

Edwards and Anderson [And 75] proposed a spin Hamiltonian to account 

4 



for the basic properties of a spin glass. The Hamiltonian is written as 

	

HA = 	 - 

i,jEA 

where A is a finite region in Di, of = ±1 and 0 is a deterministic poten- 

tial. The magnetic impurities are simulated by the set {Ji, 3 } of independent, 

identically distributed random variables with distribution depending on the 

distance — ji. This model describes the important concept of frustration 

in a spin glass and the related problem of defining a suitable order parameter 

[Bin 86, Hem 83]. Analytical investigations concerning the equilibrium sta-

tistical mechanics of a spin glass have focussed attention on the mean field 

model of Sherrrington and Kirkpatrick [She 78]. Here, the model is defined 

by a Hamiltonian 

	

H, = — 	• 'CjiCfj — 

2 ,) 

where o-, = +1, H is the external magnetic field and {Ji,j} is a set of inde-

pendent, identically distributed random variables with probability density 

p(Ji,a ) = 2r J2 
—112  exp 

) 
4/72)2  

n 2J2  
[ 

For a pure spin glass in zero field, we have J o  = 0 and H = 0. Using 

the replica trick and the concept of replica symmetry breaking, Parisi et al 

[Par 80] have obtained a rather appealing picture of the low temperature 

phase of this model. It has been shown that there exists infinitely many 

extremal Gibbs states at very low temperatures. As the temperature is raised, 

spins with increasing distance from each other coalesce, until, above a freezing 

temperature, the equilibrium state is unique. 
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The other model of a spin glass which has been investigated is the Cayley 

tree model [Tho 86, Cha 86, Car 91]. Here, one usually looks for thermody-

namic quantities in the innermost regions of the tree, namely, on a Bethe 

lattice, in order to avoid the problems caused by the presence of a large 

number of boundary points. Although boundary conditions do have an im-

portant influence, this model does not suffer from the problems associated 

with boundary effects. The Hamiltonian for this model is given by 

, 	j—HEo -i, 

where o-i  = ±1 and H is an external magnetic field. The sum (i,j) is over 

nearest neighbour sites and {Ji, j }!s are independent, identically distributed 

random variables such that, E(Ji, j ) = Jo  and E(Ji2j ) = P . For a pure 

spin-glass phase, Jo  = 0. 

Traditionally, quantum spin glasses have been studied as systems of quan-

tum spins interacting through random interactions. These models are essen-

tially Ising-type models with random coupling. The coupling coefficients are 

assumed to be independent, identically distributed random variables. Ex-

tensive investigations on the existence of the thermodynamic limit have been 

made by van Hemmen et al [Ent 83, Hem 83]. The almost sure existence of 

the free energy of an infinite spin system on a lattice with random interac-

tions has been established. This is a generalization of the result of Khanin 

and Sinai [Sin 79], in the classical case. An alternate model of a quantum 

spin glass can be based on the realization that the magnetic ions in a spin 

glass are randomly distributed at lattice sites. The spins therefore, may be 
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considered to be located at the vertices of an infinite connected graph with 

countably infinite number of vertices. Hence, one can caricature a quantum 

spin glass as a quantum spin system on an infinite connected graph with 

countably infinite number of vertices. This model may be regarded as the 

quantum analogue of systems studied by Preston and others [Pre 74]. But, 

unlike a classical spin glass, a quantum spin glass admits a dynamics nat-

urally. Despite this fact, this aspect of a quantum spin glass has not been 

investigated. 

In this thesis, we have attempted to study the dynamics of a quantum spin 

glass with the help of both these models, namely, a quantum spin system on 

an infinite graph with deterministic nearest neighbour type of interactions, 

and a quantum spin system on an infinite lattice with random interactions. 

The problem to which we address ourselves is that of explaining the behaviour 

of a quantum spin glass through the dynamics of these spin systems and the 

associated KMS states. 

The C*—algebraic approach has met with a fair amount of success in the 

study of quantum spin systems. Here, we study a quantum spin glass as a 

quantum spin system in the C*—algebraic frame work. Usually, a quantum 

spin system consists of a set of points confined to a lattice and interacting 

with each other. In some applications it is important that the lattice has a 

symmetry, for example the case L = Z". Nevertheless, in many cases, and 

in particular, in the construction of dynamics, it is enough to assume that 

L is a countably infinite set. The kinematical structure associated with the 
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quantum spin system is a quasi-local UHF algebra constructed over the finite 

subsets of L. Usually, the dynamical evolution of a quantum spin system 

in the Heisenberg picture is given by a strongly continuous, one-parameter 

group of automorphisms Tt , of the quasi-local algebra. Thus, one of the 

most important tasks in the study of quantum spin systems is to construct 

an evolution group of the spin system. In many situations, this is achieved by 

establishing the existence of the thermodynamic limit of the local evolution 

group rtA, of the spin system confined to the finite region A. Closely connected 

with the strongly continuous, one-parameter group of automorphisms Tt of 

the quasi-local algebra, is a set of states called the KMS states. These states 

are known to be invariant with respect to the automorphism group, and they 

satisfy certain analytic conditions in a strip, in the complex plane. A detailed 

account of these facts has been given in chapters (3) and (4), both in the 

case of a quantum spin system on an infinite graph, as well as in the case of 

a spin system on a lattice with random interactions. 

We construct the global dynamics (3.3.0.11) for a quantum spin system 

on an infinite graph. As expected, the existence of an equilibrium state at a 

fixed temperature T, is established. The equilibrium state satisfies the KMS 

condition (3.4.0.15) and is invariant under the action of the time evolution 

group as shown in corollary 3.4.0.16. However, all attempts to establish the 

maximum entropy principle for the infinite system were thwarted due to the 

absence of spatial homogeneity. Thus, this approach did not prove to be very 

useful in understanding the behaviour of a quantum spin glass. As a result, 
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we were obliged to take recourse to the more traditional line of thinking in 

understanding and explaining the behaviour. 

To this end, we consider a quantum spin system on an infinite lattice 

Z" with random interactions (1)(.,w), where w lives in a probability space 

(9, S, P). Here, P is the completion of a probability measure with respect 

to the sigma algebra S, containing the Borel sigma algebra generated by 

the topology of the complete, separable metric space fl. We establish the 

existence of a family of strongly continuous, one-parameter groups of auto-

morphisms {rt (w)}, of the quasi-local algebra A, associated with the spin 

system(3.7.0.28). These automorphism groups Tt (o) determine the evolution 

of the infinite spin system. The joint measurability (3.7.0.29) of the map 

(t,w) 	rt (w)(A) for all A in A is also proved. Some interesting algebraic 

properties of the generators 3(4.0) of these automorphism groups have been 

derived (3.7.0.33). The notion of ergodicity of a measure preserving group of 

automorphisms of Si, is used to prove the almost sure independence of the 

Arveson spectrum Sp(r)(w), of the evolution group rt (w) (4.1.0.35). 

Next, the existence of a family of states {p(w)}, which are (7- (w)„3)-KNIS 

states of the quasi-local algebra A, with respect to the evolution groups 

Tt(w) and satisfy p(w)(A) = p(T_ aw)(a a (A)), for A E A and all a E Zy, is 

established for all 13 E IR\ {0}. We assume that there exists one such family 

denoted by {p(w)}, where w 1-4 p(w)(A) is measurable for all A E A. We 

show that the spin system on the infinite lattice with random interactions 

exhibits a phase structure. In fact, we establish that there is an unique KMS 
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state p(w) (4.2.2.2), above a certain critical temperature 	almost surely 

independent of w. 

The Arveson spectrum of the evolution group rt (w) is closely connected 

with the spectrum of the generator of the unitary group Ut (w), which im-

plements rt (w) in the cyclic representation 71u, associated with the (r(w),13)— 

KMS state p(w) . We shall exploit this fact to establish the almost sure 

independence of the spectrum of the generators (4.2.3.3). 

Now, the cyclic representations 7r„ associated with the (r(ca) 03)—KMS 

states p(w) , satisfying the conditions mentioned above, give rise to an en-

semble of von Neumann algebras fir„,(A)"}. Each of these von Neumann 

algebras is defined on a separable Hilbert space 3-1„. The separability follows 

from the fact that t. state p(w) 

a locally normal state. Thus, given this structure one is obliged to invoke 

the theory of measurable fields of von Neumann algebras. Using the cyclic-

ity of the representation 7r„,, we construct a collection of measurable vector 

fields which endows the field of separable Hilbert spaces w 1-4 74„,, with a 

measurable structure. Equipped with this structure, we construct the direct 

integral Hilbert space 1-t = f:1-1„,c1P(w). We also show in proposition 4.3.1.2 

that, for each t E IR , w 1-4 (Mu') is a measurable field of unitary operators. 

The joint measurability of (t, w) 1—> (U t (w)6(w) , 1)(w)), for all 6, i7  E .T, is 

established in proposition 4.3.1.3. Here (., .), denotes the inner product on 

the Hilbert space By using the theory of measurable fields of operators, 

we derive some interesting ergodic properties (4.3.1.6) of the spectra of the 

10 



generators H(w), of the unitary groups Ut(w)• 

In the final part of the thesis, we prove in proposition 4.3.2.2, that the field 

of von Neumann algebras (A.) 7r,(,A)'', is a measurable field of von Neumann 

algebras. Next, we construct a direct integral von Neumann algebra 

M = f 7,(A)" dP(w), 

from the measurable field of von Neumann algebras w 	7r.„(A)''. The ex- 

istence of a strongly continuous, one—parameter group of unitaries on the 

direct integral Hilbert space 74, is established in theorem 4.3.3.2. This was 

achieved by constructing a family of decomposable operators { U t}, from the 

measurable field of unitaries w 1-4- Ut (w). Moreover, this strongly continu-

ous group of unitaries in turn gives rise to a a—weakly continuous group of 

automorphisms Tt , of the von Neumann algebra M. From the measurable 

field ci.) 15(w), of KMS states p(w), which are extensions of the KMS states 
to 

p(w) A the von Neumann algebras 7r,(A)' i , we construct a faithful normal 

state 16 of M. This fact is established in theorem 4.3.4.1. In theorem 4.3.4.3, 

this faithful normal state j) is shown to be a ("1 - , 0)—KMS state of the direct 

integral von Neumann algebra M. 

The final Chapter in this thesis is devoted to a discussion on the results 

obtained in chapters (3) and (4) and their implications. Some of the open 

problems which remain unresolved are identified. 
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Chapter 2 

Mathematical Preliminaries 

This chapter is devoted to a discussion on mathematical preliminaries en-

compassing several areas in analysis. For the convenience of the reader we 

include some standard results which one may have the occasion to use in the 

thesis. We begin with a section on analysis in normed linear spaces. By and 

large, this section will feature notions of measurability of functions taking 

values in a Banach space and properties of the Bochner integral. Some im-

portant results involving complex valued analytic functions have also been 

included. 

2.1 Analysis in Normed Linear Spaces 

2.1.1 Analytic Functions 

Theorem 2.1.1.1 (Vitali's convergence theorem). Let ,f n (z) be a se-

quence of functions, each regular in a region D; let 

IMO _. 11/1 
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for every n, and z in D, and let f i,(z) tend to a limit as n 	oo, at a 

set of points having a limit point inside D. Then f n (z) tends to a limit in 

any region bounded by a contour, interior to D, the limit being an analyitc 

function of z. 

Proof See [Tit 91](Theorem 5.21). 

Theorem 2.1.1.2 (Phragmen—Lindelof). Let D be the open strip in (L' 

defined by 

D {z;z E 0, a < ss'z < 

and D the closure of D. Let f be a complex function which is analytic on D, 

and bounded and continuous on D. It follows that the function 

y E [a, 	g(y) log (sup (x + iY)I) 
xEl q  

is convex. In particular, 

sup I f (z)i = max {sup I f (x ia)1, sup (x ib)i} . 
zE75 	 xER 	xER 

Proof Vide [Rob 81](Proposition 5.3.5). 	 A 

Theorem 2.1.1.3 Suppose that ^i is the boundary of an unbounded region 

ci, f E f is continuous on f2 U r, and there are constants B < oo and 

M < oo, such that, If I < M on r and If I < B in Q. Then, we actually have 

IFI < M in ft. 

Proof See problem 11 on page 264 in [Rud 87]. 
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2.1.2 Measure Theoretic Preliminaries 

Let f be an abstract set, C a u—ring of subsets of 52, and m defined on 

be a u—finite measure. In this section, we study the notion of measurability 

for vector valued functions f(o-) on 52, taking values in a Banach space X, 

relative to the measure m. There are several notions of measurability for 

vector valued functions. 

The following definitions have been taken from [Hil 57]. 

Definition 2.1.2.1 	I. f(o-) is said to be finitely—valued if it is constant 

on each of a finite number of disjoint measurable sets E; and equal to 

0 on \ UEj. 

2. It is a simple function if it is finitely—valued and if the set for which 

f (a)ii > 0 is of finite measure . 

3. f (cr) is a countably—valued function if it assumes at most a countable set 

of values in X, assuming each value different from 0 on a measurable 

subset. 

Definition 2.1.2.2 f(c) is said to be separably—valued if its range, f (ft) is 

separable. It is almost separably—valued if there exists a m—null set E 0  E C 

such that f \ Eo ) is separable. 

Definition 2.1.2.3 	1. f(a) is said to be weakly measurable in c2 if the 

numerical functions x*(f(o-)) are measurable for each x* E X*. 

14 



2. Po- ) is strongly measurable if there exists a sequence of countably-

valued functions converging almost everywhere in ft to f(o - ). 

Note that if m(S/) < oo, then we may replace "countably—valued" in part (2) 

by "simple". 

A subset A C X* is said to be determining for X if II x II = sup{lx*(x)1;x* E A} 

for all x E X . 

Theorem 2.1.2.4 If f(o - ) is weakly measurable and if there exists a denu-

merable set A which is determining for X, then the numerically valued func-

tion Ilf(a.)11 is measurable. 

Proof Refer to [Hil 57](Theorem 3.5.4). 

Theorem 2.1.2.5 A vector valued function on f taking values in X is 

strongly measurable if and only if it is weakly measurable and almost sep-

arably valued. 

Proof Theorem 3.5.3 in [Hil 57]. 

Corollary 2.1.2.6 If X is separable, then strong and weak measurability are 

equivalent notions. 

Theorem 2.1.2.7 	I. If f(o-) and g(c) are strongly measurable functions 

on Sl taking values in X, and 	-y2  are constants, then -yi f (.7)+72g(a) 

is strongly measurable. 

2. If h(o-) is a finite numerically valued function which is measurable, then 

h(cr)f (u) is strongly measurable if f (cr) has this property. 
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3. If f(a) is the limit almost everywhere of a sequence of strongly mea-

surable functions, then f(a) is strongly measurable. 

J. The same conclusion is valid if in (3) the word "limit" (that is, strong 

limit) is replaced by "weak limit". 

	

5. The conclusion is also valid if 	"limit almost everywhere" is replaced 

by the "limit in measure". 

Proof See theorem 3.5.4 in [Hil 57]. 	 L\ 

Next, we introduce the Bochner integral. The results listed in this part 

of the section have been taken from [Hil 57], chapter 3. 

Definition 2.1.2.8 A countably valued function f (a) from S2 to X is Bochner 

integrable, if and only if, ilf(a)II is Lebesgue integrable. By definition, the 

Bochner integral of f (a) on E E C, denoted by (B) f E x(a)dm is given by 

	

(B) I f(a)drn 	xon(Ek fl E), 
k=1 

where f(a) = xk on Ek E C (k = 1, 2, ...). This integral is well defined for all 

E E C and for S2 itself. This follows from the fact that lif (0)11 is integrable. 

Definition 2.1.2.9 A function Po-) from ft to X is Bochner integrable if, 

and only if, there exists a sequence of countably valued Bochner integrable 

functions {f n (a)} converging almost everywhere to f(a) and such that 

Ern f II f (o-) — f n (a)Ildm = 0. 
n  c° 
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By definition, 

(B) f f(o-)dm= lim
oo 

 (B) f f, i (a)dm,, 
n--+ 

for each E E C andE= 1l.  

Theorem 2.1.2.10 A necessary and sufficient condition for Po-) from SI 

to X be Bochner integrable is that, f(o-) be strongly measurable and that 

Ilf(0- )11dm < 00. 

We, shall denote the class of all Bochner integrable functions relative to 

m, by BA X, m). Some interesting properties of the Bochner integral have 

been listed below 

Proposition 2.1.2.11 If f l (a) and f2((7) E B(fi, X, m) and 71,72 are con-

stants, then yifi (a) + 72f2(a) E B(S2,X,m) and 

J 	(0- ) + -y2 f2(0.))dM -y 1  f f i (a)dm 	f f 2 (a)dm, 

for all E E C and E = 

Proposition 2.1.2.12 If f(a) E B(12, X, m), then 

II Lf(a)dmit 

for all E E C and E = 

Proposition 2.1.2.13 Let T be a closed linear transformation from X to 

Y. If f(a) E B(C1,X,m) and T(f(o -)) E B(11,Y,m), then 

T! f f (a)dm) = f T (f (cr))dm 

for all E E C and E = 
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If, in particular, T is a bounded, linear transformation from X to Y, then 

the theorem applies if only f (a) E B(S2, X, m). 

The last result in this section is an analogue of Fubini's theorem for 

Bochner integrals. 

Suppose that S and T are abstract sets possessing a-rings of subsets C and 

with a-finite measures m and n defined on C and Y, respectively. We 

denote the a -ring of subsets of S x T generated by the class of measurable 

rectangles by C x Y. Finally we denote the product measure by m x n. 

Theorem 2.1.2.14 If a function f(o -,r) on S x T taking values in X, 

is Bochner integrable, then the functions g(a) = fT  f(o-,r)dn and h(T) = 

fs  f(o-,T)drn are defined almost everywhere in S and T respectively, Bochner 

integrable on S and T respectively, and 

JsxT 
 f (c T)d(m x n) = fs  g(a)dm = f T  h(r)dn. 

Proof Vide [Hil 57], theorem 3.7.13. 	 A 

In the next section we collect some standard results pertaining to the 

spectral theory of self adjoint operators. We also include some important 

results which arise in the theory of one-parameter groups of unitaries. 

2.2 Operator Theoretic Preliminaries 

Theorem 2.2.0.15 (Spectral Theorem). Let A be a self adjoint operator 

on a Hilbert space 9-t with inner product (.,.). Then, there exists an unique 
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spectral family E(A) on 7-t such that, 

= f A dE(A). 

and the domain of A, 

D(A) = 	E 7-1: f A 2 d(E(A)0,0) < oo}. 

Proposition 2.2.0.16 Let A be a self adjoint operator with spectral family 

E(A),,then s E a(A) if and only if, E(s e) — E(s — 6) 0 0 for every e > 0. 

Proof See [Wei 80](Theorem 7.22). 

We denote the essential spectrum of a self adjoint operator A by o-e (A) 

and the discrete spectrum by ad (A). 

Proposition 2.2.0.17 Let A be as in the above proposition, then s E cre (A) 

if and only if, for every c > 0, we have dim(R(E(s e) — E(s — e))) = oo. 

Proof Vide [Wei 80](Theorem 7.24). 

Proposition 2.2.0.18 Let A be a self adjoint operator on a Hilbert space 

'14, and R(A, z) denote the resolvent (A — zI) -1  at z. Then for 0, 	E 

we have 

(E(A)0,0) 

A+8  = lirn lirn 	f 	ie — A)"' — (s is — A)" 1 ) 0,0)ds. 
6-+0+ €-÷04- 27ri 

Proof Refer to theorem 7.17 in [Wei 80]. 
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Proposition 2.2.0.19 Let A be a self adjoint operator on a Hilbert space 71 

and (/), ¢ E H. If 512 > 0, then 

((R(A, z))0, 2/,) = i f c°  eiz t (e—im  0,0)dt 

and if S:'sz < 0, 

((R(A, z))0,71)) = 	f e — "t (ei At 0,11))dt, 

where the integral is a Riemann integral. 

Proof Vide [Dun 63](Chapter XII, Section VI, Theorem 1) 	A 

Definition 2.2.0.20 An operator function U(t) on a Hilbert space 3t , sat-

isfying 

1. For each t E IR, U(t) is a unitary operator and U(t s) = U(t)U(s) 

for all t E IR. 

2. If ¢ E 1-1 and t -4 to , then U(t)0 	U(t0)0, 

is called a strongly continuous, one—parameter group of unitary operators. 

Theorem 2.2.0.21 (Stone's Theorem). Let U(t) be a strongly continu-

ous, one—parameter unitary group on a Hilbert space '14. Then there is a self 

adjoint operator A on '14 such that U(t) = eitA 

Proof See [Sim 80](Theorem VIII.8). 	 A 

Definition 2.2.0.22 If U(t) is a strongly continuous, one—parameter uni-

tary group, then the self adjoint operator A with U(t) = eitA , is called the 

infinitesimal generator of U(t). 
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It is worth noting that if U(t) is weakly continuous, then it is strongly 

continuous. 

In the next section we collect a number of results in the theory of operator 

algebras which are relevant to the study of Quantum Statistical Mechanics. 

2.3 Operator Algebraic Preliminaries 

2.3.1 Standard Results in the Theory of C*—Algebras 
and von Neumann Algebras 

Definition 2.3.1.1 A normed algebra A with an involution which is corn-

plete and has the property 	= Oil, is called a Banach *—algebra. 

Definition 2.3.1.2 A C*—algebra is a Banach *—algebra with the property 

11 A* All = IIAI) 2 . 

Definition 2.3.1.3 A linear functional p over a C*—algebra A is defined to 

be positive if, 

p(A* A) > 0, 

for all A E A. A positive linear functional p over a C*—algebra A with 

OM =1 is called a state. 

Note that the set of states EA of the C*—algebra is weak* —compact if, and 

only if, A contains an identity. 

Definition 2.3.1.4 A von Neumann algebra on 9-1 is a *—algebra M of £(1-0 

such that 

M = M'', 
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where M' denotes the commutant of M and M'' denotes the commutant of 

M'. The center £(M) of a von Neumann algebra is defined by 

£(M) = m n 

A von Neumann algebra is called a factor, if it has a trivial center, i.e. if 

E(M) = 

Definition 2.3.1.5 Let M be a von Neumann algebra and p a positive linear 

functional on M. If p(l.u.b.,,A,) = l.u.b. ap(A,) for all increasing nets {A a} 

in M +  with an upper bound, then p is defined to be normal. 

Definition 2.3.1.6 A von Neumann algebra M is said to be a—finite if all 

collections of mutually orthogonal projections have at most a countable car-

dinality. 

Definition 2.3.1.7 A representation of a C"—algebra A is defined to be a 

pair (71,7), where '14 is a complex Hilbert space and it a *—morphism of A 

into £('H). The representation is said to be faithful if and only if, it is a *— 

isomorphism between A and r(A). 

It is worth mentioning that if IT is a representation of a C*-algebra A, 

then it is continuous and lir(A)11 < 111111 for all A E A. The equality holds 

only in the case of a faithful representation. 

Definition 2.3.1.8 A vector 0 in a Hilbert space 'H is said to be cyclic for 

a set of bounded operators A f, if the set {A0111. E M} is dense in '-t. 
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Definition 2.3.1.9 A cyclic representation of a C*—algebra A, is defined to 

be a triple (1-H, r, 0), where (74,r) is a representation of A, and 0 is a vector 

in 1-t which is cyclic for 7r in 9-1. 

Theorem 2.3.1.10 Let p be a state over the C*—algebra A. It follows that 

there exists a cyclic representation (lip , 7rp, Op) of A such that, 

p(A) = (0 , 7rp (A)0) , 

for all A E A and consequently, 110,,I1 2  = lipll = 1. Moreover, the represen-

tation is unique upto unitary equivalence. 

Proof Refer to theorem 2.3.16 in [Rob 87]. 

Definition 2.3.1.11 A state p of a C*-algebra is called a primary state, 

or a factor state, if Irp (A)" is a factor, where 71- p is the associated cyclic 

representation. 

Definition 2.3.1.12 Let M be a von Neumann algebra on a Hilbert space 

7-t. A subset 1Z C 	is separating for M if for any A E M, 	= 0 for all 

E R. implies A = 0. 

Definition 2.3.1.13 A subset 1Z C 7-i is cyclic for M if [MR] =1-1, where 

[MR] denotes the closure of the linear span of elements of the form Ae, 

where A E M and 6 E 

Proposition 2.3.1.14 Let M be a von Neumann algebra on 74 and R C74 

a subset. The following conditions are equivalent: 
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1. 'R. is cyclic for .A4; 

2. R. is separating for M'. 

Proof Vide [Rob 87](Proposition 2.5.3). 

Next, a directed set J is said to possess an orthogonality relation if there 

exists a relation I, between pairs of elements of J such that, 

1. if a E J then there is a E J with a1,3; 

2. if a < 13 and f317 then al-y; 

3. if a113 and all,  then there exists a b E J such that, alb and .5 > -y. 

Remark If a is an automorphism of a C*-algebra which satisfies a -2  = 

then each element A E A, has an unique decomposition into odd and even 

parts with respect to a. This decomposition is defined by 

A = 	+ A- ; At = A ± a- (A) 
 

9 

It follows that a(A±) = ±A, the even elements of A form a C*-subalgebra 

Ae of A and the odd elements A o  form a Banach space. 

Definition 2.3.1.15 .4 quasi-local algebra is a C*--algebra A and a net 

fA cjaEj of C*-subalgebras such that, index set J has an orthogonality rela-

tion and the following properties are valid: 

I. if a > 13 then A c, D Ao; 

2. A = Uc,A,,, where the bar denotes the uniform closure; 
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3. The algebras Aa  have a common identity I: 

4. there exists an automorphism a such that a2 	a(Aa) = A a  and 

[Ae,„ A5] = {0}, [A, Aa] = {0} , 1.k„A° 01 = 101 whenever alp, 

where Ac!„ C A a  and Aec, C A a  are odd and even elements with respect 

to a. 

We have used the notation {A, B} = AB + BA. One case covered by this 

definiton is a = I and then Aec, = Ac, and the condition (4) simplifies to 

[A, Aa] = {0} 

whenever alp. 

Proposition 2.3.1.16 Let A, {A,}„ E j be a quasi—local algebra and assume 

that each Aa  is simple. It follows that A is simple. 

Proof See corollary 2.6.19 in [Rob 87]. 

Definition 2.3.1.17 A C*—algebra A with unit I, is said to be uniformly 

matricial if there is a sequence {.4,} of C*—subalgebras of A and 'a sequence 

{ni } of positive integers such that, A j  is *—isomorphic to the algebra of all 

nj  x n j  complex matrices, 

/ E 	C A2 C A3 C • • • , 

and A is the norm-closure of UA J . We then describe A in more detail, 

as uniformly matricial of type {n i }, and refer to the sequence {A i} as a 

generating nest of type {ni} for A. 
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Proposition 2.3.1.18 There is a uniformly matricial C*—algebra of type 

{ni}, if and only if, the sequence {ri;} of positive integers is strictly increasing 

and ni divides n .i4. 1 (j = 1,2, ...). When these conditions are satisfied, all 

uniformly matricial algebras of type {TO are *—isomorphic and are simple 

C* —algebras. 

Proof See proposition 10.4.18 in [Kad 86]. 

Definition 2.3.1.19 Let {Aj : j E J} be a family of C*—algebras (with unit 

in Ai), in which the index set J is directed by a binary relation <. Suppose 

that, whenever j, k E J and j < k, there is specified, a *—isomorphism Oki 

from A i  into Ak(with Ok,j(Ii) = 10; and finally , suppose that 

01,k ° k,j = OI,j whenever j, k,1 E J and j < k < 1. In these circumstances, 

we say that the C* —algebras {A i ; j E J}, together with the *—isomorphisms 

{0 ;,k j, k E  J, j < k}, constitute a directed system of C* —algebras. Note 

that jj  is the identity mapping on A. 

Proposition 2.3.1.20 Suppose that the C* —algebras {Ai : j E J}, and the 

*—isomorphisms (1) ;,k : 1-3 Ak (j, k E J; j < k), together form a directed 

system. 

I. There is a C* —algebra A and for each j in J, a *—isomorphism cbj , 

from A ;  into A (carrying the unit of A j  into that of A), such that 

ci); cbk  o k j when j < k and U{O;(4); j E J} is everywhere dense 

in A. 
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2. The C* -algebra A occuring in (1) is uniquely determined, up to *-

isomorphism; if C is a C*-algebra, 	: Ai 	C is a *-isomorphism 

(for each j in J) and conditions analogous to those in (1) are satisfied, 

then there is a *-isomorphism W from A onto C, such that zk i  = o 

for each j in J. 

Proof Refer to proposition 11.4.1 in [Kad 86]. 

The C*-algebra A occuring in the above proposition is called the induc-

tive limit of the directed system {Ai; j E 

Proposition 2.3.1.21 If A is the inductive limit of a directed system of 

simple C*-algebras, then A is simple. 

Proof Vide proposition 11.4.2 on [Kad 86]. 

Definition 2.3.1.22 A one-parameter family E IR T t  of automorphisms 

of the C* -algebra A, is called a strongly continuous group of automorphisms 

of A, if, 

1. Tti +12 = Tti Tt2 , ti, t 2  E IR, and 70  = z; 

2. t 	7-t (A) is continuous in norm for all A E A. 

Definition 2.3.1.23 A one-parameter family t E IR 1-4 Tt of automorphisms 

of a von Neumann algebra M is called a weakly continuous group of auto-

morphisms of M if 

1 • rt i -t-t2 = rt i  0 Tt27  t1 )  t2 E 11, and 7-0  = z; 
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2. t H Tt (A) is weakly continuous for all A E M. 

Definition 2.3.1.24 A derivation S of a C* -algebra A is a linear opera-

tor from a * -subalgebra D(S), the domain of S, into A with the following 

properties: 

I. S(A)* = S(A*), A E D(S) ; 

2. S(AB) = S(A)B AS(B); A, B E D(S). 

Definition 2.3.1.25 Let S n, be a sequence of operators on a Banach space 

X and let G(S n ) C X x X be their graphs. Define 

G = lirn G(Sn ) 
n-+oo 

as the set of pairs (A, B) E XxX such that there exists a sequence (An , Bn ) E 

X x X with A n  E D(S'n ), Bn  = Sn A n , and 

A = lirn An , B = lirn B. 
n-+o. 	 n-+Do 

Define D(G) as the set of A E X such that, there exists B E X with (A, B) E 

G and similarly, R(G) is the set of B E X such that, (A, B) E G for some 

A E X . If G is the graph of an operator S, then S is called the graph limit 

of S n . Then clearly D(S) = D(G) and R(S) = R(G). 

Definition 2.3.1.26 Let (A,G,T) be a C*-dynamical system. We say that 

the system is asymptotically abelian if there is a net g c, in G, such that 

lim II Arge,( B) — rg„, (B)A 	0. 
a 
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Furthermore, the states p for which there exists a net g„ in C such that, 

limip(A,T 9 (B))— p(A)p(T 9a (B))1= 0 

are called strongly clustering states. 

2.3.2 KMS States and Associated Representations 

Definition 2.3.2.1 Let (A, r) be a C*—dynamical system, or a W* —dynamical 

system and p a state over A which is assumed to be normal in the W* 

case. 'Then, p is said to be a (7,0)—KMS state if, for 0 > 0 and any pair 

A, B E A, there exists a complex function FA,B which is analytic on the open 

strip 0 < .c;sz < /3, uniformly bounded and continuous on the closed strip 

0 < Caz < 0 such that, 

FA ,B (t) = p(ATt B) and FA,B(t + i,(3) = P(Tt(B)A). 

If < 0, then p is said to be a (7, Q)—KMS state if there exists a complex 

function FA , B which is analytic on the open strip /3 < caz < 0, uniformly 

bounded and continuous for /3 < sz < 0 such that, 

FA ,B(t) = p(Art B) and FA ,B(t i/3) = p(rt (B)A). 

Proposition 2.3.2.2 Let p-  be a (T, 0)—KMS state of the C*—dynamical sys-

tem (A, 7) with 0 E IR. \ {0} and let 13 be the normal extension of p to the 

weak closure M p ir(A)'' of A in the cyclic representation p,0 p). 

It follows that there exists an unique u—weakly continuous group t 1-4 Tt  of 

*—automorphisms of A,, such that 

ft (71-p(A)) = 7p(rt (A)) 
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for all A E A and t E IR. Moreover, "lo is a (f, f3)-KMS state on Mp. 

Proof Refer to corollary 5.3.4 in [Rob 81]. 

Proposition 2.3.2.3 If p is the only state satisfying the (7,13)-KMS condi-

tion, then p is a primary state. 

Proof Vide corollary 4.14 in [Hug 72]. 

Propbsition 2.3.2.4 An extremal invariant state p, which satisfies the (r, 0)- 

KMS condition is primary. 

Proof See corollary 4.15 in [Hug 72]. 

Let (A, r) be a C*-dynamical system. If S be the set of states of the 

C*-algebra A, then an extremal invariant state is an extreme point of the 

convex set 5, which is invariant under the action of the automorphism group 

T. 

Some algebraic properties of a KMS state and that of its associated repre-

sentation are as follows: 

1. If p is a (703)-KMS state, then p(Tt A) = p(A). 

2. The sets / 1  = {A E AI p(A* A) = 0} and /2  = {A E p(AA*) = 

are identical and form a two sided ideal. 

3. If (11„, 7 p , O p ) is the cyclic representation of A associated with the state 

p, then the von Neumann algebra i1- p (A)" has a cyclic and separating 

vector in Op. 
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2.3.3 Arveson Spectrum 

Let A be a C*—algebra and Tt  a strongly continuous, one—parameter group 

of automorphisms of A. Now, the Bochner integral 

f (t)rt(A)dt = F(f)A; A E A, f E L 1 (E), 

defines a representation F of Li (IR) into the bounded operators on A. Then 

the Arveson spectrum Sp(r) of T is given by 

Sp(r) = {s E IR : Ps) = 0,Vf E ker F}. 

Proposition 2.3.3.1 If T is a strongly continuous, one—parameter group of 

automorphisms of a C*—algebra A, then the following statements are equiva-

lent: 

1. s E Sp(r). 

2. For every f in Li (E) we  have If (s)1 < 11r(f)II. 

3. If f E L l (IR) such that F(f) = 0 then j(s) = 0. 

Proof Refer to proposition 8.1.9 in [Ped 79]. 	 A 

The last section deals with the theory of direct integrals and decomposi-

tioris. 

2.4 Standard Results in the Theory of Direct 
Integrals and Decompositions 

All the results listed here can be found in [Dix 81]. 

31 



2.4.1 Measurable Vector Fields 

Let it be a Borel space and ft a finite measure on Q. A mapping w 

on It, such that 7•1„ is a Hilbert space for every w E S2 , with inner product .  

(., .),, is called a field of complex Hilbert spaces. Now let .T be the collection 

of all mappings WI-4 X(W) such that, x(w) E 1-L. Such a mapping is called a 

vector field. It is clearly seen that .F is a complex vector space. 

Definition 2.4.1.1 Let w 1-4 1-1, be a field of complex Hilbert spaces over 

Ii and the vector space of vector fields. We say that w 1---> 1-L, is a it—

measurable field of Hilbert spaces if there is given a subspace IC of .F having 

the following properties: 

1. For every x E /C, the function w 1-4 ilx(co)11 is ,u—measurable; 

2. If y E .T is such that, for every x E /C, the function w 1—> (x(w),y(w)),, 

is au—measurable, then, y E 

3. There exists a sequence {x 1 , x 2 , . .1 of elements of IC, such that, for 

every w E S2, the x n (co)'s form a total sequence in mow . 

The vector fields belonging to K.; are then called p—measurable vector fields. A 

sequence {x 1 , x 2 ,...} of p—measurable vector fields possessing property (.3) is 

called a fundamental sequence of II—measurable vector fields. In fact property 

(3) implies that the 1-t w 's are separable. 

Hence, it is easily seen that if x and y are measurable vector fields then, 

w 	(x(w), y(ti.))),, is a measurable function of w. By property (2) of the 
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above definition, the product of a measurable vector field with a complex 

valued measurable function is a measurable vector field. The same property 

also implies that the weak limit of a sequence of measurable vector fields 

which converges at each point of I/ is a measurable vector field. 

Proposition 2.4.1.2 Let sl be a Borel space, tc a finite measure and w 1-4 1-1„, 

a measurable field of Hilbert spaces. 

1. The set Si p  of all w E n such that the dimension d(w) of 	is equal to 

p is measurable. 

2. There exists a sequence {y 1 , y2 , ...} of measurable vector fields possess-

ing the following properties: 

(a) if d(w) = 	fyi (w), y2 (u)), ...} is an orthonormal basis of 1-tw ; 

(b) if d(w) < 	fyi(w), y2(w), • Yd(w)(w)} is an orthonormal basis 

of 1-1,, and yj(w) = 0 for all i > d(w). 

Proof See proposition 1 in [Dix 81] (Chapter 1 of Part II). 

Definition 2.4.1.3 A sequence fyi , y2 , . .1 of measurable vector fields hav-

ing the properties listed in (2), of the above proposition, is called a measurable 

field of orthonormal bases. 

Proposition 2.4.1.4 Let {x 1 ,x 2 ,...} be a fundamental sequence of measur-

able fields. For a vector field x over f2 to be measurable, it is necessary and 

sufficient that the functions w 1-4 (x(w), x = (w))„ be measurable. 
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Proof Vide proposition 2 in [Dix 81] (Chapter 1 of Part II). 	A 

Proposition 2.4.1.5 Let St be a Sorel space, it a finite measure on ft, and 

w 7-L a field of Hilbert spaces over SZ. Let {x 1 ,x 2 ,...} be a sequence of 

vector fields having the following properties: 

1. The functions w 1-->. (x i (co),x i (co)), are measurable; 

2. For every w E P, the x i (w) form a total sequence in 9-t u . 

Then, there exists exactly one measurable field structure on the 1-1,:s such 

that the fields x i  are measurable. 

Proof Vide proposition 4 in [Dix 81] (Chapter 1 of PartII). 

2.4.2 Square Integrable Vector Fields 

Let w 	71, be a ft-measurable field of complex Hilbert spaces over Q. A 

vector field x is said to be square integrable, if it is measurable and if, 

Ilx(w 	w 

The set of square integrable fields is a complex vector space N. For x, y E 

(x(w), y(w)), is an integrable function of w. On putting 

(X,  Y) = f (X(W), Y( W))codi t (W ), 

the space Ar is endowed with a complex pre—Hilbert space structure. We 

have for x E 

11x11 2  = f lix(w)(1 2 d11 (w)• 
f 
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Thus, the x E N such that II x 	0, are just those x's which vanish almost 

everywhere. We will identify two elements of N which are equal almost 

everywhere. In other words, we consider the pre-Hilbert space It associated 

with N. The elements of '14 may be regarded as vector fields. For x E It , we 

may therefore speak of the values x(w) E '14,. It should be noted that the 

x(w)'s are determined to within negligible sets. 

Proposition 2.4.2.1 7-1 is a Hilbert space. 

Proof 	Refer to proposition 5 in [Dix 81] (Chapter 1 of Part II). 	A 

Definition 2.4.2.2 The space 7-t is called the direct integral of the 1-t, 's and 

is denoted by f: 1,dit(w). 

Proposition 2.4.2.3 let {yi,y2,...} be a measurable field of orthonormal 

bases. Let x be a vector field. Then x E 74 if and only if the functions 

(x(w),y i (w)), are square integrable and 

E l(s(w),yi(.0)),,I2d[t(w) < 00. 
J.:, 0 

Proof Refer to proposition 6 in [Dix 81] (Chapter 1 of Part II). 	A 

Proposition 2.4.2.4 Let w 1-4 '14, be a it-measurable field of complex Hilbert 

spaces over f2 and {x i} a fundamental sequence of measurable vector fields. 

For every measurable vector field w ►-4 x(w), there exists a sequence of vector 

fields of the form 
n 

fi (w)x i (w), W 

i=1 
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where the fi(w)'s are measurable complex valued functions on 9, which con-

verge to x(w) almost everywhere on P. 

Proof Vide problem 3 in [Dix 81] (Page (176)). 	 A 

2.4.3 Measurable Fields of Operators 

Let f2 be a Borel space, 12 a finite measure on Si, and w 	7-L a tt—measurable 

field of complex Hilbert spaces over Q. For every w E SI, let T(w) be an 

element of £(1-L), i.e., a bounded linear operator on 7-L. Then, the mapping 

w i T(w) is called a field of bounded linear operators over ft 

Definition 2.4.3.1 The field of bounded linear operators w 1-4 T(co) is said 

to be measurable if, for every measurable vector field w x(w) E IL, the 

vector field w 1-4 T(w)x(w) E 7-L is measurable. 

Proposition 2.4.3.2 Let {x i , x 2 , ...} be a fundamental sequence of measur-

able vector fields with values in the 7-L 's. For the field w 	T(w) to be mea- 

surable, it is necessary and sufficient that the functions w 1--+ (T(w)x j (w),x j (w)), 

be measurable. 

Proof Refer to proposition 1 in [Dix 81] (Chapter 2 of Part II). 	A 

Let w 1-4 nu  be a it—measurable field of complex Hilbert spaces over Q. Let 

= 	1-1,,dp(w)• 
1-z 

A measurable field of bounded linear operators w 	T(w) E £(74,,) is said 

to be essentially bounded if the essential supremum M of the function w I-4 
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liT(w)li is finite. If this is the case, for every square integrable vector field 

x, the vector field w 1-4 xi(w) = T(w)x(w) is also a square integrable vector 

field and we have all < M. Thus x 1-4 x' establishes a correspondence 

T t -414 such that, T is a bounded linear operator on It with < M. 

Proposition 2.4.3.3 We have 11T hl = M. 

Proof Refer to proposition 2 in [Dix 81] (Chapter 2 of PartII). 	A 

This proposition yields the following corollary. 

Corollary 2.4.3.4 If two essentially bounded measurable fields of bounded 

linear operators define the same element of £(1-0, they are equal almost ev-

erywhere. 

Definition 2.4.3.5 An operator T E £(7-t) is said to be decomposable, if it 

is defined by an essentially bounded measurable field of operators w T(w). 

We then write 

f  T(w)d[t(w). 

It follows from the corollary that the T(w)'s may be defined upto negli-

gible subsets of S2. In particular, given a point w E S2 of measure zero , T(w) 

may be chosen arbitrarily. 

Proposition 2.4.3.6 Let T1, T2 be decomposable operators. If 

T1  = J Ti(w)dµ(w) and T2 = f T2(W)dit ( U) )) 
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we have 

Tl  + T2 = f (TI(w) + T2(w))CIP(w), T1 T2  = f Ti(w)T2(w)dµ(w) 

and 

AT, = f ATI (w)dp(u)), Tik = f 71 (w)(11..t(o.,). 

Proof Vide proposition 3 in [Dix 81] (Chapter 2 of Part II). 

Proposition 2.4.3.7 Let 

Ti = f Ti(w)d[c(w) 	= 1, 2, ...) 

and 

T = f T(w)da(w) e 
be decomposable operators. 

I. If Ti  converges strongly to T, then there exists a subsequence T r, such 

that, Tnk (w) converges strongly to T(w) almost everywhere. 

2. If Ti (w) converges strongly to T(w) almost everywhere and if 

supi 	< oo, then Ti  converges strongly to T . 

Proof See proposition 4 in [Dix 81] (Chapter 2, Part II). 

Let L'(9, [t) be the set of essentially bounded, complex valued mea-

surable functions on S-2, in which we identify any two functions which are 

equal almost everywhere. If f E L'(S1,12), then the field of operators 

w 1-4 f(w)I E .C(14,,) is measurable and essentially bounded. Let T1 be 

the corresponding operator of W. 
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Definition 2.4.3.8 The operators of the form Tf , where f E L"(9, p) are 

said to be diagonalisable. 

If Z denotes all such operators, then, 2 is a *-algebra of £(1-1). 

Proposition 2.4.3.9 The algebra Z is an abelian von Neumann algebra and 

3' is afinite. 

Proof Refer to proposition 7 in [Dix 81) (Chapter 2, Part II). 	A 

2.4.4 Measurable Fields of von Neumann Algebras 

In this section, S2 will continue to be a Borel space, p a finite measure on 

Si and w 7-t, a p-measurable field of complex Hilbert spaces. For every 

w E Si, let A, be a von Neumann algebra on 94,,. The mapping w 1-4 A, is 

called a field of von Neumann algebras. 

Definition 2.4.4.1 A field of von Neumann algebras w 1-+ A, over S2 is 

said to be measurable, if there exists a sequenCe w Ti (w),w 1-4 T2(w), • • • 

of measurable fields of operators such that, A, is the von Neumann algebra 

generated by the Ti (co)'s almost everywhere. 

Proposition 2.4.4.2 Let w 1-+ A, be a measurable field of von Neumann 

algebras. The set M of decomposable operators 

T(w)d,u(w), 

such that T(w) E A„ almost everywhere, is a von Neumann algebra on 94 

such that, ZCMC 2'. Moreover M is generated by 2 and a countable 

family of elements {T1}, where the Ti(c.O's generate A, for almost every w. 
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Proof See proposition 1 in [Dix 81] (Chapter 2, Part II). 	 A 

Definition 2.4.4.3 A von Neumann algebra M on a Hilbert space 71 is said 

to be decomposable, if it is defined by a measurable field of w 1-4 A„ of von 

Neumann algebras. We then write 

M = 
re 
 A w dit(W). 

SI 

The A w 's are defined by M to within negligible sets. 

Theorem 2.4.4.4 For a von Neumann algebra M to be decomposable it is 

necessary and sufficient that it be the von Neumann algebra generated by Z 

and a countable family of decomposable operators. 

Proof Vide theorem 2 in [Dix 81] (Chapter 2, Part II). 
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Chapter 3 

Dynamics of a Quantum Spin 
Glass 

• 

In this chapter we give a detailed account of the models of a quantum spin 

glass investigated by us. In the sequel, we give a description of the models 

and establish the existence of global dynamics among other things. Tra-

ditionally, quantum spin glasses have been studied as systems of quantum 

spins interacting through random interactions. These models are essentially 

Ising—type models with random coupling. Generally, the coupling coefficients 

are assumed to be independent, identically distributed random variables. An 

alternate model of a quantum spin glass can be based on the realization that 

the magnetic ions are randomly distributed at lattice sites. The spins there-

fore, may be considered to be located at the vertices of an infinite graph in 

a lattice. There is no translation invariance in such a system, the lattice 

itself plays no significant role. Therefore, one can caricature a quantum spin 

glass as a quantum spin system with spins located at the vertices of an in-

finite connected graph with countably infinite number of vertices. In such 

a system, it is not necessary to consider random interactions. The study is 
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restricted to deterministic interactions of the nearest neighbour type, with 

two spins defined as neighbours if an edge connects the two. This model 

may be regarded as a quantum analogue of the systems studied by Preston 

[Pre 74] and others. In the sequel, we establish the existence of the global 

dynamics of this infinite system of quantum spins, discuss the equilibrium 

state and establish the Kubo-Martin-Schwinger (KMS) condition. However, 

our attempts to establish the maximum entropy principle failed on account 

of absence of spatial homogeneity. 

As expected, the thermodynamic limit of the local. Gibbs states exists. Thus, 

an equilibrium state at a fixed inverse temperature 0, exists for a quantum 

spin system on an infinite graph. But this state is by no means unique. It 

is shown that it satisfies the Kubo—Martin—Schwinger condition. We would 

like to point out that these equilibrium states which arise as thermodynamic 

limits of the the local Gibbs state are known to exist in the case of quan-

tum spin systems, where the spins are located at each point of a countably 

infinite set L. In such cases, there is no additional structure imposed on the 

set L. However, in order to construct the dynamics for such spin systems, 

one has to put stringent conditions on the nature of the interactions between 

spins. In fact, in many cases, the interaction potentials are assumed to be of 

exponential nature. Whereas, in the case of a quantum spin system on an 

infinite graph , because of the additional structure, one does not have to be 

very restrictive regarding the class of interaction potentials. 
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3.1 A Quantum Spin System on an Infinite 
Graph 

Definition 3.1.0.5 A graph is said to be simple if it has no loops or multiple 

edges. Such a graph is said to have a finite valency if there exists an a E Z+ 

such that, at most a edges are incident on any vertex. Here Z+ denotes the 

set of all positive integers. 

Definition 3.1.0.6 A non empty finite subset S C V is said to be a simplex 

of the graph G(V,E) if, for every v1 , v2  E S , there exists an edge connecting 

the two. A subset S C V is said to be a n-simplex (n > 0 ) if S is a simplex 

of the graph G and ISM = n 1. Here J.  denotes the cardinality of the set. 

Lemma 3.1.0.7 It is easily seen that, given a simple graph G(V,E) with 

finite valency a E Z+ and v E V, there is no n-simplex for n > a and there 

are at most only a finite number of simplexes containing v. 

Consider a quantum spin system on an infinite connected graph G(V,E), 

where V is the set of countable infinite mumber of vertices and E the col-

lection of edges. The graph is assumed to be simple and has finite valency, 

say, a E Z+. By a connected graph we mean that there is a path connecting 

any two vertices of the graph. A quantum spin is assumed to be located at 

each of these vertices. Two spins interact if they are connected by an edge. 

A quasi—local UHF algebra constructed over finite subsets of the vertices of 

the graph is associated with this spin system. Explicitly, one can order the 

collection of all finite subsets of vertices by inclusion. With each vertex v 
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of the graph G(V, E), one can associate a two dimensional complex Hilbert 

space 7-1,. Then, with each finite 1  A C V, we associate the tensor product 

space 

= 01-tv• 

vEA 

We then define the local C*-algebra AA for each finite subset A C V by 

AA = £(14A), where £(7-1 A ) denotes the space of all bounded linear operators 

on 71A . Now, if Al  fl A2 = 0 for A 1 ,A2  C V, then 1-tn.,un2  = 9  A1 lA2 

and AA, is isomorphic to the C*-subalgebra AA, 0 In27  where /A, is the 

identity operator on liA2 . Further, if A l  C A2, one can identify AA, with 

the subalgebra AA, 0 /AAA, of AA2 . Let the identification map be given by. 

invn i  : A E AA 1  A "AAA, E AA 2  . The collection {AA IA C V} along 

with the collection of maps {i n,,A,} has the structure of a directed system 

of C*-algebras. Therefore, there exists a C*-algebra A with an identity I, 

which is the inductive limit of the collection {A A  IA C V} of C*-algebras with 

identity /A. i.e., there exists a C* -algebra A and injective*-homomorphisms 

in : AA A such that, 

A l  C A2 	iA 1 (Atk i ) C 2 A2(AA2)1 

U 7 A (A A ) = A 
ACV 

and 

in(in) = /; VA C V. 

'Throughout this chapter and the next, all A's, X's and Y's which feature as subsets 
of either V or Z`1 , with or without subscripts, should be taken to be finite unless stated 
otherwise. 
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Also, for 

A l  n A2 = 0; [jA„ (AA, )1 iA2 (AA2 )1 = 0, 

where [., .] is the commutator. We will hence forth leave out the i A,,A ,'s 

and i A 's whenever no confusion can arise and regard A A 's as subalgebras of 

A. This object A, along with the net of local C*-algebras {AA}Acv is a 

quasi-local algebra (The orthogonality relation ..L between A's is defined by 

A1 1A2  if Al  fl A2 = 0). It is worth noting that A is an uniformly matricial 

algebta (UHF), and hence a separable C*-algebra which is simple [Rob 81]. 

The local algebra AA represents the physical observables associated with 

the spins located in a finite region A, where as the quasi-local algebra A, 

corresponds to the observables of the infinite spin system. 

3.2 Interactions 

Definition 3.2.0.8 An interaction 0 is a function from the collection .T of 

finite subsets X of V into the Hermitian (self adjoint) elements in A such 

that, for every finite X C V, 0(X) E Ax 

Definition 3.2.0.9 An interaction 0 is said to be of the nearest neighbour 

type if, (1)(X) = 0 whenever X is not a simplex of the graph G. 

Now for a finite X, 11(X) represents the interaction energy of the spins 

confined to X C V. Hence, the total interaction energy for a finite A C V, 

consists of the interaction energy of all finite subsystems X C A. Thus, we 
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define this total energy as the Hamiltonian H(A) associated with A C V, i.e 

	

H(A) = 	43.(X). 
XCA 

H(A) is a Hermitian (self adjoint) element of AA. 

3.3 Time Evolution 

In order to study the evolution of the infinite spin system, we write down 

the following equation of motion: 

dA A  

	

clit = i[H(A), 	, AtE AA. 

Here, t 	V describes the evolution of the observable A E AA. This 

equation of motion defines a rule by which the observables associated with 

a finite A C V, evolve. With every A E AA, it associates the observable 

TA / A) 	_ -iii(A ) t , which yields the quantum evolution of the t 	- 

finite spin system. Clearly, 7,A (A) is an element of AA and 7 -,A is a one-

parameter group of -automorphisms of AA, which defines the time evolution 

of the finite subsystem confined to A C V. As the system consists of infinite 

number of spins, computing the time evolution of a fixed observable A E AA°, 

where Ao  C V, entails calculating the limit of T t A (A) as A -3 oc. Here we 

adopt the convention that, A -* oo indicates A eventually contains all finite 

subsets of V. It is our endeavour to show that for a certain class of potentials 

this limit exists for all A E AA0 . In order to make this notion of convergence 

precise, we observe that the collection .T of all finite subsets A of V which 

is partially ordered by inclusion, is an increasing directed set. Hence, when 
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we say that a net SA converges to S in A, as A 	oo (A eventually contains 

all finite subsets of V), we mean that for a given e > 0, there exists a finite 

subset A' of V such that, IISA SII < e, whenever A J A'. This is equivalent 

to showing that for a given e > 0, there exists a finite subset A' of V such 

that, IISA, — SA2II < e whenever A l  D A' and A2 3 A'. 

Next, note that the time evolution Tt "(A) of a finite system can be expanded 

in terms of commutators as 

„r2 A(A) = eiH(A)tA e —il-1( ) A t Ec°  (it)n  
[H(A)S A] (n)  , 

n! 
n=0 

(3.3.1) 

where 

[B, 	= A, [B, A] (1)  = [B, A] = BA — AB, 

and 

[B, A] (71+1)  = [B ,[B , A] (n) ]. 

This formula is easily verified by taking derivatives of the expression in the 

middle and that of the expression on the right hand-side of (3.3.1). 

In order to establish the dynamics of the spin system, we prove the fol-

lowing proposition. 

Proposition 3.3.0.10 Let 	be a nearest neighbour type of interaction for 

the quantum spin system on the infinite graph G(V, E) with valency a such 

that, 

vEV (xpv 
 sup 11 4) (x)11) < 00. 
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Then, for A E A A°  with A o  C V. we have 

II[H(A), A] II 	 2 sup 
v€1,  

n  11 4) (X)11) e(a+1)) 	(3.3.2) 

Proof Take A E AA 0 , where Ao  C V. One has, (1, (X) E Ax for X C V. 

Now the local algebras AA,, AA, commute whenever A l  fl A2 = 0. 

Therefore, 

II [H(A), AIN II = II E • E [4)(x.), {. • • [t.(xi), A]]]I! 
RICA X„CA 

where 

and 

• • • E 11[4)(x-n),[...[43.(x1),A]]n 
XiCA X„CA 

E 	iiR(xn), [... {4)(x,), 4'11 
XinS000 	XnnS„_100 

So = Ao 

= 	U Xj_i U...UX1 U A0, f or j > 1. 

Since (I) is a nearest neighbour type of interaction potential, on applying 

lemma 3.1.0.7, we notice that if 

where 

then, 
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where a is the valency of the graph G(V, E). Therefore, 

iSi l 	1Xi 1+ 1X_i1 + •••+ (xi I + IA01 

+ 1) + IA01, 

Thus, we get 

II [H(A), ilj(n) II < 
	

110(x.)11.• • 110(xoli 
XinS000 
	

Xnr1Sn_1 #0 

2n li A ll E E •••  	E ii0(xn)11.••110(x1)1l 
ES0 X1 3vi 	vnESn-i Xn3vn 

I) 
 (

sup E I10(Xi)II 
viEV 

Xavi 
n 

I) (sup 114,(x)I1 
vE v x3v

) 

 

10(X)II) • 

Now an < n!ea , for a > 0 hence, 

[H(A), Ai(n)I1 < II All e lA°1 2n 71! sup 
vEV x  

l*X )11) en("'"  

< 	(2 (sup 
vEV X3v 

110(X)11) e ( a+n) 

Notice that this estimate is independent of A and hence, we have 

[H(A), 	—} E 	E 	[4:13.(X1), A]]] 
xi cv xncv 

as A oo. 

Theorem 3.3.0.11 Let 0 be a nearest neighbour type of interaction potential 

for the quantum spin system on the infinite graph G(V, E) with valency a such 
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that, 

sup ( 	114)(X)11) < oo. 
vEv .x. Dv 

Then, there exists a strongly continuous, one–parameter group of * –automorphisms 

1-2  of A such that, for all A E A we have 

rt (A) = lim rtA (A), 
A —c.c) 

where 

_Al A \ = eili(A)tAe-Ti(n)t ,  
7 t 

and the limit is uniform for t on compact sets. 

Proof We shall use the fact that 

[H (A), A] (n) 	. . . 	[(D(X n ) [. . .[41) (X1), 
x,cv x n cv 

as A -÷ oo and inequality 3.3.2 to demonstrate that for A E AA ° , the limit 

of rt A (A) exists as A -+ oo. 

Put 
—1 

T = (2 (sup 	11 4) (X)ii e ("1)  
vEv )(Dv  

It follows from equation 3.3.1 that for A E AA 0 . 

11 7tA1  (A) — TtA2  

5- II 

	

n=0 	 n=N+1 n. 
 ([11(A 1 ), A] (n) 	(A2), A ] (n) ) 	+ 11 	-:;[H(A1), A](n)tnil 

in  

	

co 	• n  

n=N -f-1 
—
n! 

[11(A2), (n)tn 
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Let c > 0 be given, and choose t such that 	< t 1  < T. It follows from 

inequality 3.3.2 in proposition 3.3.0.10 that, one can find N E Z+ such that 

for = 1,2 

II 
00 

n=N+1 
Z [H(A/). Al (n) tn il < 
n! 

in 
[H(A1), 	I tn i 

n=N+1 

< 

< 
4 

Now, using the fact that 

[H(A), Al (n) 	E 	E {(D(X,,), [... [(1.(X1), A]]], 
xi cv x,cv 

as A -4 00, we can find a finite subset A' of V such that, 

in 

II —n! UH(A.1), A](n) — [H(A2), NW) 	< 	
2N + 2' 

for all n < N whenever A l  D A' and A2 D A'. Thus, given 6 > 0, there exists 

a finite A' C V such that, 

11 7tAl  ( A) — TtA2 ( A )11 < c , 

whenever A l  D A' and A2 D A'. Hence, it follows that the convergence is 

uniform in t on any closed subinterval of (—T, T) and in a ball around zero. 

Since for t E (—T,T), the mapping A 1---> Ti A  (A) is a *-automorphism and 

U AA 
 ACV 

is dense in A, we conclude that 

lira rtA  (A), 
A-*co 
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exists for all A E A and t E (-T,T). Therefore, 

Tt (A) = limn rtA (A) 
A-+oo 

exists for all A E A and t E (-T,T), and thus, defines a *-automorphism of 

A for each t E (-T, T). If we take t, s and t s in the interval [—T,T] and 

use the group property of r t A , then on taking the limit as A —4 oo, we get 

Ts  0 Tt (A) = Tt+s  ( A). 

This group property of T1 for ItI < T allows us to define Tt for all values of t. 

The strong continuity of rt  follows from the series expansion. 

3.4 Equilibrium State and the KMS Condi-
tion 

We now focus our attention on the study of equilibrium states of the quantum 

spin system on an infinite graph. It is known that the equilibrium states 

of infinite systems are stationary. The analytic properties of these states 

are going to be the object of our study. In the sequel, we establish the 

existence of the thermodynamic limit of the local Gibbs states, and derive 

some interesting properties connected with these states. 

As discussed earlier, there is a Hamiltonian 11(A) E AA associated with each 

finite A C V. We are interested in the thermodynamic limit of the local 

Gibbs states pA . Let us start by defining a local Gibbs state P A  for a finite 

A C V as, 

Tr(e -011- (A)A) 
pA(A) — 	  

Tr(e-pH('?) 
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where A E AA. Here [3 = KT -1 , where K is the Boltzmann's constant and 

T the temperature. 

Definition 3.4.0.12 Let fpn l be the collection of the local Gibbs states de-

fined on the local algebras AA. If there is a state p on A such that, p is the 

weak*—limit of a net of extensions of p A  to A, then we call p the thermody-

namic limit of the local Gibbs states. If loA c, is one such net of extensions, 

then for arbitrary A E AA0  and A„ Ao, 

A
lrn p A,(A) = p(A). 

Notice that the thermodynamic limit need not be unique, as different weak*— 

limit points of the extensions of P A  to A give rise to different thermodynamic 

limits of P A . 

A state obtained as the thermodynamic limit of the local Gibbs states fp n l 

will be called the equilibrium state of the infinite quantum spin system. 

Now, the thermodynamic limit of the local Gibbs states fp n l exists by 

virtue of the fact that each pn can he extended to the whole of A, and if -PA  is 

one such extension, then the collection {P A } being weak*-compact, one can 

always find an accumulation point p. Since A is separable, we can extract a 

sequence i3A n  from the net ijA such that, 

p(A) = lirn pA „(A), 
-} 00 

for all A E AA and all A. Thus, the thermodynamic limit of the local Gibbs 

states pA  exists. In the discussion that follows, we derive an interesting prop- 
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erty of the local Gibbs states p A  and establish the Kubo-Martin-Schwinger 

(KMS) condition for the equilibrium state p of the infinite system. 

Proposition 3.4.0.13 Let A, B E AA and /3 > 0. There exists a complex 

valued function FI B , which is analytic everywhere and uniformly bounded in 

the .strip 0 < :ss-z < 0 such that, for real t, 

F,14. ( t ) = PA( ATt( B )) 

and 

FiAl , B (t ii3) = pA (rt A (B)A). 

If 0 < 0, then there exists a complex valued function FEB,  which is analytic 

everywhere and uniformly bounded in the strip 0 < sz < 0 such that, for 

real t, 

F,A1 , 13 (t) = pA(A rtA ( B )) 

and 

(t 	= PA(Tt A (B)A). 

Proof Let A, B E AA and 13 > 0. Since H(A) E AA, where AA is a matrix 

algebra, TtA( B ) 	etH(A)tBe—iH(A)t makes sense for all complex t and hence, 

has an analytic extension to the entire complex plane. Therefore, it follows 

that p A (ArtA (B)) can be extended to an entire function F4',B (z) on C. Now, 

for real t, consider 

pA(ATtA+0 (B)) 

 

Tr ( e- OH (A) A eix (A)(i+ip)B e-iii(A)(t+0)) 

Tr(e-011 (A)) 

Tr ( e-

OH(A)eiH(A)tBe-iH(A)tA) 

Tr(e -011(A)) 

PA(Tt A (B)A). 
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The last equality follows from the cyclicity of the trace. Further, 1.F1 B (z)1 

is bounded in the open strip and IT1 B (z)1 < IIAIIIIBII on the boundary of 

the strip. Therefore, it follows from a version of the Phragmen—Lindel5f 

theorem ([Rob 81], Prop 5.3.5) that, the maximum of the function IFitB (z)1 

is attained on the boundary. Hence the theorem holds for 13 > 0. Similarly, 

the theorem can be proved for 0 < 0. 

In order to study the analytic property of the thermodynamic limit p of 

the local Gibbs states P A , one needs to prove the following proposition. 

Proposition 3.4.0.14 Let {An } be a sequence of finite subsets of V such 

that, limn--+ooPA. (A) = p(A), VA E AA °  and all Ao  C V. Then, for A, B E 

AA° , we have 

lim pA,, (Art An (B)) = P(Art(B)), 

where the limit exists for all real t and uniformly for t in a small ball around 

zero. 

Proof Let A, B E AA0  where Ao  C V. Now we have from theorem 3.3.0.11 

that, 

11M Tt An (B) = rt(B), 
n—Yco 

for B E AA,: where the limit is uniform in t, in some ball around zero. 

Therefore, given e > 0 and a fixed t, there exists n o  E Z+, which can be 

chosen independent of t in a ball around zero such that, for n, m > n o , 

117t An(B) — Tt Am(B)II < 41011  and IlTiAm(B) — rt(B)II < 410 11. 
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Further, since 

lira pA r,(Art Am(B)) = p(ATtAm(B)), 

we have for given 771, and n > no 

ifivin (Art Am (B)) P(Art Am  (B)) < —96 • 

These estimates allow us to arrive at the following inequalities: 

1P(Art(B)) —  PAT,(Art A n(B))i < IP(Art(B)) —  p(Art 1m (B))1 

+ IP(Art A m(B)) — pn,i(Art 1m (B))1 

+ 1PAn (ATt Am  (B)) PAn  (ATt An  (B))I 

< 11 7t A  (B) — Tt A  " 

+ 117t (B) — 	+ ;• 

< e. 

This proves the proposition for real t, and t in a small ball around zero. A 

It is evident that the time evolution bears some relation with the equi-

librium state of the infinite system. One such relation is the Kubo—Martin-

Schwinger (KMS) condition. This condition may be formulated as follows 

for the equilibrium state p. 

Theorem 3.4.0.15 Let p be the equilibrium state of the quantum spin sys-

tem on the infinite graph G(V, E) and A, B E A. Then, for > 0, there 

exists a function FA,B, which is analytic in the open strip 0 < z < 

continuous and uniformly bounded in the closed strip 0 < sz < such that, 

FA,B(t) = p(Art (B)) and FA,B(t 	= p(Tt (B)A)• 
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If [3 < 0, then there exists a function FA,B, which is analytic in the open 

strip < (.:sz < 0, continuous and uniformly bounded in the closed strip 

/3 < sz < 0 such that, 

FA ,B(t) = p(Art(B)) and FA,B(t 	= p(rt (B)A). 

Proof We shall prove the theorem for the case 0 > 0. Let {A n } be a 

sequence of finite subsets of 	such that, lim7,-+.0PA n (B) = p(B), for all 

B E AA, and all Ao  C V. It follows from proposition 3.4.0.13, that, for 

> 0 and A, B E AA0 , there exists a sequence of entire functions F,I nB (z), 

which is uniformly bounded in the closed strip 0 < sz < 0 such that, for 

real t, 

Fill̀ ::113 (t) = p A (ArtAn(B)) and FA,B (t 2:0) = 	(Tt An  (B)A). 

Therefore, it follows from proposition 3.4.0.14, that this sequence converges 

pointwise on the real axis and in a neighbourhood of zero. Hence, as a 

• consequence of Vitali's theorem, see [Tit 91], the sequence nnB  of analytic 

functions converges uniformly on every compact subset of the strip to a 

function FA,B, which is analytic in the open strip 0 < sz < /3, continuous 

and uniformly bounded in the closed strip 0 < caz < 0 such that, 

FA,B(t) = p(Art (B)) and FA,B(t + i/3) = p(rt (B)A) 

The general case can be handled by approximating arbitrary A E A by local 

elements and using a version of the Phragmen—Lindela theorem ([Rob 81], 

Prop 5.3.5). 
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For < 0, the theorem can be proved along the same lines by considering 

the closed strip /3 < .(az < 0. 	 A 

Corollary 3.4.0.16 The equilibrium state p of the infinite spin system is 

invariant under time evolution given by the automorphism group rt . 

Proof Take B = I in proposition (3.4.0.14). 	 A 

Thus, having established the existence of an equilibrium state of the spin 

system on an infinite graph, we set our sights on proving the maximum en-

tropy principle for the infinite spin system. In view of this, we attempted to 

establish the existence of thermodynamic quantities such as mean entropy 

and the free energy of this infinite system. To this end we constructed a 

nested sequence {G ri (V„ Erin of finite subgraphs of the infinite connected 

graph G(V, E), with set of vertices Vn  and collection of edges En . Each of 

these subgraphs G n (Vri , En ) is constructed from the preceding subgraph by 

simply adding those vertices of the graph G(V, E), which are connected to it 

by an edge. The choice of the initial subgraph can be arbitrary. The inves-

tigation concerning the existence of mean entropy and the free energy of the 

infinite system in the state p, entails computing the limit of the entropy per 

iog (Tr(e-13H(vn))) 
site SP (17n )  and the free energy per site ,3' 	 , as n 	Here 

I V72 1 denotes the cardinality of the set of vertices of the subgraph G7,(1",' En ). 

The entropy Sp(1/n) = —Tr(pv„ log(pv„)), where pv„ is the density matrix 

corresponding to the restriction of the state p to the local algebra Avn , as-

sociated with the subgraph G n (lin , En ). But, all attempts at proving the 

existence of these limits failed, primarily because of the absence of spatial 
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homogeneity. For, unlike in the case of a quantum spin system on a lattice, 

the local entropy is not translation invariant. Besides, the absence of transla-

tion invariance also hindered the investigation pertaining to the existence of 

free energy of the spin system on the infinite graph. Despite the fact that the 

local entropy satisfies the strong subadditivity property, none of the results 

pertaining to the existence of the limit of objects such as 1111  as x --+ co, 

where f is a real valued subadditive function defined on E (E+,Z+), could 

be applied in this case. Such results are known to have a role to play, in 

demonstrating the existence of mean entropy for quantum spin systems on a 

lattice with deterministic interaction potentials [Rue 69]. Thus, the question 

of existence of these quantities remains unresolved. Therefore, one conjec-

tures that the maximum entropy principle may not hold for a quantum spin 

system on an infinite connected graph with deterministic interaction poten-

tial of the nearest neighbour type. However, in the case of some random 

models of a spin glass, subadditivity along with the appropriate ergodic the-

orem have been employed to establish the existence of some thermodynamic 

quantities under fairly stringent conditions on the random interaction po-

tential. For, in the study of equilibrium spin glass theory through random 

models on a lattice, van Hemmen et al [Hem 83, Ent 83] have shown that the 

thermodynamic limit of the local free energy F(A) exists. In fact, it has been 

established that the free energy of the infinite system exists as a non—random 

limit of :11-/' with probability one. Thus, one is obliged to conclude that the 

attempt at understanding the behaviour of a quantum spin glass through 
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quantum spin systems on an infinite graph, has not proved to be very useful. 

Therefore, one is obliged to take recourse to the more traditional approach. 

As mentioned earlier, in the more traditional line of thinking, quan-

tum spin glasses have been studied as systems of quantum spins interacting 

through random interactions. These models are essentially Ising-type models 

with random coupling. Extensive investigations on the existence of the ther-

modynamic limit have been made e. g. van Hemmen et al [Hem 83, Ent 83], 

and the equilibrium statistical mechanics of such systems has been studied. 

Although quantum spin glasses admit a natural dynamics, no attempt has 

been made to study the dynamics of a quantum spin glass. Hence, we study 

the dynamics of a quantum spin glass, as a quantum spin system on an infi-

nite lattice with random interactions. We establish the existence of a family 

of one-parameter groups of *-automorphisms {r t (w)}, of the quasi-local al-

gebra A associated with the infinite system. Here w lives in a probability 

space (ft 49, P), where SI is a set, S a sigma algebra and P a complete proba-

bility measure: The strong measurability of (t, w) 1-4 Tt (c.4.1) (A), for all A E A 

is established. Some interesting algebraic properties of the automorphism 

groups 7-,(w) as well as those of their generators 6(w) have been derived. 

3.5 Description of the Random Model 

Consider a quantum spin system with spins located at the vertices of an infi- 

nite lattice 	The interaction between spins of course taken to be random. 

A quasi-local UHF algebra similar to the one in 3.1, constructed over the 
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finite subsets of Zv, is associated with this spin system. One can order the 

collection of all finite subsets of Zv by inclusion. With each point in Zv, 

one associates a two dimensional Hilbert space 1-1x . Then with each finite 

A C Zu, we associate the tensor product space 

ILA = ® 7ix, 
EA 

where A C Zv. We define a local C*-algebra for each finite A C Z" by 

AA = fr(14A), where G(7-1A) denotes the space of all bounded linear operators 

on 'HA . Now if A l  fl A2 = 0 for A1, A2 C Z r', then WA i i.JA2  = A, 0 71A2 

and AA, is isomorphic to the C*-subalgebra AA, 0 1-A2  where /A2  is the 

identity operator on lin,. Further, if A l  C A2, one can identify AA, with 

the subalgebra AA, 0 /AAA/  of AA2 . Let the identification map be given by 

jA27A1: 11 GAAI -} A0 IA2 \ Ai E An2  • The collection {AAA C 

with the collection of maps {i A2 , A , has the structure of a directed system of 

C*-algebras. Therefore, there exists a C*-algebra A with an identity, which 

is the inductive limit of the collection {AA IA C Zu} of C*-algebras with 

identity /A. i.e., there exists a C*-algebra A and injective *-homomorphisms 

iA  : AA 	A such that, 

A l  C A2 
	

C i A 2 (AA2 

U z A(AA) = A 
ACZ' 

and 

in(IA) = / VA C Zu. 
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Also, for 

A, n A2 = 0; [ill, (AA, ), iA2 (AAA = 0, 

where [., .] is the commutator. 

We will hence forth leave out the i A2 ,Ai 's and i A 's whenever no confusion 

can arise and regard AA 's as subalgebras of A. This object A along with 

the net of local C*-algebras {AA}Aczy  is a quasi-local algebra (The orthog-

onality relation 1 between A's is defined by A i 1A2 if Al  n A2 = 0). It is 

easily 'seen that the quasi-local UHF algebra A, is a separable C*-algebra 

with no non-trivial closed ideals. Hence, it is a simple C*-algebra [Rob 81]. 

The local algebras AA represent the physical observables associated with the 

spins located in A, whereas the quasi-local algebra A corresponds to the 

observables associated with the infinite spin system. 

Having described the kinematical structure of the quantum spin system on 

the lattice Zy, we now turn our attention to the action of the symmetry 

group associated with the lattice Z", on the observable algebra A. To 

this end, for each x E 7G choose an unitary mapping V(x) : 'H0  

where ?I is the underlying Hilbert space at x. Now for x i , x2  E Zr', de-

fine V(x 2 , 	"HT, 	7-1x2 , by 17(x2, xi) = V(x2)V(x i ) -1 . It is clear that 

for x i , x 2 , x3 E Z v , V(x3, xi) = V(x3, x2)V(x2, x i ). Furthermore, for each 

a E PI, define Vs (a) : 7-1 -4 74 x-Fa as 1/(a) = V(x + a, x). Thus, if for each 

A C Z" , one were to define VA (a) : 	7-1A_Fa  as 

VA (a) = ®Vx(a), 
rEA 
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then VA (a) is an isomorphism and one has 2  VA(a) -1  = VA+a ( —a). We can 

now introduce an action a of TG" as *-automorphisms of A as follows. For 

each a E El, define 

aa (A) = VA(a)AVA(a) -1 ; VA E AA. 

Thus, a is consistently defined on the union of local C*-algebras U AA •, as 

an isometric *-isomorphism and hence, can be extended by continuity to an 

automprphism of A, as 

aa(AA) = AA+a . 

Therefore, it follows from the quasi-local structure of , A that 

lim
co 

11[ a (A), 	= 0, VA, B E A  

i.e., A is asymptotically abelian. 

3.6 Random Interactions 

Definition 3.6.0.17 An interaction 	of the quantum spin system on the 

infinite lattice El is a mapping from the collection of finite subsets X of Z" 

into the Hermitian (self adjoint) elements of A such that, for every finite 

X C Zy , W(V) E Ax. 

Before we introduce random interactions, one has to define the notion of 

measurability of Banach space valued functions on a measure space (f2, S, rn), 

where ft is a set, S a sigma algebra and in a sigma-finite measure on a 

'Here VA (a) -1  denotes the inverse of VA (a). 
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Definition 3.6.0.18 Let (52, S, m) be a measure space. A function f : 52 --+ 

B where B is a Banach space, is said to be weakly measurable if, for every 

(1) E B*, the map w 0(f (w)) is S—measurable. f is said to be strongly 

measurable if, there exists a sequence of countably valued functions strongly 

convergent to f almost everywhere on 52 [Hi/ 57]. 

In case m is a finite measure, then we may replace "countably valued" in 

the above definition by "simple". It can be shown that the notions of strong 

and weak measurability are equivalent if B is separable. 

Definition 3.6.0.19 Let (52, S, P) be a probability space and J some index 

set. If Tj is a measure preserving -  automorphism of ft, for each j E J, then 

the action of Ti's is said to be ergodic if, for A E S, P(A) = 0 or 1 whenever 

TiA. A, for all j E J. 

From now on, let (52, S, P) be a complete probability space, where 52 is 

a complete separable metric space. S is the sigma algebra of subsets of 52, 

containing the Borel sigma algebra 5 generated by open sets in 52. P is the 

completion of a probability measure defined on B. 

Definition 3.6.0.20 Let .T be the collection of all finite subsets of 2' 1 . A 

random interaction is a map 41) :.T x 	—* A such that, for each w E 

(I)(., w) is an interaction of the quantum spin system on Zu and w 1-4 t)(X,w) 

is strongly measurable for every X E . 

Now, for finite A C Z", the Hamiltonian associated with the spins confined 
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to the region A is given by a Hermitian (self adjoint) element 

H(A,w) = E 0(x, W), 

XCA 

for w E n. Clearly, H(A,w) is strongly measurable since each 0(X, co) is 

strongly measurable on a 

In order to construct the dynamics of the quantum spin system with 

random interactions, we have to restrict the class of random interactions 

0. To,this end, we introduce a measure preserving group of automorphisms 

{Ta}aEZ' with an ergodic action on the probability space C2, and thereby 

restrict the class of interactions to those 0 which satisfy the following con-

dition: 

0(X + a, T_ aw) = (0(X, w)). 

From now on, we shall consider only those random interactions 0 which 

satisfy the above condition. Therefore, H(A + a, T._„w) = a c,(H(A, co)). 

Definition 3.6.0.21 Let 0 be a random interaction. The interaction 	co) 

is said to have a finite range if, the set 

= {x E Z 11 1 3X x; such that 0 E X, and 0(X, Taw) 0, for some a E 

is a finite subset of 	. We may call A, the range of 0(.,,,o). 

Remark Clearly, for such 0(., cu)'s, whenever 3 X - X gA,„ o(x,w) = 0. 

For, if X — X C- 	then there exists x, y E X such that, x — y A„,. 

But, x — y E X— y, therefore X — y g A,. Now, since 0 E X — y, it 

3 For X C Zy, X - X = {x - 	y E X}. 
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follows from the above definition that (I)(X — y, Taw) = 0 for all a E 

In particular, on putting a = y, we get (I)(X — y, T yw) = 0. Therefore, 

0(X, = ay (0 (X — y, T yw)) = 0. 

Definition 3.6.0.22 The random interaction 4 is said to be a finite range 

random interaction if, 0(.,w) has a finite range A, for almost every w E 

and w 	!A w l is a measurable function of c.o. Here Id denotes the cardinality 

of a set. 

It is clear from the above remark that if (I) is a finite range random 

interaction, then for almost every co E 12, (I)(X, co) = 0, whenever 'XI > 

We use the ergodicity of the measure preserving group of automorphisms 

to establish the following fact. 

Lemma 3.6.0.23 Let 0 be a finite range random interaction. Since the 

action of the measure preserving group of automorphisms {L} is ergodic, 

the function w I.A W 1 is almost surely constant. 

Proof We show that A, = AT bw  for all b E 2.11 . Fix b E Z". Let x E A„. 

Then there exists a finite X x such that, 0 E X and 0(X, Taw) 0 for some 

a E Z 11 . i.e. there exists X x such that, 0 E X and (I)(X, Ta_b(Tbw)) 0 0, 

for some a E 2'. Therefore, x E AT,,. Conversely, let x E Arbw . Then there 

exists X x such that, 0 E X and (I)(X, T„(Tbw)) # 0, for some a E Zu. 

This implies that there exists X x such that, 0 E X and 4)(X,Ta+bw) 0 0, 

for some a E 76 1 . Hence, x E A„. Thus, A„ = AT,,. Since b is arbitrary, 

this holds for all b E .Z 11 . Now, since 0(., w) has a finite range &, for almost 
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every w E ft, we have [A w l 	for almost every w E S2. Therefore, it is 

readily concluded that the measurable function w H IA,' is invariant almost 

everywhere with respect to the measure preserving group of automorphisms 

{Ta }. Since the action of the group is ergodic, the lemma follows. 

Lemma 3.6.0.24 Let 1 be a finite range random interaction of the quantum 

spin system on an infinite lattice 	satisfying 

sup ( 	II 0(X, Taw) 11) < oo 
aEZ'  X30 

almost everywhere, then the function 

w I-4 sup ( 	il0(X,Taw) 
aEZv x30  

is almost surely constant. 

Proof The function w 1-4 (I) (X , w) is strongly measurable for all finite 

X C ZV. Therefore, it follows easily that w 	114)(X,w)ii  is a numerically 

valued measurable function on a Since for a E 	, Ta  is a measure preserving 

automorphism of f-2, clearly, u; 	I10(X, Ta w)11 is a measurable function of 

w. Next, let X i , X2 , ... be the countable collection of all finite subsets of Zu 

containing '0. Since 0(., w) has a finite range for almost every w E C2, the 

sum of non—negative terms 

11 0 (x, Taw) 11, 
X90 

is finite almost everywhere. Therefore, the series EZ)=1 11 0 (x., Taw)II con-

verges to E x30  110(X, Taw)II, almost everywhere. i.e., 

00 

71;1 
110(X,,, Tar.,411 	

X90 

114)(X, Taw)II, 
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almost everywhere. Now, each of the terms of the series is a measurable 

function of w. Hence, the measurability of w H L_.#7.x Do 114)(X, Taw) 11 follows, 

for a E Zr'. Thus, 

c01-4 sup ( 	11Cx,Taw) 11 ) 
aEZv XDO 

is a measurable function of w. Also, for almost every w E 11, 

sup ( 	114)(X, Ta(Tbw))11 
aEZ" 	

) = sup  
o 	 aeZi' XDO 

for all'b E Z". Thus, 

II ( X, Ta  w ) I ) , 

w H sup 	4)(X, Taw) ID 
aEZu XD O 

is a measurable function which is invariant under the action of the measure 

preserving group of automorphisms almost everywhere. Since the action of 

the automorphism group is ergodic, it follows that the function 

w tH sup( 	11CX,Taw)11) 
aEZ" XDO 

is almost surely constant. 

3.7 Random Evolution 

	

For a finite spin system confined to a region A C 	and for w E fl, the 

equation of motion is given by 

dAN

t 
 co) 	iiH(A , co ) ,  Aits-(w)1, Altk (w) 	E AA d 

Here t H An(w) describes the evolution of the observable A E AA. This 

yields the time evolution given by rtA(w)(A) = At 	= 
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for w E S2 and for all A E AA. Clearly, rtA(w)(A) is an element of AA. In fact, 

for all w E 12, rtA (w) is a one-parameter group of *-automorphisms of .An. 

Since the spin system consists of infinite number of spins, the construction 

of the time evolution of a fixed observable A E AA0 , where A, C 	involves 

taking the limit of rtA(w)(A) as A —> oo. Here, we adopt the convention that 

A --> oo indicates, A eventually contains all finite subsets of Zu . This notion 

of convergence has been made precise in subsection 3.3, in chapter 3. We 

shall sl4ow that for a certain class of random interaction potentials, this limit 

exists for almost every w E 52 and for all A E AA, where A C Zv. 

Definition 3.7.0.25 Let S be an operator on the Banach space X. An ele-

ment x E X is defined to be analytic for S if x E D(Sn), for all n = 1, 2, ..., 

and if the series 

(itr  
n! 

115'4 
n.o 

has a positive radius of convergence. 

Definition 3.7.0.26 Let t 1-4 rt  be a strongly continuous group of automor-

phisms of a C* -algebra A. An element A E A is called analytic for Tt, if 

there exists a strip IA  = < A} in 07, a function f -} A such that, 

1. f (t) = rt (A), V t E 

2. z 1-4 f (z) is strongly analytic. 

An element A E A, is said to be entire analytic for Tt if, there exists a 

function, f : A, which is strongly analytic in the entire complex plane 

and f (t) = rt (A), Vt E 
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In order to construct a family of one-parameter groups of *-automorphisms 

which determine the evolution of the spin system, we shall invoke the theory 

of derivations of C*-algebras which usually arise as generators of automor-

phism groups. To this end, we have the following proposition. 

Proposition 3.7.0.27 Let (I) be an interaction of a quantum spin system 

satisfying 

Po(x) = 	11 4, (x)II < 
xEX 

for all x E L, where L is a countable set. It follows that there exists a 

derivation S of the quantum spin algebra A such that the domain of S, 

D(S) = U AA, 
ACZu 

and for A E AA, 

5(A) = i 	[(1)(X), A]. 
XnA00 

The derivation S is norm-closable and its closure 3 is the generator of a 

strongly continuous one-parameter group of *-automorphisms r of A if and 

only if, one of the following conditions is satisfied: either3 possesses a dense 

set of analytic elements or (I + a3)(D(3)) = A, a E IR\ {o}. Finally, if S 

generates the group 7 and if rA (A) = eiH(A ) t Ae -ix(A ) t , then 

lirll 117t(A) — TtA (A)II = 0 
4co 

for all A E A, uniformly, for t in compacts. 

Proof See [Rob 81], vol 2, prop 6.2.3, pg 248. 	 A 
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Theorem 3.7.0.28 Let 0 be a finite range random interaction of the Titan-

tum spin system on a lattice E", satisfying 

sup (E 110(x, Taw)11) < 
aEZP X30 

almost everywhere. Then, for almost every w E ft, there exists a strongly 

continuous, one—parameter group of *—automorphisms r t (w) of A such that, 

urn TtA (w)(A) rt(w)(A) ,  VA E A 
A-400 

and uniformly, for t in compacts, where rtA(w)(A) = eiH(A,w)tAe-ixo,cot 

rt (w) is called the evolution group of the spin system whenever the limit exists. 

Proof Now, whenever 0(.,w) has a finite range A w  for w E ft, we have for 

x E 	, 

Po (w)(x) = 11 0  (-K, L4-011 
X 
 x  

11 ce. ( 0 (x — x, Txw) ) 11 
X- x 30 

110(X — x, Tsw )11 • 
X —x313 

11 4'(Y,Tsw)11 < co, 
Y90 

On appealing to the above proposition, there exists a derivation (S(w) of A 

such that, the domain of S(w), 

D(5(w)) = U An 
ACZ" 

and for A E AA, 

5(w)(A) = i 
	

[0(X, w), 
XnA$0 
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Next, we shall show that D(8(w)) is a dense set of analytic elements for 5(w) 

and hence establish that the derivation b(w) is norm-closable by the above 

proposition. 

Take A E Ano , where Ao  C Zu. One has (1)(X,w) E Ax, for finite X C Z. 

Now the local algebras An t , AA, commute whenever A l  fl A2 = 0. 

Therefore, we have 

11( 6(wW( A)11 = Ilin 
• • • 	E [0(xn, co), 

xins000 

E • • 	I 	11[0(x.,w), [. 
x1ns000 	xnnsn_,00 

[. • • [ti(X1, w), 

.. [4.(X1 , w), AM 11, 

where So  = Ao  and 

Si  = Ao U U Xi , f or j >1. 
i=i 

Since 0(., w) has a finite range 6, it follows that cl)(X, co) = 0, whenever 

> !Awl. 

Therefore, if 

where 

then 

Therefore, 

	

[0(Xj , w), [... [0 (X1, w), A]]] 	0, 

[0(Xj , ), [...[(1)(Xi ,w), A]]] E As, , 

1X21 5 IoW  1, 	Vi = 1, 2,... , j. 

IS.il 	̂IX2l+ IAol  

JIA.1 + IA01 
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Thus, whenever 

sup (E IND(X )  Taw)II) < co, 
aEZ P  <- A 30 

we get 

11( 8(w))n(A ) 11 < 2' 
	

E 	E E 1143.(xn,w)11• • • o(xi,w)li 
Xi ES() 	 XnESn-1 

• 211,411 E E 	E 
siEs0 x1 -x.130 	x.Esn 

•11(1) (x:  — x1,  Tx1C41 

< 21011 	1-)1Aud 1A0 

i= 1 

Xn3xn 

E ilcxn—xn,Txnw)il 
-1 Xn —xn 30 

I) ( sup 
xt EZ` 

( 	001) Tri W)II) 
Yi90 

< 2n 1011 H 	I lAo 
i=1 

I) ( sup 
aEZ' (X30 

IICX) Ta W II)) 

n 

< lAoir sup 
v a0 Pv (E 1 14)(X, Taw)ii)) • a   

Now, an < n! for a > 0 hence, 

)) (A)I1 < HAPI A° 1 2nn!(sup 	11 4) (X,Taco)11)) 
aEZ' x30  

n 

en1 ,6, 1 .  

This establishes that A is an analytic element for 8(w), with radius of ana- 

lyticity 

-1  71, > 	2 	sup 	11(1)(X, Tac,.;)11 	e lA ,,, I 	, ( 
aEZu XDO 

where the radius of analyticity r, is independent of A. i.e., 

IntlIn11(5(w))n(A)11 < 

n=0  

for 
-1 

Iti < (2 ( sup( 	11(1)(X, Taw)II)) el A w 1 ) 	. 
aEz,, xao 

(3.7.3) 
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Therefore, it follows from the above proposition that, a(w) is norm-closable 

and the norm-closure 3(w) is the generator of an automorphism group rt (w) 

of A such that, 

r7(w)(A) rt (w)(A), VA E A. 

The convergence of course being uniform in t. We also have 

SA (w)(A) 	6.(w)(A), VA E U AA, 
ACZv 

where , 

8" (w)(A) = i[H(A,w), A], VA E A. 

Since the local elements 

A E  U AA ' 
ACZy 

are analytic for 3(w), the convergence of rtA(w)(A) as A 	oo, is uniform in 

a ball around zero. It is also worth noting that, 

D= 	AA, 
ACZ" 

is a core for 3(w). Thus. whenever .T.(., w) has a finite range and 

sup 
aEZ" 

 ( 
x?o 

0(X , Ta c.0 )1 1) < 00, 

there exists a strongly continuous, one-parameter group of automorphisms 

Tt (w) of A such that, 

rt (w)(A) = ertA (.4.,)(A), VA E A. 

Tt(co) is called the evolution group associated with the infinite spin system. 

Since (1) is a finite range random interaction, (I)(., w) has a finite range A, for 
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almost every w E 9. Moreover, 

sup (E 11(1)(X, Taw) II< oo 
aEZ°  X30 

almost everywhere. Therefore, we conclude that for almost every w E 9, 

there exists a strongly continuous, one-parameter group of *-automorphisms 

rt (w) of A such that, 

lira TtA (w)(A) = Tt(w)(A), VA E A. 
A-5.c° 

The convergence being uniform in t on compact subsets. Thus for almost 

every w E S2, limn_+00  TtA (w)(A) exists for all A E A and determines an 

evolution group rt (w) associated with the spin system. Besides, for almost 

every w E 

(S A (w)(A) 	8(w)(A), VA E 	AA, 
ACZu 

where 

D= 
U AA  

ACZu 

is a core for b(w). 

Remark 1 Note that the radius of analyticity 7-, of A E D, for 3(w) is such 

that. 

r, > (2 ( sup 	 
(- 	 ' 

o(A,Taw
) 

11 	el°-1 
aEZ”  x30 

where in view of lemmas 3.6.0.23 and 3.6.0.24, 

-1  wi--+ 2 sup E IND(X,T aw)11 	el°wI ( 
aEZo X30 

is almost surely constant. 

- 1 

75 



Remark 2 Now for b E Zv, (I)(w) has a finite range if, and only if, (I)(Tbw) 

has a finite range. Also, 

sup 	10(X, Taco)11) = sup 	IICX,L(Tbw))11) 
aEzv (x3c, 	 aEZ" X30 

Therefore, S(w) is norm—closable if, and only if, S(Tbw) is norm—closable 

and SA(w)(A) converges to S(w)(A), if and only if, S A (Tbc,:)(A) converges to 

3(Tbw)(A), for all A E D. Also, note that D is a core for S(w) if, and only if, 

it is a ,core for 3(Tbw). Hence, 

rt (w)(A) = lim 7-t (w)(A) 
A-400 

defines a strongly continuous group of automorphisms of A if, and only if, 

rt(Tbw)(A) = lim riA (Tbw)(A) 

defines a strongly continuous group of automorphisms of A. i.e. rt (w) is an 

evolution group if, and only if, r t (Tbw) is an evolution group. 

Let 	denote the sigma algebra of all Lebesgue measurable subsets of 

IR, with Lebesgue measure ,u. Let ,u x P be the Caratheodory extension of 

the product measure defined on the smallest a—algebra x S, containing 

all measurable rectangles in IR x Si. Since it x P is obtained using the 

Caratheodory extension process, it is complete. Moreover, both p and P 

being a—finite, so is p x P. Therefore, we have a measurable structure on the 

product space given by the triple (1Rxf1,E x S, p x P), where x S denotes 

the smallest sigma algebra containing x S, on which p x P is complete. 
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Proposition 3.7.0.29 Let (D. satisfy the assumptions of theorem 3.7.0.28 

and rt (w) be the strongly continuous, one—parameter group of automorphisms 

of A, which determine the evolution of the spin system. Then, w r t (w)(A) 

is strongly, jointly measurable in both t and w, for all A E A. 

Proof It is sufficient to prove the strong measurability of the map w 1-4 

rt(w)(A), for A E AA0  and all A0  C Z'. Measurability in the case of an 

arbitrary A E A can be established by approximating A in the norm by local 

elements. Let A E AA0  where A 0  C 	. It follows from theorem 3.7.0.28 

that, rt (w)(A) = 	-rNw)(A), for almost every w E 12. Now, let {A n } 

be a sequence 3  of finite subsets increasing to Z . i.e., 

Al C A2 C A3 C • • • , and U An  =Z". 
n.i 

Then for almost every w E ,Q, 

rt (w)(A) = urn rtA 4(w)(A), 

where rtA n(c,,, ) can be expressed in terms of commutators as 

TtAn (w)(A) 
k=0 

(it)k
[H (An, (,)), A] (k)  

k! 

Therefore, one has 

rt (w)(A) = lim rtAn(co)(A), 

for almost every (t, 	E IR x Q. Since w 1-4 H(A, w) is strongly measurable, 

and strong measurability is preserved under products of functions, it follows 

can be taken to be cubic regions symmetric about the origin, with faces perpen-
dicular to the co—ordinate axes and edges of length 2n. 
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that w 	[H(A, w), A]( k ) is strongly measurable for all k E Z+. Besides, 

for t E E, t k  is the limit almost everywhere, of numerically valued simple 

functions, for all k EZ+. Therefore, the product of t k  with [H(A, w), A]lk) is 

the limit almost everywhere of countably valued functions on IR x Q. Hence, 

each of the terms of the series is a strongly, jointly measurable function 

of t and w with respect to the product measure ft x P. We know from 

[Hil 57] (Theorem 3.5.4, Page 74) that, strong measurability is preserved 

rather,well under taking limits. Therefore, the above series is strongly, jointly 

measurable in t and w. Since 

Tt(W)(A) = lim TtAn  (w)(A) 
n-ico 

for almost every (t, w) in E x 9, the strong, joint measurability of (t, w) 

rt (w)(A) follows readily. Hence the proposition follows. 

It is seen in the case of quantum spin systems on a lattice 2' with transla-

tion invariant interactions, that whenever the dynamics exists, the evolution 

group of *-automorphisms of the quasi-local algebra, commutes with the 

symmetry group of automorphisms associated with the lattice Zv. Here we 

prove a variant of this property. Before we set about establishing this result, 

the following fact is worth noting. 

Lemma 3.7.0.30 Let rtA(w) be the strongly continuous, one—parameter group 

of local automorphisms associated with a finite A C Z", where 

irtn(w )(A ) 	eiH(A.,,ot A — TRA,,ot 
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Then for all a E 7L , we have 

aa(TtA (w)(A)) = TtA+a  (T-aw)(aa(A)); VA E AA. 

Proof We have 

aa(TtA (w)(A)) = a s  e iH(A,w)tA e -iH(A,w)t) 

aa (ei lf(A '`" )t )aa (A)a a (c - i li(A 'w )t ). 

Therefore, it follows from function calculus for H(A, w) and the identity 

H(A + a, T_„(.4.,) = aa(H (A, w)) 	 (3.7.4) 

that, 

aa ( rtA(w)(A)) 	eiH(A-1-a,T- aw)t aa  

Hence, the lemma follows from this equality. 

We will have the occasion to use the above lemma in the proof of the 

following proposition. 

Proposition 3.7.0.31 Let rt (w) be the evolution group of the spin system 

on an infinite lattice Td". Then for all a E Z", we have 

rt(T_aw)(aa(A)) = aa(rt(w)(A)), VA E A. 

Proof It is sufficient to prove the above identity for A E AA0  and all 

Ao  C Zu. The general case follows easily from the fact that an arbitrary 

A E A can be approximated in the norm by local elements. It follows from 
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theorem 3.7.0.28, and lemma 3.7.0.30 established prior to this proposition 

that, for A E An o , where Ao  C Z", and all a E Z v , 

aa (rt (w)(A)) = a a ( lim ertAP)(A))) 
A-+ao 

lim TtA+a(T-aW)(aa(A)) 

lirn (7-t (T_ aw)aa  (A)) 
A`-co 

= rt (T_ aw)(aa(A)), 

where A' = A-Fa. Thus we have established the identity for all local elements. 

Therefore, this identity can be extended to the whole of A using the fact that 

the local elements are norm-dense in A. 

Remark If rt (co) is the evolution group of the spin system on the infinite 

lattice Z", then it follows from proposition 3.7.0.31 that, if A is entire-

analytic with respect to rt (w), then aa (A) is entire-analytic with respect to 

Tt(T-aw), for all a E Z". 

In the discussion that follows, we establish some interesting algebraic 

properties of the generators 3(w) of the evolution groups rt (w). To this end, 

we have the following theorem. 

Theorem 3.7.0.32 Let Uri  be a sequence of C o -semigroups of contractions 

on the Banach space X . with generators S,. and define the graph G, by 

G, = lim G(I — 

The following conditions are equivalent: 

1. there exists a Co -semigroup U such that, 

lim 11(14, 4  — Ut )All = 0, 
n-+cc 
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for all A E X, t E IR + , uniformly for t in any finite interval of 114; 

2. the sets D(Ga) and R(Ga) are norm-dense in X for some a > 0. 

If these conditions are satisfied, then Ga  is the graph of I — aS, where S is 

the generator of U. 

Proof Refer to theorem 3.1.28 in [Rob 87]. 	 A 

Remark One of the situations in which the above theorem can be applied is 

the following: Let ST, and S be the generators of Co-contraction semigroups 

and suppose there exists a core D of S such that, 

DC U(n D(Sn ) 
in n>m 

and 

lim 11(Sn 	S)All = 0, 
n-*co 

for all A E D. It then follows that S is the graph limit of the Sn ' 

This theorem yields the following proposition. 

Proposition 3.7.0.33 Let T t (w) be the evolution group of the spin system 

and D(3(w)) be the domain of the generator of the automorphism group r t (w). 

Then for all a E , we have a a (D(8(w))) = D(8(T_ au:)) and act (S(w))(A) = 

(5(T_ au.;)(aa,(A)), for all A E D(S(w)). 

Proof It is seen from the proof of theorem 3.7.0.28 that, 

D  U AA/  
ACZ" 
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is a core for b(w) and 

S A (w)(B) 	5(w)(B); VB E D, 

where S A  (w) is the generator of the local automorphism group TtA (w). We 

e ixo,w)tB e-iHut,w)t have rtA (w)(B) 	 and SA(w)(B) = i[H(A,w),B], for all 

B E A. Let {An } be a sequence of finite subsets increasing to 7G 11 , then we 

have 

8An(w)(B) 	8(w)(B); VB E D. 

Therefore, we conclude from the remark made after the statement of the 

above theorem that, S(w) is the graph limit of 8 An(w). Hence, for A E 

D(S(w)), there exists a sequence {A n }, where A n  E D(8117 (w)) such that, 

An  A and 8An(w)(A n ) 3(w)(A). This implies that a n (A n) an (A) 

and- an (8An(w)(An )) 	an (S(w)(A)). Now, it follows from the the identity 

3.7.4 in lemma 3.7.0.30 that, 

act (S A n(w)(A n )) = 8A n +  (T,,w)(a a (A n )). 

Hence, we have ac,(A n ) 	an (A) and SATh+a(T_ acc)(a a (An )) --+ cra l8(w)(A)). 

Clearly, from remark 2 at the end of theorem 3.7.0.28, S A  (T_ nw)(B) converges 

to S(T_ aco)(B), for all B E D, and D is a core for 3(7t aw), where S A (T-aw) 

is the generator of the local automorphism group 7NT_ aco). We have 

Tp.(T a w )(B ) = e iH(A,T_ au.,)tB e —iH(A,T— aw)t and (SA  (T_ aw)(B) = i[H(A, T_aw), B], 

for all B E A. Since {An+a  is a sequence of finite subsets increasing to El, it 

follows that (5.An+a  (71— aW)(B) converges to 3(T_ aw)(B), for all B E D. Hence, 
- 	-1-- 

the remark following theorem 	implies that 3-(T_ aw) is the graph limit 
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of 45 An+a  (T_ aw). Therefore, as a a (An ) 	aa (A) and 6.A n +a (T-aw)(a.(A.)) 

aa (3(w)(A)), where aa (A n ) E D(S A n+a(T_,,w)), one concludes that a a (A) E 

D(S(T_ aw)) and aa (3(w))(A) = 3(T_ aw)(aa (A)). Conversely, it can be shown 

that if A E D(S(T_ aco)) then a_ a (A) e D(S(w))). This completes the proof 

of the proposition. 

In the next chapter, we aim to study the Arveson spectrum of the strongly 

continuous, one-parameter group of automorphisms -r i (w), which determines 

the evolution of the spin system. We report an interesting ergodic property 

of the Arveson spectrum of the evolution group "rt(w)• 
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Chapter 4 

Ergodic Properties of Spectra 
of Evolution Groups 

4.1 Arveson Spectrum 

Here we introduce the notion of Arveson spectrum. 

Let X be a Banach space and X„ a linear subspace of the dual X* of X 

such that, IA = sup{lp(x)1 : p E X*, 11P11 < 1} for every x E X. Let 

B(X), (13 2 ,(X)) denote the algebra of all bounded (u(X, X„)-continuous) 

linear operators on X. As usual, denote the convolution group algebra of the 

additive group of real numbers ff?, by 1, 1 (ff1). A representation of /R on X 

is a homomorphism t 1-+ 14 of IR into the group of all invertible elements of 

B„(X) such that, sup, 11 1411 < co and for each x E X. the map t 1x is 

a(X, X* )-continuous. Now, if for every x E X, there is an unique vector y 

defined by 

f(t)p(Vtx)dt = p(y); p E X* , f E L l  (IR), 

then we obtain an operator F(f) defined by F(f)x = y. Therefore, we have 

a representation r, of L l (IR) in B(X), associated with V. 
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Definition 4.1.0.34 The Arveson spectrum SpV of V is a subset of the dual 

group IR of IR defined as 

SpV = {a E ffilf(a) = 0, Vf E ker 

where f is the fourier transform off . 

If A is a C*-algebra and 7t a strongly continuous, one-parameter group of 

automorphisms of the C*-algebra, then the Bochner integral 

fc°  f(t)rt (A)dt = F(f)A; A E A, f E L l (R), 

defines a representation of L 1  (IR) into the bounded operators on A. Now, on 

applying the foregoing definition in this case, the Arveson spectrum Sp(r) of 

r is given by 

Sp(r) = {s E 	)(s) = 0, Vf E ker 

It can be shown that s E Sp(r), if and only if, If( s)( < ilF(f)11, for all 

f E 	(IR) (Proposition 8.1.9 in [Ped 79]). 

Our aim is to show that the Arveson spectrum of the evolution group 

rt (co) is almost surely constant. To this end, we have the following theorem. 

Theorem 4.1.0.35 Let rt (w) be the strongly continuous, one—parameter group 

of automorphisms of A, which determines the evolution of the spin system. 

Then, the Arveson spectrum Sp(r(w)) of r t (w) is almost surely constant. 

Pro of For ,s E IR, let T, = {w : liF (w)(f)II 	j(s)IV f E L 1 (IR)}, 

where 

r (w)( f )(A) = J f (t)i-t(w)(A)dt , VA E A. 
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We show that Ts  is a measurable subset of O. Since L' (IR) is separable, there 

exists a countable dense set F = n E Z+} in Li (E). Hence, for each 

f E L 1 (1R), there exists a sequence fn, in F, converging to f in the L'-norm. 

Therefore, 

111 1'(w)(fal -11r(w)(f)111 	11r(w)(fnk) - r(w)(f)II 

< I1r(w)(fn, - 

• sup rir(co)(f„ — f)(A)II 
11A11= 1  

• sup IT 	— f)(07-t (co)(A)dtli 
1011=1 	—co 

• 	

sup (f
Kfn, — f)(01 lirt (co)(A)Ildt) 

_co  

< sup (HAI! lc°  l(f,,, f)(t)Idt) 
11A11=1 	-00  

< f :1( f„ — f)(t)Idt 

< Ilfn,- fIli 

Therefore, 11F(w)(f„ )11 converges to 1111(w)(f)11,  for f„ converging to f, in 

the L 1 -norm. In view of this, and the fact that F is dense in Ts , we have 

Ts = n Tsn 

n=1 

where T: 	fwdIir(w)(fn)11 > If„(8)11. In order to show that each of these 

TS 's is a measurable subset of SI, it is sufficient to establish the measurability 

of the function w 	11F(co)(fr,))i1, for all n E Z+. On appealing to proposition 

3.7.0.29, we conclude that for f E 	(IR) and A E A, (t,) 1-+ f (t)ri (w)(A) 
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is strongly, jointly measurable in t and w. Moreover, 

fun 
11/(07-t(w)(A)IId(ii x P)(t , w) = 	 x p)(,) 

Rxft 

f,110111.f.dit(t)dp(w) < 00. 

Hence, it follows from theorem 3.7.4 in [Hil 57] that, (t,w) 	f(t)rt (w)(A) 

is Bochner integrable on IR x SI. Therefore, as a consequence of the ana- 

logue of Fubini's theorem for vector valued functions (Proposition 3.7.13, 

[Hil 57]), the map w 	11 (w)(f)(A) is strongly measurable in w. Hence, 

w 	IIF(w)(f)(A)II is a measurable, real valued function on ft. Thus it 

readily follows that for f E (E), w lir (w)(f )(A)11 is measurable for 

all A E A. Now, A being a separable C*—algebra, we have for c E fft and 

f E (11=1), 

{wl 11r(w)(f)II 5_ c} = n {w E 0 111r(w)(f)(An)11 	c; 04 5_ 1 }, 
ne Z+ 

where U0  = 	E AI n E Z+1 is a dense subset of the closed unit ball 

in A. This identity, coupled with the fact that w 	iir(w)(f)(An)11 is a 

measurable function of w for all n E Z+, permits us to conclude that the set 

{wl Ilr(w)(f)11 < c}, is a measurable subset of Q. Since c is arbitrary, the 

function w H II r(w)( f )11 is a measurable function of w. Thus, w 1-4 iiF(w)(f)ii 

is measurable for all f E Ll(lii). Therefore, w IIF(w)f„Il is measurable 

Vn E Z+. Hence, each of these TT's is a measurable subset of D. This proves 

conclusively that the set T, is a measurable subset of ft Now, using the 

fact that the action of the measure preserving group of automorphisms is 

ergodic, we show that T, has a measure either zero or one. It follows from 
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the properties of the Bochner integral [Hil 57] (Chapter 3) and the fact that 

as  is a *—automorphism of the C* —algebra A that, for f E L l (E), 

11r(w)(f)II = sup fir (w)(i)(A)II 
IIAII=1 

sup II f (t).7-t(w)( A)dtll 

ilsAlf 1 11a. (f f (07-t(w)(A)dt)ii. 

f(t)T t (T_ aw)(aa (A))dtil, 

for all a E Zs'. The last equality follows from proposition 3.7.0.31. Conse-

quently, we have 

11r(w)(f)II = sup iir(iLaw)(f)(a.(A))11 
IIAII= 1  

= 11F(T-aw)(f)11, 

for all a E Z'' and f E L 1 (1R). Therefore, for all a E 	, 11r(w)(f)11 

111(T_„co)( Pik for f E L 1 (1R). Hence, as the action of the measure preserving 

group of automorphisms is assumed to be ergodic, it is clear from the above 

equality that Ts  is an invariant measurable subset of St and therefore, the 

set Ts  has measure either zero or one. Hence, s_ lies in the Arveson spectrum 

of rt (w) with probability either zero or one. Thus, one concludes that the 

Arveson spectrum Sp(T(w)) of rt (w) is almost surely constant. 

4.2 KMS States 

In this section we analyse the KMS states of the spin system on a lattice 

with random interactions. The following definition of a KMS state has been 
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taken from [Rob 81]. 

Definition 4.2.0.36 Let (A, r) be a C*—dynamical system, or a W* —dynamical 

system and p a state over A which is assumed to be normal in the W* 

case. Then, p is said to be a (7„3)—KMS state if, for 0 > 0 and any pair 

A, B E A, there exists a complex function FA,B which is analytic on the open 

strip 0 < -caz < ,3, uniformly bounded and continuous on the closed strip 

0 < sz < /3 such that, 

FA,B(t) = p(A (B)) and FA,B(t + i0) = pert(B)A). 

If 0 < 0, then p is a (r, 0)—KMS state if, there exists a complex function 

FA,B which is analytic on the open strip 0 < sz < 0, uniformly bounded and 

continuous for /3 < az < 0 such that. 

FA ,B (t) = p(Art (B)) and FA,B(t + i/3) = p(7-t (B)A)• 

4.2.1 Construction of a Family of KMS States 

We know from theorem 3.7.0.28 that. for almost every w E 0, there exists a 

strongly continuous one-parameter group of *-a,utomorphisms r t (w), which 

determines the evolution of the spin system. Now, for w E ,C2, and /3 E IR\{0}, 

the local Gibbs state associated with the interaction 42(.,w) is given by 

Tr( -1311 ('"))) 
PA(w)(A) 	 , VA E AA• 

Tr(e-M(A, ')) 

Although pA  (w) is defined on AA, it has an extension as a state to the whole 

of A. The extension is by no means unique. It follows from proposition 
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3.4.0.13 in chapter 3, which can be adopted to p A (w) with ortA(co) as the 

local automorphism group that, these states are (TA(w),13)—KMS states of 

the finite spin system confined to the region A, where 7-A(w) are the local 

automorphism groups. Next, for w E S2, let 

Ow  = {T,wfa E 

Clearly, any two Ow 's corresponding to distinct w's are either disjoint or 

identi,cal and the Ow 's form a partition of Q. Therefore, using the axiom of 

choice, we pick a subset n' C 9, and write the space 12 as 

= U 0-, 
wEs2' 

where the Ow 's in the union are pairwise disjoint. Next, for each w E 

we establish the existence of the thermodynamic limit p(T_ aco) of the local 

Gibbs states pA(T_,,co), for all a E Z'. To this end, we argue as follows. 

Since the quasi—local algebra A is a separable C*—algebra, the collection of 

states EA of A is weak*—compact. Therefore, for each w E SY there exists a 

state p(w), and a sequence {An } of finite subsets of Zu depending on w such 

that, p(w) is the weak*—limit of a sequence of extensions i3A, (W) of pA „(w). 

That is, for each w E D i , there exists a sequence {A n } of finite subsets of El 

such that, 

lim Ain (w)(A) = p(w)(A); VA E A. 
n— Co 

In particular, 

limn pAn (w)(A) = p(w)(A), . 

n-÷oo 
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for all A E Ait o  and all finite A o  C Z". Therefore for each w E Sh , p(w) 

is a weak*-limit point of the net of extensions of p A (w)'s to A. Hence, it 

follows from definition 3.4.0.12, which can be easily adopted to p(w) with 

pA (w) as the local Gibbs sates, that for each w E SY, the state p(w) is the 

thermodynamic limit of the local Gibbs states {p A (w)}. Next, for each co E 

and all a E Z", define 

p(T_ aw)(A) -= p(w)(a_a (A)) 

Now, keeping in mind the identity 

H(A,,, w) = ce_ a  (H(An  +a, Taw)) = VA n +a(—a)H(An+a, T-aw)VAn+a( — a) -1 , 

it follows from function calculus and the invariance property of the trace, 

that, for each w E 1.2 1  and all a E Z', 

Tr(e - I3H(A n+a,T- aw )  A) 

Tr(e —,3H(An+a'T—. 41 )) 

Tr(VAni- a (—a)e — OH(A n + a ,T_au.)) 
 AVAn +a ( — a) -1 ) 

 Tr (VAn+a
(_ a ) 6 -0H(Ani-a,T_au)vAn+a (-0-1) 

Tr(a_a (e—PH(Art+a,T—aw))a_a(A)) 

Tr(a_ a ( e -01-1(An+a.T—aw))) 

Tr(e -1311 ( A n'w)a_a (A)) 

Tr(e ---1311 (An.(v)) 

= PAn(w)(ce-a(A)). 

for all A E AA0  and An  D Ao . Hence, for each w E 91  and all a E Z 11 , 

p(T_aw)(A) = p(w)(a_a(A)) 

lim pAn (w)(a—a (A)) n—).00 

= 
 n
Ern PA n i-a(T—aco)(A), 
--+co 

PAn+a(T—aw)(A) 
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for all A E AA,, and all finite A o  C 	. If for each w E 1-2' and all a E Zy , we 

define 

13A. A..(T-aw)(A) = Ann  (co)(a_a (A)); VA E A, 

then the states p(T_ aw) are the weak*-limits of the sequence of extensions 

Unri -E. (71.4,0)} of the local Gibbs states PAn+a(T-aw),  for each w E D' and all 

a E Zil such that, p(T_ aw)(A) = p(w)(a, (A)), for all A E A. Thus, for each 

w E 1-2' and all a E Z", p(T_ aw) is a weak*-limit point of the net of extensions 

of pA (T_ aw)'s to A. Hence, for each w E Il' and all a E Zv, p(T_ aw) is the 

thermodynamic limit of the local Gibbs states pA (T_ aw). Since the union of 

Ow 's, where w E 12', exhausts all the points in 12 i.e., 12 = li cjEn, 0,„ we have 

succeeded in establishing the existence of the thermodynamic limit p(w) of 

the local Gibbs states p A (w), for all w E Si It is clear from the above con-

struction that, for all w E 1 -2, these states satisfy, p(w)(A) = p(T_ aw)(a a (A)), 

for all a E Zu and A E A. 

Now, each of these states p(w), is a thermodynamic limit of the local Gibbs 

states p A (w). Hence, each p(w) is a weak*-limit point of the extensions of the 

local Gibbs states pA(w), with rt (w) as the evolution group. Therefore, it fol-

lows that p(w) is a (7(co),0)-KMS state [Rob Sl] (Proposition 5.3.25). Thus, 

we have succeeded in establishing the existence of a. family of (7(w), 0)-KMS 

states {p(w)}, for each E IR \ {0}, obtained as the thermodynamic limits 

of the local Gibbs states p A (w), and satisfying, p(w)(A) = p(T_ aw)(aa (A)) 

for all a E Z y . 
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4.2.2 Uniqueness of KMS States 

Next, we shall demonstrate that a quantum spin system on an infinite lattice 

with random interactions exhibits a phase structure. To this end, we have 

the following theorem which establishes that there is an unique KMS state 

p(w), associated with the evolution group rt (co), above a certain critical tem-

perature Tc. almost surely independent of w. In order to demonstrate this, 

we use the fact that the function w supacz, (Ex DcP(X,  Ta co)l is almost 

surely' constant. 

Definition 4.2.2.1 Let N .  be the matrix algebra of all n x n matrices over 

al and {Ep ,q } be the finite collection of matrices in Ar such that, Ep , q  is the 

matrix with all entries zero except in position (p, q)—where the entry is 1. The 

E7,, q 's are such that, Ep*, g, = Ep,q, Em Er, s  = 0 if q r, E22 , q.Eq ,r = Ep , r  and 

p  Emp = I. These Ep , q 's are called matrix units in N'. 

The following theorem establishes that there is an unique KMS state p(w), 

above a certain critical temperature T c. almost surely independent of w. 

Theorem 4.2.2.2 If (1) is a finite range random interaction of the quantum 

spin system on an infinite lattice Z` 1 , satisfying the assumptions of theo-

rem 3.7.0.28, then there is an unique Ii MS state p(w), associated with the 

evolution group raw), above a certain critical temperature 7', almost surely 

independent of w. 

Proof Since we have etablished the existence of (r(w),0)-KMS states for 

all /3 E .1R\ {0}, the aim of this theorem is to show that there is an unique 
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1---> 2( sup OPC  (E 	I Taw)11)) e lAwl  
aag' 
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KMS state p(w), above a critical temperature T, almost surely independent of 

w. The proof of the theorem goes along the lines of the discussion preceding 

proposition 6.2.45, in [Rob 81]. The (r(w),,3)-KMS condition will play a 

crucial role in establishing the above fact. For x E Z", let e(ix , jx); ix, js = 

0,1, be a set of matrix units for A. Let A E AA, where x A. Now, the 

(r(w),0)-KMS condition and the identity 

. 	1 
e(z z ,3x ) = E e(ix, kx )e(k„, jx ), 

kx =0 

yield 

kx =0 

X30 

p(w )( e(i.,MA) 

1 
{p(w)(e(k s , jx )Ae(i x ,k4) 

kx =0 

P(w)(e(kx, ix)A(Tt(w) — I)(e(ix,k.)))11t=i0 

= -
9

8i p(w)(A) + -
2 	

{p(w)(e(kx,ix)A(Tt(w) — /)(e(ix, kx)))}it=i0. 

In view of the fact that the local elements are dense in the quasi-local algebra 

A, it is enough to establish that p(w)(A) can be uniquely determined for all 

A E AA, and all A C Z . It is seen from the proof of theorem 3.7.0.28, and 

the remark following the proof, that the local elements of A are analytic with 

respect to the generator C5(w) of Mt.:), with radius of analyticity 

r,, > (2 ( sup ( 	(1)(X,Taw)11)) 
aEZ" 

where 



is almost surely constant. Therefore, the second term on the right hand 

side of the last equation can be expressed as a power series in 13 without 

a constant term, for sufficiently small almost surely independent of w. 

Besides, A E AA can be expressed as a linear combination of matrix units 

e(/A , JA) H 
1= 1 

where A = {x 1 , . .,x}; /A = { i 1 , .. . , i x„ }, and JA = {j x , 	. jxn }. Thus, 

it suffices to consider only the special choices A = e(IA, JA ); /A E {0, 1} A  and 

A C Zv . On adopting the assumptions of theorem 3.7.0.28, one has 

(Tio (w) — I)(e(i x ,kx )) 

c°  ( -- /3 )n  E 	pp(xn, w)[. . • pp(x„„,), e(ix ,kx )]]], 
n! 

x 1 ns0 00 	xn nS,-,_ 1 00 

where So = x and S• = 	U 	U ••• U 	U x. Now, if 

	

B = 	B(I A, JA)e(in,JA) 
/AA, 

is the decomposition of B E AA, for some A C Zy , then the complex coeffi-

cients B(I A , JA ) satisfy, liB(/A,A)ii 

Hence, 

	

e(kx,is)6(.[A, JA)[43.(xn,w), 	• [cxi, 	, ix , kx)j]] 

= 	tisf,)e(4 n , 	), 
Ism 

 Snx = x U A U S„, and there are atmost 2 21 sni nonzero coefficients -y n,„, 

which satisfy 
n 

17n, 	,I 0GIS4,.54)1 < 2n  I 10(xi) ,0)11. 
i=1 

n=1 
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This perturbation expansion can he combined with the previous identity for 

p(w), evaluated with A = e(/ A , JA ), to obtain a linear equation involving 

the family {p(w)(e(I A , JA )); A C Zvl. To this end, let X be the Banach 

space of bounded complex functions f , on the pairs {IA , JA }, where IA, JA C 

{0, 1}, A C Z", and j1/0, Jo ) E C. The space X is equipped with the usual 

operations of addition and scalar multiplication, together with the supremum 

norm. If p(w) denotes the family {p(w)(e(I A , JA )); A C 21, where we take 

e(/0, Jo) = I, it follows that p(w) E X and ilp(w)II = 1. The foregoing 

identity and perturbation expansion yield the equation 

p(w) = i + Lo(w)P(w), 

where 77, K, and Lo (w) are defined as follows: 77 E X and 

1 {i f A = 0 

77(1 A , A) = 	(5.  i s  ,js  if A = {x} 
0 	otherwise, 

K is a linear operator with action K f (IA, JA) = 2 ,(5i.v 1 ,ix 1  f (h,, AO, if A = 

{xi, 2. 2, • • • , xn}, A = X2, 	, T n } and n > 2, and (KR/ A , 	= 0, if 

JAI < 2. L o (w) is a linear operator such that, 

(L i3(W)f)(I A, JA) 
1 so:: (  

2 	771 	 E 
K„=0 n=1 	 nSo$0 	XanSn--1#0 Is ,Jsn 

"ln ,pA IS4 1 • x).f(IS,2:; 1 Jsir, )1 

where -yn,'s arising from the perturbation expansion are associated with a 

fixed splitting A = {x} U A', where A' = A \ {x}. Thus, the above equation 

has the form (I — K — p(w))p(w) = R. Hence, p(w) is uniquely determined if, 

IIK Lo((.411 < 1. But IIKII = 2 , and so uniqueness will follow if IlLo(w)11 < 
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< 2. 1  
9 

n=1 

Ialn 	E 	22isnono(x.,w)11. • • 11.1.(xi.,w)11)11f n. 

co 

X 1 nSc40 	X,,,nSri _i 

• 

2 . This involves estimating the norm of L o (w). To this end, we establish the 

following. 

	

ilLO(w)11 5 2 2 e E 	( sup  

	

n=1 	 (LEZv (
X30 

oo 

whenever 

114) (X, TaW)11))) < 00, 

' 

The estimation procedure will be much like the one employed in the con- 

structiOn of global dynamics. We have 

1(43(w)f)(1 -A, JA)I 

2 	n! E • • • E 	E 	If(Ls4, 
kx =0 n=1 	X1nS000 	XnnS,100 

221A w l±1 e l' I M (sup ( 	114)(x, Ta w)II) ) < 1. 
aEZ x90 

 

The last inequality follows from the remark made earlier, regarding the 

norms of the complex coefficients -y, . Since (D(.,L') has a finite range 

.13.(X,w) = 0 whenever IX1 > I Aw I. Therefore, 

jI = 1.X.;  U 	U • • • U 	U xl 

5 	 •-• 

5. (iAi +1Awl ... 	IA., 1+ 1 ) 

5_ UlAwl + 1). 

We also have 

sup 
xEZ` 

( 
x3o 

11 4)(x, T.w)II) < 00. 
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< 22 	27016,„,i+i) 
co 	 10In •—ze 	E E 	— xn,Txnw)11 E 	E  

! n 
n=1 	 ES0 Xi -xi (:1 	xnESn-i Xn-xn 90 

• • • 1141)(X1 	xl, Tx1 W )1111f IL 

Y; 30 

n  (E 0(X) Ta W)II)) 
X 30 

11(1)(Yi,T.,w)11)) II f 

Thus, 

II( LOPV)11 
oo 

< 22(nlAw1+1)2na to 
E E 	E E Ila_sn  (4)(X7i , w)) II n 

n=1 	 xiESo X13x1 	 Xn3xn 

• • 	0 ( 	w )) 11 II f l I CO 

I 
oo 	 ni   

22 \--.‘ 2n( 2 1A.I+ 1 )  In H(1 + — 1)1,6,4 ( sup 
n! 	 x 2 EZ' n=1 	 i=1 

22E 271(21&11+1) 	(1 + (i — 	 ( sup 
n=1 	 i=1 	 aEZ' 

n 

E24,6-1+1) 1±3c(1+ niAwir (sun (v 0(x, Tace)11)) 11f11. 
n=1 	

n 	 aEZu '4"---i  X90 

oo 

n 

22  E 2Th(21Aw1+1)  liG 
 n! 
in e l e ri l'in! (sup 	E liopc,Tau))11 	Ilflleo 

n=1 	 aEZ" (
X30 

22 e 1 E ( 221A,,i-Fin or eniA.1 (sun  (E 0(x, Taw)ii) ) 11f11. 
n co 

n=1 	 aEZ' X
3 0 7 	(_) 

n 

< 2 2 e E (221A-14-1101e1A-1(sup (EIVNX, Taw)11))) 11111.. .A.- n=1 	 aEZ' 	0  

oo 

All these inequalities have been obtained by employing the estimation proce- 

dure used in the construction of dynamics. Hence, from the above estimate 

we have 

oo 

	

114(41 < 22 e E (221Awlitiolei° ,0 (sup ( 	0(x, 71,4i))) < 00, 

n=1 	 aEZ" X30 

221Awl+l e law1 1,31 ( sup( 	0(X, Taw)II) < 1. 
aEZu X90 

whenever 
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Now, we know that the KMS state p(w) is unique whenever II Lp(w) ii < 1 

Therefore, p(w) is unique whenever 

22e 
1 — 2 21Awl+ 1 el A w 1 101(suP. Ezy (ExpolO(X , Taw)11)) 	2.  

221°-' 1+1 e 16H13 1 (suPa Ezi' (Ex p o 11 4) (X, Taw )11)) 	< 1  

i.e., whenever 

1,31 < (221A-1+1 e 1 &' 1 (1 	23 e))
-1 

 (sup ( 	114)(X, Ta w)11 
aEZ' )(DO 

Next, by lemma 3.6.0.23, we have w 1-4 lAwl  is almost surely constant. More-

over, by lemma 3.6.0.24 w }-4 (sup„Ez, (Expo 11'NX, Taw)11)) is also almost 

surely constant. Hence, 

( w I—.  (221A "d+l e lA' 1 (1 + 93 e)) -1 	sup 
aEZ" xpo  

11 4)(x, Taw ) II 

is almost surely constant. Therefore, there exists a critical temperature I', 

almost surely independent of w such that, for temperatures T > 11, there 

exists an unique KMS state p(w) associated with rt(w). A 

It is worth noting that the estimate on 13 can be improved upon in several 

ways. Since p(w) is an unique KMS state with respect to r t (w), above a cer-

tain critical temperature almost surely independent of w, it follows from 

theorem 5.3.30 in [Rob 81] that, p(w) is an extremal KMS state and hence, 

a factor state. As the quasi-local algebra is norm asymptotically abelian, it 

also follows that p(w) is strongly clustering with respect to the group Z' of 

lattice translations. 

Next, as p(w) is an unique KMS state associated with the evolution group 

Tt(w), one can easily conclude that the net of local Gibbs states pA(w) must 
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converge in the weak*—topology to p(w), as A 	oc. This is a trivial con- 

sequence of the fact that each weak*—limit point of the local Gibbs states 

pA (w) is a (r(w), t3)—KMS state, and hence, by uniqueness of the KMS state 

p(w), it must be equal to p(w). Next, since pA (w)(A) = pA +a(T_ aw)(aa (A)), 

for A E AA, we have p(w)(A) = p(T_ aco)(ce,(A)), for all A E AA0  and 

all Ao  C Z' . Since the local elements are norm dense in A, we have 

p(w)(A) = p(T_ aw)(a a (A)), for all A E A. Let {A n } be a sequence of fi-

nite subsets increasing to Z". Since p(w) is an unique KMS state, above 

a critical temperature 7', almost surely independent of w, we have for all 

A E AA, and all Ao  C Z 1' 

p(w)(A) = 7,1, Lrr cio  pAn (w)(A), 

for almost every w E SI, where 

T r ( e --oll( A -) A)  
PAn(w)( A) = Tr (e — oH( An -' ) ) • 

However, as w 1--> H(A„,w) is strongly measurable and Tr(e71311(A n'w)) 	0, 

for all n E Z+, it is clear that w 	pA , (w)(A) is a scalar valued measurable 

function for A E AA0  and all finite Ao  C Z. '. Since the local elements are 

dense in A, it is readily seen that w 	p(w)(A) is measurable for all A E A. 

It has been established in section 4.2.1 that for ) E 	{0}, there exists 

a family of states {p(w)} on A, satisfying p(w)(A) = p(T_„co)(a a (A)), for 

all A E A, where the pw 's are obtained as the thermodynamic limit of the 

local Gibbs sates p A (w). It is also seen that p(w) is a (7(w),13)—KMS state 

with respect to the evolution group rt (w). Next, let us assume that for 

100 



• 

E IR\ {0}, there exists one such family of (7(w), 0)-NMS states p(w), for 

which the function w 1-4 p(w)(A) is measurable for all A E A. Henceforth, we 

shall denote this family of states satisfying the above conditions by {p(w)}. 

It may be noted from the discussion following the proof of theorem 4.2.2.2 

that, above the critical temperature 7', almost surely independent of w, there 

exists a family of unique KMS states, for which these conditions hold. 

Next, we prove the following theorem. 

Theorem 4.2.2.3 If {P(w)}WEn be the family of (7(w),13)-KMS  states on A 

satisfying the conditions mentioned above and ,3 > 0, then for any pair A, 

B E A, we have the following: 

1. Both w 1-4 p(w)(Ar t (w)(B)) and w 1-4 p(w)(r t (w)(B)A) are jointly mea-

surable functions of t and w. 

2. In particular, if p(w) is the unique KMS state with respect to the evo-

lution group Tt (w), at some inverse temperature f3 > 0 almost surely 

independent of w, then both p(W)(Ar t (w)(B)) and p(w)(r t (w)(B)A) are 

strongly, jointly measurable. Moreover, there exists a function FA,B(z,w) 

such that, for a fixed w, FA ,B(z, w) is analytic in the strip 0 < sz < 13, 

continuous and uniformly bounded in the closed strip 0 < sz < 	and 

FA,B(t,w) = p(w)(Art(w)(B)) and FA,B(t+i13,w) = p(w)(rt(w)(B)A)• 

Besides, FA ,B(z,w) is measurable in w for each z in the open strip 

0 < Caz < 13. 
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Proof On appealing to theorem 3.7.0.29, we have for 24, B E A, w 1-4 

Art (co)(B) is strongly, jointly measurable in t and w. It follows from the 

definition of strong measurability that, there exists a sequence of count-

ably valued functions gn (t , co) on IR x SI, converging almost everywhere to 

Art (w)(B). Therefore, for almost every (t,w) E IR x 

p(co)(Art (co)(B)) = 	p(w)(gn(t, w))• 

In the sequel, we shall establish that for each n E Z+, p(w)(gn (t,co)) is 

measurable on the product space IR x ft Let gri (t,co) take nonzero constant 

values A1,7i, A2,n, • • , Ak,n 7 • • • on measurable subsets E1
, n , E2,n 7 • • • , E k,n 7 • • -7 

of _IR x S2. There is no loss of generality in assuming that p(co)(97,(t,co)) 

takes real values. This is because the Ak m 's can always be written as linear 

combinations of self adjoint elements in A, and p(w) being a state, it takes 

real values on self adjoint elements of A. Now, for c E IR, 

{(t,w) E IR x C 2 1P(w)(g,i(t,w)) < 
( 

= {(t,w) E E0,,,Ip(co)(gri(t,co)) < clU iU 1(1 ' w) E Ek,nIP(w)(gn(t,w)) < c} 
k=1 

ro 

= {(i CA.)) E E0, 7,1 19(w)(0) < 	{(t,w) E E k,r7IP(w)(Ak, n ) < C}} 

k=1 

where E0 , 7, is the set on which gm  takes the value zero(0). Therefore, it is evi-

dent from the measurability of the function w 1---> p(w)(A), for all A E A that, 

the two sets on the right hand side of the equality are measurable subsets of 

IR x SZ. Hence, as c is arbitrary, p(co)(g,,,(t,co)), is a jointly measurable func-

tion of t and w for each n E Z +. Since p(co)(Ar t (co)(B)) is the limit almost 

everywhere of p(w)(9,Th (t, w)) on IR x 1, we conclude that p(co)(Art (w)(B)) 
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is a jointly measurable function of t and w. Similarly, it can be shown that 

the function (t, w) 1--+ p(w)ert (w)(B)A) is jointly measurable in t and w. This 

proves (1) conclusively. 

Now, in order to prove (2), choose a sequence of finite subsets {A n } which 

increases to Z". It has been shown in the discussion following the proof of 

theorem 4.2.2.2 that, if p(w) is the unique KIVIS state with respect to the evo-

lution group Tt (w) at some inverse temperature almost surely independent 

of w, then for all A E AA0  and all Ao  C Z", 

lim pAn  (w)(A) = p(w)(A) 
n—lco 

almost everywhere. It was also established in this discussion that w 1-4 

p(w)(A) is measurable for all A E A. Since w 1-4 p(w)(A) is measur-

able, the joint measurability in t and w, of both p(w)(Ar t (w)(B))) and 

p(w)(7 -t (w)(B)A) can be proved along the lines of (1). Next, for A, B E AA° , 

let 

TzA n (w)(B)  = ear (A„,Loz B 	H(A„,,,) 

where An  D Ao . Also for An  D Ao, define 

_gH(An ,u)AT:In(w)(B)) Tr(e_oH(A,,,w))  Fj'4,r13 (z , w) = Tr(e  

Clearly, {fliihj is a sequence of entire functions. which is uniformly bounded 

on the strip 0 < sz < such that, 

F,I41,nB (t, 	= PAn (W )(ArtAn  (W ) (B)) and FdAI,nB (t+i ,w) = PA.(w)(Tt n  (W)(B)A). 

(See the proof of theorem 3.4.0.13 which can be adopted to pA(w) with -rtA  (w) 

as the local automorphism group). On mimicking the proof of proposition(3.4.0.14) 
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in chapter 3, we have for A, B E AA° 

nuLn clo 	tA (w)(ATn (w)(B)) = p(w)(Art (w)(B)), 

where the limit exists almost everywhere in w, for all real t and uniformly 

in t in a ball around zero. Hence, as a consequence of Vitali's theorem, see 

[Tit 91], for almost every w E fl the sequence FAA nB (z,w) converges uniformly 

on every compact subset in the strip to FA ,B(z,w), which for a fixed w is 

analytic in the open strip 0 < sz < continuous and uniformly bounded in 

the closed strip 0 < caz < 0 such that, 

FA,B(t) = p(w)(Ar t (B)) and FA,B(t i[3) = p(w)(7t(B)A). 

This proves the existence of FA , B (z,w) satisfying the conditions in (2) for 

A, B E AA„ , where Ao  C 

Now, it follows from the strong measurability of w 	H(A, w) for finite 

A C Z" that, both Ar-Pz(w)B and e - '3H(An'w) are strongly measurable in 

w for each z in the open strip and n E Z+. Therefore, for each z in the 

open strip, FAA nB (z,w) is a scalar valued measurable function of w. This is 

in view of the fact that, the trace, denoted by Tr, is a continuous linear 

functional and hence, FAA nB (z,w) is a ratio of two measurable functions with 

Tr(e -fill ( An'w)) 0 for all n E Z+. It has been seen from Vitali's theorem 

that, for almost every w E C-2 the sequence FAA nB (z,c,.7) converges uniformly on 

every compact subset in the strip to a function FA ,B(z,w). Hence for each 

z in the open strip, fi co) converges to FA,B(z , w) almost everywhere. 

Therefore, we conclude that for each z in the open strip, FA,B(Z W) is a mea-

surable function of w. This proves the measurability of FA ,B (z, co) in w for 
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each z in the open strip, for A, B E AA°  and A 0  C Z". 

Next, for A, B E A, let An 	A and Bn  --+ B be sequences of local ele- 

ments converging to A and B respectively. Therefore, it follows from what 

was established earlier that, there exists a sequence of scalar valued func- 

tions FAn,B„(z, co) such that, for each z in the open strip, FAn,Bn(z,w)  is 

,n w) B T, ,(z measurable and for a fixed w, FA 	is analytic in the open strip, uni- 

formly bounded and continuous on the closed strip. Moreover, F A n  ,B n (i W) = 

P(W)(14 t(W)(B n )) and FA„,Bn (t = p(w)(7-t (w)(B n )A n). Now, there is 

a version of the Phragmen—Lindelof theorem [Rob 81] (Vol 2, Proposition 

5.3.5, Pg 81) which states that, the supremum of the modulus of a function 

which is bounded and analytic on the strip, is the supremum of the modulii of 

its boundary values. Since A n  A and Bn, B in the norm, the sequence 

FA „,B„(t,w) --> p(w)(Ar t (w)(B)) and FA„,B 7,(t + 43,w) —* p(w)(7-t (w)(B)A). 

The convergence being uniform in t. Thus, since the sequence FAn , B ,i (z,w) 

converges uniformly on the boundary of the strip 0 < Caz < 13, it converges 

uniformly throughout the closed strip, to say, FA ,B(z,w). FA , B (z,w) being 

analytic in the open strip and uniformly bounded and continuous in the 

closed strip, such that 

FA ,B(t) = p(w)(AT t (B)) and FA ,B(t i0) = P(w)(7t(B)A), 

for a fixed w. Also for each z in the open strip, FA ,B (z,w) is the limit of 

the sequence of measurable functions FA„,B n (z,w) for almost every w E D. 

Hence, for each z in the open strip, FA ,B(z,w) is a measurable function of w. 
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The theorem can be established along the same lines in the case of < 0, 

by considering the closed strip < :12 < 0. 

4.2.3 Representations Associated with the KMS States 

In this subsection, we aim to study the cyclic representations 7, associ-

ated with the states p(w). These states are thermodynamic limits of the 

local Gibbs states pA (w), and satisfy the following conditions: p(w)(A) = 

p(T_„(.4))(aa (A)), for all A E A and a E Z", and w 1-4 p(w)(A) is measurable, 

for all A E A. It is also seen that p(w) is a (7(w), /3)—KMS state, where 7-t (co) 

is the evolution group. We shall exploit the quasi—local structure of the C*— 

algebra to demonstrate some interesting features of the representations 

and establish the separability of the Hilbert space '14,. Algebraic properties 

of the group of unitaries Ut (co), which implements the evolution group rt (co) 

of the spin system have also been derived. 

Now, associated with every p(w), we have a cyclic representation (1-1,, 7r,, O w ) 

of the quasi—local algebra A, obtained through the G.N.S construction. The 

idea behind this construction is to convert the C*—al ebra A into a pre—

Hilbert space by introducing a positive semi—definite scalar product on A. 

In the process, we end up with a pre—Hilbert space of equivalence classes 

OA (co), //).8 (co), defined by 0 A (co) = A(w); A(w) = A + J, where J E J,,„ and 

= {A E Al p(w)(A* A) = 0}, with the scalar product given by 

(OA (w ), OB(4.0)), ,  = P(w)(A*B)• 
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Before we complete this pre-Hilbert space to give us the Hilbert space 1-1, 

we define the representation r„ by specifying the action of the representative 

rr,(A) on the pre-Hilbert space as follows: 

ir,(A)(0 B (w)) = 0AB(w)• 

The cyclic vector is defined by 0,, 	7111(W). Note that, {7,(A)0,; A E A} 

is exactly the dense set of equivalence classes -NA; A E A}, and hence, 0, is 

cyclic for (9-1„,r,). Since A is simple, r(w) is a faithful representation of A. 

Moreover, A being a uniformly matricial C*-algebra (or UHF algebra), each 

of these states p(w), is a locally normal state. Therefore, it follows from the 

remarks made on the characterization of locally normal states of an abstract 

C*-algebra in [Em 72] (Page 283), that, the Hilbert space 1-1, asssociated 

with the representation 77w , is a separable Hilbert space. Since A is simple, 

and (9-1„, r w , 0,) is a cyclic representation of A induced by the KMS state 

p(w), it follows from [Win 70](Section 5, Page 253) that, the vector 0, is 

cyclic and separating for the von Neumann algebra r w (A) // . 

Next, every element a E Z v , induces an isomorphism D_ a  : 71, -4 717-„,„ as 

follows: Define D _a (OA(w)) OaaA(T—aW). Note that, D_ a  is defined on a 

dense subspace of 3-1„. and 

(D,(0 A(w)), D-o(0B(w)))T_ aw = (0..(A)(T—aw), 9,b..(B)(T—aw))T_.. 

P(T-aw)((cta(A)) *(aa(B))) 

p(T_ aw)(aa (A* B)) 

= p(w)(A* B) 

107 



• 

------ (OA (w), /PB (-0)), 

Hence, for each a E 	D_ a  : 	---+ 1-1T_„,, preserves the inner product on 

a dense subspace VW  = {OA(w); A E A} of Besides, it is clear that D_ a  

maps V,,, onto a dense subspace VT, of the separable Hilbert space 7 -1T..„.• 

Therefore, for each a E Z", D_ a  can be extended to an isomorphism between 

the Hilbert spaces 7-1, and 

It is worth noting that for w E f and a E Z', 

(A) ))D-.)(0B(w)) D:la (71-2-_,(aa (A)))(0, a(B )(7_aw)) 

= D 	(c y„(A))(c a(B))(7 1— aW)) 

Dia & ce a (AB)(T— a(4))) 

AB (W) 

w (A)(Cb B(W)) 

for all A E A. Since the 0(w)'s are dense in 1-1,, we have 

7r,(A) = D= 1„(7T_ aw(aa(A)))D_,, VA E A. 

Thus, D_ a  exhibits an interesting intertwinning property which establishes 

some sort of equivalence between the representations 7r, and 7r 7-_,. This 

equivalence is reminiscent of the notion of unitary equivalence between rep-

resentations. It follows readily from the identity 

irT„,(Tt ( T_aw)(aa  (A))) = 7r 7-_,„ (aa  (rt  (w)(A))), 

where rt(w) is the evolution group, and the intertwinning property of D_ a 

 that, 

D: 1,j1TT,,(7t (T_ Gtw)(a a (A))))D_ a  = 7r„(7-t (w)(A))• 
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Note that for a E Z" and w E 

D,(0,,) = D-a(01(w)) 

= 0,,a(1)(T-aw) 

= V., I (T„co) 

OT,w• 

In the ,final part of this section, we derive an interesting ergodic property of 

the spectrum of the generators of the unitary groups Ut (w), which implement 

the evolution groups rt (w) in the representation r w . 

Since p(w) is a (r(w),13)-KMS state, we have p(w)(rt (w)(A)) = p(w)(A) 

for all A E A. It follows from the uniqueness of the cyclic representation 

(1rw, Wu), Ow) that, there exists an unitary operator U t (w) : 7-1,„ such 

that, 

Ut(w)(7,(A))Ut(w) -1  = 7,(Tt(w)(A)) and Ut(w)ew = 

for all t E IR. Here Ut (w) -1  denotes the inverse of Ut (w). 

Proposition 4.2.3.1 Let Ut (w) be the strongly continuous, one-parameter 

group of unitary operators implementing the evolution group rt (w) in the 

representation iTu, on 7-iw . Then, we have 

Ut (w) = D:!(Ut (T„ce))D„. 

Proof Since 

7,(1-t (w)(A)) = D:!(71-T_,(7t (T_ aw)(ac,(A))))D_„, 
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we have 

(Ut (w)(71-,,(A)0,), 7w(B)Ow). 

= (7,,(7-t (w)(A))0,,,7,(B)0,)„ 

( D:cil (7rT_ G,w(Tt(T-aw)(cta(A))))D-a0w, 	(77-_a,,(ca(B)))D-a0,..,),, 

= 	eirT_,,,,(7t(T-aw)(cfa(A)))0T_aw), 	( 71-T—w(a.(B)) 0T-a,,)),,  

= (Dial  (Ut(T_aw))7T_ Gw(cta(A))0T_au, Dia,(7T_aw(aa(B)) 0T- ..)),, 

((D:!(Ut (T_aw))D_ a yn-,,(A)(DI!OT_,),7r,,(B)(D:!OT_ aw)). 

= ((DfcL,(Ut(T._„w))D_„)71-,,,(A)0„,17,,(B)Ow), 

Therefore, 

Wt (w)(7,(A)0,),7,(B)0,), = ((Di la (Ut(T-aw))D-a) 7rw(A)0(.,,7,..,(B)0w),..., 

Since Ow  is a cyclic vector for 7r,(A), the above equality implies that 

Ut(w) = Di la (ut (T_„(,)) )Th a. 

6, 

By virtue of the above proposition we have the following corollary. 

Corollary 4.2.3.2 Let H(w) be the generator of the strongly continuous, 

one-parameter group of unitaries Ut (w), which implement the evolution group 

Tt (w). If EA(w) are the spectral projections associated with H(w), then the 

spectral projections EA (T_ aco) associated with the generator H(T_aul) of the 

unitary group Ut (T_ aw) can be expressed as EA(T_ aw) = D_a(EA(w))D:!. 
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Proof We know from Stone's theorem ((Sim 801(Theorem VIES)) that, 

the spectral family E),(T_ aw) associated with the unitary group U t (T_,,w) is 

unique. Hence the proof follows from proposition 4.2.3.1. 

Next, we shall show that the spectrum of the generator of the unitary 

group Ut (w), is almost surely independent of w. To this end, we have the 

following proposition. 

Proposition 4.2.3.3 Let H(w) be the generator of the strongly continuous, 

one—parameter group of unitaries Ut (w). Then the spectrum o - (H(w)) of the 

generator H(w) is almost surely independent of w. 

Proof Let 7rw  denote the representation associated with the (7(w), 0)—KMS 

state p(w), with cyclic vector O w . The unitary group Ut (w) with generator 

H(w) implements rt (w) in this representation 170., . Now, for f E L 1 (E), we 

have 

W W (f) 	= f f (t)Ut (w)§6dt = 	V E 

<=> f°  Qc.3  f (t)Ut(w)( 7 (A) 0,,)dt = 0, VA E A 

<=> f 	(t ) 7,,( 7-t(u))(A))0 (At = 0, VA E A 

<=> 	f (07 w(rt(w)(A))dt) O w  = 0, VA E A 
0. 

<=;:. 7r„, (f f(t)ri(w)(A)dt) 0„ = 0, VA E A 

•;=> 7r„, (f  f(t)rt(w)(A)dt) 0, VA E A 

<=> f f (i)Ti(w)(A)dt = 0, VA E A. 
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The first step follows from the fact that e is a cyclic vector for 7„(A). 

The second follows from the definition of U t (w). Since p(w) is a KMS state, 

the separating character of the cyclic vector 8 for r„,(A)", accounts for the 

penultimate step. We arrive at the final step by virtue of the fact that the 

representation 7„, is faithful. Now, a(H(w)) = —{s E f (s) = 0,Vf E 

ker T(w)}, vide [Bri 77] (Chapter 1, Definition 1.4). Therefore, from the 

above derivation we have cr(H(w)) = — {s E 111 f (s) = 0,Vf E ker F(w)}, 

where,F(w) is as defined in theorem 4.1.0.35. Hence, the proof follows from 

theorem (4.1.0.35). A 

4.3 Direct Integral von Neumann Algebra. 

In the previous section, we saw how each of the p(w)'s gave rise to a represen-

tation 7„(A) of the quasi—local algebra A, on a separable Hilbert space ?-L W . 

It is seen that, these states are (7(w), (3)—KMS states with respect to the evo-

lution groups 7-t (w). Now, the representations 7 w  associated with these states 

in turn give rise to an ensemble of von Neumann algebras {7,,(A)} As wEn• 

these von Neumann algebras correspond to distinct realizations of the quasi—

local algebra A, one has to treat them as distinct objects. Therefore, one is 

obliged to invoke the theory of measurable field of von Neumann algebras. 

The assumption that the action of the measure preserving group of automor-

phisms is ergodic, allows us to derive some interesting results concerning the 

spectra of the generators of the unitaries U t (w), which implement the evo-

lution groups rt (w) in the representation 7r,,. Moreover, the evolution group 
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-7-t (w) can be extended to a a-weakly continuous group of automorphisms 

"ft (co) of the von Neumann algebra r w (A)' such that, 

Mw)(S w ) = Ut (w)S„Ut (w) -1 ,flS w  E 7,(A) / . 

Since 

Tt 7,(A)) 
	

Ut (co)7,; (A)Ut (w) -1  

rw (rt (co)(A)), 

the restriction of f-t  to rr,,(A) is rt (co). In the sequel, we impose a mea- 

surable structure on the field of Hilbert spaces w 	and construct a 

direct integral Hilbert space H = 	9-1,4P(w). We also demonstrate that 

w 	7r,(A) /,  i , is a measurable field of von Neumann algebras and estab-

lish the existence of the associated direct integral von Neumann algebra 

f rw (A)"dP(co). Further, we establish the existence of a strongly con-

tinuous, one-parameter group of unitaries Ut  acting on the direct integral 

Hilbert space IT 74,,,dP(w) such that, If1 Stit-1  E foe  7,(.4) 1  dP( . for all 

S E f: 	dP(w). Finally, we construct a faithful, normal state p of the 

direct integral von Neumann algebra f: 	dp (w), which satisfies the 

Kubo-Martin-Schwinger condition with respect to the a-weakly continuous 

group of automorphisms i=t (S) = Ut SUt-i , for every decomposable operator 

S E ir„(A)" dP(w). 

4.3.1 Measurable Field of Hilbert spaces 

We begin with the following proposition. 
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Proposition 4.3.1.1 The field of separable Hilbert spaces co 	1-1,„ is a 

measurable field of Hilbert spaces. 

Proof To this end, recall that the family of states {p(w)} on A, is such 

that p(w) is a (1- (w) 03)—KMS state with respect to the evolution group 

Tt(w) and w p(w)(A) is a measurable function of w for all A E A. 

Since (W„, 7rw , Ow ) is a cyclic representation of A induced by p(w), we have 

p(w)(A) = (7,(A)0,, 0,),. A, being an uniformly matricial C*—algebra, 

there exists a sequence of elements {An.} in A such that, Ao = {Aril n E Z+} 

is dense in A and hence, for each w E ft, ir,(A.) is operator—norm dense in 

7,,(A). Since O w  is a cyclic vector associated with the representation 7r, on 

{7rw(A)OwlA E A} is dense in 1-1,, for w E D. As 7,,(A.) is operator—

norm dense in 71- _,; (A), it is easily seen that the sequence of vector fields 

w 1-->. 71-„(Ai)0,; i = 1,2, ..., is a total sequence in 7-t„ for all w E S2. More-

over, in view of the assumption that the map w E-+ p(w)(A) is measurable for 

all A E A, it is readily seen that the function w (7,(A i )e w , 7,(Ai)0,), 

is measurable for i, j = 1,2, .... Therefore, it follows from [Dix 81] (Part 

II, Chapter 1, Prop 4) that, there exists exactly one measurable vector field 

structure on the 7-{. 's given by a collection of vector fields .T such that, the 

vector fields w H 7,(A i )0,, are measurable with respect to this collection 

Therefore the field of Hilbert spaces (..) i 7-1w  is a measurable field of 

Hilbert spaces. 	 A 

The above fact allows us to define the direct integral Hilbert space , of 

all square integrable vector fields in 	over 11, from the measurable field of 
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Hilbert spaces w 	3-1„. Here the inner product (., .) on 71, is given by 

71) = f Ww), 71(w))dP (w), 

for all square integrable vector fields e, rt E T. We denote the same by 

f 1-t,,dp(w). It is worth mentioning that the Hilbert space 'H is a separable 

Hilbert space. This follows from the fact that P is the completion of a 

probability measure defined on the Borel sigma algebra generated by the 

topology of a complete separable metric space Q. 

Next, we aim to show the following. 

Proposition 4.3.1.2 If Ut (w) is the strongly continuous, one-parameter group 

of unitaries implementing the evolution group rt (w) in the representation 7, 

then, for each t E IR, w 1-+ Ut (CO ) is a measurable field of unitary operators. 

In fact (t,co) (Ut (w)(7,„(Ai)0,),7„(_4 3 )0„),, is jointly measurable in t and 

w for j = 1,2, .... 

Proof 	It is clear from the proof of proposition 4.3.1.1 and definition 

1 in [Dix 81] (Part II , Chapter 1) that, {x i }, where x i (w) 

is a fundamental sequence of measurable vector fields with values in 74,,. 

Therefore, it is easily seen from proposition 1 (Chapter 2, Part (II)) in 

[Dix 81] that, the above proposition will follow if one can show that 

(Ut (w)(7,,(Ai)0,,), 7,,(Ai)0,)„„ is a measurable scalar valued function for 

i,j = 1,2,... . Since Ut (w) implements Tt (w), we have Ut (w)(7rw (Ai))0, = 

7,(Tt (w)(Ai))0,. Now (7,,91,,,0„) being a cyclic representation of A as-

sociated with the state p(w), we have p(w)(A) = (ir,,(A)0,,e,),, for all 
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A E A. Therefore, (Ut(w)(7r„(Ai)0,),Irw(A;)ew). = P(w)(- 4_Tt(w)(Ai)), for 

j = 1, 2 .... Hence, the proof of the proposition follows from (1) in theorem 

4.2.2.3. In fact, as a consequence of (1) in theorem 4.2.2.3, we have actu-

ally shown that the map (t,w) (Ut (w)(7,(Ai)0,,), 7,(Aj)0,,)„ is jointly 

measurable in t and (.<., for i, j = 1, 2, .... 

The following proposition is a consequence of the preceding proposition. 

Proposition 4.3.1.3 Let {e(w)} and {77(w)} be two measurable vector fields 

in .'.Then the map (t,w) H (U t (w)e(w),n(w)),„ is a jointly measurable, 

scalar valued function of t and w, for all measurable vector fields and n  in 

Proof It is seen that {x i }, where x i (w) = 7,,(A i )0„, is a fundamental se-

quence of measurable vector fields. Therefore, it follows from {Dix 81] (Prob-

lem 3, Chapter 1, Part II) that, for any measurable vector field e in 	there 

exists a sequence of vector fields e n , of the form en  (w) =-- E7' fi (w)7,(A i )0,, 

converging to e almost everywhere, where the fi 's are complex valued measur-

able functions on 12. Clearly, these vector fields are measurable with respect 

to .T. It is readily seen from proposition 4.3.1.2 that, for any two complex val-

ued measurable functions f and g on St, the scalar valued function (t,w) 

(Ut (w)(f (ci.))7r,(A i)0,),g(w)r,(Ai)0,), is jointly measurable in t and 

for all i, j = 1, 2, ... . Hence, for any two vector fields and 77 of the form 

"(c,J) = 	f/(w)r,,(Ai)0,, and 77(w) = EknL i  gk (w)r„(Ak)0, respectively, 

the scalar valued function (t,w) 	(Ut (w)(w),77(w)),„ is jointly measurable, 

where the fi 's and gk 's are complex valued measurable functions on D. Next, 

• 
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we shall show that for all measurable vector fields 	q in . the function 

(t,w) 	(Ut (wWw), 77(w))„ is jointly measurable. To this end, let {4 .7,} and 

{77.} be sequences of vector fields of the form 4 -7,(w) = 	1  fi(w)7r,,(Ai)0, 

and 777,(w) = E.7_ 1  g1(w).7r,(A1)0, respectively, converging to and 77 almost 

everywhere, where the ft 's and gj 's are complex valued measurable functions 

on D. 

Therefore, for almost every (t, co) in IR x 

	

v1,_i_a(utpx.(w),77. 	,, (w))=(ut(w)e(w),7 7 (w))„,. 

Since (t,w) 1-4 (tit GO )G, 	7771 (W)), is jointly measurable in t and w, for all 

n E Z+, the measurability of (t,w) H (Ut (wg(w), 77(w))„ follows easily. A 

Proposition 4.3.1.2 yields the following corollary. 

Corollary 4.3.1.4 	1. Fora E 1R, if EA(w) are the spectral projections of 

the generator H(w) of Ut (w), then w 	EA (w) is a measurable field of 

orthogonal projections. 

2. For each z in 0, w 1-4 ((R(H(w), z))e(w),q(w)), „ is a measurable 

field of resolvent operators, where R(H(w), z) stands for the resolvent 

(H(w) — z1) -1 . 

Proof Let 6 and 77 be two measurable vector fields in J. Then (2) follows 

from the fact that, if z > 0, 

((R( 11 (w), z))e(w), 77(w)) ,,  = i f
) c°  eizt (e- iHmt 0.477( co)),clt 

and if Sz < 0, 

	

((R(H(w),), zW(w),?/(w))0) = 	foe'° 
e-izt(eiH(w)te(w), 77(w) )„,dt, 
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where H(w) is the generator of Ut (w) and the integral is a Riemann integral. 

Now, (1) follows from (2) if we notice that 

(EA(w)e(w), 71(W ))ca 

1 fA+8  
= lim lim— 	(((t — ie — H(w)) -1  — (t is — H(c,.. , )) -1 )(w),77(w)) 4 dt. 

8-40+ 6—>C1 + 27i 

A 

It was established in corollary 4.2.3.2 that, if EA(w) are the spectral pro-

jections associated with the generator H(w) of Ut (w), then, for all a E 

we have D„(EA (w))Di l  = EA(T_ ac.o). Here D, 	1-12-'_ a,„ is the iso- 

morphism constructed in subsection 4.2.3. In view of this fact, we have the 

following proposition. 

Proposition 4.3.1.5 Let EA(w) be the spectral projection associated with 

the generator H(w) of Ut (w). Then, dim(E A (w)) is almost surely constant. 

Proof We know from proposition 1 in [Dix 81] (Chapter 1, Part II) that, 

there exists a measurable field of orthonormal bases {e n } in the collection of 

measurable vector fields T. Hence, 

CO 

dim(EA (w)) = 
	

(EA (w) i (w), 
i=1 

-Using the fact that EA(T_aw) = D,(E),(w))Dfa , it is evident that dim(EA(0)) 

is an invariant function of w. Besides, the measurability of the function 

w 1-4 dim(E),(w)) follows from the corollary to proposition 4.3.1.2. Hence, 

by the ergodicity of the measure preserving group of automorphisms, this 

invariant measurable function is almost surely constant. A 
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The fact that the action of the measure preserving group of automor-

phisms is ergodic, allows us to derive some interesting results pertaining to 

the spectra of the generators H(w) of the unitary groups Ut (w). In this 

connection we have the following proposition. 

Proposition 4.3.1.6 The discrete and essential spectrum of the generator 

H(w) of the unitary group Ut (w), are almost surely independent of w. 

Proof For each A E IR the map w 	EA(co) is a measurable field of 

orthogonal projections associated with the generators H(w) of Ut (w). Now 

A is in the essential spectrum cress (H(w)) of H(w), if and only if, 

dim(Ev (w) — Eii (co)) = oo, 

for it < A < v. Clearly, the function w ■—>. dim(Ev (co) — E,(co)) is an in-

variant measurable function. So, by ergodicity of the action of the measure 

preserving group of automorphisms, it is almost surely independent of w. 

Hence the essential spectrum aess(H(w))  of H(w) is almost surely indepen-

dent of w. Now, as the discrete spectrum o-dis (H(w)) of H(w) is such that 

adis(H(w)) = 0-(11(w)) fl fa„,(H(4./.))}c, it follows from proposition 4.2.3.3, 

that the discrete spectrum is also surely independent of w. 

4.3.2 Measurable Field of von Neumann Algebras. 

We begin with the definition of a measurable field of von Neumann algebras. 

Definition 4.3.2.1 Let w 1--+ 7-1,' be a measurable field of complex Hilbert 

spaces over S2, and for each w E ft, .4(w) be a von Neumann algebra acting 
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on 3-twi  . The field of von Neumann algebras, w 	A(w) over 9, is said 

to be measurable if, there exists a sequence w T i (co),co T2 (w),... of 

measurable field of operators such that, A(w) is the von Neumann algebra 

generated by the Ti(w) ',s almost everywhere. 

On appealing to proposition 4.3.1.1 we demonstrate the following fact. 

Proposition 4.3.2.2 The field of von Neumann algebras w 	71-,(A)' is a 

measurable field of von Neumann algebras. 

Proof Let Ao  be defined as in proposition 4.3.1.1. It has been shown 

that w 1-4 7-1,, is a measurable field of Hilbert spaces on which the 7r,,(A)'''s 

act. Consider the sequence w 1-4 ir,(A 1 ),co 7r,,(A 2 ),..., of fields of op-

erators on '1-1„, where A i  E Ao . As observed earlier in proposition 4.3.1.1, 

the vector fields {x i }, where x i (w) = 7r,(Ai )0„, form a fundamental se-

quence of measurable vector fields. Therefore, it follows from the measur- 

ability of w 	(7,(A)0,,0„), for all A E A, and proposition 1 (Part II, 

Chapter 2) in [Dix 81] that, w 	7„(Ai ) are measurable fields of opera- 

tors with respect to T. We have to show that for almost every w E 

the von Neumann algebra 7„(A) /1  is generated by the 7,,(Ai)'s. By defini-

tion, this amounts to showing that for almost every w E 9, 7 (A) '  is the 

smallest von Neumann algebra containing 7„(A.). i.e., showing that for al-

most every c,.; E SZ , irw (A) is the smallest von Neumann algebra containing 

7,,(Ao )U7,./ (A0 )*, since the von Neumann algebras containing it (Ao) are just 

those containing ir,(Ao ) U 7,,(Ao )*. This is tantamount to showing that for 
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almost every w E f2 , 7,(A) is the smallest von Neumann algebra containing 

the *-algebra g(711,(A.)) generated by 71 -,(.40) (smallest *-algebra containing 

7,,(A0)). This follows from the fact that the smallest von Neumann algebra 

containing 7r,,(A0) U 7r,,(A0) *  is precisely the smallest von Neumann alge-

bra containing g(71-,(A0)). Since g(7,(.40))/' is the smallest von Neumann 

algebra containing g(7r,(A 0 )), it amounts to showing that, 

7r,(A)' = gfrw(Ao)r. 

Since {ru (A)0,,,,IA E A0 } is dense in 74,, for all w E 1-2, it follows from 

theorem (10) in [Em 72] (Page 116) that, 

c(71-,,(A0))/' = g (r,,(A0)) 1v , 

where for any subset Ar C 7 , V denotes the closure with respect to the 

operator norm topology and V with respect to the weak operator topology. 

Next, 77,(A 0) is operator-norm dense in 7,(A). Therefore, 

Further. 

This implies that, 

Hence, 

g(rr,(A0)) = 

7r„(A) 	g(71-,(A 0 )) C g(7r,(Ao)) u  • 

7r,(A) w  C g(7r,(A 0 )) - . 

7r,,(A) -  = g(r,(.40))ui = g(7,,(Ao)) i . 
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Now, the von Neumann algebra 7r (A)" is the weak closure of rw (A). Hence, 

we conclude that 7,,(A)" is the smallest von Neumann algebra containing 

c(7r,(A0 )), for almost every w E S2. Thus, for almost every w E ir,,(A) g  is 

generated by the measurable field of operators w 1—>. 7r,,(Ai). This proves the 

proposition conclusively. 

In proposition 4.3.2.2, we demonstrated that w 1-4 71-,(A) g  is a measurable 

field of von Neumann algebras. Since the quasi—local algebra A is simple, 

the cylic representation 7,, is a faithful representation of A. Therefore, the 

measurable fields of operators w 7r,(A,) which generate 7r „,(A)" , are es-

sentially bounded. Thus, they define a sequence of decompgsable operators 

f:71-„,(Ai)dP(w ) , on the direct integral Hilbert space 71 = f:1-1,dP(w). 

Therefore, it follows from [Dix 81] ((i) in Prop 1, Chapter 3, Part II) that, 

the set M of all decomposable operators 

T = 
f ® 
 T(w)dP(w), 

where T (w) E 7r„,(A) almost everywhere, is a von Neumann algebra, which 

by definition is a decomposable von Neumann algebra [Dix 81] (See Part 

II,Chapter 3, Definition 2), and denoted as 

M = f 7,,(A) g  dP(w). 

Thus, we have succeeded in constructing a direct integral von Neumann 

algebra ,A4, from the representations 7r,, of the quasi—local algebra A. This 

was achieved by putting a measurable structure on the Hilbert fields co 

using the cyclicity of the representations -Tr,. This at the same time allowed 
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the field of von Neumann algebras w 1-+ 7,(AY /  to acquire a measurable 

structure. The direct integral von Neumann algebra M constructed by us 

is generated by the set of all diagonalisable operators and the countable 

family If: ir,,(Ai)dP(w)} of decomposable operators. 

4.3.3 Automorphism Group of the Direct Integral von 
Neumann Algebra 

Next, we shall construct a a-weakly continuous, one-parameter group of 

automorphisms f-t , of the direct integral von Neumann algebra M. We first 

construct a strongly continuous, one-parameter group of unitaries U t , on 

the direct integral Hilbert space 1-1. We know that there exists a strongly 

continuous, one-parameter group of unitaries U t (w) on the Hilbert space 1-1,„ 

which implements the evolution group rt (w). It has already been established 

in proposition 4.3.1.2 that, for each fixed t E IR, w U t (w) is a measurable 

field of unitary operators on II W . Clearly, the measurable field of unitary 

operators w H Ut (co) is essentially bounded for each t E IR. In view of this, 

the measurable field of unitary operators w 1->. Ut (w) defines a one-parameter 

family of decomposable operators Ut  = ut (w ) dp (w )  on Moreover, it 

has been demonstrated in proposition 4.3.1.3 that, for any two measurable 

vector fields in T. the scalar valued function (t, (Ut  (w) q(co)), is 

jointly measurable in t and w. In the discussion that follows, we demonstrate 

that for each t E IR, the decomposable operator Ut  is an unitary operator 

on the direct integral Hilbert space 7-/ and that, the one-parameter family of 

decomposable operators {U2 }, is indeed a strongly continuous one-parameter 
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group of unitary operators on the direct integral Hilbert space 7-1 = re -xi Jcz -w. 

To this end, we have the following proposition. 

Proposition 4.3.3.1 Ut  is an unitary operator on the direct integral Hilbert 

space 7-1, of square integrable vector fields, for each t E IR. 

Proof For square integrable vector fields e, 77 E .T, we have 

(Ut ,Ut 77) = f (Ut (w) (w), Ut (w)77(co)) LAP(w), 

where, (.,.), denotes the inner product on the direct integral Hilbert space 

7-1, of all square integrable vector fields. Since w }-4 Ut (co) is a measurable 

field of unitary operators, it follows from proposition 1 (Chapter 2, Part II) 

in [Dix 81] that, w Ut (w)* is also a measurable field of unitary operators. 

Ut (co) being an unitary operator, we have 

(ut (w )ut (b))* (w), 71(w))w = ((w), Ti (w))w, 

and 

(ut(wrut(wg(w), 77(w)),, = Ww), ri(w)), 

Now it follows from the properties of decomposable operators [Dix 81] (Propo-

sition 3, Chapter 2, Part II) that, 

U.;` = f Ut(w) *  dP(c..") and Ut U;' = / Ut(w)Ut( )* dP(w). 

Therefore, for 6, 77 E II, we have 

(UtU:- 6, 77) = 
	

(Ut(w)Ut(w) * 6(w), n (w)),,c1P(w) 

J (0-0)0(w))wc 113 (w) 

= (6, 17)- 
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Similarly, since 

U; 1/t  = f Ut (w)*Ut (w)dP(w), 

we have 

77) 

	

f (Ut(wrUt(w*-0 ), 71(w)),dP(w) 

= f (e(w), 7/(w)) ,, dP(w) 

= 

The proposition now follows readily from the above equalities. 	A 

We are now in a position to demonstrate the following. 

Theorem 4.3.3.2 The one-parameter family of unitary operators {Ut } on 

the direct integral Hilbert space 7-1, is in fact a strongly continuous, one—

parameter group of unitary operators on 9-1. 

Proof For t i , t2 E Ifs, and 	E 7-1, we have 

(Uti +t26, 77) 	( Utl +t2 	)6( W ): 71(W))aidP(W). 

It follows from the properties of decomposable operators [Dix 81] (Proposi-

tion 3, Chapter 2, Part II) that, 

(w)u-t2(.)dp(w). 
ci 

Therefore, since Ut (w) is an unitary group, we have 

( Ut i -I-t2 6) 7.1) 
	

(C4i)Ut2 ( C4))047 )7 71(W ))AP(w ) 

(Uti Ut2 e) 17)' 
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This shows that the family of unitary operators { U t } on 14, is a one-parameter 

group of unitaries with identity f: uo(w ) dp(w). 

In order to establish that the one-parameter group of unitaries U t  on 1-1, 

is strongly continuous, it is enough to show that the function t (UtC 77), is 

continuous in t, for every square integrable vector field 77 in T. Recall that 

for each t E IR, w H (U t (w)e(w),n(w))„ has been shown to be a measurable 

field of unitary operators in proposition 4.3.1.2. We also have 

1(ut(w)e(w), (c0)),,I 	g(w)1111 77 (w)11, 

and 

	

1 	 1 

Ile(w)1111 17(W)Il dP (W ) 	116(W)112dP(W)) 2 
	

lin(W)112dP(W)) 2 < CC). 

Hence, it follows from the dominated convergence theorem that, for all square 

integrable vector fields 	77 in 

-Y0 
lim(ute, n) = 
t  

lim f (U t (wg(w), q(w)), d P (w) 
t->o 

= L.p2,-2(tIt(-)6(w), (w)),(IP(w) 

Moreover, Ut (w) is a strongly continuous, one-parameter group of unitary 

operators. Therefore, 

77) = f (e(w), n(w)),d P (w) 

= (CO. 

Since Ut  has been endowed with a group structure, this proves the strong 

continuity of the one-parameter group of unitaries Ut , on the direct integral 

Hilbert space '11, conclusively. 	 A 

126 



• 
• 

Next. for 

= I S(w)dP(w) E M, 

define 

-7-t (S) = U2 SUT 1  

Now, w 	Ut (w)S(c,o)Ut (u.;) -1  is an essentially bounded measurable field of 

operators for each t E E. It follows from the properties of decomposable 

operators that, 

Ut SUr l  = f Ut P)SP)Ut (wr i dP(w). 

Since Ut(w)S(w)U t (w) -1  E 7,,(A)'', we have Ut SUt-1  E M. Thus, it fol-

lows from the strong continuity of Ut  that :ft  is a a-weakly continuous, one-

parameter group of automorphisms of the decomposable von Neumann alge-

bra M. 

4.3.4 Construction of a KMS State of the Direct Inte-
gral von Neumann Algebra 

Finally, we establish the existence of a faithful, normal (i- ,0)-KNIS state of 

M. Now, the state p(w) which can be written as a vector state p(w)(A) 

(7,(A)0,, Ow ), in the representation 7,, on a separable Hilbert space 7-1, is 

a (r(w),0)-K.MS state. Therefore, it follows from corollary 5.3.4, in [Rob Sl] 

and theorem 4.12 in [Hug 72] that, p(w) can be easily extended to a faith-

ful, normal (i. (w),,3)-KMS state p(w), of the von Neumann algebra „(A)'' , 

where /3(w)(S) = (Sew, for S E it,(A)' 1  and iLt (w) is the a-weakly con-

tinuous group of automorphisms of irw (A)''. Clearly, the restriction of 15(w) 
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to 7,(A) gives the state p(w) on A. 

Let us now construct a state )5 of the von Neumann algebra M from the field 

of states w H ;5(w), on 7„(A)''. Such a field of states on the von Neumann 

algebras 7r,(A)'' is said to be a measurable field if, w ►  ii(w)(T(w)) is a 

measurable function of w for every measurable field of operators w T(w). 

Since, w 	e is a measurable vector field with respect to 	it is clear 

from the definition of p(w) that, w 	p(w) is a measurable field of states on 

71-,(A)''. Define 

-16 (L S(w)dP(w)) = f 15(w)(S(w))dP(w), 

for all decomposable operators w )—* 8(w) in M. Let a E 0, and w 1—* S(w), 

w F-+ S1 (CO), w 1-4 S2 (w) define elements in M. It follows from the properties 

of decomposable operators (Proposition 3, Page 182) in [Dix 81]) that, 

(f 	(w)dP(w) + f 82(w)dP(w)) 

= /3 (J (Si (w) + •2 (w))dP(w)) 

f /3 (c<-') (SIP) + S2((.0)) c/P(w) 

= f P(w) (Si (w)) dP(w) + f /3 (w) (S2(w)) dP(w) 

= (f 	(w)dP(w)) + p (f ,92 (w )dP(w)) 

Also, 

-fi 	L S (w ) dP(w)) ( )(aS(w))dP(w) 

L 'fi (w ) S(w ) dP(w )  

afi (fe  S(w)dP(w)) 
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Hence, /3 is a linear functional on M. Since, 

(f LdP(e.4.1)) = f "AP) (L) d P (w) 

= 1, 

where /(co) is the identity operator on 1 -i,, ji is a state. 

Theorem 4.3.4.1 Let i3 be the state constructed above. Then .13 is a faithful, 

normal state of the decomposable von Neumann algebra M. 

Proof Let w 1-4 S(w) define a decomposable operator in M+, where 

.A4+ is the set of all positive elements in M. Put S = S (w )dP(w ) . 

Suppose we have A(S) = 0, then it follows from the definition of 19" that 

fn 15(w) (S(w)) d P (w) = 0. Since w 1-4 "fi(S(co)) is a non negative measur-

able function of w, we have j)(co)(S(w)) = 0, almost everywhere. Therefore, 

S(w) = 0 almost everywhere, since the /3(co)'s are faithful. Next, we show 

that the state /3 is a normal state on M. We know that the /3(co)'s are nor-

mal states. Let {S),} be an increasing net of elements in M+ with supremum 

S E M+. Let us denote the collection of all diagonalisable operators on 9-t 

by Z. Clearly, 3 C M C Z'. Since 3' is a u-finite von Neumann algebra.  

[Dix 81] (See Proposition 7, Chapter 2, Part II) of all decomposable oper-

ators on 7-I, it follows that M is also a-finite. Therefore, it follows from 

the corollary to proposition 1 in [Dix 81] (Part I, Chapter 3) that, one can 

extract an increasing sequence S7, = snm dp(w )  from the net {SA} with 

supremum S. Now, there exists an increasing sequence of integers {nk} such 

that, Sn, (co) is an increasing sequence converging strongly to S(w) almost 
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everywhere. This is a trivial consequence of proposition 4, in [Dix 81] (Chap-

ter 2, Part II). Hence, /3(w)(S,,,(w)) is an increasing sequence converging to 

p(w)(S(w)) almost everywhere. Therefore, it follows from the definition of 

13 and the monotone convergence theorem that, "fi(S„,) is an increasing se-

quence converging to )5(S). This proves conclusively that j5 is a normal state 

on .M. 

Now all that remains to be shown is that the state 15 is (-T- ,0)-KMS state. 

Before, we establish this fact, let us give an equivalent definition of a KMS 

state which we shall have the occasion to use. 

Definition 4.3.4.2 Let p be a state on a von Neumann algebra R. and Tt  

a o- -weakly continuous, one—parameter group of automorphisms of the von 

Neumann algebra R.. Then, p is said to be a 0)—KMS state if, 

f_ 0 (t) )5(A.i=t B)dt = 	fo (t)p(i=t (B)A)dt, 

for all A, B E R. and all f infinitely. differentiable with compact support. In 

the above equality, fi,(t) = f7 f(s)e(t+i-f)ds, for -y = 0 and —0. 

Theorem 4.3.4.3 The state 1.4 constructed above is a (T, 0)—KMS state of 

the direct integral von Neumann algebra M. 

Proof For S = S(w)dP(w), T 	T(w)dP(w) E M , 

f f_a(t);5(rft (S))dt 

f :f—p(i);6(T(UtSU t-1 ))dt 

f :o f—#(0 (L;O(w)( 71 (w)(Ut(w)S(w)Ut(w) -1 ))dP(w)) dt 
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f f_0(t) (f (T (w)(U t (w)S (w)U t (w) - ')0,,0„),dP(w)) dt. 

It follows readily from the measurable structure imposed on the vector field 

of Hilbert spaces that, w 1-+ O w  is a measurable field of vectors. Moreover, 

both w 1-4 S(w) and w T(w) are essentially bounded measurable fields 

of operators. Therefore, it follows from the remark made at the end of 

proposition 1 in [Dix 81] (Part II, Chapter 2) and the definition of measurable 

fields of operators that, both col-4 S(w)e,, and w T(co)*O„ are measurable 

vector fields. Since 

(7 (w)(U t(w)S (w)Ut(w) -1 )0 	= (Ut (w)(S (w)0,,),T Gor 

it follows from proposition 4.3.1.3 that, 

(t, co) i-+ (T(w)(Ut (w)S(w)U t (w) -1 )0, 

is jointly measurable in t and w. By the Paley-Weiner theorem, f....0(t) is 

an integrable function of t. Moreover, the S(w)'s, and T(co)'s are essentially 

bounded in norm. Therefore, invoking Fubini's theorem for scalar valued 

functions on E x f2 and using the fact that p(w) is a (?(w),/3) -KMS state 

on 7,(A) " , where ft (co)(A) = Ut (co)AUt (co) -1 , we have 

f-o(tV(Ti -t(S)) 

r= 	( f_,(i),T(w)(ut(w),,,(„)utp„)0,, 0,),dt) dP(w) 

= L(f °:f _0(t)j)(w)(T (w)f- t (w)(S(coMdt) dP(w) 

f (1:f 0 (trii(wWf t (w)(S (w))T (w))dt) dP(w)  (co) 

00

L(f:  fo(t)((utp,s(w)utprim.)0,,0„),dt) dP(w). 
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Arguing as above, one can show that both w 	T(w)0, and w 1-4 S(w)*e, 

are measurable vector fields. Since 

((t/t (w)S(w)U t (w) -1 )T(w)0„, 0„),, = (Ut (w) -1 (T(w)0,,), S(w)*0,,),„ 

it follows from proposition 4.3.1.3 that, 

(t w) 	(Ut (w)S (w)U t (w) -1 T (w)0,,0„)„, 

is jointly measurable. Again, by the Paley-Weiner theorem, fo (t) is an inte-

grable function of t. Hence, on applying Fubini's theorem a second time, we 

get 

f .f.-0(t)/3(Tt(S)) 

= f c°  f0(t) (f ((Ut(w)S(w)Ut(w) -1 )T(w)e, 0,,),,dP(w)) dt 

= f Mt) 	r)(w)((tft(w)S(w)Ut(w) -1 ) 71 (w))dP(w)) dt 

= 	 f0(t)P((UtSUt-1 )T)dt 

= f f0 (t)16 ( f-t(S ) T ) dt 

This proves conclusively that, "t3 is a (i- ,f3)-KMS state on the direct integral 

von Neumann algebra M. 

Since the family of KMS states {p(co)} of A is not unique, the (i- , 13)-KMS 

state fi is by no means unique. However, in view of theorem 4.2.2.2, above 

the critical temperature Tc , there is an unique family of KMS states {p(w)}, 

which determines the KMS state /3 on M as constructed above. 
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Chapter 5 

Summary 

This final chapter of the thesis is devoted to a discussion on the results 

obtained in chapters (3) and (4) and their implications. Some of the open 

problems which remain unresolved are identified. Before proceeding any 

further it is worth recalling the aims and objectives of the work undertaken 

here. 

The purpose of this investigation was to understand and explain the be-

haviour of a quantum spin glass through its dynamics. Spin glasses have 

always been something of a mystery. They are among the least understood 

systems even in equilibrium statistical mechanics. In particular, their low 

temperature regime and critical behaviour are extremely complex. 

Traditionally, quantum spin glasses have been studied as systems of quan-

tum spins interacting through random interactions. These models are essen-

tially Ising-type models with random coupling. The coupling coefficients are 

assumed to be independent, identically distributed random variables. Ex-

tensive investigations on the existence of the thermodynamic limit have been 

made by van Hemmen et al [Ent 83, Hem 83]. The almost sure existence of 
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the free energy of an infinite spin system on a lattice with random interac-

tions has been established. This is a generalization of the result of Khanin 

and Sinai [Sin 79] in the classical case. An alternate model of a quantum 

spin glass can be based on the realization that, the magnetic ions in a spin 

glass are randomly distributed at lattice sites. The spins therefore may be 

considered to be located at the vertices of an infinite connected graph with 

countably infinite number of vertices. Here, one caricatures a quantum spin 

glass as a quantum spin system on an infinite connected graph with count-

ably infinite number of vertices. This model may be regarded as a quantum 

analogue of the systems studied by Preston and others [Pre 74]. But, inspite 

of the fact that a quantum spin glass admits a natural dynamics, this aspect 

has not been investigated. 

In this thesis, we have attempted the study of the dynamics of a quantum 

spin glass with the help of both these models, namely, a quantum spin system 

on an infinite connected graph having countably infinite number of vertices 

with deterministic interactions of the nearest neighbour type and a quantum 

spin system on an infinite lattice Zy with random interactions. The problem 

to which we have addressed ourselves is that of explaining the behaviour of 

a quantum spin glass through the dynamics of these spin systems and the 

associated KMS states. 

In the case of the quantum spin system on an infinite graph, the global 

dynamics has been established. This was achieved by constructing a strongly 

continuous, one—parameter group of *—automorphisms Tt of the quasi—local 

134 



algebra A associated with the spin system. As expected, the existence of 

an equilibrium state which is by no means unique, has been established. 

The equilibrium state p was obtained as the thermodynamic limit of the 

local Gibbs states PA . It was also shown that p satisfies the Kubo-Martin-

Schwinger(KMS) condition with respect to the time evolution group Tt. 

However, all attempts to establish the maximum entropy principle for the 

infinite spin system were thwarted due to the absence of spatial homogeneity. 

In fact, one failed to establish the existence of mean entropy and free energy 

for the infinite system. The problem of establishing the existence of mean 

entropy and free energy for the infinite system as well as that of establishing 

the maximum entropy principle remains open. 

The other model studied was a quantum spin system on an infinite lattice 

1', with random interactions. Here we have established the existence of a 

family of strongly continuous, one-parameter groups of *-automorphisms 

{rt(w)} of the quasi —local algebra A associated with the spin system, where 

w lives in a probability space (Il, S, P). These automorphism groups Tt (w) 

determine the evolution of the infinite spin system. The joint measurability of 

the map (t, co) H 7-t (w)(A) for all A E A, has been proved. Some interesting 

algebraic properties of the generator S- (w) of these automorphism groups 

have been derived. The notion of ergodicity of a measure preserving group 

of automorphisms of 9, is used to prove the almost sure independence of 

the Arveson spectrum Sp(r(w)) of the evolution group rt (w). Next, the 

existence of a family of (r(w), 0)-1(MS states {p(w)} has been established 
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for all ,0 E IR\{01. They have been shown to satisfy the condition p(w)(A) = 

P(T-aw)(a.(A)) for all A E A and all a E Z", where a s  is the action of the 

lattice Z" on the quasi-local algebra A. We assume that there exists one such 

family of (7-(w), 0)-KMS states {p(w)}, where w 1-4 p(w)(A) is measurable 

for all A E A. It has been shown that the spin system on an infinite lattice 

with random interactions exhibits a phase structure. In fact, it has been 

established that there exists an unique KMS state p(w), above a certain a 

critical temperature T, almost surely independent of w. There is a close 

connection between the Arveson spectrum of r t (w), and the spectrum of the 

generator of the unitary group Ut (w) which implements 7-t (w) in the cyclic 

representation 7r,, induced by the (7(w), /3)-KMS state p(w). This fact has 

been exploited to prove the almost sure independence of the spectrum of the 

generator of Ut (w). 

Now, the cyclic representations er a, induced by the (7-( ),13)-KMS states 

p(w), which satisfy the conditions mentioned above gives rise to an ensem-

ble of von Neumann algebras {7r„,(A)'}, where each of these von Neumann 

algebras acts on a separable Hilbert space 7-1„. As these von Neumann al-

gebras correspond to distinct realizations of the quasi-local algebra A, they 

are treated as distinct objects. This establishes a need to invoke the theory 

of measurable fields of von Neumann algebras. Using the cyclicity of 7r„,, we 

have constructed a collection of measurable vector fields .7", which endows 

the field of separable Hilbert spaces w 1-4 I-1,, with a measurable structure. 

Equipped with this structure, we have shown that for each t E IR, w Ut(w) 
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is a measurable field of unitary operators. Further, the joint measurability 

of (t, w) (Ut (w), e(w), ii(w)),, for all 6, E .F is established. We have also 

derived some interesting ergodic properties of the spectra of generators H(w) 

of the unitary groups Ut(w)• 

In the final part of the thesis we have constructed a direct integral M from 

the measurable field of von Neumann algebras w 1-4 7,,(A)''. The existence 

of a strongly continuous, one—parameter group of unitaries U t  on the direct 

integral Hilbert space 7-1 constructed from the measurable field of Hilbert 

spaces w W , has been established. This group of unitaries in turn gives 

rise to a a—weakly continuous group of automorphisms :ft  of M. From the 

measurable field of KMS states w 1-4 p(w), which are extensions of the KMS 

states p(w) to the von Neumann algebras {7,,(A)1, a faithful normal (T, 1 3)-

KMS state 16 of M has been constructed. 

The problem that remains to be resolved in this particular model is that 

of establishing that the transport coefficients of the spin system are almost 

surely constant. One would expect this to be generally true on physical 

grounds. 

The other problem that remains open is that of establishing a connection 

between the spectra of the generator of U t (w) and that of the generator of 

the unitary group Ut  on the direct integral Hilbert space 7-1. 
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