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A Psalm of David

The Lord is my shepherd,
I shall not want;

he makes me lie down in green pastures.

He leads me beside still waters;
he restores my soul.
He leads me in paths of righteousness

foér his name’s sake.

Even though I walk through the
valley of shadow of death,

I fear no evil;

" for thou art with me;

thy rod and thy staff,

they comfort me.

Thou preparest a table before me
in the presence of my enemies;
thou anointest my head with oil,

my cup overflows.

Surely goodness and mercy

shall follow me

all the days of my life;

and I shall dwell in the house of the Lord

for ever.



Abstract

In this thesis, we attempt the study of the dynamics of a quantum
spin glass with the help of two models, one a quantum system on
an infinite connected graph with deterministic nearest neighbour type
of interactions, and the other a quantu‘m spin system on an infinite
lattice with random interactions. The problem to which we address
ourselves is that of explaining the behaviour of a quantum spin glass
through the dynamics of the quantum spin systems studied by us and
the associated KMS states.

We construct the global dynamics for the quantum spin system on
an infinite connected graph with countably infinite number of vertices.
As expected, the existence of an equilibrium state at a fixed temper-
ature T, is established. The equilibrium state satisfies the KMS con-
dition and is invariant under the action of the time evolution group.
However, all attempts to establish the maximum entropy principle
for the infinite system were thwarted due to the absence of spatial
homogeneity.

In the case of the quantum spin system on an infinite lattice Z*
with random interactions, yvke establish the existence of a family of
strongly continuous, one—-parameter groups of automorphisms {r¢(w)},
of the quasi-local algebra A associated with the spin system, where

w lives in a probability space (22,8, P). These automorphism groups



7¢(w) determine the evolution of the infinite spin system. The joint
measurability of the map (t,w) — 7¢(w)(A) for all A € Ais also
proved. Some interesting algebraic properties of the generators §(w)
of these automorphism groups have been derived. The notion of er-
godicity of a measure preserving group of automorphisms of , is
used to prove the almost sure independence of the Arveson spectrum
Sp(7(w)), of the evolution group 7¢(w). Next, the existence of a family
of states {p(w)}, which are (7(w), 8)~-KMS states of A with respect
to the evolution groups 7¢(w), and satisfy p(w)(A) = p(T_.w)(a,(A)),
for A € A and all @ € ZY, is established for all 3 € R\ {0}. It
is assumed that there exists one such family of (7(w), 3)-KMS states
{p(w)}, where w = p(w)(A) is measurable for all A € A. We show that
the spin system on the infinite lattice with random interactions, ex-
hibits a phase structure. In fact, we establish that there is an unique
KMS state p(w) with respect to the evolﬁtion group 7t(w), above a
certain critical temperature T, almost sur;ely independent of w.

Now, the Arveson spectrum of the evolution group 7¢(w) is closely
connected with the spectrum of the generator of the unitary group
U, (w), which implements 7¢(w) in the cyclic representation =, asso-
ciated with the (r(w), §)-KMS state p(w). We exploit this fact to
establish the alrﬁost sure independence of the spectrum of the gener-
ators. |

Next, the cyclic representations =, associated with the (7(w), 8)-

KMS states p(w), give rise to an ensemble of von Neumann algebras



{r,(A)"}. Each of these von Neumann algebras acts on a separable
Hilbert space H,. Thus, given this structure, we are obliged to invoke
the theory of measurable fields of von Neumann algebras. Using the
cyclicity of the representation 7, we construct a collection of measur-
able vector fields F, which endows the field of separable Hilbert spaces
w — M, with a measurable structure. Equipped with this structure,
we construct the direct integral Hilbert space H = f;? H,dP(w). We
also show that for each t € IR, w ~— U{w) is a measurable field of uni-
tary operators. The joint measurability of (t,w) — (Ur(w)é(w), n(w))w
forall&,n € F,is also established. Here (., -)w denotes the inner prod-
uct on the Hilbert space H.. By using the theory of measurable fields
of operators, we dérive some interesting ergodic properties of the spec-
tra of the generators H(w), of the unitary groups U;(w).

In the final part vof the thesis, we prove that the field of von Neu-

"

mann algebras « — 7,(A)", is a measurable field of von Neumann

algebras and construct a direct integral von Neumann algebra

M = /Q® ﬂw(A)"(lP(w).

The existence of a strongly continuous, one parameter group of uni-
taries Uy, on the direct integral Hilbert space H, is established. More-
over, this group of unitaries in turn gives rise to a o—weakly continu-
ous group of automorphisms 7%, of the ~von Neumann algebra M. We
construct a faithful normal state § of M from the measurable field
w — p(w), of faithful normal KMS states p(w), which are extensions

of the KMS states p(w) to the von Neumann algebras 7, (.A)". Finally,



this faithful normal state p is shown to be a (7, 3)-KMS state of the

direct integral von Neumann algebra M.
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Chapter 1

Introduction

1

Spin glasses still present something of a mystery. In fact, spin glassgs are
among the least understood systems in equilibrium statistical mechanics. In
particular, their low temperature regime and critical behaviour are extremely
complex. Spin glasses, which usually occur as dilute solutions of atoms with
large magnetic moments (e.g. Fe, Co and Mn) in paramagnetic substrates
(e.g. Cu and Au), have a number of interesting physical properties. The ba-
sic ingredient of a spin glass is the random distribution of the impurity in the
form of magnetic atoms. At very low temperatures, there is a freezing of the
magnetic moments in random directions which leads to an increase in suscep-
tibility. The spin-glass phase may therefore be regarded as an arrangement
of blocks of spins, each block with its own characteristic orientation in such a
way that, there is no net magnetic moment [Bin 86]. More details concerning
the physics of a spin glass can be obtained from the review article by Binder
and Young [Bin 86].

Edwards and Anderson [And 75] proposed a spin Hamiltonian to account



for the basic properties of a spin glass. The Hamiltonian is written as
Hy= Jisdlli - i)
ideA

where A is a finite region in Z”, 0; = #1 and ¢ is a deterministic poten-
tial. The magnetic impurities are simulated by the set {J; ;} of independent,
identically distributed random variables with distribution depending on the
distance |i — j|. This model describes the important concept of frustration
in a spin glass and the related problem of defining a suitable order parameter
[Bin 86, Hem 83]. Analytical investigations concerning the equilibrium sta-
tistical mechanics of a spin glass have focussed attention on the mean field
model of Sherrrington and Kirkpatrick [She 78]. Here, the model is defined

by a Hamiltonian
T
H, = — E Jijoio; — H E i

where 0; = £1, H is the external magnetic field and {J;;} is a set of inde-

pendent, identically distributed random variables with probability density

o) = (.%J?-)-l/?-exp [_'n(,],,j - Jo/nq |

n 2J2

For a pure spin glass in zero field, we have Jo = 0 and H = 0. Using
the replica trick and the concept of replica symmetry breaking, Parisi et al
[Par 80] have obtained a rather appealing picture of the low temperature
phase of this model. It has been sh&wn that there exists infinitely many
extremal Gibbs states at very low temperatures. As the temperature is raised,
spins with increasing distance from each other coalesce, until, above a freezing

temperature, the equilibrium state is unique.
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The other model of a spin glass which has been investigated is the Cayley
tree model [Tho 86, Cha 86>, Car 91]. Here, one usually looks for thermody-
namic quantities in the innermost regions of the tree, namely, on a Bethe
lattice, in order to avoid the problems caused by the presence of a large
number of boundary points. Although boundary conditions do have an im-
portant influence, this model does not suffer from the problems associated

with boundary effects. The Hamiltonian for this model is given by

H-=- Z Ji,jO'iO'j —H Z [
] i

where 0; = +1 and H is an external magnetic field. The sum (1, ) is over

1

nearest neighbour sites and {J;;}’s are independent, identically distributed
random variables such that, E(Ji;) = Jo and E(J%) = J?. For a pure
spin-glass phase, Jo = 0.

Traditionally, quantum spin glasses have been studied as systems of quan-
tum spins interacting through random interactions. These models are essen-
tially Ising-type models with random coupling. The coupling coefficients are
assumed to be independenf,, identically distributed random variables. Ex-
tensive investigations on the existence of the thermodynamic limit have been
made by van Hemmen et al [Ent 83, Hem 83]. The almost sure existence of
the free energy of an infinite spin system on a lattice with random interac-
tions has been established. Thié is a generalization of the result of Khanin
and Sinai [Sin 79}, in the classical case. An alternate model of a quantum
spin glass can be based on the realization that the magnetic ions in a spin

glass are randomly distributed at lattice sites. The spins therefore, may be

6



considered to be located at the vertices of an infinite connected graph with
countably infinite number of vertices. Hence, one can caricature a quantum
spin glass as a quantum spin system on an infinite connected graph with
countably infinite number of vertices. This model may be regarded as the
quantum analogue of systems studied by Preston and others (Pre 74]. But,
unlike a classical spin glass, a quantum spin glass admits a dynamics nat-
urally. Despite this fact, this aspect of a quantum spin glass has not been
investigated.

In this thesis, we have attempted to study the dynamics of a quantum spin
glass with the help of both these models, namely, a quantum spin system on
an infinite graph with deterministic nearest neighbour type of interactions,
and a quantum spin system on an infinite lattice with random interactions.
The problem to which we address ourselves is that of explaining the behaviour
of a quantum spin glass through the dynamics of these spin systems and the
associated KMS states.

The C*-algebraic approach has met with a fair amount of success in the
study of quantum séin systems. Here, we study a quantum spin glass as a
quantum spin system in the C*-algebraic frame work. Usually, a quantum
spin system consists of a set of points confined to a lattice and interacting
with each other. In some applications it is important that the lattice has a
symmetry, for example the case L = Z¥. Nevertheless, in many cases, and
in particular, in the construction of dynamics, it is enough to assume that

L is a countably infinite set. The kinematical structure associated with the



quantum spin system is a quasi~local UHF algebra constructed over the finite
subsets of L. Usually, the dynamical evolution of a quantum spin system
in the Heisenberg picture is given by a strongly continuous, one-parameter
group of automorphisms 7, of the quasi-local algebra. Thus, one of the
most important tasks in the study of quantum spin systems is to construct
an evolution group of the spin system. In many situations, this is achieved by
establishing the existence of the thermodynamic limit of the local evolution
group 7, of the spin system confined to the finite region A. Closely connected
with the strongly continuous, one-parameter group of automorphisms 7 of
the quasi-local algebra, is a set of states called the KMS states. These states
are known to be invariant with respect to the automorphism group, gnd they
satisfy certain analytic conditions in a strip, in the complex plane. A detailed
account of these facts has been given in chapters (3) and (4), both in the
case of a quanfum spin system on an infinite graph, as well as in the case of
a spin system on a lattice with random interactions.

We construct the global dynamics (3.3.0.11) for a quantum spin system
on an infinite graph. As expected, the existence of an equilibrium state at a
fixed temperature T, is established. The equilibrium state satisfies the KMS
condition (3.4.0.15) and is invariant under the action of the time evolution
group as shown in corollary 3.4.0.16. However, all attempts to establish the
maximum entropy principle for the infinite system were thwarted due to the
absence of spatial homogeneity. Thus, this approach did not prove to be very

useful in understanding the behaviour of a quantum spin glass. As a result,



we were obliged to take recourse to the more traditional line of thinking in
understanding and explaining the behaviour.

To this end, we consider a quantum spin system on an infinite lattice
Z" with random interactions ®(.,w), where w lives in a probability space
| (92,8, P). Here, P is the completion of a prébability measure with respect
to the sigma algebra S, containing the Borel sigma algebra generated by
the topology of the complete, separable metric space ). We establish the
existence of a family of strongly continuous, one-parameter groups of auto-
morphisms {7(w)}, of the quasi-local algebra A, associated with the spin
system(3.7.0.28). These automorphism groups 7¢(w) determine the evolution
of the infinite spin system. The joint measurability (3.7.0.29) of the map
(t,w) — 7(w)(A) for all Ain A is also proved. Some interesting algebraic
properties of the generators §(w) of these automorphism groups have been
derived (3.7.0.33). The notion of ergodicity.of a measure preserving group of
automorphisms of Q, is used to prove the almost sure independence of the
Arveson spectrum Sp(7)(w), of the evolution group m(w) (4.1.0.35).

Next, the existence of a family of states {p(w)}, which are (r(w),3)-KMS
states of the quasi-local algebra A, with respect to the evolution groups
T(w) and satisfy p(w)(A) = p(T_ow)(c.(A)), for A€ Aand all « € Z7, is
established for all 8 € IR\ {0}. We assume that there exists one such family
denoted by {p(w)}, where w — p(w)(A) is measurable for all A € A. We
show that the spin system on the infinite lattice with random interactions

exhibits a phase structure. In fact, we establish that there is an unique KMS



state p(w) (4.2.2.2), above a certain critical temperature T, almost surely
independent 'of w.

The Arveson spectrum of the evolution group m{w) is closely connected
with the spectrum of the generator of the unitary group Uy(w), which im-
plements 7,(w) in the cyclic representation =, associated with the (7(w), 3)-
KMS state p(w). We shall exploit this fact to establish the almost sure
independence of the spectrum of the generators (4.2.3.3).

Now, the cyclic representations m, associated with the (7(w), 3)-KMS
states p(w), satisfying the conditions mentioned above, give rise to an en-
semble of von Neumann algebras {m,(A)"}. Each of these von Neumann
algebras is defined on a separable Hilbert space H,,. The separability follows
from the fact that .~ .~ .7, "7 state p(w) w2 g e e =4
a locally normal state. Thus, given this structure one is obliged to invoke
the theory of measurable fields of von Neumann algebras. Using the cyclic-
ity of the representation m,, we construct a collection of measurable vector
fields F, which endows the field of separable Hilbert spaces w — H,,, with a
measurable structure. Equipped with this structure, we construct the direct
integral Hilbert space H = fg? ‘H.,dP(w). We also show in proposition 4.3.1.2
that, for each t € IR, w — U,(w) is a measurable field of unitary operators.
The joint measurability of (¢,w) > (U(w)é(w),n(w)). for all £,n € F, is
established in proposition 4.3.1.3. Here (.,.), denotes the inner product on
the Hilbert space H,,. By using the theory of measurable fields of operators,

we derive some interesting ergodic properties (4.3.1.6) of the spectra of the
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generators H(w), of the unitary groups U(w).
In the final part of the thesis, we prove in proposition 4.3.2.2, that the field
of von Neumann algebras w ++ 7,(A)", is a measurable field of von Neumann

algebras. Next, we construct a direct integral von Neumann algebra
® !
M= / ro(AY'dP(w),
Q

from the measurable field of von Neumann algebras w To(A)". The ex-
istence of a strongly continuous, one-parameter group of unitaries on the
direct integral Hilbert space H, is established in theorem 4.3.3.2. This was
achieved by constructing a family of decomposable operators {U,}, from the
measurable field of unitaries w — U;(w). Moreover, this strongly continu-
ous group of unitaries in turn gives rise to a g-weakly continuous group of
automorphisms 7, of the von Neumann algebra M. From the measurable
field %H p(w), of KMS states p(w), which are extensions of the KMS states
p(w) A the von Neumann algebras m,(.A)", we construct a faithful normal
state p of M. This fact is established in theorem 4.3.4.1. In theor_em 4.3.4.3,
this faithful ﬁormal state j is shown to be a (7,3)-KMS state of the direct
integral von Neumann algebra M.

The final Chapter in this thesis is devoted to a discussion on the results
obtained in chapters (3) and (4) and their implications. Some of the open

problems which remain unresolved are identified.
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Chapter 2
Mathematical Preliminaries

4

This chapter is devoted to ;a discussion on mathematical preliminaries en-
compassing several areas in analysis. For the convenience of the reader we
include some standard results which one .may have the occasion to use in the
thesis. We begin with a section on analysis in normed linear spaces. By and
large, this section will feature notions of measurability of functions taking
values in a Banach space and properties of the Bochner integral. Some im-
portant results involving complex valued analytic functions have also been

included.

2.1 Analysis in Normed Linear Spaces

2.1.1 Analytic Fuhctions

Theorem 2.1.1.1 (Vitali’s convergence theorem). Let f.(z) be a se-

quence of functions, each regular in a region D; let

[fa(2)l < M

12



for every m, and z in D, and let f,(z) tend to a limit as n — co, at a
set of points having a limit point inside D. Then fn(z) tends to a limit in
any region bounded by a contour, interior to D, the limit being an analyitc

function of z.
Proof See [Tit 91](Theorem 5.21). A

Theorem 2.1.1.2 (Phragmen-Lindeldf). Let D be the open strip in €
defined by

D={zz€la<Jz<b}

and D the closure of D. Let f be a complex function which is analytic on D,

and bounded and continuous on D. It follows that the function

y € [a,b] = g(y) = log (gs;elglf(w + z"y)l)

s convex. In particular,

sup (:)] = o { sup (e + i), sup (e + ) }.

z€D

Proof Vide [Rob 81](Proposition 5.3.5). | A

Theorem 2.1.1.3 Suppose that v is the boundary of an unbounded region
Q, f e H(Q), f is continuous on QUT, and there are constants B < co and
M < oo, such that, |f| < M onT and |f| < B in Q. Then, we actually have
|F| <M in Q.

Proof See problem 11 on page 264 in {Rud 87]. A

13



2.1.2 Measure Theoretic Preliminaries

Letv Q be an abstract set, C a o-ring of subsets of Q, and m defined on
be a o-finite measure. In this section, we study the notion of measurability
for vector valued functions f(o) on Q, taking. values in a Banach space X,
relative to the measure m. There are several notions of measurability for
vector valued functions.

The following definitions have been taken from [Hil 57].

Definition 2.1.2.1 1. f(o) is said to be finitely—valued if it is constant
on each of a finite number of disjoint measurable sets E; and equal to

0 on Q\ UE;.

2. It is a stimple function if it is finitely-valued and if the set for which

lf(o)l| > 0 is of finite measure .

3. f(o) is a countably~valued function if it assumes at most a countable set
of values in X, assuming each value different from 0 on a measurable

subset.

Definition 2.1.2.2 f(o) is said to be separably-valued if its range, f(Q) is
separable. It is almost separably—valued if there exists a m~null set Ey € C

such that f(Q\ Ey) is separable.

Definition 2.1.2.3 1. f(o) is said to be weakly measurable in Q if the

numerical functions 2*(f(o)) are measurable for each z* € X*.

14



2. f(o) is strongly measurable if there exists a sequence of countably-

valued functions converging almost everywhere in Q to f(o).

Note that if m(Q) < oo, then we may replace “countably-valued” in part (2)
by “simple”. | _
A subset A C X* is said to be determining for X if ||z|| = sup{|z*(z)|;2* € A}

forallz € X.

Theorem 2.1.2.4 If f(o) is weakly measurable and if there ezists a denu-
merable set A which is determining for X, then the numerically valued func-

tion || f(o)|l is measurable.
Proof Refer to [Hil 57](Theorem 3.5.4). | A

Theorem 2.1.2.5 A vector valued function on () taking values in X is
strongly measurable if and only if it is weakly measurable and almost sep-

arably valued.
Proof Theorem 3.5.3 in [Hil 57). A

Corollary 2.1.2.6 If X is separable, then strong and weak measufabz'lz’ty are

equivalent notions.

Theorem 2.1.2.7 1. If f(0) and g(o) are strongly measurable functions
on Q) taking values in X, and v1, 72 are constants, then v f(o)+7y29(0)

is strongly measurable.

2. If k(o) is a finite numerically valued function which is measurable, then

h(a}f(a) is strongly measurable if f(o) has this property.

15



3. If f(o) 1s the limit almost everywhere of a sequence of strongly mea-

surable functions, then f(o) is strongly measurable.

4. The same conclusion is valid if in (3) the word “limit” (that is, strong

limit) is replaced by “weak limit”.

5. The conclusion is also valid if the “limit almost everywhere” is replaced

by the “limit in measure”.

Proof See theorem 3.5.4 in [Hil 57]. . A
Next, we introduce the Bochner integral. The results listed in this part

of the section have been taken from [Hil 57}, chapter 3.

Definition 2.1.2.8 A countably valued function f(o) from Q to X is Bochner
integrable, if and only if, ||f(o)|| is Lebesgue integrable. By definition, the
Bochner integral of f(c) on E € C, denoted by (B) Je i(a)dm is given by
(B)/ flo)dm = > zxm(E N E),
E k=1
where flo)==2, on Ey € C(k=1,2,...). This integral is well defined for all
E € C and for Q itself. This follows from the fact that || f(o)|| is integrable.

Definition 2.1.2.9 A function f(o) from Q to X is Bochner integrable if,
and only if, there exists a sequence of countably valued Bochner integrable

functions {fn(c)} converging almost everywhere to f(o) and such that

n-—

i [ 11/(0) = fulo)dm =0

16



By definition,
(B)/ f(o)dm = lirn(B)/ fn(o)dm,
E n—+00 E
for each E€C and E = ().
. Theorem 2.1.2.10 A necessary and sufficient condition for f(o) from Q

to X be Bochner integrable is that, f(o) be strongly measurable and that
Jo lf()]jdm < co.

We,shall denote the class of all Bochner integrable functions relative to
m, by B(Q, X,m). Some interesting properties of the Bochner integral have

been listed below

Proposition 2.1.2.11 If f;(0) and fa(o) € B(Q, X, m) and v1,7, are con-

stants, then v f1(0) + v f2(0) € B(Q, X, m) and

/ (2(0) + 72 fa(o))dm = 71 / f1(0)dm + 7 / fulo)dm,
E _ E E
forall E€C and E = Q.
Proposition 2.1.2.12 If f(0) € B(Q,X,m), then
! /E f(o)dm]| < /E 1£(o)lldm,
forall E€C and E=Q.

Proposition 2.1.2.13 Let T be a closed linear transformation from X to

Y. If f(c) € B(Q, X, m) and T(f(c)) € B(Q,Y,m), then

r( [ s(oyim) = [ 1(sto))dm

foral E€C and E = Q.

17



If, in particular, T is a bounded, linear transformation from X to Y, then
the theorem applies if only f(o) € B(f2, X, m).

The last result in this section is an analogue of Fubini’s theorem for
Bochner integrals.
Suppose that S and T are abstract sets possessing o-rings of subsets C and
F, with o-finite measures m and n defined on C and F, respectively. We
denote the o —ring of subsets of § x T generated by the class of measurable

rectangles by C x F. Finally we denote the product measure by m x n.

Theorem 2.1.2.14 If a function f(o,7) on S x T taking values in X,
is Bochner integrable, then the functions g(o) = [ f(o,7)dn and h(r) =
[s f(o,7)dm are defined almost everywhere in S and T respectively, Bochner

integrable on S and T respectively, and

flo.7)d(m x n) = /Sg(o)dm=/Th(T)dn.

SxT

Proof Vide [Hil 57], theorem 3.7.13. A

In the next section we collect some standard results pertaining to the
spectral theory of self adjoint operators. We also include some important

results which arise in the theory of one-parameter groups of unitaries.

2.2 Operator Theoretic Preliminaries

Theorem 2.2.0.15 (Spectral Theorem). Let A be a self adjoint operator

on a Hilbert space H with inner product (.,.). Then, there exists an unique
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spectral family E(X) on 'H such that,
Ap= / AAE()N).
R
and the domain of A,
D(4) = (g e s [ Nd(B(XN)s,9) < oo}
R

Proposition 2.2.0.16 Let A be a self adjoint operator with spectral family

E()),then s € o(A) if and only if, E(s +¢€) — E(s — €) # 0 for every ¢ > 0.

Proof See [Wei 80](Theorem 7.22). A
We denote the essential spectrum of a self adjoint operator A by o.(A)

and the discrete spectrum by o4(A).

Proposition 2.2.0.17 Let A be as in the above proposition, then s € o.(A)
if and only if, for every e > 0, we have dim(R(E(s + €) — E(s — ¢€))) = 0.

Proof Vide [Wei 80](Theorem 7.24). A

Proposition 2.2.0.18 Let A be a self adjoint operator on a Hilbert spdce
H, and R(A, z) denote the resolvent (A — zI)~! at z. Then for ¢, ¥ € H,

we have
(E(N¢, %)
- . 1' A6 ' . ' .
= it ot [ (- e A7 = (s de - A)70) 6, )ds
Proof Refer to theorem 7.17 in {Wei 80]. A
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Proposition 2.2.0.19 Let A be a self adjoint operator on a Hilbert space H
and ¢, Yy € H. If Sz > 0, then

((R(A, 2))p,%) =i /0 ” et (e, ) dt

and if Sz <0,

(R(A,2)68) =i [ e, 0)an
0

where the integral is a Riemann integral.

4

Proof Vide [Dun 63](Chapter XII, Section VI, Theorem 1) A
Definition 2.2.0.20 An operator function U(t) on « Hilbert space H, sat-
isfying

1. For each t € IR, U(t) is a unitary operator and U(t + s) = U(t)U(s)

for allt € R.

2. If ¢ € H and t — tg, then U(t)¢ — U(to),

is called a strongly continuous, one-parameter group of unitary operators.

Theorem 2.2.0.21 (Stone’s Theorem). Let U(t) be a strongly continu-
ous, one—parameter unitary group on a« Hilbert space H. Then there is a self

adjoint operator A on H such that U(t) = 4.
Proof See [Sim 80)(Theorem VIILS). A

Definition 2.2.0.22 If U(t) is a strongly continuous, one—parameter uni-
tary group, then the self adjoint operator A with U(t) = €™4, is called the

infinitesimal generator of U(t).
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It is worth noting that if U(t) is weakly continuous, then it is strongly
continuous.
In the next section we collect a number of results in the theory of operator

algebras which are relevant to the study of Quantum Statistical Mechanics.

2.3 Operator Algebraic Preliminaries

2.3.1 Standard Results in the Theory of C*—Algebras
and von Neumann Algebras

4

Definition 2.3.1.1 A normed algebra A with an involution which is com-

plete and has the property || A*|| = || A||, is called a Banach *-algebra.
Definition 2.3.1.2 A C*-algebra is a Banach *-algebra with the property
1A= Al = || A]]*.

Definition 2.3.1.3 A linear functional p over a C*—algebra A is defined to
be positive if,

p(A7A) 2 0,
for all A € A. A positive linear functional p over a C*-algebra A with

llpll = 1 is called a state.

Note that the set of states E4 of the C*—algebra is weak*~compact if, and

only if, A contains an identity.

Definition 2.3.1.4 A von Neumann algebra onH is a*~algebra M of L(H)
such that
M=M"
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where M’ denotes the commutant of M and M" denotes the commutant of

M/’. The center E(M) of a von Neumann algebra is defined by
EM)=MnM.

A von Neumann algebra is called a factor, if it has a trivial center, i.e. if

E(M) = @I

Definition 2.3.1.5 Let M be a von Neumann algebra and p a positive linear
functional on M. If p(l.u.b.oAs) = lw.b.ap(As) for all increasing nets {As}

in My with an upper bound, then p is defined to be normal.

Definition 2.3.1.6 A von Neumann algebra M is said to be o—finite if all
collections of mutually orthogonal projections have at most a countable car-

dinality.

Definition 2.3.1.7 A representation of a C™—algebra A is defined to be a
pai“r (H, =), where H is a complex Hilbert space and © a *-morphism of A
into L(H). The representation is said to be faithful if and only if, 7 is a *-

isomorphism between A and 7(A).

It is worth mentioning that if 7 is a representation of a C*-algebra A,
then 7 is continuous and ||7(A)|| < ||A]] for all A € A. The equality holds

only in the case of a faithful representation.

Definition 2.3.1.8 A vector © in a Hilbert space H is said to be cyclic for

a set of bounded operators N, if the set {AO|A € M} is dense in H.
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Definition 2.3.1.9 A cyclic representation of a C*-algebra A, is defined to
be a triple (H,w,0), where (H,*) is a representation of A, and © is a vector

in ‘H which is cyclic for © in H.

Theorem 2.3.1.10 Let p be a state over the C*—algebra A. Tt follows that

there ezists a cyclic representation (H,, 7,, ©,) of A such that, 7

p(A) = (©,7,(A)0),

for all A € A and consequently, |0,[|%> = ||pl| = 1. Moreover, the represen-

tation is unique upto unitary equivalence.

Proof Refer to theorem 2.3.16 in [Rob 87]. A

Definition 2.3.1.11 A state p of a C*~algebra is called a primary state,
or a factor state, if m,(A)" is a factor, where 7, is the associated cyclic

representation.

Definition 2.3.1.12 Let M be a von Neumann algebra on a Hilbert space
H. A subset R C H is separating for M if for any A € M, A€ =0 for all
£ €R implies A= 0.

Definition 2.3.1.13 A subset R C H is cyclic for M if [MR] = H, where
[MR] denotes the closure of the linear span of elements of the form A,

where A€ M and £ € H.

" Proposition 2.3.1.14 Let M be a von Neumann algebra on H and R CH

a subset. The following conditions are equivalent:
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1. R is cyclic for M;
2. R 1is separating for M.

Proof Vide [Rob 87](Proposition 2.5.3). A

Next, a directed set J is said to possess an orthogonality relation if there

exists a relation L, between pairs of elements of J such that,
1. if o € J then thereis a 8 € J with a LS;
2. if a < B and BL~ then aly;

3. if LB and aly then there exists a § € J such that, el and § > 3,~.

Remark If ¢ is an automorphism of a C*-algebra which satisfies 02 = 1,

then each element A € A, has an unique decomposition into odd and even

parts with respect to o. This decomposition is defined by

Axo(A)
o

A=At + A, Af =

It follows that o(A%*) = +A, the even elements of A form a C*-subalgebra

A¢ of A and the odd elements A, form a Banach space.

Definition 2.3.1.15 A quasi-local algebra is a C*-algebra A and a net
{Aa}aes of C*—subalgebras such that, index set J has an orthogonality rela-

tion and the following properties are valid:
1. if a> B then Ay D Ag;

2. A=U,A,, where the bar denotes the uniform closure;
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3. The algebras A, have a common identity I:

4. there exists an automorphism o such that 0? = 1, 0(As) = A, and
[.AZ,, %] = {0}; ['Agn ,?3] = {0}; {AZ’A%} = {0} whenever alpB,
where A, C A, and AZ, C A, are odd and even elements with respect

to o.

We have used the notation {A, B} = AB + BA. One case covered by this

definiton is o =1 and then A% = A, and the condition (4) simplifies to
[Aa, Ag] = {0}
whenever d.Lﬁ.

Proposition 2.3.1.16 Let A, {A,}acs be a quasi-local algebra and assume

that each A, is simple. It follows that A is simple.
Proof See corollary 2.6.19 in [Rob 87]. A

Definition 2.3.1.17 A C*-algebra A with unit I, is said to be uniformly
matricial if there is a sequence {An} of C*—.subalgeb'ra:s of A and a sequence
{n;} of positive integers such that, A; is *~isomorphic to the algebra of all

n; X n; complex matrices,
IleAACACAC---,

and A is the norm—closure of UA;. We then describe A in more detail,
as uniformly matricial of type {n;}, and refer to the sequence {A;} as a

generating nest of type {n;} for A.
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Proposition 2.3.1.18 There is a uniformly matricial C*-algebra of type
{n;}, if and only if, the sequence {n;} of positive integers is strictly increasing
and n; divides nj41(5 = 1,2,...). When these conditions are satisfied, all
uniformly matricial algebras of type {n;} are *—isomorphic and are simple

C*—dlgebras.
Proof See proposition 10.4.18 in [Kad 86]. A

Definition 2.3.1.19 Let {A; : j € J} be a family of C*-algebras (with unit
I; in A;), in which the index set J is directed by a binary relation <. Suppose
that, whenever j,k € J and j < k, there is specified, a *~isomorphism @y ;
from A; into Ay (with @ ;(I;) = Ix),; and finally , suppose that

Q0 ®r; = i ; whenever j,k,l € J and j <k < [. In these circumstances,
we say that the C*~algebras {Ajéj € J}, together with the *~isomorphisms |
{®x: 5,k € J,j. < k}, constitﬁte a directed system of C*falgebras. Note

that ®;; is the identity mapping on A;.

Proposition 2.3.1.20 Suppose that the C*-algebras {A; : j € J}, and the
*—isomorphisms @, : A; — A; (5,k € J;7 < k), together form a directed

system.

1. There is a C*—algebra A and for each j in J, a *—isomorphism ¢;,
from A; into A (carrying the unit of A; into that of A), such that
@; = ¢ 0 Op; when j < k and U{$;(A;);j € J} is everywhere dense
in A.



2. The C*-algebra A occuring in (1) is uniquely determined, up to *-
isomorphism, if C is a C*-algebra, ¢ : A; — C is a *~isomorphism
(for each j in J) and conditions analogous to those in (1) are satisfied,
then there is a *—isomorphism ¥ from A onto C, such that ¢; = Vo ¢;,

for each 7 in J.

Proof Refer to proposition 11.4.1 in [Kad 86]. A
The C*-algebra A occuring in the above proposition is called the induc-

tive limit of the directed system {A;;j € J}.

T o

Proposition 2.3.1.21 If A is the inductive limit of a directed system of

simple C*—algebras, then A is simple.
Proof Vide proposition 11.4.2 on [Kad 86]. A

Definition 2.8.1.22 A one—parameter familyt € IR — 7 of automorphisms
of the C*—algebra A, is called a strongly continuous group of automorphisms

of A, if,
1. T +to = Tty O’th} tl,tg = R, and To = 1,

2. t = (A) is continuous in norm for all A€ A.

Definition 2.3.1.23 A one-parameter familyt € IR — 7, of automorphisms
of a von Neumann algebra M is called a weakly continuous group of auto-

morphisms of M if
1 Tii+ty = Tty O Tiy, tl,tg € R, and To =1,
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2. t = 1(A) is weakly continvous for all A € M.

Definition 2.3.1.24 A derivation § of a C*—algebra A is a linear opera-
tor from a *-subalgebra D($), the domain of §, into A with the following

properties:

1. 8(A)* = 6(A*), A€ D(8);

2. 5(AB) = §(A)B + AS(B); A, B € D(5).

Definition 2.3.1.25 Let S, be a sequence of operators on a Banach space

X and let G(S,) C X x X be their graphs. Define

G = lim G(S5,)

n—0

as the set of pairs (A, B) € X x X such that there exists a sequence (An, B,) €

X x X with An € D(Sn), B = SnAn, and

A= lim A,, B = lim B,.

n—eo n—+0co

Define D(G) as the set of A € X such that, there ezists B € X with (A, B) €
G and similarly, R(G) is the set of B € X such that, (A, B) € G for some
A€ X. If G is the graph of an operator S, then S is called the graph limit

of Sn. Then clearly D(S) = D(G) and R(S) = R(G).

Definition 2.3.1.26 Let (A,G,7) be a C*-dynamical system. We say that

the system is asymptotically abelian if there is a net g, in G, such that
lim || Ay, (B) — 7o (B)All = 0.
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Furthermore, the states p for which there exists a net g, in G such that,

lim (A, (B)) = p(A)p(74.(B))] = 0

are called strongly clustering states.

2.3.2 KMS States and Associated Representations

Definition 2.3.2.1 Let (A, 1) be a C*—dynamical system, or a W*-dynamical
system and p a state over A which is assumed t,o be normal in the W*
case. ‘Then, p is said to be a (1,8)-KMS state if, for 8 > 0 and any pair
A, B € A, there exists a complex function Fap which is analytic on the open

strip 0 < Sz < ﬁ, uniformly bounded and continuous on the closed strip

0 < Sz < 3 such that,
Fap(t) = p(AnB) and Fap(t+i8)= p(r(B)A).

If B < 0, then p is said to be a (T,B)—KMS state if there exists a complex
function Fup which is analytic on the open strip B < Sz < 0, uniformly

- bounded and continuous for < 32 <0 such that,
FA,B(t) = p(ATtB) and FA,B(t + Zﬁ) = p(Tt(B)A)

Proposition 2.3.2.2 Let p be a (1,8)-KMS state of the C*-dynamical sys-
tem (A, 7) with B3 € IR\ {0} and let p be the normal extension of p to the
weak closure M, = m(A)" of A in the cyclic representation (H,,7,,0,).
It follows that there ezists an unique o-weakly continuous group t — 7y of

*—automorphisms of A, such that

7:t('"'p(A)) = "Tp(Tt(A))
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for all A€ A and t € R. Moreover, j is a (7,8)-KMS state on M.
Proof Refer to corollary 5.3.4 in [Rob 81]. A

Proposition 2.3.2.3 If p is the only state satisfying the (7, 8)-KMS condi-

tion, then p is a primary state.
Proof Vide corollary 4.14 in [Hug 72]. A

Proposition 2.3.2.4 An extremal invariant state p, which satisfies the (1,8)-

KMS condition is primary.

Proof See corollary 4.15 in [Hug 72]. A
Let (A,7) be a C*~dynamical system. If £ be the set of states of the

C*-algebra A, then an extremal invariant state is an extreme point of the

convex set £, which is invariant under the action of the automorphism group

T.

Some algebraic properties of a KMS state and that of its associated repre-

sentation are as follows:
1. If p is a (7, B)-KMS state, then p(rzA) = p(A).

2. The sets [} = {A € A|p(A*A) = 0} and I, = {A € A|p(AA*) = 0}

are identical and form a two sided ideal.

3. If (H,,m,, ©,) is the cyclic representation of A associated with the state
p, then the von Neumann algebra m,(.A)" has a cyclic and separating

vector in O,.
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2.3.3 Arveson Spectrum

Let A be a C*-algebra and 7; a strongly continuous, one-parameter group

of automorphisms of .A. Now, the Bochner integral

/ T Ft)n(A)dt = T(f)A A€ A, fe LY(R),

defines a representation ' of L!(IR) into the bounded operators on A. Then

the Arveson spectrum Sp(7) of 7 is given by

1

Sp(r)={se€ R: f(s)=0,Yf € ker ['}.

Proposition 2.3.3.1 If 7 is a strongly continuous, one—parameter group of
automorphisms of a C*—algebra A, then the following statements are equiva-

lent:
1. s € Sp(r).

2. For every f in L*(IR) we have |f(s)| < |T(f)]|.

3. If f € L}(IR) such that T(f) =0 then f(s) = 0.

Proof Refer to proposition 8.1.9 in [Ped 79]. A
The last section deals with the theory of direct integrals and decomposi-

tions.

2.4 Standard Results in the Theory of Direct
Integrals and Decompositions

All the results listed here can be found in [Dix 81]. |
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2.4.1 Measurable Vector Fields

Let  be a Borel space and u a finite measure on . A mapping w — H,
on Q, such that H, is a Hilbert space for every w € §2, with inner product,
(., -)u, is called a field of complex Hilbert spaces. Now let F be the collection
of all mappings w — z(w) such that, z(w) € H,. Such a mapping is called a

vector field. It is clearly seen that F is a complex vector space.

Definition 2.4.1.1 Let w — H, be a field of complex Hilbert spaces over
- Q0 and F the vector space of vector fields. We say that w — H, is a p—
measurable field of Hilbert spaces if there is given a subspace K of F having

the following properties:
1. For every z € K, the function w > ||z(w)]|| is p—measurable;

2. Ify € F is such that, for every z € K, the function w — (z(w), y(w)).,

15 u—measurable, then, y € K;

3. There exists -a sequence {zy,22,.:.} of elements of K, such that, for

every w € §2, the z,(w)’s form a total sequence in H,,.

The vector fields belonging to K are then called u-measurable vector fields. A
sequence {1, T2,...} of p—measurable vector fields possessing property (3) is
called a fundamental sequence of u—measurable vector fields. In fact property

(3) implies that the H,’s are separable.

Hence, it is easily seen that if z and y are measurable vector fields then,

w = (z(w), y(w))y is a measurable function of w. By property (2) of the
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above definition, the product of a measurable vector field with a complex
valued measurable function is a measurable vector field. The same property
also implies that the weak limit of a sequence of measurable vector fields

which converges at each point of 2 is a measurable vector field.

Proposition 2.4.1.2 Let ) be a Borel space, i a finite measure and w — H,,

a measurable field of Hilbert spaces.

1. The set Q, of all w € Q such that the dimension d(w) of H,, is equal to

p is measurable.

2. There exists a sequence {y1,yz,...} of measurable vector fields possess-
ing the following properties:
() if d(w) = X, {y;(w),y2(w), ...} is an orthonormal basis of H,;
(6) if dlw) < X, {y1(w),12(w), ..., Yaw)(w)} is an orthonormal basis
of H,,, and yi(w) =0 for all ¢ > d(w).

Proof. See‘proposition 1 in [Dix 81] (Chapter 1 of Part II). A

Definition 2.4.1.3 A sequence {y1,Y2,...} of measurable vector fields hav-
ing the properties listed in (2), of the above proposition, is called a measurable

field of orthonormal bases.

Proposition 2.4.1.4 Let {z;, z,,...} be a fundamental sequence of measur-
able fields. For a vector field z over Q) to be measurable, it is necessary and

sufficient that the functions w (m(w),:t';(w))w be measurable.
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Proof Vide proposition 2 in [Dix 81] (Chapter 1 of Part II). A

Proposition 2.4.1.5 Let Q be a Borel space, jt a finite measure on §), and
w — H, a field of Hilbert spaces over Q). Let {z1,zs,...} be a sequence of

vector fields having the following properties:

1. The functions w > (x;(w),z;(w)), are measurable;
2. For every w € Q, the z;(w) form a total sequence in H,.

1

Then, there exists exactly one measurable field structure on the H,’s such

that the fields z; are measurable.

Proof Vide proposition 4 in [D‘ii 81] (Chapter 1 of PartlI). A
2.4.2 Square Integrable Vector Fields

Let w — H, be a p—measurable field of complex Hilbert spaces over 2. A

vector field z is said to be square integrable, if it is measurable and if,

L'II(w)il?clﬁt(w) <o

The set of square integrable fields is a complex vector space . For z,y € N,

(z(w), y(w))o is an integrable function of w. On putting

(2,y) = /Q (2(), y()pudp(w),

the space A is endowed with a complex pre~Hilbert space structure. We

have for z € N,

|2 = /Q (@) P dya(w).
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Thus, the z € N such that ||z|| = 0, are just those z’s which vanish almost
everywhere. We will identify two elements of N which are equal almost
everywhere. In other words, we consider the pre-Hilbert space H associated
with A. The elements of # may be regarded as vector fields. For z € H we
may therefore speak of the values z(w) € H,,. It should be noted that the

z(w)’s are determined to within negligible sets.

Proposition 2.4.2.1 H is a Hilbert space.

1

Proof  Refer to proposition 5 in [Dix 81] (Chapter 1 of Part II). . A

Definition 2.4.2.2 The space H is called the direct integral of the H, s and
is denoted by fga Hodp(w).

Proposition 2.4.2.3 let {y1,ys,...} be a measurable field of orthonormal
bases. Let z be a vector field. Then x € H if and only if the functions

w = (z(w),yi(w)), are square integrable and

Z / o). wle)of () <

Proof Refer to proposition 6 in [Dix 81] (Chapter 1 of Part II). A

Proposition 2.4.2.4 Letw +— H, be a p—measurable field of complex Hilbert
spaces over Q and {z;} a fundamental sequence of measurable vector fields.

For every measurable vector field w — z(w), there exists a sequence of vector

fields of the form
W Zf,(w):c w
=1

35



where the fi(w)’s are measurable complex valued functions on §), which con-

verge to z(w) almost everywhere on (1.

Proof Vide problem 3 in [Dix 81] (Page (176)). A

2.4.3 Measurable Fields of Operators

Let Q2 be a Borel space, p a finite measure on §), and w + H,, a y—-measurable
ﬁféld of complex Hilbert spaces over . For every w € ), let T(w) be an
elemedt of L(H,), i.é., a bounded linear operator on H,. Then, the mapping

w + T(w) is called a field of bounded linear operators over ).

Definition 2.4.8.1 The field of bounded linear operators w — T(w) is said -
to be measurable if, for every measurable vector field w — z(w) € H,, the

vector field w + T(w)z(w) € H,, is measurable.

Proposition 2.4.3.2 Let {z,z,...} be afundahzental sequence of measur-
able vector fields with values in the H,’s. For the field w — T(w) to be mea-
surable, it is necessary and sufficient that the functions w = (T (w)z;(w), z;(w))w

be measurable.

Proof Refer to proposition 1 in [Dix 81] (Chapter 2 of Part II). A

Let w — H., be a p-measurable field of complex Hilbert spaces over {). Let

<]
H = / H,dp(w).
Q

A measurable field of bounded linear operators w T(w) € L(H,) is said

to be essentially bounded if the essential supremum M of the function w
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[[T(w)|| is finite. If this is the case, for every square integrable vector field
~ z, the vector field w — z'(w) = T(w)z(w) is also a square integrable vector
field and we have ||T|| < M. Thus = +— 2’ establishes a correspondence

T : H — H such that, T is a bounded linear operator on ‘H with ||T|| < M.
Proposition 2.4.3.3 We have ||T|| = M.

Proof Refer to proposition 2 in [Dix 81] (Chapter 2 of Partll). A

This ﬁroposition yields the following corollary.

Corollary 2.4.3.4 If two essentially bounded measurable fields of bounded
linear operatorsvdeﬁne the same element of L(H), they are equal almost ev-

erywhere.

Definition 2.4.3.5 An operator T € L(H) is said to be decomposable, if it
is defined by an essentially bounded measurable field of operators w — T(w).

We then write

@ .
/ T(w)dp(w).
Q

It follows from the corollary that the T'(w)’s may be defined upto negli-
gible subsets of . In particular, given a point w € Q of measure zero , T'(w)

may be chosen arbitrarily.

Proposition 2.4.3.6 Let T\, T, be decomposable operators. If

® ®
T1=/Q T\(w)du(w) and T2=/Q To(w)du(w),
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we have

&7
T1 + T2 = /e(Tl(UJ) + Tg(w))dp(w), T1T2 = /(; Tl(w)Tg(w)dp(w)

Q .
and
& ®
M, = / M (w)dp(w), T7 = / T (w)dp(w).
Q Q
Proof Vide proposition 3 in [Dix 81] (Chapter 2 of Part II). A

Proposition 2.4.3.7 Let
T; = Ti(w)dp(w) (i=1,2,...)

and

be decomposable operators.

1. If T; converges strongly to T, then there exists a subsequence T, such

that, T,, (w) converges strongly to T(w) almost everywhere.

2. If Ti(w) converges strongly to T(w) almost everywhere and if

sup; || T3]l < oo, then T; converges strongly to T.

Proof See proposition 4 in [Dix 81] (Chapter 2, Part II). A

Let LCQ(Q,/L)V be the set of essentially bounded, complex valued mea-
surable functions on (2, in which we identify any two functions which are
equal almost everywhere. If f € L*°(Q,u), then the field of operators
w = f(w)] € L(H,) is measurable and essentially bounded. Let T} be

the corresponding operator of H.
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Definition 2.4.3.8 The operators of the form Ty, where f € L®(Q, i) are

said to be diagonalisable.
If Z denotes all such operators, then, Z is a *-algebra of L(H).

Proposition 2.4.3.9 The algebra Z is an abelian von Neumann algebra and

Z' is o—finite.
Proof Refer to proposition 7 in [Dix 81} (Chapter 2, Part II). A
2.4.4 Maeasurable Fields of von Neumann Algebras

In this section, 2 will continue to be a Borel space, ¢ a finite measure on
! and w — H, a p-measurable field of complex Hilbert spaces. For every
w € Q, let A, be a von Neumann algebra on H,. The mapping w — A, is

called a field of von Neumann algebras.

Definition 2.4.4.1 A field of von Neumann algebras w — A, over Q is
said to be measurable, if there exists a sequence w —» T(w),w — Ta(w),...
of measurable fields of operators such that, A, is the von Neumann algebra

generated by the T;(w)’s almost ev'erywhere.

Proposition 2.4.4.2 Let w — A, be a measurable field of von Neumann

algebras. The set M of decomposable operators

&)
| T,
Q

such that T(w) € A, almost everywhere, is a von Neumann algebra on H
such that, Z C M C Z'. Moreover M is generated by Z and a countable

family of elements {T;}, where the T;(w)’s generate A, for almost every w.
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Proof See proposition 1 in [Dix 81] (Chapter 2, Part II). A

Definition 2.4.4.3 A von Neumann algebra M on a Hilbert space H is said
to be decomposable, if it is defined by a measurable field of w — A, of von

Neumann algebras. We then write
D
M =‘/ A dp(w).
Q

The A,’s are defined by M to within negligible sets.

L

Theorem 2.4.4.4 For a von Neumann algebra M to be decomposable it is
necessary and sufficient that it be the von Neumann algebra generated by Z

and a countable family of decomposable operators.

Proof Vide theorem 2 in [Dix 81] (Chapter 2, Part II). A
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Chapter 3

Dynamics of a Quantum Spin
Glass

In this chapter we give a detailed account of the models of a quantum spin
glass investigated by us. .In the sequel, we give a description of the models
and establish the existence of global dynamics among other things. Tra-
ditionally, quantum spin glasses have been studied as systems of quantum
spins interacting through random interactions. These models are‘essentially
Ising;type models with random coupling. Generally, the coupling coefficients
are assumed to be independent, identically distributed random variables. An
alternate model of a quantum spin glass can be based on the realization that
the magnetic ions are randomly distributed at lattice sites. The spins there-
fore, may be considered to be located at the vertices of an infinite graph in
a lattice. There is no translation invariance in such a system, the lattice
itSelf plays no significant role. Therefore, one can caricature a quantum spin
glass as a quantum spin system with spins located at the Qertices of an in-
finite connected graph with countably infinite number of vertices. In such

a system, it is not necessary to consider random interactions. The study is
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restricted to deterministic interactions of the nearest neighbour type, with
two spins defined as neighbours if an edge connects the two. This model
may be regarded as a quantum analogue of the systems studied by Preston
[Pre 74] and others. In the sequel, we establish the existence of the global
dynamics of this inﬁnite system of quantum spins, discuss the equilibrium
state and establish the Kubo-Martin-Schwinger (KMS) condition. However,
our attempts to establish the maximum entropy principle failed on account
of absence of spatial homogeneity. |

As expected, the thermodynamic limit of the local Gibbs states exists. Thus,
an equilibrium state at a fixed inverse temperature 3, exists for a quantum
spin system on an infinite graph.. But this state is by no means unique. It
is shown that it satisfies the Kubo-Martin—Schwinger condition. We would
like to point out ’phat these equilibrium states which arise as thermodynamic
limits of the the local Gibbs state are known to exist in the case of quan-
tum spin systems, where the spiné are located at each point of a countably
infinite set L. In such cases, there is no additional structure imposed on the
set L. However, In order to construct the dynamics for such spin systems,
one has to put stringent conditions on the nature of the interactions between
spins. In fact, in many cases, the interaction potentials are assumed to be of
exponential nature. Whereas, in the case of a quantum spin system on an
infinite graph, because of the additional structure, one does not have to be

very restrictive regarding the class of interaction potentials.
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3.1 A Quantum Spin System on an Infinite
Graph

Definition 3.1.0.5 A graph is said to be simple if it has no loops or multiple
edges. Such a graph is said to have a finite valency if there exists an a € Z*
such that, at most o edges are incident on any vertex. Here Z* denotes the

set of all positive integers.

Definition 3.1.0.6 A non empty finite subset S C V is said to be a simplex
of the graph G(V,E) if, for every vi, vz € S, there exists an edge connecting
the two. A subset S CV is said to be a n-simplezx (n >0 ) if S is a simplez

of the graph G and |S| = n+ 1. Here |.| denotes the cardinality of the set.

Lemma 3.1.0.7 [t is easily seen that, given a simple graph G(V,E) with
finite valency a € Z* and v € V, there is no n-simplez for n > o and there

are at most only a finite number of simplexes containing v.

Consider a quantum spin system on an infinite connected graph G(V,E),
where V is the set of countably infinite mumber of vertices and E the col-
lection of edges. The graph is assumed to be simple and has finite valency,
say, a € Z*. By a connected graph we mean that there is a path connecting
any two vertices of the graph. A quantum spin is assumed to be located at
each of these vertices. Two spins interact if they are connected by an edge.
A quasi-local UHF algebra constructed over finite subsets of the vertices of
the graph is associated with this spin system. Explicitly, one can order the

collection of all finite subsets of vertices by inclusion. With each vertex v
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of the graph G(V., E'), one can associate a two dimensional complex Hilbert
space H,. Then, with each finite * A C V', we associate the tensor product

space

Ha =®%U.

) vEA : :
We then define the local C*-algebra A, for each finite subset A C V by

Ay = L(Ha), where t(%A) denotes the space of all bounded linear operators
on Ha. Now, if Ay N Az = 0 for Aj,Az C V, then Haua, = Ha, ® Ha,
and Ay, is isomorphic to the C*-subalgebra Aj, ® I,, where I, is the
identity operator on Ha,. Further, if A; C A;, one can identify A,, with
the subalgebra As, ® Ix,\a, of Aa,. Let the identification map be given by
Ay oA ‘: A€ .,4,\; — A® Ipza, € Ap,- The collection {A44[A C V} along
with the collection of maps {ia, a,} has the structure of a directed system
of C*-algebras. Therefore, there exists a C*~algebra A with an identity I,
which is the inductive limit of the collection {A44]A C V'} of C*-algebras with
identity I. i.e., there exists a C*—algebra A and injective *~homomorphisms

ir: Ay - A such that,

/\l g ‘/\2 - i:\l(AAl) g iAz(AA2)7

J ialAn) = 4

ACV

and

IThroughout this chapter and the next, all A’s, X’s and Y’s which feature as subsets
of either V or Z¥, with or without subscripts, should be taken to be finite unless stated
otherwise.
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Also. for
Al N A2 = 0, [iAl (-AAl )a 2‘A2 ('AAZ’ )] = 0’

where [.,.] is the commutator. We will hence forth leave out the ia,,4,’s
and i,’s whenever no confusion can arise and regard A,’s as subalgebras of
A. This object A, along with the net of local C*;algebras {Ar}acy s a
quasi-local algebra (The orthogonality relation .L between A’s is defined by
AMLA I AN A, = 0). It is worth noting that A is an uniformly matricial
algebta (UHF), and hence a separable C*-algebra which is simple [Rob 81].
The local algebra Aj represents the physical observables associated with
the spins located in a finite region A, where as the quasi-local algebra A,

corresponds to the observables of the infinite spin system.

3.2 Interactions

Definition 3.2.0.8 An interaction ® is a function from the collection F of
finite subsets X of V into the Hermitian (self adjoint) elements in A such

that, for every finite X CV, ®(X) € Ax.

Definition 3.2.0.9 An interaction ® is said to be of the nearest neighbour

type if, ®(X) = 0 whenever X is not a simplex of the graph G.

Now for a finite X, ®(X) represents the interaction energy of the spins
confined to X C V. Hence, the total interaction energy for a finite A C V,

consists of the interaction energy of all finite subsystems X C A. Thus, we
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define this total energy as the Hamiltonian H(A) associated with A C V, i.e

XCA

H(A) is a Hermitian (self adjoint) element of Ajx.

3.3 Time Evolution

In order to study the evolution of the infinite spin system, we write down

the following equation of motion:

dAA
dtt =i[H(A),AY], A} € Ax.

Here, t — A2 describes the evolution of the observable A € Aj. This
equation of motion defines a rule by which the observables associated with
a finite A C V, evolve. With every A € A,, it associates the observable
TMA) = AN = HM A~ HM which yields the qﬁantum evolution of the
finite spin system. Clearly, 72(A) is an element of A, and 7 is a one-
parameter group of *~automorphisms of A4, which defines the time evolution
of the finite subsystem confined to A C V. As the system consists of infinite
number of spins, computing the time evolution of a fixed observable A € A,
where Ay C V, entails calculating the limit of 7,A(A) as A — occ. Here we
adopt thé convention that, A — oo indicates A eventually contains all finite
subseés of V. It is our endeavour to show that for a certain class of potentials
this limit exists for all A € A,,. In order to make this notion of convergence
precise, we observe that the collection F of all finite subsets A of V' which

is partially ordered by inclusion, is an increasing directed set. Hence, when
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we say that a net Sy converges to S in A, as A — oo (A eventually contains
all finite subsets of V'), we mean that for a given € > 0, there exists a finite
subset A" of V such that, ||Sy — S]] < ¢, whenever A D A". This is equivalent
to showing that for a given € > 0, there exists a finite subset A" of V such
that, |[Sx, — Sa,|| < € whenever A} D A" and A; D A

Next, note that the time evolution 7,4(A) of a finite system can be expanded
in terms of commutators as

M (A) = eHO e HO = R @) [H(A), A[™, (3.3.1)

n=0

where

[B,A]® = A, [B,A]™ =[B, A= BA— AB,

and

[B, A" = [B,[B, A"

This formula is easily verified by taking derivatives of the expression in the
middle and that of the expression on the right hand-side of (3.3.1).
In order to establish the dynamics of the spin system, we prove the fol-

lowing proposition.

Proposition 3.3.0.10 Let @ be a nearest neighbour type of inleraction for
the quantum spin system on the infinite graph G(V, E) with valency a such

that,

sup (Z ||<I>(X)Il) < co.

X3v
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Then, for A € Ax, with Ag CV, we have

.II[H(A),A](")IISIIAIIG'“'n!( (supZII‘I’ ) "“)~ (3.3:2)

X3v
Proof Take A € A,,, where Ag C V. One has, ®(X) € Ax for X C V.
Now the local algebras A,,, Aa, commute whenever Ay N Ay = 0.

Therefore,

IHA), A = 1) > (8 [®(X1), AJlll

X1CA XnCA

Yo > IR [@(X1), Allll

XiCA XaCA

S > (X)L [0, Al

X}ﬁSo#@ X,.nS,,_l-ﬁ@

4

IN

where

So = Ao

and

S]' Z.XJ‘UXj..l U...UX{UAy, forj>1.

Since ® is a nearest neighbour type of interaction potential, on applying

lemma 3.1.0.7, we notice that if

where

[2(X;), [ - [2(X1), Al]] € As;,

then,

X <o+l, Vi=1,2...,7,
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where « is the valency of the graph G(V, E). Therefore,

lSJ! < (le + lXj—ll +oeee ot |X1l + (A0|

Thus, we get

E@, A < 2Al D0 0 Do Xl 19X
X1NSo#®  XnNSn_1#0
‘ < 2PAl D] D0 Y D el el

v1 €S0 X191 vn€Sn—1 Xndtn

< 274N (G = D(a+1) + [Ad]) < )
i=1 X,Bv:

< Q"IAIIH i~ 1)(a+1) 4 |Ad) <supZ|]<I> )
=1 Xov

< ‘)"”All(n(a—l—l)—l—lel <supZH<I> ) .
X v

Now a™ < nle®, for ¢ > 0 hence,

I[H(A), AP < || Al|ellomn! <SUPZH‘I> ) JRICESY
ev

Xov

“A”elf\ohzl < <Sup Z 1®(X ”) e(a+1))

Notice that this estimate is independent of A and hence, we have

IN

[HA), AW = ..y (@ [©(X4), Al]]

X1CV  XaCV

as A — oo. A

Theorem 3.3.0.11 Let ® be a nearest neighbour type of interaction potential

for the quantum spin system on the infinite graph G(V, E) with valency o such
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that,

(o)<

Then, there exists a strongly continuous, one—parameter group of *—automorphisms

¢ of A such that, for all A € A we have
n(A) = lim 72(A),

where

‘ TtA(A) — e'iH(A)tAe—'iH(A)t,
and the limit is uniform for t on compact sets.

Proof We shall use the fact that

[H(A), A = Y 0 [8(Xa), [ [8(X), Alll,

X;Cv XnCV

as A — oo and inequality 3.3.2 to demonstrate that for A € Ay,, the limit

of 7,A(A) exists as A — oo.

-1
= < <supz |®(X )e(aH)) .
X v

It follows from equation 3.3.1 that for A € A,,.

Put

I A‘( ) — 72 (A)]]

IIZ H(Ar), AI™ — [H(Ay), (”))t"ll+ll Z -[H(A1) A](”t”ll
n_O n=N+1 n! X

+ |l Z —[H(Az A

n-N-H !
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Let € > 0 be given, and choose t such that |t| < t; < T. It follows from
inequality 3.3.2 in proposition 3.3.0.10 that, one can find N € Z* such that
forli=1,2

S Z-n n)an nd in n n
D0 SEHG), AP < 3 IHA), AW

" n=N+41 n=N+1

. [o.o] 't n
< e Y ()

n=N+1

< €
4.

Now, using the fact that
[HA), A —» >~ > [8(Xa), [ [8(X), A]l),

as A = oo, we can find a finite subset A’ of V such that,

v () _ () n_ €
I (A, AIP = (A, A | < 677
for all n < N whenever A; D A" and A; D A’. Thus, given € > 0, there exists

a finite A" C V such that,
17 (A) =72 ()]l <e,

whenever A; D A" and A, D A’. Hence, it follows that the convergence is
uniform in t on any closed subinterval of (—7,T) and in a ball around zero.
Since for ¢t € (—-T,T), the mapping A — 7,*(A) is a *~automorphism and

U 4

ACV

is dense in A, we conclude that

lim 7A(A),

A—oo

o1



exists for all A € A and t € (=T, T). Therefore,

(A) = Alim M A)

e
exists for all A € A and ¢t € (—=T,T), and thus, defines a *~automorphism of
A for each t € (=T, T). If we take t, s and ¢ + s in the interval [T, T] and
use the group property of ", then on taking the limit as A — oo, we get

75 0 Ty A) = T4s(A).

¢

This group property of 7; for |t| < T allows us to define 7; for all values of t.

The strong continuity of 7; follows from the series expansion. A

3.4 Equilibrium State and the KMS Condi-
tion

We now fo;us our attention on the study of equilibrium states of the quantum
spin system on an infinite graph. It is known that the equilibrium states
of infinite systems are stationary. The analytic properties of these states
are going to be the object of our study. In the sequel, we establish the
existence of the thermodynamic limit of the local Gibbhs states, and derive
some ihteresting properties connected with these states.

As discussed earlier, there is a Hamiltonian H(A) € A, associated with each
finite A C V. We are interested in the thermodynamic limit of the local
Gibbs states pp. Let us start by defining a local Gibbs state p, for a finite

ACYV as,

Tr(e=PHM A)
PMA) = = ()
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where A € Ay. Here 3 = KT™!, where K is the Boltzmann’s constant and

T the temperature.

Definition 3.4.0.12 Let {ps} be the collection of the local Gibbs states de-
fined on the local algebras Ap. If there is a state p on A such that, p is th¢
weak*-limit of a net of extensions of py to A, then we call p the thermody-
namic limit of the local Gibbs states. If pp, is one such net of extensions,

then for arbitrary A € Ap, and A, D Ay,

1

lim py,(A) = p(A).

Aqg—r00 :

Notice that the thermodynamic limit need not be unique, as different weak*—
limit points of the extensions of pa to A give rise to different thermodynamic

limats of pa.

A state obtained as the thermodynamic limit of the local Gibbs states {pa}
will be called the equilibrium state of the infinite quantum spin system.
Now, the thermodynamic limit of the local Gibbs states {pa} exists by
virtue of the fact that each pa can be ektended to the whole of A, and if py is
one such extension, then the collection {54} being weak*~compact, one can
always find an accumulation point p. Since A is separable, we can extract a

sequence Py, from the net g5 such that,

p(A) = lim ps,(4),

for all A € Aj and all A. Thus, the thermodynamic limit of the local Gibbs

states pa exists. In the discussion that follows, we derive an interesting prop-
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erty of the local Gibbs states ps and establish the Kubo-Martin-Schwinger

(KMS) condition for the equilibrium state p of the infinite system.

Proposition 3.4.0.13 Let A,B € Ay and 8 > 0. There exists a complex
valued function FA"B, which is analytic everywhere and uniformly bounded in

the strip 0 < Sz < B such that, for real t
Fi5(t) = pa(AT(B))
and
Fig(t+iB) = pa(" (B)A).
If B < 0, then there exists a complex valued function FA"B, which zs analytic
everywhere and uniformly bounded in the strip 3 < Sz < 0 such that, for
real t,
Fj5(1) = pa(A7)(B))
and
Fip(t+18) = pa(7(B)A).

Proof Let A, B € Aj and 8 > 0. Since H(A) € Aj, where A, is a matrix

algebra, T} (B) = /(M) Be~iH(A)! makes sense for all complex ¢ and hence,
has an analytic extension to the entire complex plane. Therefore, it follows

that pa(A7(B)) can be extended to an entire function F3 5(z) on €. Now,

for real t, consider

pa(ATh 4(B) = Tr(ePHA) AeiH (M) (t+0) Be—iH (A)(¢+i0))
e Tr(c-PAm)

Tr(e~PHA)H(A) Be-iH(A) 4)
Tr(e=BH(A))
= pa(r(B)A).
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The last equality follows from the cyclicity of the trace.” Further, [F_QyB(z)]
is bounded in the open strip and [F} g(z)| < [|A[l|| B]| on the boundary of
the strip. Therefore, it follows from a version of the Phragmen-Lindelof
theorem ([Rob 81], Prép 5.3.5) that, the maximum of the function |F2 5(2)|
is attained on the boundary. Hence the theorem holds for 3 > 0. Similarly,
the theorem can be proved for 8 < 0. A

In order to study the analytic property of the thermodynamic limit p of

the local Gibbs states pj, one needs to prove the following proposition.

Proposition 3.4.0.14 Let {A,} be a sequence of finite subsets of V such
that, limpeopa,(A) = p(A), VA € Ap, and all Ao CV. Then, for A,B €
Ap,, we have

lim pa, (A (B)) = p(Ar(B)),

n-+00
where the limit exists for all real t and uniformly fort in a small ball around

zZero.

Proof Let A, B¢ A.&o where Ap C V. Now we have from theorem 3.3.0.11
that,

lim 7,*"(B) = n(B),

n=+o0
for B € A,,. where the limit is uniform in ¢, in some ball around zero.
Therefore, given ¢ > 0 and a fixed ¢, there exists ng € Z*, which can be

chosen independent of ¢ in a ball around zero such that, for n,m > no,

€

4l Al

Im(B) = n"(B) < 7 and  ||n"(B) = (B)|| <
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Further, since

lim pa, (AT (B)) = p(Ar*~(B)),

n—roeo

we have for given m, and n > ng

loa, (AT (B)) = p(Ar ™ (B))] <

[CR e

These estimates allow us to arrive at the following inequalities:

|p(AT(B)) = pa, (A" (B))| < |p(AT(B)) — p(Ar*"(B))|

' T |p(AT(B)) = pa, (Ar(B))]
+ lpan (AT (B)) = pa, (AT (B)
<t (B) = (B4l

+ |lmt(B) = n(B)IIIA] + 5

< €.

This proves the proposition for real ¢, and ¢ in a small ball around zero. A

It is evident that the time evolution bears some relation with the equi-
librium state of the infinite system. One such relation is the Kubo-Martin-
Schwinger (KMS) condition. This condition may be formulated as follows

for the equilibrium state p.

Theorem 3.4.0.15 Let p be the equilibrium state of the quantum spin sys-
tem on the infinite graph G(V,E) and A,B € A. Then, for 3 > 0, there
ezists a function Fy p, which is analytic in the open strip 0 < Sz < B,

continuous and uniformly bounded in the closed strip 0 < Sz < 8 such that,

FA,B(t) = p(A7y(B)) and Fap(t+iB)= p(r:(B)A).

56



If B < 0, then there exists a function Fa p, which is analytic in the open
strip B < Sz < 0, continuous and uniformly bounded in the closed strip

B <z <0 such that,
Fap(t) = p(A1(B)) and Fap(t+iB) =.p(1't(B)A).

Proof We shall prove the theorem for the case 5 > 0. Let {A,} be a
sequence of finite subsets of Z* such that, lim, e pa,(B) = p(B), for all
B € A, and all Ay C V. It follows from proposition 3.4.0.13, that, for
B > 0and A, B € A,,, there exists a sequence of entire func.tions F 2”;3(,2),
which is uniformly bounded in the closed strip 0 < Sz < B such that, for

real t,
Fis(t) = pa(AT{(B)) and  Fiig(t+1iB) = pa, (" (B)A).

Therefore, it follows from proposition 3.4.0.14, that this sequence converges
pointwise on the real axis and in a neighbourhood of zero. Hence, as a
-consequence of Vitali’s theorem, see [Tit 91], the sequence F' ,‘1\”}3 of analytic
functions converges uniformly on every compact subset of the strip to a

function F4 g, which is analytic in the open strip 0 < ¥z < 8, continuous

and uniformly bounded in the closed strip 0 < $z < 3 such that,

Fap(t) = p(An(B)) and Fap(t+18)=p(n(B)A)

The general case can be handled by approximating arbitrary A € A by local
elements and using a version of the Phragmen-Lindeléf theorem ([Rob 81],

Prop 5.3.5).
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For B < 0, the theorem can be proved along the same lines by considering

the closed strip f < ¥z < 0. A

Corollary 3.4.0.16 The equilibrium state p of the infinite spin system is

invariant under time evolution given by the automorphism group 7.

Proof Take B=1Tin proposition'(3.4.0.14). AN

Thus, having established the existence of an equilibrium state of the spin
system on a,n.inﬁnite graph, we set our sights on proving the maximum en-
tropy principle for the infinite spin system. In view of this, we attempted to
establish the existence of thermodynamic quantities such as mean entropy
and the free energy of this infinite system. To this end we constructed a
nested sequence {G,(V,, E,)} of finite subgraphs of the infinite connected
graph G(V, E), with set of vertices V,, and collection of edges E,. Each of
these subgraphs G,(V;, E,) is constructed from the preceding subgra,phv by
simply adding those vertices of the graph G(V, E), which are connected to it
by an edge. The choice of the initial subgraph can be arbitrary. The inves-
tigation concerning the existence of mean entropy and the free energy of the
infinite system in the state p, entails computing the limit of the entropy per

Vn

. S . tog(Tr(e=PHVA)
site P-ﬁ(—l—) and the free energy per site —3~* oz (IV | ), asn — oo. Here

|V,.| denotes the cardinality of the set of vertices of the subgraph G, (V,, I2,).
The entropy S,,(V;) = —Tr(p.v,1 log(pv,)), where py, is the density matrix
cofresponding to the restriction of the state p to the local algébra Ay, as-
sociated with the subgraph G,(V,, E,). But, all attempts at proving the

existence of these limits failed, primarily because of the absence of spatial
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homogeneity. For, unlike in the case of a quantum spin system on a lattice,
the local entropy is not translation invariant. Besides, the absence of transla-
tion invariance also hindered the investigation pertaiﬁing to the existence of
free energy of the spin system on the infinite graph. Despite the fact that the
local entropy satisfies the strong subadditivity property, none of the results
pertaining to the exi;tence of the limit of objects such as %ﬂ as T — 00,
where f is a real valued subadditive function defined on R (R*,Z7), could
be applied in this case. Such results are known to have a role to play, in
demonstrating the existence of mean entropy for quantum spin systems on a
lattice with deterministic interaction potentials [Rue 69]. Thus, the question
of existence of these quantities remains unresolved. Therefore, one conjec-
tures that the maximum entropy principle may not hold for a quantum spin
system on an infinite connected graph with deterministic interaction poten-
tial of the nearest neighbour type. However, in the case of some random
models of a spin glass, subadditivity along with the appropriate ergodic the-
orem have been employed to establish the existence of some thermodynamic
quantities under fairly stringent conditions on the random interaction po-
tential. For, in the study of equilibrium spin glass theory through random
models on a lattice, van Hemmen et al [Hem 83, Ent 83] have shown that the
thermodynamic limit of the local free energy F'(A) exists. In fact, it has been
established that the free energy of the infinite system exists as a non-random
limit of FT/(\%l’ with probability one. Thus, one is obliged to conclude that the

attempt at understanding the behaviour of a quantum spin glass through
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quantum spin systems on an infinite graph, has not proved to be very useful.
Therefore, one is obliged to take recourse to the more traditional approach.

As mentioned earlier, in the more traditional line of thinking, quan-
tum spin glasses have been studied as systems of quantum spins interacting
through random interactions. These models are essentially Ising-type models
with random coupling. Extensive investigations on the existence of the ther-
modynamic limit have been made e. g. van Hemmen et al [Hem 83, Ent 83],
and the equilibrium statistical mechanics of such systems has been studied.
Although quantum spin glasses admit a natural dynamics, no attempt has
been made to study the dynamics of a quantum spin glass. Hence, we study
the dynamics of a quantum spin glass,‘ as a quantum spin system on an infi-
nite lattice with random interactions. We establish the. existence of a family
of one-parameter groups of *~automorphisms {r:(w)}, of the quasi-local al-
gebra A associated with the infinite system. Here w lives in a probability
space (2,8, P), where 2 is a set, S a sigma algebra and P a complete proba-
bility measure.” The strong measurability of (¢,w) — 7(w)(A4), forall Ae A
is established. Some interesting algebraic properties of the automorphism

groups 7:(w) as well as those of their generators d(w) have been derived.

3.5 Description of the Random Model

Consider a quantum spin system with spins located at the vertices of an infi-
nite lattice Z”. The interaction between spins of course taken to be random.

A quasi-local UHF algebra similar to the one in 3.1, constructed over the
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finite subsets of Z", is associated with this spin system. One can order the
collection of all finite subsets of Z” by inclusion. With each point in Z*,
one associates a two dimensional Hilbert space H,. Then with each finite
A C Z*, we associate the tensor product space

Ha = QM.

Tz€EA

where A C Z¥. We define a local C*-algebra for each finite A C Z* by
Ap = L(Hya), where L(H,) denotes the space of all bounded linear operators
on Ha. Now if Ay N Ay = 0 for Aj,Ay C Z*, then Ha,ua, = Ha, @ Ha,
and A,, is isomorphic to the C*-subalgebra Ay, ® Ij,, where I, is the
identity operator on H,,. Further, if Ay C A,, one can identify Ay, with
the subalgebra Aa, @ Ia,\a, of Aa,. Let the identification map be given by

Ay A 0 A€ Ax, = A ® Inza, € Aa,- The collection {Aa

A C 2,
with the collection of maps {ia, 4, } has the structure of a directed system of
C*-algebras. Therefore, there exists a C*-algebra A with an identity, which
is the inductive limit of the collection {Ax|A C Z"} of C*-algebras with
identity 1. i.e., there exists a C *--algebra A and injective *~homomorphisms

i : Ap — A such that,

A1 C Ay = 15, (An,) C i, (Ag,),

U ia(4n) =4

ACZY
and

in(I)=1 VYACZ"
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Also, for
AN A2 = @; [iA1(AA1)’ iAz ('AAz)] = 0’

where [.,.] is the commutator.

We will hence forth 'leave out the s, a,’s and ix’s whenever no confusion

can arise aﬁd regard Ap’s as subalgebras of A. This object A along with
the net of local C*-algebras {Aa}aczv is a quasi-local algebra (The orthog-
onality relation L betWeen A’s is defined by A; LA if Ay N Ay =0). Itis
easily ‘seen that the quasi-local UHF algebra A, is a éeparable C*-algebra
with no non-trivial closed ideals. Hence, it is a simple C*-algebra [Rob 81].
The local algebras A represent the physical observables associated with the
spins located in A, whereas the quasi-local algebra A corresponds to the
observables associated with the infinite spin system.
Having described the kinematical structure of the quantum spin system on
the lattice. Z", we now turn our attention to the action of the symmetry
group associated with the lattice Z”, on the observablc algebra A. To
this end, for each z € Z¥, choose an unitary mapping V(z) : Ho, — Ha,
where H, is the underlying Hilbert space at z. Now for z,,z, € Z¥, de-
fine V(za,21) : Hay = Hay, by V(za,21) = V(22)V(z1)™". It is clear that
for z1,29,23 € Z¥, V(z3,21) = V(z3,22)V(z2,21). Furthermore, for each
a € Z*, define Vy(a) : Hy = Hyya as Vi(a) = V(2 + a,z). Thus, if for each
A C Z¥, one were to define Vi (a) : Ha — Hata as

Va(a) = @ Vila),

€A
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! = Vata(—a). We can

then Vj(a) is an isomorphism and one has 2 Vj(a)
now introduce an action a of Z¥ as *~automorphisms of A as follows. For

each a € Z¥, define
aa(A) = Va(a)AVa(a)™'; VA€ Ay

Thus, o is consistently defined on the union of local C*-algebras | A4, as
an isometric *~isomorphism and hence, can be extended by continuity to an

automprphism of A, as

aa(AA) = AA-{-a .

Therefore, it follows from the quasi-local structure of A that

lim ||[ae(A),B]||=0, VA, Be€A

a—00

i.e., A is asymptotically abelian.

3.6 Random Interactions

Definition 3.6.0.17 An interaction U of the quantum spin system on the
infinite lattice Z¥, is a mapping from the collection of finite subsets X of Z*
into the Hermitian (self adjoint) elements of A such that, for every finite

X Czv, U(X) e Ay.

Before we introduce random interactions, one has to define the notion of
measurability of Banach space valued functions on a measure space (2, S, m),

where {2 is a set, S a sigma algebra and m a sigma—finite measure on Q.

2Here V(a)™" denotes the inverse of Vj(a).
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Definition 3.6.0.18 Let (Q,5,m) be a measure space. A function f : -%
B where B is a Banach space, is said to be weakly measurable if, for every
¢ € B*, the map w — ¢(f(w)) is S-measurable. f is said to be strongly
measurable if, there exists a sequence of countably valued functions strongly

convergent to f almost everywhere on Q [Hil 57].

In case m is a finite measure, then we may replace “countably valued” in
the above definition by “simple”. It can be shown that the notions of strong

and weak measurability are equivalent if B is separable.

Definition 3.6.0.19 Let (Q, S,.P) be a probability space and J some index
set. If T; is a measure preserving automorphism of Q, for each j € J, then
the action of T} ’s is said to be ergodic if, for A€ S, P(A) = 0 or 1 whenever

T;,A= A, forallj e J.

From now on, let (2,5, P) be a complete probability space, where 2 is
a complete separable metric space. S is the sigma algebra of subsets of Q,
containing the Borel sigma algebra B generated by open sets in 2. P is the

completion of a probability measure defined on B.

Definition 3.6.0.20 Let F be the collection of all finite subsets of ZV. A
random interaction is ¢ map ® : F x Q — A such that, for each w € Q,
®(.,w) is an interaction of the quantum spin system on Z" and w — ®(X,w)

is strongly measurable for every X € F.
Now, for finite A C Z*, the Hamiltonian associated with the spins confined
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to the region A is given by a Hermitian (self adjoint) element
H(Aw) =) o(X,w),
XCA

for w € Q. Clearly, H(A,w) is strongly measurable since each ®(X,w) is
strongly measurable on Q

In order to construct the dynamics of the quantum spin system with
random interactions, we have to restrict the class of random interactions
d. To,this end, we introduce a measure preserving group of automorphisms
{T.}sczv with an ergodic action on the probability space €, and thereby
restrict the class of interactions to those @ whith satisfy the following con-
dition:

B(X + a, Toow) = aa(B(X,w)).

From now on, we shall consider only those random interactions ¢ which

satisfy the above condition. Therefore, H(A + a,T_,w) = a(H(A,w)).

Definition 3.6.0.21 Let ® be a random interaction. The interaction ®(.,w)

is said to have a finite range if, the set
A, ={z €2Z"|3X > x; suchthat0 € X, and ®(X, T,w) # 0, for somea € Z"}
is a finite subset of Z¥. We may call A, the range of ®(.,w).

Remark Clearly, for such ®(.,w)’s, whenever > X — X ¢ A, ®(X,w) = 0.
For, if X — X A, then there exists z, y € X such that, z —y g A,.

But, z —y € X — y, therefore X —y JA,. Now, since 0 € X — y, it

3For X CZ%, X — X ={z —y|z,y € X}.
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follows from the above definition that ®(X —y,Tow) = 0 for all « € 2",
In particular, on putting ¢« = y, we get (X — y,Tw) = 0. Therefore,
(X,w) = ay(®(X -y, Tyw)) =0.

Definition 3.6.0.22 The random interaction ® is said to be a finite range
random interaction if, ®(.,w) has a finite range A, for almost every w €
and w — |A,| is a measurable function of w. Here |.| denotes the cardinality

of a set.

It is clear from the above remark that if ¢ is a finite range random
interaction, then for almost every w € Q, ®(X,w) = 0, whenever | X| > |A,|.
We use the ergodicity of the measure preserving group of automorphisms

to establish the following fact.

Lemma 3.6.0.23 Let ® be a finite range random interaction. Since the .
action of the measure preserving group of automorphisms {T,} is ergodic,

the function w — |A,] is almost surely constant.

Proof We show that A, = Agy,, for all b€ Z*. Fix b€ Z. Let z € A,.
Then there exists a finite X 3 « such that, 0 € X and ®(X, T,w) # 0 for some
a € Z". ie. there exists X D z such that, 0 € X and ®(X,T,_,(Tow)) # 0,
for some a € Z*. Therefore, v € Ar,,. Conversely, let € Ar,,. Then there
exi.sts X 5 z such that, 0 € X and ®(X,T,(Thw)) # 0, for some ¢ € Z¥.
This implies that there exists X 3 z such that, 0 € X and ®(X, T,4,w) # 0,
for some a € Z*. .Hence, z € A,. Thus, A, = Ar,. Since b is arbitrary,

this holds for all b € Z¥. Now, since ®(.,w) has a finite range A, for almost
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every w € {2, we have |A,| = |A7,.], for almost every w € Q0. Therefore, it is
readily concluded that the measurable function w + |A,| is invariant almost
everywhere with respect to the measure preserving group of automorphisms

{T.}. Since the action of the group is ergodic, the lemma follows. A

Lemma 3.6.0.24 Let ® be a finite range random interaction of the quantum

spin system on an infinite lattice ZV, satisfying

: sup (Z 12X, Taw)ll) < 00
. 2€2" \ x50

almost everywhere, then the function

w > sup (Z | (X, Tow)|)
2€Z* ¥ 3o

s almost surely constant.

Proof The function w — ®(X,w) is strongly measurable for all ﬁﬁite
X C Z". Therefore, it follows easily that w ~ [|®(X,w)|| is a numerically
valued measurable function on Q. Since for a € Z*, T, is a measure preserving
automorphism of Q, clearly, w = ||®(X, T,w)|| is a measurable function of
w. Next, let X;, X3,... be the countable collection of all finite subsets of Z*
containing 0. Since ®(.,w) has a finite range for almost every w € Q, the

sum of non-negative terms

S, T,

X>30

is finite almost everywhere. Therefore, the series D> oo [|®(Xy, Tuw)|| con-

verges to )y oo [|®(X, Tow)||, almost everywhere. i.e.,

Z ”(I)(Xna Taw)“ = Z “(I)(Xa Taw)”,

X>0
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almost everywhere. Now, each of the terms of the series is a measurable
function of w. Hence, the measurability of w = D 450 [|®(X, Taw)]| follows,

fOI‘ a e ZV- ThuS,
w > sup (Z |2(X, Tew)ll)

2€2¥ X350
is a measurable function of w. Also, for almost every w € (,

sup (Z e Ta(wa))II) = sup (Z [(X, Taw)li) :
a€Zv X30 a€Zv

X30

for all'b € Z”. Thus,

W SUR(Z |8(X, Tuw)||)

a€Z X350

is a measurable function which is invariant under the action of the measure
preserving group of automorphisms almost everywhere. Since the action of
the automorphism group is ergodic, it follows that the function
w e sup (3 8(X, Tow)])
2€2¥ Y30

is almost surely constant. A

3.7. Random Evolution

For a finite spin system confined to a region A C Z”, and for «w € , the
equation of motion is given by

dA} (w)

L =i[H(Aw), AlW)], Af(w) € Ay

Here ¢ — AMw) describes the evolution of the observable A € Aj. This

yields the time evolution given by 72 (w)(A4) = AMw) = eHAw)t fe—iH(Aw)t
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for w € Q and for all A € A,. Clearly, 72 (w)(A) is an element of As. In fact,
for all w € Q, 74(w) is a one-parameter group of *—automorphisms of Ay,
Since the spin system consists of infinite number of spins, the construction
of the time evolutioﬁ of a fixed observable A € A,,, where A, C Z” involves
taking the limit of 72 (w)(A) as A = 0. Here, we adopt the convention that
A — oo indicates, A eventually contains all finite subsets of Z*. This notion
of convergence has been made precise in subsection 3.3, in chapter 3. We
shall show that for a certain class of random interaction potentials, this limit

exists for almost every «w € Q and for all A € A,, where A C Z¥.

Definition 3.7.0.25 Let S be an operator on the Banach space X. An ele-
ment z € X is defined to be analytic for S if z € D(S™), for alln =1,2,...,
and if the series

S gng

!
n.
n=0

has a positive radius of convergence.

Definition 3.7.0.26 Lett — 7 be a strongly continuous group of automor-
phisms of a C*-algebra A. An element A € A is called analytic for =, if

there exists a strip I, = {z||Sz] < A} in @, a function f: I, — A such that,
1. f(t) =n(A), Vt€ R,
2. z v f(2) is strongly analytic.

An element A € A, is said to be entire analytic for 7 if, there ezists a
function, f : @ — A, which is strongly analytic in the entire complez plane

and f(t) = n(A), Vt € R.
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In order to construct a family of one-parameter groups of *~automorphisms
which determine the evolution of the spin system, we shall invoke the theory
of derivations of C*-algebras which usually arise as generators of automor-

phism groups. To this end, we have the following proposition.

Proposition 3.7.0.27 Let ® be an interaction of a quantum spin system
satisfying

Ps(z) =) _ 19(X)] < oo,

' : reX

for all x € L, where L is a countable set. It follows that there exists a
derivation § of the quantum spin algebra A such that the domain of 6,

D(&) = | Aa,

ACZ¥

and for A € A,
§(A)=1i Y [®(X),A]

XNnA#£D

The derivation & is norm-closable and its closure & is the generator of a

strongly gontz’nuous one-parameter group of *—automorphisms v of A tf, and

only if, one of the following conditions is satisfied: either & possesses a dense

set of analytic elements or (I + ad)(D(6)) = A,a € R\ {o}. Finally, if §

generates the group 7 and if TA(A) = eHMtAe—HA  then |
lim [lr(4) - (4)] = 0

for all A € A, uniformly, fort in compacts.

Proof See [Rob 81], vol 2, prop 6.2.3, pg 248. A
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Theorem 3.7.0.28 Let ® be a finite range random interaction of the quan-

tum spin system on a lattice ZV, satisfying

sup (Z 1B(X, Taw)H) < o0
a€Z” \ x30
almost everywhere. Then, for almost every w € Q, there exists a strongly

continuous, one-parameter group of *—automorphisms ,(w) of A such that,

lim TtA(w)(A) = n(w)(A), VA€ A

A—roo

1

and uniformly, for t in compacts, where TA(w)(A) = eHA W)t fe-iHAw),

Ty(w) is called the evolution group of the spin system whenever the limit exists.

Proof Now, whenever ®(.,w) has a finite range A, for w € @, we have for

x ez,

Py(w)(z) = ) l|o(X,w)|

X3z

= ) Jlox(¥(X — 2, Tow))|

X-z30
= Y oX -z, Tw)|
X-z30 '

> N1®(Y, Tew)l| < oo,

Y30

IN

On appealing to the above proposition, there exists a derivation §(w) of A
such that, the domain of é(w),

D((w)) = U Ax

ACZ¥

and for A € A,,
S (A =i Y [2(X,w),A].

XnA#d
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Next, we shall show that D(§(w)) is a dense set of analytic elements for §(w)
and hence establish that the derivation §(w) is norm—closable by the above
proposition.

Take A € Ay,, where Ag C Z”. One has ®(X,w) € Ay, for finite X C Z".
Now the local algebras Ay, A, commute whenever All NA; =0.
Therefore, we have

1@ = 1 Y o D [@(Xn,w)l- -[@(X,w )A]]]H

] Xxﬂso #0 -Xnﬁsn-—1¢0

< Y Y le(Xasw), L [2(X,w), AT,

X1nSy#0 XnNS,_1#£0

where Sy = Ag and

J
Si=MU|JXi, forj>1.

=1

Since ®(.,w) has a finite range A,, it follows that ®(X,w) = 0, whenever
| X| > Al
Therefore, if

[@(X;,), .. [8(X,w), Alll # 0

where
[2(X;,w), [ [@(X1,w), Al]] € As,,
then |
1X:l <AL, Yi=1,2,...,7
Therefore,

J
1S;1 < ) 1Kl + 1A
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Thus, whenever

sup (Z (X Tw)“) < 00,

we get

[N A < 27141 Y Y 0 Y Y 18(Xa,w)ll - 18(X, W)

z1 €8 X131 Zp€Sp~1 Xndzn

< ALY Y Y Y e(Xe — an, Teuw)l|
21€S X1—2430  zp€Sp-1 Xn—2n30
12Xy = 21, Ty w)| _
' < Al —-l)lAw|+IAol)(sup (Z [l K,Tx,w)H))
i=1 Yis0
< annAnH (i = 1)]A] + o] (sup (2 1% XTwll))
< 2[All(n]Au] + |Ao])” (s;lzp (Z lle(X Tw)ll))

Now, a™ < n! for a > 0 hence,

[ (Aa)] < nAne‘A"'Q""’(S“pu (Z le(x, Taw)”)) -

2€Z” \ X3¢

This establishes that A is an analytic element for §(w), with radius of ana-

: -1
Ty > ( (sup (Z | (X Tw)”)) |A”> , (3.7.3)
a€Zv X350

where the radius of analyticity r, is independent of A. i.e.,

lyticity

ZWW( AN < o0

n=0

()
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Therefore, it follows from the above proposition that, §(w) is norm-closable
and the norm-closure &(w) is the generator of an automorphism group 7(w)
of A such that,

Mw)(A) = 1{w)(A), VA€ A

The convergence of course being uniform in . We also have

M w)(A4) = Jw)(4), VAe [ A,

ACZY

where ,

SN (w)(A) = i[H(A,w),A], VA€ A.

Since the local elements

AE U AA)

ACZv

are analytic for §(w), the convergence of 7' (w)(A) as A ~ co, is uniform in
a ball around zero. It is also worth noting that,
D= ] As
ACZY

is a core for 3(w). Thus, whenever ®(.,w) has a finite range and

sup | 3 flo(X, T.w)ll ] < oo,
a€Z¥ X350
there exists a strongly continuous, one-parameter group of automorphisms

T:(w) of A such that,

n(w)(4) = lim 7'(w)(4), VA€ A.

T¢(w) is called the evolution group associated with the infinite spin system.

Since ® is a finite range random interaction, ®(.,w) has a finite range A,, for
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almost every w € §). Moreover,

sup | > [|8(X, Tow)|| | < o0

a€Z” X30
almost éverywhere. Therefore, we conclude that for almost every w € {2,
there exists a strongly continuous, one-parameter group of *~automorphisms

7:(w) of A such that,

Ah_’ngo M w)(4) = n(w)(4), VA€ A

1

The convergence being uniform in ¢ on compact subsets. Thus for almost
every w € Q, limp., 72 (w)(A) exists for all A € A and determines an

evolution grou'p 7+{w) associated with the spin system. Besides, for almost

every w € {1,
| M w)(A) = 3(w)(4), YAe | A,
ACZv
where
D= ] A
ACZv
is a core for 6(w). A

Remark 1 Note that the radius of analyticity r,, of A € D, for §(w) is such

w2 (2 g (S wexman) )e)
acZv X30

where in view of lemmas 3.6.0.23 and 3.6.0.24,

w > (2(sup (Z |&(X Taw)ll)) 'A‘”)
e€Z¥ \ X0

is almost surely constant.

that,
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Remark 2 Now for b € Z”, ®(w) has a finite range if, and only if, ®(Tyw)
has a finite range. Also,

sup (Z lo(X, Taw>n) = sup (Z (X, Ta(wa))ll) -

€2 \ 530 a€Z” \ x50
Therefore, §(w) is norm—closable if, and only if, §(T,w) is norm—closable
and §%(w)(A) converges to §(w)(A), if and only if, §4(Tiw)(A) converges to
§(Tyw)(A), for all A € D. Also, note that D is a core for §(w) if, and only if,

it 1s a core for K(wa). Hence,

Tt(w)(A.) = lim TtA(w)(A)

A—oco

defines a strongly continuous group of automorphisms of A if, and only if|
m(Tyw)(A) = Aim TMTyw)(A)
—$00

defines a strongly continuous group of automorphisms of A. i.e. 7(w) is an
evolution group if, and only if, m(Thw) is an evolution group.

Let &£ denote the sigma algebra of all Lebesgue measurable subsets of
IR, with Lebesgue measure p. Let 1 X P be the Caratheodory extension of
the product measure defined on the smallest o-algebra £ x &, containing
all measurable rectangles in IR x 2. Since u x P is obtained using the
Caratheodory extension process, it is complete. Moreover, both y and P
being o—finite, so is y x P. Therefore, we have a measurable structure on the
product space given by the triple (Rx Q,& x S, u x P), where £ x S denotes

the smallest sigma algebra containing & x S, on which x4 x P is complete.
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Proposition 3.7.0.29 Let O satisfy the assumptions of theorem 3.7.0.28
and T(w) be the strongly continuous, one-parameter group of automorphisms
of A, which determine the evolution of the spin system. Then, w + 1(w)(A)

is strongly, jointly measurable in both t and w, for all A € A.

Proof 1Itis sufﬁcient to prove the strong mieasurability of the map w >
m(w)(A), for A € A,, and all Ay C Z“. Measurability in the case of an
arbitrary A € A can be established by approximating A in the norm by local
elements. Let A € Aonwhere Ao C 2¥. Tt follows from theorem 3.7.0.28
that, 7(w)(A) = limpye0 7 (w)(A), for almost every w € Q. Now, let {A,}
be a sequence ® of finite subsets increasing to Z". i.e.,
AMCACAsC---, and OAn=ZU.
n=1

Then for almost every «w € Q,
T(w)(A) = }Lngo TtAn (w)(A),

where 7/**(w) can be expressed in terms of commutators as

Therefore, one has

for almost every (t,w) € IR x . Since w + H(A,w) is strongly measurable,

and strong measurability is preserved under products of functions, it follows

3An’s can be taken to be cubic regions symmetric about the origin, with faces perpen-
dicular to the co—ordinate axes and edges of length 2n.
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that w +— [H(A,w), A]® is strongly measurable for all ¥ € Z*. Besides,
for t € IR, t* is the limit almost everywhere, of numerically valued simple
functions, for all k € Z+. Therefore, the product of t* with [H(A,w), A]* is
the limit almost everywhere of countably valued functions on IR x 2. Hence,
each of the terms of the series is a strongly, jointly measurable function
of ¢t and w with respect to the product measure u x P. bVVe know from
[Hil 57] (Theorem 3.5.4, Page 74) that, strong ﬁeasurability is preserved
rather,well under taking limits. Therefore, the above series is strongly, jointly

measurable in ¢ and w. Since

T(w)(A) = lim 'rtA" (w)(A)

nN=3400

for almost every (¢,w) in IR X §, the strong, joint measurability of (¢,w) =
7(w)(A) follows readily. Hence the proposition follows. A

It is seen in the case of quantum spin systems on a lattice Z* with transla-
tion invariant interactions, that whenever the dynamics exists, the evolution
group of *—automorphisms of the quasi-local algebra, commutes with the
syrﬁmetry group of automorphisms associated with the lattice Z¥. Here we
prove a variant of this property. Before we set about establishing this result,

the following fact is worth noting.

Lemma 3.7.0.30 Let 72(w) be the strongly continuous, one-parameter group

of local automorphisms associated with a finite A C Z¥, where

TtA(w) (4) = eiH(A,w)i Ae—iHA W)



Then for all a € Z¥, we have
oo (TMw)(A)) = T (T_ow)(ae(A)); VA € A,.
Proof We have

aa(TtA(w)(A)) — aa(eiH(A,w)tAe—iH(A,w)t)

— aa(CiH(A’w)t)Qa(A)aa(e—iH(A’w)t).

Therefore, it follows from function calculus for H(A,w) and the identity

H(A+ a,T_ow) = ao(H(A,w)) (3.7.4)
that,
aa(TtA(w)(A)) — 6iH(A+a’T'“w)taa(A)e_iH(A+a’T-aw)t.
Hence, the lemma follows from this equality. A

We will have the occasion to use the above lemma in the proof of the

following proposition.

Proposition 3.7.0.31 Let 7;(w) be the evolution group of the spin sy'stem

on an infinite lattice Z¥. Then for all a € Z¥, we have
T (T_qw)(@a(A)) = au(m(w)(A)), VA€ A

Proof It is sufficient to prove the above identity for A € A4, and all
Ao C Z¥. The general case follows easily from the fact that an arbitrary

A € A can be approximated in the norm by local elements. It follows from

79



theorem 3.7.0.28, and lemma 3.7.0.30 established prior to this proposition

that, for A € Ay,, where Ag C Z¥, and all a € Z7,

a(r(w)(4)) = ao(lim (r'(w)(A4)))

A—oco

= lim TM(Tew)(ca(A))

A—roo

= lim (tA (T_ow)aa(A))

A =00
= 1y(T_aw)(ca(A)),

where ‘A' = A+a. Thus we have established the identity for all local elements.
Therefore, this identity can be extended to the whole of A using the fact that
the local elements are norm-dense in A. A
Remark If 7;(w) is the evolution group of the spin system on the infinite
lattice Z¥, then it follows from proposition 3.7.0.31 that, if A is entire-
analytic with respect to 7(w), then a,(A) is entire-analytic with respect to
1e(T-qw), for all a € Z".

In the discussion that follows, we establish some interesting algebraic
properties of the generators d(w) of the evolution groups (w). To this end,

we have the following theorem.

Theorem 3.7.0.32 Let U, be a sequence of Co-semigroups of contractions
on the Banach space X. with generators .S',; and Ideﬁne the graph G, by
Go = lim G(I — aS,).
n—o0
The following conditions are equivalent:
1. there exists a Co-semigroup U such that,

Ji_{glo (Uns = Ur)Al| =0,

S0



forall A€ X, t € Ry, uniformly for t in any finite interval of IR, ;
2. the sets D(G,) and R(G,) are norm-dense in X for some a > 0.

If these conditions are satisfied, then G, is the graph of I — aS, where S is

the generator of U.

Proof Refer to theorem 3.1.28 in [Rob 87]. A
Remark One of the situations in which the above theorem can be applied is-
the following: Let S, and S Be the generators of Co—contraction semigroups
and suppose there exists a core D of S such that,
pcl (ﬂ D(Sn))
m \n>m
and

lim [[(S. — $)A] =0,

for all A € D. It then follows that S is the graph limit of the Sy’s.

This theorem yields the following proposition.

Proposition 3.7.0.33 Let 7(w) be the evolution group of the spin system
and D(6(w)) be the domain of the generator of the automorphism group m(w).
Then for all a € Z*, we have aa(D(6(w))) = D(§(T_ew)) and au(3(w))(A) =

§(T_qw)(a(A)), for all A € D(8(w)).

Proof It is seen from the proof of theorem 3.7.0.28 that,

D= |J A,

ACZ¥

81



is a core for §(w) and
§*(w)(B) = §(w)(B); VBe€D,

where §4(w) is the generator of the local automorphism group 74(w). We
have T2 (w)(B) = (At Be=iH (A}t and §4(w)(B) = i[H(A,w), B, for all
B € A. Let {A,} be a sequence of finite subsets increasing to Z*, then we
have

§*(w)(B) = §(w)(B); VBEe€ D.

Therefore, we conclude from thé remark made after the statement of the
above theorem that, §(w) is the graph limit of §%»(w). Hence, for A €
D(é(w)), there exists a sequence {A,}, where A, € D(§**(w)) such that,
A, — A and §*(w)(A,) — §(w)(A). This implies that a,(A,) — ag(A)
and- a, (62" (w)(A,)) = au(d(w)(A)). Now, it follows from the the identity

3.7.4 in lemma 3.7.0.30 that,

(6% (w)(An)) = 5A"+“(T-aW)(aa(An))-‘

Hence, we have a,(A,) — a,(A) and 5A"+“(T_aw)(da(An)) — a,(6(w)(A)).
Clearly, from remark 2 at the end of theorem 3.7.0.28, §*(T_,w)(B) converges
to §(T-,w)(B), for all B € D, and D is a core for §(T_.w), where §*(T_,w)
is the generator of the local automorphism group 7*(T_,w). We have

TMT-qw)(B) = eH(AT-aw)t Be=iH(AT-aw)t a1 d §MT_,w)(B) = i[H (A, T-,w), B]
for all B € A. Since {A,4.} is a sequence of finite subsets increasing to ZY, it
follows that §2n+¢(T_,w)(B) converges to d(T_.w)(B), for all B € D. Hence,

. q. O3 - _
the remark following theorem %.341.¢ implies that §(7T_,w) is the graph limit
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of §4~+2(T_,w). Therefore, as a,(A4,) = a,(A) and §*9(T_,w)(a,(4,)) =
aa(8(w)(A)), where a,(A,) € D(647+%(T-,w)), one concludes that ca,(A) €
D(3(T-,w)) and a,(6(w))(A) = §(T-,w)(as(A)). Conversely, it can be shown
that if A € D(§(T-,w)) then a_,(A) € D(§(w))). This completes the proof
of the proposition. A A

In the next chapter, we aim to' study the Arveson spectrum of the strongly
© continuous, one-parameter group of automorphisms 7;(w), which determines

the evolution of the spin system. We report an interesting ergodic property

of the Arveson spectrum of the evolution group 7:(w).
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Chapter 4

Ergodic Properties of Spectra
of Evolution Groups |

1

4.1 Arveson Spectrum

Here we introduce the notion of Arveson spectrum.

Let X be a Banach space and X, a linear subspace of the dual X* of X
such that, ||z]| = sup{|p(z)] : p € X.,|lp|] < 1} for every z € X. Let
B(X), (Bw(X)) denote the algebra of all bounded (o(X, X,)-continuous)
linear operators on X. As usual, denote the convolution group algebra of the
additive group of real numbers IR, by L'(IR). A representation of IR on X
is a homomorphism ¢ — V; of IR into the group of all invértible elements of
B, (X) such that, sup, ||Vi|| < co and for each z € X, the map ¢t — Vz is
o(X, X,)-continuous. Now, if for every z € X, there is an unique vector y

defined by

[_m f(t)p(vtx)dt = p(y); pE X*,f € LI(R),

then we obtain an operator I'(f) defined by I'(f)z = y. Therefore, we have

a representation I, of L!'(IR) in B(X), associated with V.
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Definition 4.1.0.34 The Arveson spectrum SpV of V' is a subset of the dual

group R of IR defined as
SpV = {o € R|f(¢) = 0,Vf € ker '},
where f is the fourier transform of f.

If Ais a C*algebra and 7; a strongly continuous, one-parameter group of

automorphisms of the C*-algebra, then the Bochner integral

1

/ T H)n(A)dt = T(f)A A€ A feINR),

defines a representation of L'(IR) into the bounded operators on .A. Now, on
applying the foregoing definition in this case, the Arveson spectrum Sp(r) of
T is given by
Sp(r)={s€ R: f(s)=0,Yf € kerT'}.
It can be shown that s € Sp(r), if and only if, [f(s)| < [T(A)I, for all
f € L'(IR) (Proposition 8.1.9 in [Ped 79]).
Our aim is to show that the Arveson spectrum of the evolution group

T:(w) is almost surely constant. To this end, we have the following theorem.

Theorem 4.1.0.35 Let 7¢(w) be the strongly continuous, one-parameter group
of automorphisms of A, which determines the evolution of the spin system. V

Then, the Arveson spectrum Sp(T(w)) of Tt(w) is almost surely constant.

Proof Fors e R, let T, = {w: [[(w)(f)| > [f(s)| VS € L}(IR)},

where

P(w)(f)(A) = / " fOmw)(A)t, YA€ A
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We show that 7 is a measurable subset of Q. Since L!(IR) is separable, there
exists a countable dense set F' = {f,|n € Z*} in L'(IR). Hence, for each
f € L}(IR), there exists a sequence f,, in F', converging to f in the L'-norm.

Therefore,

HIT@) ()l = D@D < T @) (fai) = T(@)(HI

< T (w)(fae = DI
' . < ISLIIIPIHF( )(fr = H)(A)]|
= ] A)d
< IAHIH/ (. Jrilw)(A)et]
< ||SALIIIPI (/ |(frr = F)(2 )IHTt(w)(A)Hdt)
< Sup (HAH / [(fr = ) ldt)

IN

[ 10— Do
< ank_fnl

Therefore, ||T'(w)(fr,)]] converges to ||[I'(w)(f)||, for fn, converging to f, in

the L'-norm. In view of this, and the fact that F' is dense in T, we have

n:ﬁm

where T2 = {w| [IT(«)(fo)ll > |fu(s)|}. In order to show that each of these
T7’s is a measurable subset of , it is sufficient to establish the measurability

of the function w — ||T(w)(fu))ll, foralln € Z*. On appealing to proposition
3.7.0.29, we conclude that for f € L'(IR) and A € A, (t,w) = f(t)r(w)(4)
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is strongly, jointly measurable in ¢ and w. Moreover,

| Mem@@lde < Ptw) = [ Ol x P)tw)
RxQ RxQ

/R / JANF()ldu(t)dP() < co.

Hence, it follows from theorem 3.7.4 in [Hil 57] that, (¢,w) ~ f(t)7(w)(A)
is Bochner intégrable on IR x . Therefore, as a consequence of the ana-
logue of Fubini’s theorem for vector valued functions (Proposition 3.7.13,
[Hil 547]), the map w +— ['(w)(f)(A) is strongly measurable in w. Hence,
w - IT(w)(f)(A)| is a measurable, real valued function on Q. Thus it
readily follows that fof f € LM{R), w— ||I'(w)(f)(A)] is measurable for

all A € A. Now, A being a separable C*-algebra, we have for ¢ € IR and
feIl(R),

TN < et = [ {w € AT N(A < [l Al < 13,

neZt

where Uy = {A, € A|n € Z*} is a dense subset of the closed unit ball
in A. This identity, coupled with the fact that w — |[|[I'(w)(f)(An)] is a
méa,sura,ble function of w for all n € Z*, permits us to conclude that the set
{w] I ()]l < ¢}, is a measurable subset of ). Since c is arbitrary, the
function w + ||T(w)(f)|| is a measurable function of w. Thus, w + ||I'(w)(f)]|
is measurable for all f € LI(JR)._ Therefore, w — ||I'(w)fn|| is measurable
Vn € Z*. Hence, each of these T1’s is a measurable subset of ). This proves
conclusively that the set T; is a measurable subset of . Now, using the
fact that the action of the measure preserving group of automorphisms is

ergodic, we show that T, has a measure either zero or one. It follows from
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the properties of the Bochner integral [Hil 57] (Chapter 3) and the fact that

a, is a *~automorphism of the C*-algebra A that, for f € L'(R),

TN = sup [[T(w)(F) (A

l4if=1

= sup [ F)mlw)(A)dt]

tll=1 J~oco :
- gl ([0
= ”SATiEl ” : f(t)Tt(T—aw)(aa(A))dt”y

1

for all @ € Z¥. The last equality follows from proposition 3.7.0.31. Conse-

quently, we have

IT@)HII = sup [|N(T-aw)(f)(aa(4))]

ll4ll=1
= N(T-aw)(H,
for all @ € Z¥ and f € LY(IR). Therefore, for all « € Z*, ||I'(w)(f)| =
IT(T-aw)(f)]|, for f € L*(IR). Hence, as the action of the measure preserving
group of automorphisms is assumed to be ergodic, it is clear from the above
equality that T, is an invariant measurable subset of 0 and therefore, the
set T has measure either zero or one. Hence, s lies in the Arveson spectrum
of n(w) with probability either zero or one. Thus, one concludes that the

Arveson spectrum Sp(7(w)) of m¢(w) is almost surely constant. A

4.2 KMS States

In this section we analyse the KMS states of the spin system on a lattice

with random interactions. The following definition of a KMS state has been
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taken from [Rob 81].

Definition 4.2.0.36 Let (A, 7) be a C*~dynamical system, or a W*-dynamical
system and p a state over A which is assumed to be normal in the W*
case. Then, p is said to be a (1,8)-KMS state if, for 8 > 0 and any pair
A, B € A, there exists a complex function F4 p which is analytic on the open
strip 0 < Sz < B, uniformly bounded and continuous on the closed strip

0 < &z < B such that,

L

Fap(t) = p(Ar(B)) and F4p(t+1i6) = p(r(B)A).

If B < 0, then p is a (1,8)-KMS state if, there exists a complex function
Fap which is analytic on the open strip § < Sz < 0, uniformly bounded and

continuous for B8 < Sz < 0 such that,

Fap(t) = p(Am(B)) and Fapg(t+if) = p(r(B)A).
4.2.1 Construction of a Fami1'y of KMS States

We know from theorem 3.7.0.28 that. for almost every w € O, there exists a
strongly continuous one-parameter group of *~automorphisms 7;(w), which
determines the evolution of the spin system. Now, forw € Q, and 8 € IR\{0},

the local Gibbs state associated with the interaction ®(.,w) is given by

Tr(e~PH(Aw) A)
pa(w)(4) = Tr(e-PHGW))

VA € A,.

Although pj (w) is defined on Aj, it has an extension as a state to the whole

of A. The extension is by no means unique. It follows from proposition
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3.4.0.13 in chapter 3, which can be adopted to pa(w) with 7A(w) as the
local automorphism group that, these states are (74(w),3)-KMS states of
the finite spin system confined to the region A, where 74(w) are the local

automorphism groups. Next, for w € 2, let
O, ={T-wla € Z"}.

Clearly, any two O,’s corresponding to distinct w’s are either disjoint or
ide;nti,cal and the O,’s form a partition of 2. Therefore, using the axiom of
choice, we pick a sqbset Q' C Q, and write the space Q as
o= | o.,
weq'

where the O,’s in the union are pairwise disjoint. Next, for each w € Q,
we establish the existence of the thermodynamic limit p(T_-,w) of the locgl
Gibbs states pa(7T-,w), for all « € Z¥. To .this end, we argue as follows.
Since the quasi-local algebra A is a separable C*—algebra, the collection of
states E4 of A is weak*~compact. Therefore, for each w € € there exists a
state p(w), a,nci a sequence {A,} of finite subsets of Z* depending on w such
that, p(w) is the weak*-limit of a sequence of extensions g, (w) of pa, (w).
That is, for each w € Q', there exists a sequence {A,} of finite subsets of Z*
such that,

lim n,(w)(4) = p(w)(A); VAE A

n—4+oo

In particular,

lim pa,(w)(A) = p(w)(A),

n-—+00
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for all A € Aa, and all finite Aqg C Z*. Therefore for each w € Q, p(w)
is a weak*-limit point of the net of extensions of pa(w)’s to A. Hence, it
follows from definition 3.4.0.12, which can be easily adopted to p(w) with
pa(w) as the local Gibbs sates, that for each w € Q', the state p(w) is the
thermodynamic limit of the local Gibbs states {ps(w)}. Next, for eachw €

and all a € Z¥, define

A(T-aw)(A) = p(w)(a-a(A))

1

Now, keeping in mind the identity
H(Ap,w) = acg(H(An+a,T_ow)) = Vi, ya(—a) H(An+a, T_ow)Va, +o(—a) 7,

it follows from function calculus and the invariance property of the trace,

that, for each w € Q and all @ € Z¥,

r{e=B8H(An+a,T_aw) 4

Pan+a(T-aw)(A) = TTffe—ﬁH(AnM,T_W)))
Tr(Va,4o(—a)e Pt =) AV} (—a)7Y)
Tr(Va,ta(—a)e BHntaT-a)V, | (—a)~1)
Tr(a—a(e_ﬁH(A"+a’T—aw))a—a(A))

Tr(a-n(e-PHRntaT-a)))
Tr(e=fldne)o_,(A))

Tr(e-BH(Anw))

= pAn(‘w)(a—a(A.))’

for all A € Ay, and A, D Ao. Hence, for each w € QN and all a € 2V,

p(T-aw)(A) = p(w)(a-a(A))



for all A € A, and all finite Ao C Zv. Iffor eachw € Q' and all a € Z¥, we
define
Phnsa(T-aw)(A) = pan(w)(@-a(4)); VAE A,

then the states p(T_,w) are the weak*-limits of the sequence of extensions
{ﬁAn+a(T_aw)} of the local Gibbs states pAn+a(T_aw), for each w € )’ and éll
a € Z" such that, p(T_aw)(A) = p(w)(a-a(A)), for all A € A. Thus, for each
w € N and all a € Z¥, p(T-,w) is a weak*-limit point of the net of extensions
of pa(T-,w)’s to A. Hence, for each w € Q' and all a € Z*, p(T-ow) is the
thermodynamic limit of the local Gibbs states pa(7-,w). Since the union of
O.’s, where w € ', exhausts all the points in Q i.e., Q = Uyeq'Ou, we have
succeeded in establishing the existence of the thermodynamic limit p(w) of
the local Gibbs states pa(w), for all w € Q. It is clear from the above con-
struction that, for all w € §, these states satisfy, p(w)(A4) = p(T-w)(ca(A)),
forall a € Z¥ and A € A.

Now, each of these states p(w), is a thermodynamic limit of the local Gibbs
states pa(w). Hence, each p(w) is a weak*~limit point of the extensions of the
local Gibbs states pa(w), with 7:(w) as the evolution group. Thérefore, it fol-
lows that p(w) is a (7(«), 8)-KMS state [Rob 81] (Proposition 5.3.25). Thus,
we have succeeded in establishing the existence of a family of (7(w), 8)-KMS
states {p(w)}, for each 8 € IR\ {0}, obtained as the thermodynamic limits
of the local Gibbs states pa(w), and satisfying, p(w)(A) = p(T-.w)(ca(A))

forall a € 2".
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4.2.2 Uniqueness of KMS States

Next, we shall demonstrate that a quantum spin system on an infinite lattice
with random interactions exhibits a phas;e structure. To this end, we have
the following theorem which establishes that there is an unique KMS state
p(w), associated with the evolu'tionvgro.up .T;(w), above a certain critical tem-
perature T, almost surely independent of w. In order to demonstrate this,
we use the fact that the function w — sup,cz. (3 x40 (X, Taw)“ is almost

surely constant.

Definition 4.2.2.1 Let A be the matriz algebra of all n X n matrices over
€ and {E,,} be the finite collection of matrices in N such that, E,, is the
matriz with all entries zero except in position (p, q)—where the entryis1. The
Ey,’s are such that, E} = E,,, Ep B, =0 ifq#r, EpoEy, = E,, and

> p Eop = 1. These E,,’s are called matriz units in N.

The following theorem establishes that there is an unique KMS state p(w),

above a certain critical temperature T, almost surely independent of w.

Theorem 4.2.2.2 If ® is a finite range random interaction of the quantum
spin system on an infinite lattice Z*, satisfying the assumptions of theo-
rem 3.7.0.28, then there is an unique NMS state p(w), associated with the
evolution group r(w), above a certain critical temperature T, almost surely

independent of w.

Proof Since we have etablished the existence of (7(w), 3)-KMS states for

all 3 € R\ {0}, the aim of this theorem is to show that there is an unique
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KMS state p(w), above a critical temperature T, almost surely independent of
w. The proof of the theorem goes along the lines of the discussion preceding
proposition-6.2.45, in [Rob 81]. The (7(w),3)-KMS condition will play a
crucial role in establishing the above fact. For z € Z¥, let e(is, Jz); 2y Jz =
0, 1; be a set of matrix units for A,. Let A € A,, where z ¢ A. Now, the

(1(w), B)-KMS condition and the identity

1
Z ZI, $1j$)1

Za:,]a: =

I\DI»—A

vield

#0(u)(ehe 3D A() = D)l )i
S0 5upl) (A QZ{p (e, o) A(7e(w) = D)(eiz ko)) oo

kz=0

In view of the fact that the local elements are dense in the quasi-local algebra
A, it is enough to establish that p(w)(A) can be uniquely determined for all
A€ Ap,and all A C Z¥. 1t is seen from the proof of theorem 3.7.0.28, and
the remark following the proof, that the local elements of A are analytic with

respect to the generator d(w) of 7(w), with radius of analyticity

re > <2<sup (Z [l®(X Taw)ll)) IA“’) a
e€Z" \ x50
~Halgen))
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is almost surely constant. Therefore, the second term on the right hand
side of the last equation can be expressed as a power series in § without
a constant term, for sufficiently small 3 almost surely independent of w.
Besides, A € Aj can be expressed as a linear combination of matrix units

IA:‘]A He Zl‘z’jrl)’

=1

where A = {zy,...,2.}; In = {iz,,.- -, 1z, }, and Jao = {Jays-- -5 Jzat- Thus,
it suffices to consider only the special choices A = e(Ia, Jp); Ix € {0,1}* and

A CZ". On adopting the assumptions of theorem 3.7.0.28, one has

(w) = I)(e(iz; k) |
(=) Yo Y [ w) - [B(Xa, w), e, k)],

n!
1 XlnSO?“'w IYn.hSn—l?“'0

Il
Mo 3

n

where S =z and S; = X; UX;_,U---UX; Uz. Now, if

B = Z B(IA,JA)Q(IA,JA)

IAvJA

is the decomposition of B € Aa, for some A C Z*, then the complex coeffi-
cients B(Ix, Jx) satisty, || B(Ia, Ja)l| < || BJ.- |

Hence,

e(krajx)ﬁ(IAa JA)[(D(A’M Lu‘), [ o [(D(Xlaw)a G(Zl- kl‘)]]]

= Z Vn,w(IS§aJS£)e(1§n’J§n)>

Isft,Jsﬁ
where S% = 2 U AU S,, and there are atmost 225! nonzero coefficients vn «,
which satisfy

o (L5, Jsg)| < 27 [T 11@(Xs, w)]l-

1==1




This perturbation expansion can be combined with the previous identity for
p(w), evaluated with A4 = e(Ip, Jp), to obtain a linear equation involving
the family {p(w)(e(Ia,Ja)); A € Z*}. To this end, let X be the Banach
space of bounded complex functions f, on the pairs {I5, Jo}, where I5,Jy C
{0,1}, A C Z¥, and f(Iy,Jy) € €. The space X is equipped with the usual
operations of addition and scalar multiplication, together with the supremum
norm. If p(w) denotes the family {p(w)(e(Ia,Ja)); A C Z"}, where we take
e(lp,Jy) = I, it follows that p(w) € & and ||p(w)|| = 1. The foregoing

identity and perturbation expansion yield the equation

p(w) =1+ La(w)p(w),

where 7, K, and Lg(w) are defined as follows: 7 € A’ and
1 ifA=0
n(Ia,Ja) = 305, 1fA={z}
0 otherwise,
K is a linear operator with action K f(Iy,Jy) = %‘52':1’1:“ f(Iar, Jpr), if A =
{z1,22,.. .20}, N = {x2,...,2,} and n > 2, and (K f)(Ir,Ja) = O, if
[A] < 2. Lg(w) is a linear operator such that,

) )([A"]\)

oo

(Lplw
= %Z Z Z Z ‘l‘n,w(lsgszg)f(ls,f,Jsg),

0 n=1 X1nS,#0 XnNSp_ 1 #£0 Isﬁ st'I,‘

where v, ,’s arising from the perturbation expansion are associated with a
fixed splitting A = {z} UA’, where A’ = A\ {z}. Thus, the above equation
has the form (/ — K — Ls(w))p(w) = 1. Hence, p(w) is uniquely determined if,

|K + Lg(w)|| < 1. But'|| K[| = 3, and s6 uniqueness will follow if || Lg(w)]| <
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+. This involves estimating the norm of Lg(w). To this end, we establish the

following.
Lol < 2% (22‘A“"“lﬁle'A“" (sup (Z |9(X, Tw)!l))) < 00,
n=1 °€Z¥ \ x50
whenever

9208ul+1 1l gy (sup (Z 1B(X, Taw)||>> <1

a€Zv X350

The estimation procedure will be much like the one employed in the con-

struction of global dynamics. We have

1 o)
1 8l
< IYSBE S S Y bl sl s )
kz=0n=1 X1NSe#£0 »XnﬂSn_1¢0IS7zl,J5£
1 = |/3|n ' S, n 5%
<2p)En Y e Y (X, W) -l W)L
n=1 X1NSy#0 XnNS,_1#0

The last inequality follows from the remark made earlier, regarding the
norms of the complex coefficients v,,. Since ®(.,w) has a finite range A,

®(X,w) = 0 whenever | X| > |A,|. Therefore,

1S;] = X UX;5 U UXUg|
< X+ X+ 4 X+ e
< (JAul+{Aul- -+ AL +1)

< (lAad+1).

We also have

sup (Z |®(X, wa)||> < oo.

zeZ¥ X350
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Thus,

[(La(w) A
< 222(n|Aw|+1)2nli# Y ¥ 3 Y e (@Xa, W)
n=1 * z1€80 X131 Tn€Sn—1 Xndzn
"lla—zl(( (X, @) fllea
< 9222n(2|Aw 11 181° fﬁ| Z DDRRETED DD D [{C A o
€Sy X1 —7;30 Tpn€Sn—1 Xn—znd0
~-I|<I’( 1—$1,Tx1w)llllf|
< 2222"<2'Aw'+1) 181" H (1+ (- 1)|Au]) <sup <Z [} @( K,Tz.w)ll>> 1l
= n! €zZ” Y30
S_ 222271 (2lAw]+1) lﬂl H 1+ IA l) <s;1p <Z H(I) X, Tw)”)) Hf”oo
! X30
< Yot pia )y (sup (Z o XTw)Il)) 1.
n=1 aczY X30
< 2 ZQn 2]Aw|+1)lﬁ' ! nlﬁa|n1<sup (Z |@(X, Tow) )) WAl
a€Zv X30
< felZ(‘ﬂ]A‘”m) 18" nlAul (sélp (Z |®(X, T, >> 11l
n=1 a X30

< zzez(zz'ﬁwwme'*(sup (Zum Tw)u))) 1.

n=1 a€Zv X350

All these inequalities have been obtained by employing the estimation proce-

dure used in the construction of dynamics. Hence, from the above estimate

we have
ILs(w)ll < 2%e > (22'“'“!@6'“ (Sup (Z |&(X TW)II))) < o0,
n=1 2€Z¥ \ x50
whenever

a€ X350

22|A“’|+16|AWIIBI<SUPV (Z [[o(X, Taw)||)) <1

93



Now, we know that the KMS state p(w) is unique whenever ||Ls(w)|| < 3.

Therefore, p(w) is unique whenever

228l eIl |8 (sup, ez (Zxn0 19X, Ta)l)

<
T A Bl (supacz (5 x30 80X T

1
2 hl
2%e 5"

1.e., whenever
. -1
18| < (QQIAw|+le|Au|(1.+ 236))_1 sup Z |1®(X, Tow)l| .
i a€ZV X350
Next, by lemma 3.6.0.23, we have w — |A, | is almost surely constant. More-
over, by lemma 3.6.0.24 w = (sup,ezv (X x50 [18(X, Tuw)]|)) is also almost
surely constant. Hence, '
-1
w (22|A“|+_16|A”|(l + 236))—1 <sup (Z 1o(X, Taw)H))
9€2¥ \ x>0
is almost surely constant. Therefore, there exists a critical temperature 7,
almost surely independent of w such that, for temperatures T > T, there
exists an unique KMS state p(w) associated with 7 (w). A
It is worth noting that the estimate on [ can be improved upon in several
ways. Since p(w) is an unique KMS state with respect to 7(w), above a cer-
tain critical temperature T, almost surely independent of w, it follows from
theorem 5.3.30 in [Rob 81] that, p(w) is an extremal KMS state and hence,
a factor state. As the quasi-local algebra is norm asymptotically abelian, it
also follows that p(w) is strongly clustering with respect to the group Z* of
lattice translations.
Next, as p(w) is an unique KMS state associated with the evolution group

7¢(w), one can easily conclude that the net of local Gibbs states ps(w) must
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converge in the weak*-topology to p(w), as A — oo. This is a trivial con-
sequence of the fact that each weak*-limit point of the local Gibbs states
pa(w) is a (T(w), 8)-KMS state, and hence, by uniqueness of the KMS state
p(w), it must be equal to p(w). Next, since pp(w)(A) = pata(T-aw)(aa(A)),
for A € Aa, we have p(w)(A) = p(T_,w)(ay(4)), for all A € A,, and
all Ay C Z”. Since the local elements are norm dense in 4, we have
p(w)(A) = p(T-,w)(aa(A)), for all A € A. Let {A,} be a sequence of fi-
nite sybsets increasing to Z¥. Since p(w) is an unique KMS state, above

a critical temperature T, almost surely independent of w, we have for all

A€ Ay, and all Aq C Z7

p(w)(A) = lim pa,(w)(A),

n—Cco
for almost every w € 0, where

v Tr(e PHAn) 4)
PA,I(W)(A) = Tr(e-ﬁH(An.,,-)) :

However, as w — H(A,,w) is strongly measurable and Tr(e-#H(Anw)) o£
for all n € Z*, it is clear that w — PA,; (w)(A) is a scalar valued measurable
function for A € A,, and all finite Ay C Z”. Since the local elements are
dense in A, it is readily seen that w — p(w)(A) is measurable for all A € A.
It has been established in section 4.2.1 that for 3 € IR\ {0}, there exists
a family of states {p(w)} on A, satisfying p(w)(A) = p(T-ew)(as(A)), for
all A € A, where the p,’s are obtained as the thermodynamic limit of the
local Gibbs sates pj(w). It is also seen that p(w) is a (7(w), 8)~-KMS state

with respect to the evolution group m(w). Next, let us assume that for
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B € R\ {0}, there exists one such family of (7(w), 3)-KMS states p(w), for
which the function w — p(w)(A) is measurable for all A € A. Henceforth, we
shall denote this family of states satisfying the above conditions by {p(w)}.
It may be noted from the discussion following the proof of theorem 4.2.2.2
that, above the critical temperature T, almost surely independént of w, there
exists a family of unique KMS states, for which these conditions hold.

Next, we prove the following theorem.

Theorem 4.2.2.3 If {p(w)}ueq be the family of (T(w), B)-KMS states on A
satisfying the conditions mentioned above and 3 > 0, then for any pair A,

B € A, we have the following:

1. Both w — p(w)(Ar(w)(B)) and w > p(w)(7e(w)(B)A) are jointly mea-

surable functions of t and w.

2. In particular, if p(w) is the unique KMS state with respect to the evo-
lution group (w), at some inverse temperature 3 > 0 almost surely
independent of w, then both p(w)(Ar(w)(B)) and p(w)(re(w)(B)A) are
strongly, jointly measurable. Moreover, there exists a function Fy p(z,w)
such that, for a fired w, FA‘Bl(z,w) is analytic in the strip 0 < Sz < 3,

continuous and uniformly bounded in the closed strip 0 < Sz < 8, and
Fup(t,w) = p(w)(A(w)(B)) and Fap(t+iB,w)= p(w)(n(w)(B)A).

Besides, Fa p(2,w) is measurable in w for each z in the open strip

0<Qz<p.
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Proof On appealing to theorem 3.7.0.29, we have for A,B € A, w —
AT (w)(B) is strongly, jointly measurable in ¢ and w. It follows from the
definition of strong measurability that, there exists a sequence of count-
ably valued functions g,(¢,w) on IR x Q, converging almost everywhere to

A7y(w)(B). Therefore, for almost every (¢t,w) € R x 9,

p)(AT()(B)) = lim plw)(gn (t,0)).

In the sequel, we shall establish that for each n € Z%, p(w)(g.(¢,w)) is
meaSI;rable on the product space IR x Q. Let g,(¢,w) take nonzero constant
values Ajn, Az, ..., Ak, - - ., on measurable subsets Ey n, Eon,. .., Expy- -
of IR x Q. There is no loss of generality in assuming that p(w)(gn(t,w))
takes real values. This is because the A ,’s can always be written as linear

combinations of self adjoint elements in A, and p(w) being a state, it takes

real values on self adjoint elements of A. Now, for ¢ € R,

{(t,w) € R x Q|p(w)(gn(t,w)) < c}

={wweﬂmewﬁwD<dU{U{ww€EmMM@ﬁMD<@}
’ . k=1

= {(t,w) € Eonlp(w)(0) <} J { U {(t,0) € Exnlp(w)(Akn) < c}} :
k=1

where Ey,, is the set on which g, takes the value zero(0). Therefore, it is evi-
dent from the measurability of the fﬁnction w > p(w)(A), for all A € A that,
the two sets on the right hand side of the equality are measurable subsets of
IR x Q. Hence, as ¢ is arbitrary, p(w)(g»(t,w)), is a jointly measurable func-
tion of ¢ and w for each n € Z*. Since p(w)(Am(w)(B)) is the limit almost

everywhere of p(w)(g.(t,w)) on R x §, we conclude that p(w)(An(w)(B))
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is a jointly measurable function of ¢ and w. Similarly, it can be shown that
‘the function (¢,w) = p(w)(7t(w)(B)A) is jointly measurable in t and w. This
proves (1) conclusively.

Now, in order to prove (2), choose a sequence of finite subsets {A,} which
increases to Z*. It has been shown in the discussion following the proof of
theorem 4.2.2.2 that, if p(w) is the unique KMS state with respect to the evo-
lution group 7:(w) at some inverse temperature 8 almost surely independent

of w, then for all A € A,, and all Ay C 27,

lim py, (w)(A) = p(w)(4)

n—voo
almost everywhere. It was also established in this discussion that w
p(w)(A) is measurable for all A € A. Since w — p(w)(A) is measur-
able, the joint measurability in ¢ and w, of both p(w)(Am(w)(B))) and
p(w)(ri(w)(B)A) can be proved along the lines of (1). Next, for A, B € A,,,
let

An (W)(B) = ez’H(An,w)zBe—z‘H(An,w)z7

z

where A, D Ag. Also for A, D Ao, define

Tr(ePH(Anw) A7An (L) (B))
Tr(e=BH(Anw))

Fis(z,w) =

Clearly, { FA} is a sequence of entire functions. which is uniformly bounded

on the strip 0 < Sz < B such that,
Far(t,w) = pa,(w)(A7"(w)(B)) and F,?,’b(“riﬁ,w) = pan (@)(7 () (B)A).

(See the proof of theorem 3.4.0.13 which can be adopted to pA(w) with 7 (w)

as the local automorphism group). On mimicking the proof of proposition(3.4.0.14)
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in chapter 3, we have for A, B € A,,

1im pa, () (ATt (@)(B)) = plu) (Ar(w)(B)),
where the limit exists almost everywhere in w, for all real ¢ and uniformly
in ¢ in a ball around zero. Hence, as a consequence of Vitali’s theorem, see
[Tit 91], for almost every w € § the sequence Fﬁ”};(z, w) coﬁverges uniformly
on every compact subset in the strip to F4 g(z,w), which for a fixed w is

analytic in the open strip 0 < Sz < 3, continuous and uniformly bounded in

the clo‘sed strip 0 < $z < 0 such that,
Fap(t) = p(w)(A(B)) and Fup(t+i8) = p(w)(m(B)A).

This proves the existence of Fi4 p(z,w) satisfying the conditions in (2) for
A, B € Ap,, where Ap C Z°.

Now, it follows from the strong measurability of w — H(A,w) for finite
A C Z¥ that, both A7M(w)B and e #H(A»w) are strongly measurable in
w for each z in the open strip and n € Z*. Therefore, for each z in the
-open strip, Fﬁ”b(z,w) is a scalar valued measurable function of w. This is
in view of the fact that, the ;crace, denoted by Tr, is a continuous linear
functional and hence, F4%(z,w) is a ratio of two measurable functions with
Tr(e=PH(Anw)y £ 0 for all n € Z*. It has been seen from Vitali’s theorem
that, for almost every w € {2 the sequence Fﬁfb(z, w) converges uniformly on
every compact subset in the strip to a function Fa g(z,w). Hence for each
z in the open strip, F§5(z,w) converges to F4,5(z,w) almost everywhere.
Therefore, we conclude that for each z in the open strip, F4 p(2,w) is a mea-

surable function of w. This proves the measurability of F4p(z,w) in w for
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each z in the open strip, for A, B € Ay, and Ay C Z*.

Next, for A,B € A, let A, = A and B, — B be sequences of local ele-
ments converging to A and B respectively. Therefore, it follows from what
was established earlier that, there exists a sequence of scalar valued func-
tions Fa, B,(z,w) such that, for each z in the open strip, Fa, g,(z,w) is
measurable and for a fixed w, F4, g, (z,w) is analytic in the open strip, uni-
formly bounded and continuous on the closed sfrip. Moreover, FA;,Bn(t, w) =
p(w)(AnTe(w)(By)) and Fa, B, (t + i08) = p(w)(r(w)(Bn)A,). Now, there is
a version of the Ph_ragnien—Lindeléf theorem [Rob 81] (Vol 2, Proposition
5.3.5, Pg 81) which states that, the supremum of the rﬁodulus of a function
which is bounded and analytic oﬁ the strip, is the supremﬁm of the modulii of
its boundary values. Since A, =& A and B, — B in the norm, the sequence
Fa, B.(t,w) = p(w)(Ar(w)(B)) and Fa, p,(t +16,w) = p(w)(m(w)(B)A).
The convergence being uniform in ¢. Thus, since the sequence Fy, g,(z,w)
converges uniformly on the boundary of the strip 0 < Sz < 8, it converges
uniformly throughout the closed strip, to say, Fa g(z,w). Fa,p(z,w) being
analytic in the open strip and uniformly bounded and continuous in the

closed strip, such that
Fu(t) = p(w)(A7(B)) and Fap(t+18)=pw)(n(B)A),

for a fixed w. Also for each z in the open strip, Fa,5(z,w) is the limit of
the sequence of measurable functions Fja, g, (2,w) for almost every w € Q.

Hence, for each z in the open strip, F4 g(z,w) is a measurable function of w.
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The theorem can be established along the same lines in the caseof B < 0,

by considering the closed strip § < Sz < 0.
4.2.3 Representations Associated with the KMS States

In this subsection, we aim to study the cyclic representations m, associ-
ated with the states p(w). These states are thermodynamic limits of the
local Gibbs states pa(w), and satisfy the following conditions: p(w)(A) =
p(T-,w)(ag(A)), for all A € Aand a € Z¥, and w + p(w)(A) is measurable,
forall A € A. It is also seen tha,t.p(w) is a (7(w), B)~-KMS state, where 7 (w)
is the evolution group. We shall exploit the quasi-local structure of the C*—
algebra to demonstrate some interesting features of the representations =,
and establish the separability of the Hilbert space H,. Algebraic properties
of the group of unitaries U;(w), which implements the evolution group 7;(w)
of the spin system have also been derived.

Now, assoéiated with every p(w), we have a cyclic representation (H,,, 7., ©.,)
of the qtla,si-lqca,l algebra A, obtained through the G.N.S construction. The
ideé, behind this construction is to convert the C*-algebra A into a pre-
Hilbert space by introducing a positive semi-definite scalar product on A.
In the process, we end up with a pre-Hilbert space of equivalence classes
(W), ¥p(w), defined by Pa(w) = A(w); A(w) = A+ J, where J € J,,, and

Jo = {A € A|p(w)(A*A) = 0}, with the scalar product given by

($a(w), ¥8(w))w = p(w)(AB).
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Before we complete this pre-Hilbert space to give us the Hilbert space H,,
we define the representation 7, by épecifying the action of the representative

m.(A) on the pre-Hilbert space as follows:
mu(A)(YB(w)) = Yap(w).

The cyclic vector is defined by ©, = ¥;(w). Note that, {7,(4)0.; A € A}
is exactly the dense set of equivalence classes {1/4; A € A}, and hence, O, is
cyclic for (M., m,). Since A is simple, m(w) is a faithful representation of A.
Moreover, A being a uniformly matricial C*-algebra (or UHF algebra), each
of these states p(w), 1s a locally normal state. Therefore, it follows from the
remarks made on the characterization of locally normal states of an abstract
C*-algebra in [Em 72] (Page 283), that, the Hilbert space H, asssociated
with the representafion T, 18 a separable Hilbert space. Since A is simplé,
and (M, 7, 0,) is a cyclic representation of A induced by the KMS state
p(w), it follows from [Win 70](Section 5, Page 233) that, the vector O, is
cyclic and separating for the von Neumann algebra m,(A)".

Next, every element « € Z¥, induce§ an isomorphism D_, : Hy, — Hr_,0, as
follows: Define D_,(¥a(w)) = ¥a,4(T—qw). Note that, D_, is defined on a

dense subspace of H,,, and

(D-a(a()), D-a(¥B@)Tss = (Pao(t)(T=o), Yers(8)(T-s0) T
= p(T-aw)((@a(A))*(ea(B)))
= p(T_a(.U)(aa(A*B))

— p(w)(4*B)



= (Ya(w),¥B(w))w-
Hence, for each a € Z¥, D_, : H,, — Hr_,. preserves the inner product on
a dense subspace V,, = {Ya(w); A € A} of H,,. Besides, it is clear that D_,
maps V., onto a dense subspace Vr__, of the separable Hilbert space Hr__..
Therefore, for each « € Z¥, D_, can be extended to an isomorphism between
the Hilbert spaces H., and Hr_,..

It is worth noting that for w € Q and a € Z¥,

1

(Do (m7_sw(@a(A)) D=a)(¥5(w)) = DZa(n7_pu(a(A))) (Yau(s)(T-aw))
= Do (Yaala)(aa)(T-aw))
= DZ;(Yau(an)(T-aw))
= Ya(w)
= m,(A)(¥s(w)),
for all A € A. Since the ¥(w)’s are dense in H.,, we have
ru(A) = D2 (n7u(0a(A))Doa VA€ A.

Thus, D_, exhibits an interesting intertwinning property which establishes
some sort of equivalence between the representations 7, and 71 _,,. This
equivalence is reminiscent of the notion of unitary equivalence between rep-

resentations. It follows readily from the identity

WT_aw(Tt(T—aw)(aa(A))) = ﬁT—aw(aa (Tt(w)(A)))’

where 7(w) is the evolution group, and the intertwinning property of D_,
that,
D2 (7wl m(T-aw)(@a(A)))) D-a = 7o (re(w)(A))-
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Note that for ¢ € Z* and w € (,

D_.(0.) = D_.(¢r(w))

In the final part of this section, we derive an interesting ergodic property of .
the spectrum of the generators of the unitary groups U;(w), which implement

the evolution groups 7;(w) in the representation .

Since p(w) is a (T(w), B)-KMS state, we have p(w)(7(w)(A)) = p(w)(A)
for all A € A. It follows from the uniqueness of the cyclic representation

(Tw, M, ©,) that, there exists an unitary operator U;(w) : H, — H, such

that,
Un(w)(mo(A)Ui(w) ™ = mu(r(w)(4)) and  Uy(w)O, = 0.,
for all t € R. Here U;(w)™! denotes the inverse of Uy(w).

Proposition 4.2.3.1 Let U,(w) be the strongly continuous, one~parameter
group of unitary operators implementing the evolution group 7,(w) in the

representation w,, on H,. Then, we have
Ui(w) = DL (Uy(T-ow))D—,.
Proof Since

To(7i(w)(A)) = DZa(77_aur(7e(T=0w)(@a(A4)))) D
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we have

(Us(w)(7(A4)00), 7u(B)Ou o
= (mu(n(w)(4))0u, mu(B)O.)o
= (DI (" roao (T-aw)(a(A)))) D=aOu, D24 (7T @a( B))) D-oOu o
= (DZa(m T s Tt(T-a0)(0:a(A))) O o) Do (FT_ (e (B))OT_i))e
= (D2 (UdT-aw))T1_pu(0a(A)O1_ s, DZa(m7_suo(a( B))OT 00))s
=+ (D23 (Ue(T-aw)) D-a)mo(A)(DZ;01_p0), T B D2, O1_ ) )es

= ((DZ2(Uy(T-aw)) D_0)7u(A)Ou, mu(B)O, )
Therefore,
V(@) (7o 4)0.), 7l BYOL)o = (DL (U T-at0)) D0 )1 )00y 1o B)OL)..
Since O, is a cyclic vector for 7,(.A), the above equality implies that

Us(w) = D2 (U(T—qw))D—s.

By virtue of the above proposition we have the following corollary.

Corollary 4.2.3.2 Let H(w) be the generator of the strongly continuous,
one-parameter group of unitaries U(w), which z'mplemént the evolution groﬁp
T(w). If Ex(w) are the spectral projections associated with H(w), then the
spectral projections Ey\(T-,w) associated with the generator H(T_,w) of the

unitary group Uy(T_,w) can be expressed as Ex(T-,w) = D_a(E,\(w))D:;.
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Proof We know from Stone’s theorem ([Sim 80](Theorem VIILS)) that,
the spectral family Ey(T_,w) associated with the unitary group Uy(T-,w) is
unique. Hence the proof follows from proposition 4.2.3.1. JAN
Next, we shall show that the spectrum of the generator of the unitary
group U;(w), is almost surely independent of w. To this end, we have thé
following proposition.
Proposition 4.2.3.3 Let H(w) be the generator of the strongly continuous,
one—pc;rameter group of unitaries Uy(w). Then the spectrum o(H(w)) of the

generator H(w) is almost surely independent of w.

Proof Let 7, denote the representation associated with the (7(w), 3)-KMS
state p(w), with cyclic vector ©,. The unitary group U;(w) with generator
H(w) implements 7(w) in this representation 7,. Now, for f € L'(IR), we

have

iNe = [ FOUsd=0, VoeH,
o [ onemmen -0, viea
& /: f(t)mu(Te(w)(A))O,dt = 0, VA e A
o ( Ci f(t)m(rt(w)(A))dt) 0,=0, VAcA
& ( / Z f(t)n(w)(A)dt) 0.,=0, VAeA
& ( / Z f(t)ri(w)(A)dt) —0, VAc A

& /°° f)r(w)(A)dt =0, VA€ A
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The first step follows from the fact that ©, is a cyclic vector for 7,(A).
The second follows from the definition of U;(w). Since p(w) is a KMS state,
the separating character of the cyclic vector ©,, for ﬂ’w(A),/, accounts for the
penultimate step. We arrive at the final step by virtue of the fact that the
representation 7, is faithful. Now, o(H(w)) = ={s € R| f(s) = 0,Yf €
ker U(w)}, vide [Bri 77] (Chapter 1, Definition 1.4). Therefore, from the
above derivation we have o(H(w)) = —{s € R| f(s) = 0,Yf € kerT'(w)},
where.['(w) is as defined in theofem 4.1.0.35. Hence, the proof follows from

theorem (4.1.0.35). A

4.3 Direct Integral von Neumann Algebra.

In the previous section, we saw how each of the p(w)’s gave rise to a represen-
tation m,(A) of the quasi-local algebra A, on a separable Hilbert space H,,.
It is seen that, these states are (7(w), 3)-KMS states with respect to the evo-
lution groups 7;(w). Now, the representations ’/T“, associated with these states
in turn give rise to an ensemble of von Neumann algebras {ﬂ'w(A)}”weﬂ. As
these von Neumann algebras correspond to distinct realizations of the quasi-
local algebra A, one has to treat them as distinct objects. Therefore, one is
obliged to invoke the theory of measurable field of von Neumann algebras.
The assumption that the action of the measure preserving group of automor-
phisms is ergodic, allows us to derive some interesting results concerning the
spectra of the generators of the unitaries Uy(w), which implement the evo-

lution groups 7;(w) in the representation . Moreover, the evolution group
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7(w) can be extended to a o-weakly continuous group of automorphisms

7(w) of the von Neumann algebra =, (A)" such that,
F(w)(Su) = Ue(w)SLU(w)™!, VS, € m(A)".
Since

ft(ﬁ;;(A)) = U(w)m(A)Ui(w)™!

= mu(r(w)(4)),

the restriction of 7 to m,(A) is 7(w). In the sequel, we impose a mea-
_surable structure on the field of Hilbert spaées w +— H,, and construct a
direct integral Hilbert space H = fs? H.,dP(w). We also demonstrate that
w o TrW(A)'l, is a measurable field of von Neumann algebras and estab-
lish the existence of the associated direct integral von Neumann algebra
er WW(A)IIdP(w). Further, we establish the existence of a strongly con-
tinuous, one-parameter group of unitaries U; acting on the direct integral
Hilbert space [ H.dP(w) such that, U;SU; € [&7,(A)'dP(<). for all
S e féﬁ 7w(A) dP(w). Finally, we construct a faithful, normal state p of the
direct integral von Neumann algebra féB 7, (A)"dP(w), which satisfies the
Kubo-Martin-Schwinger condition with respect to the o~weakly continuous
group of automorphisrné 7(S) = U SU;!, for every decomposable operator

S € [2n,(A) dP(w).
4.3.1 Measurable Field of Hilbert spaces

We begin with the following proposition.
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Proposition 4.3.1.1 The field of separable Hilbert spaces w — H, is a

measurable field of Hilbert spaces.

Proof To this end, recall that the family of states {p(w)} on A, is such
that p(w) is a (7(w),3)-KMS state with respect to the evolution group
T(w) and w — p(w)(A) is a measurable function of w for all A € A.
Since (H,, Ty, O.) is a cyclic representation of A induced by p(w), we have
p(w)(A) = (7,(A)O,,0.).. A, being an uniformly matricial C*-algebra,
there exists a sequence of elements {4, } in A such that, Ao = {A,|n € Z+}
is dense in A and hence, for each w € 0, 7.(As) is operator-norm dense in
Tw(A). Since O, is a cyclic vector associated with the representation =, on
Hey {7u(A)OL|A € A} is dense in H, for w € Q. As 7,(A,) is operator—
norm dense in 7,(A), it is easily seen that the sequence of vector fields
w 71'9_,(14,')@“,; 1=1,2,...,is a total sequence in H, for all w € Q. More-
over, in view of the assumption that the map w — p(w)(A) is measurable for
all A € A, it is readily seen fhat the function w — (7,(A:)O., 7.(A;)0.).
is measurable for 7,7 = 1,2,.... Therefore, it follows from [Dix 81] (Part
I1, Chapter 1, Prop 4) that, there exists exactly one measurable vector field
structure on the H,’s given by a collection of vector fields F such that, the
vector ﬁelds w = 7,(A;)0,, are measurable with respect to this collection
F. Theréfore the field of Hilbert spaces w — H,, is a measurable field of
Hilbert spaces. A

The above fact allows us to define t'he. direct integral Hilbert space ‘H, of

all square integrable vector fields in F over {2, from the measurable field of
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Hilbert spaces w — H,,. Here the inner product (.,.) on H, is given by

(& m) = e nenipe),

for all square integrable vector fields ¢, n € F. We denote the same by
féﬁ H,dP(w). It is worth mentioning that the Hilbert space H is a separable
Hilbert space. This follows from the fact that P is the completion of a
probability measure defined on the Borel sigma algebra generated by the
topology of a complete separable metric space ).

Next, we aim to show the following.

Proposition 4.3.1.2 [fU,(w) is the strongly continuous, one-parameter group
of unitaries implementing the evolution grou.p 1:(w) in the representation r,,
then, for each t € R, w — Uy(w) is a measurable field of unitary operators.
In fact (t,w) = (Uy(w)(7u(A:)O,), 7w(A;)Oy)w is jointly measurable in t and

wfori,)=1,2,....

Proof It is clear from the proof of proposition 4.3.1.1 and definition
| in [Dix 81] (Part 11, Chapter 1) that, {z:}, where @(w) = 7u(4))O.,
is a fundamental sequence of measurable vector fields with values in H,.
Therefore, it is easily seen from proposition 1 (Chapter 2, Part (II)) in
[Dix 81] that, the above proposition will follow if one can show that w
(Ue(w)(mu(Ai)Oy), 7u(A;)Ou ), is a measurable scalar valued function for
i, = 1,2,... . Since U;(w) implements 7;(w), we have Uy(w)(n.(4;))O. =
T (Te(w)(4:))0O,. Now (7, Hu, ©.) being a cyclic representation of A as-

sociated with the state p(w), we have p(w)(A) = (7,(A4)0O.,0.). for all
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A € A. Therefore, (U(w)(7u(A:)0.), Tu(A;)Ou)w = p(w)(Aj7{w)(Ai)), for
i,7=1,2.... Hence, the proof of the proposition follows from (1) in theorem
4.2.2.3. In fact, as a consequence of (1) in theorem 4.2.2.3, we have actu-
ally shown that the map (¢t,w) v (Us(w)(7u(A4:)O.), 7u(A;)O.). is jointly
measurable in ¢t and w for 7,7 = 1,2, .... » A

The following proposition is a consequence of the preceding proposition.

Proposition 4.3.1.3 Let {{(w)} and {n(w)} be two measurable vector fields
in F.Then the map (t,w) = (U(w)é(w),n(w))w, s a jointly measurable,
scalar valued function of t and w, for all measurable vector fields € and n in

F.

Proof It is seen that {z;}, where z;(w) = 7,(A;)O,, is a fundamental se-
quence of measurable vector fields. Therefore, it follows from [Dix 81] (Prob-
lem 3, Chapter 1, Part II) that, for any measurable vector field £ in F, there
exists a sequence of vector fields &, of the form &, (w) = Y"1 | fi(w)m,(A:)O.,
converging to ¢ almost ev_erywhere, where the f;’s are complex valued measur-
“able functions on Q. Clearly, these vector fields are measurable with respect
to F. It is readily seen from proposition 4.3.1.2 that, for any two complex val-
ued measurable functions f and g on Q, the scalar valued function (¢,w) —
(U(w)(f(w)mw(A:)Oy), 9(w)mw(A;)Ou )y, 1s jointly measurable in ¢ and w,
for all 5,7 = 1,2,... . Hence, for any two vector fields £ and n of the form
6) = Yo, fi(@)ma(A)0, and () = T, g4(w)mu(A44)0, respectively,
the scalar valued function (¢,w) = (U(w)é(w), n(w))w, is jointly measurable,

where the fi’s and gi’s are complex valued measurable functions on 2. Next,
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we shall show that for all measurable vector fields &, n in F. the function
(t,w) — (Uy(w)é(w), n(w))e is jointly measurable. To this end, let {£,} and
{n.} be sequences of vector fields of the form &,(w) = Y., fi(w)mu(A;)O,
and 7,(w) = > 5, g5(w) 7w (A;)O, respectively, c§nverging to £ and 7 almost
everywhere, where the f;’s and g;’s are complex valued measurable functions
on {2.

Therefore, for almost every (¢,w) in IR x Q,

‘ lim (U (w)én (), m(w))e = (Ur(w)é(w), n(w))e .

n—rco
Since (t,w) > (Ut(u.))ﬁn(w),nn(w))w is jointly measurable in ¢ and w, for all
n € Z%, the measurability of (t,w) — (Uy(w)é(w), n{w)), follows easily. A

Proposition 4.3.1.2 yields the following corollary. |
Corollary 4.3.1.4 1. For A € IR, if E\(w) are the spectral projections of |
the generator H(w) of Uy(w), then w — E\(w) is a measurable field of

orthogonal projections.

2. For each z in €, w — ((R(H(w),z))(w),n(w))., is a measurable
field of resolvent operators, where R(H(w),z) stands for the resolvent
(H(w) — 2I)7L.

Proof Let { and 7 be two measurable vector fields in F. Then (2) follows

from the fact that, if Sz > 0,

0

((R(H(w), 2))¢(w), n(w)) = i/oo e e HE (W), p(w))udt

and if Sz < 0,

(RU), @) n(eN)a = i [ " e O (w), (),

0
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where H(w) is the generator of U;(w) and the integral is a Riemann integral.
Now, (1) follows from (2) if we notice that

(Ex(@){(w);n(w))w

1 A+6
= lim lim — (((t—ie— Hw))™" = (t +ie — Hw))™) €w), n(w)).dt.

5§30+ e—0+ 271 —eo

A

It was established in corollary 4.2.3.2 that, if E\(w) are the spectral pro-
jections associated with the generator H(w) of Ui(w), then, for all a € ZY,
we have D_,(E\(w))DZ} = E\(T_,w). Here D_, : H, — Hr_,. is the iso-
morphism constructed in subsection 4.2.3. In view of this fact, we have the

following proposition.

Proposition 4.3.1.5 Let Ex(w) be the spectral projection assoctated with

the generator H(w) of Uy(w). Then, dim(E\(w)) is almost surely constant.

Proof We know from proposition 1 in [Dix 81] (Chapter 1, Part II) that,
there exists a measurable field of orthonormal bases {£,} in the collection of

measurable vector fields F. Herice,

o0

dim(F)(w)) = Z(E,\(w)fi(w,): &i(w))w-

i=1

Using the fact that Ex(T_,w) = D_o(Ex(w))DZ;, it is evident that dim(Ex(w))
is an invariant function of w. Besides, the measurability of the function
w + dim(E)(w)) follows from the corollary to proposition 4.3.1.2. Hence,
by the ergodicity of the measure preserving group of automorphisms, this

invariant measurable function is almost surely constant. A
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The fact that the action of the measure preserving group of automor-
phisms is ergodic, allows us to derive some interesting results pertaining to
the spectra of the generators H(w) of the unitary groups Uy(w). In this

connection we have the following proposition.

Proposition 4.3.1.6 The discrete and essential spectrum of the generator

H(w) of the unitary group U;(w), are almost surely independent of w.

Proof For each A € IR the map w — FE\(w) is a measurable field of
orthogonal projections associated with the generators H(w) of U;(w). Now

A is in the essential spectrum oes(H (w)) of H(w), if and only if,
dim(E, (w) — E,(w)) = oo,

for p < A < v. Clearly, the function w — dim(E,(w) — E,(w)) is an in-
variant measurable function. So, by' ergodicity of the action of the measure
preserving group of automorphisms, it is almost surely independent of w.
Hence th¢ essential spectrum oss(H(w)) of H(w) is almost surely indepen-
dent of w. Now, as the discrete spectrum o4is(H(w)) of H(w) is such that
oais(H(w)) = o(H(w)) N {oess(H(w))}, it follows from proposition 4.2.3.3,

that the discrete spectrum is also surely independent of w. A
4.3.2 Measurable Field of von Neumann Algebras.

We begin with the definition of a measurable field of von Neumann algebras.

Definition 4.3.2.1 Let w — H,, be a measurable field of complez Hilbert

spaces over §), and for each w € N, A(w) be a von Neumann algebra acting
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on H,,. The field of von Neumann algebras, w + A(w) over , is said
to be measurable if, there erists a sequence w — Ti(w),w — Tp(w),... of
measurable field of operators such that, A(w) is the von Neumann algebra

generated by the Ti(w)’s almost everywhere.
On appealing to proposition 4.3.1.1 we demonstrate the following fact.

Proposition 4.3.2.2 The field of von Neumann algebras w TI'W(A)/’ is a

measurable field of von Neumann algebras.

Proof Let Ay be defined as in proposition 4.3.1.1. It has been shown
that w +> H,, is a measurable field of Hilbert spaces on which the m,(A)"s
act. Consider the sequence w — 7w, (A;),w +— 7 (Az),..., of fields of op-
erators on H,. where A; € Ag. As observed earlier in proposition 4.3.1.1,
the vector fields {z;}, where z;(w) = 7,(A;)O,, form a fundamental se-
quence of measurable vector fields. Therefore, it follows from the measur-
ability of w + (7,(A)0,,0,), for all A € A, and proposition 1 (Part II,
Chapter 2) in [Dix 81] that,v w > m,(Ai) are mea,sura.ble fields of opera-
tors with respect to F. We have to show that for almost every w € (9,
the von Neumann algebra m,(A)" is generated by the ,(A;)’s. By defini-
tion, this amounts to showing that for almost every w € Q, 7,(A)" is the
smallest von Neumann algebra containing 7,(A,). i.e., showing that for al-
most every w € Q, ﬂ'w(A)H is the smallest von Neumann algebra containing

Tuw(Ao)Um,(Ao)”, since the von Neumann algebras containing 7, (Ag) are just

those containing m.,(Ag) U m,(Ao)*. This is tantamount to showing that for
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almost every w € Q, 7, (A)" is the smallest von Neumann algebra containing
the *~algebra G(7,(A,)) generated by 7, (Ao) (smallest *~algebra containing
7w(Ao)). This follows from the fact that the smallest von Neumann algebra
containing 7, (Ao) U m,(Ao)" is precisely the smallest von Neumann alge-
" bra containing G(n,(A4o)). Since G(m.(Ao))" is the smallest von Neumann
algebra containing G(7,(A)), it amounts to showing that,

mu(A) = G(m(A))"

L

Since {n,(A)O.,|A € Ao} is dense in H,, for all w € Q, it follows from

theorem (10) in [Em 72] (Page 116) that,
G(mu(Ao))” = G(m.(Ao)) ",

where for any subset N~ C H, N denotes the closure with respect to the
operator norm topology and N with respect to the weak operator topology.

Next, 7o (Ao) is operator-norm dense in 7,(A). Therefore,
G(mu( ) = 7ol A).

Further,

7o A) = G(7(Ao)) C Gl Ao)) "

This implies that,

(A" C Glra(Ao))”.

Hence,




Now, the von Neumann algebra ,,(A)" is the weak closure of ,(.A). Hence,
we conclude that m,(A)" is the smallest von Neumann algebra containing
G(m,(Ao)), for almost every w € Q. Thus, for almost every w € Q, 7 (A)" is
generated by the measurable field of operators w ++ 7,(A;). This proves the
proposition conclusively. A

In proposition 4.3.2.2, we demonstrated that w — Ww(.A)// is 2 measurable
field of von Neumann algebras. Since the quasi-local algebra A is simple,
the cylic representation =, is a faithful representation of A. Therefore, the
measurable fields of operators w +» m,(A;) which generate m,(A)", are es-
| sentially bounded. Thus, they define a sequence of decompgsable operators
JZ 7.(Ai)dP(w), on the direct integral Hilbert space H = [ H,dP(w).
Therefore, it follows from [Dix 81] ((i) in Prop 1, Chapter 3, Part II) that,

the set M of all decomposable operators

T: /@T(w)dp(w),

where T'(w) € 7,(A)" almost everywhere, is a von Neumann algebra, which
by definition is a decorﬁposable von Neumann algebra [Dix 81] (See Part

II,Chapter 3, Definition 2), and denoted as
@ /
M= / ro(A)'dP(w).
Q

Thus, we have succeeded in constructing a direct integral von Neumann
algebra M, from the representations ., of the quasi-local algebra .A. This
was achieved by putting a measurable structure on the Hilbert fields w — H,,,

using the cyclicity of the representations 7. This at the same time allowed
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the field of von Neumann algebras w ‘/Tw(.A)II to acquire a measurable
structure. The direct integral von Neumann algebra M constructed by us
is generated by the set of all diagonalisable operators A’ and the countable

famnily { fée T.{A;)dP(w)} of decomposable operators.

4.3.3 Alltombrpllism Group of the Direct Integral von
Neumann Algebra
Next, we shall construct a o-weakly continuous, one-parameter group of
automorphisms 7, of the direct integral von Neumann algebra M. We first
construct a strongly continuous, one-parameter group of unitaries Uy, on
the direct integral Hilbert space H. We know that there exists a strongly
continuous, one-parameter group of unitaries U;(w) on the Hilbert space H.,
which implements the evolution group 7¢(w). It has already been established
in proposition 4.3.1.2 that, for each fixed t € IR, w +» U;(w) is a measurable
field of unitary operators on H,. Clearly, the measurable field of unitary
operators w +» U(w) is essentially bounded for each ¢ € IR. In view of this,
the measurable field of uhitary operators w +» U;(w) defines a one—pdrameter
family of decomposable operators U; = féﬁ Ui(w)dP(w) on H. Moreover, it
has been demonstrated in proposition 4.3.1.3 that, for any two measurable
vector fields in F, the scalar valued function (¢,w) + (Us(w)é(w),n(w)). is
jointly measurable in ¢ and w. In the discussion that follows, we demonstrate
that for each ¢t € IR, the decomposable operator U; is an unitary operator
on the direct integral Hilbert space H and that, the one-parameter fé,mily of

decomposable operators {U,}, is indeed a strongly continuous one-parameter
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group of unitary operators on the direct integral Hilbert space H = féﬁ H.,.

To this end, we have the following proposition.

Proposition 4.3.3.1 U; is an unitary operator on the direct integral Hilbert

space H, of square integrable vector fields, for each t € IR.

Proof For square ihtegrable vector fields ¢, n € F, we have

(U, Uy = /Q (U@)€(w), Us)n())edP(w),

where, (.,.), denotes the inner product on the direct integral Hilbert space
H, of all square ixltegl'ab]e vector fields. Since w + U(w) is a measurable
field of unitary operators, it follows from proposition 1 {Chapter 2, Part II)
in [Dix 81] that, w — U,(w)* is also a measurable field of unitary operators.
Ui(w) being an unitary operator, we have

- (Ue(@)Ui(w)é(w), n(w))e = (§(w), n(w))w,
and |

(V@) Ue(w)e(w) n(w))w = (§(w), 1) )o-

Now it follows from the properties of decomposable operators [Dix 81] (Propo-

sition 3, Chapter 2, Part II) that,
Uf = /EB Ui(w)dP(w) and UU; = /6 U(w)Uy(w) dP(w).
Therefore, for £, n € H, we have
W) = [ (U)Ue) ) n@)dP ()
Q
= [ ndre)
= (&)
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Similarly, since

(]
UfUtz/ Ui(w)*Uy(w)dP(w),

we have
(VU = /Q (Ul Uw)E(@), () dP(e)
= [y n).ape)
= (&)
The p‘roposition now follows readily from the above equalities. A

We are now in a position to demonstrate the following.

Theorem 4.3.3.2 The one—parameter family of unitary operators {U;} on
the direct integral Hilbert space H, is in fact a strongly continuous, one-

parameter group of unitary operators on H.
Proof Forty,t; € IR, and &, € H, we have
Uusabn) = [ Waral)e()n@)dP).

It follows from the properties of decomposable operators [Dix 81] (Proposi-

tion 3, Chapter 2, Part II) that,
- - e B -
U, Uy, =/ 1 (W)U, (w)d P(w).
Q
Therefore, since Uy(w) is an unitary group, we have

(Unie,6m) = L(Utl(w)UtQ(w)f(w)’77("")>de(“’)
= (U, U, &, ).
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This shows that the family of unitary operators {U;} on H, is a one-parameter
group of unitaries with identity fQ o(w)dP(w).

In order to establish that the one-parameter group of unitaries U; on H,
is strongly continuous, it is enough to show that the function ¢ — (U:£,7), is
continuous in t, for every square integrable vector field £€,n in F. Recall that
for each t € R, w — (Uy(w)é(w),n(w))., has been shown to be a measurable

field of unitary operators in proposition 4.3.1.2. We also have

' [(Ue(w)€(w), n(w)hel < NI lIn(w)

and

[ 1emmenre < ( [ i)’ ([ eree) <e

Hence, it follows from the dominated convergence theorem that, for all square

integrable vector fields €, n in F,
lin(Uiyn) =l [ (Uw)e() ne)dP()
= Im(U(w)é(w), n(w))y, dP(w).

Moreover, U;(w) is a strongly continuous, one-parameter group of unitary

operators. Therefore,

lim(U.n) = [ () n@)dP()
-0 Q
= (& ).
Since U; has been endowed with a group structure, this proves the strong

continuity of the one-parameter group of unitaries U, on the direct integral

Hilbert space H, conclusively. ‘ A
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Next. for

&
S= / S(w)dP(w) € M,
Q

define
7(S) = UtSUt_l.

Now, w — Up(w)S(w)Ui(w)™! is an essentially bounded measurable field of
operators for each ¢t € IR. It follows from the propertieé of decomposable

operators that,

4

<]
USU = /9 Uu(w)S(w)Ui(w) ™ dP(w).

Since Uy(w)S(w)U(w)™! € m,(A)’, we have U,SU;' € M. Thus, it fol-
lows from the strong continuity of U; that 7; is a o—weakly continuous, one—
parameter group of automorphisms of the decomposable von Neumann alge-

bra M.

4.3.4 Construction of a KMS State of the Direct Inte-
gral von Neumann Algebra
Finally, we establish the existence of a faithful, normal (?,/3)—KMS state of
M. Now, the state p(w) which can be written as a vector state p(w)(A) =
(7w(A)O,,0,), in the representation 7, on a separable Hilbert space H, is
a (7(w), 8)-KMS state. Therefore, it follows from corollary 5.3.4, in [Rob 81]
and theorem 4.12 in [Hug 72} that, p(w) can be easily extended to a faith-
ful, normal (¥(w), 8)-KMS state p(w), of the von Neumann algebra 7, (.A)",
where §(w)(S) = ($O., O,)w, for § € m,(A)" and 7 (w) is the c-weakly con-

tinuous group of automorphisms of 7, (.A)". Clearly, the restriction of 5(w)

127



to w,(A) gives the state p(w) on A.

Let us now construct a state g of the von Neumann algebra M from the field
of states w +— p(w), on m,(A)". Such a field of states on the von Neumann
algebras m,(A)" is said to be a measurable field if, w — j(w)(T(w)) is a
measurable function of w for every measurable field of operators w — T'(w).
Since, w — O, is a measurable vector field with respect to F, it is clear
from the definition of j(w) that, w — j(w) is a measurable field of states on

m.(A)". Define

o[ swirw) = [seyere)

for all decomposable operators w + S(w) in M. Let o € €, and w +— S(w),
w > S1(w), w > Sy(w) define elements in M. It follows from the properties

of decomposable operators (Proposition 3, Page 182) in [Dix 81]) that,

o/ Sy (w)dP(w) + A 5'2(w>dé<w>)

= o ([ s+ sutnap(o))
- /Q pw) (Si(w) + Sa(w)) dP(w)

/ 5(w) (51(w)) dP(w) + / 5() ($2(w)) dP(w)
2 ' 2

.y ( / ’ sn(w)dP(w)) () 52<w>dp<w))
5(a [ swir) = / ) (aS()) dP(w)

p(w)S(w)dP(w)

w(/s vt

i

Also,

Il
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Hence, p is a linear functional on M. Since,

5([ ’ Lar) = [ ()P

= 1,

where I(w) is the identity operator on H,, p is a state.
Theorem 4.3.4.1 Let j be the state constructed above. Then p is a faithful,

" normal state of the decomposable von Neumann algebra M.

Proof Let w r——) S(w) define a decomposable operator in M*, where
MT™ is the set of all positive elements in M. Put § = f(? S(w)dP(w).
Suppose we have p(S) - 0, then it follows from the definition of g that
Jo A(w) (S(w)) dP(w) = 0 Since w ﬁ(S(w)) is a‘ non negative measur-
able function of w, we have p(w) (S(w)) = 0, almost everywhere. Therefore,
S(w) = 0 almost everywhere, since the p(w)’s are faithful. Next, we shbw
that the state j is a normal state on M. We know that the j(w)’s are nor-
mal states. Let {5} be an increasing net of elements in M* with supremum
S € M*. Let us denote the collection of all diagonaiisable operators on H
by Z. Clearly, Z C M C Z’. Since Z’ is a o-finite von Neumann algebra
[Dix 81] (See Proposition 7, Chapter 2, l;art IT) of all decomposable oper-
ators on H, it follows that M is also o-finite. Therefore, it follows from
the corollary to proposition 1 in [Dix 81] (Part I, Chapter 3) that, one can
extract an increasing sequence S, = erB Sn(w)dP(w) from the net {S)} with
supremum S. Now, there exists an increasing sequence of integers {n,} such

that, S,,(w) is an increasing sequence converging strongly to S(w) almost
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everywhere. This is a trivial consequence of proposition 4, in [Dix 81] (Chap-
ter 2, Part II). Hence, p(w)(Sy, (w)) is an increasing sequence converging to
p(w)(S{w)) almost everywhere. Therefore, it follows from the definition of

. p and the monotone convergence theorem that, 5(S,,) is an increasing se-
quence converging to p(S). This proves conclusively that 5 is a normal state
on M. ‘ A
Now all that remains to be shown is that the state ﬁ is (7, B)-KMS state.
Before, we establish this fact, let us give an equivalent definition of a KMS

state which we shall have the occasion to use.

Definition 4.3.4.2 Let p be a state on a von Neumann algebra R and 7
a o-weakly continuous, one-parameter group of automorphisms of the von

Neumann algebra R. Then, p is said to be a (7,3)-KMS state if,

/_ ) f-p(0)p(A7B)dt = /_ N f(1)p(7:(B)A)dt,

for all A,B € R and all f infinitely differentiable with compact support. In

the above equality, f,(t) = ffzof(s)e(t“”’)ds, for v =0 and —-p3.

Theorem 4.3.4.3 The state p constructed above is a (7,3)-KMS state of

the direct integral von Neumann algebra M.
Proof For § = [ S(w)dP(w), T = [ T(w)dP(w) € M,
| ratpras)

/_ T s OATU.SU ) de

[ o) ([ Moz @s@uapw) d
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[ 52000 ([ (03U 0w, 0.1l ) d.
It follows readily from the measurable structure imposed on the vector field
of Hilbert spaces that, w — O, is a measurable field of vectors. Moreover,
both w = S(w) and w + T'(w) are essentially bounded measurable fields
of operators. Therefore, it follows from the remark made at the end of
proposition 1 in [Dix 81] (Part I, Chapter 2) and the definition of measurable
fields of operétors that, both w = S(w)0,, and w — T(w)*@, are measurable

vector fields. Since
(T (W) (Ue(w)S(@)Ui(w)™)0u, 0u)0 = (U(w)(S(w)0u), T(w) Ou)u,
it follows from proposition 4.3.1.3 that,
(t,w) = (T(W)(U(w) S (@) Ur(w) ™) Ou, Ou ),

is jointly measurable in ¢ and w. By the Paley-Weiner theorem, f_s(t) is
an Integrable function of ¢. Moreover, the S(w)’s, and T'(w)’s are essentially
bounded in norm. Therefore, invoking Fubini’s theorem for scalar valued
functions on' IR x Q and using the fact that p(w) is a (F(w), 8)-KMS state

on m,(A)", where 7 (w)(A4) = Uy(w) AU, (w)~!, we have

o0

fo(t)p”(w)(ﬂ(W)(S(WJ)T(W))dt) dP(w)
S O(U)S @) Ui(0)™ T ()0 O, dt) P(w).
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Arguing as above, one can show that both w — T(w)0, and w — S(w)*O,

are measurable vector fields. Since
(U(w)S(@)Ue(w) )T ()00, Ou)e = (Ui(w) (T (w)Ou), S(w) Ou)u,
it follows from proposition 4.3.1.3 that,
(t,w) = (Ue(w)S(0)Us(w) 7' T (w)Ou, Ou)o,

is joint‘ly measurable. Again, by the Paley—Weiner theorem, fo(¢) is an inte-
grable function of ¢. Hence, on applying Fubini’s theorem a second time, we

get

This proves conclusively that, p is a (7, 5)-KMS state on the direct integral
von Neumann algebra M. A

Since the family of KMS states {p(w)} of A is not unique, the (7, 3)~KMS
state g is by no means unique. However, in view of theorem 4.2.2.2, above
the critical temperature T, there is an unique family of KMS states {p(w)},

which determines the KMS state 5 on M as constructed above.
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Chapter 5
Summary

L}

This final chapter of the thesis is devoted to a discussion on the results
obtained in chapters (3) and (4) and their implications. Some of the open
problems which remain unresolved are identified. Before proceeding any
further it is worth recalling the aims and objectives of the work undertaken
here.

The purpose of this investigation was to understand and explain the be-
haviour of a quantum spin gla,ssithrough its dynamics. Spin glasses have
always been something of a mystery. They are among the least understood
systems even in equilibrium statistical mechanics. In particular, their low
tempefature regime and critical behaviour are extremely complex.

Traditionally, quantum spin glasses have been studied as systems of quan-
tum spins interacting through random interactions. These modcls are essen-
tially Ising-type models with random coupling. The coupling coefficients are
assumed to be independent, identically distributed random variables. Ex-
tensive investigations on the existence of the thermodynamic limit have been

made by van Hemmen et al [Ent 83, Hem 83]. The almost sure existence of
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the free energy of an infinite spin system on a lattice with random interac-
tions has been established. This is a generalization of the result of Khanin
and Sinai [Sin 79] in the classical case. An alternate model of a quantum
spin glass can be based on the realization that; the magnetic ions in a spin
glass are randomly distributed at lattice sites. The spins therefore may be
considered to be located at the vertices of an infinite connected graph with
countably infinite number of vertices. Here, one caricatures a quantum spin
glass as a quantum spin system on an infinite connected graph with count-
ably infinite number of vertices. This model may be regarded as a quantum
analogue of the systems studied by Preston and others [Pre 74]. But, inspite
of the fact that a quantum spin glass admits a natural dynamics, this aspect
has not been investigated.

In this thesis, we have attempted the study of the dynamics of a quantum
spin glass with the help of both these models, namely, a quantum spin system
on an infinite connected graph having countably infinite Ilﬁmber of vértices
with deterministic interactions of the nearest neighbour type and a quantum
spin system on an iﬁﬁnite lattice Z¥ with random interactions. The problem
to which we have addressed ourselves is that of explaining the behaviour of
a quantum spin glass through the dynamics of these spin systems and the
associated KMS states.

In the case of the quantum spin system on an infinite graph, the global
dynamics has been established. This was achieved by constructing a strongly

continuous, one-parameter group of *~automorphisms 7 of the quasi-local
b
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algebra A associated with the spin system. As expected, the existence of
an equilibrium state which is by no means unique, has been established.
The equilibrium state p was obtained as the thermodynamic limit of the
local Gibbs states pp. It was also shown that p satisfies the Kubo-Martin—
Schwinger(KMS) condition with respect to the time evolution group 7. v

However, all attempts to establish the maximum entropy principle for the
infinite spin system were thwarted due to the absence of spatial homogeneity.
In fact, one failed to establish the existence of mean entropy and free energy
for the infinite system. The problem of establishing the existence of mean
entropy and free energy for the infinite system as well as that of establishing
the maximum entropy principle remains open.

The other model studied was a quantum spin system on an infinite lattice
Z", with random interactions. Here we have established the existence of a
family of strongly continuous, one-parameter groups of *-—automorphisms
{7¢(w)} of the quasi-local algebra A associated with the spin system, where
w lives in a probability space (2,S, P)'. These automorphism groups 7¢(w)
determine the evolution of the infinite spin system. The joint measurability of
the map (t,w) — 74(w)(A) for all A € A, has been proved. Some interesting
algebraic properties of the generator §(w) of these automorphism groups
have been derived. The notion of ergodicity of a measure preserving group
of automorphisms of (2, is used to prove the almost sure independence of
the Arveson spectrum Sp(7(w)) of the evolution group m(w). Next, the

existence of a family of (7(w), 3)-KMS states {p(w)} has been established
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for all B € IR\{0}. They have been shown to satisfy the condition p(w)(A) =
p(T-,w)(aa(A)) for all A € A and all a € Z¥, where a, is the action of the
lattice Z¥ on the quasi-local algebra A. We assume that there exists one such
family of (7(w),3)-KMS states {p(w)}, where w + p(w)(A) is measurable
for all A € A. It has been shown that the spin system on an infinite lattice
with random interactions exhibits a phase structure. In fact, it has been
established that there exists an unique KMS state p(w), above a certain a
critica] temperature T, almost surely independent of w. There is a close
connection between the Arveson‘spectrum of 74(w), and the spectrum of the
generator of the unitary group Uy(w) which implements 7;(w) in the cyclic
representation 7, induced by the (7(w), 3)-KMS state p(w). This fact has
been exploited to prove the almost sure independence of the spectrum of the
generator of U;(w).

Now, the cyclic representations 7, induced by the (r(w), 3)-KMS states
p(w), which satisfy the conditions mentioned above gives rise to an ensem-
ble of von Neumann algebras {r,(A)"}, where each of these von Neumann
algebras acts on a separable Hilbert space H,,. As these von Neumann al-
gebras correspond to distinct realizations of the quasi-local algebra A, they
are treated as distinct objects. This establishes a need to invoke the theory
of measurable fields of von Neumann algebras. Using the cyclicity of =, we
have constructed a collection of measurable vector fields F, which endows
the field of separable Hilbert spaces w r—-)A’Hw with a measurable structure.

Equipped with this structure, we have shown that for each t € R, w + Ui(w)
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is a measurable field of unitary operators. Further, the joint measurability
of (t,w) — (U(w), €(w), n(w)). for all &, n € F is established. We have also
derived some interesting ergodic properties of the spectra of generators H(w)
of the unitary groups U;(w).

In the final part of the thesis we have constructed a direct integral M from
the measurable field of von Neumann algebras w ~— 7, (A)". The existence
of a strongly continuous, one-parameter group of unitaries U; on the direct
integral Hilbert space H constructed from the measurable field of Hilbert
spaces w +> H,, has been established. This group of unitaries in turn gives
rise to a o—weakly continuous group of automorphisms 7 of M. From the
measurable field of KMS states w — p(w), which are extensions of the KMS
states p(w) to the von Neumann algebras {r,,(A)"}, a faithful normal (%, 3)~
KMS state p of M has been constructed.

The problem that remains to be resolved in this particular model is that
of establishing that the transport coefficients of the spin system are almost
surely constant. One would expect this to be generally true on physical
grounds-.

The other problem that remains open is that of establishing a connection

between the spectra of the generator of U;(w) and that of the generator of

the unitary group U; on the direct integral Hilbert space .
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