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Chapter 1 

INTRODUCTION 

The study of differential Equations is a rich area of mathematical research. It has played a 

major role in the development of mathematics and its applications for nearly five centuries, 

especially for the advancement of Physics and Engineering. From the 19th century onwards 

differential equations have played a significant role in Biology, Ecology and Economics. The 

real world problems are analysed mathematically with the help of models which are often 

differential equations. According to M.W.Hirsch and S.Smale, " The importance of ordinary 

differential equations vis-a-vis other areas of sciences lies in its power to motivate, unify, and 

give force to these areas." 

Linear Differential Equations have been studied in great detail. The existence and unique-

ness of solution and properties like boundedness, periodicity, oscillations, non-oscillations, 

stability, etc. have been already studied in respect of linear differential equations [13, 20]. 

However/very little is known about the non-linear world of differential equations. The world 

of non- linear differential equations is very wide and needs to be explored in great detail. 

One of the reason why the need is felt is that these equations represents several complex 

physical phenomena. The growth of science in the new millennium could well depend upon 

the success in resolving and developing the methods to study qualitative properties of non-

linear problems. The industrial recognition for nonlinear mathematical models, chosen to 

solve problems of technology, is growing. It is clear that the attempts to understand the 
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nonlinear world will dominate a large parts of mathematical research in the years to come. 

In many application, it is assumed that the future state of the system under consider-

ation is independent of the past state and determined solely on the present. But now it is 

known that this assumption leads to first approximation of the true situations. For a better 

approximation one has to consider the past history of the system. This has given rise to 

what are called delay differential equations or the differential equations with deviating argu-

ments. In general, these are known as functional differential equations. The general theory 

and basic results for functional differential equations have by now been thoroughly explored 

and are available in the form books [9, 25, 26, 28, 331. Nevertheless, there is a still a need 

for investigation of special delay equations. 

Problem under study  

Recently)  there has been interest in the study of linear differential equations involving 

piecewise constant delays. Such equations were first introduced by A.D.Myshkis [56]. The 

study of differential equations with piecewise constant delays was initiated by the work of 

Busenburg, Cooke and Wiener. It is seen that equations with piecewise constant delays are 

closely related to impulse and loaded equations and especially to difference equations with 

discrete arguments. It has been used to study controllability of discrete systems. Some 

basic tools such as variation of parameters formula, Gronwall type inequalities, needed in 

the study of qualitative properties of the solutions of equations involving piecewise constant 

delays have been already studied. 

The aim of this work is to study the nonlinear differential equation with piecewise constant 

deviating a•gument, 

x 1(t) = f( t, x(t), x(N ), x (t o ) = xo, 

with reference to the following problems. 

(A) To develop some basic tools required for further study. 
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(B) To use method of quasilinearisation to obtain the solution. 

(C) To study the controllability. 

(D) To study Boundary value problems. 

(E) To study the second order equation 

x"(t) = f (t, x(t), xatp), x(t o) = c.0 ; x' (t o) = do . 

The method of quasilinearisation was first propounded by Bellman and Kalaba [8, 10]. 

They showed that the method is an effective tool in the study of non-linear ordinary differ-

ential equations. Subsequently)  there were several research papers published in engineering 

sciences involving the use of method of quasilinearisation to several situations. During the 

last ten years, this method was further extended to cover several nonlinear situations. The 

main work was initiated by Lakshmikantham and his colleagues [47 - 54]. The method is 

used for initial as well as boundary value problems. 

The problem of nonlinear control has been studied by using the fixed point method [68]. 

This powerful tool in modern analysis helps us to construct a suitable control function ,in 

the case of nonlinear control problems. Using the results of linear system, control function 

and controllability matrix for nonlinear system are constructed. Under suitable hypothesis a 

function space is constructed and a suitable operator is defined on it. Schauder's fixed point 

theorem is then applied to get the desired result. 

Layout of the thesis  

In this thesis, an attempt is made to develop the theory of nonlinear differential equations 

with PCDA. The entire thesis is divided into five chapters. The first chapter gives an 

introduction of the topic, and the reasons for taking up the study. It also includes the 

outline of the problems dealt with in the thesis. The chapter ends with a plan of the thesis. 

Chapter 2 deals with the survey of the available literature on the equations with PCDA. 

The survey is divided into three parts. The first part briefly outlines the results on the 
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linear differential equations with PCDA. This includes results on the existence, uniqueness, 

oscillations and periodicity of the solution of different types of the equations with PCDA. The 

second section deals with nonlinear differential equations with PCDA. Finally, the chapter 

ends with brief description of the techniques in nonlinear analysis, which are used for the 

work of this study. 

Chapter 3 is devoted to the study of first order nonlinear differential equations with 

PCDA. Here we start with the basic results such as mean value property and inequalities. 

The existence of unique solution is obtained by using the method of quasilinearisation and 

its improvement. In the first case, we assume the convexity condition and in the second case 

under relaxed conditions, a simple procedure to construct the solution sequences is given. 

Inequalities estimating solutions of two differential equations with PCDA are discussed. 

Further, solution of the periodic boundary value problem is obtained by using the method of 

quasilinearisation. The chapter ends with discussion on oscillatory behaviour of the solution 

of a particular nonlinear equation with PCDA. 

In chapter 4, we have taken up the controllability problem for the nonlinear system 

involving PCDA. The sufficient conditions for complete controllability of the linear as well 

as nonlinear systems are obtained. An operator on a function space is constructed and 

Schauder's fixed point theorem is used. Some comparison theorems are discussed. 

In the last chapter of the thesis, we introduce second order nonlinear differential equa-

tion with PCDA. As prerequisites for the main result, solutions of homogeneous and non-

homogeneous linear equations with PCDA are obtained. The main result of this chapter 

is the existence of maximal and minimal solutions by using the monotone iterative tech-

nique. Oscillatory properties of a particular second order differential equation with PCDA 

are discussed. 

Finally, we present a brief summary of the results obtained in this thesis and give some 

of the unresolved problems. The thesis ends with a complete bibliography. 
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Chapter 2 

SURVEY OF EXISTING 
LITERATURE 

2.1 Introduction 

This chapter deals with the survey of the literature on differential equations with piecewise 

constant deviating argument ( PCDA ). The attention to these types of equations was drawn 

by Myskhis [56], and since then different types of equations with PCDA and their general-

isations have been studied by Busenberg, Cooke, Wiener and others. These equations have 

been a topic of interest for last few decades. A survey article by Cooke and Wiener[19] gives 

some of the results on these equations. We plan to give survey of linear equations in section 

2 and that of nonlinear equations in section 3. Section 4 gives an account of methods from 

literature on ordinary differential equations, used in our study. 

Equations with PCDA are similar in structures to those found in certain " sequentially 

continuous " models of disease dynamics. Usually diseases are propagated by two main 

methods of transmission, namely horizontal transmission and vertical transmission. When 

an individual picks up the disease through some form of direct or indirect contact with 

infected individuals, it is called horizontal form of transmission. The vertical transmission 

is one in which the disease is passed on to a proportion of the offsprings of the infected 

parents. Various types of models of vertically transmitted diseases are overviewed in [15, 
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29]. The analysis of certain models of these diseases which are propagated by invertebrated 

vectors with generators are discussed in [11]. This article discusses a particular disease known 

as the Rocky mountain fever. The organism that causes this disease is Rickettsia ricketsi 

which. is. transmitted to human or other large mammals via contact with infected ones. The 

mathematical models obtained here is a special case of the general form, 

(t) = F(t, x t), [t] < t < [t] + 1, x[t] = ON, 

= Gat], x[ti), [t] > 2 ; 	= H. 

where x : [0, oo) 	IRn , and x e  is the past history function defined by , 

x e (s).., { 	+ s), s 	[—t, 0 ] 

s < —t. 

Here xt  E PC[0, oo) , F , G are functions from [0, oo) x PC[0, oo) 	110 , 

11 E PC(—oo, 0] , where PC denotes piecewise continuous. 

Equations of this type have continuous dynamics for intervals of the form at],[1]+ 1 ) • 

At integer points these equations have a combination of discrete and continuous dynamics. 

Such equations also arise in number of models of epidemics. 

2.2 Linear differential equations with piecewise con-
stant deviating argument 

In this section, we present a brief account of the work done on linear differential equation 

with piecewise constant deviating argument (PCDA). We begin with one of the simplest 

scalar initial value problem (IVP). 

Consider the IVP, 

x i (t) = ax(t) 	a0x([t]), x(0) = c0. 	 (2.1) 

where a, ae, ce, , are constants. ao 	0. [•] denotes greatest integer function. t E 1 = [0, oo). 

The solution of (2.1) is defined as follows: 
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Definition 2.2.1: A solution of (2.1) on I, is a function x(t) that satisfies the conditions: 

(i) x(t) is continuous on I. 

(ii) The derivative x'(t) exists at each point t E I, 'with the possible exception of the points 

[t] E I, where one sided derivatives exist. 

(iii) Equation (2.1) is satisfied on each interval [n, n + 1) C I with integral end points. 

The following result due to Cooke and Wiener gives the method finding the solution of 

the equation(2.1). 

Theorem 2.2.1 The IVP (2.1) has on I, a unique, solution 

	

X(i) = 17-1(t - [t])m[1(1)co 	 (2.2) 

where m(t) = 1 + a-1  (eat - 1)(a + ao). 

The following theorem established by Cooke and Wiener in [16] generalises the above 

result. 

Theorem 2.2.2 The scalar IVP 

	

x'(t) = ax(t)-1- aox([t])-1- ai x([t - 1]) 
	

(2.3) 

x( -1) = e_ 1 ; x(0) = co  

has on I, a unique solution, 

x(t) = c[ileact-[t1) + a  -if aoc[t]  + a 	y ea(i-N) 

where 

- {,\N-" ( 	

it 
c[t]  - 	\co  - A2 C- 1 ) 	(A1c_ 1  - co) ,2 	.11 keg — A2) 
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and A1,  A2 are roots of the equation A 2  — b o A — b 1  = 0 with bo = ea + a-iao(ea — 1); 

and b1  = a-la (ea — 1). 

The solution is obtained by employing the method of steps, by considering the equation (2.3) 

on the unit interval [n, n + 1). 

In ODE with a continuous vector field the solution exists to the right and the left of the 

initial t-value. In general, this is not the case for the retarded functional DE.[33] 

But the solution of the equation (2.1) as well as of the equation (2.3) can be extended back-

wards on (—oo, 0]. This is achieved by considering the respective equations on the interval 

[—n, —n 1) . We state the result concerning equation (2.1) as given in [16]. 

Theorem 2.2.3 If m(1) 0, then the solution of (2.1) has a unique backward continuation 

on (—oo,0) given by the formula (2.2). 

Since the method of steps involves the unit interval with integral end points, one may 

consider any initial point to  as integral point, and pose the IVP. The IVP (2.1) is posed at 

initial point 0. But it is not necessary that any initial point to  be an integer. We can as well 

posed the problem at non-integral point t o . This fact is established by the following result. 

Theorem 2.2.4 If m(1) L 0 and m(t—[t]) L 0, then the equation (2.1) with initial condition 

x(t o) = xo  has on (—oo, oo) a unique solution given by, 

x(t) = m(t — [t])tnitHt°) (1)m -1 (t o  — [to])xo 
	

(2.4) 

where rn(t) is as defined in (2.2). 

Remark 2.2.1 (i) If a = 0 in equation (2.1), then the solution (2.2) becomes 

x(t) = ( 1. + no(t — [t]))(I 	ao) El co, t E I. 

(ii) If ao  = 0 in equation (2.1), then the solution (2.2) becomes x(t) = eat co,  _o c as expected. 
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(iii) If t = 0, then x o  = co  and solution (2.4) reduces to solution (2.2). 

The IVP (2.1) is generalised in many directions. One such generalisation is obtained by . 

increasing the number of delay terms, namely; 

N 

(t) = ax(t) E ai x([t — il), aN 0 
i=o 

x(i) = ci , i = 0, 1, 2, ...N. 

The unique solution of this IVP is obtained by Cooke and Wiener in [16]. Here, the authors 

also discuss extension to the problem (2.3), namely, 

Xi(t) = AX(t) A0X([t]) A 1 X([t — 1]), 

X( -1) = Ci ; X(0) = Co)  

where A, Ao, A l  are r x r matrices and X is r-vector. This IVP has a unique solution 

provided the matrices A, eA — I, and Al  are non singular. 

In more general, the equation (2.1) can be studied on a Banach space. Here,there is a 

need to modify the Definition 2.2.1 of the solution of equation (2.1) as per the one given by 

Krein in [38]. Cooke and Wiener in [16] have established the existence and uniqueness of 

solution as well as the exponential growth and backward continuation of the solution. The 

same paper also discusses the scalar IVP, 

xi(t) = a(t)x(t) + - ao(t)x(N) 	a1(t)x([t — 1]) 

x(0) = co; x(-1) 

with continuous coefficients on I. A simple algorithm to compute the solution is given. 

Shah and Wiener have studied the advanced differential equation with PCDA. All the 

retarded equations seen above with deviating arguments [t — 1], ..., [t — N] being replaced by 

the advanced arguments [t 1], ..., [t N] respectively)  are considered by them in [61]. Here ) 

9 



they deal with existence and uniqueness of solution of the IVP, its backward continuation, 

growth and stability. 

It is interesting to investigate the oscillatory behavior of the solution of the equation 

(2.1) which is caused by the deviating argument and which is not seen in case of ordinary 

differential equations[43]. It is well known that a solution is said to be oscillatory if it has 

arbitrarily large zeros. The following result is due to Aftabizadeh and Wiener in [1]. 

Theorem 2.2.5 Consider the delay differential inequality 

x'(t) 	a(t)x(t) 	p(t)x([t]) < 0. 	 (2.5) 

where a(t) and p(t) are continuous on I. Assume that 

lim Sup I 
n+1 

 p(t)exp( f a(s)ds)dt > 1. 	 (2.6) 
71 —). 00 

Then the equation (2.5) has no eventually positive solution. 

Under the same condition (2.6), Aftabizadeh and Wiener have established that the delay 

differential inequality. 

x'(t) 	a(t)x(t) 	p(t) ([t]) > 0, t E I 

has no eventually negative solution. Hence,we get the following result proved in the same 

article. 

Corollary 2.2.1 Subject to condition (2.6), the delay differential equation 

x'(t) + a(t)x(t) + p(t)x([t]) = 0. 

has oscillatory solutions only. 

When a(t) = a p(t) = p are constants, the condition (2.6) reduces to P > 
a 	which 

is a sharp condition. Titus we have the following result from [1]. 
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Theorem 2.2.6 If p < el l , then the delay differential equation, 

x' (t) 	ax(t) 	px([t]) = 0 	 (2.7) 

has no oscillatory solutions. 

Remark 2.2.2 When p = eaa , the only solution of the equation (2.7) is x(t) = 0. 

Hence, we can conclude that p 	a  
—1 is a necessary and sufficient condition for the 

equation (2.7) to have oscillatory solutions only. 

The following result on number of zeros is found in [1]. 

Theorem 2.2.7 If p > eaa_ 	1  , 4hen any solution of the equation (2.7) has one and only 

one zero in each unit interval (n, n+1). 

Further in [1], Aftabizadeh and Wiener have discussed the oscillatory properties of the 

linear advanced differential equation .with deviating arguments and of differential equations 

with several deviating arguments. In [4], Aftabizadeh, Wiener and Xu have studied the os-

cillatory and periodic solutions of delay differential equations with PCDA. Here,the equation 

under consideration is, 

x'(t) = a(t)s(t) b(t)xat — 	= 0, 	 (2.8) 

where a(t), b(t) are continuous functions on I. This paper deals with sufficient conditions 

under which (2.8) has oscillatory solution. The authors claim that this condition is the 'best 

possible' in the sense that when a and b are constants the condition reduces to a necessary 

and sufficient condition. The article also deals with the condition under which the oscillatory 

solutions of equation (2.8) with a(t) = a, b(t) = b are periodic. 

In [17] Cooke and Wiener have discussed an equation which is alternately of retarded 

and advanced type, namely)  the equation 

x'(t) = ax(t) + ao x(2[ t 	+2  1 ]) , 	 (2.9) 
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Here the argument deviation r(i) = t — 9/al 	i ) is negative for 2n — 1 < t < 2n 
\ 2 

and positive for 2n < t < 2n -I- 1 (n is an integer ). Equation (2.9) is of advanced type 

on [2n,2n -I- 1) and of retarded type on (2n, 2n 1). The method of steps is employed 

to obtain unique solution Of the equation (2.9) on I as well as its unique backward 

continuation on (—oo, 0]. Furthermore equation (2.9) with variable coefficients a(t), ao(t) 

is examined, and the condition for existence of unique solution on I is determined and 

conditions under which all solution are oscillatory are obtained. Oscillatory and periodic 

properties for generalisations of (2.9) are discussed by Aftabizadeh and Wiener in [2]. 

In [34], Jayasree and Deo have developed some basic tools needed for the study of qual-

itative properties of solutions of equations involving PCDA. Let C(I) denote the space of 

continuous functions mapping I = [0, oo) into IR" . The norm of a n x n matrix 

M = (M23 ) is defined by {MI = max i  Ei  imij i. Let E denotes the n x n identity matrix. 

Consider the systems 

V(t) 

(t) 

= 

= 

A(t)X(t), 

AMY (t) 	B(t)Y ([t]) 

(2.10) 

(2.11) 

Z'(t) = A(t)Z(t) + B(t)Z(N)-1- C(t), (2.12) 

fort > 0, with initial conditions, 

X(0) = Y(0) = Z(0) = C o , 	 (2.13) 

and the assumption: 

(H) A, B are n x n matrices with entries real valued continuous functions of t E I 

C is a n column vector with entries real valued continuous functions for t E I, 

x, y, z are n vectors and Co  is a real constant n column vector. 

Let 4) be the fundamental matrix (FM) of (2.10), such that 4)(0) = E, the identity 
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matrix. Then using the method of iteration, the solution of (2.11) and (2.13) is obtained in 

[36] as follows. 

Theorem 2.2.8 Let the assumption (II) hold. Then there exists a unique solution to. the 

IVP (2.11) and (2.13) for t E I and it is given by 

Y(1) = limIcio(t, 0) + I 4)(i, t i )B(i i )(1)(Et i l, 0)dti 
0 

f[111  4)(i, t i )B(t i )(1)([t i ], t 2 )B (t 2 )(1)(p 2 ], 0)dt 2 dt i  
0 0 

+ .. . + 	t f  [ti ] 	fE tk -11 
4)(t, t i ) B(t 1 )(1)([t i ], t 2 ) B(t 2 )... 

x B(tk)4 ([tk], 0)dt k ...dt 2dt l } co . 

This result is established by using Banach fixed point theorem. A closed form solution of 

(2.11) and (2.13) is obtained in [16] by Cooke and Wiener. The following definition is of 

importance to study the perturbation effects on (2.11). 

Definition 2.2.2 The function 

T(t) 	14:0(t ,[t]) 	kcip ( t, s)B(s)ds} 

x H 14:0(k ,k — 1) + f 4:0(k,$)B(s)dsl, t E I, 
k-1 

satisfying the matrix IVP, 	A(t)Y(t) B(t)Y([t]), Y(0) = E is called the FM 

solution of the equation (2.11). 

The method of variation of parameters (VP) is one of the important techniques in the study 

of the qualitative properties of the solution. In particular, perturbation theory depends on 

this method. The VP formula for the equation (2.12) obtained in [36] is given below. 

Theorem ‘ 2.2.9 Let Y (t) be the solution of (2.11), (2.13). Let (14 and 	be the FM 's of 

the equations (2.10) and (2.11) respectively. Then the unique solution of (2.12) and (2.13) 

k={t] 
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for t E 1, is given by 

[t] 
Z (t) = Y(t) 	E

k -i 
 (t ,k).1)(k , s)C(s)ds 

k.i 

f]  4)(t, s)C(s)ds 
Et 

where 

tk(t,k) = tk(t) • W -1 (k), k = 0, 1, 2, ...[t], t E 

and 	
Y(t) = T(t)CO3  4)(t, s) = 4(t) 4)-1 (s). 

The above theorem is obtained by considering the equation (2.11) as the basic equation: 

One can take equation (2.10) as the basic equation and VP formula can be derived. This is 

achieved in the next theorem [36]. 

Theorem 2.2.10 Let (I) and kk be the FM's of (2.10) and (2.11) respectively. Then 

Z(n) = Y (n) 	1k  tk(n, k).1)(k, s)C(s)ds 

where n > 1 is an integer, and 

(n, k) = 4)(n, k) 	E f WO- — 1, k).1)(n, s)B(s)ds, 	for 72 > k 
r=k+1 f 

T(n,k) = E; n = k, n = 1,2, ...N. 

In [60], Rong and Jialin has obtained the solution of the equation (2.12) using the theory 

of difference equation, and has compared the behavior of the solution of equation (2.12) to 

that of the corresponding difference equation. 

Integral inequalities play a useful role in the study of the qualitative behavior of the 

solutions of differential equations. Jayasree and Deo have established the Gronwall type 

integral inequality in the following theorem in [36]. 
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Theorem 2.2.11 Let co  be a constant and x, a, b E [I, al. 
If the inequality 

x(t) < + I a(s)x(s) -F b(s)x(tspds, t E I 

holds, then for t E I 

Et] 	k 	 k 	ik 
X(i) 	Co • I{exp( I a(r)dr) + I exp( 	a(r)dr)b(s)ds} 

k=1 k-1 	 k-1 	s 
t 

X feXp(1 a(r)dr) + I 
t 
 exp( f t  a(r)dr)b(s)ds} 	 (2.14) 

Etl 	[t] 	o 

Remark 2.2.3 The right hand side of the inequality (2.14) is in fact a solution of the related 

IVP, xi(t) = a(t)x(t) b(t)x(k1), x(0) = co • 

We need the following definitions given in [36]. 

Definition 2.2.3 For n x n matrix B = (bii ), 	define, the matrix measure p of B by 

p(B) = maxi (bij  + a.1 I )• 

Definition 2.2.4 A solution Y(t) 	(y i (t),...,y,,,(t)) of the system (2.11) 

existing for t I is said to be oscillatory if atleast one of its components has arbitrarily 

large zeros for t > T, 0 < T < oo. 

The following result on oscillatory property is taken from [36]. 

Theorem 2.2.12 Let p(•) denote the matrix measure. Assume that the matrices A(t) 

and B(t) in (2.11) are such that 

lim sup itt--+00 

m-1-1 
—p(B(s)) exp( f —p(A(r))dr ) ds > 1. 

irn 

then every solution of (2.11) is oscillatory. 

Aftabizadeh and Wiener [5] have discussed the oscillatory and periodic solutions for a system 

of two equations with PCDA. 
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Further in [36], Jayasree and Deo have explored scalar retarded equations with two types 

of delays namely (t — 7 - ) and [t] . The equations involved are 

x/(t) = 

y'(t) = 

z'(t) = 

ax(t) + bx(t — 7 - ) 

ay(t) + by(t — 7)+ cy([t]) 

az(0+ bz(t — 	czatp f(t). 

(2.15) 

(2.16) 

where T > 0, t > 0 with initial functions, 

x(t) = y(t) = z(t) = ck(t), -T < t < 0. 

The existence and uniqueness of the solutions of the equations (2.15) and (2.16) have been 

proved. In [36], Jayasree has obtained similar results for the equation 

x'(1) = ax(t) bL(z(t + 0)) 

y'(t) = ay(t)d- bL(y(t 0)) + 

z'(t) = az(t) + bL(z(t 	0)) + cz([t]) 	f(t). 

with initial conditions x(t) = y(l) = z(1) = OM, -T < t < 0, 

where L is a linear operator mapping CUT, 0], IR] —+ IR for which 1 > 0, a , b 7 c , 

are real constants, ca is a continuous real valued function defined on [—T, 0] T being a 

constant and f is continuous function on I. 

The differential equations in Banach space with PCDA are considered by Wiener in 

[64]. The existence and uniqueness of solution of 1VP posed at t = 0 is established for 

equations with bounded as well as unbounded operators. The properties of solutions of 

equations with bounded operators are similar to those of solutions of systems of ordinary 

differential equations whiCh can be viewed as equations in a finite dimensional space. This 

article also discusses some results on the asymptotic behavior of the solutions and equations 

with unbounded delay in case of several argument deviations. 
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A linear system of differential equations with PCDA Ei + 11 is studied for oscillations 

by Wiener and Cooke in [66]. The existence of a solution is obtained for the equations, 

x'(t) = Ax(t) 	B :r([t + —9 1), x(0) = 

and 

x'(t) = Ax(t) Bx(Et + 2 1) f(t), x(0) = co  

where A , B are constant matrices of appropriate order and f is a locally integrable vector 

function. This work also contains the following result. 

Theorem 2.2.13 The problem x'(i) = Ax(t) Bxntn+ f (t), x(0) = co 

has on I a unique solution 

[t] 	'3 
X(t) 	M(t — [t]) WIC() E m,73 	eA  

3=1 	3-1 

t 

E ] 
ea(t—s) s)ds, 

t 

- s ) f( s ) } 

if the matrices A and M are non singular and f(t) is locally integrable. This solution has 

a unique backward continuation on (—oo, 0] given by 

- [t] 	_ a  

f-3+1
X(i) = 	— [t]) ltelCo + 

ea(t-s) )dS. 
[t] 

where 1171(t) = eAt (eAt — I)A -1  B, and M1  = M(1) 

Further in [66] , oscillatory and periodic properties of the solutions are discussed in terms of 
/- 

the eigen values of a certain matrix associated with the system. 

Delay differential equations are related to some discrete differential equations arising in 

Numerical analysis. Gyori [32] has established some approximating results for the solution 

of delay differential equations via differential equations with PCDA. 

17 



Theorem 2.3.2 Assume that x'(t) = f(x,,a) , where f E C[R2] , satisfies the existence 

and uniqueness conditions in 1R2  and it's solution can be extended over the interval I. 

Then on I , there exists a unique solution of (2.18). 

Further Aftabizadeh and Wiener have proved the following result. 

Theorem 2.3.3 If f(x, it), is continuous in IR 2 , and the solutions of the equation 

x'(t) = f it), can be extended over I, then the problem (2.18) has a solution on I. 

In the process of investigating (2.17), Aftabizadeh and Wiener have proved the existence 

of maximal and minimal solutions by using the well known Monotone iterative method. In 

order to establish this,the upper and lower solutions of (2.17) are defined and the fundamental 

result concerning the upper and lower solutions is proved. 

Theorem 2.3.4 Consider the differential inequalities ..  

u'(t) < f(t, u (t), u([t])) 

(t) > f (t, v (t) , v ([t])) , t > 0, 

where, f E 	I IR IR. 	IR I x 	x 	IR. ] . Suppose f , x, y) is nondecreasing in y for each 

(t, x) E I x IR, and. 

f (t, x, y) — f (t, z, y) < L(x — z) , whenever x > z . 

Then u(0) < v(0) = u(i) < v(t) , for all i > 0 . 

Further in [3], the authors have prove the existence of the solution of the equation (2.18) 

on the closed set, ft 	-((x, y) : u(i) < x y < v(i) , > 0 }. 

Theorem 2.3.5 Let •(t) and v(i) be the lower and the upper solution of (2.18) such that 

u(t-) < v(t) on 1 and f e C(Q) . Assume that x'(t) = f (x, , satisfies the existence 

conditions on S2 . Then there exists a solution x(i) of (2.18) such that u(i) < x(t) < v(t) 

on I. 
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The following Lemma is of vital importance for monotone iterative method and has been 

proved in [3]. 

Lemma 2.3.1 Suppose that x E C[ /,111], and the derivative xi(i) exists at each point 

t E I , with the possible exception of the points E I , where one sided derivatives exist. 

Assume that. 

x 1 (t) < M x(t) 	x([t]) , x(0) < 

where M and N are constants such that 

N> 
eam  M 1 

 eaM  0 < a < 1. 
—  

Then x(1) < 0 on I . 

The well known monotone iterative method proves the existence of minimal and maximal 

solutions of the equation (2.17) through the construction of monotone sequences of solutions 

of the corresponding linear delay differential equation. We state the result proved in [3]. 

Theorem 2.3.6 Let u(t) and v(t) be lower and upper solutions of the equation (2.17) 

such that 11(1) < v(t) on I . Suppose that 

f( t, xl, yi ) - f(t, x2, y2) 
	

M(x i  — x 2 ) + N(x 2  — y2 ), t > 0, 

for u(1) < x2 (t) < x i (t) < v(1) , •(t) < y2 (l) < yi (t) < •(t) 

— 
and N > eam

M 
 1 ea 	, for each 0 < a < 1. _  

Then there exists monotone sequences {u n,(1)} and {v m (1)} with '12 0 (1) = u(1), vo (1) = v(t) 

such that um (t) -4 41) , v„,(t) -4 [3 (t) as in -4 00 monotonically on I, and (1(0 , 

are 	awl maximal solutions of the equation (2.17) respectively. 

In the proof of the above theorem, the linear delay differential equation constructed is 

x 1 (t) = f (t ,1)(t), ?i([t])) 	M {s(t) — 11(0} 	fx([t]) — li([t])} 
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where TO) E C[I, IR] is such that u(t) < TO) < v(t) . The solution of this equation can 

be obtained by using scalar form. of Theorem 2.2.13, which has been proved in [3]. 

In [34], Jayasree has defined the maximal and the minimal solution of (2.17) and has 

proved their existence under the hypothesis of Theorem 2.3.1. The following comparison 

theorem has been established. 

Theorem 2.3.7 Let •(t) be the maximal solution of (2.17) on the interval [0, a), a > 0. 

Let nn E C[I, IR] , m(0) < r(0) , and if nt' (t) < f (t, in(t), nt([t])), t E 1, then nt(t) < 

r(i), I E I. 

A useful result to study stability and boundedness property is established in [34]. 

Theorem 2.3.8 Let (DM be the fundamental solution of x'(1) = a(1)1(1) satisfying 

43(0) = 1 and kii(t) be the fundamental solution of y'(t) = a(t)y(t) b(t)yatp 

satisfying W(0) = 1. Let 1(1)(1)1< -y(1), where 7(1) is a positive real valued function defined 

on I 

and let 7(0) = yo  . Also suppose that the function 1(1, z(t)) : I x 	IR satisfies the 

inequalities.. 

0 -1 (k) (1) (k,$)f( s ,z(s))i< W(.9 , 17z((: )) 1 Lyz((kk 	11 )) 1 ), k —1 < s < k, k = 1,2,... 

and 

1 4) (t, )f(•s, z(s))I < 7(t)W(s, 
lz(s)I ,  lz([t1)1

),  k = [t] < s < 
••( 8 ) 	•(N) 

7/1h C 
	w( 1 , 1 . ( 1 ),I . WD) is monotone increasing function in second and third 'variable. 

Lct r(1,0,ro ) be a solution of r'( -1)=W(l,r(t), '([t]) , r(0) = ro • 

Then the solution z(i, 0, x 0 ) of the equation 

z' (t) = a(t)z(t) 	b(t)z(N) 	f (t, z(t)) 

satisfies lz(t, x )1 < (I)r(O, t E I , if z(t, xo) is such that Ixol < -Yoro• 
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In [37] , Jayasree and Deo have discussed the nonlinear variation of parameters formula 

to obtain the solution of the equation 

z'(t) = f (t, z(t)) 	g(z([t])) 	e(t) 	 (2)9) 

in terms of the solution of the equations 

(t) = f (t x (t)) 

and 	(t) = f (t, y(t)) 	g(y([t])) 
	

(2.20) 

with initial conditions 

x(t o ) = y(to ) = z(t o ) = xo , xo  E IR 

and 	00]) = 'Atop = zWoll, to > 0. 	 (2.21) 

Here f : [to , oo) x 1.1i --+ IR , c : [t o , oo) --+ 11? , are continuous functions and g is a piecewise 

continuous function on [t o, oo) . The following two lemmas are of vital importance. 

Lemma 2.3.2 Let gey([t])) be a piecewise continuous function defined on lit and let 

ag(y(ft1))  exists and be piecewise continuous on lR . Then (hut]) 

	

g(ThaiD) — g(yi([t))) = ( 
fol 

ag(sy2([1])-F (1 	s)gi([1]))
)(1s)(y2atp— y i atp) , t E I . 

Lemma 2.3.3 Assume that f E C[[to , a)) x IR, IR] , g be a piece wise continuous function 

t,y(t))  on IR and f,g possess partial derivatives a f( 	and ag(Atll  i  

	

ay 	aY(N) • 
af(t,) y (t)  and H at] to, 	 ag(Y 	 Denote H1 (t, to, xo) = 	 2 	7 0 1 1  0 ) = Oy 	 ay(N)")  ' 

Then T (t, t o , xo) = ay(t,to,x0)  exists and is the solution of the variational equation, a o  

Z(t) = 111 (t, to, xo)z(t) 	112([t], to, xo)z([t]) 	 (2.22) 

such that T(t o ,to ,x. o ) = 1. 

The variational equation (2.22) stated above is linear, and is used to obtain the nonlinear 

variation of parameters formula following Alekseev's method [55]. 
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Theorem 2.3.9 Let y(1,1 0 ,x 0 ) be the unique solution of (2.20),(2.21); 4)(1, l o , x o ) be the 

solution of the variational equation (2.22) with /12 -a.  0 and '(t, to , xo) be the solution of 

the equation (2.22) existing for I> 0 . Then there exists a unique solution z(t) for (2.19), 

(2.21) .  given by 

  

E [0, to). 

t E [to , 1), 

t > 1. 

 

z( t, to, xo 

xo, 

y(t, to, xo) 	ftto  (I)(t, s, z(s))c(s)ds, 

y(t, t o , x o ) 	ftio 	1,y(1))(1)(1, s, z(s))c(s)ds 

E[it,L2 f ikc_1 	k, y (k))43.(k , s, z(s))c(s)ds 

f[t]  (t, s, z(s))c(s)ds, 

(2.23) 

   

The equation (2.23) is obtained on each unit interval, by employing Alekseev's formula for 

the corresponding equation. 

Remark 2.3.1 (•) If t o  = 0, then (2.23) takes the form, 

[t] 	k 

z ( t , 0, x 0 ) = y(t, 0, x0) 	E f 1  (t,k,g(k))(1)(k , s, z(s))c(s)ds 
k-  k=1 

f ] 
(1) (t, s, z(s))c(s)ds. 

[t 

(ii) if f (t, z(t)) = a(t)z(t) and g(z(N) = b(t)z([t]); a(t), b(t), are continuous functions 

then (2.23) takes the form 

[t] 	k 

z(t, 0, x0) = Y( 1 7 0 , X0) 	E f kli(t , k)(1)(k, s)c(s)ds 
k=i " 

f
[  4

) (t ,S)C(S)dS 
t] 

'which is given by Theorem 2.2.9 . 

(iii) If y = 0, then (2.23) gives Alekscev's formula. 
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A further generalisation of (2.23) is also established in [34] which is extension of Ladde's 

result for ordinary differential equation [40]. 

In [64], Wiener has discussed nonlinear differential equation with PCDA in Ballad! spaces. 

Here the equation, 

x 1 (t) = A (i)x (i) 	f (t, x(t — [t]) , x(t — 2[t]) , ...x(t — min) 
has been investigated. As a special case following result is obtained, which is an extension 

of the results in Theorems 2.3.1, 2.3.2, and 2.3.3. 

Theorem 2.3.10 If f(x, A) E C(TR2 ) is different from zero everywhere and the solution, of 

the equation x'(t) = f(x, A) can be extended over I , then the problem 

x' (t) = f (x(t), x (PM, x(0) = co , 0 < t < oo. 	 (2.24) 

has a unique solution. If f(co ,c0) = 0 and J.  f -1 (x,co )ds diverges as x 	oo, then 

co  is the unique solution of the equation (2.24). If this integral converges, then equation 

(2.24) has more than one solution. 

hi [16], Cooke and Wiener have discussed the scalar equation, 

x'(t) = f (x(t),x(N),x([t — 1])), x(0) = c o , x(1) = cr , t E I. 

The existence of unique solution is obtained by assuming the existence of 	solution of the 

corresponding differential equation with parameters. 

Gyori and Ladas [31] have studied a nonlinear equation, 

m 

x'(t) + Epi (t)fi (x([t — ki])) = 0, t > 0, 

for oscillations of the solutions. The necessary and sufficient conditions are obtained in terms 

of the solutions of the associated linear equation with PCDA. In [60] Rung and Jialin have 

studied the periodic solutions of the equation 

x 1(1) = A(t)x(t) 	B(t)x([t]) 	g(t,(1)(t),(1)(ftn) 

24 



in a. Ballad' space of almost periodic functions. 

2.4 Results from ordinary differential equations 

In this section we present the summary of the existing results on the first order nonlinear 

ordinary differential equation, and relevant to the study undertaken. First we shall discuss 

the methods used to establish the existence of the solution. 

Consider the IVP 

x i(t)= At, x(0), .( 0 ) = xo lEJ:0<i< T, T>0 	 (2.25) 

where f E Cu [J.  x IR, 1R]. It is well known that, if we assume the Lipschitz condition, 

then there is a unique solution for the IVP. The theory has been developed further by drop-

ping Lipschitz condition at the cost of uniqueness property. This leads to the concepts of 

maximal solution, minimal solution, upper solution and lower solution. These solutions play 

important role in the development of the theory. The method of upper and lower solution 

yields existence of solutions in a closed set and give rise to the famous Comparison principle. 

We shall give two important methods of establishing the existence of the solution of the IVP 

(2.25). 

(I) MONOTONE ITERATIVE TECHNIQUE. 

Monotone iterative technique ( MIT ) is a constructive method for establishing the exis-

tence of extremal solutions. This method yields monotone sequences converging to solution 

of (2.25). These sequences are such that each member of these sequences is a. solution of 

a certain linear differential equation. Since these solutions can be computed , the method 

provides numerical procedure for the computation of solutions. This fact makes MIT advan-

tageous and important. Furthermore MIT can be used to obtain two sided pointwise bounds 

on the solutions. These bounds are useful in studying qualitative and quantitative behavior 
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of the solutions. We state the theorem on MIT and proof can be seen in [42]. 

Theorem 2.4.1 Let f E CP x ill., , uo , vo  be lower and 'upper solutions of (2.25) such 

that uo  < vo  on J . Further suppose that 

(A) : 	f (t,  ) 	, y) > — M (x — y) for u0 < y < x < v o  and M > 0 . 

Then there exits monotone sequences {u n } , {v r,} such that 

um  -4 u and vr, 	v as it 	oo uniformly and monotonically on J. u and v are minimal 

and maximal solution of (2.25) respectively. • 	) 

Remark 2.4.1 If we 1W = 0 in condition (A), then it is clear that f is monotone non-

decreasing. We can prove the result similarly by assuming f to be monotone nonincreasing 

instead of condition (A). 

MIT has been applied to functional differential equations [41] as well a.s periodic BVP 

[46]. 

(II) METHOD OF QUASILINEARISATION 

The method of quasilinearisation is a. well established technique used to obtain approx-

imate solutions Lo nonlinear differential equations. The method was developed by Beaman 

and Kalaba.[8, 10]. If we assume that: 

(A1) : 	f (t, x(t)) is uniformly convex in x for 0 < < T . 

Then the method of quasilinearisation gives a monotonic increasing sequence of approximate 

solutions converging uniformly to the solution of (2.25). The sequence provides good lower 

bounds for the solution.It is to be noted that this convergence is quadratic in the following 

sense. 

Definition 2.4.1 For ;i:  E C[j] 	let 	= Supfx(1) : I. E J}, and s•PPasc /hal lan is 

an approximate solution of (2.25),and x is a solution of (2.25). Then the sequence {'w„} 
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converges to x quadratically if there exists A > 0 such that 

III; — walla IIx — II wn_i, . 2 . 

One can prove the dual result giving upper bounds under the assumption : 

(A2) : 	f (t, x(t)) is uniformly concave in x for 0 < t < T . 

In the last decade, the method of quasilinearisation has attracted much attention. It 

has been generalised and extended using the less restrictive assumptions on the function 

f so that the method can be applied to solve a larger class of problems. In what follows 

throughout the section, let Il = {(t,x) : u(t) < x(t) < v(t), t E J}. where u(t), v(t), x(t) 

are lower solution, upper solution and solution of (2.25) respectively. We state the result 

from due to Lakshmikantham and Malek [47]. 

Theorem 2.4.2 : Assume that u, v E Cl[J .,1R] are lower and upper solutions of (2.25) such 

that u(t) < v(t) on J; and 

(A3) : 	f f ix  exist, and are continuous and satisfy 

+ 2M > 0, M > 0, for (1,x) E J x 

Then there exists a monotone sequence {w„(i)} which converges uniformly to the solution 

x(t) of the equation (2.25) and the convergence is quadratic. 

Remark 2.4.2 (i) In (A3) :, the requirement is that, the function f (t, x) + M:17 2  should be 

convex for some Al > 0. 

(ii)When M = 0, v(t) = x(t), which is assumed to exists on J and 

u(t) = wo  , any constant that satisfies f (t, w o ) > 0 , the above result reduces to the method 

of quasilinearisation . 

In [48] , the method has been extended to show that the monotone sequences can be 

constructed to obtain lower and upper bounds simultaneously as well as the quadratic con-

vergence by decomposing the function f into a difference of two convex or concave functions. 
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However the drawback of this extension is that the elements of the sequences are not the 

solutions of some linear problems. The proof requires an extra condition and is not decisive. 

The paper [51] by Lakshmikantham and Koksal has discussed the problem of obtaining 

a lower approximations which converges quadratically to the unique solution of (2.25) by 

decomposing f into a sum of convex and Lipschitzian functions. This is established in the 

following theorem. 

Theorem 2.4.3 :Assume that u,v E CI[J,11-1] are lower and upper solutions of (2.25) such 

that u(t) < v(t) on J; and 

(A4) : 	f E C[C1,111] admits a decomposition f = fr+ f2, f r is uniformly convex in x 

for t E J and f2;  is Lipschitzian in x . 

Then there exists a monotone sequence {tv, i (i)) which converges uniformly to the solution 

x(t) of the equation (2.25) and the convergence is quadratic. 

Remark 2.4.3 : 
1k 

(i) If 12 = 0 then , the above theorem reduces to method of quasilinearisation. 

(ii) If f i  is not Lipschitzian, then we can still prove the convergence of the sequence {w n (t)} 

to the minimal solution. However, the convergence in this case is not quadratic, but weakly 

quadratic in the following sense. 

Definition 2.4.2 We say that the sequence {tv, i } converges to w weakly quadratically, if 

there exist positive constants A 1 , A2, and A3, such that 

max lw(t) — w„(t)i< A I {A2  + A3 max WO— w„_ 1 1 2 ). 
tE./ 	 to 

Remark 2.4.4 If the assumption (A4) in the above theorem is replaced by, 

(A5) : f E C[S2,111.] admits a decomposition f = 	f2 , ji  is uniformly convex in x 

for t E J and f2  is continuous in x on S2, 

then there exists a monotone sequence {w n (t)} which converges to the minimal solution c 

of the equation (2.25) and the convergence is weakly quadratic. 
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In [52], Lakshmikanthain et al, has revisited the problem discussed in [48]. It is shown that 

when the function f is decomposed into the difference of two concave or convex functions, 

different results can be obtain with same conclusions. They have used a special approach 

to obtain the elements of the monotone sequences as the solutions of some linear differential 

equations. Coupled lower and upper solutions are used for this purpose. This method has 

been improved in [53]. The new method involves first obtaining both lower and upper bounds 

for the solution in terms of monotone iterates which are the solutions of simpler nonlinear 

equations. Then the properties of the auxiliary functions in the nonlinear equations are 

used to adopt an improved procedure which will lead to solutions of some linear differential 

equations. 

hi [54], Lakshmikantham has succeeded in avoiding the multistage process obtained in 

[53] and develop a simple algorithm that provides directly the monotone sequences that are 

the solutions of linear differential equations. We state this result in the following theorem. 

Theorem 2.4.4 Assume that; 

(H1) vo, vo E C 1  [J, lit], are such that u'o  < f (t,u0), v 10  > f (t, vo ) 

and uo (t) < vo(t), t E J. 

(H2) f, cb E C"[52 1 ,11n, 	0,,,e (i , 	> 0 on 51 1  and 

x) > 0 on Sl i ,where Qi = {(t,x) : uo (t) < x(t) < vo (i), t E J1. 

Then there exist monotone sequences {u„(t)}, { v„(t)} which converge 7iniformly to the unique 

solution x(t) of the equation (2.25) and the convergence is quadratic. 

Remark 2.4.5 The simple approach obtained in the above result can also be applied in all 

the previous situations which are also possible to deduce as special cases of this result. 

Lakshmikantham and Shahzad [49] have also extended the generalised quasilinearisation 

method decomposing the function f into two functions F and C such that F 	is concave 
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and C, + cb is convex for some concave function rk and convex function 0. The condition (H2) 

in the above theorem is to be replaced by the following, the remaining part of the statement 

being unchanged. 

	

(H3) f E 	 f admits a decomposition f = F G)  where P'x, Gx, Fxx, 

G.„x  exit and are continuous satisfying Fxx (t,x) Oxs(t, x) < 0 and 

	

Gxx (t, 	cbxs (t,x)> 0 on C/ i  where 0, E 

cbx(t, x),O x (t, x), cbxx(t, x), O xx (t, x) cbxx (t, x) < 0, Oxx(t, x) > 0 011 f/1 • 

In the last decade, the method of quasilinearisation and its generalisations are extended 

to different types of equations. Deo and Sivasundaram [24] has extended the method to 

functional differential equation, x'(t) = f(t, x t ) where x i  = x(t —T < s < 0, t •E J. 

Here the convergence of the monotone sequences is superlinear. Deo and Knoll have ex-

tended the method and its generalisations to integro-differential equations [21, 22, 23]. The 

application of Taylor's theorem to formulate the related linear equations helps in obtaining 

the convergence of the iterates of the order k > 2 . Lakshmikantham and Neito have applied 

the method for first order periodic boundary value problem [50]. Stutson and Vatsala [60] 

have extended the method with f being sum of a nonconvex function, a nonconcave function 

and a Lipschitz function and have obtain quadratic convergence. A numerical example in 

support of the result is given. 

Finally, we give a brief account of results on control theory. Control theory is relatively 

a new branch of mathematics developed in th 20th century. It analyses the behaviour of a 

given system under specified circumstances. The basic results on controllability of a linear 

system can be found in [6, 7, 14, 57]. 
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Consider the linear system, 

x'(t) = A(t)x(t) -f B(t)u(t), x(t o ) = xo. 	 (2.26) 

where A is n x n, and B is n x m continuous. matrices. 

Definition 2.4.3 The system (2.26) is said to be completely controllable (c.c.) if for any 

to , any initial state x(t o ) = xo  and any given final state x f  there exists a finite time t f > to 

and a control u(t), to  < t < tf , such that x(t f ) = x f. 

We state the necessary and sufficient condition for the c.c. of the system (2.26) as given in 

[6]. 

Theorem 2.4.5 The system (2.26) is c.c. if and only if the n x n symmetric controllability 

matrix, 

1.1(t , 	= f 
tf 

 cf) ( t o , r)B(T)B T (T)4) T (t o , r)dr. 
to 

where (1) denotes the fundamental matrix solution of x'(t) = A(t)x(t) and T denotes trans-

pose, is nonsingular. In this case the control function is given by, 

u ( t ) = — B T (t )(D T ( t o  , t 	t f ){.r o  — 44(t o , t f )x 

defined on t o  < I.< t f, transfers x(t o ) = xo  to x(t f ) = x f. 

Yamamoto in [68], has established sufficient condition for the controllability of the non-

linear system. Schauder's fixed point theorem is used to obtain the result. Some comparison 

theorems are proved which give conditions for the existence of a set satisfying the conditions 

of the main result. 

31 



Chapter 3 

FIRST ORDER NONLINEAR 
DIFFERENTIAL EQUATIONS 

3.1 Introduction 

In this chapter, we undertake the study of the first order nonlinear differential equations with 

piecewise constant deviating argument (PCDA). The aim of this study is to develop some 

basic results useful for further investigation of the equations with PCDA with respect to the 

properties of its solution. This work continues the one done by Aftabizadeh [1-5], Cooke 

[15-19], Jayasree [34-37], Wiener[64-67] and others. Sectionwise contents of the chapter are 

as follows. 

Section 2 deals with the preliminaries and notations. The concepts of solution, upper 

solution, and lower solution are defined. Two lemmas required for the further study are 

established. These are the simple extensions of the one found in the theory of ordinary 

differential equations. 

In section 3, we establish the existence and uniqueness of the solution of the first order 

nonlinear differential equation with PCDA. This has been achieved by using the method 

of quasilinearisation, under two different conditions. In both the cases the convergence of 

the sequences is quadratic. In the first case, we have used a condition which reduces to 

convexity condition. In the second case, the method gives an algorithmic approach which 
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directly yields the construction of monotone sequences. 

Section 4 is on inequalities related to equations with PCDA. First we have extended the 

Gronwall type inequality established by Jayasree and Deo. This is followed by inequalities 

estimating the soh.itions of two different equations with .PCDA. 

Section 5 deals with the investigation of the nonlinear periodic boundary value problem. 

The basic concepts are defined and the method of quasilinearisation is employed to obtain the 

existence of a solution. The necessary preliminary results and the solution of the associated 

linear boundary value problem arc obtained. 

Finally, in section 6, the oscillatory behaviour of a particular first order nonlinear differ-

ential equation with PCDA is discussed. The existence of solution of this equation is also 

established. 

3.2 Notations and Preliminaries 

In this section we introduce the notations, concepts and prove some basic results required 

for the further studies. 

Consider the initial value problem (IVP), 

x'(1) = f (t,  x (t), xatp), x(0) = x 	 (3.1) 

where t E J = [0, T],'/' > 0. 	f E 	x IR x IR, 11?], [•] is the greatest integer function, 

c.,nd x0  E IR is a constant. Equation (3.1) is a piecewise constant delay differential equation 

because of the presence of the term x([t]) [see 64] 
• 

We need to define a solution of the IVP (3.1). 

Definition 3.2.1 A solution of (3.1) on J is a function x : J —4 IR that 

satisfies the conditions : 
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(i) x(t) is continuous on J, 

(ii) the derivative x'(t) exists at each point t E J, with the possible exception of the points 

[t] E J, where one sided derivatives exist, 

(iii) equation (3.1) is satisfied on each interval Jn  = [n, n 1) with integral end points. 

We define an upper solution and a lower solution for the 1VP (3.1). 

Definition 3.2.2 A continuous function v : J 	lit is said to be an upper solution of 

(3.1), if the derivative v'(t) exists at each point t E J, with the possible exception of the 

points [t] E J , where one sided derivatives exist, and 

v'(t) > f (t, v (t), v (N)), v(0) > x o.  

It is said to be a lower solution if the reverse.: inequalities hold. 

The following result is an extension of the lemma in [45] and is required for our further 

discussion. 

Lemma 3.2.1 Let f(t,x,y) E C[J x SZ x 52, I•], 52 is an open interval in 111.. Let the partial 

derivatives fx , fy  both exist and arc continuous for t E J. Then 

(i) f (t, x2, Y) — f (t, 371,Y) = 	 [fx(i, sx2 + (1 — s)371,01(x2 — x
Jo 

(ii) f (t, x, y2) — f (1, x, y1) = Jo [fy (i, x, sy2 + (1 — s)m))•2 — YI)ds. 

Proof :(i) Let F (s) = f sx2  + (1 — s)x 	, 0 < s < 1 . 

When F(()) = f (t, s 1,Y) F(1) = 1 (1, x2, y), and 

Then on integration from 0 to 1, we get, 

d.17 = 	sx2 + (1 — 41:1,y) • (x2 — x1) ds• 

F(1) — F(0) = ffo  f x (t , sx 2  + (1 — s)x , y)ds)(x 2  — x1) 

34 



This implies 

f(I,x 2 ,y)— f(t,x i ,y) = 	fx (t,sx 2 + (1 — s)x l , y)ds}(x 2  — 

(ii) Let G(s) = f (t, x, sy2  + (1 — s)y i ) , 0 < s < 1 . 

Then G(0) = f (t, x, Yi) ; G( 1 ) = f( 1 , x, y2), and d.,-*= fy (t, x, sy2  + (1 — 41) • (y2 — Yi) • 

Then Therefore on integrating from 0 to 1, we get, 

G(1) — G(0) = f 0  fy(i, x,sY2 + ( 1  — s)Yi)ds}(Y2 — 1) 

This implies, 

f (t, x, y2) — f(t, x, yi ) = 	f fy(i, x, sy2 + ( 1 — s )y i ) ds }(y2 — ). 0 

We now establish an important result concerning upper and lower solutions. 

Lemma 3.2.2 Let u, v be lower and upper solutions of (3..1) 'respectively, such that 

(i) < f (t, u(t), u([ti)) 

v /  (t) > f (t, v(t), v (N)), 

u(0) < x0  < v(0), where f E C[J x 111 x 	Suppose that f(t,x,y) is nondecreasing in y 

for (t, x) E J x Ilt and satisfy the condition 

(1, xi, Y1) — 	x2, Y2) < L[(x1 — x2) + (Yi — y2)] ) 
	 (3.2) 

whenever x 1  > x2 , y i  > y 2  and L > 0 is a constant. Then u(t) < v(t), for all t E J. 

Proof : Let t E (n.n+1), and un (t) , v n (t) denote the lower and upper solution respectively 

on the unit interval [n, n + 1). 

We show that u„(n) < v„(n) , n = 0,1, 2, ... 	un (t) < v m (t), for t E [n, n + 1). 

Let us first suppose that 

'an(t) < .1(1,14(0, 71,(71)) 

v n (t) > f (t,v„(t),v,(n)), t E [11,n + 1). 
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and un (n) < vn (n) . We have to show that un (t) < vn (t) on [n,n + 1). If not , then there 

exists t o  E (n,n + 1) such that un (tn ) = vn (t n ) and u 71 (t) < vn (t), V t E [n, t„). 

For small h < 0 , un (tn  h) — u n (t„) < vn(tn h) — vn (t n ). 

This gives 

un (t n  h) — u n (t n ) 	 vn (t„ h) — v n (t n ) >  

h 

and hence , we get u.'„(t n ) > vn(t n ) 	_Fiom this we conclude that 

f(t ,it n (t n ) , un (n)) > f (t, v n (t n ), vn (n)) 

Since 	un (n) < vn (n) 	and un(t„) = vn(tn) , the above inequality contradicts the 

nondecreasing property of f. Hence,un (t) < vn (t) on [n, n 1). 

	

Next, define pn (t) = vn (t) c • e27.t  t E [n, n + 	, and c > 0 is sufficiently small. 

Then pn (t) > vn (t) , t E [n, n + 1). Therefore, using (3.2), we get, 

f (t,  pn (t), pn (n)) — f (t, vn (t), vn (n)) < L {(p n (t) — v n (t)) 	(pn (•) — v n (n))) 

= 	e2Lt 	c e2Ln 
• 

This yields, f (t, p n (t), pn (n)) < L • c • {{ e2Lt • e2 

	

Ln } 	f(1, v n (t), vn(n)). 

Hence using definition of pn (t) , we get, 

= vin (t) + 2c Le2L ' 

• f (t, vn(t),  v n (n)) 	2eLe2Li . 

• f( 1 , pn (t), pn (n)) — Le(e n't 	e 2Ln) 	2€1,e 2/t . 

f ( 1,  pn ( t ) , [In ( rt )) 	Le ( emi — e 2Ln) t E [n,n + 1). 

> Pn(1), pn(n)). 

Also , un (t) < f (I, u n (t), un (n)) and u n (n) < pn (n) , t E [n, T2 + 1). 

	

Hence it follows that un (t) < pn (t) , V t E [n,n 	1). 

Let c. --+ 0. Then we get , un (t) < vn (t) , V t E [n, n + I) , in = 0, 1, ... 
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-ctnct fl,,s c-ernpieles 11->e /DY00-1-• 

The next result is an extension of Gronwall's integral inequality for equation with PCDA. 

Its proof can be..found in [34]. 

Lemma 3.2.3 Let co  > 0 be a constant, and u, a, b E C[J, El. 

If 

u(t) < co  + f [a(s)u(s)d- b(s)ugsDids,t E J 

holds, then for t E 

[t] 

lt(i) < eo H {exp( f aNdr) + 	exp( f a(r)dr)b(s)ds} 
k=1 	k-1 

x {exp( a(r)dr 	exp(f a(r)dr)b(s)ds}. 
. [ti 	• Ell 	[1 1 

In particular, when a(i) = a, and b(t) = b, t E J are constant functions, then 

u(t) < co R1 	— b )ea — b lEtlki 	_ b dea(t-[ti) — 
a 	a 	 a 

3.3 Method of Quasilinearisation 

In this section, the well-known method of quasilinearisation is extended to differential equa-

tions with PCDA. The technique involves the application of lower and upper solution and 

differential inequalities. The upper and lower sequences converge to the unique solution 

quadratically. The quasilinearisation method involves constructions of monotone sequences 

of approximate solutions to linear differential equations. The concept of lower and upper 

solutions and related differential inequalities are used in getting the desired results under 

the relaxed conditions. 

In the following theorem, we assume the convexity type condition on f, and obtain the 

desired result. 
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Theorem 3.3.1 Assume that 

(h1) uo ,vo E C[j,111] are lower and upper solutions of (3.1) respectively such that 

uo(t) < vo (t) on J; 

(h2) Let S1 f(t,x,y) : uo  < x < vo , u0  < y < vo , t E J} and 

f E C[1, IN such that h, fy , exist and are continuous on Q; 

(h3) fx (t,x,y) and fy (t,x,y) are increasing in y for fixed 1,x, on 

(h4) For each x > y 

f (t,  x(t), x([t])) 	f (t,  y(t) , y([t]))  + f x (t , y(t), y([t]))(x(t) — y(t)) 

+ 	y(i), Yain)(x(iti) 	y([t])) , 

	 (3.3) 

for (t,x,y) E Q. Then there exist monotone sequences fuk(t)1, {vk(i)}, coihi 110-) < V k(f) , 

which converge uniformly to the unique solution x(t) of (3.1), fort E J. 

Proof : Let u 1 (t) and v i (t) be the solutions of the related linear differential equations with 

PCDA. 

14(0 = f(t,u0(t),tio([1]))+ fx(t,'1lo(t),uo([1 ]))(tti(t) — uo(t)) 

+1;(1, no(t)04[1]))(tei([t]) — uo([ 1])), u 1 (0) = xo. 	(3.4) 

and 

111 (t) 	f(t,  v 0 (0 , v 0(Eti) + f x(t vo(t), v 0([t1))(1) 1(0 — vo(t)) 

+ fy (t,v 0(i),v 0([1]))(v i atn — vo(N)), v1(0) = xo, 	(3.5) 

such that n o(0) < xo < vo (0), where n o  and vo  are as defined in (hi). 

We first prove that 

uo (t) < '111 (0 < vi (t) < vo (t), for all I E J. 	 (3.6) 
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Let p(1) = uo (t) — u (t) . Clearly p(0) < 0. We have, 

(t) 
	

2.1, 10 (1) - 	(i) 

f ,u0( 1 ), uo([ti)) — f (t, uo(t) , uo(Eti)) — f x(t uo(t), uo(Eti))(7 0(0 — u o (t )) 

— ly (i it o (t), u o ([t1))(71 1 (Et1) — u0 ([t])) 

f x (t , uo(t),  uo ([tp)p(t) 	f y (t , u o (t), u0 ([t]))p([t]) 

Therefore, we can treat p(t) as a lower solution of 

	

z' (t) = f x  (i , uo(t) , uo([ti))z(i) + .4( uo(t), uo([t]))z([t}), z(0) = 0. 	(3.7) 

Further p(t) 0 can be treated as the upper solution of the equation (3.7) 

Therefore, 

	

0 	j5' (t) = f x (t , u 0 (0 olo([ti))15(i) 	f y (t oat), uo(EIMA[1]) 

P(0) = 0. 

Hence applyingthe special case of Lemma 3.2.2, we get p(t) < 0, for all t > 0, 

which yields uo (t) < u l (i) on J. 

Similarly, we can show that v i  (t) < vo (t) on J. 

Next, let q(1) = (t) — vo(t). Clearly q(0) = u 1 (0) — vo (0) = x o  — vo  < 0 . 

and 

	

q' (t) 	14(0 — vat). 

f , u o(t), u 0 ([t])) 	f x et, u o (t) , uo(Etn)(u 1(0 — uo(t)) 

+ 	, uo(t), uo([1]))(it 'MD — uo(fil)) — .1(1, vo(t), o([ti)) - 
	(3.8) 

Rut since vo(t) > uo(t), we get using (3.3) 

f(1, 00(0 uo([1])) ?- f (I , uo(t) uo(Eti)) + f x(t 0(0 , uo([ 1 ])(7)0(t) — u at)) 

ly (i , 11 0 (0 ti o Utll(v o ail) — ao ([t])). 
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This with(3.8) gives, 

(At) 5_ fs(t,u0(t),u0(EIN(1)-F f y (1,u0(1),u0 ([1])q([1]) 

since q(0) < 0, we get q(t) < 0, for all t E J, and hence we conclude that 

ui (t) < vo(t),t E J. 

Next to prove that u i (t) < v i (t), t E J, we note that u o(t) < u i (t) < vo(t). 

Hence using (3.3) and (3.4), we get, 

ui(t) < f (t, 	ui([t])) 

Similarly, using (3.3) and (3.5), and since v 0  > v1 , we get, 

v i (t) > f (t , v 1 (0, v i (N)). 

Hence, since u l (0) = vi (0) = x0 , again by the special case of Lemma 3.2.2, 

we get u i (t) < v i (t), I E J. This establishes the inequalities in (3.6). 

Now assume that, for k > 1, 

7.1 ) (0 < f (t, uk (t), u k ([t])) 

v k (1) > f (t,  v k (t), v k atn) 

and uo(t) < u i (t) < 	< uk(i) < vk (t) < 	< vi (t) < vo(t), t E J. 

We shall show that 

u k (t) < u k+i (t) < tyk+i 	< v k (i) onJ. 	 (3.9) 

where u k .4 . 1 (i) and vk .4.. 1  (1) are the solutions of the linear IVP 

(i) = 	Uk(t), uk(itD) + fx (t, 'uk(t), uk([1]))(u k+i (t) — u k (t)) 

	

ly (t , uk(t), uk([1]))(v k +i(Eil) — u k([1])), u k+ (0) = xo . 	(3.10) 
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and 

k-I-1 (t) 	f , k(I), v k([ t]) 	f x(t ) 17  k(t), k([ i l)( 17k+ 1 ( t ) 	lik( t )) 

+Mt, vk (/), vk([t])(v kl_ 1 ([/]) — v k a/D), vk+1  (0) = :C O . 	(3.11) 

Let p(1) = 74(0 — u k+  (t) , then p(0) = 0. Therefore, in view of (3.10), we get 

pi (t) = itik(t) — iti, 4_ 1 (t) 

f s(t uk(t), u katD)P(t) 	f y (t,u k (i), k([ 1 ]))P([1])• 

This fact with p(0) = 0 and the application of the special case of Lemma 3.2.2, we get 

p(t) < 0 which means u k (t) < uk+i (t), t E J. 

Again, let ci(t) = k+1 (t) — v k (t). Then 

(t) = u;,+,(1) — vat), 

< f (t,u k(1),uk([1])) 	f x(1 , uk(1), u k(N))(u k+i(t) —u k( 1 )) 

— f y (t uk(t), u k(N))(u kl-i(rt1) — u k(N)) — f (t v k(t), v k([t))) • 
	(3.12) 

Now since vk > uk, using (3.3) and (3.12), we get, 

(At) < f s(t,uk(t),  uk([t]))q(t) 	fy (t,uk(i),ukUtD)q([1]). 

Since q(0) = 0, by the application of special case of Lemma 3.2.2 as before, 

we get. q(t) < 0, for all t E J. Hence uk+i (t) < v k (t), t E J. 

Thus we have uk(l) < uk+1 (t) < v k (t), t E J. Similarly, we can show that 

u k (t) < vk+i (t) < vk(/), t E J. 

Next using (3.10) and (3.3), we get., 

u'ic+i(t) < f (t ,uk+I (1) , k+1(Itil) 

Similarly, we can show that 

I'L-1-1(t) 	f (I, k+1(1), k-1-1([1])). 
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Hence, since uk +1 (0) < x0  < vk+i  (0), by the special case of Lemma 3.2.2, 

we get uk+i (t) < vk +i (t) , t E J. 

Thus we have uk(t) < uk+i (i) < vk+i (t) < vk(t),t E J. 

Hence, by induction, we get. 

u0 (t ) < n 1 (0 < 	< uk( t) 5_ vk (t ) < 	< (t) < vo ( t) onJ. 

Now assume that limk,„ uk(t) = a(t) . Then integrating (3.10) on both sides between 0 

and t and then taking limits as k 	oo, we get 

a (t) = xo 
Jo 

  f (s, a(s), a([s]))ds, 

which shows that a(i) is a solution of the IVP (3.1). Similarly we can show that {vk(t)} also 

converge to a solution OM of the IVP (3.1). Since solution of (3.1) is unique, 

we have, a(t) = 	= x(t) . Thus {u k (t)}, tok(i)} converge uniformly and monotonically 

to the unique solution x(t) of (3.1) on J. 

In the next theorem, we show that the convergence of the sequences is quadratic in the 

sense of Definition 2.4.1 . 

Theorem 3.3.2 Under the hypothesis of Theorem 3.3.1, the convergence of 

luk (i)},tok(i)} is quadratic . 

Proof : Define pk+ i (t) = x(i) — uk+i  (t) > 0, k = 0, 1, 2, ... 

so that p k+i  (0) = 0. Therefore, 

pk+1( t ) 
	

x' (i) - u4i(i) 

= 	x(t), x((t1)) - 	, u k(t), u k([li)) 

+ fx(i,uk(t),uk(N))(uk+i(t) - uk(t)) 

+ fy(1,14(i),uk(N))(uk+i(N) - uk(N))) 
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f (t, x(t), xaiD) — f (t,uk(t), u k atD) 

- uk(t), uk([tl ))( uk+1(1) — uk(t)) 

— fv(t, u k( 1 ), "Uk([cnuk+iatil u kat))) 

= f (t, (t), 	— f (I, u k (t), x([t])) 

f (t otk(t), x(EtD) 	f (t,uk(t),uk(ItD) 

- uk(t ), uk( N ))( u k+ 1.(t) — uk(t)) 

— fy (t,u k (t),ukatD)(u k+1 ([t]) — it k atMl 

A simple computation using Lemma 3.2.1 and (h3) yields. 

Pik-{-1(i) = Jo1  sx(t) + (1 — s)uk( 1 ), x([ti)) 	uk(t), u k(Eti))]ik(t)ds 

+ 	[fy(i uk(t), x([t]) + (1 — s)u k([li)) — f y(1, uk(t), u k(N))11) k([t])ds 

+ f x(t uk(t), u kOtn)(Pk+i(t) + f y (t. k(1), u katll)(Pk+i(Eti) 

< Ja 
L i [spk (t) + pk atflipk (t)ds + Jo L2sP2k(iilids 

+MiPk+i (t) + M2pk+ l 

where Ifx (t, 	< Ml , Ify (t, a:, 01 G 11'12 on S2, and L i , L2 are constants as in (3.2). 

Further simplification yields. 

LL • 
P2k (i)+ LiPkail)Pk(t)+ —2

2
13;2,(iii) 

+MiPk+i (i) + M2m,+1  ([t]) 

lIence ;  

p% +1 (t) < L i p,2,(t) + L3p12,; ([t]) + MiPk+i(i) + M2Pk-F1 ([t]) 

• max L i p2k (t)-E max L3P2kati) MIPk+l ( 1 ) + M 2P k at]) . 
1 

< L max p;',(i) (3.13) 

where L, L 2 j  i = 1,2,3 are suitable constants. 
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Let E = L max 'CO. Then on integrating (3.13), we get, 
tEJ 

Pk-1-1(1) < E.T 	I [1111Pk+1(s) 	M2'Pk-F1 aspic/a, t E J. 

By particular case of Lemma 3.2.3, this inequality yields, 

	

pk+1(i)  < 
	[(m1 

m2)em, _ m2i T RA Al2)em1 T A/2 1
• 
 

Hence we obtain the estimate 

max 	— u k+i (i)I < CIL max I:40 — uk(01 2 1, 

where C = 	+ m2 ) c 114 1  m2 171011  + m2)eMiT M2]. 

	

Similarly, if we define 	(i) = 	— x(i) > 0, so that 

qk+1 (0) = 0, k = 0,1,2, ... then we can obtain the estimate .  

max Ivkl_ 1 (t) — x(t)I < (IL max Ink(t) — x(t)1 2 1 

where a, L are suitable constants. 

This completes the proof. 

Remark 3.3.1 If f(t,x(t),x([t])) = f(t,x(t)), then the above results reduce to those 

in [8, 10]. 

We now extend the method of quasilinerisation used in the above theorem to obtain an 

algorithmic approach which will make possible to construct the monotone sequences. These 

sequences are of the solutions of the associated linear differential equations with PCDA. 

Theorem 3.3.3 Assume that 

(111) u0 ,1)0  E C[J,TR1 are lower and upper solutions of (3.1) respectively such that 

uo(i) < vo (t) on J. 

(112) Let S2 = {(t,x,y): u0  < x < v0 , n o  < y < vo , t E J} and 

f,0 E CP,I111 such that fx , fy ,0,„0,, exist and are continuous on 11; 
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(ii3) (i) fx(t, x7 07 fY(I, x, y) are increasing in y for fixed 1, x, 

(ii) dr,; (1,x,y) is increasing in x for fixed 1, y, 

(iii) Ox (t,x,y) is increasing in y for fixed t, x, 

(iv) Oy (1,x,y) is increasing in y for fixed t, x, 

on ft 

(1-14) Let F(t, x, y) = f(1,x,y)d- 0(t,x,y) and for each x > y 

f (1, x(t), x(itp) > F (t, y(t), y([t])) 	Fx (t , y(t), y([t]))[x(t) — y(t)] 

Fy (t, y( 1 ), y(N))[x([t]) — yUtp] — 0(t x(t), x ([t])) (3.14) 

for (t, x, y) E 

(115) Fy et,m(1),m(M))— O y (t,n(i),n(N)) > 0, 

uo (t) < m(t) < n(t) < vo(t),t E J. 

Then there exist monotone sequences fu k (t)), { v k (t)), t E J, which converge 

uniformly to the unique solution x(t) of (3.1), for t E J. 

Proof : Let u 1 (t) and v i (t) be the solutions of the related linear differential equations with 

PCDA, 

u'i (1) = f (t , uo (t), tio(iti)) 

-F[Fx(t,u0(1)014[1])) —  Sbx( 1 ,vo( 1 ),vou 1Mi(ni( 1 ) 	110( 1 )) 

+[1,;(101 0 (1), Ito ([1])) — dry (t, vo (1), vo ( [1] ))}(11 1 ([1]) — u o ( [t] )) 

211(0) = X 07 
	 (3.15) 

an (1 

7-4(0 = f (1, 00(1), 00([1)) 

-F[F,„(t, uo(t), uo([ ])) — Ox (t, vo (t), 00([t])](vi (t) — vo (t)) 
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+ [Fy (t, i t o ( i), uo ([i l ) — Oy ( t,vo ( t ), 7)0( [ i ])1 	— vo ([t] )) 

(3.16) 

such that u 0(0) < xo  < vo (0), where u o  and vo  are as defined in (H1). 

We..first. prove that.. 

71 0 (i) < ui (i) < vi (t) < vo (t), for all t E J. 	 (3.17) 

Let p(t) = uo(t) — 71 1 (t) . Clearly p(0) < 0. We have 

p'(t ) 

- 

uo(t) — 

< f (t uo(t), uoatin — f (t, uo(t), uoatn) 

—[Fx (t , uo(t) , uo (N)) — cbx (t , v o(t), v o(N))1(71 1 (t) — u o (t)) 

— [Fy ( t oo ( I ), 710 ( Etll — Oy (i vo(t), vo ( Et i ) ) 1 	([t ]) — ?co
([

ti)) 

= [Fx (i , uo(t) , uo(N)) 	x(t, vo(t) , v o(N))1p(t) 

-F[Fy (l , 720(0 ,710 ([t])) — cb y ( t , v o (t), v o ([t])))p([t]) 

Therefore, treating p(t) as a lower solution of 

(t) = [Fx (t , uo (t), uo([ti)) 	vo(t), vo(itn)]z(t) 

-I-[Fy (t , uo (t) , uo atD) — Oy ( t , vo(t) ,  v 0 (Etli)]. z alp 

z(0) = 0. 

Further P(I) 	0 can be treated as the upper solution of the equation (3.1.8) .  

Therefore, 

o = r (t) = [Fx (t , uo(t), uo(iii)) — cx(t, v 0 (0 , vo (N)))P(t) 

-I-[Fy (t , 710 (i), u0 ([1])) — cfi y (t , v 0(0, 770 ([1]))173([t]) 

13(0) = 0. 

(3.18) 
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Hence applying the special case of Lemma 3.2.2 and (H5), we get p(t) < 0, 

for all t > 0, which yields uo(t) < u 1 (1) on J. 

Similarly, we can show that v i (t) < vo (t) on J. 

Next, let q(t) = tti (t) — vo(t). Clearly q(0) = 14(0) — vo(0) = x o  — vo(0) < 0 , 

and 

= u'i ( t) — va(t). 

f (i, uo (i),uo atli) 

-F[Fx (i, uo(t), uoatn) 	(1).(t, vo(i), voatinieu (t) — uo(t)) 

+ [Fy (1, uo ( 1 ) , uo ( [I])) — (1)y( 1,  vo (1), va([t]) )1 ( u ([ 1, ]) 	no([t])) 

— 1(1, v o (t), v o (N)). 

But since vo lt) > uo(t), we get using (3.14) 

, v o(t) , voUtn) 	'14( t) , 0([t1)) 

-F[Fx (t , uo (1), uo Utflyv o(t) — u o (t)) 

+[kly(i 710(t), lioaffillvo([ 1]) — 71 0([ 1, ])) 

vo(t), vo(N)) — (gt, u o(t), uo([1 ]))1• 

(3.19) 

(3.20) 

By the Mean value theorem, 

40( t, u0( t ), uo(11 1) ) — 0(i, uo(t ), uo ( [i] ) ) 

0(t , vo (t), 	([1 ] )) — 0( 1 , uo(t), uo([ 1, ] )) + 0(4 no ( t ), vo([t])) — c6 ( t , u 0( t ), uo([t 1 )) 

= 	(I, 	vo( [ 1]))(vo(t ) — u o (t)) + 4y( 1 , uo ( 1 ) , 71)(1)0([t]) — uo (fin ). 
	 (3.21) 

where and 7/ are such that u o(t) < < vo (t) and uo(N) < 71 < 

Now using (1I3)(ii), (II3)(iv), (3.21) yields, 

ca( t, vo (t) ,vo([t] )) — o(i, uo(t), now]) ) 
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cb.(t,vo ( t),voUrtin( vo(1)— uo(t)) 	cby (i, uo(t), vo([ 11))(v0([ 1 ]) — uo([ 1 1))- (3.22) 

Hence in view of (3.20), we obtain 

l(1,'vo(1),vo([1])) 	.i(t,uo( 1 ),vo([ 1 ])) 

- Fix (t , u o(t) , u outp(v o(t) — u o(t)) 	F(t , uo(t), u0 ([1])(vo([t]) — u 0 ([t])) 

— ).(t, vo(t), vo([ti))(vo(i) — uo(t)) — b y (t , uo(t), v oain)(vo([ti) — uo([ti)). 

Therefore, 

.f(t,vo(t ), vo ( N ) ) 	f(too(t),vo(fil ) ) 

+[Fx(t,u0(t),vo(111) - 0. (t,v0(i),v0 ( 11 1) )1(vo(t)— uo(i)) 

+ [4(1, 71 0(0 , uo([ t i ) — Oy ( t, vo(t), vo( )) ] (v0( [I ]) — u0 ([t ])) 

(3.23) 

This with (3.19) gives, 

(1 (t) < [Pap , uo (t), u 0([t]) — 4., ; (t , v o (t), v oUtD)]g(t) 

-1-[Fy (t vo(t), uogin — y  vo(t), voUtiN([1 ]). 

Since q(0) < 0, we get q(t) < 0, for all t E J, and hence we conclude that 

u 1 (t) < vo (t), t E J. 

Next to prove that n 1 (t) < v i (t), t E J, we note that uo(t) < 	(1) < vo(t). 

Hence using (3.14) and (3.15), we get, 

< f (1 , ui (t), u ([t])) 	ck(t , it ]  ( t), u i ([t])) — 0(t, u o(t), uo([tp) • 

— .(t vo(t) vo([ 1 ]))1( 1  t 1(0 — uo(t)) — .9 6y(t vo(t) vo([ti))i(u i([t1) 

Employing the mean value theorem and (H3)(ii), (H3)(iv), we get. 

a ii(l) 	< 	.f(l•1( 1 ),u1([ 1 ])) 

u0 ( [t ]) ). 
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+0.(1, vo( t ), voa til )ilui ( t ) — uo ( t)) + Oy( i, vo ( t), vo([t]) ))(0[11 ) — uo([ 1 ] ) ) 

—ox(i, vo(i ), vo ( [ 1 ]) ) )(11 1(i) — uo (t) ) — oy ( i, vo(00 )0([ 1 ] ) ))(ula in — uo UiD) 

= f(t , 	(t ), u1( [t])). 

Similarly, we can show that v;(t) > f (t, v i (t), v UtD) 

Hence, since u 1 (0) = 7/ 1 (0) = x 0 , again by the special case of Lennna, 3.2.2, 

and (115), we get '0 1 (0 < v i (i) , t E J. This establishes the inequalities in (3.17). 

Now assume that, for k > 1, 

74,(t) < f (t, uk(t),u k (ft))) 

14(0 > f (t, (4(0, v k ([1))) 

and u o (t) < tt1(1) 	< uk(t) < vk(t) 	v i (i) < vo(t), on J. 

We shall show that 

u k (t) < uk+1 (1) < vk +1 (i) < vk (t), on 

where lik 4. 1 (i) and yk_ Fi (t) are the solutions of the linear IVP, 

and 

u 1k+1(t) = f(1 	k(I), it k([t))) 

diFx (t, uk (t), 1 kati)) 	, 14(0 , vkaii)Muk+1(1) 	/JO) 

+[1';/( 1 , u k(1), uk([ 1 ])) 	Oy( 1 , v k(1), v k([1]))](11  k +1 ([t]) 	k([1])) 

"Itki-i (0 ) 	= .1;0. (3.24) 

01,1(1 ) = /(1, vk(t), 

+[F,41, tik(t),ukain — 0.( 1 , vk(t),  vkatili(ok+I( 1 ) — ok( 1 )) 

+[Fy (t, u k (t), ukaili — 46y 14(0, vk aini(vk-Fi at] — ?4WD) 

Vk-Fi (0) = x0. 
	 (3.25) 
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Let p(t) = uk(t) — u k +  (t) , then p(0) = 0. Therefore, in view of (3.24), we get 

7/( 1 ) = 	( 1 ) - 14+ 1 ( 1 ) 

< [F,(t , uk(t), uk([t]))  - 4(1, v k (t),v k ([1]))1p(t) 

+[I (1 , uk(t), uk([t])) - (ky ( t , 	(1), v k ([t]))]p([ti) 

This fact with p(0) = 0 and the application of the special case of Lemma 3.2.2 and (115), 

we get, p(t) < 0 which means uk(t) < uk+1 (t), t E J. 

Again, let q(1) = u 	(t) - v k(t). Then 

(t) u'k +i(t) - 

< f (I, u k(t),u k([1 ])) 

-F[Px (t, u k (t) , uk([t]))  - 0,(t , v k (t), v k (N))1(uk +1(t) - uk(t)) 

- [Fy( 1 , uk(t), uk([t])) - cy(t, vk(t),  kUlini(uki-i(N) - uk([t])) 

- (t , v k (t), v (3.26) 

Employing (3.14), the mean value theorem, and (H3)(ii), (H3)(iv), we arrive at 

f (t,  v k (t), v k (N)) > f (t, uk(t), uk([t])) 

-F[Fx (t , uk(t),  u k ([t])) - x (t , v k (t), v k ([t]))](vk M - uk(t)) 

+[Fy (t ,uk(t), uk([t])) - y (t , v k(t), v kainv k([t]) 	uk([t])) 

Hence (3.26) gives, 

(i( I ) < [F. ( 1, u k( ), uk ([t])) - 	(t, vk ( ), vk( [t] ))]g( t ) 

+ [Fy (t , uk(t), uk([t])) - 4(1, v k (t), v k (N)))qatll 

Since q(0) = 0, by the application of special case of Lemma 3.2.2 and (1 -15) as before, 

we get, q(t) < 0, for all t E J. Hence uk+i(t) < vk(t), t E J. 
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Thus we have u k (i) < uk +1 (t) < vk(t), t E J. 

Similarly, we can show that uk(t) < vk i_1(t) < vk(t), t E J. 

Next using (3.24) and (3.14), we get, 

y4 1 (0 < f (1, u k+I( 1 ), uk+1([1])) 

+0(1 , 1tk+1 (i) ,uk+1([ti)) 	0(t, uk(t),  u k(fli)) 

—(Mt, vk(t), v k (ft1))1(u k+1 (t) — u k (t)) 

- v k (t), v k (ft]))1(u k +I (ftl) — u k (N)). 

Using the mean value theorem and (H3)(ii), (H3)(iv) we get, 

u k+I (t) < f(t,tik +I (t)otk +1([1])). 

Similarly, we can show that 

vk+, (I) > f(i, vki_1(1), vk+I(Itl)). 

Hence, since uk4.1(0) < xo < vk + I(0), by the special case of Lemma 3.2.2 and (115), 

we get ;  uk+1 (t) < vk4. 1 (t) , t E J. Thus) we have u k (t) < uk+i (i) < vk4. 1 (i) < v k (t),i E J. 

Hence, by induction, we get, 

uo ( t ) < 	( 1) 	< u k ( t) < vk  ( i ) < 	< ( 1 ) < vo ( 1) on.l. 

Now assume that 	u k (t) = a(t) . Then integrating (3.24) on both sides between 0 

and t and then taking limits as k 	oo, we get 

a(t) = xo + f f (s, ct(s),a(jsMds, 

which shows that a(t) is a solution of the 1VP (3.1). Similarly we can show that 

{vk(t)} also converge to a solution 13 (t) of the 1VP (3.1). Since solution of (3.1) is unique, 

we have 
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a(i) = 	= x(t). Thus {u k (t)}, {v k (t)} converge uniformly and monotonically to the 

unique solution x(t) of (3.1) on J. 

Theorem 3.3.4 Under the hypothesis of Theorem 3.2.3, the convergence of 

{uk(t)}, {v k (t)} is quadratic . 

Proof : Define 

= x(t) 
— 

uk +1(1)> 0 

qk-F1(1) = 	k +1(1) — x(t) > 0, k = 0, 1, 2, ... 

so that pk+1 (0) = 0 and qk +1 (0) = 0. Therefore, 

7)41(0 	x' (i) — u /k+1(i) 

= f (1, x(t), x([t])) — f (i, uk(t), tk([ 1 ])) 

+[Fx(t,uk(i),uk([1])) — Ox(t, vk(t), v kUtD)Ruk+I(t) — uk(i)) 

-0Fy (t, u 	u k utn) — cp y (t, v k (t), vkat]))](uk+1([ti) — u k atml 

which can he written as 

k+1(t) = Piet, x(t),  X ([1])) 	F(1, uk(t), x([ 1])) + 	(t,uk(1), x([1])) — F (t , k(t), u k([li)) 

-V[Fx (t, 14(1), uk([ 1])) 	x(1 vk(t), v kgtilA(Pk+i(i) — pk(t)) 

+[Fy (t.u k (t), uk([1])) — y(1 vk(i),1)k(N))1(Pk+i([tl) — P k([li)) 

— [0( 1 , x(t), x(EID) — sb(t uk(t), x([ 1]))) 

—[0(t, uk(t),  x(ItD) — ck(t, u k (t), k([t]))]• 

By Lemma 3.2.1 and (113) yields, 

p41 (t) = .10  [Fx (t, sx(1) + (1 — s)u k (t), x([1])) — Fx (t , 14(0 , k([1p)ipk(1)ds 

[F3,(1,uk(1), s x([ 1 ]) + (1. — s)uk([1 ])) — Fy (t, uk(t), uk(Iti))]Pk(ItDds 
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+[Fx (t , u k(t), uk([iD) — <Mt , v k(t),1) k([ti))1(Pki-i(t) 

-F[Py (t ,u k(t), u k([ti)) — O y (t , v k(t),i)k([t1))1(Pk+Mil) 

+ f [0. ( t, vk ( t), vk ( f il) ) — os (i, sx ( i) + (1— s ) uk( 0, x (itl) ) 1pk( ods 

+ f [0y (t , vk(t),  v k ([t])) — 0,(t , u k (t), s x ([t]) + (1— s)u k ([t]))]pkatflds 

fo l  L1 [sp k(t) 'Pk([ji)]Pk(t)ds + f 1  L2sgail)ds 

+(Ali  + N k+i(t) + (M2 + N2)Pk-F1 ([ 1 1) 

.1 

+ 	L 3 Rv k (t) — x (t)) 

+ (1 — s)(x(t) — u k (t)) (v k ([t]) — x (NMI, k (t)ds 

+ fo  L4  [vk (t) — x (t)) (x(t) — u k (t)) 

• (v k([t]) — x([t])) + (1 — 3)0;WD — u k (N))1pk ([1])ds 

where I Fs(i, 	M 1  , I Fy (t , x '01 < 1112,  10x(t 	< N1, kby( 1 , 	N2 on Qj  

urld 1/1, L2, L3, L4 are constants as in (3.2). Further simplification yields, 

Pk+1 (t) <2 1* - P2k(i) 	Llpk([i])pk(t) 	-1 
2 
-p2k ([1]) 

+Mpk+i (I) 	Ni)k+i ([ 1 ]) 

-FL3gk(t)Pk(t)
2

3
m,(1) + 1,3%([1])pk(1) + 1,4%(1)pk([1]) 

i 
+ 	k(t)Pk([t] LigkUtDP kW]) 	

L
1--1)

2 
 k([t]). 

where M 	-4- 	N — M2 + N2. 

Bence , 

pik+i (I) < Q11 (t) C hql,(t) Q 314([t]) 

-FQ 4 q1,,([t]) + Al pk+i (t) 	N p k ati) • 

max Q ig(t) + max Q 2 q12,(t) + max Q 3g([t]) 

+max ( 4,WD] M p k+  (1) N p k+i ([t]). 

p12,(t) (2 max (g(l) 
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+Mpk+l (i ) + N pk +i ( (tn . 
	 (3.27) 

where Q, 	i = 1, 2, 3, 4 are suitable constants. 

Let E = Q maxi 	+ Q maxi  qZ(i). Then on integrating (3.27) we get 

pk +1(i) 	 EMpk +i(s) + Npk+l asplds,t E J
J  

By particular case of Lemma 3.2.3, this inequality yields„ 

T 
Pk+1(t) <  m2 	[(M N)e M  — N]T [(M  N)eMT — 

Hence we obtain the estimate, 

maxilx(t)— uk +1 (t)i < C(Qmrx lx(t) — uk(t)1 2  + Q max ivi,; (t) — x(1)12. 

where C = —1 '1112 [04 
 + N)eM 

 N]T [04  men4T N]. 

Similarly, we can obtain 

	

max i lvk +1 (t) — x(1)1 < a(R maxiv ),(1) — x(t)1 2 	ilmax jx(t)— u k (01 2)  

where C, II , R , are suitable constants. 

This completes the proof. 

Remark 3.3.2 If f(t,x(t), x((t])) = f(t,x(t)), then the above results reduce to those in [541 

Further in addition, if OE 0, then condition (3.1.4) is equivalent to 

f (t, x) > f (t, y) f x (t, x)(x — y) for x > J, 

which infact can be obtained from f ss (1,x) > 0, that is f is a convex function as given in 

[101 
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3.4 Inequalities: 

In this section we establish some inequalities, which play a vital role in study of differential 

equations with deviating arguments. These inequalities are simple extensions to the exsisting 

ones in ordinary differential equations as well as functional differential equations [44]. The 

section starts with simple extensions to generalisation of Gronwall Bellman integral inequality 

to differential equations with PCDA obtained by Jayasree 'and Deo [36]. The two sided 

estimates related to solutions of two systems is obtained which will be useful in studying 

certain stability properties of the systems. 

We first recall the inequality established by Jayasree and Deo[36]. 

Lemma 3.4.1 Let co  be a constant and x, a, b E CV, IR:41. If the inequality 

x(t) < co + J t  a(s)x(s) + b(s)x([s])ds, t E I 

holds, then for t E I = [0, oo) 

[t] k 	 k 

X(i) < 	H ca:p(f a(r)dr) -F f exp(
f 

a(r)dr)b(s)ds} 
k=1 k-1 

	
f 

x{exp(f a(r)dr) f
t 
 exp( f t  a(r)dr)b(s)ds} . 	 (3.28) 

[t] 	 [i] 	o 

The following theorem is an extension to the above lemma . 

Theorem 3.4.1 Let x , a, b E C[I,R4 ]. Let f(t) be positive, continuous, and monotonic 

nondeereasing on I. If the inequality, 

x(t) < PO+ f a(s)x(s) b(s)x([3])ds, t E I 

holds, then for t E I , 

k  X(i) < f(t) • II{ exp( f 
-1 

 a(r)dr) f exp( f a(r)dr)b(s)ds} 
k 

X {exp( f a(r)dr) f exp( f t  a(r)dr)b(s)ds} 
N 	o 
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Proof : Consider the inequality, 

x(t) < f(t) 
f 

 a(s)x(s) b(s)x([sj)ds, t E I. 

Since f (t) is positive , dividing by f (t) throughout, we get 

x(s) 	s 	 )ds. 
x(t) 	+ 	a ( s )  L‘, 	) At)  f(t) — 	f 

	

Now , [s] < s, f is nondecreasing 	f ([s]) < f (s) and hence 1 < 1 
f(s) — f UslY 

Also
(1) 	f(sr 

< 	Therefore letting , r(t) = 	in the above inequality,•we get. 
—  

r(i) < 1 + Jo a(s)r(s) b(s)raspds. 

By using above Lemma 3.4.1, we get 

r(i) < H { eo(f a(r)dr) f exp( f a(r)dr)b(s)ds} 
k=1 k-1 	 k-1 	s 

x {exp( f a(r)dr) f
t 
 exp( f a(r)dr)b(s)ds, } 

[2} 	[t] 	o 

which gives the desired result. 

We shall now establish some inequalities which are helpful in comparative study of two 

di fferent equations. 

Consider the equations with PCDA. 

r. (t) = f (t, x(t), (N)) , x(0) = so 	 (3.29) 

and 

(1) = g (t, y(t), y([t])) , 	y(0) = yo 	 (3.30) 

where t E 1 = [0, oo), f and g are defined and continuous real valued functions on 

I x IR x IR, 	xo, Yo E IR , [t] denotes the integer valued function. 

We now establish the result of fundamental importance for subsequent discussions in 

this section. To do this we employ the well known method given in [45] and one used by 

Aftabizadeh and Wiener in [3]. 
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Theorem 3.4.2 Let F(t, u, v) : I x IR x IR, —4 IR be a continuous function, non-decreasing 

in v for each fixed (l, u)* . Assume that 

	

(t) 5_ F (t, x(t) + w(t), x([t]) + w([t])) 	 (3.31) 

and 

	

?At) > F (t, y(t)  + w(t), y([t]) + w([il)) 	 (3.32) 

for t E I and w(t) : I —4 IR is a continuous function. 

Then 	 x(0) < y(0) implies x(t) < y(t) for t E I. 

Proof We shall prove the assertion on the unit interval [n, n 1), n = 0,1,2,3... 

Let x n (t), y n (t) and w n (t) be satisfying (3.31) and (3.32) on [n,n + 1) , namely )  

x:,,(t) 5 F (t, xn(t)  + w „(i) , x „([t]) + w „ Qin) , 	 (3.33) 

and 

y in (t) > F (t, yn(t) + wn (t), y „([t]) + tv„([t])) . 	 (3.34) 

x„(n) < y„(n) = x n (t) < y„(t), t E [no, + 1). 	 (3.35) 

If the assertion in (3.35) is false, then the set S = ft E [n, n + 1)/ y„(i) < x„(t)} is not 

empty. Let t„ = inf S , then I n  E S and by (3.33) t o  > n . Hence,  we have 

x•(t.) = Y„(1.70 at t = t„ and x n (t) < yn (t), 	for t E [n, t..) • 

For sufficiently small h < 0 , we have, 

Xn (in  h) x„(tn ) > yn (t n 	h) 	yn (t n )  
Ii 	It 

which implies that x i (t„) > yni  (t.„) . Therefore using (3.33) and (3.34), we get, ,  

F 	x„(t„) + w„(t„), „(n) w„(n)) > F (tn,Y,i(in) • n(in) yn(n) 	w„(n)) . 

This contradicts the non decreasing character of F. Hence the set S is empty and 

we have x n (t) < y.„(1) on [n, it + 1), rt = 0, 1, 2, . Therefore x(t) < y(1) for t E I. 

We prove that 
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Remark 3.4.1 The conclusion of the above theorem holds even when (3.31) and (3.32) 

are replaced by xi  (t) < F (t, x(t) + w(t), x([t]) + 

and 	(i) > F (1,y(t)-F w(t),y([il) w([il)) respectively, other assumptions remaining 

the same . 

We make use of Theorem 3.4.2 to prove the following inequality. 

Theorem 3.4.3: Let G(t , u, v) , H (t , u, v) : I x IR+  x IR+ 	IR+  be 

continuous and nondecreasing in v for each fixed (t, u) . Assume that C and H 

satisfy the inequality, 

G(t , m (t) 	w(t), •([t]) 	w([t])) < 	(t) < H (t , m(t) 	1140 , m•([t])  + w([t])) 	(3.36) 

where i E I, and m(t) : 	IR+ is a continuous function with m(0) = nzo • 

Also fort > 0, assume that /3(1) and a(t) are the maximal and the minimal 

solutions of the equations, 

/3'(t) = H(t, 13(t ) + w (t), 33 ([t]) + w( [t])), 0(0) = 130 

and 

(t) = G(t , a(t) 	w(t), a ([t])  + w([il)), (-1(0) = ao 

respectively, Then ao  < Tno  < 00  implies 

a(i) < m.(t) < OW, for t E I. 

Proof : Let a (t, c) be a solution of the equation 

= G (t , a(t) w(t), (Ian) + w([il)) — c 

a (0 , c) = ao  — c , c > 0. 

Then 	cv i (t, c) < G (t , a (t , c) 	w(t), a([i], c) 	w([t])). 

Using (3.36), we get, 	in i (t) > G(t,m(t)-F w(t), m([t]) + w([n)) . 

(3.37) 

(3.38) 

(3.39) 
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Observe that a.0  — c < no  < tno . Since C satisfies all the conditions of Theorem 3.4.2, 

using the Remark 3.4.1, we have, a (t, e) < m(t) . 

Let 	0 , we get ft(i) < rn(i) , which is the left side of (3.39). The right 

side of (3:39) can be proved similarly, and this completes .the proof. 

Next we prove a result which can be used for comparative study of the 

properties of solutions of (3.29) and (3.30). 

Theorem 3.4.4 Let C, II be as in Theorem 3.4.3. Suppose that the fuizctions 

f, g in (3.29) and (3.30) respectively satisfy the inequality, 

W(t) — x(t)I 	hG (t, Iy(t) — x(t)I 	Ix(1)1,1y ([t]) — x([1])1+ Ix([t])1) 

< ly(t)
— x(t) + h {g (t, y(t), y([t])) — f (t, x(t), x([t]))} 

1:1J( 1 ) — x(t)i+ 	(t,IY(t) 	x(t)1+ ix(i)kiYain 	xatili 	ixatni) • (3.40) 

For small h > 0 and t E I, let 13(t) and a(t) be the maximal and minimal solutions of 

(i) = 	0(0 + x(t), ([t}) + x([t])), 0(0) = 00 

and 

ai (i) = 	a(t) x(t), a([t]) xatp) , a(0) = ao  

respectively. If x(t), y(t) are solutions of (3.29) and (3.30) respectively, then 

— xol < do 	a(1) < IY(t) — x(01 < d(t) , for t E I. 

Proof : We shall prove the result on the unit interval [n, n 1), n = 0,1,2, .... 

(3.41) 

(3.42) 

Let, xn(t), Yn(t), /3n (1), an (t) be satisfying (3.29), (3.30), (3.41), (3.42) respectively 

On [n,ri + 1), n = 0,1,2, .... We shall show that 

an(n) < iYn(n) 	xn.(n)i < #u(n) 	an(i) < lYn(t) — xn.(01 5- 13n(t) 
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Define pn(t) = lYn(t) — xn(t)i then Pn(n) = lYn(n) — x n (n)I . Using (3.40), we get 

p.(1 + 	= iyn (t +11) — x n (t + 

lYn h g(1, yn (t),y n (n) 	el h — x n (t) — h f (1, x n (t), x n(n)) — c 2 hI 

< 1Y n(i) 	xn(t) 	h -{g(1, Y n(1), Y n(n) — f (I, x n (t), x n (n)} I + kilt) + ic2 11 1 

< iYn(1) — x n(1)I + h. H (1, iy n(1) — xn(1)I + ix n(t)i,ilin(n) — xn(n)I 	lxn(n)i) 

Ic2 h1 

pn (t) + h. H (I, pn(t) 	Ix n(1)1, pn(n) 	Ix n (7)1) -I- I( ' hi + 2h1 

where e l , e2 	0 as h 	0 . Therefore we get 

pni (i) lira 
pn(t 	h) — p n (t) 

h--)o 

< H (t, pn (t) 	lx n (t)1, Pn(n) 	n(01) , t E [n, n 	1). 	(3.43) 

Using Theorem 3.4.3 and (3.43), we get pn (t) < On (t) . Similaraly we can obtain 

an (t) < pn (1) . This gives us. 

an (t) < lyn (t) — x n (n)I < On (i) for t E [not + 1), n = 0,1, 2, ... . 

Therefore ex(t) < ly(t) — x(t)I < 	for t E I . 

3.5 Nonlinear periodic boundary value problem 

This section deals with the nonlinear periodic boundary value problem (PBVP). We have 

employed the method of quasilinearisation to prove the existence of solution. The associated 

linear PBVP is also discussed. 

Consider the nonlinear PBVP, 

(t) = f (t, x(t), xatn), 	 (3.44) 

x(0) = x(27r) 
	

(3.45) 
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where t E 	= [0, 27r]. f E CV x IR x IR, IR}, [.] denotes the greatest integer function. 

Equation (3.44) is a differential equation with piecewise constant deviating argument and 

the existence of solution for the initial value problem has been established by Aftabizadeh 

and Wiener in [3]. 

We introduce the following definition of a solution of the PBVP (3.44) and (3.45). 

Definition 3.5.1 A solution of (3..44) and (3.45) on J is a function x : J-0-1, that satisfies 

the following conditions : 

(i) x(t) is continuous on J. 

(ii) The derivative x'(t) exists at each point t E J, with the possible exception of the 

points [t] E J, where one sided derivatives exist. 

(iii) Equation (3.44) is satisfied on each interval J„ = [n,n + 1) with integral end points. 

(iv) x(t) satisfies the condition (3.45). 

We now define the classical upper and lower solutions for the PBVP (3.44) and (3.45). 

Definition 3.5.2 A continuous function u : J —+ 111, is said to be a lower solution of the 

PBVP (3.44) and (3.45), if the derivative u'(t) exists at each point t E J, with the possible 

exception of the points [1,] E where one sided derivatives exist, and 

u'(t) < f(t, u(t), u([t])), u(0) < u(27r) 	 (3.46) 

It is said to be an upper solution, if the reversed inequalities in (3.46) hold. 

Usually the classical lower and upper solutions are ordered. If u, v are lower and upper 

solutions of the PBVP (3A4) and (3.45) respectively, then either u < v or v < u on J. 

In the following discussion of this section, we assume that 
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(In) u, u E C[3, 	are lower and upper solutions of (3.44) and (3.45) respectively such 

that u(t) < v(t) on J. 

(II2) For f E CV x IR x IR, II?] and (H1), there exits atleast one solution x(t) of the 

PBVP (3.44) and (3.45) such that n(t) < x(t) < v(t). 

(I-13) Whenever (H2) holds, let 

S= {(t,x,y)E J x 	x 	: u(t) < s(t) < v(t) ,u(N) < y(t) < v[t]} 

(11.4) f(t,x,y) E C[S, IR] such that the partial derivatives fx (t,x,y), f y (t,x,y) exist, are 

continuous on S and x, < m l ; x, < 7112 on S, for some positive 

constants m 1 , 711 2  

(I15) For (t, x 1 , 
y1

),  (t, x 2 , y2) E S such that x l  > x2 , m > y2, 

■ f(i, Xi, yi ) — f(t, x2, Y2) ?: ix(i, x2, Y2)(xi — x 2 ) — 	(x i  — x 2 ) 2  

fy (t, x 2 , y2)(yi — y2) — 142(y1 — y2) 2 , 

where M1 , M2 > 0 are constants. 

	

For u(t) < x 2  < 	< v(t); u([t]) < y2  < yl  < v([t]), define the function 

g : S x IR x IR x IR x IR M by 

g(i,xi,x2,M,Y2) = f(i,x2,Y2) 

	

{h(t, x 2 , y2 ) + 2M1  x2 }(x 1  — x 2 ) — 	— 4) 

+ 	x2, Y2) + 2 M2Y2}(yl — y2) — 	— YD. 	(3.47) 

From (3.47), we get 

(3.48) 

Next define the function. F : S x IR x IR IR by 

P(t,x,y) 	f(t,x,y)-F Mi x 2 	M2y2 , 	 (3. 49 ) 
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where M 1 , M2 are as in (115) . 

We need to prove the following result. 

Theorem 3.5.1 Suppose that the hypotheses (H1) to (115) are satisfied. Then for any 

y1, ;y2 , ID such that u(t) < w(t) < v(t), t E J, u(t) < x2  < xi  < v(t);. 

and u([t]) < y2  < y1 < v([t]) we have, 

(i) f(t,33],Y1) —  f(t,x2,Y2) > fix(t, a:2, y2) + 2m, x 2 1 (xi — x2) — mi (xi2-  2 
x2) 

+ {.fy ( i l x2, y2) 242Y2}0/1 - Y2) - 1142(,4 Y2)( 3 • 50 ) 

and 

(ii) g(t, x(1), w(t), x([i]) , ivat])) — g(t, y(t), w(t), y([t]),w([t])) 

< N1 (x(t)— y(t)) + N2(x([t]) — y([t])) 	( 3 .5 1 ) 

where N1 , /V2  > 0 and u(t) < y(t) < x(t) < v(t) and u(t) < w(t) < v(t); 1. E S 

Proof :We have from (H5), 

.f ( t , I , Y 1 ) - 	x2, Y2) 

Mt, x2, y2)(x1 — x2) — 	— x2) 2  

+ ly(t , x2, Y2)(M — y2) — M2(Yi — Y2) 2  

{f x (t, x2,y2)+2114-1x2}(x1 — x2) —2Mix2(xl — x2) 	(:4 — 2x 1  x 2  + x22 ) 

+ {fy( 1 ,x2, Y2) + 2M2Y2}(Yi — Y2) — 2 M2Y2(Th — y2) — M2 Of; 
— 2y1 y2  + yD. 

2/11 1 x 2 1 (x i  — x 2 ) — 	 (xi —  I LP, x2, y2) 

+try (1,x2,Y2) -F 242y21(y1 — g2) — /142M — yD. 

This proves (i). 

Next to prove (ii), using (3.47), we get, 

y(t, x(t), w(1), x([1]),w([t])) — g(t, y(t),  w(t), y([i]) , w([t])) 
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f (t, 11)(0 , w([t])) 

+ {Mt,w(t), w([t])) + 21110140} (x(t) — w(t)) — 111 1 (x 2 (t) — w 2 (t)) 

+ fy (t ,w(t), w([t]))  + 2 M2 w(PD) (x([t]) — w([il)) — M 2 (x 2  ([t1) — w 2  ([t])) 

- f (t, w(t], w([il)) 

- { fx (t, tom , w([il)) + 2m,70(0)(0) - w(t)) + M, ( y 2(t) - w 2 (t)) 

- fy ( tov(t), w([t])) + 2m2 watin ( y ([t])  - w([il)) + M2 (y 2 WD — u) 2 ([t])) 

, w(t), w([t]))(x(t) — y(t)) 	2/141 w(t)(x(t) — y(t)) — AI, (x 2 (t) — y 2 (t)) 

fy (I, w(t), watli)(xWD y([t])) + 2M2wWD(xWD y([t])) M2(x 2 WD w2 WD) 

• {m i  2A11(w(t) —1/(t)))(x(i) —  Y(i))+ {m2 + 2M2(tvWD —27([tD)}(xWD y([t])) 

• Ari (x(t) — y(t)) + N2(x([t]) - y([t])) )  

where g(t) is such that u(t) < 71(0 < v(t), t E 3; and 

N1  = m 1  + 2M1 SuP{Iu)(t) — z(t)I}; N2 = 1722 2M2  supfitiOD - z([t])I}, 

u(t) < w(1) < v(t); u(t) < z(t) < v(1), t E 3. This completes the proof. 

Remark 3.5.1 The assertion (i) in Theorem 3.5.1 implies that 

f 	(t), x([t]) > g(t, x(t), y(t),  x([t]), y([t])) 	 (3.52) 

for y(t) < x(t). 

Theorem 3.5.2 The nonlinear PBVP 

x 1 (0 = 9(t, x(t), u(i), sat)), u([t1)); 	x(0) = x(27r); t E 

has (Ansi one solution x(t) such that u(t) < x(t) < v(t) where u(t), v(t) 

are lower and upper- solutions of (3. 4 Arespectively. 

Proof : For t E 3, we have,by using (3.48), 

u'(t) < f (t, u(t), ti([t])) = g(t, u(t), u(t), u([t]), u(k1)) 
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and, by using (3.52). 

v i (t) 	f (t, v(t), v([t])) > g (t , v(t), v(t), v  ([t])  , v([t])) 

Hence.,u,v are lower and upper solutions of (3.53) respectively. 

Therefore,by analogous of (H2), there exists a solution x(i) of (3.53) 

such that u(t) G x(t) < v(t). 

We require the following lemma. concerning solution of the linear PBVP. 

Lemma 3.5.1 Th•e linear PBVP 

s'(t) 	ax(t) 	bx([1]) = h(i); 	x(0) = x 2 ; I E 	 (3.54) 

a, b, are constants, a 	0, has a unique solution 

[t] 
x(t) =- {co  AN(1) E,01-(1) 7(i — 1,01 A(t — [t]) 	7([t], t) 	(3.55) 

where x(0) = co, provided 

6 

C 0 = 	  
1 — A 6 (1)A(27 — 6) 

{A(27 — 6) E A'(1) 7(i —1,i) + 7(6, t)} 
i=1 

where 

(3.56) 

A ( ) == e—at 	( e—at 	1)ba-1 ;  A(1) = e—a 	( e —a 	1)ba-1 ; 	(3.57) 

-y(i — 1,i) 
	

e- a(t- s )  h(s)ds; 	i = 1,2,...[t]. 	 (3.58) 

Proof : Let x„(t) be solution of the equation (3.54) on [n, n + 1), satisfying 

the condition x(n) = en , n = 0,1, ... Then, we have 

x•„(t) = ciz A(t — n) + 7(n, 1), 

where A, and 7 are as defined in (3.57) and (3.58),respectively. 

Let t 	n 1, then we have the recurrence relation, 

c,„ 4. 1  = c.,„A(1) + 7(n, n + 1), 
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which yields. 
n 

en = coAn(1) + 	An - 2(07(i — 1,i). 
i=1 

Hencei the solution of the equation (3.54) is given by , 

Et] 
x(t) = {co  A [I(1) 	E AN-z(1) 	— 	A(t — [t])-1- -1([t], t). 

i=1 

The boundary conditions x(0) = x(27r) = co  yields, 

1 
co  = 	  

1 	V6 (l)\(27r — 6) 

Hence the proof. 

6 

{A(27r — 6) E A6-2 (1) -y(i —1 , + -y(6, t)} 
j=1 

We are now in position to prove the main result of this section. The existence of solution of 

the PBVP (3.44) and (3.45) is established. For this purpose the method of quasilinearisation 

is employed to obtain a sequence of approximate solutions converging to the required solution. 

Theorem 3.5.3 For the nonlinear PBVP (3.44)  and (3.45) satisfying the hypotheses 

(I11) — (115), there exists w i  E C l  [J, j = 0,1,2, ... such that the sequence {w i } 

is monotone and converges uniformly to a solution of the PBVP ( 3.44) and (3.4 5). 

Proof : First we set w o (1) = u(1), the lower solution of the PBVP (3.44) and (3.45). Then 

by Theorem 3.5.2 , there exits a solution w i  of (3.53) such that w o (t) < w 1 (t) < v(t) , 

where v(i) is the upper solution of the PBVP (3.44) and (3.45). Thus w i (t) satisfies the 

equation, 

	

w'(t) = get, w(1), 11,0 (1), w([1]), wo([t])); 	w(0) = w(27r); t E 

Suppose that we have constructed w i  (1), j > 1 such that 

	

u (1) = wo (t) < -w i (t) < W2 (1) < 	< wj (t) < v(t) 

on , and wi  's are the solutions of the equations. 

w'(t) = 9( 1 , 10 ( 1 ), wj-1( 1 ), 	wi-1([ 1])); 
	w(0) = w(27r); j > 1. 	(3.59) 
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Hence we get 	wi (t) = g(t ,w j (i), w _ 1 (0, ([4 w i ([t])) 

Also, vi(t) > f , v(t), v([in) > g (t, v(t), w i _ 1 (t), vain, w j_ 1 ([t])) j 	1; 

which means that tuj (1) is a lower solution and v(t) is a upper solution of the equation (3.59), 

respectively. Again by employing Theorem 3.5.2, we get 'a solution w .i+1 (t) of (3.59) such 

that 	< wj+1 (t) < v(t). Hence e the sequence {w i (t)} is increasing and it has a 

pointwise limit, say w(t). 

Next let wi +1  (1) be the solution of the linear equation 

	

u/j+i (t) 	(t) 	bw:41 ([ill = 
	

(3.60) 

where a, b are constants, a # 0, t E J; toi+1  (0) = wi+1 (27r) and 

itj (t) = a w.i+i (t) 	 f (t, w j (t), tv j ([tn) 

▪ { f x (t v j (i), v Ain) + 2 M Iv j(t)} ftv -1(t) — w (t)} — 114 ftv +1 (0 — ti)(t)) 

+ {Mt, j  (t) , AID) + 2 M 2 t j([t])}{w j +1 ([t]) — v ;WM — M 2{w41 ([t]) — to .  ( kW , 

The solution of the equation (3.60) is given by (3.55), and this shows that {w i } is bounded 

in C 1 (J). Hence,the sequence {w i } converges uniformly to w. 

As j 	oo, h i (t) 	h(t) = aw(t) 	&v([t])+ f (I, tv(t), w(N)). 

Ilence taking limit, as j -4 oo, equation (3.60) gives 

(t) = f , w(t), ([t])) , w(0) = w(27r), 

which shows that w(t) is a solution of the PBVP (3.44) and (3.45). 

3.6 Oscillatory behaviour. 

In this section, we shall establish the result concerning the oscillatory property of the solution 

of a nonlinear first order differential equation with PCDA. It is known that a solution is said 

to be oscillatory if it has arbitrary large zeros. We first establish the existence of the solution. 
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Consider the IVP. 

a(t)x(t) = f(t,x(N)), x(0) = c o , t E I = [0, oo), 	(3.61) 

where a E C[/, 	f E C[I x IR, IR], c o  E IR. Equation (3.61) is a nonlinear differential 

equation with PCDA. The solution of (3.61) can be defined as in Definition 3.2.1 . We prove 

the following result. 

Theorem 3.6.1 The equation (3.61) has a solution on 1 . 

Proof :Let t E [n,n + 1) and x n (t) be the solution of the equation (3.61) on the unit 

interval [n, rt + 1) with x „(n) = x(n) = e„ . 

Then xin(t) 	a(i)x n (t) = f (t, c n ) . Its solution is given by.. 

x„(t) = en  exp( — f a(s)ds) exp( — f a(s)ds) 	f (s, en ) exp( f a(r)dr)ds. 
n 

Let E(n,l) = exp( — Int  a(r)dr) and F(n, t) = f (s,cn ) exp( In  a(r)dr)ds . 

Then, we get.. sn (i) = cn E(n,t) 	E(n, 	( ,t) . 

Let 1 	n + 1, and since x n (n + 1) = 	we get the recurrence relation. 

en+1 = en  01, 71 + 1) + E(71 7 	1)F(n,n + 1), 

OR. 	c„ 	E(n — 1,n) 	E(n — 1, n).P(n — 1,n), 71 = 1, 2, ... 	(3.62) 

Repeated use of the recurrence relation (3.62) yields. 

n-1 	 n-1 

co • 11 E(j,j + 1) + II E(j,j 1)F(0, 1) 
j=c1 	 j=0 

n-1 	 n-1 

(j, j 	1)F(1,2) 	...+ fi  E(j, 	1)F(n — 1,n). 
i=1 	 .7 =n-  I 

n-1 n  
Now, II 	

. k 
E(j,j + 1) = exp( — I a(s)ds), for k = 1, 2, ..., n — 

jr--k 

en  
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+ E exp( — J c a(s)ds) • { 
k+I 

 f(s,ck)exp( 	a(r)dr)ds} 
k=0 

[t]—] 	 ea 	1 	1 	e —a(t—p]) 

X(i)
2.4 e—a(t—k) g(ek) 

	 
= coe —at 

k=0 a a 
(3.65) 

and hence we get, 

n-1 

e = co exp( —  

	

0 	 k=0 

the solution x(t) of the equation (3.61) is given by 

.2 

	

co exp( — 	a(s)ds) 

+exp( — f a(s)ds) • 
. [ 
I f(s,c[t])exp( 

[t] 
 a(r)dr)ds. 

[ 	 t]  

We shall consider a particular case of the equation (3.61). 

Corollary 3.6.1 The solution of the IVP, 

40+ ax(1) = g(:r([t])), x(0) = co , t E I = [0, oo), a 	0, 

where a is a constant , g E C[IR, 	{0}}, co E lllr. is given by , 

(3.63) 

(3.64) 

where Ck = x(k), k = 0,1,...,n. 

Proof : Take a(t) = a, and f(t,x(N)) = g(x([t])) in Theorem 3.6.1, then (3.63) gives 

(3.65). Hence the proof. 

Remark 3.6.1 When a = 0, (3.64) reduces to xi(1) = g(x([t]) and its solution on 

[n,21 + 1) is given by , x n (t)= en + g(cn )(t — n) . 

Now we shall study the oscillatory behaviour of the solution of equation (3.64). The 

following result gives a necessary condition under which the solution (3.65) has a zero in 

each unit interval. 
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Theorem 3.6.2 If the solution x(t) of the equation (3.64) has a zero in the unit interval 

(n,n + 1) , then, 
_ 	en  

a < g(en) < 0
J  (3.66) 

where x„(n) = cn . 

If (3.66) is not satisfied then (3.64) has no zero on (n, n + 1) . 

ProOf : Let x„(1) be the solution of the equation (3.64) on the unit interval (n,n + 1) . 

Then from (3.65), 

xn ( i ) = en  e—alt—n) 	g(en)  (1 — Ca(i-n) ), a 	0. 
a 

Suppose that x n (t) has a zero at in E (n, n + 1) , then 

en e-al tn -n )  
g(en) 	— e-ao„-n)) 	0.  

a 

This on simplification yields, 

g(cn ) ° 

Case(i): Suppose a > 0 . Then 1 < 1 — 	< e" . 

•  This implies 911c1,-0  < 0 and --(71e°
- < g(en). 

Case(ii): Suppose a < 0 . Then ea  < 1 — 	< 1. 

This again leads to 	< 0 and 1-aea 	
g(e 

< 11—  
g(Cn) 	 n) • 

Hence, we get 

1 — ea 	c„ 
	 < 0. 

a 	g(en) 

Remark 3.6.2 (i) Observe that from (3.67), we get t o  = n 1,;log{1 — T-.4g  } . 

a(tn —n) = aCn  

(3.67) 

(ii) When a = 0 , using Remark 3.6.1, we get t„ = n — gk,  and the condition (3.66) en 

reduces to —1 < < 
g(en) 

(iii) If g(x([t]))= 	x([t1) , p is a constant, then (3.66) reduces to p > 

a necessary and sufficient condition obtained in N. 

a 
ed —1 which is 

70 



Chapter 4 

CONTROLLABILITY 

4.1 Introduction 

This chapter is concerned with the controllability of a nonlinear system involving piecewise 

constant deviating argument(PCDA). The control theory is a discipline of increasing appli-

cations. It is the area of applications dealing with basic principles underlying the analysis 

and design of control systems. Controllability theory attempts to define and isolate the the-

oretical limits to which a system can be controlled. The important problem here is that to 

compel or control the system to behave in some desired fashion. In elementary differential 

equation ) the nonhomogeneous term ( or the perturbed term ) is a :fixed specified function 

of independent variable. If this term is made to vary arbitrarily, then the system behaviour 

will changed. This change in behaviour is studied under the controllability problem. 

The Controllability of nonlinear systems is a problem of wide interest. There are different 

approaches to study this problem [58]. Most of them are established techniques of the 

nonlinear analysis. Among these, the fixed point method is widely used. Yamamoto has 

obtained the results for ordinary differential equation by using Schauder's fixed point, in [68]. 

In this chapter, we apply the fixed point method to study the controllability of a nonlin-

ear system with PCDA. The controllability problem is transformed to a fixed point problem 

of a nonlinear operator in some function space. The Schauder's fixed point theorem is used 

to get the desired result. As a preliminary requirement, result for the linear case is proved. 
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Section 2 contains notations and preliminaries required for the further development. 

In section 3, we discuss the nonlinear system with PCDA. First we obtain a sufficient con-

dition for the controllability by using the approach of Yarnamoto[68]. An operator is COrl-

structed on a Ban.ach space.of vector valued continuous function, and controllability problem. 

is transformed into an existence of a fixed point. Finally, in section 4, we establish conditions 

for existence of a set over which fixed point will exist. These results are called comparison 

theorems. 

4.2 Notations and Preliminaries 

In this section, we consider the system, 

z'(i) = A(t)z(t) 	B(t)z(N)-1-- C(t)u(0, z(0) = zo 	 (4.1) 

teJ , [0,tf ], z,zo e ilr,ue 

where A(i), B(i), are n x n continuous matrices and C(t) is a it x In continuous matrix on 

7. [ is the greatest integer function. Equation (4.1) is a differential equation with PCDA 

because of the presence of the term z([1]). The solution of (4.1) can be defined in a similar 

way as we have done in Chapter 2 and 3. 

Let 1. (t) be the Fundamental matrix (FM) of the system 

x'(t) = A(i)x(1), :r(0) = z o , x E En satisfying (1)(0) = E, an identity matrix of 

order n x n, and (I)(t,$) = (1)(t)(1) - ' (s). Let q'(t) be the FM of the system 

y'(t) = A(i)y(i) B(t)y(N), y(0) = 20 , y E li?" satisfying tP(0) = E and 

,k) = kI1(t)1 -1 (k), k = 0,1, • • • [t], t E J. The solution of this system is 

given by y(t) = 4(t,0)z0 . 

We need the following Lemma which is deduced from variation of parameters formula 

proved in [36]. 
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Lemma 4.2.1 The unique solution of (4.1) is given by 

Z(I) = 1'(1,0)Z0 

[t] 	, k  

E 
L-1 

W(0, 104)(k , s)C (s)u(s)ds 
k=1 

41)(i, 0)1 
t] 
 (1)(0, s)C(s)u(s)ds. 

[ 

(4.2) 

We have the following definition of controllability. 

Definition 4.2.1 The system (4.1) is said to be controllable from (0, z0 ) to (ty,z 1 ), if for 

some control function u(t), t E J, the solution z(t) of (4.1) satisfying z(0) = z o  also satisfies 

z(t 1 ) = z1  E J, where t 1 and z1 are preassigned terminal time and state respectively. 

If the system (4.1) is controllable for all z o  at 1 = 0 and for all z1  at t = t f , then it is said 

to be completely controllable (c.c.) on 7. 

We now establish the sufficient condition for the controllability of the linear system (4.1). 

Theorem 4.2.1 Consider the control problem (4.1) whose unique solution z(t) is given by 

(4.2). If the matrix U(0,t f ) defined by 

U(0, [i f ]) = k11(0, k)(1)(k , s)C (s) 

U(0, t f ) = 

U([1 f ],t f) = 

x[CT(s)4 T (1,-;,$)4 T (0,k)1ds, 

fi tt ffi  1.(0, s)C (s)C T  (s)(1) 1  (0, s)ds, 

on [0, [IA 

on I ftf l, tf l 

(4.3) 

is nonsingular, where T denotes the transpose, then the system (4.1) is c.c.. 

In this case one of the control functions which transfers the system from (0, zo ) to (t f z1) 

is given by 

—C T  (t)I. T  (k,t)ki r  (0, k)U -1  (0, [t f ])[1 — W(0, t 1 )2], on [k — 1 , Id 

(4.4) u(t) = 00 4)T ( 0 , 1 )u-1 ([1 1], if) 

VD 1  (1 f ,O)q f 0)' L  - 4) ( 0 , i f )"!-21-] 	 on [[i 	f ]. 

where a= .1,2, • ••, [t f ]. 
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Proof : Since U(0, i f  ) is non-singular, the control function u(t) given by (4.4) is well 

defined. Using (4.2), we get 

[2f) 	k  

Z(tj) = qi(1.1,0)Z0 	o) J  f  T(o, k)(10(k , s)C (s) 
k=i 

[—C T  (s)(1) T  (k, s)V T(0, k)11 -1 (0, [IA( 52(2  — q)(0, 
tf 

41 (if, f 410, S)C(S)[ — CT(S)407. (0, 	 if)} 
[tfj 

0)-1  f 0)kl(t f 0) 	— 	f) 551- )dS 

	

qt f 0) Z 0 — 'T'( , 0)11 (0 1DU -I (0,  [t f])(2 	kl)  (0 , t )2 ) 

— 11  (t f 0)11 fb 1)11 - I  at fb t 1)(4 )-1  (t f 0)kli (t (4)  — 111  (0, 4). 

Zo 	Zj 	 zo 	Zj = 	f, 0) ZO 	(t f 0) 	 f 0)",T + 

zf , 

as required. Hence,the system (4.1) is c.c. 

Remark 4.2.1 The control function u(t) defined by (4.4) is a piecewise continuous func-

tion. However, if we assume that, 

(111) 111(0,k) = 11/(0, k 	1)4)(k +1,k), k = 1 , 2 , ..., [t f ] — 1. 

(112) V T(0, [t f])U-1(0, [if])  (0, if) = 4IT (0, ft fD11 -1 ([i f ], if)(10(0, i f ) 

then, these conditions ensure that the left hand side and right hand side limits match at 

each of the integer points, making u(t) continuous. 

4.3 The Nonlinear system 

In this section, we obtain a sufficient conditions for the controllability of the nonlinear system. 

Consider the control process described by the nonlinear equation, . 

z'(i) = .4(i, z(t), u(t))z(t) + (t , z(1), u(1))z(N) 	C (t, z(t), u(t))141) 	g(t , z(1), u(t)) 

z(0) = zo , 	 (4.5) 
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t E J = [0 , t f ], z, zo, g E .En , u E 	A(t, z, u), B(t, z, u) are n x n matrices 

and C (t , z, u) is a n x nz matrix. The matrix functions A(1, z, u), B(t, z, u), C(t, z, u) are 

all continuous with respect to their arguments. 

The related linear control. system is given by, 

z' (1) = A(t, w(t), v(t))z(t) 	B(t,w(t),v(t))z([ti) 	C(t, w(t), v(t))u(t) 	g(t, w(t), v(t)), 

	

z(0) = zo , 	 (4.6) 

where w = w(t),v = v(i) are continuous functions of appropriate dimensions as z and u 

respectively. Observe that A(t, w, v), B(t; w, v), C(t, w, v) and g(t, w, v) are functions 

of time 1. Ilence,by Lemma 4.2.1, the solution of the system (4.6) is given by .  

z ( t) 	kli(t , 0, w, v)zo  

k 

	

+ 41 (4 0, w, V) E f 	ic,.w,v)(1)(k, 	v,v)[C (s,w,v)u(s) g(s, to, Olds 
k _ 1  k.--1 

+ 4)(4 0, w, v) f 4)(0, s, w, v)[C (s , w, v)u(s) g(s, w, Olds 
• [0 
	 (4.7) 

where 4:11(t,t,w,v) = E, 4)(40, w, 04)(0, s, w,v) = 4)(4s, w, v), 

E, 	0, w, O1(0, 	111(t,k,w,v). 

Theorem 4.3.1 Consider the linear control system (4.6) whose solution z(t) is given by 

0. 7). If the matrix ;  

U(0, pw,v) 

p f i 	k 

	

U , [i 	w, v) = Ek=i  fk _ 1  qi (0, k, w, v)41 )(k , s, w, v)C (s, w, v) 

x[CT  (s,w,v)(1) T  (k, s, w, OT T  (0, k, w, Olds , 	on [0, [if ]] 
(4.8) 

U([tf l,t f ,w,v) = 44)(0, s, w, v) 

x[C(s,to,v)C T (s,w,v)(1) T  (0, s, to,v)]ds, 	on 	i), t 

is nonsingular, then the control process (4.6) is c.c.. In this case one of the control functions 

which steers the state (4.7) to a preassigned z f  at time t f is given by:  
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U(i) = 11(t , 0, zo, if, Z 	7)) 

- CT 	, v) (1)T (k t , 217, t))TT (0, k, 2i1, v)U -1  (0, [t Au; , v 
x[2 - 	0 3'1' 

+ E[tf]i f k- 1 111(0, k, to v)4(k s,w,v)g(s,w,v)ds] 

 

on [k - 1, kb 

  

=_ 	 (4.9) 

- C T  (I, W V)V (0 ,W V)U -I  at At f V) 
x {(1) -1 (t 0, to, v)kli(t f 0, to, v)11- - 4)(0, t f to WI' 

iit;11)(07 s,  to, v)g(s, w, v)ds} ; 	 on [[t f ],t f ] 

where k = 1, 2, • • • , [t f ]. The control function u(t) is continuous if the following conditions 

are satisfied. 

(113) 'T(o, k,w,v) = qf (0, k 	1 , , v)(1.(k + 1, k,w,v), k = 1, 2, ..., [t - 1. 

( 9(4) TT  (0,  [i f], to, v)U-1 (0, [t i],  to, v)T(0, t f w, v) 

= 	(0 [t f] W V)U ([i ,t f W V)kl i  (0 if ,  w ,  v) 

Proof : Since U(0, t f 7  v) is non-singular, the control function u(t) = u(t, 0, z0 , if , Zf, W, v) 

given by (4.9) is well defined. Using (4.7) and (4.9), we get , 

z(i f ) = 	f 0, tv, v)zo 

[tf] 	k 
41 (tf 0, w, v) E f T(0, koo, v)(1)(k, s to , v)C (s, to, v) 

k.1 k  
t - CT  (S, 211 5  21) (JD T  (10 S 2v, )IP T  (0, k, 2i7 , v)U -1  (0, [i f ], 	v) 

zo 
[(-  - T(O, tf, 20,12)-LZI ) 

9 

k 
+ E f T(0, k, tv, v)43.(k, S 5 10, v)ge r , 	v)dr]}ds 

k_1 k-1  
[t f ] 	k  

kli(t f7  0 , W, E 
f  

+ 43.(/ j , 0, w, v) 	(DO, s, w, v)C (s, 	v) 
ft 1] 

{-C T  (s to ,o)cD T  (0, 

[4) 	f 7  0, w, v)kii (t f , 	
2 

v)-1)z  - 4)(0, t f , 
7

tr) .1  ) 

4)(0, k, to, v)40(k, s, 2v, v)g(s, 2v, v)ds 

sot), v )U- 1 ([1 f],if,W,V) 
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— f 431 (0,T,1 v)g( r, w, v)dT]ds} 

t t  

4(t f 0, w, v) I (13.  (0 s,w,v)g(s,w,v)ds 
[t fl 

f 0, w , v)zo 	(t 1 , 0, w , V)U (0 ,[t W V)U -1  (0 ,[t tV v) 

L-2- 40, if, w,v) z--1  
2 

r zo 

[t fi 	k 

k=1 -k-1  k=1 

41(0, k, w, v)4 (k, s, w, v)g(s, w, v)ds] 

[t1] 	k 

+Ai@ f 0, w, v) E f 	k,w,v)44(k, s,w,v)g(s,w,v.)ds 
k=i 

— (I, f ,  0, w,v)UUt f],  t 	r I  at fb tf,  to, v) 

[(D -1 (t f, 0, iv, v)41(i f , 0,w, v):52  — 4)(0,if,t0, Off-) 
2 

i f  
4)(0, s, w, v)g(s, w, v)ds] 

[i i] 

+43 (t f, 0,10, v ) f (I) (0, 	,v)g(s,w,v)ds 
[t 

zo 	zf 	 zo 	Z f 
41 (t f ,O,W,V)Z0 4 1 (t f 	+ —

2 
— xP(t , 0, W, 

2 	2 

Zf 

as required. Hence the system (4.5) is c.c. 

The condition (113) ensures the continuity of the control function at the integer endpoint 

of the each unit interval, except at the point [IA, where the continuity of u(t) is ensured 

by the condition (114) . 

We shall now employ the fixed point technique to establish the controllability of the 

nonlinear system. 

Let C[J, IR"+"1 denote the Banach space of (n+m) dimensional continuous functions on 

J. Consider the operator, 

T : C[7 , li?"+"1 1-+ C[7 , 111"- "2 ] 

defined by T(tv,v) = (z,u), where z, u, w,v are as in (4.5) and (4.6). 

Theorem 4.3.2 If there exits a closed bounded convex subset S of C[J, IR,n+m] such that the 
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operator T is invariant for S, then the system (4.5) satisfying (4.8) is c.c. on J. 

Proof : Choose vectors w, v so as to agree with z, u given by (4.7) and (4.9). Then these 

vectors are also solutions for the system (4.5). This guarantees the controllability of the 

system (4.5). Thus the controllability of system (C5), becomes a problem of existence of .a 

fixed point for (4.7) and (4.9). If there is atleast one set of fixed point for (4.7) and (4.9), 

then this solution is also a fixed point for (4.9) and (4.10) given by 

z(i) 	W(t,0,w,v) 

[2] 	k 

	

[z0 E f 	w, 040, s, w, v)C (s, w, v)v(s)ds 
k=i 

[2] 	k 

+
E  f - 1 

To, k,w,v)(1)(k, 5, w, v)g(8, w, v)ds] 
k k=i 

t 

+1,(t, 0, w, v)[ f
] 
 (DO, s, w, v)C(s, w, v)v(s)ds 

+I  (1)(0,s, w, v)g(s, w, v)ds.] 
Et) 

(4.10) 

The operator T is continuous on C[J, ff?" +m]. Let S be a closed bounded convex subset of 

lir+m] and T be invariant for S. 

Therefore T(w,v) 	(z, u) E S for any (w, v) E S. Using (4.9) and (4.10) we conclude that 

T(S) is hounded and equicontinuous. Hence by Schauder's fixed point theorem we conclude 

that there exists atleast one fixed point of T. 

4.4 Comparison Theorems 

In this section, we derive results based on comparison principle [13]. Here we try to examine 

the conditions under which there exits a set which satisfies the conditions of Theorem 4.3.2 

Let 11.11 be a. norm on some Banach space and 1.I be the Euclidean norm. Define the set 

S = (w, v) E C[J, En+"]:111)(01 < a(i),1 1)(01 _13 (i)} 

We set the following conditions: 

(Al) 	11413.(t,s,w,2.)11< R9 1  > 0, for all t,s E J. 
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(A2) 11T (t, 0, tv, v)11 < M2 > 0, for all t E J. 

(A3) 11C (s, w , v)11 < M3 > 0, for 0 < <t,t E J. 

(A4) = M 4 > 0 , 

(A5) 10(0, k,w,v)(1)(k, s,w,v)11 < mk, 

for k = 1,2,•• -,[tf], 0<s<k<t,tE J. 

• (A6) M ax {tn. k} = M5 , for k = 1, 2, • • • , [t f ]. 

(A7) 1g(t, z, u)1 < h(1,' Izl , lid), where h(t,a(1)03(1)) is a continuous function 

of its arguments, and nondecreasing for any (1(0, p(t) > 0. 

(A8) IICT (i,w,v)(1:0 T(k, w,v)kli T  (0, k, w, v)U -  (0 , [t 1], to , v) 

x 	— 	t f to , 0 1;21- 11 < nk 

for k = 1,2, • • , [t f ], 0<s<k <t, tEJ. 

(.49) 	IIC T(t, to, v)4)T(k, 1,w, v)klT (0 , k, , v)U -1  (0 , [t 	, v) 

x111(0, k , to , v)(1)(k , s,t , v)11 

for k= 1,2,- , [t f ], 0 < .s < k < 1, t E J . 

(410) b0  = mas{nk}, b1  = ritax{pk}; 

for k = 1,2, • , [tf ], 0<s <k <t, t EJ. 

(A11) 	IICT (t, ID 1))4)T  , , to , 	 f 	v) 

I  (t f 0, to, v)kli(t f, 0 , , v) 	- 	(0 t f , w , v) - 21- 111 < 110 ,1 E .1. 

(Al2) IICT(t, to, 11) (D T 	, 11)U-1 ([i 	,v) (1) (0, 	< 1101, s E J . 

We have the following result. 

Theorem 4.4.1 If there exits atleast one pair (a(t), NO) such that the inequalities. 

 
a(1) > ao  + al  I ,3 	

[2]
(s)ds+ a2 	h(s, cr(s), d(s))ds 

	

+a3 	/3(s)ds a4 	h(s , a(s), 11(s))ds, t E J. 	(4.11) 
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and 	

by 	1'0M  h(s, a(), #(s))ds, on [0, [ti]l 
> 

110 	14 Ati f, 1  h(s, a(s), /3(s))ds,  on Rt 

are satisfied for any constants ao , b0 ,1/0  > 0, and for some constants a1, a2, a3, a4, 

0, then the system (.4.5), satisfying_ (A 1), to (A 12), and (4 8), is c.c. on J. 

(4. 12) 

Proof : Using (4.10) and conditions (Al) to (A7), we get, 

Iz(t)I < 	w, 
[t] 	k 

	

E f 	k w 1))43(k ,w , 	(s , , v)111v(s)Ids f 
It] 	k ▪E f 	k,w,v)(k,.s,w, 	Ig(s, w(s), v(3))Ids] 

k=1 f 
f t 

+ 11 4)(i, 0, 11) ) VAR j
[t] 

11 40, SI w, 01111C(S,w,010(S)Ids 

+ f 114)(0, s, w, v)ilig(s , w(s), v(s))I]ds. 
• PI 

k 	 [t] 	k 
< 1142[M4 	

k— 

	

> 	 Ttlk M3 Iv(s)Ids E 

	

k=1 	 k=1 k-1-1 

+ f
t 

M1 M3 Iv(s)Ids  S)IdS f M1 11 (S)IW(S)1,1v(s)Dds• 
[t] 

< M2 M4 + 1112  M3 M5 	S ) dS + M2 M5 I
[t] 
 h(s, a(s),  (3(s))ds 

t 	 t 

+ M1 M3 f 0(MS M1 h(s, a(s), 13(snds. 
ft] 

ao  -I- rt 1  f 
[t] 

 #(s)ds 	
[t] 

a2 f  h(s, cr(s), #(s)ds f 
	 0 

-1-a3 
• P 
f 

 l 
0(S)dS -I-  (14 I h(s, u(s), /i(s))ds, t E j, 

where 110  = N12 /14 depends on initial value z o  and 	s are suitable constants defined by 

system parameters M1 , /112 , M3 ,11%15 . 

Next using (4.9) and (A7) to (A10), we get, 

hi(1)1 < IICT  (t, w, v)(1:0 T  (k ,lov,v)V T  (0, k, w , v)U -  (0,[t 	w, v) 

mk h(s,lw(s)1,1v(s)l)d.s] 
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><[2 41(0, f 'ID V) 5P1 

[ 1 1 1 	k 

+E I lIcT(i, w,04)T(k,t,w,v)TT(0, k,w,v) 
k=1  k-1 

XU -1 (0, [t fl, w, v)'1(0, k,w,v)(11(k,s,w, v)Illy(s,w,v)Ids 

[i f ] 
< bo 	h(s, a(s),(3(s))ds 

Jo 

< OM 	on [0, [if ]], 

and, similarly, using (4.9), (A7), (All), (Al2), we can obtain, 

f t '  
171(01 < 110 	M 	h(s, a(s), fl(s))ds 

[ti) 

/3(t) 	on Pi], 	, 

where b0 , Wo  depend on both initial and terminal value z o , 	are constants 

defined by system parameters. This implies that (z, u) E S and thus existence of S is 

established. Hence lby Theorem 4.3.2 system (4.5) is c.c. on J. 

We can simplify Theorem 4.3.3 by making the .nonlinear function y independent of z. 

Consider the system, 

(t) = A(t, z(t),u(t))z(t) 	B (t , z(t),u(t))z([t]) 	C (t, z(1),u(t))u(t) 	g(t, u(t)) 

z(0) = zo , 	 (4.13) 

t E J = [0, I 	z, z o , g E ffin ,u E ffr A(t, z, u), B(t, z, u) are n x n matrices 

and z, u) is a n x rn matrix. The matrix functions A(1, z, u), 13(t, z, u), C(I, z, u) are all 

continuous with respect to their arguments. Let us suppose that condition (A7) is replaced 

by, 

(A7)' I g(t , u)1 < h(t, lul), where h(/,13(1)) is a continuous function of its arguments, and 

nondecreasing for any OM > 0. 

We have the following result. 
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Theorem 4.4.2 If there exists atleast one nonnegative solution fl(t) of the inequality 

bo 	b1  fo t i 1 h(s, /3(s))ds, on [0, [till  
93(t) > 	 (4.14) 

//0 	M Atilt]  h(s, /3(s))ds,  on RE f],t 

for any b0 ,110 > 0 and for some constant b 1 , b; then the system (4.13) satisfying the condi-

tions Theorem 4.3.3 with (A7) replaced by (A7) 1, is c.c. on J. 

Proof : Since y is independent of z, we have 

(1(0 > ao  + a 1  i 
[t] 

 d 	
Et] 

(s)ds + a 2  I h(s, /3(s))ds
o 	 o 

+a3 
 ft

t 	 T 
] 13(s)ds + a 4  I h(s,d(s))ds, 

E 	 [t] 

and 

/3(t) > 	 (4.15) 
1 bo  + b1 fili 11  h(s, /3(s))ds,  on [0, [t f]] 

110 + bi f[it]h(s, /3(s))ds, on PA 14 

Now, if the inequality (4.15) has a solution /3(t), then the first inequality always has a solution 

sufficiently large. Hence/ the result. 
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Chapter 5 

SECOND ORDER NONLINEAR 
DIFFERENTIAL EQUATIONS 

5.1 Introduction 

In this chapter, we deal with second order nonlinear differential equations with piecewise 

constant deviating argument (PCDA). The second order equations with PCDA has been a 

topic of interest during the last decade, and is not yet explored completely. Some particular 

equations are discussed by the authors in [39, 67]. It is known that equations with PCDA 

represent a hybrid of continuous and discrete dynamical systems and combine the properties 

of both differential and difference equations. These hybrid systems are of interest for those 

working in control theory and biomedical field. The methods of obtaining the results are 

similar to those applied for first order equations with. PCDA. 

Section 2 deals with the existence of solution of the nonlinear equation, under condi-

tion that the corresponding first order ordinary differential equation with parameters has a 

solution. 

In section 3, we obtain the solution of a second order linear differential equation with 

PCDA. We also establish the linear variation of parameters formula. From these we deduce 

the particular cases required for the monotone iterative technique. 

The next section contains the main result of this chapter. Here we establish 1..2 existence 
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of the maximal and minimal solution by using monotone iterative technique. An important 

lemma dealing with an inequality required for monotone method is proved. 

Finally, section 5 is concerned with a particular second order nonlinear differential equa-

tion with PCDA. We obtain ,÷t7-existence-of solution and state the necessary condition for 

the solution to have a zero on each unit interval with integral end points. An example is 

constructed in support of the result. 

5.2 Existence of solution 

In this section, we prove 	existence of solution for the general second order nonlinear 

differential equation with PCDA. We employ the method used by Aftabizadeh [3] for the 

first order equation. 

Consider the nonlinear equation, 

x"(t) =- f (x(1),x([4)), x(0) = c o , x'(0) = do 	 (5.1) 

where l• I denotes the greatest integer function, f is a continuous function 

on 111 x II?, and t E 1 = [0, oo). 

We need the following definition. 

Definition 5.2.1 A solution of the equation(5.1) on 1 is a function x(1) that satisfies the 

conditions 

(7) x(t) is continuously differentiable on I. 

x"(1) exists at each point t E I with the possible exception of points [1] E I where f 

has one sided derivatives. 

(iii) Equation( 5.1) is satisfied on each unit interval [n, ii + 1) with integral end points. 
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The equation(5.1) contains an argument that is constant on interval with integral end 

points. Continuity of the solution at a point joining any two consecutive intervals leads to 

recurrence relations for solution at such points. Hence ) the solution is determined by the 

finite set of initial data, rather than by an initial function.. 

Along with equation(5.1), we consider the ordinary differential equation with 

paranieters 

(t) = F (x(t),A, 11,), 	 (5.2) 

If F' (x(i), 1.1) is continuous and different, from zero on a set S, then on S there exists a 

general integral ;  

(x(t), A„ a) = 	h(A, 1.1) 	 (5.3) 

with an arbitrary function h(A,/z). 

We have the following result on existence and uniqueness of solution of (5.1). 

Theorem 5.2.1 Assume that 

(i) 17 (x, 	E C(1R3 ) is different from zero on a set S. 

(ii) Equation (5.2) satisfies existence and uniqueness conditions in IR.' and its solution can 

be extended over I. 

Equation (5.8) has a unique solution with respect to en“. 

(iv) 77, system of difference equations (5.9) and (5.10) is uniquely solvable. 

Then the [VP (5.1) has a unique solution on I. 

Proof Let x„(i) be a solution of the equation(5.1) on the interval [n, n. + 1) satisfying the 

conditions x(n) = c„ and x'(n) = d„ . Then we have from (5.1) 

x.„(t) = f (x„ (t), c„) . 
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This on integration yields,. 

x n(t) = 	+ f
t 

 J 	(x n (s) , en ) ds. (5.4) 

Let 

F (x n (t), 	dn ) = tin  + r t 

 J  f (x n (s), c„) ds. 	 (5.5) 
71 

Using (5.4) and (5.5) we get.. 

(t) = F (x„(t),e. d„) 	 (5.6) 

The equation (5.6) has solution 

Put i = n, to get 

and therefore we get, 

(x n (t), •„, d„) = t + h (On , d„) 

G (cn , c„, dn ) = 	h c„ , (17, , 

(x 1(t),  en,  (ln) — C (e n , en , dn ) = t — n. 

This can he written in the form, 

J
•x r, t) dx 

F (:r , en , dn ) 
= I - n. 	 (5.7) 

At = n + 1, we have 

JCn F (a; , c,„ d„) = 
1. 

By (iii), (5.8) has a unique solution with respect, to c 71+1  hence we have, 

= 	(en, dn) , 	= 0 , 1 , 2 , 	 (5.9) 

for some function 0. Similarly, from (5.6), we can obtain the relation, 

dm+ , = F (0„+ 	, d„) , n = 0, 1, 2, ... 	 (5.10) 

By (iv), the system of difference equations consisting of (5.9) and (5.10) can be uniquely 

solved with the initial values co , do  known. Substituting these in (5.7), we can find the 

solution x„(1, c,,,, do ) of (5.1) on the interval [n, n + 1). 

Cre+1 dx 
(5.8) 
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5.3 The Linear Equations 

In this section, we establish the results required for the use of monotone iterative technique 

in the next section, which is the main result of this chapter. We first prove the existence 

of a solution of the IVP for the second order linear differential equation with PCDA. Then 

we obtain the variation of parameters formula for the associated non-homogeneous equation 

with PCDA. 

Consider the linear .IVP 

x"(1) = 	(0+ a2 x(t) a3x([t]), 

x(0) = co , 	x 1 (0) = do  , 	 (5.11) 

where a l , a 2 , a 3  are constants a 2  0, a3  0, co , do  E IR. 

We have the following result, 

Lemma 5.3.1 The IVP (5.1.1) has a unique solution on I . The solution on the interval 

[ri,it + 1) satisfying x(n) = c„ and x' (n) = d„ is given by the equation(5.15) below. 

Proof : Let x„(i) be the solution of the IVP (5.11) on the interval [n, n 1). 

Let x(i) = ei  and x i (i) = di , for i = 0,1, 2,3, ..., then we have., 

x„(1) = 	 a2 x„(t) a3 c„ 

x(n) = c„, 	(n) = 
	

(5.12) 

If rrt ►  and m2  are two distinct roots of the equation r• 2  — a i rn — a 2  = 0, then by using 

variation of parameters formula for second order linear ODE with constant coefficients, the 

solution of the equation(5.12) is given by 

a'. 
ent t 	/L e r/22'i 

1 	 /722 
—a 2  a3 cri 	+ 	en/1(2—n) 

 
— m 2  

771 ►  
e. 7722(2-71)1 (5.13) 

7121 — 7112 
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where an  and On  are arbitrary constants. Differentiating, we get .  

4(0 = 7Thanem " +777213nem2t  

—a2-1 a3cn 
[ m 
	(3"'"`

irn2 	() 	m i rn2 
	

ern2(1_„) ] 4..„ 	
(5. 1 4) 

	

772 — m2 	 m i  — rn 2  

Letting t = n, these equations give. 

	

en  = °nen 1 n 	e7112 n 

and 

dn = ann./le i? ' +1.3n /n2e7n2 " 

Solving for a n , On  and substituting in equations (5.13) and (5.14), on simplification we get 

	

—m2(1 + a2-1 a3) e  rn (t—n ) 	7" 1  (1 + a 2 1  a3) cm2(t-n) 	-1 
X„(i) = en  	 (12 a3 

77/1 — 7122 MI — 77/2 
cn, i (t-n) 	e m, 2 (t-n) 

+ (in  	 (5.15) 
m1 — rn2 rn i  — m2 

and 

X n  

	

,(i) = an   
—77/2 7711( 1  + a2-1a3) em,(1-n) + rnim2( 1 	(1. 1 a3)  

m i  — rn 2 	 rn 1  — n1 2 
	n 

all e rn 1 (t -n) 	r72e m, 2 (t-n) { 

+ dn 

respectively. Put t = n + 1 , in equation(5.15), then we have 

en+1 — en 
_ rn20 a2  1a3) 

C 	 e 	  m ' + 	
+a21a3) 

m 1  —7772 	 m i  — a/2 
	m2 — a,-1 (13 } 

{ cm ' 	eM 2 	} 

— m 2  m. 1  — m 2  

which can be written in the form 

712 1 — 72/2 	Tr/ — m2 	) 

+ 

(5.16) 

end 1 = C k + dn k2, 

where k 1 , k2  are suitable constants. Similarly, letting t, = n + 1 in equation(5.16), we get 

4+1 = Cul 1 + 4/2 

88 



where / 1 , 12  are suitable constants. 

c„, 
Let vn 	 , then the above two recurrence relations give, 

dr, 

Vn+I 

	

I

kt k2 	v  

	

/1; ' 1 2. 	n•  
(5.17) 

a homogeneous difference equation. We look for a non zero solution of the equation (5.17) 

in the form vn  = rAn, where r is a constant column vector. This implies that A satisfies 

the equation 

det(A — 	0, where A = 	II  1£2 
 

 12  

This yields, A 2  — (k1  + 12 )A + k1 1 2  — 1 1 k2  = 0. Assuming that this equation has two 

roots, A 1 , A2 (A1 A2), we get the general solution of the difference equation (5.17) as 

vn  = r1 Al r2 )2 with ri  are constant column vectors depending upon A i , i = 1,2. The 

re 's can be found by using initial conditions. 

If Al = A2 = A then, vn  = rnAn. The solution x n (i) is then obtained by substituting the 

components of vn  in the equation(5.15). 

The case Mt = in 2  can be dealt with similarly and we can obtain the solution x n  . This 

completes the proof. 

Remark 5.3.1 In the following results we shall consider only the case m i  > n1 2 . 

We need the following simple deduction from Lemma 5.3.1 . We state it without proof. 

Lemma 5.3.2 The solution of 

x" (t) — M x(t) N xat1), x(0) = co, r i (0) = do , 

where M,N 	0 , are constants, exists on 1. 

On the interval [n, 7/ + 1), the solution is given by, 

	

= cn 
{( 1  + M 	e fici(t-n) + ( 1  + M-1 N )  e-fici(t-n) M-1 N } 

	

2 	 2 

do 
 1  ivit7gt_n) _ e -fiff(t-n + 
2 Viv-i 

(5.18) 

x n (t ) 
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We now establish a useful tool in the study of properties of the solutions of differential 

equations, namely the variation of parameters formula. First we state the result on non-

homogeneous difference equation from [27]. 

Lemma 5.3.3 The unique solution of the I VP , 

y(n + 1) = A(n)y(n) g(n), y(n = Yo 

is given by 

	

( n-1 	 n-1 	n-1 

y(n, no, Yo) = H A(0) yo  E H A(i))  g(r) 

	

i=no 	 r=no i=r+1 

If A is a constant matrix , and no  = 0 , then we have 

n-1 

y(n, 0, yo) = Anyo + E An_r_i g(r)  
r=0 

We now prove the variation of parameters formula. 

Lemma 5.3.4 ( Variation of Parameters formula ) 

The Linear non-homogeneous equation 

x" (t)= aixi (t) + a2x(t)  + a3x([t]) + f (t) 	 (5.19) 

satisfying x(0) = co , x'(0) = do  , where f (t) is a continuous function on I, 

0 2 , a3 	0 has on I a unique solution. 

The solution x (t) on [n, n + 1) satisfying x(n) = c„, 	(n) = d„ 

is given by the equation(5.21) below. 

Proof : Let x n / be the solution of the equation (5.19) on [n, n 1), then we have 

• 
x n (t) 	4(0 a2 x n (t) a3c,, f (t) 

x(n) = cn , 	(n) = do  (5.20) 
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t-n) 	1 — a2  a3  2 

01(7t ) 

= m1 — 7722 in n+1 

[e mi(n-1-1-s) 	eni2(n+1-s)1 f (s)ds  

MI —M2 f n 

n+1 

02(n) =  	
[inigni(n+1-s) — Tit2c ni 2 (n+i-s)] f(s)ds  

1f x121, rn (mi m2 ) are roots of the equation m 2  — a i m — a 2  = 0, then using variation of 

parameters formula, we get 

—m 2 (1 -I- a 2 1  a3 ) 	(t-n) 	1111 (1 -I-  a2 1a3 )
xn(t) = c„ 

(5.21) 

and 

— 77107220 + a 2 1 a3) emi ( j_ n ) 	Tn2Mi (1 	a2 1 d3)  ra2(t-n) 
en 

m i — m2 	 m1 — m2 
miern,(t-n) — m2e rn 2 (i-n) 

+ dn  J1  	 (5.22) 
—m 2  

1 m2  In  [mie mi(t-s) 	m2e 7n2(i—S)] E(S)Ns mi 
  

Letting t = n 1, we obtain 

Cn+1 
	en  + dn k2 01(n) 

dn+1 = en/1 + (in/2 + 02(n) / 
	 (5.23) 

where k 1 , k2  , 1 1 , / 2  are suitable constants as in Lemma 5.3.1 and 

7711. — 77/ 2 	 — 

+ d„ 
emi (t-n) 	em2 (t-n) 

MI — 7/22 

[ern,(i-s) — cm 2 (t-s)] 
771i — rn 2   

( en Taking vn  = 	we get from equation(5.23), a non-homo 	 nation geneous difference eq, 
(ire)' 

	

= Avn  OW, 	v(0) = vo , 

where A = ( k111  4;22  ), and0(n) = 	,Ibp 12 (( 77.11 ) • 
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By using lemma, 5.3.3, we get 

n-1 

Anvo + E 
r=0 

The solution z n (t) is obtained by substituting the component of v n  in equation(5.20. 

5.4 Monotone Iterative Technique 

In this section we apply the monotone iterative technique to prove the existence of minimal 

and maximal solutions for the second order nonlinear differential equation with PCDA. We 

first define the concepts of upper and lower solution and prove an inequality result required 

for the monotone method. 

Consider the nonlinear equation, 

	

x" (1) = Pt, x( 1 ), x([t])), x(0) = co , 	40) = do 	 (5.24) 

where f E C[I x IR x 1R , IR]. We have the following definition. 

Definition 5.4.1 A continuous function u(t) on I is said to be a lower solution of (5.24) if 

.T exists at each, point 1, E I with the possible exception of points [t] E I 

where one sided derivatives exist, and 

(t) < J(t, u(t), u([t])), 	u(0) < co , 	(0) < do. 	 (5.25) 

It is said to be an upper solution if the reversed inequalities hold. 

We need the following Lemma, which is deduced from Lemma 5.3.2 . 

Lemma 5.4.1 Suppose that x E C[I, IR] and the derivative x i' (t) exists at each point t E I 

with the possible exception of the points [t] E 1 where one-sided derivatives exist. Assume 

that. 

(t) < M x(t) N x([1]), x(0) = co  < 0 x 1 (0) = do  < 0 	(5.26) 



where M and N are constants such that 

— M cosh(VA 7 .v)  
N > 0 < v <1; M > 0. 	 (5.27) 

jcosh(lic .v) — 1) ;  

Then x(t)<0 on I. 

Proof : For t E [n,n + 1), n = 0,1,2..., consider 

x„(i) < Mx„(t)-1- Arc, x n (n) = cn  < 0 x,(n) d„ < 0. 

Using equation(5.18) and condition(5.27), we get x„(t) < 0, t E [n, n + 1). Using continuity 

of the solution this yields x(t) < 0 for t > 0. 

We are now in position to prove the main result of this chapter, by using the monotone 

iterative technique. This method is constructive, and yields monotone sequences converging 

to solutions of (5.24). These sequences are such that, each of its members is a solution of a 

linear equation with PCDA. The advantage of the technique is that these solutions can be 

computed explicitly. 

Theorem 5.4.1 Let u o  and vo  be the lower and upper solution of equation(5.24) respectively 

such that uo(t) < x(i) < vo(t) on I, where x(t) is the solution of (5,24) existing on 1. Suppose 

that 

(H1) f(t,x1,111) —  f (i, x2, y2) > 111(x i  — x2) + N(yi - Y2), 1> 0, 

for .110(0 <_ x2 (t) < x i (t) < vo(t), 	uo(t) < y2 (t) < yi (t) < vo(t) and 

cosh(11171 .v) 
N > 	 , 	, 0 < v <1 M > 0 

[cosh( 11-11.v) — 1] 

Then there exists monotonic sequences fu„,(t)1 and {v„,(t)}, with a o(t) and vo(t) as lower 

and upper solutions respectively and such that 

---+ u(t), V m (i) ---+ v(t) as in --+ 00 inonotonically on 1. 

u(t) and v(t) are minimal and maximal solution of the equation(5.24) respectively. 
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Proof : For any w E 	IR] such that u o (t) < w(t) < vo(t), consider the linear equation, 

x" (t) 	t , w(t), w([t])) 	M (t) — w(t)} 	N fx(kll — w([t])} 	(5.28) 

with x(0).= co , x i (0) = do . 

For every such w(t), there exists a unique solution x(t) of equation(5.28) on 1. 

Define a map T by Tw = x, where x is the unique solution of equation (5.28). This map is 

used to define the sequences -04401 and fv,„(t)}. We need to prove the following: 

(a) no  < Tuo, vo  > Tvo  

(b) T is a monotonic operator on the segment 

[lio,"00] = 	E C[ 1 ,E] u o (t) 5_ x( 1 ) 5_ vo(t)} 

Proof  of (a):  Let Tu o  = u j  where u 1  is a unique solution of the equation(5.28) with 

w = .u o ,namely ;  

u1(t) 	.f (t , u o (1),u0 ([t])) + Al {71 1 (0 — u o (t)} 	N fu ' ([t]) — u o ([t])} 	(5.29) 

n i (0) = co , 74(0) = do  

Let p(t) = 71(1) — uo(t). On each unit interval [n, n 	1), n = 0, 1, 2..., we have, 

P.(t) = ul,n,(1) — no,„(t), where u i ,„(t) satisfies equation(5.29) on [n, n + 1), 

when /10(0 = u 0 n (1), u l „(n) = cn , 14 ,„(n) = cl„ and uo, n (t) satisfying equation(5.25) 

on [n, n + 1). Then lwe have 

p„(t) 	ui,n (t ) — lio,n(t) 

> 	 f(ioto,n(i),110,n(n)) 

1 I fu ,„(t) 	uo,„(t)} + A qu i  ,„(n) — u o,„(ii)} 

M pn (t) N pn (n). 

Note that 

pn (n) = it i ,„(n) — u o , n (n) = c:„ — no , n (n.) > O r  
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. and 

= 	— ?t o' ,„(n) = d11  — it io,.„(n)> 0 . 

By Lemma. 5.4.1, we get pn (t) > 0 for t E In, n 1), n = 0,1,2,.... and hence P(t) > 0 

on I. This shows that n i (t) > uo (t) or no (t) < w (1) = Tito(t), where u 1  satisfy the 

equation(5.28) with w = n o . 

Similarly, by letting Tvo  = v 1 , where v 1  satisfying the equation (5.28) 

with w = vo  and proceeding as above , we can show that v o  > v1  = Tvo 

Proof of (b): Let w 1 ,w2  E C[/, //?,] such that 

no (t ) < w i (i) < w 2 (t) < vo(t). 

Suppose that x 1  = Tw 1  and x 2  = Tw 2 . Set q(1) = x2 (t)—x 1 (t). So that on each unit interval 

fn, n + 1), we have 

qn (t) = x2,„(t) — x l,„(t), 

where notations are as described above . Using equation (5.28), we get 

q::(t) = 1(i, 102,.(t),102,,z(n)) — J (t, wi,n(t), tvi,n(n)) 

-F1141372,n(i) — w2,n(t)} — 114 -{x1,n(i) — wi,n(I)} 

+N{x 2,„(n) — w2 , 71 (n)} — N{x i ,„(n) — w i ,„(71)}. 

Using condition (1/1), we get. 

q::(t) ?_ 	{w2 , n (t) — w i ,„(t)} 	N{w2 ,„(n) — 

-01/{x2, n (t)— w2,,(i)} 	N{:r 2 , n (n) — 7,2 , 7,00} 

—M{x l ,„(t) — w i ,„(t)ll — NIx i ,„(n)— w i ,„(n)}. 

On simplification,we get 

g ir: (I)) 
	

M{x 2,„(l) — x l ,„(1)} 	N{x2,„(n) — si,„(n)} 
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= A 1 q„(t) Ng,i (n). 

Also we have (MO > 0, g„ (n) > 0. Therefore, again by making use of lemma 5.4.1, 

qfl (t) > 0 for t E [n, n 	1), n = 0, 1, 2..., and hence q(t) > 0 on I. This shows that 

x 2 (t) > x l  (t) or Tw 2  > Tip ' , for w 1 , w2  E [uo , vo] and w i  < w2 . Thus (b) is proved . 

Now define the sequences u m  = Tum-i and vm  = Tvm _ i  , where um  and vm  

satisfy the equations 

u m (t) = f (t, u 77, _ 1 (0, um—i([t]))  M fu m (t) um-1(t)} + N{urn([t]) — u m _ 1 ([1)} 

u 7„(0) = co, urn(0) = 

and 

1)7. (i ) = 	vm-1(t),vm-laiD) M{v m (t)— vm_1(t)) N{vm([ 1]) —  vii-1([t])} 

vm  (0) 	v.' ( 0 ) = dn ) 

respectively. Proceeding as in the above arguments and using induction, we get 

uo (t) < u (t ) < 	< um ( t) < um  ( t ) < ... < (t) < vo(t), t > 0 

. It then follows that 	um (t) = u(t) and limm,,, vm (t) = v(t) uniformly and 

monotonically, and u and v are solutions of the equation 

x" (t) = f (t , x(t), x ([4)), 	x(0) = eo
, 	 x'( 0 ) = do  

. In order to show that u(t) and v(t) are minimal and maximal solutions of the equation(5.24), 

it is required to show that if x(t) is any solution of the equation(5.24) satisfying 

uo(t) < x(i) < vo(t) on I then, u o(t) < u(t) < x(t) < v(t) < vo (t) on / . 

Let for some in, U m  < x < v„, on I . Set p(t) = x(t) — u 7,4+1 (0, so that 

P ( 1  ) = x ( 1  ) - 	+ ( ) 
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= 	(i, x(t), x 	— f (i, uni(i),uni([tl)) 

— Mlum+i (t ) — u n,(t)} — NIu 7„.+1 (t) — u„,([1)1 

which, using condition (H1) yields. 

p"(t) > MIx(t)— u m (t)) N{x([t]) — u n,([1)} 

— M fu nz+I (t) — u m (t)} — fu nz+1 ([t])— u nz (N)) 

M{x(t) — u ni+i (t)} 	N{x([t]) — u 77,41 ([t])} 

Mp(t) NpUtp 

Since p(0) = 0, by Lemma 5.4.1, p(t) > 0, which implies that x(t) > itm+I (t) on 1. 

Similarly we can show that x(t) < vm .4_ 1 (t), and hence um+1 (t) < x(t) < vm+1 (t) on / 

This proves, by induction, that u m (t) < x(t) < vm (t) on 1 for all in. 

Taking limit as in 	oo we conclude that u(t) < x(t) < v(t) on I. 

This completes the proof. 

5.5 Oscillatory behaviour 

This section deals with the oscillatory behaviour of the solution of a nonlinear second order 

differential equation with PCDA. The solution is said to be oscillatory if it has arbitrarily 

large number of zeros. We first establish existence of the solution of the equation. 

Consider the IVP 

x" (0+ a(t)f (x([1])) = 0, x(0) = co  ; x 1 (0) = do 

where f E C[1R,111], a E C[/, 	1= [0, co). 

We have the following theorem. 

Theorem 5.5.1 Equation (5.30) has a solution on 1. 
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Proof : We use the method of steps. Let i E [n, n 1) , and a:„(i) be the solution of 

(5.30) on the interval [n, n 1), . satisfying x n (n) = cn  , and xin (n) = d„ . 

Then, we have 

a(t) f (c n ) = 0, 

and hence, 

x in(i ) 

	

do  — f a(s) f (cn )ds , 

x„ (i) 
	

= c.„ + 	— n) —— s)a(s) f (en )ds. 	 (5.31) 
.n 

Letting 	n + 1 , these yields, 

n-1-1 
= cn  do  — f (n + 1 — s)a(s) f (c.„)ds, 

n+1 
do  — fn 	a(s) f (en )ds. 

•n+1 
01(n) 	= 	(n + 1 — s)a(s)f (c. n )ds, 

n+1 

02(n) 	=-- 	a(s) f (en )ds. 

Taking vn = do 
 ) , we get , a non-homogeneous difference equation, 

v n+1 = Av n  0(n), 	V( 0 ) = v0, 

where A = ( (1) 1  ), and ti, (n) 	://: 12 ((7711 ))  

By using Lemma 5.3.3, we get 

n-1 
vn  = Anvo 	An-r- (7, 

r=0 

l'he.solution x n (i) is obtained by substituting the component of v n  in equation(5.31). 

en+1 

dn+1 

Let 
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Remark 5.5.1 When a(t) = a , a constant , the solution x n (t) of the equation (5.30) is 

given by , 

n (t) = 	(t — n) — a f (cn)
(t — 2 n) 

2 

and the two recurrence relations are 

Cn+1 = cn  + a
a f (cn ) 

rt 
2 

= do  — a f ( Cn )• 

We shall now study the oscillatory behaviour of the solution of the equation (5.30) when 

a(t) = a, a constant. 

Consider the IVP, 

x" (i) + a f (x([1])) = 0, x(0) = Co ; 40) = (10 
	 (5.32) 

where f E C[IR, IR \ {0}], t E I = [0, oo) , a 0 is a constant. 

We have the following result. 

Theorem 5.5.2 If the solution of equation (5.32) has a zero on unit interval (n, n + 1) , 

then 

2 (cn 	dn ) < f (cn) and el 72., 2acnf (cn) > 0. 	 (5.33) 

where x7l = an, and x,',= dn . 

Proof : Let xn (t) be the solution of the equation (5.32) on the interval (n, n + 1) . 

Then 

x n (t) cn  dn (t — n) — a f (cn)
(t — 2 

2 	
n) 

Let, I n  E (n,n + I) be a zero of x„(1). Then 

(t„ — n) 2  
dn (I n  — n) — a f (c„ 	2  	= 0. 
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This yields, 

to = n + 
a f (c m ) 

This implies 

do  ± 	+ 2acj(c..) 
0 < 	  < 1 and d2,2  + 2ac„f(c„) > 0. 	(5.34) 

af(c.) 

Case(i): a J.  (c„) > 0  Then the first inequality in (5.34) yields. 

0 < ± 	+ 2acn.f(c.) < af(c.) 

and on simplification, we get, 

2 (c„ + d„) < a f (c„) 

Case(ii): a f (c„) < 0  Then the first inequality in (5.34) yields,. 

0 > d„ f Vd! + 2ac„f(c„) > a f (c„) 

and on simplification, we get., 

2 (c. d„) «.; f (en ) 

Thus in both the cases, along with the second inequality in (5.34), 

we get the same condition. IIence the result. 

Example : Consider the IVP 

x"(i) + x 2((in = o , x(o ) = 1 , xi(o) = 	. 

Its solution 3:0 (1) on (0, 1) is given by x 0 (1) = — 	2  , and it has no zeros on (0,1) . 

Here the first inequality in (5.33) does not hold. 

(I 	1/672, 2ac„f(en) 
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SUMMARY 

The aim of this thesis is to study nonlinear differential equations with piecewise constant 

deviating argument (PCDA). The differential equations with PCDA consolidate several prop-

erties of the continuous dynamical systems generated by dday differential equations, and of 

discrete dynamical systems generated by difference equations. An attempt is made to build 

up the theory of differential equations with PCDA where the argument is the greatest integer 

function [t]. In general, the results of the theory of ordinary differential equations (ODE) are 

extended in a suitable manner to get corresponding results in delay differential equations. In 

some respects this requires new ideas and novel approach. Equations with PCDA, being a 

relatively new topic and of interest for last two decades, there is an opportunity to extend, the 

known results of ODE to equations with PCDA in particular and delay differential equations 

in general. We briefly summarise below the work done in this thesis and point out some 

directions for future course of study on differential equations with PCDA. 

In the very first chapter, a general introduction of the topic has been given and the 

problems taken for study are mentioned. The next chapter deals with a brief survey of the 

present status of the work done on linear as well as nonlinear differential equations with 

PCDA. It also includes the results from ODE and nonlinear analysis relevant to the work 

clone in the thesis. 

In Chapter three, we have discussed the first order differential equations with .PCDA. 

Some simple extensions of results concerning mean value property, and upper and lower 

solutions are proved. The existence and uniqueness of the solution of 

:TAO = (t, s(t), xatD), s(0) = so , t E J = [0, 71 7' > O. 	(5.35) 

is obtained by using the method of quasilinearisation. The condition imposed on the func- 
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tion f is a convexity type condition [ See (1-I4) of Theorem 3.3.1]. Monotone sequences 

of approximate solutions are constructed which converge uniformly to the unique solution 

of (5.35). In the next result, this condition is relaxed, by assuming that f d), for some 

continuons function 0, satisfy the convexity type condition [ See (II4) of Theorem 3.3.3]." In 

both the cases, it is shown that the convergence of the monotone sequences is quadratic. 

Further, some inequalities are proved, which may be useful in the stability theory. We have 

employed the method of quasilinearisation to prove the existence of solution of the nonlinear 

periodic boundary value problem 

41) = f (t, x(t), x([t1)), x(0) = x(2ir), t E [0, 2r1. 	 (5.36) 

Here a monotone sequence of solutions of some nonlinear equations converges uniformly to a 

solution of (5.36). The associated linear periodic boundary value problem is also discussed. 

Finally, we have obtained a xtecesser.,-  condition for a solution of a nonlinear equation with 

PCDA to have a zero in each unit interval [n, n + 1). 

Chapter four is devoted to the controllability of a nonlinear system. Sufficient conditions 

are obtained for both nonlinear as well as the corresponding linear system. The result is 

established by constructing a nonlinear operator on some function space and then using 

Schauder's fixed point theorem. Some comparison theorems giving properties of the state 

as well as control function are obtained. In the last chapter, we introduce a second order 

nonlinear differential equation with PCDA. The main result of this chapter is the existence 

of maximal and minimal solutions of the equation 

x" (I) 	f (t, x(t), x([i])), x(0) = c o , 40) = do , I E [0, oo). 	(5.37) 

The monotone iterative technique is used to obtain monotone sequences converging to max-

imal and minimal solutions. These sequences are constructed by using the solutions of some 

linear equations. Existence of unique solution of linear as well as nonlinear equations are also 

established. The chapter ends with a discussion on oscillatory behavior of a second order 
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equation. Conditions relating to having zeros of the solution in the unit interval [n, n 	1) 

arc obtained. 

Problems for further study 

Differential equations with PCDA have been found useful in several areas of application. 

Hence it is required that, they are studied in detail. As mentioned above, there appears to 

be ample opportunity to study these equations with respect to properties such as asymptotic 

behavior, periodicity, anti periodicity, stability, etc.. Boundary value problems are not yet 

discussed fully. Observability of nonlinear system and null controllability can also be studied. 

Other problems of control theory include stability and optimality. One can also study Integral 

equations with PCDA and Integro-differential equations with PCDA. 
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