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Chapter 1
INTRODUCTION

The study of differential Equations is a rich area of mathematical research. It has played a
major role in the development of mathematics and its applications for nearly five centuries,
especially for the advancement of Physics and Engineering. From the 19th century onwards
differential equations have played a signiﬁcant role in Biology, Ecology and Economics. The
real world problems are analysed mathematically with the help of models which are often
differential equations. According to M.W.Hirsch and S.Smale, ” The importance of ordinary
differential equations vis-a-vis other areas of sciences lies in its power to motivate, unify, and
give force to these areas.”

Linear Differential Equations have been studied in great détail. The existence and unique-
ness of solution and properties like boundedness, periodicity, oscillations, .non—oscillations,
stability, etc. have been already studied in respect of linear differential equations [13, 20].
However,very little is known about the non-linear world of differential equations. The world
of non- lincar differential equations is very wide and needs to be explored in great detail.
One of the reason why the need is felt is that these equations represents several complex
physical phenomena. The growth of science in the new millenninm could well depend upon
the success in resolving and developing the methods to study qualitative properties of non-
linear problems. The industrial recognition for nonlinear mathematical models, chosen to

solve problems of technology, is growing. It is clear that the attempts to understand the



nonlinear world will dominate a large parts of mathematical research in the years to come.

In many application, it is assumed that the future state of the system under consider-
ation is independent of the past state and determined solely on the present. But now it is
known that this assumption leads to first approximation of the true situations. For a better
approximation one has to consider the past history of the system. This has given rise to
what are calléd delay differential equations or the differential equations with deviating argu-
ments. In general, these are known as functional differentia;d equations. The general theory
and basic results for functional differential equations have by now been fhoroughly explored
and are available in the form books [9, 25, 26, 28, 33]. Nevertheless, there is a still a need
for investigation of special delay equations. |

Problem under study

Recently, there has been interest in the study of linear differential equations involving
piecewise constant delays. Such equations were first introduced by A.D.Myshkis [56]. The
study of differential equations with piecewiselconstant delays was initiated by the work of
Busenburg, Cooke and Wiener. It is seen that equations with piecewisedconstant delays are
closely related to impulse and loaded equations and especially to difference equations with
discrete arguments. It has been iused to study controllability of discrete systems. Some
basic tools such as variation of parameters formula, Gronwall type inequalities, needed in
the study of qualitative properties of the solutions of equations involving piecewise constant
delays have been already studied.

The aim of this work is to study the nonlinear differential equation with piecewise constant

deviating argument,
'(t) = f(t,2(t),2([t]), z(to) = =0,

with reference to the following problems.

(A) To develop some basic tools required for further study.



(B) To use method of quasilinearisation to obtain the solution.
(C) To study the controllability.
(D} To study Boundary value problems.

(E) To.study the second order equation

2(1) = f(t,2(1), 2({1]), 2(to) = co;’(t0) = do.

The method of quasilinearisation was first propounded‘by Bellman and Kalaba [8, 10).
They showed that the method is an effective tool in the study of non—liﬁear ordinary differ-
ential equations. Subsequently, there were several research pa‘pers published in engineering
sciences involving the use of method of quasilinearisation to several situations. During the
last ten years, this method was further extended to cover several nonlinear situations. The
main work was initiated by Lakshmikantham and his colleagues [47 - 54]. The method is
used for initial as well as boundary value problems.

The problem of nonlinear control has been studied by using the fixed point method [68].
This powerful tool in modern analysis helps us to construct a suitable control function,in
the case of nonlinear control problems. Using the results of linear system, control function
and controllability matrix for nonliricar system are constructed. Under suitable hypothesis a
function space is constructed and a suitable operator is defined on it. Schauder’s fixed point
theorem is then applied to get the desired result.

Layout of the thesis

In this thesis, an attempt is made to develop the theory of nonlinear differential equations
with PCDA. The entire thesis is divided into five chapters. The first chapter gives an
introduction of the topic, and the reasons for taking up the study. It also includes the
outline of the problems dealt with in the thesis. The chapter ends with a plan of the thesis.

Chapter 2 deals with the survey of the available literature on the equations with PCDA.

The survey is divided into three parts. The first part briefly outlines the results on the



linear differential equations with PCDA. This includes results on the existence, uniqueness,
oscillations and periodicity of the solution of different types of the equations with PCDA. The
second section deals with nonlinear differential equations with PCDA. Finally, the chapter
ends with ‘brief description of the techniques in nonlinear analysis, which are used for the
work of this study.

Chapter 3 is devoted to the study of first order nonlinear differential equations with
PCDA. Here we start with the basic results such as meaﬁ value property and inequalities.
The existence of unique solution is obtained by using the method of qﬁasilinearisation and
its improvement. In the first case, we assume the convexity condition and in the second case
under relaxed conditions, a simple procedure to construct the solution sequences is given.
-Inequa,lities estimating solutions of two differential equations with PCDA are discussed.
Further, solution of the periodic boundary value problem is obtained by using the method of
quasilinearisation. The chapter ends with discussion on oscillatory behaviour of the solution
of a particular nonlinear equation with PCDA.

In chapter 4, we have taken up the controllability problem for the nonlinear system
involving PCDA. The sufficient conditions for complete controllability of the linear as well
as nonlinear systems are obtained. An operator on a function space is constructed and
Schauder’s fixed point theorem is used. Some comparison theorems are discussed.

In the last chapter of the thesis, we introduce second order nonlinear differential equa-
tion with PCDA. As prerequisites for the main result, solutions of homogeneous and non-
homogeneous linear equations with PCDA are obtained. The main result of this chapter
is the existence of maximal and minimal solutions by using the monotone iterative tech-
nique. Oscillatory properties of a particular second order differential equation with PCDA
are discussed.

Finally, we present a brief summary of the results obtained in this thesis and give some

of the unresolved problems. The thesis ends with a complete bibliography.



Chapter 2

SURVEY OF EXISTING
LITERATURE

2.1 Introduction

This chapter deals with the survey of the literature on differential equations with piecewise
constant deviating argument ( PCDA ). The attention to these types of equations was drawn
by Myskhis [56], and since then different types of equations with PCDA and their general-
isations have been studied by Busenberg, Cooke, Wiener and others. These equations have
been a topic of interest for last few decades. A survey article by Cooke and Wiener[19] gives
some of the results on these equations. We plan to give survey of linear equations in sectibn
2 and that of nonlinear equations in section 3. Section 4 gives an account of methods from
literature on ordinary differential equations, used in our study.

Equations with PCDA are similar in structures to those found in certain ” sequentially
continuous ” models of disease dynamics. Usually diseases are propagated by two main
methods of transmission, namely horizontal transmission and vertical transmission. When
an individual picks up the disease through some form of direct or indirect contact with
infected individuals, it is called horizontal form of transmission. The vertical transmission
is one in which the disease is passed on to a proportion of the offsprings of the infected

parents. Various types of models of vertically transmitted diseases are overviewed in [15,



29]. The analysis of certain models of these diseases which are propagated by invertebrated
vectors with generators are discussed in [11]. This article discusses a particular disease known
as the Rocky mountain fever. The organism that causes this disease is Ricketisia ricketsi
which is. transmitted to human or other large mammals via contact with infected ones. The

mathematical models obtained here is a special case of the general form,

'(t) = F(t,a), {t]<t<[t]+1, T = Pl

¢[i] G([t]am[t])’ [t] >2 N d)) = H.

whére z:[0,00) — IR™ , and z, is the past history function defined by ,

z4(s) = { g,(t o) z i[__tt_’ °

Here 2, € PC[0,00), F', G are functions from [0,00) x PC[0,00) — IR",
H € PC(—00,0] , where PC denotes piecewise continuous.

Equations of this type have continuous dynamics for intervals of the form ([t],[t] + 1) .
At intéger points these equations have a combination of discrete and continuous dynamics.

Such equations also arise in number of models of epidemics.

2.2 Linear differential equations with piecewise con-
stant deviating argument

In this section, we present a brief account of the work done on linear differential equation
with piecewise constant deviating argument (PCDA). We begin with one of the simplest
scalar initial value problem (IVP).

Consider the IVP,

2'(t) = ax(t) + apz([t]), 2(0) = c,. (2.1)

where @, aq, ¢, , are constants. ag # 0. [-] denotes greatest integer function. ¢ € I = [0, 00).

The solution of (2.1) is defined as follows:



Definition 2.2.1 : A solution of (2.1) on I, is a function z(t) that satisfies the conditions:
(1) z(t) is continuous on I.

(it) The derivative z'(t) exists at each point t € I, with the possible exception of the points

[t] € I, where one sided derivatives exist.
(iii) Equation (2.1) is satisfied on each interval [n,n + 1) C I with integral end points.

The following result due to Cooke and Wiener gives the method finding the solution of

the equation(2.1).

Theorem 2.2.1 The IVP (2.1) has on I, a unique solution
z(t) = m(t — [t])m"(1)eo (2.2)
where m(t) = 1 + a™'(e* — 1)(a + ao).

The following theorem established by Cooke and Wiener in [16] generalises the above

result.

Theorem 2.2.2 The scalar VP

(1) = az(t)+ aox([t]) + arz([t — 1]) (2.3)

r(—1) = c_1; z(0)=c,
has on I, a unique solution,
z(t) = e + a {aocy + arepy-1} (e — 1)

where



and A\, Ay are roots of the equation A% —bp) —b; = 0 with by = e* + a" ao(e® — 1);

and b =ala(e® —1).

The solution is obtained by employing the method of steps, by considering the equation (2.3)
on the unit interval [n,n + 1).

In ODE with a continuous vector field the solution exists to the right and the left of the
initial t-value. In general, this is not the case for the retarded functional DE.[33]
But the solution of the equation (2.1) as well as of the equation (2.3) can be extended back-
wards on (—o0,0]. This is achieved by considering the respective equations on the interval

{—n,—n +1) . We state the result concerning equation (2.1) as given in [16].

Theorem 2.2.3 If m(1) # 0, then the solution of (2.1) has a unique backward continuation

on (—o0,0] given by the formula (2.2).

Since the method of steps involves the unit interval with integral end points, one may
consider any initial point ¢y as integral point, and pose the IVP. The IVP (2.1) is posed at
initial point 0. But it is not necessary that any initial point ¢, be an integer. We can as well

posed the problem at non-integral point #o. This fact is established by the following result.

Theorem 2.2.4 Ifm(1l) # 0 and m(t—[t]) # 0, then the equation (2.1) with initial condition

z(to) = xo has on (—o00,00) a unique solution given by,
| 2(t) = m(t — [t])m el (Dym = (to — [to])zo (2.4)
where m(t) is as defined in (2.2).

Remark 2.2.1 (i) Ifa = 0 in equation (2.1), then the solution (2.2) becomes

z(t) = (1 +ao(t — [1]))(1 + ao)eo, € I

(i1) If ap = 0 in equation (2.1), then the solution (2.2) becomes x(t) = e*cy, as expected.

8



(iii) Ift = 0, then zo = co and solution (2.4) reduces to solution (2.2).

The IVP (2.1) is generalised in many directions. One such generalisation is obtained by.
increasing the number of delay terms, namely;

z'(t) = az(t)+ ) az([t—1i]), av #0

1=0
(i) = ¢, 1=0,1,2,..N,
The unique solution of this IVP is obtained by Cooke and Wiener in [16]. Here, the authors

also discuss extension to the problem (2.3), namely,

X'(t) = AX(1)+ AoX([1]) + A X([t — 1))

X(-1) = Ci; X(0) = Cy,

where A, Ag, A, are 1 X r matrices and X is r-vector. This IVP has a unique solution
provided the matrices A, e* — I, and A, are non singular.

In more general, the equation (2.1) can be studied on a Banach space. Here, there is a
need to modify the Definition 2.2.1 of the solution of equation (2.1) as per the one given by
Krein in [38]. Cooke and Wiener in [16] have established the existence and uniqueness of
solution as well as the exponential growth and backward continuation of the solution. The

same paper also discusses the scalar IVP,

z(t) = a(t)z(t)+ ao(t)x([t]) + ar(t)x([t — 1)),

2(0) = co; x(—1)=c

with continuous coefficients on I. A simple algorithm to compute the solution is given.
Shah and Wiener have studied the advanced differential equation with PCDA. All the
retarded equations seen above with deviating arguments [t — 1], ..., [t — N] being replaced by

the advanced arguments [t + 1], ..., [t + N]J respectively are considered by them in [61]. Here,



they deal with existence and uniqueness of solution of the IVP, its backward continuation,
growth and stability.

It is interesting to investigate the oscillatory behavior of the solution of the equation
(2.1) which is caused by the deviating argument and which is not seen in case of ordinary
differential equations[43]. It is well known that a solution is said to be oscillatory if it has

arbitrarily large zeros. The following result is due to Aftabizadeh and Wiener in [1].

Theorem 2.2.5 Consider the delay differential inequality
() + a(t)e(t) + p(t)e(]) < 0. (2.5)

where a(t) and p(t) are continuous on I. Assume that

n+41 t
Jim S'up[n p(t)e:cp(/n a(s)ds)dt > 1. (2.6)

Then the equation (2.5) has no eventually positive solution.

Under the same condition (2.6), Aftabizadeh and Wiener have established that the delay

differential inequality.
Z(8) + a(t)e(t) + pOa([) 2 0, tel

has no eventually negative solution. Hence,we get the following result proved in the same

article.

Corollary 2.2.1 Subject to condition (2.6), the delay differential equation
2'(1) + a(a(t) + p(t)a([H) = 0

has oscillatory solutions only.

When a(t) = a p(!) = p are constants, the condition (2.6) reduces to p > <%=, which

et 1)

is a sharp condition. Thus we have the following result from [1].

10



Theorem 2.2.6 If p<

a
ed.—

1, then the delay differential equation

a'(t) + ax(t) + pa(t]) =0 (2.7)

has no oscillatory solutions.

Remark 2.2.2 When p= , the only solution of the equation (2.7) is x(t) = 0.

a
et —1

Hence, we can conclude that p > 2% , is a necessary and sufficient condition for the

equation (2.7) to have oscillatory solutions only.

The following result on number of zeros is found in [1].

Theorem 2.2.7 If p> =%~ ,. Zhen any solution of the equation (2.7) has one and only

i

one zero in each unit interval (n, n+1).

Further in [1], Aftabizadeh and Wiener have discussed the oscillatory properties of the
linear advanced diflerential equation with deviating arguments and of differential equations
with several deviating arguments. In [4], Aftabizadeh, Wiener and Xu have studied the os-
cillatory and periodic solutions of delay differential equations with PCDA. Tlere,the equation

under consideration is.
a'(t) = a(t)x(t) + b(t)z([t — 1]) = 0, (2.8)

where a(t), b(t) are continuous functions on I. This paper deals with sufficient conditions
under which (2.8) has oscillatory solution. The authors claim that this condition is the 'best
possible’ in the sense that when a and b are constants the condition reduces to a necessary
and sufficient condition. The article also deals with the condition under which the oscillatory
solutions of equation (2.8) with a(t) = a, b(t) = b are periodic.

In {17] Cooke and Wiener have discussed an equation which is alternately of retarded

and advanced type, na,mcly}thc equation

(1) = aa(t) + aox(2( ). (2.9)

11



Here the argument deviation 7(t) = t — 2(21) is negative for 2n —1 <t < 2n
and positive for 2n <t < 2n+ 1 (n is an integer ). Equation (2.9) is of advanced type
on [2n,2n + 1) and of retarded type on (2n,2n + 1). The method of steps is employed
to obtain unique solution of the equation (2.9) on- I as well as its unique backward
continuation on (—o0,0]. Furthermoref:quation (2.9) with variable coefficients a(t), ao(t)
is examined, and the condition for existence of:'unique solution on I is determined and
conditions under which all solution are oscillatory are obtained. Oscillatory and periodic
properties for generalisations of (2.9) are discussed by Aftabizadeh and Wiener in [2].

In [34], Jayasree and Deo have developed some basic tools needed for the study of qual-
itative properties of solutions of equations involving PCDA. Let C(I) denote the space of
continuous functions mapping I = [0,00) into IR" . The norm of a n x n matrix

M = (M;;) is defined by |M| = maz; Y, |m;;|. Let E denotes the n x n identity matrix.

Consider the systems

X'ty = A@B)X(), (2.10)
Y'(t) = AQ@)Y(t)+ B(t)Y([t]), (2.11)
Z'(t) = A(t)2(t)+ B()Z([t) + C(1), (2.12)
for ¢ > 0, with initial conditions,
X(0) =Y(0) = Z(0) = C, (2.13)

and the assumption:
(H) A, B are n X n matrices with entries real valued continuous functions of t € I
C is a n column vector with entries real valued continuous functions for t € I,

z, Yy, z are n vectors and Cy is a real constant n column vector.

Let & be the fundamental matrix (FM) of (2.10), such that ®(0) = E, the identity

12



matrix. Then using the method of iteration, the solution of (2.11) and (2.13) is obtained in

[36] as follows.

Theorem 2.2.8 Let the assumption ( H ) hold. Then there exists a unique solution to_the

IVP (2.11) and (2.13) for t € I and it is given by

V(1) = lim{(,0)+ [ t B(t,t1) B(1)2((t1), 0)d
[ (1, 1) B(t)® (1), ) B(l2) (1), 0)dadty
+...+/0' /0[“].../0““"‘]@(t,tl)B(t,)Q([tl],zQ)B(tz)...
B(t2)®([tx], 0)dt...dt2dts }co.
This result is established by using Banach fixed point theorem. A closed form solution of

(2.11) and (2.13) is obtained in [16] by Cooke and Wiener. The following definition is of

importance to study the perturbation effects on (2.11).

Definition 2.2.2 The function

U(t) = {9t [f])+ /tQ(t,s)B(s)ds}

xH{@kk—lJr/ ®(k,s)B(s)ds},t € 1,
k=[t]

satisfying the matriz IVP, Y'(t) = A(t)Y(t) + B(t)Y([t]), Y(0) = E is called the FM

solution of the equation (2.11).

The method of variation of parameters (VP) is one of the important techniques in the study
of the qualitative properties of the solution. In particular, perturbation theory depends on

this method. The VP formula for the equation (2.12) obtained in {36] is given below.

Theorem 2.2.9 Let Y(t) be the solution of (2.11), (2.13). Let ® and ¥ be the FM s of

the equations (2.10) and (2.11) respectively. Then the unique solution of (2.12) and (2.13)

13



forte 1, is given by
‘ M

Z0) =Yt + 3. / U(t, k)®(k, $)C(s)ds
k=171

k

+ /[:] B(t, 5)C(s)ds

where

U(t,k) = U(t)-UN(k), k=0,1,2,..[t]te],

and Y(t) = Ut)Co, ®(t,s)=d(t) d(s).

The above theorem is obtained by considering the equation (2.11) as the basic equation.
One can take equation (2.10) as the basic equation and VP formula can be derived. This is

achieved in the next theorem [36].

Theorem 2.2.10 Let ® and V¥ be the FM’s of (2.10) and (2.11) respectively. Then
no ok
Z(n)=Y(n)+3 /k U(n, k)®(k, s)C(s)ds
k=17k"1

where n > 1 is an integer, and

n

U(n,k) = (k) + 3 / U(r — 1,k)®(n, s)B(s)ds, forn>k

r=k+1 r—1
U(n,k) = E; n=k, n=12,..[t].
In [60], Rong and Jialin has obtained the solution of the equation (2.12) using the theory
of difference equation, and has compared the behavior of the solution of equation (2.12) to

that of the corresponding difference equation.

Integral inequalities play a useful role in the study of the qualitative behavior of the
solutions of differential equations. Jayasree and Deo have established the Gronwall type

integral inequality in the following theorem in [36].

14



Theorem 2.2.11 Let ¢y be a constant and z, a, b€ [I,IRY].
If the inequality

)<t [ “a(s)a(s) + b(s)z([s])ds, L € I

holds, then for t € 1

¢} k k k
2(t) < cO~I£II{e.’L'p( /k_l a(r)dr) + /k_l e:tp.( / a(r)dr)b(s)ds)

xtean( [ a(r)dr) + [ exp( [ a(r)dr)b(s)ds} (2.14)
exr a(r)dr ez a(r)dr)b(s)ds .

P B () o :
Remark 2.2.3 The right hand side of the inequality (2.14) is in fact a solution of the related
IVP, 2'(t) = a(t)z(t) + b(t)z([t]), z(0) = co .
We need the following definitions given in [36].

" Definition 2.2.3 For n x n mairiz B = (bij), define the matriz measure p of B by

w(B) = maz;(b; + X, |bi]).

Definition 2.2.4 A solution Y(t) = (y1(),...,ya(t)) of the system (2.11)
existing for t € I is said to be oscillatory if atleast one of its components has arbitrarily

large zeros for t > T, 0 < T < oo.

. The following result on oscillatory property is taken from [36].

Theorem 2.2.12 Let u(-) denote the matriz measure. Assume that the matrices A(t)

~and B(t) in (2.11) are such that

lim  sup /:H —u(B(s)) eatp(/ms —u(A(r))dr ) ds > 1.

m—+0o0
then every solution of (2.11) is oscillatory.
Aftabizadeh and Wiener [5] have discussed the oscillatory and periodic solutions for a system
of two equations with PCDA.

15



Further in [36], Jayasree and Deo have explored scalar retarded equations with two types

of delays namely (¢t — 7) and {t] . The equations involved are

a'(t) = ax(t)+bx(t —71)
y'(t) = ay(t) +by(t — )+ cy([t]) (2.15)

Z(t) = az(t)+bz(t — 1) + cz([t]) + f(2)- (2.16)
where 7> 0, t > 0 with initial functions,
a(t) = y(t) = z(t) = (1), —7 <t <0.

The existence and uniqueness of the solutions of the equations (2.15) and (2.16) have been

proved. In [36], Jayasree has obtained similar results for the equation

2'(1) = ax(l)+bL(x(t +0))
y'(t) = ay(t)+bL(y(t +0)) + cy([t])

(1) = az(t) +bL(x(t +6)) + c=([t]) + F(0).

with initial conditions a(t) = y(l) = z({) = ¢{t), —71 <t <0,

where L is a linear operator mapping C([—7,0], IR] — IR for which t > 0, a ,b,c,
are real constants, ¢ is a continuous real valued function defined on [—7,0] , 7 being a
constant and f is continuous function on 1.

The differential equations in Banach space with PCDA are considered by Wiener in
[64]. The existence and uniqueness of solut‘ion of IVP posed at t = 0 is established for
equations with bounded as well as unbounded operators. The properties of solutions of
equations with bounded operators are similar to those of solutions of systems of ordinary
differential equations which can be viewed as equations in a finite dimensional space. This
article also discusses some results on the asymptotic behavior of the solutions and equations

with unbounded delay in case of several argument deviations.
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A linear system of differential equations with PCDA [t + 1] is studied for oscillations

by Wiener and Cooke in [66]. The existence of a solution is obtained for the equations,
, 1
a'(t) = Az(t) + Bx([t + 5]), z(0) = ¢,

and
z'(t) = Az(t) + Bz([t + %]) + f(t), x(O) =0,

where A, B are constant matrices of appropriate order and f is a locally integrable vector

function. This work also contains the following result.

Theorem 2.2.13 The problem z'(t) = Az(t) + Bzx([t]) + f(t), =(0) =co
has on I a unique solution

(1) I
ot) = M(t—[t) Mo+ ) M7 [~ AU f(s)}

-

t
+ /ea(t_s)f(.s)ds,
el

if the matrices A and M are non singular and f(t) is locally integrable. This solution has

a unique backward continuation on (—o0,0] given by

—[t] o

o(t) = M) Mo+ Y M [ A fa))

t
a(t—s) p d
+ /[t]e f(s)ds.

where M(t) = et 4+ (e = [N)A™'B, and M, = M(1)

Further in [66] ,?)u.:scillatory and periodic properties of the solutions are discussed in terms of
the eigen values of a certain matrix associated with the system.

Delay differential equations are related to some discrete differential equations arising in
Numerical analysis. Gyori [32] has established some approximating results for the solution

of delay differential equations via differential equations with PCDA.
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Theorem 2.3.2 Assume that z'(t) = f(z,n), where f € C[R?], satisfies the existence
and uniqueness conditions in TR? and it’s solution can be extended over the interval I.

Then on I, there exisis a unique solution of (2.18).
Further Aftabizadeh and Wiener have proved the following result.

Theorem 2.3.3 If f(z,u). is continuous in R?, and the solutions of the equation

@'(t) = f(x,pn), can be extended over I, then the problem (2.18) has a solution on 1.

In the process of investigating (2.17), Aftabizadeh and Wiener have proved the existence
of maximal and minimal solutions by using the well known Monotone iterative method. In
order to establish this the upper and lower solutions of (2.17) are defined and the fundamental

result concerning the upper and lower solutions is proved.
Theorem 2.3.4 Consider the differential inequalities

W(t) < (), u(it)

V() = ft,o(),([H]), t>0,

where, f € C[ I x R x R , R |.Suppose f(t,z,y) is nondecreasing in y for each
(t,z) € I xR and. |

f(t,z,y)— f(t,z,y) < L(x — z) , wheneverxz > z .
Then w(0) <wv(0) = u(l) <o), forall 1>0.

Further in [3], the anthors have prove the existence of the solution of the equation (2.18)

on the closed set. @ ={(z,y):u(t)<z,y<v({),t>0}.

Theorem 2.3.5 Let w(t) and v(t) be the lower and the upper solution of (2.18) such that
w(t) <wv(t) on I and f € C(N). Assume that 2'(t) = f(x,p), salisfies the existence
conditions on . Then there ezists a solution x(t) of (2.18) such that u(t) < z(t) < wv(t)

on I.
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The following Lemma is of vital importance for monotone iterative method and has been

proved in [3].

Lemma 2.3.1 Suppose that = € C[ I,R], and the deriwative «'(t) exists at each point
t € I, with the possible exception of the points [t} € I , where one sided derivatives ewist.
Assume that.

a'(t) < Ma(t) + Naz([t]), x(0) <0,
where M and N are conslants such that

-M aM
N > me , 0<a< 1.

Then «(t) <0 on 1.

The well known monotone iterative method proves the existence of minimal and maximal
solutions of the equation (2.17) through the construction of monotone sequences of solutions

of the corresponding linear delay differential equation. We state the result proved in [3].

Theorem 2.3.6 Let u(t) and v(t) be lower and upper solutions of the equation (2.17)

such that u(t) < o(t) on I. Suppose thal

f(tawlvyl)—f(taw%y?) Z M('Ll —:1,'2) + N("EQ_yQ)a t 201
Jor u(l) S a(l) <a(t) <o(l) , u(l) <ya(l) L yall) Lofl)
M

and IVZZJT——G

] , foreach0 <a<l.

Then there exists monolone sequences {un(l) Yand {v, (1) } with ue(t) = u(l), vo(l) = v(l)
such that un(l) — a(t), ve(t) = B(t) asm — 0o monotonically on I, and «oft) , B(t)

wre mandmal and macimal solulions of the equalion (2.17) respectively.
In the proof of the above theorem, the linear delay differential equation constructed is

(1) = f@t,n(0),n([1)) + M{=z() —a()} + N{=({t]) — n({2])}
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where n(t) € C[I,IR] is such that w(l) < n(t) < wv(l). The solution of this equation can
be obtained by using scalar form of Theorem 2.2.13, which has been pro;ed in (3].

In [34), Jayasree has defined the maximal and the minimal solution of (2.17) and has
proved their existence under the hypothesis of Theorem 2.3.1. The following compariéon

theorem has been established.

Theorem 2.3.7 Lel (1) be the maximal solution of (2.17) on the inlerval [0,a), « > 0.
Let m € C[I,R], m(0) < »(0), and if w/(t) < f(t,m(t),m([t])), t € I, then m(t) <

r(l), L€ 1.
A useful result to study stability and boundedness property is established in [34].

Theorem 2.3.8 Lel ®(1) be the fundamental solulion of @'(1) = a(l)x(l) salisfying

®(0) =1 and ¥(t) be the fundamental solution of y'(t) = a(t)y(t) + b(t)y([t])

satisfying V(0) = 1. Lel |¥(1)] < y(l), where y(1) is a posilive real valued funclion defined
on [

and lel (0) = o . Also suppose thal lhe funclion [(1,2(1)) : I x R — IR salisfies the

nequalities.

|1 (k)B(k, ) f(s, 2(s))| < W(s, ';8’ Ijii: 3'), k—1<s<k, k=12,

and

- 2(s)] |=({e])]
|®(2, 8) f(s, 2(3))| < ()W (s, —=, ), k=[] <s <t
where W (L,r(L),r([l])) s monolone increasing funclion in second and third vaviable.

Let v(1,0,19) be a solution of (L) =W (L, r(L),r([t]), »(0) =10 .

Then the solution 2(1,0,20) of lhe equalion

2'(t) = a(t)z(t) + b(t)=([t]) + f(¢, 2())
satisfies |2(t,0,w0)] < y(O)r(t), t € I, if z(t,0,20) is such that |xo| < yoro.

»’)l
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In [37] , Jayasree and Deo have discussed the nonlinear variation of parameters formula

to obtain the solution of the equation

2'(1) = [t z(1)) + g(=([t])) + () (2.19)

in terms of the solution of the equations

2'(t) = f(t,2(1))
and /() = f(t,y(t)) + g(y([t]) ‘ (2.20)

with initial conditions

;1;([0) = y(lo) = Z(lo) = &g, Lo & ]R

Here [ : [lo,00) X IR — IR, ¢: [lg,00) = IR , are conlinuous functions and ¢ is a piecewise

continuous function on [tg,00). The following two lemmas are of vital importance.

Lemma 2.3.2 Let g(y([t])) be a piecewise continuwous function defined on R and let
3%;’( [tt]]) exists and be piecewise continuous on IR . Then

o)~ ston(1)) = ( [ 2D EC 0Dy 1) ) e 1

Lemma 2.3.3 Assume that [ € Cl[to,00) x R,IR], ¢ be a piece wise continuous function

on IR and f,g possess partial derivatives Qﬁg_y(m nd 2wl
Yy

ay({])
Denote Hi(t,to, o) = —ﬂfr_,—;’gm and Hy([t], to, To) = %%[%D .
Then W(t, tg,0) = O—y%;‘:)—x‘ll exists and is the solution of the variational equation,
Z/(t) = I‘]-l(i,to, :l’.())Z(t) -+ Hg([t], to,ﬂ?o)Z([t]) (222)

such that Y(ty,to,x0) = L.
The variational equation (2.22) stated above is linear, and is used Lo oblain the nonlinear
variation of parameters formula following Alekseev’s method [55].
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Theorem 2.3.9 Lel y(l,lo,x0) be the unique solulior of (2.20),(2.21); ®(L, Lo, x0) be the
solution of the variational equation (2.22) with Hy =0 and ¥(t,to,20) be the solution of
the cqualion (2.22) caisling for | > 0. Then there evisls « unique solulion z(L) for (2. 19)
(2.21) given by

Zo, | L € [0, o).
y(t, to, o) + Sy, B(t, 5, 2(s))c(s)ds, t € [to, 1),
z(t,t0, T0) = y(t,to, xo) + [y U(t, 1,y(1))®(1, s, 2(s))c(s)ds (2.23)

+ iLy S Ut b,y (k) (K, 5, 2(s))e(s) ds

+fg ®(L, 5, 2(s))c(s)ds, t> 1.
The equation (2.23) is obtained on each unit interval, by employing Alekseev’s formula for

the corresponding equation.

Remark 2.3.1 (i) If to =0, then (2.23) takes the form,

(4]
z(t,0,z0) = y(t,0,29) + Z/ (t,k,y(k))®(k,s,2(s))c(s)ds

+ / (t,8,2(s))c(s)ds.
t

(i) If [(L,z(1)) = a()z(l) and g(z({t]) = b(1)z({1]); a(t), b(L), are conlinvous funclions
then (2.23) takes the form ,

(0
#(4,0,20) = y(t,0,0) +Z/ U(t, k)B(k, s)e(s)ds

+ /[t] O(t,s)c(s)ds

which s given by Theorem 2.2.9 .

(iii) 1f g = 0, then (2.23) gives Alekseev’s formula.
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A further generalisation of (2.23) is also established in [34] which is extension of Ladde’s
result for ordinary diflerential cquation [40].
In [64], Wiener has discussed nonlinear differential equation with PCDA i Banach spaces.

Here the equation,
z'(t) = AQ)x(t) + f(¢, =(t = [4]), = (t — 2[t]), ...x(t = N[t]))

has been investigated. As a special case following result is obtained, which is an extension

of the resulls in Theorems 2.3.1, 2.3.2, and 2.3.3.

Theorem 2.3.10 If f(z,)) € C(IR?) is different from zero everywhere and the solution of
the equation z'(t) = f(x,A) can be extended over I, then the problem

2'(t) = f(z(t),z([t])), (0) =co, 0<1< 0. (2.24)
has a unique solution. If f(co,c0) = 0 and [ f~'(z,c0)dx diverges as & — oo, then

& = ¢o s the unique solulion of the equalion (2.24). If this inlegral converges , then equalion

(2.24) has more than one solution.
In [16], Cooke and Wiener have discussed the scalar equalion,

Z(1) = F(a(t), 2(1]), w(lt - 1])), (0) = o, 2(1) = x, t € I.
The existence of unique solution is obtained by assuming the existence of .* - solution of the
eorresponding differential equation with parameters.

Gyori and Ladas [31] have studied a nonlinear equation,

=1
for oscillations of the solutions. The necessary and sullicient conditions are oblained in terms
of the solutions of the associated linear equation with PCDA. In [60] Rong and Jialin have
studied the periodic solutions of the equation
a'(t) = A()a(t) + B(t)=([t]) + g(t, (1), B([1]))
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in a Banach space of almost periodic functions.

2.4 Results from ordinary differential equations

In this section we present the summary of the existing results on the first order nonlinear
ordinary diffcrential equation, and relevant to the study undertaken. First we shall discuss
the methods used to establish the existence of the solution.

Consider the IVP
2'(t) = f(t,z(t), 2(0)=a9 t€J:0<L<T, T> O; (2.25)

where f € C[J x IR, IR]. 1t is well known that, if we assume the Lipschitz condition,
then there is a unique solution for the IVP. The theory has been developed further by drop-
ping Lipschitz condition at the cost of uniqueness property. This leads to the concepts of
maximal solution, minimal solution, upper solution and lower solution. These solutions play
important role in the development of the theory. The method of upper and lower solution
yields existence of solutions in a closed set and give rise to the famous Comparison principle.

~ We shall give two important methods of establishing the existence of the solution of the IVP

(I) MONOTONE ITERATIVE TECHNIQUE.

Monotone iterative technique ( MIT ) is a constructive method for establishing the exis-
tence of extremal solutions. This method yields monotone sequences converging to solution
of (2.25). These scquences are such that each member of these sequences is a solution of
a certain lincar differential equation. Since these solutions can be computed , the method
provides numerical procedure for the computation of solutions. This fact makes MIT advan-
tageous and important. Furthermore MIT can be used to obtain two sided pointwise bounds

on the solutions. These bounds are useful in studying qualitative and quantitalive behavior

o
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of the solutions. We state the theorem on MIT and proof can be seen in [42).

Theorem 2.4.1 Let f € C[J x R, R}, uo,vo be lower and upper solutions of (2.25) such
that uwo <wg on J . Furlher suppose thal

(A): ft,2) = ft,y) > —M(z—y) for uo<y<az<vy and M >0.

Then there exils monolone sequences {un} , {vn } such that

Uy U and v, = v as 1 —> 00 unifo'r'mly and:monotonically ondJ. wand v are minimal

and magimal solulion of (2.25), respeclively.

Remark 2.4.1 If we M =0 in condition (A), then it is clear that f is monotone non-
decreasing. We can prove the result similarly by assuming f to be monotone nonincreasing

instead of condition (A).

MIT has been applied to [unctional differential equatious [41] as well as periodic BVP
[46).

(IT) METHOD OF QUASILINEARISATION

The method of quasilinearisation is a well established technique used to obtain approx-
nnate solutions to nonlinear differential equations. The nethod was developed by Bellinan

and Kalaba.[8, 10]. If we assume that:
(A1) : J(tya(t)) is uniformly convex inx for 0 <1 < T,

Then the method of quasilinearisation gives a monotonic increasing sequence of approximate
solutions converging uniformly to the solution of (2.25). The sequence provides good lower
bounds for the solution.It is to be noted that this convergence is quadratic in the following

scnsc.

Definition 2.4.1 For « € C[J] , let ||| = Sup{«(l) : | € J}, and suppose lhal wy, is

an approzimate solution of (2.25),and v is a solution of (2.25). Then the sequence {w,}
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converges to x quadralically if there exisls A > 0 such that
2z — wall < A+ |2 — wao ||
One can prove the dual result giving upper bounds under the assumption :
(A2): f(t,z(1)) is uniformly concave inz for 0 <t < 7T

In the last decade, the method of quasilincarisation has attracted much attention. It
has been generalised and extended using the less restrictive assumptions on the function
f so that the method can be applied to solve a larger class of problems. In what follows
throughout the section, let Q = {({,z) : u(t) < 2(t) < v(t), t € J}. where u(t), v(t), z(t)
are lower solution, upper solution and solution of (2.25) respectively. We state the result

from due to Lakshmikantham and Malek [47].

Theorem 2.4.2 : Assume that u,v € C'[J,IR] are lower and upper solutions of (2.25) such
that u(t) <wv(t) on J; and
(A3): fe, fox  caist, and are continuous and satisfy
See(t, @) +2M >0, M >0, for(t,z) € J xR.
Then there exists a monolone sequence {w, (1)} which converges uniformly to the solution

z(t) of the equation (2.25) and the convergence is quadratic.

Remark 2.4.2 (i) In (A3) :, the requirement is that, the function f(t,z) + Ma? should be
convex for some M > 0. '

(11) When M = 0, v(t) = x(t), which is ussumed to ezxists on J and

u(t) = wo , any constant that salisfies f(t,wo) > 0, the above result reduces to the method

of quasilincarisation .

In {48] , the method has been extended to show that the monotone sequences can be

constructed to obtain lower and upper bounds simultaneously as well as the quadratic con-

vergence by decomposing the function [ into a difference of two convex or concave functions.

27



However the drawback of this extension is that the elements of the sequences are not the
solutions of some lincar problems. The proof requires an extra condition and is not decisive.

The paper [51] by Lakshmikantham and Koksal has discussed the problem of obtaining
a lower approximations which converges quadratically to the unique solution of (2.25) by

decomposing [ into a sum of convex and Lipschitzian functions. This is established in the

following theorem.

Theorem 2.4.3 :Assume that u,v € C'[J,R] are lower and upper solutions of (2.25) such

that u(t) <wv(t) on J; and

(A4) : J €C[Q,R] admils a decomposition [ = fi+ fa, fi is uniformly convez in z
for t € J and f5. is Lipschitzian in x .

Then there exisls a monotone sequence {wy(1)} which converges uniformly to the solution

z(t) of the equation (2.25) and the convergence is quadratic.

Remark 2.4.3 :

(i) If f» =0 then , the above theorem reduces to melhod of quasilinearisation.

(i) If fy is not Lipschilzian, then we can still prove the convergence of the sequence {w,(1)}
to the minimal solution, However, the convergence in this case is not quadralic, but weakly

quadratic in the following sense.

Definition 2.4.2 We say that the sequence {w,} converges to w weakly quadratically, if

there exist positive constants Ay, Ag, and Az, such that
r_)tleajx lw(t) — w, ()] < Mi{A2s+ A5 ngg}x [z (t) — wp |2}
Remark 2.4.4 [f the assumption (A4) in the above theorem is replaced by,
(A5): [ €C[QR)] admits a decomposition [ = fi + fo, fi s uniformly conver in z
for 1 € J and [, is continuous in x on £},

then there exists a monotone sequence {wy(1)} which converges to the minimal solution «

of the equation (2.25) and the convergence is weakly quadratic.
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In [52], Lakshmikantham el al has revisited the problem discussed in [48]. Tt is shown that
when the function f is decomposed into the difference of two concave or convex functions,
different results can be obtain with same conclusions. They have used a special approach
to obtail_l the elements of the monotone sequences as the solutions of some linear differential
equations. Coupled lower and upper solutions are used for thiz purpose. This method has
been improved in [53]. The new method involves first obtaining both lower and upper bounds
for the solution in terms of monotone iterates which are ti]e solutions of simpler nonlinear
equations. Then the properties of the auxiliary functions in the nonﬁuear equations are
used to adopt an improved procedure which will lead to solutions of some linear differential
equations.

In [54], Lakshrnikantham has succeeded in avoiding the multistage process obtained in
[53] and develop a simple algorithm that provides directly the monotone sequences that are

the solutions of linear differential equations. We state this result in the following theorem.
Theorem 2.4.4 Assume that.

(H1) wug, vo € C'[J,R], are such that vy < f(t,uo))v{J > f(t,vo)
and up(t) < w(t), t € J.
(H2) f,¢€C™?[0,R], feult,z) + ¢ue(t,z) >0 on Q, and
boo(t,z) > 0 on Qy where Oy = {(t,2) : uo(t) < x(t) <wo(t), t € J}.

Then there exist monotone sequences {u,(t)}, {va(t)} which converge uniformly to the unique

solution z(t) of the equation (2.25) and the convergence is quadratic.

Remark 2.4.5 The simple approach oblained in the above result can also be applied in all

the previous situations which are also possible to deduce as special cases of this resull.

Lakshmikantham and Shahzad [49] have also extended the generalised quasilinearisation

method decomposing the function f into two functions F' and G such that F' + 4 is concave
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and G'+ ¢ is convex for some concave function ¥ and convex function ¢. The condition (H2)
in the above theorem is to be replaced by the following, the remaining part of the statement

being unchanged.

(H3) f € C[Q,1R], [ admits a decomposition [ = F + G,where I, Gi, Fis,
Gz exit and are continuous satisfying Fy.(t,2) + ¥z(t,2) <0 and
Go(ty2) + ¢oe(t,2) >0 on Ql, where 9, ¢ € C[Q), IR)],

b2(t, @), Yu(l, @), bua(t, )y Yuu(t, @) bua(t,z) <0, ¢uy(t,z) > 0o0n Q.

In the last decade, the method of quasilinearisation and its generalisations are extended
to different types of equations. Deo and Sivasundaram [24] has extended the method to
functional differential equation, z'(t) = f(¢,x:) where 2, = z(t+s), -1 <s<0, t e J.
Here the convergence of the monotone sequences is superlinear. Deo and Knoll have ex-
tended the method and its generalisatious to integro-differential equations [21, 22, 23]. The
application of Taylor’s theorem to formulate the related linear equations helps in obtaining
the convergence of the iterates of the order k > 2. Lakshmikantham and Neito have applied
the method for first order periodic boundary value problem [50]. Stutson and Vatsala [60]
have extended the method with f being sum of a nonconvex function, a nonconcave function
and a Lipschitz function and have obtain quadratic convergence. A numerical example in

support of the resull is given.

Finally, we give a brief account of results on control theory. Control theory is relatively
a new branch of mathematics developed in th 20th century. It analyses the behaviour of a
given system under specified circumstances. The basic results on controllability of a linear

system can be found in [6, 7, 14, 57].
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Consider the linear system,
2(t) = A(t)z(t) + Bt)u(t), z(lo) = . (2.26)
where A isn X n, and B isn X m continuous matrices.

Definition 2.4.3 The system (2.26) is said to be completely controllable (c.c.) if for any
to, any initial state x(ly) = xy and any given final state x5 there exisls a finile time t; > 1o

and a control u(t),lo <t <y, such that z(t;) = ;.

We state the necessary and sufficient condition for the c.c. of the system (2.26) as given in
[6].

Theorem 2.4.5 The system (2.26) is c.c. if and only if the n x n symmetric controllability
malriz,

Ultorts) = | Y ®(1o, ) B(r) BT ()07 (1o, 7)dr.

to

where ® denotes the fundamental matriz solution of z'(1) = A(t)z(t) and T denoles trans-

pose, is nonsingular. In this case the control function is given by,
u(t) = =BT ()07 (Lo, YU (Lo, t;){z0 — ®(to, Lf)2 s},
defined on to <t <y, transfers w(ly) = xo lo z(ly) = zy.

Yamamoto in [68], has established sullicient condition for the controllability of the non-
linear system. Schauder’s fixed point theorem is used to obtain the result. Some comparison
theorems are proved which give conditions for the existence of a set satisfying the conditions

of the main result.
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Chapter 3

FIRST ORDER NONLINEAR
DIFFERENTIAL EQUATIONS

3.1 Introduction

In this chapter, we undertake the study of the first order nonlinear differential equations with
piecewise constant deviating argument (PCDA). The aim of this study is to develop some
basic results useful for further investigation of the equations with PCDA with respect to the
propertics of its solution. This work continues the one done by Aftabizadeh [1-5], Cooke
[15-19], Jayasree [34-37], Wiener[64-67] and others. Sectionwise contents of the chapter are
as follows.

Section 2 deals with the preliminaries and notations. The concepts of solution, upper
solution, and lower solution are defined. Two lemmas required for the further study are
established. These are the simple extensions of the one found in the theory of ordinary
differential equations.

In section 3, we establish the existence and uniqueness of the solution of the first order
nonlincar diflerential equation with PCDA. This has been achieved by using the method
of quasilinearisation, under two different conditions. In both the cases the convergence of
the sequences is quadratic. In the first case, we have used a condition which reduces to

convexity condition. In the second case, the method gives an algorithmic approach which
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and

directly yields the construction of monotone sequences.

Section 4 is on inequalities related to eqﬁations with PCDA. First we have extended the
Gronwall type inequality established by Jayasree and Deo. This is followed by inequalities
estimating the solutions of two different equations with PCDA.

Section 5 deals with the investigation of the nonlinear periodic boundary value problem.
The basic concepts are defined and the method of quasilinearisation is employed to obtain the
existence of a solution. The necessary preliminary resulis ahd the solution of the associated
linear boundary value problem are obtained.

Finally, in section 6, the oscillatory behaviour of a particular first order nonlinear differ-

ential equation with PCDA is discussed. The existence of solution of this equation is also

established.

3.2 Notations and Preliminaries

In this section we introduce the notations, concepts and prove some bhasic results required

for the further studies.

Consider the initial value problem (IVP),

#(t) = f(t, z(t), =([t])), 2(0) = o, (3.1)

wheret € J = (0,T],7'> 0. [ €C[Jx IR x IR, IR], [-] is the grcatest integer function,
xg € IR is a constanl. Equation (3.1) is a piecewise constant delay differential equation
because of the presence of the term x([t])j [see, 64],

We need to define a solution of the IVP (3.1).

Definition 3.2.1 A solulion of (3.1) on J is a function z:J — IR that

satisfies the conditions :
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(i) z(t) is continuous on J,

i) the derivative 2'(1) eaists al each point 1 € J, with the ossible exception of the points
P p p

[t} € J, where one sided derivatives exist,
(iti) equation (3.1) is satisfied on cach interval J, = [n,n + 1) with integral end points.
We define an upper solution and a lower solution for the 1IVP (3.1).

Definition 3.2.2 A continuous function v : J — IR is said lo be an upper solution of
(8.1), if the derivative v'(1) exists al cach point t € J, with the possible exception of the

points [t] € J, where one sided derivatives exist, and

v'(t) 2 f(t,v(t), v([t])), v(0) 2 zo.
1t is said to be a lower solulion if the reverse | inequalilies hold.

The following result is an extension of the lemma in [45] and is required for our further

discussion.

Lemma 3.2.1 Let f(t,z,y) € C[J x A x Q, R}, Q is an open interval in R. Lel the partial

derivalives [z, f, bolh exist and are continuous for t € J. Then
_ 1
(Z) f(t,.’l?z,y) - f(tvmlay) = /0 [fl‘(t3 sy + (] - S)JTI,y)](J?z - iL'l)dS.

(10) f(t, 2, y2) — [z, 0n) = /Ol[fy(t, z, 3Yy2 + (1 — s)y))(y2 — y1)ds.

Proof :(i) Let F(s)= f({,sa22+ (1 —8)z1,y), 0<s< 1.
Then I'(0) = f(t,21,y); F(1)= f(t,x9,y), and % = fu{t, 822+ (1 — 8)z1,y) - (22 — 1) .

Then on integration from 0 to 1, we get.

F(1)— F(0)= -{fol f=(t,sz9+ (1 — s)x1,y)ds }(z2 — 21)
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This implies
‘ 1
S a,y) = f(Lm,y) = {/0 fo(t,s20 + (1 — 8)ay, y)ds} (w2 — ).
(i) Let G(s) = f(t,z,sy2+ (1 —s)y), 0<s< 1.
Then G(0) = f(t,@,51) ; G(1) = f(t,z,y2), and G = f(t, 2,592+ (1 = s)y) - (y2 — 1) -

Then Therefore on integrating from 0 to 1, we get,
. :
G(1) = G(O) = { [ fyltsz,sya+ (1 = sh)ds}ya — v1)

This implies,
: 1
f(tama:‘h) - f(taxayl) = {/0 fy(ta T,5Y2 + (1 - S)yl)ds}(:‘h - yl)
We now establish an important result concerning upper and lower solutions.

Lemma 3.2.2 Let u, v be lower and upper solutions of (3. ,I)J respectively, such thal
W(1) < f(t, u(t), u([t])
v'(t) > f(t, (1), v([t])),
u(0) < 29 < v(0), where f € C[J x R x R, IR]. Suppose that f(t,z,y) is nondecreasing in y
for (t,x) € J x R and satisfy the condition
flxnu) = f(t22,y2) < L@ — @2) + (y1 — UZ)], (3.2)
whencver xy > T,y > yo and L > 0 is a constant. Then u(t) < v(t), for all t € J.

Proof : Let { € [n.n+1), and u,(t) , v,(t) denote the lower and upper solution respectively

on the unit interval [n,n +1).

We show that u,(n) <wva(n), n=0,1,2,... = u,(t) < va(t), for ¢t € [n,n+1).
Let us first suppose that

up(t) < S un(t), un(n))

() > [t va(t),va(n)), t € [n,n+1).
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and wu,(n) < v,(n). We have to show that u,(t) < vn(t) on [n,n+1). If not , then there
exists 1, € (n,n + 1) such that w,(1,) = va(tn) and w,(1) <wvu(t), V t € [n,1,).
For small h <0, u,(ln +h) — un(tn) < vn(ln + h) — va(tn).

This gives )
Un(ln + h) —un(tn)  valtn + h) —va(tn)
h ” h ’

and hence , we get ! (t,) > v}(tn),  -From this we conclude that

f(tun(tn), un(n)) > f(t,va(tn), vn(n)) .

Since Up(n) < wvp(n) and  u,(tn) = va(t,) , the above inequality contradicts the

nondecreasing property of f. Hence un(t) < va(t) on [n,n+1).

Next, define pa(t) = va(t)+¢- et € [n,n+1), and € >0 is sufficiently small.

Then p,(t) > va(t) , t € [nyn+1). Therclore, using (3.2), we get,

St pa(1), pa(n)) = [(2,0n(2),0n(n)) < L{(pn(t) — va(t)) + (pa(n) — va(n))}

— L{c.eth +6-62Ln}'

This yields, f(t,pa(t), () < L+ ¢+ {2 + &7} 1 f(1,0a(2), n(m).
Hence using definition of p,(1) , we get,
P = uh(t) + 2eLe?

> f(t,v.(t),va(n)) + 2 Le*.

> Lty palt), pa(n)) — Le(e?™ + €27) + 2c LM

= f{l,pa(l), pa(n)) + Le(e*™ — €*) | t € [n,n + 1).

> f(t, pn(t), pa(n))-
Also , ul (1) < f(t,un(l),up(n)) and un(n) < pa(n), t € [n,n+1).

Hence,it follows that (1) < pa(t), Vt € [n,n+1).

Let ¢ — 0. Then we get, un(t) <wv,(t), VU € [nyn+1), n=0,1,...
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‘and tis L‘—cmple)res the \0700{..

The next result is an extension of Gronwall’s integral inequality for equation with PCDA.

Its proof can be found in [34].

Lemma 3.2.3 Let ¢o > 0 be a constant, and u,a,b € C[J,R*].
If
t
w(t) < co+ ]0 [a(s)u(s) + b(s)u([s])}ds, ¢ € J
holds, then for t € J,

[t k k k
w(t) < ¢o klzll{e:cp(fk 1 a(r)dr) + /k_l e:z:p(/s a(r)dr)b(s)ds}

x{exp(/[t t] a(r)dr + [t; exp( /[t t] a(r)dr)b(s)ds}.

In particular, when a(t) = a, and b(t) = b, t € J are constant functions, then

b b b b
N < ed(1 4 et — g 4 2yeet-t) _ Oy
u(t) < col(1+ 2)er = 20Y(1+ 2)e |

a

3.3 Method of Quasilinearisation

In this section, the well-known method of quasilinearisation is extended to differential equa-
. tions with PCDA. The technique involves the application of lower and uppex; solution and
differential inequalitics. The upper and lower sequences converge to the unique solution
quadratically. The quasilinearisation method involves constructions of monotone sequences
of approximate solutions to linear differential equations. The concept of lower and upper
solutions and related differential inequalities are used in getting the desired results under
the relaxed conditions.

In the following theorem, we assume the convexity type condition on f, and obtain the

desired result.
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Theorem 3.3.1 Assume thal

(k1) wg,vo € C[J,R] are lower and upper solutions of (3.1) respectively such that

uo(t) < wvo(t) on J;

(h2) Let @ = {(t,z,y) :uo < 2 <, ug Ly L vy, t € J} and
f € C[Q,1R] such that f,, f,, exist and are continuous on ;

(h3) fu(t,x,y) and fy(t,z,y) are increasing in y for fized t,x,on

(h4) For each > y

f2(0),2([1)) =2 &y, y([t)) + f=(t,u(2), y(ED)((2) — y(1))

+£, (6 y(0), y([ED) (= ([4]) — w([t]), (3.3)

Jor (t,x,y) € Q. Then there exist monotone sequences {uk(t)‘}, {ur(1)}, with B sV H),

which converge uniformly to the unique solution z(t) of (3.1), fort € J.

Proof : Let u;(t) and v(t) be the solutions of the related linear differential equations with
PCDA.
ull(t) = f(t’uo(t)7 UO([t])) + faf(tth(t), uO([t]))(ul(t) —_uO(t‘))
+/y(4 wo(t), wol [t (wa([t]) — wo([t]), wa(0) = wo. (3-4)

and

vi(t) = J(t,00(t), vo([t]) + fu(t, vo(t), vo([e]))(wa(t) — volt))
+ (L vo(), vo([1]))(vs ([2]) = wo([1])), ©2(0) = o, (3.5)

such that uo(0) < xq < vy(0), where ug and vy are as defined in (h1).

We first prove that

uo(t) < uy(t) < vi(t) < wvolt), for allt € J. (3.6)
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Let p(l) = ug(t) — uy(t). Clearly p(0) <0. We have,

P) = u(l) —u(t)
< T o), wo([t])) — S (2, wo(t), wo([t])) — Ja(t, wo(t), wo( [t (a(2) — wo(t))
—fy(t,u0(t), wo([t]) (wa([2]) — wo([2]))
= Ja(t, uo(t), wo([t]))p(t) + Jy(t, uo(t), uo([t]))p([t]),

Therefore, we can treat p(t) as a lower solution of

2'(t) = fa(t, uo(t), uo([t]))2(t) + fy(t, uo(t), uo([t]))2([1]), 2(0) = 0. (3.7)
Further p(t) = 0 can be treated as the upper solution of the equation (3.7)
Therefore, |
0 = p(t) = folt,uo(t), wo([N)A(L) + fy(L, uo(t), uo([11))p([t])
p0) = 0
Hence applying the special case of Lemma 3.2.2, we get p(t) < 0, for all £ > 0,
which yields wo(t) < wy (1) on J.
Similarly, we can show that v;(t) < vo(t) on J.
Next, let g(1) = w1(t) — vo(t). Clearly ¢(0) = u;(0) — vo(0) = 20— v < 0.
and
¢(t) = u(t) —vo(t).
< (2 uo(t), uo([1]) + fo(t, uolt), uo([t])) (wr(t) — uo(1))
+1y(L, uo(t), wo([1) (wa([1]) — uo([t])) — S (L, vo(t), vo([¢]))- (3.8)

But since vy(t) > uo(t), we get using (3.3)

T(tvo(D,v0([1) = S uolt), wo([L])) + fo(2, wo(t), wo([L]) (vo(t) — uo(t))
+ (4 wo(t), wo([E) (wo([1]) — wo([L]))-
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This with(3.8) gives,

q'(t) < Jo(t,uo(t), wo([t])g(t) + Sy (L, uo(t), uo([t]q([t])

since g(0) <0, we get ¢(t) <0, for all t € J, and hence we conclude that

’U,l(t) S Uo(t),t € J

Next to prove that u;(t) < vy(t), t € J, we note that ug(t) < uy(t) < vo(t).

Hence using (3.3) and (3.4), we get,

ur(t) < ft ua(t), wa({t)))

Similarly, using (3.3) and (3.5), and since vy > vy, we get,

vy (t) 2 f(t,i(t), mi([t))).

Hence, since u;(0) = v1(0) = zo, again by the special case of Lemma 3.2.2,
we get uy (1) < vy(t), ¢ € J. This establishes the inequalities in (3.6).

Now assume that, for £ > 1,

up(t) < f(t uk(t), ui([t]))
'U;c(t) f(tv vk(t)v vk([t]))

Y

and uop(t) < uy(t) < ... Sup(t) < wlt)

IN

o< u(t) < ve(t), t €T,

We shall show that

k() < wpgr () < vpga(t) < vi(t) ond.

where ugyy(t) and vgy(t) are the solutions of the linear IVP

Wr(t) = 7 ur(®), unl(t])) + folty un(®), wnl()) (s (2) — ualt))
Ayt i), (1) (s () = (1)), i (0) = .
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and

Vi () = J{Gok(8), ve([8]) + St 0e(l), ve([) (0r41(2) — (L))

1y ve(0), or([8]) (0k41([H]) — 0k ([1]), ve41(0) = o (3.11)
Let p(t) = ui(l) — ug41(1), then p(0) = 0. Therefore, in view of (3.10), we get
P(t) = w(t) — ujy (t)
< Lalts (@), ur([2))p(2) + Sy (1 wi(t), wa([1)p([L]).

This fact with p(0) = 0 and the application of the special case of Lemma 3.2.2, we get
p(t) <0 which means ui(t) < ugqi(t), t € J.

Again, let q(1) = ug41(t) — vi(t). Then
¢() = wn(t) —uit),
< TG uR(t), ue([U) + Lo(t ur(t), we([)) (wesn (8) — will))
—fy (8 w(8), wr([t)) (wrer (1) — wi([t])) — St 0e(t), 0x([1]). (3.12)
Now since vy > ug, using (3.3) and (3.12), we get,
ql(t) < S (b (), un({t]))g() + £y (8 ui(t), we({e])a([L])-

Since ¢(0) = 0, by the application of special case of Lemma 3.2.2 as before,
we get. q(1) <0, for all ¢ € J. Hence uyq1(t) < wilt), t € J.

Thus we have ug (1) < wpa(t) < wvg(t), t € J. Similarly, we can show that
wp(t) < vppa(t) < wve(t), t € J.

Next using (3.10) and (3.3), we get,
‘“'Ik+1(t) < f(tauk'i'l(t)vukﬂ([t]))'
Similarly, we can show that

Vet () 2 S vra (1), v ([2))-
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Hence, since ur41(0) < 2o < v441(0), by the special case of Lemma 3.2.2,
we get wpp(8) S v (t) ,t € J.
Thus we have (1) < upyi () < vppa(t) < ve(t), 1 € J.

Hence, by induction, we get.
up(t) <uy(t) < .o < urt) < wg(t) < oo < vi(t) < wp(t) ond.

Now assume that limg u(t) = a(t) . Then integrating (3.10) on both sides between 0

and t and then taking limits as k — oo, we get.

v

at) =zo+ /Ot J(s,a(s),a([s]))ds,

which shows that «(t) is a solution of the IVP (3.1). Similarly we can show that {wvi(¢)} also
converge to a solution B(t) of the IVP (3.1). Since solution of (3.1) is unique,
we have, a(t) = (1) = z(t) . Thus {ug(t)}, {ve(t)} converge uniformly and monotonically

to the unique solution x(t) of (3.1) on J.

In the next theorem, we show that the convergence of the sequences is quadratic in the

sense of Definition 2.4.1 .
Theorem 3.3.2 Under the hypothesis of Theorem 3.3.1, the convergence of
{up(D)}, {vr(1)} is quadratic .

Proof : Define pii1(t) = 2(t) — up41(t) >0, k= 0,1,2, ...

so that pi41(0) = 0. Therefore,

P (t) = 2'(t) — upy (1)
= [t x(), x([t])) = {£(, ur(t), wi([1]))
+ [z (t, wk(t), wn([t])) (a1 () — ui(t))
+1y (4 ur(t), we([1]) (wenr({t]) — wi([t]) }
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= f(t,=(t),2([t])) — St ux(t), ur([t]))
= [ (b (0, wi([E) k2 () — wi(t))
=Sy (6 we(0); wi([1)) (wra ([8]) = wi([2]))
= [t x@),z(11) — (L, we(t), =([1])
+ 1 we(t), 2([2])) — f (8, wi(t), ur([t))
—fa (b wn(), wi([t)) (wrr (1) — ur(l))
= fy(t, wi (), wi (1)) (wra ([6]) — wi([])}

A simple computation using Lemma 3.2.1 and (h3) yields.

P () = UFa(tsa(t) (1 = s)un(t), (1)) = £t un(0) un( (D))
| + [ Ut w0, s (@) + (1 = ) = Lt w0 oe((eds
Lalty wal0), wal 1) P (1) 3 0x(8) wr (D) i (1)
< [ Lalspu(t) + peeDIn(t)ds + [ aspi([eds
My (1) + Mapiaa ()
where [fo(L, 2, 9)| < Mi, [f,(L,9)] < My on Q, and Ly, Ly are constants as in (3.2).

Further simplification yields.

Pn(t) < 2920+ Lapu([1)pu(t) + 201D

+ My () + Maprga ([t])

Hence ;

IN

Py (t) Lyipi(t) + Lapi([t])) + Mipe1 (1) + Mapraa ([t]).
< max Lipi(t) + max Lapi([t]) + Mypisr (1) + Mapeya ([t]).

< Lm‘;lx pi(t) (3.13)

/

where L, L;,;1 = 1,2,3 are suitable constants.
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Let E = LT:}X pi(t). Then on integrating (3.13), we get,
per () < BT+ [ Mipias(5) + Mapias (sD)ds, € .
By particular case of Lemma 3.2.3, this inequality yields,
Pr41(t) < %[(M; + M) — My)T[(M) + My)e™T — M),
Hence we obtain the estimate.
max (1) = wei (1) < ClLmas fa(1) — w (),

where C = MT—?[(M] + My)eM — My)T[(M; 4+ My)eMT — M,
Similarly, if we define x4, () = ve4a (1) — x(t) > 0, so that

G+1(0) =0, k=0,1,2,... then we can obtain the estimate

max vk (t) — 2(t)| < C[L max lox(t) — x(t))] ,

where C) L are suitable constants.
This completes the proof.

Remark 3.3.1 If f(1,z(t),z([t])) = f(,2(t)), then the above results reduce to those

in [8, 10].

We now extend the method of quasilinerisation used in the above theorem to obtain an
algorithmic approach which will make possible to construct the monotone sequences. These

sequences are of the solutions of the associated linear differential equations with PCDA.
Theorem 3.3.3 Assume thal

(H1) wo,ve € C[J,R] are lower and upper solutions of (3.1) respectively such that

uo(1) < vo(t) on J.

(12) Let @ = {(t,2,y) cuo < <vg, ug <y <y, t €J} and

[,¢ € CIR] such that fr, f,, ¢z, by, exist and are continuous on §;
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(H3) (2) fu(L,x,y), fy(L,z,y) are increasing iny for fired L, z,
(22) ¢z(t,z,y) is increasing in  for fized t,y,
(v41) Po(t,z,y) is increasing in y for fized t, x,
(1v) dy(t,2,y) is increasing in y for fived t, x,
“on €.

(H{) Let F(t,z,y) = f(t,z,y) + ¢(t,2,y) and for each z > y
Fta(),a([1) > F(t,y(t),y([t) + Fa(t, y(2), y(1)]2(t) - y(1)]
B (0 y(0), y()2(1) — ()] — B2, 2(0), a(l) (3.14)
Jor (L, z,y) € Q.

(H5) Fy(t,m(t),m([])) — ¢y(t, n(1),n([t])) > 0,
uo(t) < m(t) < n(t) < vo(t),t € J. |
Then there cxist monotone sequences {ur(t)},{vi(1)}, t € J, which converge

uniformly to the unique solution x(1) of (3.1), fort € J.

Proof : Let u;(t) and vy(t) be the solutions of the related linear differential equations with

PCDA,
up(t) = S uo(t), wo([1]))
HFe(L uo(l), wo([1])) = (2, vol(2), vo([¢])))(wa (1) — wo(t))
H[Fy (4 wo(t), wo([])) — ¢y (2, vo( L), vo([t))] (a ([¢]) = wo([2]))
1 (0) = o, (3.15)
and

vi(t) = [(&vo(l), vo([t])
+[F(t, wo(t), wo([t])) — ¢a(t, vo(t), vo([t])](va(t) — vo(1))
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H[Fy (2, wo(t), wo([t])) = ¢y (2, vo(t), vo([ED}(va([¢]) — wo([2)))

0(0) = o, (3.16)

such that uo(0) < 2o < vo(0), where uy and v, are as defined in (H1).

We first. prove that,
up(1) < wi(t) < vi(t) < welt), forallt e J (3.17)

Let p(t) = uo(t) — ui(t). Clearly p(0) < 0. We have

) = ) - ().
7t uo(t), wo {t1) = /(& uo(t), wo([1)
[Pt wol1), wol[1)) — (1, vol), vol [} aea(2) = wo(1))
[Py (1, wo(), wa([£1)) — (&, vol), vl D)} e ([2]) — wo([£]))
— [l uo(t), uol[t)) — $a(t, volt), val[E))Ip()

(0 uo0), wo([1)) — (L, val), ol (DA 18)

IA

Therefore, treating p(t) as a lower solution of

2(t) = [Fa(t,uo(t), uo([t])) — @=(t, vo(t), vo([t]))] ()
HE(E, uo(1), wo([1])) = y(2, vo(t), vo([E]))]2([11)

2(0) = 0. (3.18)

Further p(t) = 0 can be treated as the upper solution of the equation (3.18)
Therefore,
0=p(1) = [Fa(t,uo(t), uo([t])) — $a(t, vo(t), vo([t]))]H(1)
+Fy(t, wo(t), wo([t])) — @y(t, vo(t), vo([L])))B([t])

p(0) = 0.
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Hence applying the special case of Lemma 3.2.2 and (H5), we get p(t) <0,
for all ¢ > 0, which yields wo(t) <y (t) on J.
Similarly, we can show that v;(t) < ve(t) on J.
Next, let ¢(t) = ua(t) — vo(t). Clearly q(0) = u1(0) — vo(0) = xo — vo(0) <0,

" and

q(t) = u(t) —vo(t).

S, uo(t), wol[2]))

HFe(2, wo(t), uo([t]) — @=(2, vo(1), vo([t]))](wr (¢) — uo(t))

H[Fy (2, uo(t), wo([L])) — (2, vo(t), vl [t))](wa([L]) — wo([L]))

—1(t, vo(), vo([1]))- (3.19)

IA

But since vo(t) > uo(t), we get using (3.14)

S(tvo(t),vo([t]) = S, uo(t), uo([4]))
HFe(t, wo(t), wo([t)} (vo(t) — uo(?))
H[Fy (4, wo(), wo([ED}(vo([t]) — o([2]))
—[(t, vo(t), vo([t])) — B(t, wo(t), wo([t]))]: (3.20)

By the Mean value theorem,

(1, vo(t), vo([t])) — (1, wo(t), wo([]))
= (t, vo(t), vo([1])) — b(t, ua(t), vo([1])) + b(t, wo(t), vo([t]) — B(t, uo(1), uo([t]))

= %(L& vo([t]))(vo(t) — wo()) + ¢y (¢, wo(t), m)(vo([¢]) — wo([t]))- (3.21)

where ¢ and 5 are such that ue(t) <€ < wo(t) and uo([t]) < n < wvo([t]).

Now using (13)(i1), (113)(iv), (3.21) yields,

¢(L, vo(t), vo([L])) — B(1, wo(t), uo([]))
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< ult, volt), vl [11) (0u(t) — ua(0)) + (L, wo(t), o) (wo([2) — wo(()-  (3.22)
Hence in view of (3.20), we obtain
f(‘l,’u()(l,), UO(U])) 2 _/(l,’&&o(l),ﬂo([l]))

+F (2, wo(t), uo([¢])(vo(t) — uo(t)) + Fy(t, uo(t), wo([t]) (vo([2]) — uo([t]))
—z(t, vo(t), vo([t]))(vo(t) — uo(t)) — by (L, wo(t), vo([t]))(vol[t]) — uo([t]))-
Therelore,
St wo(t),vo([t])) = f(2,uo(t), uo([t]))
+[Fa(t, uo(t), wol[t]) — ¢x(2, vo(t), vo([t]))](vo(t) — wo(?))

+Fy(t, wo(), uo([t]) — by (2, vo(t), vo([t]))](vo([t]) — wo([2]))
(3.23)

This with (3.19) gives,
q(t) < [Fu(t,uo(t), uo([t]) — ba(t, vo(t), vo([t])]a(t)
+[Fy(t, uo(t), uo([t]) — #y(t, vo(t), vo([t])]a([t])-
Since ¢(0) < 0, we get g(t) <0, for all ¢ € J, and hence we conclude that
w1 () < wo(t),t € J.

Next to prove that u;(t) < v;(t), t € J, we note that ug(t) < uy(t) < vo(t).

Hence using (3.14) and (3.15), we get,
u(t) < fu), wl{t]) + ot wi(t), wi([t])) — (L, wolt), uo([1]))
=z, vo(1), vo([t))(wr (1) = wo(1)) = y(t, vo(t), vo([t]))] (v ([2]) — wo([t]))-
Employing the mean valuc theorem and (H3)(ii), (H3)(iv), we get.

G < ), a(l)
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+é2(L, vo(t), vo([L]))](u1(1) — uo(t)) + @y(¢, vo(t), vo([t]))] (us([t]) — wo([e]))
= z(t, vo(t), vo([1])))(wa(t) — uo(t)) — dy(t, vo(t), vo([EIN(wa([t]) — wo([t]))
= f(t’ul(t)7ul([t]))-

Similarly, we can show that vi(t) > f(t,vi(t), vi([t])).
Hence, since 1;(0) = v,(0) = 20, again by the special case of Lemima 3.2.2,
and (H5), we get uy(t) < vy(t) , t € J. This establishes the inequalities in (3.17).

Now assume that, for k > 1,

wp(t) < f(t,uk(t),uk([t]))'
Z f(tavk(t)avk([t])))

<
o~
—~—

o~
~—

V

and uo(t) < uy(t) < ... < w(t) < v(t) < .o < vi(t) < we(t), on J.
We shall show that

up(t) < uppr(t) L vp (t) < wi(t), on J,

where ugy1(1) and vgy1(t) are the solutions of the linear 1VP,

up (1) = S w(t), w([E]))
HFe(t, ur(t), ur([t]) — do(t, vr(t), vil 1) (ursr () — ui(t))
(L we(t), wr([1)) — by (4 vi(e), vr([)](aensr ([1]) — wr([1)))

wg1(0) = wo. (3.24)
and

Vi (8) = f(4 vk(t), vi([2])
(b, w(l), urd[l) — d2(L, vi(t), vi([ED] (vr41(4) — vi(1))
HFY (s wi(l), we([t]) — by (4, vr(t), v ([ED] (vrs1([t]) — vr([1]))
Y (1) S, | (3.25)
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Let p(t) = ug(t) — ug41(t), then p(0) = 0. Therefore, in view of (3.24), we get

P = w(l) =iy, (1)
< [F(t, ur(t), ur([t])) — ba(, ve(1), ve([2]))lp(2)
+F (4 ur( ), we([)) — Sy (L, o), v (D)) (L))

This fact with p(0) = 0 and the application of the special case of Lemma 3.2.2 and (H5),
we get, p(t) <0 which means ui(t) < ukya(t), t € J.

Again, let g(t) = wgqa (1) — vr(t). Then

q(t) = () —vi(t).

St un(t), ui((2]))

+[Fa(t, ur(t), ur([t])) — @o(t, vr(2), e[ (ur41(8) — un(1))

=[Fy(t, ur(t), wel (1)) — by, ve(t), vid )} (wrar((2]) — wi([t]))

—J (4, oe(0), oe([1]))- | (3.26)

IN

Employing (3.14), the mean value theorem, and (H3)(ii), (H3)(iv), we arrive at

f(tavk(t)vvk([t])) 2 f(iauk(t)vuk([t]))
HF(L, ui(t), ur([L])) — d(t, vi(t), vie([t])](vr(t) — ui(t))
HF(, ue(t), ue([t]) — by (t, ve(2), ve( L) (va([2]) — wi(2])).

Hence (3.26) gives,

q(t) < [Fa(t, ur(t), ur([t])) — @a(t, vi(t), va([t]))}q(?)
+ [Fy(t’ uk(t)’ uk([t])) - ¢y(t, vk(t)a vk([t]))]Q([t])v

Since ¢(0) = 0, by the application of special case of Lemma 3.2.2 and (H5) as before,

we get, q(t) <0, for all t € J. Hence uiyq (1) < wvilt), t € J.
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Thus we have ui(1) < up (1) < vi(t), t € J.
Similarly, we can show that w(t) < vea(t) < vi(t), t € J.

Next using (3.24) and (3.14), we get,

W (1) < S upa (8, v ([1))
+B(L, e (1), wea (1)) = ¢(E, ui(2), u([t)))
—¢=(t, vr(t), vi([t])] (ur41(2) — un(?))
=y (t, vr(8), vk (D) (urn (1) — wi((e])).

Using the mean value theorem and (H3)(ii), (H3)(iv) we get.

Ui (1) < St (), wre ([4))-
Similarly, we can show that

Ve (1) 2 St vka1 (1), v ([2]))-

Hence, since ug41(0) < zp < vk41(0), by the special case of Lemma 3.2.2 and (H5),
we geb, uppr(t) < vpa(t) , 1 € J Thus}we have uy(t) < upyr(t) < v (t) < vi(t),t € J.

Hence, by induction, we get.
up(t) < wuy(t) < oo S wur(t) < wilt) <. < o(t) < wo(t) ond.

Now assume that limy_00 ug(t) = a(t) . Then integrating (3.24) on both sides between 0

and t and then taking limits as k — oo, we get

¢
ot) =70+ [ J(s,a(5), alls))ds,
which shows that a(t) is a solution of the IVP (3.1). Similarly we can show that
{vi(1)} also converge to a solution G(t) of the IVP (3.1). Since solution of (3.1) is unique,

we have
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a(t) = B(t) = x(t). Thus {u(t)},{vi(t)} converge uniformly and monotonically to the

unique solution x(t) of (3.1) on J.

Theorem 3.3.4 Under the hypothesis of Theorem 3.2.3, the convergence of

{ur(t)}, {vi(t)} is quadratic .
Proof : Define

pk+1(t) = 'B(t) - Uk+1(t) >0

gk+1(t) = vpp(t) —2(t) 2 0,k =10,1,2,...
so that pr4+1(0) = 0 and gx41(0) = 0. Therefore,

Pen(t) = 2'(1) = wy, (1)
= S (), 2([1])) — {J (L uelt), wr([L]))
HFe(t, wr(t), ur([t]) — dolts velt), vr([t1)](upa(t) — u(t))
H[Fy(t, (), we([t])) = ¢y (L, ve(t), o[ urr([8]) — ur([2]))}

which can be written as

Pen() = Flt,2(0),2({l) — F(t,us(t), 2({) + F(t,up(t), 2([1]) = P(L ui(t), ue([1))
(L el 0), win([11)) — da(t, vilt), vl 1)) (Praa (1) — pr(1))
IR (), il [10)) = (L, 0u(0), o)) (Pea (1)) — pu( (1))
(e, 2(0), 2(1) — B, wil0), (1)) |
19t ualt), 2([1]) — (L, wit), ws (1))

By Lemma 3.2.1 and (113) yields,

P () = ./(;‘[[?x(t,sm(t) + (1 = s)ug(t), z([t])) — Fo(t, ur(t), ur([t]))]pe(t)ds |
+./0][R,(‘t,uk(t),sm([t]) (1 — s)u([t])) — Fy(t, we(®), ue([t])))ps([t])ds
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IN

Pt ), (1) = (00, o D)) P (1)
L us(t), (1) — ult, 0), oD prea ()
[ 1200, or(0),04([1)) =ty 52(8) + (1 = S)un(t), (D))
4 160,000, 0(1) — (4 ws(0), 5308 + (1 = s)ual() o)
[ almel) + ilpatds + [ Laspi(la)ds
H(My -+ Ny (8) + (Ma + N (1)
+ [ Lal(wult) — (1)

(1= 9)(@() — wus()) + (on([8) — o([0))pa(0)ds
[ Laloult) = 2(0) + (2(0) — us(0)

(o) = ) + (1 = s)a([]) = wnlD)a([)ds

where |Fy(t, 2, y)| < My, |Fy(t,2,y)| < Ma, |¢(t,2,y)| < Ni, |dy(t,2,y)] < Nz on €

and Li, Lo, Lz, Ly are constants as in (3.2). Further simplification yields,

Ly ,

Pra(t) < ——m()+L1Pk([i])m(t)+—pk([t])

2
+Mpiya (1) + Npra ([1])

+ Laqi(t)pr(t) + %Pi(t) + Laqr([t])pe(t) + Lagi(t)pe([t])

FLape(pe (11 Laae[D)pel(t) + k(11

where M = My + Ny, N = My + N,.

Hence
J

P (t) < Qupi(t) + Qaqi(t) + Qapi([1])

+Qaqr([t]) + Mprya (t) + Npraa ([t])-

IN

max Qpi(t) + max Qaqi(t) + max Qspi([t])

+ max Qaqi([11)] + Mpryr (8) + Nprya ([1])-

IN

Q max pi () + Q max ¢j(1)
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+Mpii1(t) + Npgaa ([t]). (3.27)

where @), Q, Q;,1 = 1,2,3,4 are suitable constants.

Let £ = Q maxy p3(t) + Q maxy ¢}(t). Then on integrating (3.27) we get
i
Prnr(t) S T+ [ [Mpro(s) + Npesa([sD)ds, t € J

By particular case of Lemma 3.2.3, this inequality yields, -

e

s (0) < ST (M 4 N)eM — NIT[(M + N)eMT — ]

Hence we obtain the estimate,
maz|z(t) — ur1 ()] < ClQ max | (1) — wr ()| + Qmjax lor(t) — ()]

where C = 75 [(M + N)eM — N]T[(M + N)eMT — N].

Similarly, we can obtain
maz|vg (1) — z(1)] < C[R max log(t) —z()|* + R max |z(t) — uk(t)|2)

where C, R, K, are suitable constants.

This completes the proof.

Remark 3.3.2 If f(t,z(t),z([{])) = f(t, (1)), then the above results reduce to those in [54].

Further in addition, if ¢ =0, then condition (3.14) is equivalent to

f(i,ﬂ") 2 f(tay) + fx(tvm)(a’ - y),fOT:IT 2 Y,

which infact can be oblained from fu.(1,x) > 0, that is [ is @ convex function «s given in

[10].



3.4 Inequalities:

In this section we establish some inequalities, which play a vital vole in study of differential
equations with deviating arguments. These inequalities are simple extensions to the exsisting
ones in ordinary differential equations as well as functional differential equations [44]. The
section starts with simple extensions to generalisation of Gronwall Bellrnan integral inequality
to differential equations with PCDA obtained by Jayasree and Deo [36]. The two sided
estimates related to solutions of two systems is obtained which will be useful in studying
certain stability properties of the systeins.

We first recall the inequality established by Jayasree and Deo[36].
Lemma 3.4.1 Let ¢ be a constant and x, a, b € C[I,IR*). If the inequality
(1) < ¢ +/ s)z(s) + b(s)x([s])ds, t € 1
holds, then for t € I = [0,00)
k k k
z(t) < - [I{ exp(/k a(r)dr) +/ e:z:p(/ a(r)dr)b(s)ds}
-1 k—1
x{e:np(/ r)dr +/ e:vp(/ a(r)dr)b(s)ds} . (3.28)
t
The following theorem is an extension to the above lemma .

Theorem 38.4.1 Let z, a, b€ C[I,R*]. Let f(t) be positive, continuous, and monotonic

nondecreasing on 1. If the inequalily,

x(t) < f(t) + /01 a(s)x(s) + b(s)z([s])ds, t € I

holds, then for t € I,
[t]

x(l H{ e:rp(/ a(r)dr) + / f’T])(/ (s)ds}
x{ewp([m a(r)dr) + /[t] e:z:p(/o a(r)dr)b(s)ds} .
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Proof : Consider the inequality,
11
2(1) < f(1) + /0 a(s)z(s) + b(s)z([s])ds, L € 1.

Since f(t) is positive , dividing by f(t) throughout, we get

#0) _ m(s o((s])
Fy S U e e e

Now , [s] <s, f is nondecreasing = f([s]) < f(s) and hence 75 <

1
[s])*

. Therefore letting , r(t) = ﬂ(% in the above inequality, we get .

I

Also W (

<1+/ s)r(s) + b(s)r([s])ds.

By using above Lemma 3.4.1, we get

k

r(t) < H{frp/ 1 a(r)dr) + - e:t:p(/ska(r)dr)b(s)d.s}

¢ ¢ t
x{emp(/[] a(r)dr) + /[]e:vp(/ a(r)dr)b(s)ds, }
t ¢ 0
which gives the desired result.
We shall now establish some inequalities which are helpful in comparative study of two

different equations.

Consider the equations with PCDA.

e (t) = f(t,2(t), 2([1)), =(0)=wo (3.29)
and

y (1) =gy),u([), y(0)=wyo (3.30)
where t € 1 = [0,00), f and g are defined and continuous real valued functions on

I'x IR x IR, o, yo € IR, [t] denotes the integer valued function.
We now establish the result of fundamental importance for subsequent discussions in
this section. To do this we employ the well known method given in [45] and one used by

Aftabizadeh and Wiener in [3].
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Theorem 3.4.2 Let F(t,u,v) : IXIRxIR — R be « continuous function, non-decreasing

in v for each fized (1,u). Assume that

7 (1) < F (t,3(8) + w(t), a((t]) + w(t]) (3:31)
and

y (1) > F(t,y(t) +w(t), y([1]) + w([t]) (3.32)

fortel and w(t): I — R is « continuvous function.

Then z(0) < y(0) implies z(t) <y(t) for te€l.

Proof We shall prove the assertion on the unit interval [n,n+1), n=0,1,2,3..

Let z,(t),yn(t) and w,(t) be satisfying (3.31) and (3.32) on [n,n +1), namely)

T(1) < F (8, 2alt) + wa(1), aal[1]) + wa([1]), (3.33)
and
ya(t) > F (£,ya(t) + w0 (0), ya([1)) + wa([1])). (3.34)
We prove that
£a(n) < ga(n) = 2a(t) < valt), t€ [m+1). (3.35)

If the assertion in (3.35) is false, then the set S = {t € [n,n+ 1)/ yu(?) < x,(1)} is not

empty. Let t, =inf.S, then ¢, € S and by (3.33) t, >n. Hence) we have
To(tn) = yYutn) at t=1t, and z,(t) <ya(t), for t € [n,t,).

For sufficiently small h < 0, we have,

Tn(tn +h) — 20(ts) S Yn(tn + h) — yn(tn)
h h

which implies that «'(t,) > y,(t.) . Therefore using (3.33) and (3.34), we get,
F (im wn(f’n) + wn(tn);xn(n) + U’n(”)) > F (tn’ yn(tn) + wn(zn), yn(") + U’n(n)) .

This contradicts the non decreasing character of F. Hence the set S is empty and

we have w,(t) <yu(t) on [n,n+1), n=0,1,2,... Thercforc 2(t) < y(t) for t € I.
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Remark 3.4.1 The conclusion of the above theorem holds even when (3.31) and (3.32)

are replaced by ' (t) < F (t,2(t) + w(t), z([t]) + w([t])),

and  y (1) > F(t,y)+w(t),y([t]) + w([t])) respectively, other assumptions remaining

the same .
We make use of Theorem 3.4.2 to prove the following inequality.

Theorem 3.4.3 : Let G(t,u,v), H(t,u,v): I x R* x Rt — R* be
continuous and nondecreasing in v for cach fized (t,u) . Assume that G and H

salisfy the inequality,
G(t,m(t) + w(t), m([t]) + w([t])) £ m'(t) < H(t,m(t)+w(t), m([t]) + w([t]))

wheret € I, and m(t) : I — RY is a continuous function with m(0) = my .
Also for { > 0, assume that B(t) and «ft) are the mazimal and the minimal
solutions of the equations,

A(4) = H(t, B(1) + w(t), B([1]) + w([1]), B(0) = fo
and
a(t) = G(t,a(t) + w(t), a([t]) + w([t])), (0)= a0,

respectively. Then oy < my < By implies
a(t)y <m(t) < B(t), for tel.

Proof : Let a(t, ¢) be a solution of the equation

1

a = G(t,a(t) + w(t), a([t]) + w([t])) — ¢
a(0,¢) =ag—€ , €>0,

Then  &'(t,€) < G(t,a(t,€) +w(t), a([t], €) + w([t])).
Using (3.36), we get, — m'(£) > G(t,m(t) + w(t), m([t]) + w([t])) .
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. Observe that ag — € < ag < mg . Since G salisfies all the conditions of Theorem 3.4.2,
using the Remark 3.4.1, we have, a(t,€) < m(t).
Let € — 0, we get «(t) <m(t), which is the left side of (3.39). The right
side of (3.39) can be proved similarly, and this completes the proof.
Next we prove a result which can be used for comparative study of the

properties of solutions of (3.29) and (3.30).

Theorem 3.4.4 Let G, H be as in Theorem 3.4.3. Suppose thal the functions

f, g in (3.29) and (3.30) respectively satisfy the inequality,

ly(t) — () + hG (¢, ly(t) — 2(1)] + [=@)], [y ([2]) — (DI + [=({D])
< ly(t) — (1) + h{g (&, y (), y([t]) — f (& =(2), 2([t]))} |

< ly() — ()] + hH (4, y(t) — =) + |2 (@O, ly (i) — = (DI + (D). (3.40)

For small h > 0 and t € I, let 3(t) and a(t) be the mazimal and minimal solutions of

f

B(t) = H (LB + =(t), 811 + (1)), B(0) = Bo (3.41)

and

a(t) = G (t,at) + e(t), a([t]) + z([1])), @(0) = a0, (3.42)

respectively. If z(t), y(t) are solutions of (3.29) and (3.30) respectively, then
ao <lyo— o) < B0 = alt) < [y(t) —=(t)] < B(t) ,for teL

Proof : We shall prove the result on the unit interval [n,n +1), n=0,1,2,....
Let  @,(t), yn(t), Bn(t), an(t) be satisfying (3.29), (3.30), (3.41), (3.42) respectively

on [n,n+1), n=0,1,2,... We shall show that

an(n) < [yn(n) — za(n)] < Buln) = an(t) < |ya(t) — @a(t)] < Bu(t)
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Define  pn(t) = |yn(t) — za(t)| , then pu(n) = |lya(n) — zn(n)| . Using (3.40), we get

palt +h) = |ya(t +h) — za(t + )|

Iyn +h g(i:yn(t)ayn(n) + Clh - "Bn(i) - hf (t’wn(t)va:n(n)) - C2hl

IA

lyn(t) — Tn(t) + A {g(t,yn(l), ya(n) — f(L, 2a(L), 2a(n)} | + |€1h] + |esh]

lyn(t) — 2n ()] + h.H (1, lyn(t) — @a(t)] + |20(0)]; lya(n) — 2a(n)] + |za(n)])

IA

-HC]/ZI + l(;z/ll

li

Pu(t) + hoH (L pa(t) + [2a(0)], pa(n) + [2a()]) + lerh] + e

where ¢;, ¢, —» 0 as h —» 0. Therefore we get.

’ . pnt+h _pnt
pal(t) = lim ( /2 (t)

< H(t,pa(t) + [2a(D)], pa(n) + |za(n)]) , t € [nyn+1). " (3.43)

Using Theorem 3.4.3 and (3.43), we get pn(t) < Ba(t) . Similaraly we can obtain

an(t) < pa(t) . This gives us,
an(t) < |yn(t) — z,()] < Bu(t) for t €[n,n+1), n=0,1,2,....

Therefore | o) < |y(t) —=z(1)| < B(t)for t€T.

3.5 Nonlinear periodic boundary value problem |

This scction deals with the nonlinear periodic boundary value problem (PBVP). We have
employed the method of quasilinearisation to prove the existence of solution. The associated
lincar PBVP is also discussed.

Consider the nonlinear PBVP,

2'(t) = f(t,2(t), =([1])), (3.44)

x(0) = z(2m) (3.45)



where t € J = [0,2r]. f € C[J x IR x IR, IR}, |-] denotes the greatest integer function.
Equation (3.44) is a differential equation with piecewise constant deviating argument and

the existence of solution for the initial value problem has been established by Aftabizadeh
and Wiener in [3].

We introduce the following definition of a solution of the PBVP (3.44) and (3.45).

Definition 3.5.1 A solution of (3.44) and (3.45) on J is a function x : J—IR that satisfies

the following conditions :
(1) z(t) is continuous on J.

(ii) The derivative a'(1) exists at each point t € J, with the possible exception of the

points [t] € J, where one sided derivatives ezist.
(111) Equation (8.44) is satisfied on each interval J, = [n,n + 1) with integral end points.
(iv) x(l) satisfies the condition (3.45).
We now define the classical upper and lower solutions for the PBVP (3.44) and (3.45).

Definition 3.5.2 A conlinuous function v : J — R is said Lo be a lower solution of the
PBVP (3.44) and (3.45), if the derivative w'(l) exists al each point t € J, with the possible

cxceplion of lhe points [t] € J, where one sided derivatives exist, and
u'(t) < f(tu(t),u((t])), w(0)<u(2r). (3.46)
It is said to be an upper solution, if the reversed inequalities in (3.46) hold.

Usually the classical lower and upper solutions are ordered. If wu, v are lower and upper
solutions of the PBVP (3.44) and (3.45) respectively, then either « <v or v <u on J.

In the following discussion of this section, we assume that
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(H1) u, v € C[J,IR] are lower and upper solutions of (3.44) and (3.45) respectively such

that () <wv(t)on J.

(112) For f € C[J x IR x IR,IR] and (H1), there exits atleast one solution z(t) of the
PBVP (3.44) and (3.45) such that wu(t) < z(t) <wo(?).

(H3) Whenever (H2) holds, let
S={t,x,y) € T x IR x IR : u(t) < x(t) < o(t) ,u(t]) < y(t) < oft] }.

(H4) f(t,z,y) € C|S,IR] such that the partial derivatives fi.(t,a:,y),jy(t,a:,y) exist, are
continuous on S and |f.(f,z,y)| < my; |f(t,z,y)] < m, on S, for some positive

constants my, my
(H5) For (t,x1,11), (1, z2,vy2) € S such that z; > 2y , y1 > 2,

Tt e,y) = f(azy:) = folt, 22, 02) (21 — 2) — My(21 — 25)°
+ fult, 22, 92) (0 — v2) — Ma(yr — 12)?,
where M,, M, > 0 are constants.

For u(t) < zy < a1 < w(t); w([t]) < y2 <y < o([t]), define the function

g:SxIRx IR x IR x IR — IR by

g(t, @1, 25y1,y2) = f(E,22,92)
+  {felt, 29, y2) + 2Myz2} (21 — 22) — M (2] — x3)
+  {fy(t 22, 32) + 2Mays} (w1 — o) — Ma(yi — v3). (3.47)
From (3.47), we get .
gtz y,0) = f(t,21,0), (3.48)

Next define the function F : S x IR x IR — IR by

Pz, y) = f(t,z,y) + Myx? + Myy?, (3.49)
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where My, M, are as in (H5) .

We need to prove the following result.

Theorem 3.5.1 Suppose that the hypotheses (H1) to (H5) are satisfied. Then for any
T1, T2, Y1, Y2, w such that u(t) <w(t) <wo(t), t€ T, u(t) <z < @ < o(l);

and u([t]) < y2 <y1 < o([t]) we have,

(1) f(t, ) — [t 22, 2) 2 {fult, w2, 32) + 2M1z2} (71 — 2) — My (] — 23)

H{fu(t, 22,92) + 2Maya} (y1 — y2) — Ma(y] — v3)(3.50)

and

(i1) g(t, 2(1), w(t), e([]), w(([) = gt y(t), (), y([E]), w([t))
Ni(2(t) — (1) + No(a([t]) — y([)))  (3.51)

IA

where Ny, N >0 and u(t) <y(t) < z(t) <v() and wu(t) <w(t) < o(t); t€S
Proof :We have from (H5),

./(t,:171,y]) - f(t):l:’h !/z)

fe(t, 22, ) (24 — ) — Ma(z1 — T2)?

v

+ Lyt T2, y2) (1 — y2) — Ma(yn — v2)?
= {fo(t, %2, y2) + 2Miza} (21 — 23) — 2Miza(21 — 2) — M, (a? — 22123 + a3)
+ {f, (1,22, y2) + 2May } (s — y2) — 2Maya(ys — y2) — Ma(y} — 201y2 + 13).
= {fu(t,29,y2) + 2Myx2} () — 22) — M, (22 — x3)
Ly (4 w2, y2) + 2Maya} (= y2) — Ma(y] — 43)-

This proves (¢).

Next to prove (it), using (3.47), we get,

g(t, (1), w(t), w(14), w([t]) = g(t, y(2), w(t), y([4), w([1])
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= [, w(t),([t])
+{fa(t, (1), w([1]) + 2Myw(t) (= (t) — w(t)) — My(2*(t) — w'(2))
+ {£y(t, w(t), w([t])) + 2Maw([t]) } (([8]) — w({t])) — Ma(=*([2]) - wz([t]))
— J(t, w(t], w({2]))
— {fa(t, w(t), w([t])) + 2My0() Hy(t) — w(t)) + Ma(y*(t) — w'(t))
—{fo(ts (), w({])) + 2Maw ([ Hy([1]) — w([t]) + Ma(y*([]) — w?([2]))
= fe(t,w(t), w([t])(=(t) — y(1) + 2Myw(t)(x(t) — y(t)) — My (2*(t) - y*(t))

+ £yt w(®), w([])(=([2]) - y([t]) + 2Maw([8]) (=([1]) — y([t])) — Ma(=*([t]) —
< {ma+ 2My (w(t) — n(t) Ha(t ) y(1)) + {ma + 2M,(w([t]) — n([2]))} (=([2]) -

< Ni(e(t) —y() + Nof= (1)) — w((1)),

where 9(t) is such that u(t) <n(t) <v(t), t€ J;and
Ny =my +2M; Sup{w(t) — z(1)|}; N2 = my+ 2M, Sup{lw([t]) — ()|},

w(t) < w(t) < o(t); u(t) < z(t) <o(t), t €J. This completes the proof.
Remark 3.5.1 The assertion (¢) in Theorem 3.5.1 implies that
Sz (t), 2([t]) 2 9(t, 2(2), y(2), z([]), y([]))
for y(t) < =(1). |
Theorem 3.5.2 The nonlinear PBVP
(1) = g(t, x(t),u(t), z([2]), w([t]));  =(0) ==(27); t€ T

has atleast one solution z(t) such that u(t) < x(t) < v(t) where u(t), v(1)

are lower and upper solutions of (3.44 )) respectively.
Proof : For t € J, we have by using (3.48),

u'(t) < f(t,u(t), u(lt])) = g(t, w(t), w(t), w([t]), w([t]))
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and, by using (3.52).

v'(4) 2 f(t,0(2), () 2 9(t, 0(2), v(2), o([t]), o([t]))

Hence,u, v are lower and upper solutions of (3.53) respectively.
Therefore, by analogous of (H2), there exists a solution z(1) of (3.53)

such that wu(t) < z(t) < v(t).

We require the following lemma concerning solution of the linear PBVP.
Lemma 3.5.1 The lincar PBVP
#'(t) + azx(t) + ba([t]) = h(t);  =(0) = 2(2m); 1€ T
a,b, are constants, a # 0, has a unique solution
#() = {eo AU(1 +2M*“ 3= 1,0} A= ) + (0
where ©(0) = o,  provided

= 75 )IA(% G- Z/\"” (1) v(i = 1,6) + 7(6,0)}

where
At) = e+ (e = 1ba™t; A1) =€+ (7 — 1)ba™";
y(i—-1,7) = ‘/z e~ p(s)ds; i=1,2,..[d.
i-1

Proof : Let z,(1) be solution of the equation (3.54) on [n,n + 1), satisfying

the condition z(n) = ¢,, n=0,1,... Then, we have

£(t) = Mt =) +7(n, ),
where A, and 7 are as defined in (3.57) and (3.58) respectively.
Let t — n 4+ 1, then we have the recurrence relation,

Cupt = e, A1) + y(n,n + 1),
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which yields,
Cn = A" (1 +Zx\"z (e —1,2).

Hence,the solution of the equation (3.54) is given by |
z(t) = {0 N1 Z A1) (a = 1,03 M = [1) +([1), 1),

The boundary conditions z(0) = 2(27) = ¢; yields,

= e P O LN L+ 4(6.0)

=1

Hence the proof.

We are now in position to prove the main result of this section. The existence of solution of
the PBVP (3.44) and (3.45) is established. For this purpose the method of quasilinearisation
is employed to obtain a sequence of approximate solutions converging to the required solution.
Theorem 3.5.3 For the nonlinecar PBVP (3.44) and (3.45) satisfying the hypotheses
(H1) — (H5), there exists w; € C'J,R], 7=0,1,2,... such that the sequence {w;}
is monotone and converges uniformly to a solution of the PBVP (3.44) and (3.45).
Proof : First we set wo(1) = u(t), the lower solution of the PBVP (3.44) and (3.45). Then
by Theorem 3.5.2 , there exits a solution w, of (3.53) such that wo(t) < w(t) < v(t),

where v(1) is the upper solution of the PBVP (3.44) and (3.45). Thus w(t) satisfies the
equation,
w' (1) = g(t,w(t),wo(t),w([t]), wo([1])); vw(O) =w(2r); L€ J
Suppose that we have constructed w;(t), 7 > 1 such that
u(t) = wo(t) < wi(t) <wy(t) < ... <wj(t) < w(t)
on J, and w; ’s are the solutions of the equations .
w'(t) = g(t, w(t), wj—1(t), w([t]), wj=1([t])); w0 (0) =w(27); j > 1. (3.59)
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Hence we gt w5(t) = gty 105(0), w05-1(0), 0y (1], w31 (11)

Also, w/(1)> [(to(t),o([) > g(t,0(®),w5+(0), v wsr([)) G2 1

which means that w;(1) is a lower solution and v(t) is a upper solution of the equation (3.59),
respectively. Again by employing Theorem 3.5.2, we get a solution w;4(t) of (3.59) such
that  w;(t) < wjp (1) < v(t). Hence;the sequence {w;(t)} is increasing and it has a
pointwise limit, say w(t).

Next let U)j.’.lv(t) be the solution of the linear equation
| Wiy () + awjga (1) + bwia ([t]) = h;(t), (3.60)
where a,b are constants, « #0, t € J; w;4+1(0) = w;41(27) and
hi(t) = @win() + b () + 16w (2), wy(1)

+ {fa(t00(1), w0 ([1])) + 2Myw0; (1) Huwja (1) — wi(1)} — Mifw]y, (1) — wj(1))}

+ {fu(t wi(1), wi([1])) + 2Maw; ([ Hwjaa ([8]) — wi([2])} = Ma{wi,, ([t]) - w] ([2])}.

The solution of the equation (3.60) is given by (3.55), and this shows that {w,} is bounded
in C'(J). Hence,the sequence {w;} converges uniformly to w.
As j =00, hi(t) = h(t) = aw(t) + bw([t]) + f(1,w(1), w([1])).

Hence taking limit, as j — oo, equation (3.60) gives

W) = f(t, w(t), (), w(0) = w(2n),
which shows that w(t) is a solution of the PBVP (3.44) and (3.45).
3.6 Oscillatory behaviour.

In this section, we shall establish the result concerning the oscillatory property of the solution
of a nonlinear first order differential equation with PCDA. It is known that a solution is said

to be oscillatory if it has arbitrary large zeros. We first establish the existence of the solution.
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Consider the 1IVDP.

2(0) + a(V)z(t) = [(L,([1)), ©(0) = co, 1€ 1=[0,00),

(3.61)

where a € C[1, IR}, f e€C[I x IR,IR], ¢ € IR. Equation (3.61) is a nonlincar differential

equation with PCDA. The solution of (3.61) can be defined as in Definition 3.2.1 . We prove

the following result.

Theorem 3.6.1 The equation (3.61) has a solution on 1 .

Proof :Let t € [n,n+ 1) and z,(¢) be the solution of the equation (3.61) on the unit

mterval [n,n +1) with z,(n) = 2(n) = ¢, .

Then 2. (t) + a(t)z.(t) = f(t,cn) - Its solution is given by.

2,(1) = ¢o exp( — ‘/t a(s)ds) + exp( — /nt a(s)ds) -/: (s, ¢n) exp( /ﬂs a(r)dr)ds.

n

Let E(n,t) = exp( — [La(r)dr) and F(n,t) = [} f(s,ca) exp( [ a(r)dr)ds .

Then, we get. x,(t) = ¢, E(n,t) + E(n,t)F(n,t).

Let ¢ = n+ 1, and since z,(n + 1) = ¢uq1, We get the recurrence relation.

1 = GLEMmyn+1)+ En,n+1)F(n,n+1),

OR ¢ = aEm-1n)+En-1,n)Fn-1n), n=12..

Repeated use of the recurrence relation (3.62) yields.

n—1 ) n—1
e = a- [[EGIF+1) + [IE@GJ+1)F(0,1)
J=0 7=0
n-—1 n—1
+ E(5,7 + DF(1,2) +...+ [ E(,7+1)F(n—1,n).
i=1 j=n—1
n—1 n .
Now, [] £(j,j+1) = cap(— A a(s)ds), for k=1,2,...,n—1,
j=k TR
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and hence we get,

n—1

e = coeap( — /On a(s)ds) + Z exp( — /k” a(s)ds)F(k,k+1).
k=0 v

Thus, the solution (1) of the equation (3.61) is given by

(1) =  coexp( — /(;t a(s)ds)
+[%:] exp( — / s)ds) {/ f(s,ck c1p(/ a(r)dr)ds}
+exp( — /[t] a(s)ds) - /{t] f(s, ¢q)exp( /[t] a(r)dr)ds. (3.63)

We shall consider a particular case of the equation (3.61).

Corollary 3.6.1 The solution of the IVP,
' (1) + ax(l) = g(x([t])), 2(0) =co, t € 1=1]0,00),a#0, (3.64)

where a is a constant , g € C[R,IR\ {0}], ¢, € R. is given by

[t]-1 a __ 1 _ o—a(t—[t])
' 1 1-e
2(1) = coe™ + Y €70 gle) ——+ , (3.65)

a

where ¢ = x(k), k=0,1,...,n.

Proof : Take «a(t)=a, and f(¢,z([t])) = g(=([t])) in Theorem 3.6.1, then (3.63) gives

(3.65). Hence the proof.

Remark 3.6.1 When a =0, (8.64) reduces to  a'(t) = g(z([t]) and its solution on
[, 4+ 1) is given by, z.(t) = cn + g(ca)(t — ) .
Now we shall study the oscillatory behaviour of the solution of equation (3.64). The

following result gives a necessary condition under which the solution (3.65) has a zero in

cach unit interval.
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Theorem 3.6.2 If the solution z(t) of the equation (3.64) has a zero in the unit interval

(n,n+ 1), then,

1—e¢ Cn

< 703 <Y (3.66)

_ where z,(n) = cn.

If (8.66) is not satisfied then (3.64) has no zero on (n,n +1).

Proof : Let z,(1) be the solution of the equation (3.64) an the unit interval (n,n+1).

Then from (3.65),
zu(t) = cp e 4 2(—2’1—)(1 — et a4 #£0.
Suppose that x,(¢) has a zero at t, € (n,n +1), then
cpe” ™) 4 9(—2“—){1 — et} =, (3.67)

This on simplification yields,

altn=n) _ acy

e =1- o
g(cn)

Case(i): Suppose a > 0 . Then 1 <1- -f(ffl—) < €.

Thig 1 3 ~Cn 1—e? —fa
This 1mp]1es- sy < 0 and ==< FTFnE

Case(ii): Suppose « <0.Then e <1 - -f(gﬁ—) < 1

. . C N l_—g: C
This again leads to 725 < 0 and o= < o

Hence, we get

1—e < Cn <0
a g9(cn)
Remark 3.6.2 (i) Observe that from (3.67), we get t, =n + 1log{l — prrn i

(ii)) When a =0, using Remark 3.6.1, we get ¢, =n — ;25 and the condition (3.66)

N ] c
reduces to 1 < y—(fi—) < 0.

(iii) If g(z([t])) = —p-z([t]), p is a constant, then (3.66) reduces to p > =% , which is

a necessary and sufficient condition obtained in [1].
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Chapter 4
CONTROLLABILITY

4.1 Introduction

This chapter is concerned with the controllability of a nonlinear system involving piecewise
constant deviating argument(PCDA). The control theory is a discipline of increasing appli-
cations. It is the area of applications dealing with basic principles underlying the analysis
and design of control systems. Controllability theory attempts to define and isolate the the-
oretical limits to which a system can be controlled. The important pl‘Ol)]Cl’;'l here is that to
compel or control the system to behave in some desired fashion. In elementary differential
equation )1.1'1(-: nonhomogeneous term ( or the perturbed term ) is a fixed specified function
of independent variable. If this term is made to vary arbitrarily, then the system behaviour
will changed. This change in behaviour is studied under the controllability probleni.

The Controllability of nonlinear systems is a problem of wide interest. There are different
approaches to study this problem [58]. Most of them are cstablished techniques of the
nonlinear analysis. Among these, the fixed point method is wi(-lely used. Yamamoto has
obtained the results for ordinary differential equation by using Schauder’s fixed point in [68].

In this chapter, we apply the fixed point method to study the controllability of a nonlin-
ear system with PCDA. The controllability problem is transformed to a fixed point problem
of a nonlinear operator in some function space. The Schauder’s fixed point theorem is used

to get the desired result. As a preliminary requirement, result for the linear case is proved.
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Section 2 contains notations and preliminaries required for the further development.

In section 3, we discuss the nonlinear system with PCDA. First we obtain a sufficient con-
dition for the controllability by using the approach of Yamamoto[68]. An operator is con-
structed on a Banach space of vector valued continuous function, and controllability pmblvem-
is transformed into an existence of a fixed point. Finally, in section 4, we establish conditions
for existence of a set over which fixed point will exist. These results are called comparison

theorems.

4.2 Notations and Preliminaries
In this section, we consider the system,
Z(t) = A()z(t) + B(t)z([t]) + C(t)u(t), 2(0) = zo (4.1)

tedJ=1[0,t], z,20€ R",uc R™,
where A(1), B(1), are n X n continuous matrices and C(t) is a n x m continuous matrix on
J. [ -] is the greatest integer function. Equation (4.1) is a differential equation with PCDA
because of the presence of the term z([t]). The solution of (4.1) can be defined in a similar
way as we have done in Chapter 2 and 3.
Let @(¢) be the Fundamental matrix (FM) of the system
2'(t) = A(t)z(t), «(0) = z9, =z € IR" satisfying ®(0) = E, an identity matrix of
order n x n, and ®(1,s) = &(¢)®*(s). Let ¥(¢) be the FM of the system
y'(t) = A()y(t) + B(Oy([t]),y(0) = z0, y € IR" satisfying ¥(0) = E and
V(i k)= W) (k), k=0,1,---[t],t € J. The solution of this system is
given by y(t) = ¥(¢,0)z.
We need the following Lemma which is deduced from variation of parameters formula

proved in [36].
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Lemma 4.2.1 The unique solution of (4.1) is given by

z(t) = WY(¢,0)z0
{1l
+ (1, 0) Z/ d(k, s)C(s)u(s)ds

+ <I>(t,0)/m (0, 5)C (s )u(s)ds. (4.2)

We have the following definition of controllability.

Definition 4.2.1 The system (4.1) is said to be controllable from ((),zo) to (Ly,2y), tf for
some control function u(t), t € J, the solution z(t) of (4.1) satisfying z(0) = zg also satisfies
2(t;) = zy € J, where t; and z; are preassigned lerminal time and state, respectively.

If the system (4.1) is controllable for all zo al t = 0 and for all zy at t = 1y, then it is said

to be completely controllable (c.c.) on J.

We now establish the sufficient condition for the controllability of the linear system (4.1).
Theorem 4.2.1 Consider the control problem (4.1) whose unique solution z(t) is given by
(4.2). If the matriz U(0,t;) defined by

t .
U, [L]) = il S Y(0,k)8(k, $)C(s)

U(0,4;) = x[CT(s)®T (k,s)WT(0,k)]ds, on [0, [t/]] (4.3)

UL, 1) = Jiy (0,5)C()CT(s)7(0,5)ds, on [[tg],1)]

is nonsingular, where T denotes the transpose, then the system ({.1) is c.c..
In this case onc of the control functions which transfers the system from (0, zo) to (iy,zy)

s given by.

—CT ()@ (k, )UT(0,K)UT (0, [t /)% — ¥(0,1,)F], on[k—1,k]
u(t) = =CT(O)PTO,00([tf], 1) (4.4)
x[®'(1y,0)¥(17,0)% — @(0,17)F] on [[ts], 14].

where k= 1,2, [t;].
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Proof : Since U(0,%;) is non-singular, the control function u(t) given by (4.4) is well

defincd. Using (4.2), we get

[ts)
2Aty) = W(t;,0)20 + ¥(1,,0 Z/ ¥(0, k) ®(k, $)C(s)

[=CT(s)07 (k, )97 (0, kYU (0, [t D15 — 9(0,£) L )ds,
+9(15,0) [ 90,9C()[-CT()97(0, U (1,1
(@7t 000,02 - 80,1 L)ds
= W17, 0)20 — WL, 0)U(O, 1)U 0, 1) - 900,12
= @ty OU(t, i) U ([t L)(@7 (11, 0) (11, 0)5 — #(0,11) ).
= W(s,0)2 — \I’(tf,O)% + % - \D(t,,O)% + 22_,

= 2]7
as required. Hence,the system (4.1) is c.c.

Remark 4.2.1 The control function u(t) defined by ({.4) is a piecewise continuous func-
tion. However, if we assume that,
(H1) W(0,k)=¥(0,k+1)D(k+1,k), k=1,2,....[t;] - 1.

(H2) 970, [t,)U(0,[t])9(0, 1) = 70, [t,)) U ([ts], £1)9(0, )
then, these conditions ensure that the left hand side and right hand side limils match at

cach of the integer points, making u(t) continuous.

4.3 The Nonlinear system

In this section, we obtain a sufficient conditions for the controllability of the nonlinear system.

Consider the control process described by the nonlinear equation,

2'(t) = A(t,z(1),u(t))=(t) + B(t, 2(1), 1!(1))2([f])+C(i,Z(t),u(i))‘“(i)+g(i,2(i),u(i))

z(0) = =z, (4-5)
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teJ=1[0,t], zz,9€ R",ueR™. A(t, zu),B(tzu)aren xn matrices
and C(t,z,u) is a n x m matrix. The matrix functions A(t, z,u), B(t,z,u), C(t, z,u) are
all continuous with respect to their arguments.

The related linear control system is given by,

(1) = A(t,w(t),v(t))z(t) + B(L,w(?), v(t))2([t]) + C(2, w(t), v(t) Ju(?) + g(t, w(t), v(t)),

2(0) = 2z, | (4.6)

where w = w(t),v = v(t) are continuous functions of appropriate dimensions as z and u
respectively. Observe that A(t,w,v), B(t,w,v),C({,w,v) and g¢(t,w,v) are functions
of time . Hence,by Lemma 4.2.1, the solution of the system (4.6) is given by

2(t) = V(t,0,w,v)zo

"
+ W(t,0,w,v) Z/ U (0,k,w,v)P(k, s, w,v)[C(s,w,v)u(s) + g(s,w,v)]ds
k=1 k-1 '

¢
+ ®(¢,0,w,v) /[] ®(0, s, w,v)[C(s,w,v)u(s) + g(s, w, v)]ds (4.7)
¢

where ®({,t,w,v) = E, ®(t,0,w,v)®(0,s,w,v)= ®(t,s,w,v),

U(t,t,w,0)=E, U(,0,w0,0)¥(0,k,w,v) =¥k, w,v).

Theorem 4.3.1 Consider the linear control system (4.6) whose solution z(t) is given by
(4.7). If the matric,

U(0,t;,w,v)

( U(o, [t/], w,v) = E’;]l JEW(0,k,w, v)®(k, s, w,v)C(5,w,v)

X[CT(s,w,v)®T(k,s,w,v)PT(0,k,w,v)]ds, on [0,[t/]]

= 4 (4.8)
1

U([t/) 1y, w,0) = f[ti] ®(0, s, w,v)

x[C(s,w,v)CT(s,w0,v)®T(0, 5, w0,v)]ds, on [[t,),1/]
is nonsingular, then the control process (4.6) is c.c.. In this case one of the control functions

which steers the stale (4.7) lo a preassigned z; at time t; is given by.
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u(t) = u(t, 0, 20,1y, 27, w,v)

( —CT(t,w,v)(bT(k,t,w,v)\IJT(O,k,w,v)U‘l(O,[tj],w,t})
X[2 — W(0,t7,w,v)F

|+ S8 A (0, kw0, 0)0(k, 5,w,v)g(s,w,v)ds] | on [k —1,],

— (4.9)
—CT(l,w,v)q)T(O,t,w,'U)U_l([tf],tj,w,v)

x{@7}(t7,0,,v)¥(t;,0,w,v)2 — ®(0,t7,w,v)%

\ +f[z;] Q’(O,.s,w,v)g(s,w,v)ds} ) ‘ on [[tf],tf] ,

where k = 1,2, ---,[t;]. The control function w(t) is continuous if the following conditions

are satisfied.
(H3) W(0,k,w,v) = ¥(0,k +1,w0,0)®(k + 1, k,w0,0), k=1,2,...[(,] - 1.

(’H4) WT(Oa [tf]) w, U)U_I(O) [”f]’ w, 'U)\II(O, ty,w, 'v)

= &7(0,[t/],w,v)U([t4], ¢y, w,0)¥(0,1;,w,v)

Proof : Since U(0,¢;,w,v) is non-singular, the control function u(t) = u(t,0, 20,17, 27,w,v)
given by (4.9) is well defined. Using (4.7) and (4.9), we get.
z(ly) = ¥(ts,0,w,v)z

sl
+ W(t;,0,w,v) Y /}: V(0,k,w,v)®(k, s,w,v)C(s,w,v)
k=1 "h—1

{—CT(s,w,0)®7 (K, s,w,v)¥7(0, &, w, v)U(0, [t/], w,v)

(5 = 9(0,27,w,0)2)

["f]H

k
+ Z/ (0, k,w,v)0(k,s,w,v)g(r, w,v)dr]}ds
k=1 k-1

[tl] k
+ W(ty,0,w,v) Z / (0, k,w,v)®(k,s,w,v)g(s,w,v)ds
k=1 7k-1

¢
+ Q)(tf,O,'w,*v)A,]q)(O,s,'w,v)C(s,w,v)
ty
{—(.?T(.s,w,v)<bT(0,.s,u.J,'U)U_]([tf],tf,'w,'v)

[@7(ts,0,w,v)¥(t),0,w, v)? —®(0,%;,w, v)?—)j)
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—/ (0, 7,w,v)g(T, w,v)dr]ds}

+ <I>(tf,0,w,v)/[ ]Q(O,s,w,v)g(s,w,v)ds
ty
= W(ty,0,w,v)zo — ¥(t;,0,w,v)U(0, [t]),w,v)U7(0,[t/],w,v)
E \IJ(O,tf,w,v)%
fts]

+Z/ V(0,k,w,v)®(k,s,w,v)g(s, w,v)ds]

[t1]
+¥(t;,0,w,v) Z/ U(0, k, w,v)®(k, s,w,v)g(s, w, v)ds

— ®(t4,0,w,0)U ([tf],tf,w,.v)U_]([tf],tf,w,v)

[@7(t;,0,w,v)¥(ts,0,w, v)—z2 - @(O,tf,w,v)zo—f)

2

i /[ (0, 5,w,v)g(s, w,v)ds]
1]
:
+&(t,0,w, U)/[‘ !]<I>(0,s,w,v)g(s,w,v)ds
ty
= \ll(tf,o,'w,v)Z(]— (tf,O w, 'U) +——-——\I}(tf’0 w v)z +_2_-f,

= Zf,

as required. Hence the system (4.5) is c.c.
The condition (H3) ensures the continuity of the control function at the integer endpoint
of the each unit interval, except at the point [t;], where the continuity of w(¢) is ensured
by the condition (H4) .

We shall now employ the fixed point technique to establish the controllability of the
nonlinear system.

Let C[J, IR"*™] denote the Banach space of (n+m) dimensional continuous functions on
J. Consider the operator,

T C[J, R o C[T, R
defined by T'(w,v) = (z,u), where z,u,w,v are as in (4.5) and (4.6).
Theorem 4.3.2 If there exils a closed bounded convex subset S of C[J, R™*™] such that the
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operator T is invariant for S, then the system (4.5) satisfying (4.8) is c.c. on J.

Proof : Choose vectors w,v so as to agree with z,u given by (4.7) and (4.9). Then these
vectors are also solutions for the system (4.5). This guarantees the controllability of the
system (4.5). Thus the controllability of system (4.5), becomes a problem of existence of a -
fixed point for (4.7) and (4.9). If there is atleast one set of fixed point for (4.7) and (4.9),

then this solution is also a fixed point for (4.9) and (4.10) given by

2(1) = Y(t,0,w,v)
O ]
(20 + Z/ U(0,k,w,v)®(k,s,w,v)C(s,w,v)v(s)ds
k=1 k~1

Mk
+ E/k U(0,k,w,v)®(k, s,w,v)g(s, w,v)ds] (4.10)
k=1 -1 )

+ ®(t,0,w, v)[/[t; ®(0,s,w,v)C (s, w,v)v(s)ds
+/[:](D(O,s,w,v)g(s,w,u)ds.]
The operator T is continuous on C[J, IR"*™]. Let S be a closed bounded convex subset of
C[J, R**™] and T be invariant for S.
Therefore T(w,v) = (z,u) € S for any (w,v) € S. Using (4.9) and (4.10) we conclude that

T'(5) is bounded and cquicontinuous. Hence by Schauder’s fixed point theorem we conclude

that there exists atleast one fixed point of T'.

4.4 Comparison Theorems

In this section, we derive results based on comparison principle [13]. Here we try to examine
the conditions under which there exits a set which satisfies the conditions of Theorem 4.3.2

Let ||.|| be a norm on some Banach space and |.| be the Euclidean norm. Define the set
S = {(w,v) € C[T, R |w(t)] < (1), [v(t)] < B(t)}

We set the following conditions:

(A1) [|®(L, s,w,0)|| < My >0, for all ¢,s € J.
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(A2) || ¥(t,0,w,v)|| < My >0, forall t € J.
(A3)  |C(s,w,0)]| < M3 >0,for0< s<ttel.
(A4)  |zo] = M, > 0.
(A5)  [|%(0,k,w,v)P(k, s,w0,v)|| < my,
fork=1,2,---,[t;]], 0<s< k<t teJ.
"(A6) Maz{m} =Ms, fork=1,2,--- [t;].
(A7) |g(t,z,w)] < h(t,|z], |u|), where h(t, a(t), B(t)) is a continuous function
of its arguments, and nondecreasing for any «(t), 8(t) > 0.
(48)  [|C7 (1, w, v)®7 (k, 1, w, 0)BT(0, k, w, v)U=(0, [t ], w, 0)
x[2 = (0,1, w,0) L] <
fork=1,2,---,[t;], 0<s <k <t te
(A9) ([T (2, w,v)dT(k, 1, w, v)BT(0, k, 1w, v)U=1(0, [¢,], w, v)
xW(0,k,w,v)P(k,s,w,v)|| < px
for k=1,2,---,[ty], 0< s <k <t te .
(A10) by = maz{ni}, by = maz{p:};
for k=1,2,---,[t;], 0<s <k <t tel.
(A11)  [|CT(t,w,v)®T(0,t,w,v) U~ ([t,], 1, w,v)
x[®1(ty,0,w,v)¥(Ls,0,w,v)2 — (0,17, w,v) L] < b, € J.

(A12) [|CT(,w,v)®T(0,1,w,v)U=([t/], t7,0,0)®(0, s, w,v)|| < b],t,s € J.

We have the following result.
Theorem 4.4.1 If there exits atleast one pair (a(t), (1)) such that the inequalities.

[t , ] _
at) > ao—l—alfo B(s)ds + aZ/O h(s,a(s),B(s))ds

¢ ¢ _
+as /ft] B(s)ds + aq /[i] h(s,a(s),3(s))ds, teJ. (4.11)
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and
bo + by JE h(s, a(s), B(s))ds, on [0, [t/]]
B(t) > o (4.12)
By + b fi!y h(s, a(s), B(s))ds,  on [[ts],1)].

are satisfied for any constants ag, b, by > 0, and for some constants ay, a3, as, a4,

51, b >0, then the system (4.5) satisfying (A1) to (A12) and ({.8) is c.c. on J.
Proof : Using (4.10) and conditions (A1) to (A7), we get,

[z < [[¥(¢,0,w,v)]
Mk :
[lzo + Z/k 1 (1%(0, k,w,v)®(k, s, w,v)||||C(s,w,v)|||v(s)|ds
k=1"%"

Mk
+Y / (19(0, k, w,v)®(k, s, w,v)[||g(s, w(s),v(s))|ds]
k=1 k-1

+ II‘I’(t,O,w,v)H[/[; [12(0, 5, w, V) HIIC (s, w, v)lf[v(s)]ds

+ /[t] 19(0, 5, w, v)[lg(s, w(s), v(s))llds.

[ [ 1 .Y
Ma[Ms + Y /k my Ms Jo(s)|ds + 3 / my h(s, [w0(s)], jo(s)])ds]
k=1 -1 k=1 k=1

IA

1 1
+ [ M My o(s)lds + [ My h(s, (o)l Jo(s) s
1 [ o
My My + M, M, Ms/ B(s)ds + My My f h(s, a(s), B(s))ds
4] (4]

+ M, Ms /u ; B(s)ds + M, /{t ; h(s, a(s), B(s))ds.

IA

= ao+a /O[t] B(s)ds + ay /OM h(s,a(s), B(s)ds

t oy t . —_—
+a3/[1]ﬁ(s)ds + ay /mh(s,a(s),ﬁ(s))(lb, ted,

< a(),

where ag = MMy, depends on initial value 2y and a;’ s are suitable constants defined by
system parameters My, M,, M3, Ms.
Next using (4.9) and (A7) to (A10), we get,

()] < [1ICT (2, w,v) @7 (K, 1, w,0)B7T(0, k,w,v) U0, [t], w, v)
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x[? - \P(O,tf,w,v)—;i”
{tl

+Z/ ||C'T(t,w,v)(I)T(k,t,w,v)\IlT(O,k,w,v)
k=1 k-1

xU™1(0,[t], w,v)¥(0,k, w,v)®(k, s,w,v)|||g(s,w,v)|ds

bo + by /0[1,1 h(s, a(s), B(s))ds
B(1) on [0, [¢4]],

IA

IA

and, similarly, using (4.9), (A7), (A11), (A12), we can obtain,

WOl < B+8 [ h(s,a(s), B(o)ds

< B(1) on [[tf]atf] )

where by, b, depend on both initial and terminal value zq, z5. by, d] are constants
defined by system parameters. This implies that (z,u) € S and thus existence of S is
established. Hence,by Theorem 4.3.2 system (4.5) is c.c. on J.

We can simplify Theoremn 4.3.3 by making the nonlinear function ¢ indepeundent of z.

Consider the system,

() = Al =0, u(O)A0) + B, =(2),u) (i) + C(L 20, w(t)ut) + a(t, (1)

2(0) = 2z, (4.13)

tedJ=10,t], z2,9€ R, u€e R™. At z,u),B(l,z,u) are n X n matrices

and C(1,z,u)is an X m matrix. The matrix functions A(t,z,u), B(t, z,u), C(l, z,u) are all
continuous with respect to their arguments. Let us suppose that condition (A7) is replaced
by,

(A7) |g(t,w)] < h(L,|ul]), where h(t,3(t)) is a continious function of its arguments, and
nondecreasing for any 3(t) > 0.

We have the following result.
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Theorem 4.4.2 If there cxists atleast one nonnegalive solution B(t) of the incquality

bo + by 31!] h(s,B(s))ds, on [0,[t/]
pt) > (4.14)
by + 8 figy h(s, B(s))ds, on [t 4]

for any by, bl > 0 and for some constant by, b} then the system (4.13) satisfying the condi-

tions Theorem 4.3.3 with (A7) replaced by (A7), is c.c. on J.

Proof : Since ¢ is independent of z, we have

t] t
a(t) > ao+a; /0[ B(s)ds + a2 /onh(s,ﬂ(s))ds

t T
+as /[t Bls)ds +ay /[t | hls, Bs))ds,

and
bo + b1 Jo " (s, B(s))ds, on [0,[t]
At) > (4.15)
B, + b Jiy hls, B(s))ds, on [[t],1)].

Now, if the inequality (4.15) has a solution 3(t), then the first inequality always has a solution

sufficiently large. llence,the result.
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Chapter 5

SECOND ORDER NONLINEAR
DIFFERENTIAL EQUATIONS

5.1 Introduction

In this chapter, we deal with second order nonlinear diffcrential equations with piecewise
constant deviating argument (PCDA). The second order equations with PCDA has been a
topic of interest during the last decade, and is not yet explored completely. Some particular
equations are discussed by the authors in [39, 67]. It is known that cquations with PCDA
represent a hybrid of continuous and discrete dynamical systems and combine the properties
of both differential and difference equations. These hybrid systems are of interest for those
working in control theory and biomedical ficld. The methods of obtaining the results are
similar 1o those applied for first order equations with PCDA.

Section 2 deals with the existence of solution of the nonlinear equation, under condi-
tion that the corresponding first order ordinary differential equation with parameters has a
solution.

In section 3, we oblain the solution of a second order linear differential equation with
PCDA. We also establish the linear variation of parameters formula. From these we deduce
the particular cases required for the monotone iterative technique.

The next section contains the main result of this chapter. Here we establish < x: existence
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of the maximal and minimal solution by using monotone iterative technique. An important
lenuna dealing with an inequality required for monotone method is proved.

Finally, section § is concerned with a particular second order nonlinear differential equa-
tion with PCDA. We obtain —+existence-of solution and state the necessary condition for
the solution to have a zero on each unit interval with integral end points. An example is

constructed in support of the result.

5.2 Existence of solutionv

In this section, we prove ‘.« existence of solution for the general second order nonlinear
differential equation with PCDA. We employ the method used by Aftabizadeh {3] for the
first order equation.

Consider the nonlinear equation,
2" (1) = f(z(1),2({1])), =(0)=co, 2'(0)=4do (5.1)

where [-] denotes the greatest integer function, f is a continuous function
on IR x IR, and t € 1 =10,00).

We need the following definition.

Definition 5.2.1 A solution of the equation(5.1) on I is a function (1) that satisfies the

condilions
(1) z(t) is continuously differentiable on I.

(ii) 2" (1) caists al cach poinl t € 1 with the possible exception of points [] € I where f

has onc sided derivatives.

(1it) Equation( 5.1) is salisfied on cach unil interval [n,n + 1) with integral end points.
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The equation(5.1) contains an argument that is constant on interval with integral end
points. Continuity of the solution at a point joining any two consecutive intervals leads to
recurrence relations for solution at such points. Hence,the solution is determined by the
finite set of initial data, rather than by an initial function..

Along with equation(5.1), we consider the ordinary differential equation with

parameters

(1) = Fa(t) ). (5.2)
If F'(z(1),A, ) is continuous and different. from zero on a set S, then on S there exists a
general integral,

G (x(t), A, pn) = t+h(Xp) (5.3)

with an arbitrary function h(A, p).

We have the following result on existence and uniqueness of solution of (5.1).
Theorem 5.2.1 Assume that
(i) F(z, A\, 1) € C(R?) is different from zero on a set S.

(ii) Equation (5.2) satisfics existence and uniqueness conditions in R® and its solution can

be extended over I.
(iii) Equation (5.8) has a« unique solution with respect 1o ¢pyy.
(iv) The system of difference equations (5.9) and (5.10) is uniquely solvable.
Then the IVP (5.1) has a unique solution on I.

Proof Let z,(1) be a solution of the equation(5.1) ou the interval [n,n + 1) satisfying the

conditions 2(n) = ¢, and z'(n) = d,, . Then we have from (5.1)

zo(t) = fza(t),cn).
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This on integration yields.

) = dit [ C (2n(s), ) ds.

n

Let

i
F (2a(t), caydn) = du + ] 1 (@n(5), €) ds.

Using (5.4) and (5.5) we get.

’

z.(1) = F(za(t), e dy).
The equation (5.6) has solution
G(zn(t),cn,dy) = t+ h(en, d,).

Put t = n, to get
G(en,enydn) = n+h(e,,dn),

and therefore we get,

G (za(l), Cnydi) — G (CnyCnydy) = t—n.

This can be written in the form,

25, (t) dz _y
/ Flx,emdy)

At t =n+ 1, we have

/‘Cn+1 dm _ ]
o Flz,cn,dy)

By (iii), (5.8) has a unique solution with respect to ¢,4y hence we have,

Cop1 = ¢(en,dy), n=0,1,2,..

for some function ¢. Similarly, from (5.6), we can obtain the relation,

doy1 = F (g1, 0n,dn), n=0,1,2 .

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

By (iv), the system of difference cquations consisting of (5.9) and (5.10) can be uniquely

solved with the initial values ¢, d, known. Substituting these in (5.7), we can find the

solution &, (l, ¢,, d,) of (5.1) on the interval [n,n + 1).
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5.3 The Linear Equations

In this section, we establish the results required for the use of monotone iterative technique
in the next section, which is the main result of this chapter. We first prove the existence
of a solution of the IVP for the second order linear differential equation with PCDA. Then
we obtain the variation of parameters formula for the associated non-homogeneous equation
with PCDA.

Consider the linear IVP

2'(t) = @r'(t)+a(t) + asz([t]),

2(0) = ¢, z(0) = do (5.11)

]

where a;, az, a3 are constants a; # 0, a3z # 0, co,do € IR.

We have the following result,

Lemma 5.3.1 The IVP (5.11) has a unique solulion on I . The solution on the inlerval

[2,n + 1) satisfying x(n) = ¢, and £'(n) = d, is given by the equation(5.15) below.

Proof : Let x,(1) be the solution of the IVP (5.11) on the interval [n,n + 1).

Let (1) = ¢; and 2'(i) = d;, for i = 0,1,2,3, ..., then we have.

:1:;:('[) = al;r,;(t) + arx,(t) + asca
(n) = ¢, x(n)=d,. (5.12)

I m, and s are two distinct roots of the equation m? — aym — a; = 0, then by using
vanation of parameters formula for second order linear ODE with constant coefficients, the

solution of the equation(5.12) is given by

(1) = ape™ 4 B,e™

ma _ mg N7
eml(t n) . —eTng(i n)] , (5.13)
my — Moy my — My .

-1
—a; a3cy [] +
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where o, and [, are arbitrary constants. Differentiating, we get

"o mat ] it
To(l) = mione™’" +myfne’?
_ m;msy - myms o(f—
—azlaacn[ ST emltmn) TR ema(t-m)p (5.14)
my — My my —1Mmy

Letting t = n, these equations give.
M mon
Cp = ue™" + ﬁne 2

and

d, = apmye™™ + Famoe™" .

Solving for a,, 8, and substituting in equations (5.13) and (5.14), on simpliﬁcat,'iou we get

—1 -1
—mo(l + a, aj _ my(1 +a; ag _ _
.’L'n(t) = ¢, ( 2 )eml(t n) 4 ( )emg(t n) (l~2l(13
o my — Moy ny — My
e"ml(t—n) em2(t—n)
+ dn - , (5.15)
my —1my my — Mgy
and
-1 -1
. —mamy(l 4+ a3 as) ,, (@ myma(l + a3 as) .
. _ ! 1 (t—n ma{t—n
(1) = ¢ . e )4 . e )
m; — my my —me
; my(t—n) Jmig(t—)
mye”( mMoe
+ d, — , (5.16)
1My — My my—mq | ?

respectively. Put £ =n 4+ 1 in equation(5.15), then we have

—my(1 + a{laa)em1 n my(l + “51‘13)67712 —1

Cat1 = Cp —a, as

my —my m, — Mo

e (,7772
my — My my — My

which can be written in the form

Cny1 = Cnky + d'nk"b
where ky, kg are suitable constants. Similarly, letting 1 = n + | in equation(5.16), we get

dn-H = Cnll +d,l,
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where [, [; are suitable constants.

¢, . .
Let v, = ( " ) , then the above two recurrence relations give,

dy,
Vg1 = ky ky Vp. , (5.17)
ly; <Ly

a homogencous diflerence equation. We look for a non zero solution of the equation (5.17)
in the form v, = rA", where r is a constant column vector. This implies that A satisfies

the equation

det(A— AI) =0, where A = ( I;I 1;2 ) A
1 b

This yields, A? — (k; + L)) + kyla — L1k, = 0. Assuming that this equation has two
roots, A;, Ay (A1 # Ag), we get the general solution of the difference equation (5.17) as
v, = MAT + 1Ay with r; are constant column vectors depending upon A;, 7 = 1,2. The
r;’s can be found by using initial conditions.

If Ay = Ay = X then, v, = rnA". The solution z,(¢) is then obtained by substituting the
components of v, in the equation(5.15).

The case m; = my can be dealt with similarly and we can obtain the solution x, . This

completes the proof.
Remark 5.3.1 In the following results we shall consider only the case m; > ms,.
We need the following simple deduction from Lemma 5.3.1 . We state it without proof.

Lemma 5.3.2 The solution of
(1) = Mz(t) + Nz([t]), z(0) =co, «(0) = do,

where M, N # 0, are constants, cxists on I.
On the interval [n,n + 1), the solution is given by,

;(:n([) = ¢, {Wem(t—n) + we~\/ﬁ(t~n) . AI_IN}

1 VM(t-n) _ ,~V/M(t=n)
+dn2m{e —e }. (5.18)
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We now establish a useful tool in the study of properties of the solutions of differential
equations, namely the variation of paramecters formula. First we state the result on non-

homogeneous difference equation from [27].

Lemma 5.3.3 The unique solution of the [VP,

y(n+1) = A(n)y(n) +g(n), y(no) = o

is given by

y(n,no, Yo) = (nﬂ A(i)) Yo + s (nI-I A(i)) g(r)

1=ng =ng \i=r+1

If A is a constant matriz , and ng =0, then we have
n—1
y(n,0,%0) = A"y + Y_ A" " Ig(r)
r=0
We now prove the variation of parameters formula.

Lemma 5.3.4 ( Variation of Parameters formula )

The Linear non-homogeneous equation
' (t) = ayx (1) + agz(t) + asz([t]) + f(2) (5.19)

satisfying x(0) = co, ©'(0) = do , where f(t) is a continuous function on I,
az, a3 # 0 has on I a unique solution.
The solution x,(t) on [n,n +1) salisfying x(n) = c,, ' (n) =dy

is given by the cquation(5.21) below.
Proof : Let ,¢ be the solution of the equation (5.19) on [n,n + 1), then we have

zo(t) = arzn(t) + agza(t) + asen + (1)

z(n) = ¢, =z (n)=d, ' (5.20)
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If my, my (my # m2) are roots of the equation m? — aym — ay = 0, then using variation of

parameters formula, we get

—mo(1 -1 ny(1 .
enlt) = Cn{ my(1 +a; a3)cml(t_n)+m1( + a3 a3)em2(t—n) _ a;—la:‘}

my —my my — My
mi(t—-n) _ _mo(t—n)
+d, {e ; } (5.21)
ny — My
1 trom
b i) _ gmatt=9)] p(6\ds
m]—’fng/n [ }f(b) §)
and
) = {—mlmg(l + “;1“3)em.(t—n) + moma (1 + a;la;,)emz(t_n)}
my — Moy m) — my
mleml(t—-n) _ ,,nzemg(t—n)
+ d, ' (5.22)
my — My
1 i my (t—s) ma(t—s)
—-——/ [mye™ =2 — myem2(t=2)] f(s)ds.
my — My Jn

Letting t = n + 1, we obtain

Cnp1 = Coky 4 dpka + Pi(n) ;

d‘n+l = Cnl] + dnlz + 1/)2(']1) 7 (523)

where ky, ko , 1y, l; are suitable constants as in Lemma 5.3.1 and

1

ntl my(n+1-s) (n+1-s)
. 1-s m - )
'(/)]('”,) = m[l [6 ! Rl 2 ]f(S)dS )
) 1 n+1
1/’2(’/2) = m/ [7'I'I,|(:m'(n+l_s) _ ,,.”26."12("‘*'“8)] _[(S)(is .
b, n

n

o c : : .
Taking v, = ( d" ) , we get from equation(5.23), a non-homogeneous difference equation,

Vi1 = Av, +P(n), v(0) = vy,

ki k )
where A = ( l: l: ), and ¢(n) = ( i;&; )
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By using lerma 5.3.3, we get

n—1

v, = A"vy + Z A p(r)

r=0

The solution x,(t) is obtained by substituting the component of v, in equation(5.21). .

5.4 Monotone Iterative Technique

In this section we apply the monotone iterative technique to prove the existence of minimal
and maximal solutions for the second order nonlinear differential equation with PCDA. We
first define the concepts of upper and lower solution and prove an inequality result required
for the monotone method.

Consider the nonlinear equation,

1H

() = f(a(t)2(1]), 2(0) = co, 2(0) = dy (5.24)
where [ € C{I x IR x IR, IR]. We have the following definition.
Definition 5.4.1 4 continvous function u(t) on I is said to be a lower solution of (5.24) if

v exists al each point L € I with the possible exception of points [t] € 1

where one sided derivatives exist, and
u'(t) < f(tu(t),u((t),  w(0) <o, u(0) < do. (5.25)

It is said to be an upper solution if the reversed inequalities hold.

We nced the following Lemma, which is deduced from Lemma 5.3.2 .

Lemma 5.4.1 Suppose that x € C[I, IR] and the derivative z"(t) exists al each point t € I
with the possible exception of the points [t] € | where one-sided derivatives exist. Assume

that

1

z (1) < Ma(t) + Nz([t]), | 2(0) =<0 2'(0)=dy <0 (5.26)
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where M and N are constants such that

S —Mcosh(\/l_w‘.u).
= [cosh(VM.v) — 1]’

O<v<l; M>0. (5.27)

Then x(t) <0 on I.

Proof : Fort € [n,n+1), n=0,1,2..., consider
fil(i) < Mzu(t)+ Neoy, zp(n)=c¢, <0 3:;(”) =d, £0.

Using equation(5.18) and condition(5.27), we get ,(t) < 0, t € [n,n + 1). Using continuity

of the solution this yields z(t) < 0 for ¢ > 0.

We are now in position to prove the main result of this chapter, by using the monotone
iterative technique. This method is constructive, and yields monotone sequences converging
to solutions of (5.24). These sequences are such that, each of its members is a solution of a
linear equation with PCDA. The advantage of the technique is that these solutions can be

computed exphcitly.

Theorem 5.4,1 Let g and vg be the lower and upper solution of equation(5.24) respectively
such that ug(t) < x(1) < vo(t) on I, where x(t) is the solution of (5.24) existing on I. Suppose
that

(H1) f(t,z,y1) — f(t,22,y2) > M(zy —22) + N(y1 — y2), 120,

for wo(t) < as(t) Sai(t) Swoft),  wo(t) Swa(t) < u(t) Swo(t) and

—~Mcosh(vVM.v)
N> ,
~ [eosh{(VM.v) - 1]

Then there erists monotonic sequences {wm(1)} end {v,,(1)}, with uo(t) and ve(t) as lower

O<vl, M>0

and upper solutions vespectively and such thal
¢ :
U —> w(t),  Om(t) — v(t) as m —> oo monotonically on I.

u(l) and v(t) are mintmal and maximal solution of the equation(5.24) respectively.
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Proof : For any w € [I, IR] such that uo(t) < w(t) < v,(t), consider the lincar cquation,
2 (1) = J(t,w(t),w0([1]) + M{z(t) — w(t)} + N{z([t]) - w([t])} (5.28)

with z(0) = co, 2'(0) = do. ~

For every such w(t), there exists a unique solution z(t) of equation(5.28) on I.

Define a map T by T'w = x, where z is the unique solution of equation (5.28). This map is
used to define the sequences {un, ()} and {vn,(t)}. We need to prove the following:

(a) wo < Tug, wvo>Tug

(b) T is a monotonic operator on the segment
(1o, vo) = {z € C[I, R] : uy(t) < z(t) < wvo(t)}

Proof of (a): Let Twy = w; where u; is a unique solution of the equation(5.28) with
w = u())na.l'nely;

H

up (1) = f(t,u0(t), uo([t])) + M{us (1) — wo()} + N{ur([]) — uo([t])}, (5.29)

'

1{0) = o, 1, (0) - do

Let p(t) = u3(t) — uo(t). On each unit interval [n,n + 1), n =0,1,2..., we have,
Pult) = uin(l) — won(t), where uy,(t) satisfies equation(5.29) on [n,n + 1),
when ug(t) = won(t), ura(n) = cn, 1) ,(n) = dy and ugx(t) satisfying equation(5.25)
on [n,n +1). Then we have

" H H

Pa(t) = uy (L) —ug,(t)
> ), (1) — f(t,won(t), wou(n))
= M{uin(t) = 10a(t)} + N{usn(n) — uon(n)}
= Mpu(t) + Npa(n).

Note that

pu(n) = wan(n) — uou(n) = e — wou(n) > 0,
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. and

p,(n) = u;m(n) - u;,n(n) =d, — u;,,n(n) >0.
. By Lemma 5.4.1, we get p,(t) >0 fort € [n,n+1), n=0,1,2,.... and hence P(t) > 0
on I. This shows that w;(t) > wug(t) or ug(t) < uy(t) = Tue(t), where u, satisfy .the
gqlla.tion(5.28) with w = ug.
Similarly, by letting T'vp = vy, where v; satisfying the equation (5.28)

with w = vy and proceeding as above , we can show that vy > v; = T'vg

Proof of (b): Let w;,w; € C[I, IR] such that
up(1) < wi(t) < wa(t) < wo(t).

Suppose that 2, = Tw; and 23 = Tw,. Set ¢(t) = x2(t) —z1(t). So that on each unit interval

[n,n + 1), we have

H n

Qn(t) = 'T‘Z,n(t) - ‘Tlll,n(t)7
where notations are as described above . Using equation (5.28), we get,
() = ft,wan(t),wan(n)) — f(t,w01.(1), w1 (1))
+M{xy,(t) — w2 a(t)} — M{z1a(t) — w1,(1)}

+N{z2n(n) — w2 n(n)} — N{z1a(n) — win(n)}.

Using condition (/11), we get.
(1) > M{wza(t) = 101,0(1)} + N{wz(n) — wi,4(n)}
+M{zg,u(l) — wy,u(1)} + N{z2,n(n) — wan(n)}
—M {2y n(t) — 105,(1)]} = N{z1n(n) — win(n)}.
On simplificalion we get
(1) = M{zza(t) = 2100} + N{wan(n) — x1,0(n)}
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= Mg, (t) + Ng.(n).

Also we have ¢,(n) >0, ¢,(n) > 0. Therefore, again by making use of lemma 5.4.1,
g.(t) > 0fort € [n,n+1), n=0,1,2.., and hence ¢(t) > 0 on I. This shows that

x2(t) > @1(t) or Twy > Twy, for wy, wa € [uo,vo] and wy < wa. Thus (b) is proved .

Now define the sequences u,, = Tup,—y and v, = Tv,_, , where u,, and v,

satisfy the equations

() = ftumoa(t), uma (1) + M{tm(t) = wn-1()} + Num([1]) = tm-1([)}-

'

u7”(0) = 0o, um(O) = do)

v;(t) = [t vm-a(t), ”m—l(m)) + M{vn(t) — vm-1(t)} + N{vw([t]) - ”m—l([t])}

’Um(O) = <y, U;n(O) - (lo)

respectively. Proceeding as in the above arguments and using induction, we get

uo(t) < wur(t) < oo S up(t) S vp(t) < .. <oy(t) <wo(t), >0
. 1t then follows that limy, e n(t) = w(t) and limm,oe vm(t) = v(t) uniformly and
monotonically, and u and v are solutions of the equation

"

x (t) = f(t,.’l:(t),.’lf([t])), ‘T(O) = Co, Tl(O) =do .

. In order to show that u(t) and v(t) are minimal and maximal solutions of the equation(5.24),
it is required to show that if z(t) is any solution of tlie equation(5.24) satisfying
up(t) < (1) < wo(t) on I then, uo(t) < wu(t) < a(t) < v(t) <wvo(t)on I .

Let for some m, u,, < x < v, on I. Set p(t) = z(t) — um+1(t), so that

" "

p(t) = = (1) = tnu(t)
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= f(t,2(1), T([t])) — f(t, um(t), um([t]))

—M{ttny1(t) = wm(t)} = N{ttmya (t) — “nt([t])}
which, using condition (H1) yields.

p'(t) > M{z(t) — wm(t)} + N{z([1]) — wm([2])}
“‘M{“mﬂ(i) - “M(t)} - N{“m+l([t]) - "m([t'])}
= M{z(t) ~ tmnr (1)} + N{2([t]) — v ([1])}

= Mp(t) + Np([t])

Since p(0) = 0, by Lemma 5.4.1, p(t) > 0, which implies that () > wp41(t) on 1.
Similarly we can show that z(f) < v,41(f), and hence w4 (2) < 2(t) < Vmt1(t) on I .
This proves, by induction, that w,,(t) < z(f) < v, (t) on I for all m.

Taking limit as m — oo we conclude that u(t) < z(¢) < v(t) on I.

‘This completes the proof.

5.5 Oscillatory behaviour

This section deals with the oscillatory behaviour of the solution of a nonlinear second order
differential equation with PCDA. The solution is said to be oscillatory if it has arbitrarily
large number of zeros. We first establish ¢ . existence of the solution of the equation.

Consider the IVP
(1) +a()f(a([]) =0, z(0)=co; 2'(0) = do (5.30)

where f € C[IR,IR], a« € C[I,IR], I=[0,00).

We have the following theorem.

Theorem 5.5.1 Equation (5.30) has a solution on I.
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Proof : We use the method of steps. Let ¢ € [n,n+1), and x,(t) be the solution of
(5.30) on the interval [n,n +1), . satisfying x,(n) = ¢, , and @l (n) =d, .

Then, we have

"

z, (1) + a(t)f(en) = 0,

and hence,

z. (1) =d,— /t a(s)f(en)ds,

n

o) =c.td(t—n)— /nt(t — s)a(s)f(en)ds. (5.31)

Letting { — n + 1, these yields,

n+1
Car1 = Cptdn— / (n+1—3s)a(s)f(cu)ds,
n+1 "
dopr =dp— / a(s)f(eq)ds.

Let

(n+1—s)a(s)f(ca)ds,

Pa(n) a(s)f(cq)d

:‘\:\

n

), we get , a non-homogeneous difference equation,

Taking v, = ( 2"

V1 = Avg +9P(n), v(0) = vy,

(1 T ab(n) — 1(n)
where A = ( 0 1 )7 and ¢ (n) = ( ha(n) )

By using Lemma 5.3.3, we get
v, = A" vu—i—zA""” Yah(r)

r=0

The solution x,(1) is obtained by substituting the component of v, in equation(5.31).
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Remark 5.5.1 When a(l) = a, a constant , the solution z,(t) of the cqualion (5.30) is

given by |
(t—n)
2 )

(1) = cn + dn(t — n) — af(cn)
and the two recurrence relations are

ajic
Cnt1 =c¢p+ dn, — ‘_f(gf)‘,

dny1 =dn — af(cn).

We shall now study the oscillatory behaviour of the solution of the equation (5.30) when

a(t) = a, a constant.

Consider the VP,
£ + af@((1) = 0, 2(0) = o 2'(0) = do (5.32)

where [ € C[IR,IR\ {0}], t€ I=[0,00), a# 0 is a constant.

We have the f[ollowing result.

Theorem 5.5.2 If the solution of equation (5.82) has a zero on unit interval (n,n + 1),

then

2(cn +dn) < af(ch) and &+ 2acaf(ca) > 0. (5.33)
where T, = ¢y, and x;, = dy,.

Proof : Let  xq,(t) be the solution of the equation (5.32) on the interval (n,n 4 1) .

Then
t—n)?
xn(f') =cCp + dn(t ~ Tl) — af(cn)( 5 ) ,
Let ¢, € (n,n+1) be a zcro of x,(1). Then
tn - 2
e+ du(tn — 1) — “f(‘in)g—Tn)— —0.
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This yields,

d, + (i;z1 + 2a(311f(cn)

l,=n+
af(ca)
This implies
dp £ \/d2% + 2ac, f(cn
0< \/ IieA) f(n) <1 and d®+2ac,f(cy) > 0. (5.34)
af(cn

Case(i): af(cn) >0 Then the first inequality in (5.34) yields.

0<d, x \/d?1 + 2ac, f(cn) < af(cy)

and on simplification, we get,

2 (Cn + (ln) < af((:")

Case(ii): af(c,) <0 Then the first inequality in (5.34) yields,

0> d, £\/d2 + 2ac,f(cn) > af(ca)

and on simplification, we get,
2(cn +dy) < af(cy)
Thus in both the cases, along with the second inequalily in (5.34),

we getl the same condition. Ience the result.

Example : Consider the IVP

2(t) + () =0, () =1, 2/(0) = — .

Its solution a¢(t) on (0,1) isgiven by ao(t) =1 -5 — % , and it has no zeros on (0,1) .

Here, the first inequality in (5.33) does not hold.
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SUMMARY

The aim of this thesis is to study nonlinear differential equations with piecewise constant
deviating argument (PCDA). The differential equations with PCDA consolidate several prop-
erties of the continuous dynamical systems generated by delay differential equations, and of
discrete dynamical systems generated by difference equations. An attempt is made to build
up the theory of differential equations with PCDA where the argument is the greatest integer
function [t]. In general, the results of the theory of ordinary differential equations (ODE) are
extended in a suitable manner to get corresponding results in delay differential equations. In
some respects this requires new ideas and novel approach. Equations with PCDA, being a
relatively new topic and of interest for last two decades, there is an opportunity to extend the
known results of ODE to equations with PCDA in particular and delay differential equations
in general. We briefly summarise below the work done in this thesis and point out some
directions for future course of study on differential equations with PCDA.

In the very first .chapter, a gencral introduction of the topic has been given and the
problems taken for study are mentioned. The next chapter deals with a brief survey of the
present status of the work donc on linear as well as nonlinear differential equations with
PCDA. It also includes the results from ODE and nonlinear analysis rclevant to the work
done in the thesis.

In Chapter three, we have discussed the first order differential equations with PCDA.
Some simple extensions of results concerning mecan value property, and upper and lower

solutions are proved. The existence and uniqueness of the solution of
2'(t) = f(t,z(t),z([1])), z(0)==zo, t€J =[0,T}, T > 0. (5.35)

is obtained by using the method of quasilinearisation. The condition imposed on the func-
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tion [ is a convexity type condition | See (H4) of Theorem 3.3.1]. Monotone sequences
of approximate solutions are constructed which converge uniformly to the unique solution
of (5.35). In the next result, this condition is relaxed, by assuming that [ + ¢, for some
continuous function ¢, satisfy the convexity type condition | See (H4) of Theorem 3.3.3). In
both_t.he cases, it is shown that the convergence of the monotone sequences is quadratic.
Further, some inequalities are proved, which may be useful in the stability theory. We have
employed the method of quasilinearisation to prove the exist'ence of solution of the nonlinear

periodic boundary value problem

z'(1) = f(t,z(t),z({t])), 2(0) ==z(2r), te€[0,2n] (5.36)

ITerc a monotone sequence of solutions of some nonlinear equations converges uniformly to a
solution of (5.36). The associated linear periodic boundary value problem is also discussed.
Finally, we have obtained a necessaw condition for a solution of a noulinear equation with
PCDA to have a zero in each unit interval {n,n + 1).

Chapter four is devoted Lo the controllability of a nonlincar system. Sufficient conditions
are obtained for both nonliﬁear as well as the corresponding linear system. The result is
established by constructing a nonlinear operator on some function space and then using
Schauder’s fixed point theorem. Some comparison theorems giving properties of the state
as well as control function are obtained. In the last chapter, we introduce a second order
nonlinear differential equation with PCDA. The main result of this chapter is the existence

of maximal and minimal solutions of the equation
'(t) = f(t,z(t),z([{])), x(0) = co, 2'(0) = do, t € [0,00). (5.37)

The monotone iterative technique is used to obtain monotone sequences converging to max-
imal and minimal solutions. These sequences are constructed by using the solutions of some
linear equations. Existence of unique solution of linear as well as nonlinear equations are also

established. The chapter ends with a discussion on oscillatory behavior of a second order
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equation. Conditions relating to having zeros of the solution in the unit interval [n,n + 1)
arc obtlained.
Problems for further study

Differential equations with PCDA have been found useful in several arcas of application.
Hence it is required that, they are studied in detail. As mentioued above, there appears to
be ample opportunity to study these equations with respect to properties such as asymptotic
behavior, periodicity, anti periodicity, stability, etc.. Boumiary value problems are not yet
discussed fully. Observability of nonlinear system and null controllability can also be studied.
Other problems of control theory include stability and optimality. One can also study Integral

equations with PCDA and Integro-differential equations with PCDA.
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