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Introduction 

Knots and braids were used long before the practice of Mathematization began to 

influence thoughts and actions of Mankind. In fact the use of knots and braids 

predates those of fire and the wheel by countless aeons. Knots and braids are amongst 

the oldest artefacts. They have been used all along human civilizations in various 

activities. These activities range from building houses, bridges and boats to weaving 

and cloth production, from construction of fishing knots and nets to making a apparel 

to decorative braiding of bags, belts and wall hangings. Yet, in spite of their long time 

usage, even to this day there are many (mathematical) aspects of their function such 

as the genera of a given knot and the possibility of isotoping one knot into another 

are not well understood. 

Knots and braids are Geometrical objects and are rightfully placed in the domain 

of Topology. But the use of various techniques of other branches of Mathematics such 

as Combinatorics and Algebra to gain an insight into the subject of knots and braids 

becomes inevitable due to the intricacies involved. Knot theory has now become a 

subject in its own right and has grown by leaps and bounds along a multidisciplinary 

front. It involves a wide diversity of ideas, methods and applications. Since its in-

ception as a proper Mathematical discipline in the second half of the 19 th  century, 

knot theory has made important contributions by way of applications in fields as 
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diverse as Quantum Physics, Atomic Modelling and Molecular Biology. Knot the-

ory is Mathematically abstruse and hence its modelling demands amazingly complex 

Mathematical machinery. 

Following is a brief chronological account of the development of Topological Knot 

Theory [17]. Peter Tait (1831-1901) and his collaborators tabulated and classified 

knots with crossing number up to ten. A mammoth undertaking which took them 

six long years for the classification of knots with crossing number ten alone. Finally, 

they were able to resolve a large number of the alternating 11-crossing knots. The 

work of Tait and his collaborators involving enumeration of knots was rather empiric. 

They were unable to develop the subject rigorously for want of a knot invariant. 

The main problem they confronted was that of isotopy equivalence. The problem of 

isotopy is established as the central problem in knot theory and it is known as the 

knot problem. This problem could not be dealt with satisfactorily until the advent 

of Algebraic Topology. 

In the year 1908, Tietze made the crucial conjecture that the Topological struc-

ture of the knot complement in S 3  carries all the information about the knot. This 

conjecture was established only recently in the year 1988 [3]. 

Henri Poincare (1854-1912) developed the mathematical machinery that enabled 

the use of Algebraic techniques to distinguish between different n-dimensional com-

plexes. Poincare's techniques were useful in studying knots and 3-Manifolds apart 

from fuelling research in higher dimensional Topology. The first successful Algebraic 

Topological invariant attached to a link was the Fundamental Group of the link com-

plement. The Fundamental Group expresses the Topology of the link complement in 

algebraic language that makes it possible to compare different links by comparing the 
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respective Fundamental Groups. Later a general method of writing down a presen-

tation of the Knot Group using a knot projection was introduced by Wirtinger [13]. 

Max Dehn in 1960 also published methods for presenting knot groups. Max Dhen also 

showed by performing Dehn surgery that neither of the oriented Trefoils is isotopic 

to its mirror image. Applications of the Fundamental Group proved the existence of 

non-trivial knots and also helped in the verification of knot tables. However, James 

Waddel Alexander (1888-1971) showed that the Knot Groups are not complete invari-

ants of knots. That is, a knot contains more information than the Knot Group can 

reveal. The Knot Group determines the knot's complement merely up to homotopy 

type. 

Alexander polynomial was one of the first powerful combinatorial invariants in-

vented in knot theory. Alexander also showed that every link is equivalent to a closed 

braid. Markov introduced two types of braid moves and showed that every equivalence 

class of braids determined by the moves resulted in the same link [8]. 

Ralph Hartzler Fox (1913-1973) developed the so called "Fox Calculus" [2] and 

provided an alternate meaning to the Alexander polynomial. This resulted in another 

way of calculating the Alexander polynomial. 

John Conway found a polynomial of knots which was actually a disguise of the 

Alexander polynomial [7]. It was a polynomial that could be calculated directly from 

a diagram by means of a recursive method using certain Skein relations. These Skein 

relations obviated the use of computers and helped expand the existing knot tables. 

Vaughan Jones constructed a link invariant that came to be known as the Jones 

polynomial [8]. His work linked knots to Statistical Mechanics and sparked an inter- 

action between knot theory and braid theory in the light of Alexander's and Markov's 
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theorems. Jone polynomial was able to detect and differentiate more knots and links 

as compared to the Alexander/Conway polynomial. It also led to an outburst of 

discoveries of knot polynomials with more than one variable. Two of such major 

generalizations were the Homfly polynomial and the Kauffman polynomial. Repre-

sentation theory of braid groups helped generate old and new invariants using the 

supported Markov traces. 

Vassiliev, using combinatorics, produced a numerical invariant of knots that asso-

ciates rational number to them [12]. 

Mathematicians have come a long way in understanding links. However, the baf-

fling problem of finding a complete link invariant (if one exists) still remains. Links 

and Knots play central role in applied sciences such as genetics, molecular chemistry 

and statistical mechanics. By themselves they are fascinating geometrical objects and 

remain far from being fully understood on account of not being easily accessible to 

existing mathematical machinery. There are different intrinsic and extrinsic charac-

teristics of Links and Knots that one tries to understand using different techniques. 

To some extent, many of these objects have been distinguished by using different 

combinatorial, algebraic and geometrical techniques. But till date we do not know of 

any technique that completely classifies Links and Knots. 

Following is a brief layout of the work done in this thesis. 

The motivation for the work came from the following facts. Every link can be 

embedded on an orientable surface. The minimum of the genera of all surfaces on 

which a given link can be embedded is known as the genus of the link. Torus links 

or genus one links are well understood, where as the higher genus links are not. Our 

study concerns links generated by multiple connected sums of torus links. A multiple 
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connected sum is a generalization of the concept of connected sum. Connected sums 

generate infinitely many links and so do multiple connected sums. Since multiple 

connected sums of torus links are accessible by Combinatorial techniques and torus 

links are well understood, it is advantageous to study links from this perspective. 

A multiple connected sum of g torus links is a link that can be embedded in a 

surface of genus less than or equal to g. The investigation into multiple connected 

sums of two torus links throws light on the class of double torus links generated by 

performing multiple connected sums. Likewise it is possible to study larger multi-

ple connected sums involving more than two torus links and hopefully extend our 

understanding to all Links and Knots. 

To perform a multiple connected sum of two torus links, we must perform a regular 

cut on each of the two torus links by cutting along a simple arc across the longitudinal 

strands. These arcs must cut the longitudinal strands at equal number of points on 

both the torus links. Then the open ends of the strands cut on the two torus links 

are spliced together in such a way that the arcs along which the cuts were made are 

identified homeomorphically. This can be done in exactly two distinct ways for a 

fixed m-cut on each of the two torus links. A multiple connected sum of two torus 

links L1 and L2 is denoted by L 1 ftL2 . The two ways of splicing the open end points 

of the m-cuts may results in different links. 

There is a naturally associated permutation o- (p, di ) with every oriented torus link 

L(p, q) having a fixed ordered labelling of it's longitudinal strands, given by the action 

o- (p, di ) : Zp zp defined by o- (p, di)(x) = (x + di ) mod p, where di  = ((-1)iq) 

mod p) for i E {1, 2}. The value of i depends on the order of labelling of the p 

longitudinal strands and orientation of the link along which the link is traversed. The 
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cycles of this permutation represent the components of the torus link and induces a 

permutation associated with a regular cut on the oriented torus link. The permu-

tations associated with the two regular cuts along which a multiple connected sum 

is formed, induce a permutation associated with the multiple connected sum and is 

referred to as the resultant permutation. Each cycle of the resultant permutation rep-

resents a component of the associated multiple connected sum and viceversa. Every 

double torus link that is a multiple connected sum of two tori admits an unambigu-

ous parametric representation. A method using division algorithm to generate the 

permutation associated with an oriented torus link is described. 

It is shown that the number of components of a multiple connected sum and the 

number of components of it's elementary extension differ by exactly one. The resul-

tant permutation associated with a multiple connected sum formed connecting along 

"large" regular cuts become cumbersome to compute. To economize on computational 

time involved in computing the resultant permutation associated with a multiple con-

nected sum formed, a new permutation called the reduced permutation is associated 

with them. These reduced permutations associated with a multiple connected sum 

formed by connecting along large regular cuts are smaller in size as compared to the 

corresponding associated resultant permutation. However, the reduced permutation 

preserves the information regarding the number of components of the corresponding 

associated multiple connected sum. Also, the reduced permutation can be computed 

directly from the parameters of the two torus links and the size of the regular cuts 

without invoking the corresponding resultant permutations. 

Theorem Every closed connected orientable 3-Manifold is a quotient space of two 

handle bodies of equal genera g for some g E N. 	 ❑ 
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This theorem is an immediate consequence of the following theorem due to Moise 

[15]. 

Theorem Every closed connected orientable 3-Manifold is triangulable. 	❑ 

A decomposition of a closed connected orientable 3-Manifold into two handle 

bodies of equal genera g, whenever possible, is called a Heegaard splitting of genus g. 

Any homeomorphism between the boundaries of two genus g handle bodies generates 

a closed connected orientable 3-Manifold. The Fundamental Group of a 3-Manifold 

formed as a quotient space of two handle bodies of equal genera say g has g generators 

and g relations [11]. The g generators represent the g non-trivial canonical curves of 

the genus g handle body (the domain of the quotient map) and the g relations are 

obtained from the images of the g generators under the quotient map. Every such 

homeomorphism forming a quotient space of two genus g handle bodies, maps the g 

generators on the boundary of the domain handle body onto g non-separating non-

parallel simple closed curves on the boundary of the codomain handle body i.e. the 

image set of the g generators on the boundary of the domain handle body under the 

quotient map is a link with g non-separating non-parallel components embedded in the 

boundary of the codomain handle body. Such a quotient map is characterized by the 

image set of the g generators upto isotopy. To compute the g relations corresponding 

to the g components of the image link of the g generators, one needs to know the 

number of times each component winds around the g generators and their order of 

occurance. In practice this is a very tedious task as one has to depend heavily on a 

neat picture of the link. But in the case of Multiple Connected Sums of two torus links 

having two non-separating non-parallel components embedded in a double torus, there 

exists a simple algorithm to compute effortlessly a presentation of the Fundamental 
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Group of the associated 3-Manifold without invoking a picture of the link. Links and 

closed connected 3-Manifolds are closely related. This fact was brought to light by 

the Lickorish theorem [12] stated below. 

Theorem Let M be a closed connected orientable 3-Manifold. There exist finite 

sets of disjoint solid tori T1 1 , T2', ..., T7 ' in M and T1 , T2 , ..., T7  in S3  such that M — 

U 1 int(Ti 1 ) and 53  — Uin_i  Int(Ti ) are homeomorphic. 	 ❑ 

Double Torus D is the boundary of a handle body of genus two. Mapping Class 

Group M(D) of a double torus D is the group of isotopy classes of orientation preserv-

ing homeomorphisms of the double torus to itself [12]. The longitudes, the meridians 

and the simple closed curves around the waist handle of a double torus are called 

the canonical curves of the double torus. A double torus has six canonical curves 

up to isotopy. Twists about the two longitudes, two meridians and any one of the 

canonical curves around the waist handle of the double torus D forms a complete 

set of generators of the Mapping Class Group M(D) [6]. These generators of M(D) 

are known as the Lickorish generators. Following is a crucial theorem by Lickorish 

regarding homeomorphisms between two closed connected orientable surfaces of equal 

genera [12]. 

Theorem Let P i , p2 , pn  be disjoint simple closed curves on a closed connected ori-

entable surface F the union of which does not separate F. Let q1,  q2 , qn  be another 

set of curves with the same properties. Then there exists a homeomorphism h of F to 

itself that is in the group generated by twists so that h(pi ) = qi  for each i = 1, 2, ..., n. 

0 

Hence, in principle, for any double torus link L having k components, there exists 

an element of M(D) that maps L onto a set of k canonical components of D. In 



9 

particular every orientation preserving homeomorphism between any two genus-two 

surfaces can be generated up to isotopy using the Lickorish generators in M(D). In 

other words, a mapping class element that sends parallel (non-parallel respectively) 

components of the link to parallel (non-parallel respectively) canonical curves of the 

double torus D can be generated using the Lickorish generators of M(D). Every 

mapping class element preserves the number of distinct isotopy classes. These facts 

are true for any closed connected orientable surface. However, there is no known 

algorithm to arrive at such a mapping class element. In the case of double torus 

links formed by a multiple connected sum, we provide an algorithm to produce such a 

mapping class element. This also establishes the fact that the maximum and minimum 

number of distinct classes of canonical curves that the set of double torus links could 

be mapped to by a mapping class element are 3 and 1 respectively. Any Multiple 

Connected Sum that is mapped to two or three distinct classes of canonical curves 

by a mapping class element must necessarily be a genus two link. 

Finally, a General Multiple Connected Sum L i  f$„.„ LAn2  L3 0„.„... 	of n torus 

links is considered. A General Multiple Connected Sum Li O m, L2 ii m2  L3 iim3  ...ft rinn_ Ln 

can be arranged as a chain of (n-2) simple reverse multiple connections of (n-1) sub-

multiple connected sums L'I Ty4 L'i+i , i = 1, 2, ..., n-1 of two torus links, where Lc" = L 1 . 

and L'n  = Ln, and is written as (L L'2 ) ED (.4 m2 L'3 ) ED ... ED Ln). The 

unspliced meridional strands of the (n-1) submultiple connected sums Lnimi g+1 , i 

1, 2, ..., n — 1 are arranged alternately as shown in figure 3.10. This way of arranging 

a General Multiple Connected Sum enables us to represent it in an unambiguous 

parametric form. A scheme to label the longitudinal strands of the general multiple 

connected sum is established. Once the longitudinal strands of the general multiple 
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connected sum are labelled according to the scheme and a compatible orientation is 

assigned to it, it is possible to derive a permutation p(m) associated with the general 

multiple connected sum. This permutation p(m) preserves the information regard-

ing the number of components in the general multiple connected sum. Examples 

of multiple connected sums of three torus links are considered and their associated 

permutations are computed from which the number of components of the respective 

links are obtained by simply counting the number of cycles. 

Computing invariants of multiple connected sums has been called off for the mo-

ment due to time limitations. However, we would like to undertake the task in our 

future pursuits and hope to arrive at fruitful results. We wonder whether there ex-

ists general concept of connected sum that generates all links and is combinatorially 

accessible. 



Chapter 1 

Multiple Connected Sums of two 
Torus Links 

In this chapter, we define "multiple connected sum" of two torus links. Multiple 

connected sums of two torus links either generate double torus links or torus links. In 

§1.2 we obtain the permutation naturally associated with a given torus link for a fixed 

orientation of the link and in §1.3 we obtain the permutation associated with a regular 

n-cut of an oriented torus link. Then, in §1.4 we use this permutation to deduce 

the permutation associated with the "n-cut" of the torus link. The permutation 

associated with a multiple connected sum is given by the composition of the two 

permutations of the " n-cut" torus links used to form the sum. Also, we present some 

combinatorial results pertaining to the permutations "respected" by torus links, that 

throw light on the phenomena of multiple connected sums Finally, in §1.5 we derive 

the permutations respected by torus links using division algorithm. 

1.1 Preliminaries 

In this section, we establish some basic concepts required for the rest of this thesis. 

11 
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Definition 1.1.1. Let Cr  = {(x, y, 0) : x2  + (y — 4r) 2  = 4} be the circle of radius 

2 with center (0, 4r) in the x y — plane, where r E Z. Set An = Ur-,'Cr . Define 

= {(x, y, z) E R3  : d((x, y, z), A n) < 1}. Any subspace of R3  isotopic to the set 

H, is called a handle body of genus n. 

Definition 1.1.2. A solid torus is a handle body of genus 1 and is isotopic to the 

set {(x, y, z) E R3  : ((x2  + y2 ) 112  - 2)2 +z2 < 1}. 

This set is obtained by rotating the disc D1  = {(x, y, z) E R3  : (x — 2) 2  + z2  < 

1 , y = 0} about the circle S2 = {(x, y, z) E R3  : x2  + y2  = 4, z = 0}. 

Figure 1.1 Rotation of S1  about the z-axis along S2. 

Definition 1.1.3. A Torus is any topological subspace of R 3  isotopic to the set 

{(x, y, z) E R3  : ((x2  + y2 ) 1 / 2  - 2) 2  + z2  = 1}. 
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This set is obtained by rotating the circle S i  : {(x, y, z) c R3  : (x — 2) 2  + z2  = 

1, y = 01 about the z-axis along the circle S2 : {(x, y, z) c R3  : x 2 4- y2  = 4 , z = 0} 

(figure 1.1). Note that we do not distinguish between any two tori and for all references 

hereafter, we concentrate our attention on the torus in the definition 1.1.2. 

Definition 1.1.4. Boundary of a handle body of genus n is a surface of genus n. A 

torus can also be defined as the boundary of a solid torus. 

Definition 1.1.5. A longitude of a torus is any simple closed curve embedded on the 

torus and is isotopic on the torus to the curve x 2  + y2  = 4, z = 1 and a meridian of a 

torus is any simple closed curve embedded on the tcrus and is isotopic on the torus 

to the curve (x — 2) 2  + z2  = 1, y = 0. 

Remark 1.1.1. The meridian on the boundary torus is null homotopic in the solid 

torus where as the longitude on the boundary torus is not null homotopic in the solid 

torus. This is so because the point at infinity is fixed 'outside' the solid torus. This 

is the the distinction between the longitudinal and meridional curves of a torus. 

Figure 1.2 Torus with positively oriented longitude a and meridian b. 
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For convenience of argument, we need to orient the objects in our studies. For 

this purpose, we first fix certain conventions of orientation for the longitude and the 

meridian of a torus. 

Definition 1.1.6. An oriented longitude of a torus is said to be positively (negatively) 

oriented if it has clockwise (anticlockwise) orientation (figure 1.2) when viewed from 

the positive z-axis. An oriented meridian of a torus is said to be positively (negatively) 

oriented if it is isotopic to the meridian having anticlockwise (clockwise respectively) 

orientation when viewed from the positive y-axis (figure 1.2). 

Definition 1.1.7. Let a be a positively oriented longitude and b be a positively 

oriented meridian of a torus and p and q be any two relatively prime integers. A 

torus knot K(p, q) is a simple closed curve embedded in the torus and that belongs 

to the isotopy class laP = bql of the Fundamental Group of the torus. A torus link 

L(p, q) is a collection of d pairwise disjoint torus knots K (r, s) embedded in a torus 

with p = dr and q = ds where d is the g.c.d. of p and q. 

Remark 1.1.2. A torus knot K(p,q) can be obtained as the image of the line segment 

joining the points 0 (0, 0) and P (p, q), under the quotient map from R 2  to the 

quotient space R2 /Z2  that is a torus. 

1.2 Permutations associated with torus links 

In this section, we show that there exists a natural way of associating a permutation 

in Sr  (Sq , respectively) with a given torus link L(p, q) for a fixed orientation of the link 

and a fixed order of labelling of the longitudinal (meridional, respectively) strands. In 

chapter 2, we will see that these permutations play an important role in deriving the 
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Figure 1.3 Rectangle with p + q non-intersecting line segments. 
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permutations associated with the multiple connected sums of torus links that in turn 

are used to compute the number of components of the multiple connected sums. A 

torus Link L(p, q) can also be obtained by forming the quotient space of a rectangle 

with p + q non-intersecting line segments in the rectangle (as shown in figure 1.3) 

under the quotient map described below. 

There are p points marked on each of the two vertical sides and are labelled 

sequentially by the number 1 to p from top to bottom and q points marked on each of 

the two horizontal sides and are labelled sequentially by the numbers 1 to q from left 

to right of the rectangle. These labels on the rectangle are joined in pairs by p+q non-

intersecting line segments in the rectangle as shown in the figure 1.3. The quotient 

map identifies the opposite sides of the rectangle such that the points with identical 

labels on opposite sides are identified. Under this quotient map, the rectangle becomes 

a torus and the p + q non-intersecting line segments in the rectangle form either the 

torus link L(p, q) or L(q, p) depending on the order of identification of the side of 

the rectangle. In other words, if the identification map is such that the horizontal 
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sides of the rectangle are identified prior to identifying the vertical sides, then the 

torus link L(p, q) is formed. On the other hand, if the identification map is such that 

the vertical sides of the rectangle are identified prior to identifying the horizontal 

sides, then the torus link L(q, p) is formed. These two torus links belong to the same 

isotopy class namely {aP = V} of the Fundamental Groups of the respective tori 

where a and b are the generators of the Fundamental groups of the two tori. Note 

that the horizontal sides and vertical sides of the rectangle become the longitude and 

the meridian respectively of the torus under the former identification, while under 

the latter identification, they become the meridian and the longitude respectively. 

The two identifications discussed above produce torus links L(p, q) and L(q, i 

when p L  q, that are in general not isotopic. Further, any one of these identifications 

considered above can be performed in yet another two distinct ways depending on 

the 'location' of the point at infinity. These two distinct ways of identifying will 

result in two torus links Li (p, q), i = 1, 2 each being a reflection of the other about 

the xy-plane. To avoid any confusion, we presume the identification map is such 

that the oriented vertical and horizontal sides of the rectangle in figure (1.3) will be 

the positively oriented longitudinal and positively oriented meridional curves a and 

b respectively as seen in figure (1.2). This identification map converts the rectangle 

into a torus and the p + q line segments lying in it into a torus link L(p, q) with the 

vertical sides of the rectangle with the labels {1, 2, 	p} forming a meridian m and 

the horizontal sides with the labels {1, 2, ...., q} forming a longitude 1 (figure 1.4). 

Remark 1.2.1. A Heegard genus 1 decomposition of S 3  is a splitting of S 3  into two 

handle bodies of genus one having a torus as a common boundary surface. Hence, a 

torus link L(p, q) can be simultaneously embedded on the common boundary of two 
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different solid tori of a Heegaard genus one decomposition of S 3  such that on one of 

the solid tori the p strands are longitudinal and the q strands are meridional, while on 

the other solid torus the p strands are meridional and the q strands are longitudinal. 

Hence, the concepts of "longitude" and "meridian" are notional. However, we fix 

these notions by fixing the point at infinity as an 'exterior point'. 

Figure 1.4 The link L(p, q) embedded in a torus. 

Now, we develop the naturally associated permutation in sip with a torus link 

L(p, q) for a fixed orientation of the link and a fixed sequential order of labelling 

of the longitudinal strands. By a fixed orientation of the link, we mean that each 

component of the link must be assigned a compatible orientation (figure 1.4). We 

travel along each of the components of the link in the direction of orientation and 

record the labels traversed in the order of their arrival. Each time we travel along a 
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component and record the labels traversed in the order of their arrival, we will have 

generated the cycle corresponding to that component. This we do once with each of 

the components of the link and then take the product of these cycles to arrive at a 

permutation in Sp . 

The rectangle with p + q line segments (figure 1.3) is more suitable to generate 

the naturally associated permutation with the torus link L(p, q) than the link itself. 

Hence, we deal with the rectangle with p + q line segments to generate the naturally 

associated permutation with the torus link L(p, q). Denote the set of labels on the 

vertical sides of the rectangle in figure 1.3, that are the same as the labels on the 

meridian m of the torus in figure 1.4 by Zp {1, 2, ..., p}. Let d denote the greatest 

common divisor of p and q. Now, we start at any label say x 1  E zp and travel on 

the torus along the strand of the link passing through the label x 1  in the direction of 

orientation assigned to the link. After exactlyone longitudinal revolution on the torus, 

we will arrive at the label (x1 +
1

E Zp where di  = ((-1)iq)modp) for i E {1, 2}. 

The value of i depends on the orientation of the link and the order of labelling of 

the longitudinal strands. This fact can be easily contemplated from the figure 1.3. 

After making exactly (p/ d) such longitudinal revolutions (that will also effect exactly 

(q/d) meridional revolutions) we will arrive back at the initial label x 1  E zp. In the 

process, one would have travelled via each of the labels of the cycle representing the 

component of the link containing the label x 1  in it. Likewise, we travel along all the 

remaining (d — 1) components to generate the corresponding cycles. The d cycles are 

independent of the choice of the starting point in Zp . The labels {1, 2, ..., d} C Zp 

lie on the d distinct components of the link. For the sake of convenience, we begin 

each of the d cycles with labels from {1, 2, ..., d} C Zp . Therefore, for all j = 1, 2, ..., d 
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these d cycles will be as follows. 

(aii) = (j, (3 + di )mod p, 	(j + ((p I d) — 1)di)modp). 

The permutation o- (p, di ) associated with the torus link L(p, q) for a fixed orien-

tation and a fixed ordered labelling of the longitudinal strands is a product of the 

disjoint d cycles (au ). i.e., o- (p, di) = o-ii o o-i2 0 • ° aid- 

The two different orientations of a torus link L (p, q) for a fixed labelling give rise to 

two different permutations that are inverses of each other. Each of these permutations 

is a function o- (p, di ) : Zp Z, defined by o- (p, di )(x) = (x + di ) mod p. 

Remark 1.2.2. (1) Each cycle gives the orbit (trajectory) marked by labels in Z, 

written in the order of their arrival as we travel along the corresponding component 

of the link for a given orientation. 

(2) Two torus links L i (pi,  qi ), i = 1,2 having the same parameters i.e. pi  = 132 and 

qi = q2  need not be equivalent in the sense of isotopy in the torus or in S 3 . For 

example the left and right trefoil knots are not isotopic in S 3  and hence in the torus 

as well, even though they have the same parameters pi = P2 = 2 and qi = q2 = 3. 

This distinction occurs because the two trefoil knots are embedded differently in S 3 

 and in the torus. Hence, it is evident that the notation L(p, q) for a torus link with 

p longitudinal strands and q meridional strands is inadequate. That is, it fails to 

describe a torus link completely and unambiguously. To capture this distinction, 

we must also encode the orientation of the link in its description. With a view to 

distinguish the two possible ways of embedding a torus link L(p, q) in a torus, we 

make the following definitions. 

To encode the orientation of the torus link L(p, q), we must allow the parameters 

p and q to take values in the set of integers. First consider a torus knot K (p, q) with 
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a fixed orientation and parameters p, q > 0. Represent K(p, q) by a new notation 

K(25, 4) called the signed notation. Here p = p (—p, respectively) if the p longitu-

dinal strands of the torus knot K(p, q) have orientation compatible with (opposite 

to, respectively) the orientation of the canonical curve a of the torus in figure 1.2 

and are said to be positively(negatively, respectively) oriented longitudinal strands. 

Further, q = q (—q, respectively) if the q meridional strands of the torus knot K(p, q) 

have orientation compatible with (opposite to, respectively) the orientation of the 

canonical curve b of the torus in figure 1.2 and are said to be positively (negatively, 

respectively) oriented meridional strands. Note that the signed notation for a torus 

knot (that we will soon extend to torus links) takes into account the orientation of 

the knot of the torus by allowing signed parameters. 

A torus knot K(p, q) is said to be positive if for a fixed orientation both the longi-

tudinal as well as the meridional strands are oriented either positively or negatively. 

A torus knot K(p, q) is said to be negative if it is not positive. Equivalently, a torus 

knot written in the signed notation K(23, q) with respect to a fixed orientation is pos-

itive if pq > 0 and is negative if pq < 0. Note that this parity of a torus knot is 

independent of the orientation assigned to the knot. A torus link 1(p, q) is said to 

be positive (negative, respectively) if for a fixed orientation any one and hence every 

component is a positive (negative, respectively) torus knot. 

Two or more longitudes (meridians) of an oriented torus link are said to have com-

patible orientation if they are either all positively orientated or all negatively oriented. 

Two components of an oriented torus link are said to have compatible orientation if 

their respective longitudinal and meridional strands have compatible orientations. 
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Note that as a convention, we always assign compatible orientation to all the com-

ponents of a torus link L(p, q). A torus link L(p, q) with the signed notation L(p, 

with respect to some fixed compatible orientation of the link is positive (negative, 

respectively) if p-q > 0 	< 0, respectively). Though the signed notation adopted 

for a torus link completely describes any torus link, it has the following lacuna. It 

cannot accommodate simultaneously the occurrence of positively and negatively ori-

ented longitudinal or meridional strands. Though such a situation never occurs in 

torus links, it does occur in double torus links. To overcome this difficulty we consider 

a more general notation to represent a torus link. 

We represent an oriented torus link L(p, q) by four coordinates or a quadruple 

of non-negative integers written as ((p a , p2), (q1,  q2)) where the first pair (p i , p2 ) rep-

resents the longitudinal strands of the link and the next pair (q 1 , q2 ) represents the 

meridional strands of the link. Here p i  stands for the number of positively oriented 

longitudinal strands of the link while p2  stands for the number of negatively oriented 

longitudinal strands of the link. And q1  stands for the number of positively oriented 

meridional strands while q 2  stands for the number of negatively oriented meridional 

strands. We refer to this notation of an oriented torus link represented by a quadruple 

of non-negative integers as the parametric representation of the oriented torus link. 

From the parametric notation, we can retrieve our old signed notation by simply 

writing L(191 — P2) ql q2). Once the compatible orientation is assigned to the longi-

tudinal strands of a torus link, the orientations of all the meridians are automatically 

fixed. Since, by convention, we assign all the components of a torus link compatible 

orientation, we will have exactly two non-zero parameters in the parametric repre-

sentation of a torus link. To determine the parametric representation of a general 
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oriented double torus link one would require to depend heavily on a neat diagram of 

the link. However, in the case of oriented double torus links generated by multiple 

connected sums, the parametric representation is more convenient (see §3.1). 

The following are equivalent definitions of positive and negative torus knots. 

Remark 1.2.3. (1) An oriented torus knot K(p, q) is positive (negative, respectively) 

if and only if it belongs to the isotopy class a'bi6  in the fundamental group of the 

torus in which the knot is embedded such that cif3 > 0, (8 < 0, respectively), where 

a and b are the oriented canonical curves of the torus. 

(2) The parametric representation of a positive torus knot K(p, q) will be ((p, 0), (q, 0)) 

or ((0,p), (0, q)) depending on the orientation assigned to the knot. The parametric 

representation of a negative torus knot k(p,q) will be ((p, 0), (0, q)) or ((O, p), (q, 0)) 

depending on the orientation assigned to the knot. 

Since more information pertaining to the links can be encoded in the parametric 

representation in comparison to other notations, we use the parametric representation 

for torus links henceforth. 

(a) 
	 (b) 

Figure 1.5 (a) positive and (b) negative torus links. 
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Remark 1.2.4. (1) The torus knots K1((1, 0), (1, 0)) and K2((1, 0), (0, 1)) are isotopic 

in S3 , but are not isotopic on the torus. 

(2) If two torus links are isotopic on the torus, then they are isotopic in S 3 . 

(3) Two torus links are isotopic on the torus if and only if it is possible to orient them 

so that they posses the same parametric representation. 

(4) Let the p longitudinal strands of an oriented torus knot K(p, q) be labelled by 

the elements of Z. Then the number of longitudinal revolution required to be made 

along the knot in the direction of orientation starting from the label x E zp to arrive 

at the label (x + 1) mod p E Z is equal to di -1  (mod p). Here i E {1, 2} depends on 

both the orientation of the knot and the direction of labelling of the p longitudinal 

strands. Here d i -1 (modp) is the multiplicative (mod p) inverse of di  in Zp 

(5) Let the p longitudinal strands of an oriented torus knot K(p, q) be labelled by 

the elements of Zr . Then the order or place of occurrence of any label x E zp in 

the permutation a-  (p, di ) associated with the torus knot K(p, q) for some i E {1, 2} 

is given by (1 + (x — 1)di)(modp) provided the permutation a-  (p, di ) begins with the 

label 1 E Zp. Here again i depends on the orientation of the knot and the direction 

of labelling of the p longitudinal strands. 

1.3 Regular n-cuts 

Here, we set about building the machinery required for performing a multiple con-

nected sum or an n-connected sum of two torus links Li (pi , qi) , i = 1, 2 denoted 

by L1 tt„L2  where n is a non-negative integer. An n-connected sum is basically a 

generalization of the concept of 'connected sum of knots'. 

To perform an n-connected sum L i ttn L2 , we must first cut out an open disc Di  from 
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the torus Ti  embedding the link Li . The open disc Di  cut out from the torus Ti  must 

cut off exactly n simple arcs from the pi  (locally) parallel longitudinal strands of the 

torus link Li . Following concepts are required to formulate this idea mathematically. 

Definition 1.3.1. A simple arc in the set Li  n Di  is said to be a cut out arc. 

Definition 1.3.2. A boundary component of 9A is the closure of a simple arc in the 

set api  \ (Li  (l api ). The set of all boundary components is denoted by c(aDi). 

Definition 1.3.3. A point in Li, n aA is called an end point of the cut out arcs. 

Definition 1.3.4. Two cut out arcs Ail , A22 E Li n Di  are said to be adjacent if there 

exist two boundary components B21, B22 E c(aDi) such that Ail U Ail U B21 U B22 

bounds a disc in Di , i = 1, 2. 

Definition 1.3.5. A cut out arc A E Li  n Di  is said to be an extreme arc if it is 

adjacent to exactly one other cut out arc. 

Definition 1.3.6. The cutting out of the open disc D i  from the torus Ti  across the 

pi  longitudinal strands is said to be a regular meridional n-cut if 

(i) Di  must intersect Li transversely (not tangentially) at each of the 2n end points 

of the cut out arcs(figure 1.6(a)), 

(ii) there must be exactly n cut out arcs, and 

(iii) there should not exist a simple arc in L i  n(T2  \ Di) whose union with a boundary 

component in c(aDi ) bounds a disc in (Ti  \ Di) (figure 1.6(b) and (c)). 

Remark 1.3.1. Note that a regular longitudinal n-cut could likewise be performed 

across the qi  meridional strands of the torus link L i , i = 1, 2. However, they are 

not combinatorially equivalent. This fact can be verified by simply computing the 
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permutations associated with regular n-cuts for a fixed orientation of the link. The 

term n- cut is used for regular meridional n-cut henceforth as we use only such cuts 

in multiple connected sums. 

ca) 

(6 

Figure 1.6 Non-regular cuts. 

Label the end points of the cut out arcs of an n-cut by the labels from the set 

X = {+1, +2, ..., ±n} sequentially as follows. The labelling must begin with the 
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labels ±1 for the end points of one of the extreme arcs of the n-cut and end with 

the labels ±n for the end points of the other extreme arc of the n-cut. The left end 

point of each ith  arc is to be labelled +i and the right end point of the ith  arc is to 

be labelled —i for all i, 1 < i < n (figure 1.7(a) and (b)). 

(b) 

Figure 1.7 n-cuts. 

In the figure 1.7 (a) and (b), the links are oriented in the negative direction of 

a longitude of the torus. The labelling of the end points is done sequentially in the 

positive direction of orientation of a meridian of the torus. 

An n-cut on an oriented torus link L(p, q) can be performed in two different ways 

for n > p and for a fixed direction of sequential labelling (along a meridian of the 

torus) of the end points of the n-cut out arcs. An n-cut of L(p, q) where n > p 

is said to be a direct (regular meridional) n-cut if moving along the strand in the 

direction of the orientation starting from the end point of the cut out arc labelled 

— ((1 — 1)p+r), the next end point of a cut out arc encountered will be the one labelled 

+(lp + r) where 1 < r < p, 1p + r < n and 1 E N (figure 1.7(a)). An n-cut of L(p, q) 



27 

where n > p is said to be a reverse (regular meridional) n-cut for a fixed direction of 

sequential labelling (along a meridian of the torus) of the end points of the cut out 

arcs and for a fixed orientation of the link if it is not a direct meridional n-cut. A 

direct (reverse, respectively) n-cut of an oriented torus link L(p, q) becomes a reverse 

(direct, respectively) n-cut if the orientation of the link is reversed. 

An n-cut on a torus Ti  embedding a link Li  (pi , qi) in accordance with the conditions 

(1), (2) and (3) stated above can be equivalently performed by cutting along a simple 

curve Ci , i = 1, 2 homeomorphic to a closed bounded interval across the longitudinal 

strands pi . The curve Ci  must intersect the torus link L i  at n distinct points. The 

following concept is required to formulate this idea mathematically. 

(15) 

Figure 1.8 Non-regular n-cut along a curve. 
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Definition 1.3.7. A component of Ci  is the closure of a simple arc in the set C i  

(ainLi). The set of components of Ci  is denoted by c(Ci ). 

Definition 1.3.8. The cutting along a simple arc Ci  intersecting the torus link L i  at 

n points is said to be a n- cut if 

(i) neither of the two end points of C i  should lie on any of the pi  longitudinal strands 

(figure 1.8(a)), 

(ii) Ci  must intersect the link transversally (figure 1.8(b)), and 

(iii) there should not exist a simple arc in the set L i  \ Li  ncii  and a component of C i 

 whose union bounds a disc in Ti  (figure 1.8(c)). 

(a) 

(1) 
	

(C) 

Figure 1.9 n-cuts along a curve. 
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For p > 1 and 1 < n < p, an n-cut along a curve on L(p, q) cuts n consecutive 

strands of the p longitudinal strands at one point each (figure 1.9(a)). For p > 1 

and 1p < n < (1 + 1)p for some 1 E N, a n-cut along a curve on L(p, q) cuts the p 

longitudinal strands at n points. In this case the first (n — 1p) strands will be cut at 

(1 + 1) points each and the remaining ((I + 1)p — n) strands will be cut at 1 points 

each (figure 1.9(b) and (c)). 

To perform an n-connected sum L4 nL2 also known as a multiple connected sum 

of two n-cut torus links Li , i = 1, 2, we do the following. 

(1) Perform an n-cut on each of the tori Ti  containing the link L i  

(2) Label the end points of the strands of the link Li  along the n-cut sequentially by 

the labels X = {±1, ±2, ±n} (as explained above) and 

(3) Form the quotient space of the two n-cut torus links by identifying the boundaries 

of Ti  \ Di , i = 1, 2 by either an orientation preserving homeomorphism h 1  : 0(T1  \ 

.D1 ) 	8(T2  \ D2) such that h i  (±x) = Tx, for each ±x E X or an orientation 

preserving homeomorphism h2  : a(T, \ D 1 ) 	\ D2 ) such that h2 (±x) 

±(n — x + 1) for each ±x E X. 

These two homeomorphisms ensure that the 2n end points of one n-cut torus 

link are matched with the 2n end points of the other n-cut torus link. These two 

ways of forming the quotient spaces of Ti  \ Di  by the homeomorphisms hj , j = 1, 2 

defined above will in general result in different multiple connected sums for the same 

pair of n-cut torus links. This fact can be easily realized by computing the number 

of components of both the resulting multiple connected sums (figure 1.10). In this 

figure we take two multiple connected sums made of the same torus links (5, 3) and 

(7, 5) spliced along 8-cuts using the two different homeomorphisms given above. This 



gives two distinct double torus links. 

Figure 1.10 Distinct multiple connected sums formed from two 8-cut torus links. 

Let an n-cut of an oriented torus link L(p, q), p < n be labelled sequentially 

in the positive (negative, respectively) direction of a meridian with labels from the 

set X. We can relabel the same n-cut keeping the orientation fixed by the map 

f : X X defined by f (±(n — x +1)) ,  Tx. This relabelling will convert a direct 

30 
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(reverse, respectively) n-cut into a reverse (direct, respectively) n-cut. Also the map 

f reverses the direction of sequential labelling of the n-cut. This map f from X 

to itself can be extended to a homeomorphism of the boundary, of the n-cut torus 

(containing X). Then, hi  hi  o f and (Ti  \ Di) Uh, (T2 \ D2) (T1 \ D1) Ufoh3  (T2 \ D2) 

where i, j E {1, 2} and i j. Hence, the relabelling homeomorphism f enables us to 

construct the two quotient spaces (T 1  \ D1) U14 (T2 \ D2), i = 1, 2 from two n-cut torus 

links L 1  and L2 using any one of the homeomorphisms hi  defined above. Therefore, 

without loss of generality, we will use the homeomorphism h 1  to construct the two 

quotient spaces together with the relabelling homeomorphism f . Further, we ignore 

the signs of the labels assigned to the end points of the arcs cut out by the n-cuts 

to enable us to write the permutation associated with an n-cut of a torus link in S. 

This aspect of an n-cut is discussed in the next section. 

1.4 Permutation associated with an n-cut 

For an n-cut performed on a torus link L(p, q), the permutation associated with the 

n-cut is denoted by (i) cr (n) (p, di) if n < p and by (ii) adir(n) (p, di) if n > p and 

the n-cut is direct, and by (iii)arev (n) (p, di ) if n > p and the n-cut is reverse. The 

permutation associated with an n-cut of a torus link L(p, q) is derived directly from 

the permutation a(P)  (p, di ) = cr (p, di ) E sip associated with L(p, q) defined above. 

Case(1) n < p. 

In this case, the permutation a(n ) (p, di) associated with the n-cut is derived di-

rectly from cr (p, di ) by deleting all the terms greater than n and preserving the order 

of the terms left behind. 

Case(2) n > p. 
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In this case, the following two subcases arise: 

Subcase(a) The meridional n-cut is direct. 

Let a(P)(p, di ) = a(p, di ). Then CI dir (n)  , di ) is defined by induction on n as 

{kp + r 	 if x = (k — 1)p + r 
p+r) o-  di, (p, di)(x) = 	(r + di)mod p 	if x = kp + r 

adir(kP+r -1)  (p, di) (x) otherwise 

Subcase(b) The meridional n-cut is reverse. 

Let o- (P)(p, di ) = a(p, di ). Then CT dir (n)  (p , di ) is defined by induction on n as 

arev (kP+r) ( it, di) (x) = 

{kp 

(k — 1)p r 

Cfrev (kP+r-1) (p, di )(x) 

if x = (r — di )modp 

if x = kp + r 

otherwise 

Note that adir(n)  (p, di) = 0-  rev (n)  (P, di) -i  where dx  = ((-1)x  q) mod p and i j. 

Definition 1.4.1. A permutation a E Sn , n E N is said to be respected by a torus link 

L(p, q) if there exists an n-cut of the torus link such that the permutation associated 

with it is a. 

Definition 1.4.2. An (m + 1)-cut on a torus link L(p, q) is called an elementary 

extension of an m-cut on the same torus link L(p, q) if either (a) m < p or (b) m > p 

and the m-cut and (m + *cut are either both direct (or both reverse) cuts for a fixed 

orientation of the link. 

Note that for m p the elementary extension of an m-cut is unique and for m = p 

there are exactly two distinct elementary extensions for the m-cut. 

Definition 1.4.3. An n-cut on L(p, q) is said to be an extension of an m-cut on 

L(p, q) for n > m if there exist (m + 1)-cut, (m + 2)-cut,...,(n — 1)-cut on L(p, q) such 
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that each (i 1)-cut is an elenientary extension of the i-cut for m < i < n. 

Remark 1.4.1. (1) Given a permutation a E Sn  for n > 3, there may or may not 

exist any torus link that respects it. For example, there does not exist a 7-cut on any 

torus link L(p, q) that respects the cyclic permutation p = (1, 5, 2,6, 3, 4, 7) E S7 for 

following reasons. Consider the two cases (a) If p > 7, then the difference between 

the first and second terms of p implies that di  = 4. Now we must have the third term 

of p equal to 9(modp) = 2 implying thereby that p = 7. Hence the term following the 

term 3 in p should have been 7, but that is not the case. (b) If p < 7, then it can be 

verified that p is neither a direct nor a reverse extension of the permutation a(p, di ) 

for all the possible values of p. 

(2) If a permutation a E Sn  is respected by a torus link, then it is respected by 

infinitely many distinct torus links. 

We state below some elementary combinatorial results pertaining to permutation 

that could be associated with n-cuts of torus links and do come handy later. 

Lemma 1.4.1. Let r1, r2, r3 E N be such that 1 < r1  < r2  < r3  with r2  relatively 

prime to r3 . Then —r3 (mod r2) = 
	

if and only if a (r2, r = a(r2 )(r3 , r2 ) and 

adir (r3) (r2, ri) = a(r3, r2). 	 ❑ 

Lemma 1.4.2. Let r, r1 , r2  E N such that r < r1  < r2  and r is relatively prime to 

ri  for i = 1, 2. Then ri  (mod r) = r2  (mod r) if and only if o - (ri ,r) = a(Ti)(r2 ,r) and 

ad2r(r2) (ri, r) = a(r2,r). 	 ❑ 

Corollary 1.4.3. Let r and s be relatively prime positive integers such that 1 < r < s, 

t(n) = r + (sn) and u(n) = 2r + (s(2n — 1)). Then a(gn)) (u(n),t(n)) = cr(t(n))  (u(n + 

k),t(n + k)) for all n,k E N. 	 ❑ 
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Lemma 1.4.4. Let p > q be relatively prime numbers. Then 0(q) (p, —q(modp)) 

a(q, p(mod q)) and o(4) (p, q(modp)) = a(q, —p(mod q)). Further, a(p, —q(modp)) = 

o-7.„(P)(q,p(modq)) and a(p, q(modp)) = o-dir (P) (q, —p(mod q)). 

Corollary 1.4.5. Let p, q be relatively prime positive integers. Then a(p, q(modp)) 

= u(P)(p+ kq, q(mod (p+ kq))) and a(p, —q(modp)) = o-(P) (p+ kq, —q(mod (p+ kq))). 

Also, u rev (P±kg) (p, q(modp)) = o- (p+kq, q(mod (p+kq))) and adir(P±kg) (p, —q(modp)) 

= a(p + kq, —q(mod (p + kq))) for any k E N. 

1.4.1 Associated Permutation using Division Algorithm 

Given any two positive integers rk and rk_ 1  such that rk > rk_1, by division algorithm 

of integers, we can find a unique sequence of integers ro  < r 1  < r2  <, < rk such 

that —ri±i(modri) = ri_i for all i = 1, 2, ..., k — 1 where ro  is the greatest common 

divisor of rk  and rk _1 . Given an oriented torus link L(p, q) with p > q, we get 

a similar unique sequence of positive integers terminating at the greatest common 

divisor of p and q say ro . To arrive at the sequence, take p as the first term of 

the sequence, di  as the second term of the sequence and then using the recurrence 

relation stated above derive the unique sequence. The term d3  = (-1)j qmodp, where 

j E {1, 2} depends on the orientation of L(p, q) as well as the order of labelling of 

the longitudinal strands. From this sequence we can extract the permutation a (p, di ) 

associated with L(p, q). Note that for any three consecutive terms r i_ 1 , ri  and ri±i 

 of the sequence with 2 < i < k — 1, we can extend the permutation u (n ) (ri, ri-1) 

respected by L(p, q) to the permutation o-(r.+ 1 )(ri+i , ri ) respected by L(p, q). This can 

be achieved using the formula u (r.+ 1) (ri+i , ri ) = o-(drir'+1) (ri , ri_ i ) (see Lemma 1.4.1.). 

Hence the permutation cr (r 1) (r 1 , ro ) can be extended to a(p, d3 ) by induction. 



Chapter 2 

Permutation and the Fundamental 
Group of a Manifold associated 
with a multiple connected sum 

In §2.1, we observe that the number of components in a multiple connected sum and 

the number of components in its elementary extension differ by one. We derive a 

permutations in S7,1+7,2  ( in S,,,,x {pi ,p2}, respectively) from the resultant permutation 

associated with direct (reverse, respectively) multiple connected sum L i ttniL2  of the 

torus links Li (pi , qi ), i = 1, 2 for any m E N. We call it the reduced permutation and 

denote it by p(m). From the reduced permutation we can compute the number of 

components in the double torus link formed by multiple connected sum. Fin -ally, in 

§2.2, we present a scheme - to derive a presentation of the fundamental group of any 

genus two 3-Manifolds associated with a double torus link having two non-separating 

components and which is generated by a multiple connected sum of two torus links 

[4]. 
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2.1 Number of components in a multiple connected 

SUM 

The m-connected sum or a multiple connected sum L1tI mL2 of two torus links L i  = 

qi), i = 1, 2 is generally a double torus link. We say a torus link L (p, q) is m-cut 

meridionally if the m-cut is made across the p longitudinal strands and is labelled 

either along the positive or negative direction of the meridian. From now on, whenever 

we deal with a multiple connected sum it will mean that both the torus links involved 

in it are m-cut meridionally for some m E N unless stated otherwise and will be simply 

refered to as m-cuts. The permutation associated with an m-cut oriented torus link 

Li  will be denoted by ai (m)  (instead of aim(pi, dii ) where dii  = (-1)3 qi ( mod pi ) and 

j E {1, 2}) irrespective of the fact that it could be a direct or a reverse m-cut for 

m > pi. The permutation associated with LitimL2 is called the resultant permutation 

and is denoted by a(L i tl„,L2) and is given by the composition o-2 (m)  0 ai(m )  , where 

o-r)  is the permutation associated with the m-cut on Li  in Li f$77,L2  for i = 1, 2 with 

respect to the induced orientation.. The number of components in Litl,,,L2 is denoted 

by n(LitImL2) and is equal to the number of pairwise disjoint cycles in a(L4mL2)• 

This fact is obvious because each cycle in each o -i (m) represents an orbit (component) 

of the torus link Li(pi, qi), i = 1, 2 and hence each cycle in a(Litt mL2) = a2(m) 0  ai (m) 

 represents a component of LittmL2 and vice versa. 

Remark 2.1.1. Lit$mL2 will be either a genus one or genus zero link if m = pi = P2 

where Li (pi, qi ), i = 1, 2. 

Definition 2.1.1. LiOm+IL2 is called an elementary extension of Li tImL2  if the (m 

1)-cuts on the torus links L i  in Li t1m+iL2 are elementary extensions of the rn-cuts on 
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the torus links Li  in L1ttmL2 for i = 1, 2 respectively. 

If pi  m P2,  then the elementary extension of L i ttmL2  is unique. If p i  = m 

P2, or p1 	m = P2, then there are exactly two elementary extensions of L i tt mL2 . 

Finally, if m = p1 = P2, then there are exactly four elementary extensions of LittmL2- 

Definition 2.1.2. Lit$„L2 is said to be an extension of Li  $177,L2 for n > m, if there ex-

ists a sequence L i tLn+i L2 , Li tLn+2 L2 ,...,Li t$,,,_ 1 L2  such that L i +1L2  is an elementary 

extension of L 1 tt iL2  for each m < i < n. 

Lemma 2.1.1. .Let L 1  and L2 be any two torus links and L1t$( m+1)L2 be an elementary 

extension of L i ttm L 2  for some m E N. Then n(L 1 lt(76+1)L 2) = n(Li tIm L 2 ) ±1. 

Proof Let n(L i ttmL2) = k. To extend L i tt mL2  to L1tt( m+1)L2 as an elementary exten-

sion, we need to cut the two torus links L 1  and L2 at (m + 1) th  points say A l  and A2 

respectively in L 1 ttmL2 . Then the two open ends each at A l  and A2 on either torus 

links are joined across the waist handle to arrive at L1tt(n+1)L2• 

Case(1) A l  and A2 lie on the same component of L i tLnL2 . 

Figure 2.1 n(Litt(n+1)L2) = n(LittmL2) + 1 for C1  = C2. 
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Here, the process involved in arriving at the elementary extension L1 ti(m+1) L2 of 

LitjmL2 is similar to that of cutting an oriented knot (as other components of the link 

are not playing any role) at two different places and then joining the open end points 

of one cut to the open end points of the other. This process splits the component 

into two components ( figure 2.1). Therefore, n(Litt(m+i).L2) = n(Litt,,L2) + L 

Case(2) A i  and A2 lie on two different components of L1tInz-L2. 

AO c)o 
Figure 2.2 n(Litt(,n+1).L2) = n(Litt mL2) — 1 for C1  C2. 

In this case, the process involved in arriving at the elementary extension L i  tt(m-Fi) L2 

of L 1 ttmL2 is similar to that of a connected sum of two oriented knots. This pro-

cess fuses the two components into one (figure 2.2). Therefore, n(Litt(rn+i)L2) = 

n(LiOmL2) — 1. ❑ 

2.1.1 Reduced Permutations 

In this section, we describe an algorithm to associate a permutation p(m) E Sp  with 

Li  ttmL2 where Li  = qi ) and p < pi  + p2 . This permutation p(m) carries the 

information of n(Litt m L2). In fact, the number of pairwise disjoint cycles in a(Lit$ m L2) 

is the same as the number of pairwise disjoint cycles in p(m). The permutation p(m) 
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is called the reduced permutation associated with L i OniL2 . The algorithm describes 

how to obtain the associated reduced permutation p(m) without invoking u(L i  Orn L2) 

for "large" m. This reduces the time involved in computing n(L i tf rn L2). As we have 

already observed earlier, there are two distinct ways of forming an m-connected sum 

of two torus links L i , i = 1, 2. A multiple connected sum L i On,,L2  of two torus links 

L1  and L2 is said to be reverse if for a fixed orientation of L i OniL2 , the induced 

orientations of the links L 1  and L2 are either both positive or both negative in the 

longitudinal direction. Litt niL2 is called direct if it is not reverse. Note that in 

an oriented direct (reverse, respectively) multiple connected sum L i tfrn L2  with m > 

Pi +P2 (M > max{P1,P2}, respectively) the m-cuts on torus links will be both direct 

or both reverse (neither both direct nor both reverse, respectively) with respect to 

the orientations induced from L 1 ttrn L2 . These two ways of forming L i OrnL2  of torus 

links L1  and L2 for a fixed m generally results in different links. This fact can be 

verified by computing their respective number of components. 

We are interested in computing p(m) for the two types of multiple connected sums 

mentioned above. These permutations will be easier to compute being smaller in size 

in comparison with the respective resultant permutations for large values of m. The 

number of components of the multiple connected sum can also be computed from the 

reduced permutations because they have the same number of cycles as the resultant 

permutations. We deal with the different types of connected sums for obtaining the 

reduced permutation below. 

Type(1) Let L i tf,,L2  be an oriented direct multiple connected sum of two torus links 

Li (pi, qi ). Without loss of generality, let the orientation of L i trnL2  be such that the 

induced orientation of the link L 1  be positive in the longitudinal direction. 
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Case(a) m < pi +P2. 

Figure 2.3 Direct Multiple Connected Sum L1#rn.L2• 

Here the reduced permutation p(m) associated with Litt n,L2 is a(LittruL2) = 	° 

$57. .m)  where aim)  = en)  (pi , did) and dij  = (-1) 1qi  mod pi  for i = 1, 2 and j = 1. 

Further, ar )  is the permutation associated with the m-cut on Li  in L1 #,,L2 for i = 1, 2 

with respect to the induced orientation. The number of components n(L 1 ttniL2) is 

given by the number of cycles present in a(L1timL2). 

Case(b) m > pi + p2. 

Here p(m) has "length" equal to p i  +p2  and is derived in the following way without 

using the labels of the m-cuts in L i ttmL2 . 

Let A = {1, 2, —LP]. + p2}, B = {1,2, 	and C = {1, 2, ..., p2 }. We label the 



41 

pi  + 232 longitudinal strands of L 1  and L2 by the elements in A as shown in figure 

2.3. The elements of the set B are used for labelling the p i  longitudinal strands of L i 

 and the elements of the set A \ B are used for labelling the p2  longitudinal strands 

of L2. Our aim here is to derive p(m) associated with LitI mL2 in terms of the labels 

of the set A. To derive p(m), we must traverse through the p i  + 232  longitudinal 

strands of L i  and L2 in L 1 tI mL2  and record the labels on the longitudinal strands in 

the order of their arrival without repeating any label. Note that every component of 

the direct multiple connected sum must wind around at least one of the longitudes 

of the double torus in which it is embedded. This is so because in a direct L i  OmL2 

with m > pi  + 232  the m-cuts are either both direct or both reverse with respect 

to orientations induced from L i tt mL2 . Hence it follows (figure 2.4) that the number 

of cycles in cf(L i tImL2 ) that is equal to the number of cycles in p(m) cannot exceed 

pi +232 , and every component of L i tim L2  must contain at least one strand labelled by 

the set A. The reduced permutation is a bijection p(m): A A and is derived as 

follows. 

In the figure 2.3, the rectangle R induces the function (1. : A 	A defined by 

4.(i) = (i + t(m)) mod (p i  + 232) where t(m) = —m mod (p i  + 232). The rectangle 

R 1  induces the function W 1  : B B defined by Ti (i) = (i + r(m)) mod p i  where 

r(m) = (m — qi) mod p i . And the rectangle R2 induces the function I2 : C -+ C 

defined by W 2 (i) = (i+s(m)) mod 232 where s(m) = (m—q2 ) mod 232. The reduced 

permutation p(m) is given by 

p(m)(i) = 	
(T 1  0 C(i) 	if 1 < ^ (i) < p1  

(W2(Ci) Pi)) + pi if pi + 1 < 4.(i) < Pi + p2 
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...(2.1 
(([i + t(m)] mod (P1 + P2) - + s(m)) mod P2 + Pi, 	

). 
 

if pi + 1 < (i + t(m)) mod (Pi + P2) 5_ (Pi + P2) 

For an oriented direct multiple connected sums LitimL2  of two torus links Li , 

i = 1, 2 where m E Y = {/, / +1, ...} and / = +p2 consider the function F : Y N 

defined by F(m) = n(Li $1„,L2 ). It is clear from the above reduced permutation 

formula (2.1) that the function F is periodic and has a period equal to a divisor 

of 1.c.m.(231,p2,pi + p2). Hence the number of components of the direct multiple 

connected sum LitimL2  is periodic with period equal to a divisor of lcm(pi, p2,p1+p2)• 

The following lemma shows that there exists a recurrence relation relating consec-

utive reduced permutations p(l + r) and p(l + r - 1) associated with oriented direct 

multiple connected sums L1$10+0L2 and Li #i(t+r-i)L2 respectively for / = pl +p2 and 

r E N. Here the direct multiple connected sums Li,,t1 (t+r)-L2 and L1rrti (d+r-1)L2 are com-

patibly oriented and the former multiple connected sum is an elementary extension 

of the latter. 

Lemma 2.1.2. Let LA( i+r)L 2  be an elementary extension of a direct multiple con-

nected sum L i $1(i+r_ 1 )L 2  where 1 = pl + 232  and r E N having the associated reduced 

permutations p(l + r) and p(l + r — 1) respectively with respect to some fixed compat-

ible orientations of the multiple connected sums. Then p(l + r) = p(l + r — 1) o (s, t) 

where s,t E {1, 2, p2 } such that (s — r + 1) mod 1 = 1 and (t — r + 1) 

mod 1 = p1 +1. Further, p(1 +r) = P(1)Hir.1(si,ti) where LA(i +r)L2 is an extension 

of L 1 tt( 1 )L 2  and si,ti E {1, 2, +p2} are such that (si  — (i — 1)) mod 1 = 1 and 

(ti  - (i - 1)) mod / = + 1. 

((i + t(m)) mod (P1 + P2) + r(m)) mod Pi, 

i f 1 < (i + t(m)) mod 	+ p2) 
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Proof It follows from the equation (2.1) of reduced permutation that p(l + r)(i) =-- 

p(1 + r 1)(i) for all i such that 2 < (i — r 1) mod / < p i  and for all pi  + 2 < 

(i — r + 1) mod 1 < 1. Hence, it suffices to show that (1) p(1 + r)(s) = p(1 + r — 1)(t) 

and (2) p(l + r)(t) = p(l + r — 1)(s). 

But, p(1 + r)(s) = p(1 + r)(s) = (pi  + r — q2 )( mod p2) + pl = p(1 + r — 1)(t) = 

p(1 + r — 1)(t) and p(1 + r)(t) = p(1 + r)(t) = (p2 + r — q1) mod pi  = p(1 + r —

1)(s) = p(1 + r 1)(s). Hence,the recurrence relation p(1 + r) = p(l + r —1) o (s, t) 

holds. Therefore, p(l +r) = p(1)11:=1(si,t1) follows by repeatedly applying'the above 

recurrence relation for each elementary extension from p(l) to p(l + r). ❑ 

The next lemma together with the Lemma 2.1.2 gives a special case of Lemma 

2.1.1. 

Lemma 2.1.3. If a E S7, has r number of cycles for some r E N, then a o 	will 

have r +1 cycles for i, j E {1, 2, ..., n} and i # j. 

Proof: Suppose a = Miat  be the cyclic decomposition of a as a product (compo-

sition) of disjoint cycles. 

Case (1) Both i and j appear in the same cycle a, = (ni, n2, •••, nms), < s < r. 

Suppose i = nu  and j = nv  where 1 < u < v < m3 . Then, 

Cr  8 o  ( i ) j) 	(n1, ••• 7 nU- 17 i , nU+11 "• 1 n1.1- 17 j , nV+17 •• 7 nrns) o  ( i 1 j) 

nms ) o (n - U+17 ••*7 nV- 17 i )• 

Since the other cycles in the decomposition of o are unaffected, the number of the 

cycles in a o (i, j) is equal to r + 1. 

Case (2) i and j appear in two different cycles of o 

Let as  = (n1 , n2, • ••, nm3 ) and at  = (pi, p2, 	where 1 < s < t < r and, 

i = nu  and j = pv  for some 1 < u < m s  and 1 < v < mt . Then, as  o at  0 (i, j) 
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= 	 nms) a (Pi, 	 •••,pmt) a (i, i) 

= (ni, 	 •••, Ant, Pi, •••,Pv-i,i,nu-4-1,-••,nm.). Hence, the number of the 

cycles in a a (i, j) is reduced by one and is equal to (r 1). 	 ❑ 

Type (2): Let L i tt,,L2  be an oriented reverse multiple connected sum of L i  = 

Li  (pi, qi) and L2 = L2 (p2 , q2). Without loss of generality, let the orientation of 

LiO,nL2 be such that the induced orientation of both the links L i , i = 1, 2 be positive 

in the longitudinal direction. 

Case (a) m < p2  and pi  < /32 . 

Figure 2.4 Reverse Multiple Connected Sum Li#1mL2• 

Here the reduced permutation p(m) associated with L i  07ThL2 is 6(Littn/L2) = or° 

o-in) , where o-m)  = 	(pi, did), ari)  = (Yr (p2 , d2k ) and dzi  = (-1) 1 q, mod pi  for 
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1 E {1, 2} and j 	k. Further, a(m)  is the permutation associated with the m-cut 

on Li  in L1 tf,,L2  for i = 1, 2 with respect to the induced orientation. The number of 

components n(L 1 f$,,L 2 ) is given by the number of cycles present in o- (LittmL2)• 

Case (b) m > 13 2  > pi , 

Here p(m) has 'length' p2  and is derived in the following way using the labels of 

the m-cuts in Lit$,,,L2• 

Let A = {1,2,...,m}, A o  = {1, 2,...,p2  — pi ,m — p i  + 1,...,m}, Al  = {m — 

P2 + 1 1...1m}, A2 = {az, - p2 + 1, 77-/ — P1}) A3 = {1, 2, ••• , P2 — pi } and A4 = 

{1, 2, ...,P2}.  Denote 0- (L 1 tt,,L 2 ) by um for the sake of brevity. The action of um on 

A is the bijection a(m) : A A given by cr(m)(x) 

m — {m — (x + pi + q2)mod p2}mod p 	 if 1 < x < p2  — pi 

= x (132 	 if P2 	+1<x<m—p1  

m — trn — ((z — qi)(mod Pi) + q2)mod p2}mod p2 if m — p 1  + 1 < x < m 

where the range of mod p2 = {1, 2, •••,P2} and of mod p2 	 — 1}. 

Let cro  = 0 (m)  IA„ and Ql  = a(m) 1A2  be the restrictions. The map 0 2  : A l 	Al  is 

a bijection deduced from co  and a1  and is given by 

0-2(x) = 

m — {m — [x mod (p2  — p i ) -F pl + q2] mod p21 mod P2 

if m — p2+1< x< m— pi  

m — 	[(x - q1 ) mod p i  + q2] mod p2  }mod P2 

if m — + 1 < x < m 

Finally, p(m) : A4 	A4 is the bijection defined by 

- {m - [(x 	— P2) mod (P2 — Pi) +Pi + q2] mod p2  }mod P2 

if 1 < x < p2  — pi , 

- {m - [(x + m — P2 — qi)( mod 	+ 421 mod P2} mod P2 

if P2 - p1 + 1 < x < P2 

p(m)(x)= (2.2) 
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For a reverse multiple connected sums L i On,L2  of two torus links Li  with 132  > pi 

 and m E Yo = {/32,p2 + 1, ...}, consider the function F : Yo  defined by 

F(m) = n(L i ttmL 2). It is clear from the reduced permutation formula (2.2) that the 

function F is periodic and has a period equal to a divisor of 1.c.m.(pi, P21 P2 - P1). 

Hence the number of components of the reverse multiple connected sum L1t$„,,L2 is 

periodic with period equal to a divisor of lcm(p 1 ,p2 , p2  — pi ). 

Case (c):' m > Pi = 13 2 • 

In this case we do not derive any reduced permutation p(m) associated with 

Li ttniL2 , instead we show that the knowledge of Q(Pi) = 41)  0 or(1)1)  suffices to compute 

n(Li t$,,L2). Denote (Lith,,L2) = cr m.)  0 (4m)  by Q (m) for the sake of brevity, where 

(4m)  denotes the permutation associated with L i  (pi , qi), i = 1, 2 with respect to the 

induced orientation from L i O mL2. This cr (m) is used in Lemma 2 1 4, to prove that the 

knowledge of a (POIA, suffices for the purpose of finding n(LitI mL2) for any m > pi = P2 

where A4 = 11, 2, ..., pi }. 

Let A = {1, 2, ..., m}, Ai = {1, 2, ...,m -p1} and A2 = {m —pi +1, ...,m}. The 

action of a(m) on A is the bijection Q (m)  : A 	A given by 

x  
if 1 < x < m — p1  

cr(m ) (x) = 	 ...2.3 
m — {m — (x — + q2 ) mod pi } mod pi ifm-pi+i<x<m, 

Here the range of modpi = {1, 2, pi} and the range of mod pi = {0, 1, 2, ..., P i  —1}. 

Lemma 2.1.4. Let L1$1,,,,L2 be a reverse multiple connected sum with m > Pl = P2 

then n(L i ttm L2) = (m — P1) + n(Littp i L2) • 

Proof: To prove this result it suffices to prove (1) u (m)  IA, (x) = x for x E Ai  and 

(2) Q (m)  (m — Pi + x) = (m - pi) + cr (P1) IA 1  (x) for x E Al . The first equation 

is obvious. We now prove the second equation. We have cr (P' ) (x) = 	+ q2 — qi) 
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mod pi  = y (say). Here 0(P 1 ) denotes the composition (72 0 6 .1  of the permutations 

01 (pi  dii) and 02 (P2, d23) for i, j E {1, 2} and i j associated with the two p 1 -cuts 

on the torus links L1(p1, q1) and L2(p2, q 2 ) in the reverse multiple connected sum 

L1tip 1 L2. Then, 

u(m) (m — Pi x) = (ur 0 elm) ) (m — pl + x) 

= (Yr ({(m — Pi + x)(mod Pi) + (P1 — qi)}mod pi ) 

= (r ((m — qi  + x)mod 

{ (m — q1  + x)( mod pi) — P2 + q2}(mod p2) + mops 

(m+ q2 — q1 + x)(mod pi) + mopi 

= (m+ y)(mod pi ) + mop'  

Here mo is a non-negative integer chosen so that u (m) (m — pi  + x) E {m — Pi + 

1,—, m}. The last equality (m + y)(mod p i ) + moPi = (m — pi) + y holds, since 

the quantities on either side of the equation belong to the set {m — p i  +1, ..., m} and 

((m + y)(mod 	+ mopi)mod pl = ((m 	+ 010d Pi. 0 

2.2 Fundamental Group of Genus two 3-Manifolds 

Here, we provide simple schemes to obtain a presentation of the Fundamental Group 

of genus two 3-Manifolds [4] associated with links generated by multiple connected 

sums of two torus links. The scheme for direct multiple connected sums of two torus 

links L i (pi ,q,), i = 1, 2 uses p(m) if m > p2  or the permutation (4 mi)  where 

mi = MaX{M,Pi}, i = 1,2 if m < pi  + p2 . On the other hand, the scheme for 

reverse multiple connected sums uses p(m) if m > max{pi , p2 } or the permutation 

c(mi) where mi  = max{pi , m}, i = 1, 2 if m < max{p 1 ,p2 }. 

An orientable 3-Manifold is a quotient space of (and hence can be decomposed 
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into) two handle bodies each of genus g for some non-negative integer g [15]. A 

decomposition of an orientable 3-Manifold into two handle bodies of genus g, whenever 

it is possible is called Heegaard splitting of genus g. The smallest g such that the 

manifold admits a Heegaard splitting of genus g is known as the Heegaard genus 

of the 3-Manifold. Note that an orientable 3-Manifold which is decomposable into 

two genus g handle bodies can obviously be reconstructed by gluing back the two 

genus g handle bodies along their boundaries. This gluing of the boundaries of the 

two handle bodies of genus g is done by a homeomorphism of their boundaries. Any 

orientation preserving homeomorphism between the boundaries of two genus g handle 

bodies generates an orientable 3-Manifold as a quotient space of the two handle 

bodies. Isotopic homeomorphisms between the boundaries of two genus g handle 

bodies generate homeimorphic 3-Manifold. Any such homeomorphism between two 

compact connected orientable surfaces is completely determined up to isotopy by the 

way the canonical curves are mapped [12]. 

The fundamental Group of an orientable 3-Manifold formed as a quotient space 

of two genus g handle bodies has g generators and g relations [11]. The g generators 

represent the g non-trivial canonical curves of any one of the two genus g handle 

bodies forming the quotient space. The g relations are obtained from the images 

of these generators under the homeomorphism onto the other handle body. Any 

such homeomorphism maps the g non-trivial canonical curves on the boundary of 

one genus g handle body onto the boundary of the other genus g handle body. This 

image set is a link with g non-separating components embedded in the boundary of the 

genus g handle body. To compute the g relations corresponding to the g components 

of the image link, one needs to know the number of times each components winds 



49 

around the g canonical curves and their order of occurrence. However, in practice, 

this is a very tedious task because we need to depend heavily on a neat diagram 

of the link. In particular, this is true of genus two 3-Manifolds. But in the case 

of multiple connected sums having two components which are non-separating in the 

double torus, we provide some simple algorithms to compute a presentation of the 

fundamental group of associated genus two 3-Manifolds. 

Suppose L i  tim L2  is a link with two components that are non-separating on the 

double torus. By Lickorish theorem, there exists an orientation preserving homeo-

morphism of the double torus mapping these two components to two canonical curves 

( m1  and m2  figure 3.1, chapter 3) on the double torus that are contractible on the 

genus two handle body. Any 3-manifold obtained by such a homeomorphism is called 

a 3-manifold associated with LitImL2. 

Let L i tI mL2 be embedded on the boundary aH2  of a genus two handle body 

112 . Each component of L1tIm L2 is an element of the 7 1 (01/2). The fundamental 

group 71(H2) has two generators that are also the generators of the Fundamental 

Group of any associated genus two 3-Manifold. They are denoted by x and y (figure 

2.5). Homotope H2 into the wedge of two circles. Each component of the image of 

L i ttmL2  under this homotopy is an element of 7ri  (H2). If L1 mL2 has exactly two non-

separating components, then the image of L ij mL2  under the homotopy are precisely 

the two relations of the Fundamental Group of genus two 3-Manifold associated with 

Li tImL2  as they are mapped to the (contractible) canonical meridional disk on the 

other handle body by the identification homeomorphism. These relations can be 

obtained from the two cycles in o - (L i tI m L2 ). This can be done by traversing the terms 

in the two cycles of o - (Li O mL2 ) in the order of their occurrence and thereby building 



50 

the words representing the corresponding relations of the presentation in the following 

way. 

Taking the image of a point under a cyclic permutation is called a move at that 

point. If we make a move at the point j t  to the point jt+ i in a cyclic permutation 

(••-, jt, it+1, •-• ), we say that we have left the point jt  or arrived at the point j t4. 1 . Each 

time we make a move we ought to find out whether the corresponding strand has been 

traversed along x or y and accordingly record the corresponding label along with the 

direction. We provide below schemes for obtaining a presentation of the Fundamental 

Group of the genus two 3-Manifold associated with L 1 tt,,L2  with two components. 

Figure 2.5 The two generators x and y of the Fundamental Group. 

Case(1) L i t$,,L2  is an oriented direct multiple connected sum with n(L i tfm,L2) = 2, 

the two components are non-seperating and p i  < p2 . 

Without loss of generality we assume that the orientation of L 1  0,,L2  is such that 

the induced orientation of L 1  is positive in the longitudinal direction. 

Subcase (a): pi  < m < P2. 
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We traverse the two components of L1tt n,L2 and construct the corresponding rela-

tions by recording the generators x or y -1  according as the strand of L1 76L2 moves 

along the generator x or y -1  respectively. Here, we traverse the components of Liti L2 

while making moves along the terms of the permutations al(m)  and o-2 (P2) . All the 

possible kinds of moves are illustrated below in three steps. 

Without loss of generality, we begin with the first entry in o - i ( m)  and with the 

empty relation. 

Step (1): Suppose we are at the entry j1 in the cycle ai (m)  = (..•,ji,j2, ...). The next 

move depends on the the following two possibilities. (i) If m — P l  < jl < m, then 

postfix the relation by the generator x while moving to the immediate next entry j 2 

 in o. (m ) and then go to the step (2). (ii) If 1 < j i  < m —Pi,  then do not change the 

relation while moving to the next entry j 2  in cr (m) and then go to step (2). 

Explanation: Arriving at a label of the set {m —Pi  + 1, m} in the permutation 

ai (m)  indicates that a strand of the link LitimL2 has just been traversed along the 

generator x in its direction, and leaving a label of the set {1, m — in the cycle 

ai (m)  indicates that a strand of the link Liti mL2 is being traversed half way around 

the waist handle of the double torus. This is the reason for postfixing x to the relation 

in the former case and leaving the relation unchanged in the latter case. 

Step (2): If we are at the entry j2 in 0 -2 (P2)  = (•••,j2,j3, •••), then postfix the relation 

by the generator y -1  while moving to the next entry j 3  in o-2 (P 2)  and go to step (3). 

Explanation: Leaving a label in the permutation o -2 (P 2 ) indicates that a strand of 

the link L ]AmL2  is being traversed along the generator y in the direction opposite to 

it. This is the reason for postfixing y -1  to the relation. 
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Note that the permutation Q2(m)  associated with the m-cut torus link L2 is ex-

tended to the permutation a (P2 ) in case p2 > m even though the strands labelled 

by the elements of the set {m + 1, ..., p 2 } are not cut in the connected sum. This is 

done for keeping track of all the p2 longitudinal strands of L2 that contribute to the 

relations as they wind along the generator y. 

Step (3): If we are at the entry j 3 , then the move in this step is performed as follows: 

(i) If m < j3  < p2, then proceed as in step (2). (ii) If 1 < j 3  < m, then proceed as 

in step (1). 

We continue this process until we return to the entry of cfrin we started with. 

To obtain the second relation, we must follow the same procedure with the other 

component. 

Subcase (b): m < min {p i , p2 }, or max{p i ,p2} < m < pi  + p2  

In this case, we proceed in a similar way as in subcase (a). 

Subcase (c): m > pi  + p2 . 

In this case also traverse the two components of L i  tln,L2 and construct the corre-

sponding relations by recording the letters x or y -1  each time we move along a strand 

of the link that winds around the generator x in its direction or along y opposite to 

its direction respectively. We traverse the components of L1ltmL2 while performing 

moves along the terms of the associated p(m) given by the formula (2.1) and generate 

the corresponding relations in the following way. 

Let (ji , j2 , j3 , ..., jr) be the cycle in p(m) representing one of the components of 

L1 ttn,L2 . Then the corresponding relation z 1 .z2...z, is given by the rule: 

1  x 	if 1 < jk  < pi  

for all k = 1, 2, ..., r. 

1  
zit  = 

y -  if+ 1  < ik < p1 + P2 
• 
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Explanation: Arriving at a label of the set {1, ..., p i } in p(m) indicates that a 

strand of the link L i  ttm,L2  has just been traversed along the generator x in its direction 

and leaving a label of the set {pi + 1, ..., p i  + p2 } in p(m) indicates that a strand of 

the link LiOniL2 is being traversed along the the generator y in the direction opposite 

to it. Thus we take x and y -1  respectively in the relation at these instances. 

We illustrate the procedure by an example. Consider the direct multiple connected 

sum L1tt32L2 of the two torus links L 1  = ((5, 0), (3, 0)) and L 2 ((7, 0), (4, 0)). The re-

duced permutation p(32) associated with L1 32L2 is (1, 10, 6, 2, 11, 7, 3, 12, 8, 4) (5, 9). 

Hence, a presentation of 7ri (M) of the genus two 3-Manifold M associated with 

L1 032 L2  is 7ri (M) = {x, y : xy -2xy 2xy-2x,  xy-1} Z2. 

Case(2) LiO niL2 is an oriented reverse multiple connected sum with n(L i O niL ) = 2, 

the two components are non-seperating and pi  < p2 . 

Without loss of generality, let the orientation of the multiple connected sum be 

such that the induced orientations of L 1  and L2 will be positive in the longitudinal 

direction. 

Subcase (a) p i  < m < 292  and pi  0 292 . 

We traverse the two components of L1 mL2 while making moves along the terms 

of the permutations a1(m)  and o-2 (P2)  in three steps as illustrated below. 

Without loss of generality, we begin at the first entry in a l  and with the empty 

relation. 

Step (1): Suppose we are at an entry ji  in the cycle o-1 ( 771) = (..., ji, j2, ...). (i) If 

m — pl  < jl  < m, then we postfix the relation by the generator x. Move to the next 

entry j2  in o-i (m )  and then go to the step (2). (ii) If 1 < j l  < m — p' , then do not 

make any change to the relation while moving to the next entry j 2  in o1(in)  and then 
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go to the step (2). 

Explanation: Arriving at a label of the set {in—p i  +1, ..., in} in the permutation 

cii (m)  indicates that a strand of L 1 tIniL2 has just been traversed along the generator x 

in the direction of its orientation. Also leaving a label of the set {1, ..., m — p 1 } in the 

permutation cr i (m) indicates the fact that a strand of Ldt,,,,L 2  is being traversed half 

way around the waist handle of the double torus. In the latter case, the strand did 

not traverse along either of the generators of the fundamental group and therefore no 

letter has been postfixed to the relation. 

Step (2): If we are at the entry j2 in Q2(P2) = (...,j2, j3, ...) postfix the relation by the 

generator y. Then move to the next entry j 3  in cr2 (P2)  and then go to the step (3). 

Explanation: Leaving a label in the permutation 0.2 (1'2)  indicates that a strand of 

L1 tIniL2 is being traversed around the generator y in the direction of the orientation. 

Note that the permutation cr2 ( m)  associated with the m,-cut torus link L2 is ex-

tended to the permutation o2(P2)  in case 132  > in, even though the strands labelled by 

the elements of the set {m+1, ...,p 2} are not cut and joined in the multiple connected 

sum. This is done for keeping track with all the p 2  longitudinal strands of the torus 

link L2 that contribute to the relations as they wind around the generator y. 

Step(3): The third move is performed on the basis of the following two possibilities. 

(i) If 771 < j3 < p2 , then proceed as in step (2). (ii) If 1 < j 3  < in, then proceed as 

in step (1). 

We continue this process until we return to the initial entry we started with. To 

obtain the second relation, we repeat the same procedure with the second component 

by performing moves in the entries of cr i (m)  and c2 (P2) . 

Subcase (b): m < 131 < p2. 
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This is similar to the subcase (a) and hence the corresponding scheme to compute 

the fundamental group of the associated 3-Manifold can be deduced likewise. 

Subcase (c) p 1  < p2  < m. 

We traverse the two components of L i tfmL2  while performing moves along the 

terms of p(m) associated with L i llmL2  given by the formula (2.2) and generate the 

corresponding relations in the following way. Let (41,i2,  jr) be a cycle in the 

permutation p(m). Then the corresponding relation z i .z2 ...zr  is defined as 

Zk 
y if + 1  < ik < P2 

for all k = 1, 2, ..., r. 

Explanation: Arriving at a label of the set {1, 	in p(m) indicates that a 

strand of L 1 llmL2 has just been traversed along the generator x in its direction. Leav-

ing a label of the set {1, ...,P2} in p(m) indicates that a strand of Litt mL2 is being 

traversed along the generator y in its direction. 

Subcase (d) p 1  = p2  = m. 

We traverse the two cycles of o - (L i ttmL2 ) and generate the corresponding relations 

in the following way. 

If OD  j2 , .•., jr ) is a cycle in the permutation p(m), the the corresponding relation 

zi .Z2 ...Zr  is defined as zk = xy for all k = 1, 2, r. Hence the two relations of the 

fundamental group will be 

(xyr and (xy)n-r. 

Explanation: Arriving at a label of the set {1, ..., m} in p(m) indicates that a 

strand of L i tjmL2  has just been traversed along the generator x in its direction, and 

leaving a label of the set {1, m} in p(m) indicates that a strand of L2 is being 

traversed along the generator y in the direction of orientation. 

{xy if 1 < jk  < pi  
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Subcase (e) p l  = p2  = m — 1. 

One of the two components of L i itniL2  has the cycle of unit length i. e. (1) (con-

taining only the first label) representing it in o - (Lilt,,L2) that in turn represents a 

trivial relation in the fundamental group presentation of the associated 3-Manifold. 

The other relation is generated from the cycle in o - (Li lt,,L2) of length p i  in the follow-

ing way. Let (j17 j2 , jp1) be the cycle of length p i  in the permutation o - (L i it niL2 )• 

The corresponding relation is zi.z2...zp1  where zk = xy for all k = 1, 2, pi. Hence, 

the only relation of the fundamental group is z i .z2 ...zp1  = (xy)Pl. 

Explanation: There is only one non-trivial relation in this case as the component 

of Li ti niL2  passing through the label 1 winds only around the waist handle. The 

non-trivial relation is generated using the following fact. Arriving at a label of the set 

{2, ..., in} in p(m) indicates that a strand of Lilt,,L2 has just been traversed along the 

generator x in its direction, and leaving a label of the set {2, ..., in} in p(m) indicates 

that a strand of L i itniL2  is being traversed along the generator y in the direction of 

orientation. 



Chapter 3 

Mapping Class Elements 

3.1 Mapping Class Elements 

In §3.1.1. a parametric representation of a shift of an m-cut on a torus link and also 

an unambiguous parametric representation for a multiple connected sum is provided. 

In §3.1.2. the effective changes in the parameters governing L i ttn,L2 when each of the 

twists / p1 mV and 711  is applied to L i li n,L2  under specific conditions 

on the parameters are observed. In §3.1.3. we present the algorithm to generate a 

mapping class element associated with a multiple connected sum. Finally, in §3.2. an 

unambiguous parametric representation of a general multiple connected sum is given 

and permutations associated with multiple connected sums of three torus links are 

presented. 

A double torus is the boundary of a genus 2 handle body. Mapping class group of 

a double torus is the group of isotopy classes of homeomorphisms of the double torus 

to itself [12]. Let D be a double torus and C be a simple closed curve embedded in 

D. Consider a tubular neighbourhood (annulus) A around the simple closed curve 

C. Parameterize it by S' x [0, 1] as (0i, t). 
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Definition 3.1.1. A twist T about C is any homeomorphism isotopic to the homeo-

morphism r : D 	D defined as ri p \A  is identity and TI A (e82 , t) = (0+27oz , t) .  

Definition 3.1.2. Two simple closed curves in D are said to be twist equivalent if 

there exists a mapping class element of D that sends one to the other. 

Let M(D) denote the mapping class group of D. A curve in a double torus is 

called a canonical curve if it is isotopic to one of the six curves denoted by /1, 12, 

ml , m2 , 7 and b (figure 3.1). Note that / 1  and /2  are the longitudes and m 1  and 

m2  are meridians. 7 is a simple closed curve around the waist handle of the genus 

two handle body whose boundary is the double torus D. ö is a simple closed curve 

around the waist handle of the complement handle body whose boundary is also 

the double torus D in the genus two Heegaard splitting of V. Mapping class group 

M(D) of the double torus D is generated by the isotopy classes of the five twists 

known as the Lickorish generators [6] about the five canonical curves /1,12, mi, m2 

and 7. We denote the Lickorich generators about these canonical curves by the same 

symbols /1,12, ml, m2 and 7. Each Lickorish generator is a twist performed about the 

canonical curve denoted by the same symbol. The set of twists {4 , /2 , m 1 , m2 , 8} 

is another set of Lickorish generators for M(D). This follows from the fact that 7 can 

be generated from the latter set of generators. In our algorithm, we use the twists 

{/i 1 , 12 1 , mP 1 , mV , 7± 1 } depending on the specifications (mentioned later in this 

section) of the parameters governing Lit$ mL2 at that instant and reduce the multiple 

connected sum to canonical curves in finite number of steps. However, it is possible 

to use the twists {lp1, 121, mi 1, m21, b± 1 } instead and reduce a multiple connected 

sum to canonical curves in finite number of steps. For any double torus link having 

k components embedded in the double torus D, there exists a mapping class element 
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of D that maps it into a set of k canonical curves of D [12]. It is known that a double 

torus link when reduced to canonical curves using a mapping class element will have 

a maximum of 3 isotopy classes of canonical curves. This also shows that any double 

torus link with more than three components will have parallel components. Also 

any double torus link that is mapped to 2 or 3 distinct isotopy classes of canonical 

curves by a mapping class element must be a genus two link. Self homeomorphisms 

of a double torus send separating (non-separating, respectively) components of a link 

embedded in it to separating (non-separating, respectively) components. Hence, the 

number of non-separating classes of components of a link will be equal to the number 

of distinct classes of canonical curves to which the link is reduced to by a mapping 

class element. However, we are not aware of any algorithm that can produce such a 

mapping class element for any given arbitrary double torus link. In §3.1.3. of this 

chapter, we provide an algorithm to generate a mapping class element of D that sends 

a given multiple connected sum L1ll.L2 having k components to a set of k canonical 

curves of D. 

Figure 3.1 Twists 1 1 ,12 , ml , m2 , -y and 6. 
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3.1.1 Parametric Representation of Multiple Connected sums 

An m-cut on a torus link L(p, q) can be deformed isotopically from across the p 

longitudinal strands to the q meridional strands so that the cut becomes isotopic 

to an arc of the longitude of the torus as shown in figures 3.2, 3.3 and 3.4. Such a 

deformation of an m-cut is called a shift. An m-cut on a torus link L(p, q) is said to be 

compatible if its shift across the q meridional strands cuts some or all of the original 

q strands as in figure 3.2 and 3.3. An m-cut on L(p, q) is said to be non-compatible 

if it is not compatible as in figure 3.4. Recall that L(p, q) can be represented by four 

parameters as explained in chapter 1. The 4-tuple parametric representation of a 

torus link encodes, besides the number of longitudinal and meridional strands, the 

positivity or negativity of the torus link. This is significant since a positive torus 

link need not be isotopic in R3  to a negative torus link even if they possess the same 

number of longitudinal and meridional strands. An m-cut positive torus link L(p, q) 

is represented by [(p, 0), (q, 0); ml where the overline over the term (p, 0) indicates the 

cut is performed across the p longitudinal strands, and for m > p this representation 

fails to distinguish between the two types of cuts namely direct and reverse for a given 

orientation of the link. However, the shift of these cuts resolves the ambiguity and 

the m-cut positive torus link is now represented by (1) [(p, 0), (q, 0); Trt] when m < q 

and the cut is compatible as in figure 3.2, (2) [(p, 0), (m, m — q); m] when m < q and 

the cut is compatible as in figure 3.3, and (3) [(p, 0), + q, m); Trd when the cut is 

non-compatible as in figure 3.4. 
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Figure 3.2 [(p, 0), (q, 0); in] 	[(p, 0), (q, 0); m where in < q 

Figure 3.3 [(p, 0), (q, 0); in] 	[(p, 0), (m, in — q); m] where m, > max{p, 



Figure 3.4 [(p, 0), (q, 0); m] 	[(p, 0), (m + q, m); m] where m > p 

A shift of an m-cut, being a deformation of the cut itself, does not change the 

cut nor the link it cuts. The two types of m-cuts possible on L(p, q) when m > p, 

namely compatible and non-compatible m-cuts, are basically direct and reverse m-

cuts for a fixed orientation of the link and for a labelling in a fixed direction along a 

meridian. It can be seen that these two types of m-cuts are distinct in general, in the 

sense that two non-isotopic m-connected sums can be generated from two torus links 

L„ i = 1, 2 using the two types of m-cuts. An illustration of this fact is given soon 

after establishing the parametric representation of a multiple connected sum below. 

The parametric representation of the shift of a meridional m-cut of a torus link is un-

ambiguous. The parametric representation of Li0,,L2 is generated by combining the 
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parametric representations of the shifts of the two torus links L i , i = 1, 2 involved in it 

together with m the size of the m-cuts. This parametric representation of a multiple 

connected sum is also unambiguous. Henceforth, in the parametric representations 

of the multiple connected sums, shifts of meridional m-cuts will be used and we will 

refrain from inserting the over line over the meridional parameters for the sake of 

brevity. There should not be any confusions on the part of the reader as we stick to 

the conventions set above unless otherwise stated. A parametric representation of an 

oriented L4„,L 2  involves nine parameters, first four pertaining to the link 1(p 1 , qi ), 

next four pertaining to the link L(p 2  , q2) and the last one pertains to the cut. The last 

parameter is equal to half the number of strands running across the waist handle of 

the double torus in which L4„,L 2  is embedded. In the parametric representation for 

a multiple connected sum, there can be at most seven non-zero parameters because 

the m-cuts when shifted on both the torus links involved in a multiple connected 

sum leave the longitudinal strands unaltered. A multiple connected sum having at 

most five non-zero parameters in the parametric representation is called a standard 

multiple connected sum. 

A multiple connected sum L i t$„,L2  of any two m-cut positive torus links L 1  = 

L(p 1 , q 1 ) and L2 = L (p2  , q2 ) has one of the following type: 

1. [(pi, 0), (qi, 0); (p2, 0), (q2, 0); m] when the m-cuts on L(pi, q1) and L (p2 , q2 ) are 

compatible and m < min{q l , q2 }. 

2. [(pt , 0), (m, m — q1); (132, 0), (q2, 0); m] when the m-cuts on gm , qi) and L(p2, q2) 

are compatible and q1  < m < q2 . 

3. [(pi , 0), (qi, 0) ; (p2 , 0) , (m, m — q2); m] when the m-cuts on L (p i  , qi ) and L (p 2  , q2 ) 

are compatible and q 2  < m < 
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4. [(pi, 0), (m+qi, m); (P2, 0) , (q2, 0); m] when the m-cut on L(p i , qi ) is non-compatible, 

the m-cut on L(p2 , q2 ) is compatible and m < q2 . 

5. [(Pi, 0), (m + q1i  m); (P2, 0), (m, m - q2 ); m] when the m-cut on gm, qi) is non-

compatible, the m-cut on L(p 2 , q2 ) is compatible and m > q 2 . 

6. [(pi, 0), (m, m - qi); (P2, 0), (m + q2, m); m] when the m-cut on MTh, qi) is compat-

ible, the m-cut on L(p 2 , q2 ) is non-compatible and m > 

7. [(Pi, 0), (q1,  0); (P2, 0), (m + q2, m); m] when the m-cut on L(p i , qi ) is compatible, 

the m-cut on L(p 2 , q2 ) is non-compatible and m < 

8. [(pi , 0), (m, m - qi ); (p2 , 0), (m, m - q2 ); m] when the m-cuts on L (p i  , qi ) and 

L(p2 , q2 ) are compatible and m > max fq i  , q2 }. 

9. [(Pi, 0 ), (m + ql,  m); (P2, 0), (m + q2, m); m] when the m-cuts on L 	qi ) and 

L(p 2 , q2 ) are non-compatible. 

An m-connected sum Lill,„L2 may not be isotopic to an m-connected sum L'ittmL2, 

where L 1  and L' 1  are same links but one of them is m-cut compatibly and the other 

is m-cut non-compatibly and whereas L2 is m-cut of the same type in both the 

multiple connected sums. This fact can be realized by computing the number of 

components in the two resulting multiple connected sums. For example consider 

[(5, 0), (7, 3); (4, 0), (7, 4); 7] and [(5, 0), (7, 3); (4, 0), (10, 7); 7]. In the former multiple 

connected sum the torus links (5, 4) and (4, 3) are both 7-cut compatibly, while in 

the latter the torus link (5, 4) is 7-cut compatibly and the torus link (4, 3) is 7-cut 

non-compatibly. The two resulting multiple connected sums are not isotopic as the 

number of components in first multiple connected sum is 5 while that of the second 

is 1. Following diagrams of distinct multiple connected sums are represented by 

unambiguous parametric representations. 



Figure 3.5 (a) [(Pi, 0), (m, m — 0.); (p2, 0), (m, m — q2); mi. 
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Figure 3.5 (b) RM., 0), (m, m — q1); (P2, 0), (m, m + q2); m]• 



Figure 3.5 (d) [(p1 , 	(m, m — q i ); (p2 , 	(m + q2 , m); m]. 

Figure 3.5 (c) [(p1 , 0), (m, m — q 1 ); (pa , 0), (m — q2 , m); m]. 
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3.1.2 Twist Transformations 

We state below the transformations of parametric representations of multiple con-

nected sums when the twists l 	 m+1 and 7±1  are applied to them under 

specific conditions on the parameters. The conditions stated in the transformations 

suffice for our purpose of developing an algorithm to generate the mapping class 

element associated with a multiple connected sum. We prove some of these twist 

transformations below and the rest can be proved in an analogous way. 

1. ml ([(p1, 0), (qi, 0); (P2, 0 ), (q2, 0 ), inn 

= [(Pi, 0), (qi — P1, 0); (P2, 0), (q2, 0); m] when q1 — m > 

Proof: 

Figure 3.6 m1  twist on [(Pi, 0), ((h., 0); (P2, 0), ((i2, 0); m], (h. — m 
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(See figure 3.6) If q1  - m > pi , then apply the m 1  twist to the double torus em- 

bedding [(pi, 0), (qi, 0); (P2, 0), (qz, 0); m] to obtain [(Pi, 0), (qi, pi ); (p2 , 0), (q2 , 0); m]. 

Then, we get rid of 2291  meridional strands by isotoping them in the direction of 

orientation of the canonical curve m 1  to a part of the canonical curve / 1  . The re-

maining q1  - pi  meridional strands are left unaltered. This results in [(p i , 0), (q 1  - 

Pi, 0); (192, 0), (qz, 0); m]. 	 ❑ 

2. mr i  ( RA , 0), (0, qi); (P2, 0), (0, qz); 

= 	0), (0, ql - pi); (p 2 , 0), (0, q2 ); m] when qi  - m > pi . 

3. m,2(Rph 0), (q1, 0); (p2, 0), (q2, 0); m]) 

= [(Ph 0), (qh 0); (p2, 0), (q2 - P2, 0); m] when q2 - m > Pz. 

4. m2-1 ([(191, 0), (0, qi); (p2, 0), (0, q2 ); m]) 

= [(Pi, 0), (0, qi ); (p2 , 0), (0, q2  - p2); m] when q2 m > 292. 

5. ml -1 ([(291, 0), (m, m 	q1); (292, 0), (qz, 0); m]) 

{

[(Pi , 0), (m, m - p1); (p2, 0), (qz, 0); m] 

[(191, 0), + qi, 0); (192, 0), (qz, 0); m] 

6. mi([(Pi., 0), (m - qi, m); (192, 0), (q2, 0); ml) 

[(291, 0), (m - q1 - pl, m); (292, 0), (q2 , 	m] 

[(pi, 0 ), (0, pl + qi); (p2, 0), (q2 , 0) ;  m] 

7. mi ([(Pi , 0), (m, m + q1); (P2, 0), (qz, 0); m]) 

RA , 0 ) ,  (m, m + q1 - Pi); (192, 0), (qz, 0); 7n] 

[(Pi, 0), (p1 	0); (P2, 0), (q2, 0); m] 

8. mi(Kpi, 0), (m + qi, m); (192, 0), (qz, 0); mi) 

I [(Pi, 0), (m + q1 - p1, m,), (p2 , 0), (q2 , 0); m] 

[(Pi, 0), ( 0 , - qi.); (292, 0), (q 2 , 0); m] 

ifm-gl> 

ifm-q1  < pi  

if m - qi  > pi 

 if m 	<p1 

if m 	> 

if m 	< pl 

if m +q1 > pl 

if m +ql  < pl 
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9. rn2-1 ([(19 1, 0), (q1, 0); (P2, 0), (rn, rn - q2); rrd) 

= 	[(Pi, 0 ) ,  (ql , 0); (P2, 0), (rn, m - q 2  - p2); rn] if m g2 > P2 

[(P1, 0), (ql, 0 ); (p2, 0), (p2  + q2 , 0); ml 	if m - q2  < P2 

10. rn2([(P1, 0), (q1, 0); (P2, 0), (m - q2, m); rn}) 

{

[(Pi, 0), (qi, 0); (P2, 0), (rn q2 - P2, rn); rn] if rn - q2 > P2 

[(P1 , 0 ), (qi, 0); (P2, 0), (0 , P2 ± q2); rn] if rn - q2 < P2 

11. m2-1 ([(Pi, 0 ), (qi, 0); (p2, 0), (rn, rn + q2); rnn 

= 	[(Pi, 0 ), (ql , 0 ); (P2, 0), (rn, m + q2 - P2); rn] if rn + q2 > P2 

[(Pi) °); (ql, 0); (192, °), (P2 	q2, 0); rn] 	if m + q2  < P2 

12. m2([(Pi, 0), (q1, 0); (P2, 0), (m + q2 , m); m]) 

= 	[(Pi, 0), (qi, 0); (P2, 0), (rn + q2 - p2, m); 	if + q2 > P2 

[(Pi, 0), (qi, 0); (P2, 0), (0,p2 - q2 ); in] 	if rn, + q2 < P2 

13. /1([(191 , 0), (q1, 0); (192, 0), (q2, 0); m]) 

= 	[(pi 	qi 0) ' (qh 0 ); (P2, 0), (q2, 0) ; rni 

[(0, q1 - pi), (qi, 0); (P2, 0), (q2, 0); m] 

if p1  > q1 

if pl  < q1 

Proof: Case (1) Pi > 

(See figure 3.7 (a)) If p1 	apply the / 1  twist to [(Pr, 0), (q1, 0); (p2, 0), (q2, 0); m] to 

obtain [(pl, q1), (q1, 0); (292, 0), (q2 , 0); m]. Then, we get rid of 2q1  longitudinal strands 

by isotoping them in the direction of orientation of the canonical curve / 1  to a part of 

the meridional curve m 1 . The remaining Pi  longitudinal strands are left unaltered. 

This results in [(p i  - q1 , 0), (q1 , 0); (p2 , 0), (q2, 0); m]. 

Case(2) Pl < ql 

(See figure 3.7(b)) If pi. < q 1 , apply  the / 1  twist to the double torus embedding 

[(Pi., 0), (qi, 0); (p2 , 0), (q2 , 0); rni to  obtain [(Pi, qi.), (qi, 0); (P2, 0), (q2, 0); m]. Then, we 

get rid of 2p 1  longitudinal strands by isotoping them in the direction of orientation of 

the canonical curve / 1  to a part of the meridional curve m 1 . The remaining q1-pi  lon-

gitudinal strands are left unaltered. This results in [(0, ), 0); (p2, 0), (q2, 0); m]. 
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Figure 3.7(a) 1 1  twist on [(pi , 0), (qi , 0); (p2 , 0), (q2 , 0); m], 

Figure 3.7(b) / 1  twist on [(p i , 	(qi, 0); (P2, 0); (q2, 0); nil, 
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14. 4 -1  (RA, 0), (0, q1); (P2, 0), (0, q2); 

= 	[(Pi 	0), (0 , qi); (P2, 0), (0, q2 ); 

[(0 , q1 - 	(0, qi); (P2, 0), (0, q2); 

if Pi > ql 

if Pl < q1 

15. 12([(Pi, 0), (qi, 0); (p2, 0), (q2 , 0); mil 

, 	[(Pi, 0), 	0) ;  (7,2 	
q2, 0), (q2, 0); 

if P2 > q2 

RP1, 0), (q1, 0); (0, q2  - p2 ), (q2 , 0) ; mi if P2 < qz 

16. /2 -1 ([(Pi, 0), ( 0 , qi); (P2, 0), (0, q2); 

= 	[(Pi, 0), (0, qi); (P2 	q2, 0), (0, q2 ); if P2 > q2 

[(Pi, 0), (0, q1 ); (0, q2  - P2), (0, q2); if P2 < 

17. 7091, 0), (qi, 0); (p2, 0), (q2, 0); mD 

= [(Pi, 0), 	- m, Pl + P2 - m); (P2, 0), (q2 - m, Pi + P2 - m); Pi, + P2 - 

if m < min{Pi + P2, ql, q2}. 

Proof Case (1) m > pi . 

(See figure 3.8(a)) If m < 	+P2, q1, q2 } and m > Pi , then apply the -y twist to 

the double torus embedding [(p 1 , 0), (qi , 0); (p2 , 0), (q2 , 0); m] to obtain Rp i , 0), (qi , pi + 

P2); (P2, 0), (q2, Pi + P2); m + Pl + P21. Next, we isotope Pl + p2 strands over the 

waist handle in the direction of orientation of the canonical curve -y of the double 

torus towards the inner side of the right hand torus to arrive at [(p i , 0), (qi , Pi  + 

P2); (P2, 0), (q2, pi +p2); m+p21• Further, m strands of these p1 +p2 strands are isotoped 

from below the waist handle of the torus again in the direction of orientation of the 

canonical curve 'y of the double torus towards the inner side of the left hand torus to 

arrive at [(Pi, 0), (q1 - m,  Pi +P2 - m); (P2, 0), (q2 - m, Pi +P2 - m); P21. Finally, 

strands of these m strands are isotoped towards the right hand torus from over the 

waist handle in the direction of the orientation of the canonical curve 7 of the double 

torus to arrive at [(Pi, 0), (q1 - Pi +P2 -m); (P2, 	(q2-m,P1+P2-m);Pi+P2- ml  
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Figure 3.8(a) 'y twist on [(p i , 0), (q1 , 0); (p2, 0), (q2, 0); 	m < minfpi  +p2, qi, q2}. 



< min{Pi +P2, q1, q2}. Figure 3.8(b) 'y twist on [(P1, 0), (qi, 0); (p2,0), (q2 ,0); 
, 
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Case (2) in < pi . 

	NEN  r  
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(See figure 3.8(b)) If m < min{p i  + p2, q1, q2} and m < p 1 , apply the 1,  twist to the 

double torus embedding [(p i , 0), (qi , 0); (p 2 , 0), (q2 , 0); m] to arrive at [(p i , 0), (qi , P1  + 

P2); (p2, 0), (q2, Pi + p2); m + Pl + p2]. Then m + p2 strands are isotoped over the 

waist handle in the direction of orientation of the canonical curve 1 ,  of the double 

torus towards the inner side of the right hand torus to arrive at [(p i , 0), (qi , p1  + 

P2); (p2, 0), (q2, +132); Pi +P2]. Finally, m strands of these m+p2 strands are isotoped 

from below the waist handle of the torus again in the direction of orientation of the 

canonical curve 1,  of the double torus towards the inner side of the left hand torus to 

arrive at [(Pi, 0), (q1 Pi + P2  - m); (P2, 0), (q2 rn, P1 + P2 - rn); P1 + P2 - m]. 

18. 1/-1 ([(P1, 0), (0, qi); (P2, 0), (0, q2); 

01, 0), (Pi + P2 - rn, ql m); (P2, 0), (P1 + P2 - rn, q2 rn); P1 + P2 - m] 

if m < min{Pi + P2, q1, 4'2}. 

19. 11 ([(P1, 0), (q1, 0); (P2, 0), (q2, 0); m]) 

= i(Pi, 0), (qi - (pi + p2), 0); (P2, 0), (q2 - (Pi + P2), 0); m - (Pi + P2)] 

if P1  + p2  < m < 	q2}. 

Proof: (See figure 3.9) If p l  + P2 < m < minfqi, q2 }, apply the 1,  twist to 

[(Pi, 0), (qi, 0); (P2, 0), (q2, 0); m] to arrive at [(p i , 0), (qi, (Pi  + p2)); (P2, 0) ,  (q2,  (pi  + 

P2)); M P1 + P2 ] .  

Next, isotope pi + p2  strands over the waist handle in the direction of orientation 

of the canonical curve 1 ,  of the double torus towards the inner side of the right hand 

torus to arrive at [(pi, 0), (qi, (Pi + p2)); (232, 0), (q2, (Pi + P2)); m p2]. 
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Further, isotope these p i+p2  strands from below the waist handle of the torus again 

in the direction of orientation of the canonical curve 'y of the double torus towards 

the inner side of the left hand torus to arrive at [(p i , 0), (q 1  — (Th. +p2),  0); (p2, 0), (q2 — 

(p1 + p2), 0); m — 

Finally, deform p2  strands of these p i+p2  strands towards the right hand torus from 

over the waist handle in the direction of the orientation of the canonical curve 7 of the 

double torus to arrive at [(pi,  0), (qi— (pi +p2 ), 0); (p2 , 0), (q2 —(pi +p2 ), 0); n7,— (p i  +p2 )]. 

V 

See the next page for the transformed link 
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Figure 3.9 7 twist on [(p i , 0), (q1 , 0); (p2 , 0), (q2 , 0); m], p1 +p2  < m 	q2} 

20. 'y -1 ([(Pi, 0), (0, qi); (P2, 0), (0, q2); m]) 

= [(Pi, 0), (0, — (p1 + p2)); (P2, 0), (0, q2 — (P1 + p2)); m — (P1 + P2)] 

if p1 + P2 < m < 	q2}. 

Stated below are the transformations of the parametric representations of the 

multiple connected sums in which both torus links involved are m-cut longitudinally, 

when the twists li 1 , mi±1 , 7741 , and 5±1  are applied to them under specific 

conditions on the parameters. These transformations suffice for the purpose of devel-

oping an algorithm to generate the mapping class element associated with a multiple 

connected sum. To indicate the shifted longitudinal m-cuts in this case, wide hats 
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are inserted over the longitudinal parameters in the parametric representation of the 

multiple connected sums. These are not proved since they are similar to the ones 

above and are not used in our algorithm. These are stated for the sake of those 

who may wish to explore for an algorithm using them, similar to the one given above. 

These come handy if one wants to work with multiple connected sums involving shifts 

of longitudinal cuts. 

1. 11 ([ (p1, 0), (q1, 0); (P2, 	(qi, 0); mil 

= RP' - 	0), (qi., 0 ); ((P2, 0), (q2, 0); m] if p1 -  m 

2. 11 -1 ([(p1, 0), (0, qi), ; (P2, 0), (0 , q2); gin 

= [(Pi 	, 0), (0, qi); (P2, 0), (0, q2); m] if p1  - m 

3. /2 ([(Pi, 	(qi, 0); (p2, 0), (q2 , 0); m]) 

= OA, (q1) 0 ); (P2 - q2) 0 )) (q2, 0); m] if p2 - m > q2. 

4. 12 -1 ([(p1, 0), (0, qi); (p2, 0), (0, q2 ); rn]) 

= 	0), (0, qi); (P2 - q2, 0), (0 , q2); m] if P2 - m > q2. 

5. 1 1 -1 ([(m, m - PO, (q1, 0); (p2, 0), (q2, 0); m]) 

= 
 1

Krn, Tri - Pi - q1), (qi, 0); (P2, 0), (q2, 0); m] 

[(Pi  + ql ' 0),  (q1, 0); (P2, 0), (q2, 0); m] 

6. 11([(m - Pi, m), (q, 0); (P2, 0), (q2, 0); m]) 

= 	Krn  - p1  - qi, rn),  (q ,  0 ); (192A, (q2, 0) ; rn] 

[(0 ,p + qi) ,  (qi, 0); (P2, 0), (q2, 0); m] 

7. 11 -1 (Rm, m + PO, (q1, 0); (P2, 0), (q2, 0); gin 

= 
 1

[(m, Tri + Pi - q1), (qi, 0); (p2, 0), (q2, 0); m] 

[(qi - P1, 0), (qi, 0); (P20, (q2, 0); Tril 

if m - > q1 

if m - P1 < ql 

if m - P1 > 

if m - P1 < 

ifm + p1 > 

if m + p1  < 



8, /1([(772 + Pi, m), (T., 0); (P2, 0), (q2, 0); Tril) 

[(In  ± Pi 	qi' m),°); 	(q2, 0); 

RO, Ql - 	(T., 0); (P2, 0), (q2, 0); m] 

9. / 	(Oh 0), (T., 0); (m, m - p 2 ) , (q2 , 0); Tril) 

= 	[(Pi , 0 ), (TA); (m, rn - P2 - q2), (q2, 0); rril 

t [(Pi, 0 ), (TA); (P2 + q2, 0), (q 2  , 0); m] 

10. /2([(131., 0), (T., 0); (m - P2, m), (q2, 0); Trill 

Oh 0), 
(qi 0); (rn p2 q2, 

	(q2, 0);  ad  

[(Pi., 0 ), (T., 0); (0, p 2 	q2 ), (q2 , 0) ; rni 

11. /2 -1  ({(A., 0), (T., 0); (m, m + p2), (q2, 0); rn1) 

= 	{(Pi, 0), (T, 0); (m, m + P2 - q2), (q2, 0); ad 

[(Pi., 0), (qi, 0); (q2 	
p2 0 ) (q2 0 ) rrd 

12. 12([(pi,  0), (qi, 0); (m + P , m), (q2 , 0); m]) 

= RA, 0), (qi, 0); (m + P2 - q2 m), (q2, 0); m] if m + P2 > Q2 

01, 0 ), (Q1, 0 ); (0, q2 - p2 ); 	 if m + P2 < Q2 

13. ml ([(Pm, 0), (qi, 0); (p2 , 0), (q2 , 0); m]) 

= 	[(PIA ,  (T. - P1, 0); (P2, 0), (q2 0); m] if T. ?. Pl 

[(Pi, 0), (0,P. - T.); (P2, 0), (q2, 0); rni if qi 	P l 

14. mi. -1  (OD 0), (0, T.); (222, 0), (0, q2); m]) 

= 	[aPi, 0), (0, 	- Pi; (P2, 0), (0, q2); m] if Ql > 

[(Pi, 0), (Pi - Ql, 0); (P2, 0), (0, q2) ; 	< 

15. 7n2 (01,  0 ), (Q1, 0); (P2, 0 ), (Q2, 0); MD 

= 	0 ); (Q1; 0 ); (P2, 0), (Q2 - P2, 0); in] if 

On 0), (qi, 0); (P2, 0),  (0, P2 - q2); ml 	< P2 

> P2 

16. m2 -1 ([(Pi ,  0), (0, qi); (P2, 0), (0, q2 ); rn1) 

= 	On 0), (0, T.); (P2, 0), (0, q 2  - p2 ); m] if 	> P2 

On 0), (0, qi ); 032, 0), (p2 q2, 0);  ml if  q2 
 < P2 
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if m+Pl > Ql 

if rn + Pl < qi 

if m - P2 > q2 

if 	P2 < Q2 

if Tri - P2 > q2 

if Tri - P2 < Q2 

if in +P2 > Q2 

if m + P2 < Q2 
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17. (5 (RP1, 0), (qi, 0); (P2, 0), (q2, 0); inn 

= 	 + q2 m), (qi, 0); (P2 - at, + q2  - rn), (q2 , 0) ;  + q2  - rrd 

if m < min{ + q2, Pi, P2}. 

18. 6-1  ([(pi, 0), (0, qi); (P2, 0 ), (0, q2); inn 

= [(Pi - 	+ q2 at), (0 , ql); (P2 - 	+ q2 M), (0, q2); + q2  - 

if 771 < min{qi  + q2,p1,p2}. 

19. (5 ([(p1, 0) , (qi, 0); (p2, 0), (q2 , 0); rrd) 

[(p1 - (qi + q2), 0), (qi, 0); (P2 - (qi + q2 ), 0), (q2 , 0); rn - (qi 	q2 )] 

if q1  + q2  < m < min{Pi , P2}. 

20. 6-1([(p1,  0), (0, qi ); (p2 , 0), (0, q2 ) ;  at]) 

= [(p1 - (qi + q2), 0), (0, qi); (P2 - (qi + q2), 0), (0, q2); - (qi+q2)] if qi +q2  < 

m < minfpi , P21. 

3.1.3 The Algorithm 

An algorithm to generate a mapping class element f using the twists 

and 7±1  under specific conditions on the parameters governing L 1 tt,„L2 so that f 

sends Litt r„L2 to canonical curves. In the algorithm, the multiple connected sums 

have both its torus links cut meridionally. The algorithm consists of three phases. 

For pi , qi , m E N, let pi = -pi  mod g i , qi = [(qi -at) mod pii] +m, pi" = -IX mod 

where i = 1, 2. For t E R, [t] E N is defined as the unique natural number such that 

t - 1 < [t] < t. The following three lemmas serve as prerequisites. 

Lemma 3.1.1. If a standard multiple connected sum is one of the following type 
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(1) [(P1, 0), (qu 0); (P2,0), (q2, 0); rrd, or (2) [(pi, 0) , (0, qi); (p2, 0) , (0, q2 ); 	with m 

q2 }, pi  < qi, qi  - m < pi  and pi  5 pi for i = 1, 2, then pi  + p2 < 2m. 

Proof: Since qi-m < pi, i = 1, 2, it follows that pli+Pi = (qi+q2)- (pi+p2) < 2m. 

But, p1 + P2 < Pi + p2 since pi < pi for i = 1, 2. 	 ❑ 

Lemma 3.1.2. If a standard multiple connected sum is one of the following type 

(1) [(Pu 0), (q1, 0 ); (P2, 0), (q2, 0); m] or (2) [(131, 0), (0, qi); (P2, 0), (0, q2); m] where in < 

min{q 1 , q2 1 and its parameters satisfy the conditions pi  < qi  , qi - m < pi , i = 1, 2 

and 2m < pl + /32, then there exists j E {1, 2} such that < pi  qi  - m > .11.;  and 

qi  > q j . Further, if 	< gip  then pi  > ". 

Proof: Since 2m < p i  + /32 , there exists j E {1, 2} such that pi  > rn. Therefore 

qi  = + 	m + pij , and pi  > qi  - m > 

The inequality qi  > gij  is immediate. 

When pij  < qlj , we have pi  +14 = qi > 	= +pi" and therefore pi > pi". 	❑ 

Lemma 3.1.3. Suppose a standard multiple connected sum is one of the following 

type (1)[(pi, 0), (qi, 0 ); (P2, 0), (q2, 0); m] or (2 ) [(Pi, 0), (0, qi); (p2, 0), (0, q2) ; Tn.] where 

m < q2 }, and its parameters satisfy the conditions pi  < qi , < pi = 

1, 2 , and 2m < pi + /32. Then each can be reduced using twists to another standard 

multiple connected sum again of one of the two types above such that either two of the 

original parameters {pi , q1 } or {p2 , q2 } or all the four parameters {pi , q1, p2, q2 } de-

creased in the latter standard multiple connected sum, while the rest of the parameters 

remain unchanged. 

Proof: Since 2m < pi + p2, either (1) p1 < pl and /12 > P2, or (2) pi > p1  and 

112 < P2, or (3) Pi < P1 and /12  < p2. 
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Without loss of generality, assume that the standard multiple connected sum with 

both torus links are positive. 

Case (1) Pi < Pi and p'2  > P2 

Let the multiple connected sum Rm., 0), (q1, 0); (P2, 0), (q2, 0); m] be such that the 

condition (1) holds. Using formula (13), we get ii([(Pi, 0), (qi, 0); (P2, 0), (q2, 0); Trip 

= [(0, P1), (q1 , 0); (p2 , 0) , (q2 , 0); m]. From lemma 3.1.2, q 1  - m > pi. Applying 

mi-1  repeatedly using formula (2), we get m iTs([(0,pc. ), (qi , 0); (p2 , 0) , (q2 , 0); Trip = 

[(0 , , (q'1, 0); (p2 , 0), (q2, 0); m] where s = [(q1  - m) pa Repeatedly using formula 

(14), we get 1,7 t  (R0 , , (q'1, 0); (P2, 0), (q2, 0); mi) = 0), (Vi , 0); (p2, 0), (q2 , 0); m] 

where t = tp'dqii] +1. Here, we know that the initial parameter q1  has decreased to q 1̀ 

 and all initial parameters other than pi  and q1  are unchanged. Now, if pi > Pi, then it 

follows that pi; +p2 > Pl +p2. Hence, parameters of [(p , 0), (qi,  0); (P2, 0), (q2, 0); m] 

satisfy all the conditions in the hypothesis of the lemma. Therefore, we can simi-

larly reduce this standard multiple connected sum further until the parameter pi  also 

decreases after a finite stage. 

Case (2) Pi > pl  and A < P2. 

The proof in this case is exactly similar to the case (1) and hence is omitted. 

Case (3) pi. < Pl and 	< p2. 

Let the multiple connected sum [(p i , 0), (q1 , 0); (p 2 , 0), (q2, 0); m] be such that the 

condition (3) holds. Applying / 1  and /2 using the formulae (13) and (15) respec- 

tively, we get / 1 ([(pi , 0), (q1 , 0); (p2 , 0), (q2, 0); m]) = [(0, p;), (q1, 0); (P2, 0), (q2, 0); Tri] 

and /2([( 0 , 	(qi 0); (P2, 0), (q2, 0); ml) = [ (0, pc. ), (qi, 0); (0, p'2 ) , (q2,  0); m]. 

From lemma 3.1.2, the inequalities qi  -m > Pi and q2 -m > 	follow. Hence, by 

applying mT 1  and Tri l  repeatedly using the formulae (2) and (4) respectively, we get 
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ml  ([(0 , 	(qi , 0); (0, p'2) , (q2 , 0); mi) 	[(0,p'1 ), 	0); (0, p'2 ) , (q2 , 0-);  mi where s 

[(M. -771V A]. 7n2 t ([(0 , A), (q'1, 0); (O, p'2) , (q2, 0); mi) = RO Pi) 0); (O, p'2 ) , (V2 , 0); mi, 

where t = [(q2 - m) p'2]. Here, the initial parameters Ph  qi, P2 and q2 have decreased 

to IA, qi , 
p'2  and q2  respectively while the parameter 77-1 remains unaltered. This com-

pletes the proof of case (3). ❑ 

The algorithm is described below in three phases. 

Phase (1) In this phase we reduce the link L i tin,L2 to one of the two standard forms 

(1) [(Pi, 0), (q1, 0); (P2, 0), (q2, 0); 	or (2) [(Pi, 0), (0, q1); (P2, 0), (0 , q2); 

This can always be done in the following manner. If there are more than five 

non-zero terms in the parametric representation, then the m-cut on one or both the 

torus links L i (pi , qi ); i = 1, 2 must be of one of the type (1) [(p i , 0), (m, m qi ); 774, or 

(2) [(pi , 0), (m+qi , m); mi, or (3) [(p i , 0), (m - qi , m); mi, or (4) [(pi,  0), (m, m+ qi); mi. 

We describe the method in one of the cases now. Suppose the multiple connected 

sum is of the form [(p i , 0), (m, m - qi ); (732 , 0), (m + q2, m); mi. Then, the parameters 

m-qi  and m+q2  can be got rid of by repeatedly applying the twists mi . ' and m2  using 

the formulae (5) and (12) respectively to arrive at [(Pi, 0), (m + s, 0); (P2, 0), (0, m + 

t); Tri] where s = (q1 - m) mod p i  and t = (-m-q2) mod p2. Next, apply the twist 44 

 repeatedly using the formula (16) until we arrive at [(pi , 0), (m+s, 0); (p2, 0), (r, 0); m] 

where r = (-m - t) 7710d P2. Similarly, all other cases can be reduced to one of the 

standard multiple connected sums mentioned above. This concludes phase (1) of the 

algorithm. 

Phase (2) This phase consists of five steps to be iterated in the order of their oc- 

currence until both of the longitudinal parameters pi , i = 1, 2 vanish or the waist 

parameter m representing the cuts vanishes. If a standard multiple connected sum 
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is of the type [(Pi, 0), (0, q1); (P2, 0), (0, q2); m], then it can be converted into the type 

[(Pi, 0), (qi, 0); (P2, 0), (q2, 0); m] by repeatedly applying the twists /T 1  and l2 1  as in 

the formulae (14) and (16) respectively. Hence, without loss of generality, assume 

that the multiple connected sum is of the type 01, 0), (q 1 , 0); (p2 , 0), (q2, 0); m] where 

m 5 min{q1,q2}. 

Step (1) If pi  > qi  for some j E {1, 2}, then apply the li  twist repeatedly until the 

longitudinal parameter pi  reduces to pi  (mod qi ), while all other parameters remain 

unaltered. Here the range of mod qi  is considered as {0, 1, ..., qj  - 1}. For instance, 

if pl > ql , then applying the / 1  twist repeatedly using the formula (13) we get 

/1 (01 , 0), (g1,  0); (p2 , 0), (q2 , 0); 77d) = [(pi  (mod q i ), 0) , (q 1 ,0); (p2 , 0), (q2, 0); m] where 

s = [pr /q1] • 

Step (2) If p2  < qi  for i = 1, 2, and qi  - m > pi  for some j E {1, 2}, then apply the 

twist mi  repeatedly to reduce qj  to [{(qj - m) mod pi } + m] while all other parameters 

remain unaltered. Here the range of mod pi  is considered as {0, 1, ..., - 1}. For 

instance if pi < qi , i = 1, 2 and q1 - 7n > pi, then applying the twist m i  repeatedly 

using the formula (1) we get ml(Rp i , 0), (q1, 0); (p2, 0), (q2, 0); m]) = [(Pi, 0), ((q1 -

m) mod p 1  + m, 0); (P2, 0), (q2, 0); m] where t = [(qi. m)/p1]. 

Step (3) If pi  < q2 i  q2 - m < pi, i = 1, 2 and m > pi  + /32, then applying the twist 

7 to the link using the formula (19), we get 7([(P1, 	(q1, 0); (P2, 	(q2, 0); m1) = 

[(Pi, 0), (qi - (p1 + P2), 0); (P2, (q2 - (Pi + P2), 0); m - + p2)1. This reduces the 

waist handle parameter m to [m - (pl + P2 )] and both the meridional parameters qi  to 

[qi - (Pi + P2)] while the two longitudinal parameters p i , i = 1, 2 remain unaltered. 

Step (4) If pi  < qi , qi - m < pi , i = 1, 2 and m < pi +P2 < 2m, then applying the 

twist 7 to the link using the formula (17), we get 7([(P1 , 0), (M., 0); (P2, 0), (q2, 0); m1) = 
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[(P1, 0), (qi - m,  pl + P2 - m); (p2, 0), (q2 - m,  pi + P2 - m); pi + P2 - m]. This re-

duces the waist handle parameter m to [(p i  + p2 ) - m]. The meridional parameters 

change from (qi, 0) to (qi - m, pl + p2  - m) thereby making the resultant multiple 

connected sum non-standard. To convert this non-standard multiple connected sum 

to a standard one, we apply the twists 771i, i = 1, 2 using the formulae (6) and (10) 

respectively. Then we get m i (Kpi , 0), (qi  - m, p1  + /32  - m); (P2, 0), (q2 - rn, p1 + P2 - 

M); P1 +P2 - m]) = [(pi, 0)) ( 0 ) 2P1 +P2 - qi); (p2, 0), (q2 M, P1 +P2 - m); (P1 +p2) -

m]. m2  (Rpi  0), (0, 2p 1 + p2 - qi); (P2, 0), (q2 - 771,131 + p2 - 772); (pi + P2) - m]) = 

[(Pi, 0), (0, 2p1 + P2 - q1); (132, 0) 7  (0, p1 + 2p2 - q2); (pi + p2) - m]. Though the waist 

handle parameter m reduces as already mentioned above and the longitudinal param-

eters pi  i = 1,2 remain unaltered, the meridional parameters q 1  and q2  changed to 

2pi  +p2 -q1  and pi  + 2p2 - q2 respectively can be greater than the original parameters. 

Step (5) If p i  < qi  and qi  - m < pi  for i = 1, 2, and 2m < p 1  +p2 , then (1) pi < 

and p2  < p'2 , or (2) pi  < pC and p'2  < p2 , or (3) p'1  < pi  and p'2  < p2  (by lemma 

3.1.1.). 

Case (1) pi < /31  and p2  < 

11([(p1, 0), (qi., 0); (232, 0), (q2, 0); rn] 	[(0 , P11), (q1, 0); (P27 0), (q2, 0); m] by the for- 

mula (13) reducing p i  to pi = ql -p i . From lemma 3.1.2, it follows that (q 1 -m) > 

ini -t ([(0 7A), (qi, 0); (p2, 0), (q2 , 0); m]) = [(0, pc), (VI , 0); (p2, 0), (q 2 , 0); m] where t = 

[(q1  - m)//11 ] by repeated use of the formula (2) reducing q 1  to (q1  - m) (mod pi) + m. 

Finally, /1 -1 ([(0, 	), 	0); (p2 , 0), (q2 , 0); in]) = 	0), (vi , 0) ;  (132 , 0), (q2, 0) ;  m] by 

the formula (14) to change pc .  to -pi mod VI . It is clear that q 1  decreases to qi 

as asserted in lemma 3.1.2. However, if the inequality p 1  > /11 1 does not hold, then 

we have the inequalities p i  < p';, and 2m < pi  +p2  < pg.  + p2 . In this case, continue 
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this process to further reduce q i . By lemma 3.1.3, this process must terminate after a 

finite number of iterations and result in a multiple connected sum of the initial type. 

Note that the original parameters p i  and qi  will both be reduced while all the other 

parameters will remain unaltered in this step. 

Case (2) Pi < pi and p'2  < p2  

This case is analogous to case (1) and can be dealt in a similar way. 

Case (3) pi < p1  and p'2  < p2 . 

Note that / 1 ([(pi , 0), (qi , 0); (p2 , 0), (q2 , 0); in]) = [(0, 	(qi, 0); (p2  , 0) , (q2,  0); in] 

and / 2 ([(0,A), (q i3 O); (p2 , 0), (q2 ,0); in]) = [(0,A), (q i , 0); (0,p'2 ), (q2 ,0); in] by the for-

mulae (13) and (15). This reduces pi to pi,:  = gi - pi  for i = 1, 2. By apply-

ing the formula (2) to the above, we get in 1 -8 ([(0, , (qi , 0); (0, p'2 ), (q2 , 0); m]) = 

[(0,A), (q11 , 0); (0, p2), (q2 , 0); m] where s = [(qi  - m) I pii ] and then applying formula 

(4), we get m2-t ([(0 , p'1), (qi, 0); (0, P'2), (g2, 0); mll = [(0 , , 0); (0, p'2 ) , (q2 , 0); m] 

where t = [(q2 - m)/p'2]. This reduces qi  to = [(qi  - m) mod pi + m] for i = 1, 2. 

qi  > qi for i = 1, 2 by lemma 3.1.2, and p i  > pi for i = 1, 2 by hypothesis. This 

brings us to the end of phase (2) of the algorithm. 

Note that in the phase (2), the parameter m is never allowed to increase and 

whenever it does not decrease at any step, no other parameter is allowed to increase 

and moreover at least one other parameter must decrease. These facts guarantee that 

after a finite number of iterations of the steps in phase (2) in the order given, either 

the parameter m or both the parameters pi , i = 1, 2 must vanish. 

Phase (3) If we arrive at a multiple connected sum with p i  = 0 for i = 1, 2 

at the end of the phase (2), then this multiple connected sum will be of the type 
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[(0, 0), (q 1 , 0); (0, 0), (q2, 0); m], and will consist of only canonical curves. More pre-

cisely, there will be m canonical curves around the waist handle and q 1  -m and q2  - m 

meridional curves around the two handles of the double torus. 

If we arrive at a multiple connected sum with m = 0 at the end of phase (2), then 

this multiple connected sum will be of the type (1)[(p i , 0), (q 1 , 0); (p2 , 0), (q2 , 0); 0], or 

(2) [(pi  , 0), (0, qi ); (p2 , 0), (0, q2 ); 0]. In this case, we have two torus links embedded in 

a double torus. These can both be reduced using IP and m, 2 1 , i = 1, 2 to arrive at 

a multiple connected sum of one of the following type. 

1. R/31, 0), (0, 0); (P2, 0), (0, 0); 01= [( 0 , P1), (0, 0); (P2, 0), (0, 0); 0]. In this case, there 

are pi  + /32 longitudinal curves. 

2. [(p1 , 0), (0, 0); (0, 0), (0, q 2); 0] = Rp 1 , 0), (0, 0); (0, 0), (q 2 , 0); 0]. In this case, there 

are pi  longitudinal and q2  meridional curves. 

3. [(0, 0), (q1 , 0); (p2 , 0), (0, 0); 0] = [(0, 0), (q i , 0); (0,p2), (0, 0); 0]. In this case, there 

are q1  meridional and P2  longitudinal curves. 

4. [(0, 0), (0, qi ); (0, 0), (0, q 2); 0] = [(O, 0), (0, q 1 ); (0, 0), (q2 , 0); 0]. In this case, there 

are q1  + q2  meridional strands. 

Following is an example that illustrates the application of the algorithm to gen-

erate a mapping class element of the double torus associated with a multiple con-

nected sum using the Dehn twists. Consider the reverse multiple connected sum 

[(5, 0), (78, 76); (7, 0), (75, 78); 78] of the torus links L 1 ((5, 0), (2, 0)) and L2 ((7, 0), (0, 3)). 

The Dehn twists can be applied successively to each resulting multiple connected sum 

until a multiple connected sum having components isotopic to the canonical curves 
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is arrived at as follows. 

mi-1.6 0 	([(5 ,  0) ,  (78, 76); (7, 0), (75, 78); 78]) = [(5, 0), (82, 0); (7, 0), (0, 80); 78]. 

l2 -1 ([(5, 0), (82, 0); (7, 0), (0, 80); 78]) 

'y([(5, 0), (82, 0); (73, 0), (80, 0); 78]) 

mi  0 7746  ([(5, 0), (4, 0); (73, 0), (2, 0); 

11 0 13 ([(1, 0), (4, 0) ;  (1, 0), (2, 0) ;  = 0), (0, 0) ;  (1, 0), (0, 0) ;  0]. 

11 - 1 0 mi. 0 12 - 1 0 m2({(1, 0), (0, 0); (1, 0), (0, 0); 0]) = [(0, 0), (1, 0); (0, 0), (1, 0); 0]. 

Hence, it follows from the last expression that n(Litt78-L2) = 2 and the number 

of distinct isotopy classes is also two. The latter fact indicates that the original 

multiple connected sum Litt78.L2  is a genus two link. Hence a mapping class ele-

ment f associated with the multiple connected sum [(5, 0), (78, 76); (7, 0), (75, 78); 78] 

is given by the inverse of the composition of these Dehn twists, that is f -1  = 

7 -1
0 
 -16 	11 

/1 1  0 	0  /2 0 M, 0 /4  0 /2 	 36 0  2 	2 0  ail 0  in2 	7 0  62 	7TL 	0I 	77/2 

3.2 General multiple connected sum 

A multiple connected sum of torus links is a generalization of the concept of con-

nected sum of torus links. Since multiple connected sums of torus links are accessible 

to combinatorial techniques, it is advantageous to study links from this perspective. 

To perform a multiple connected sum Litt rni  L2 ttm2  L3 ttm3 • • • tImn  L 7, of n torus links 

Li  (23, qi),  i = 1, 2, ..., n we proceed as follows. Make an m i-cut on each of the torus 

links Li  and Li±i  i = 1 , 2, ..., n -1 and then multiply connect the torus links L i  and 

Li+i  along the mi-cuts. Note that each torus link L 3 , j = 2 , 3 , ..., n-1 will be multiply 

connected to the torus links L 3 _ 1  along the m3 _ 1 -dut and to the torus links Li+1 along 

the m3 -cut. The torus links L i  and Lr, will be multiply connected to the torus links 

= 	[(5, 0), (82, 0); (73, 0), (80, 0); 78]. 

= 	[(5, 0), (4, 0); (73, 0), (2, 0); 0]. 

0]) 	= 	[(1, 0), (4, 0); (1, 0), (2, 0); 0]. 
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L2 and Ln_1 along the ml-cut and the mn_i-cut respectively. The multiple connected 

sum Li 	L2 tr77.2 L3 trri.3 • • • t774,_ lin can be viewed as a chain of (n-2) simple reverse mul- 

tiple connections of (n — 1) submultiple connected sums L'it$ 7nt ili+i , i = 1, 2, ..., (n — 1) 

where /4 = L 1  and Lni = Ln  as shown in figure (3.11) below and is also denoted by the 

notation (Li t$7n1 V2 ) ED (40m,/,'3) ... t#mn _, Ln ) where ED indicates the simple 

reverse multiple connection between any two consecutive submultiple connected sums 

L'%nA+1  and L'21+47n2+1 4_2  as shown in the figure (3.10) below. The term simple 

indicates that the reverse m-cuts along which any two consecutive submultiple con-

nected sums Lan; L'i±i  and L'i'±i t$7n;+1 L42  are connected are such that m equals the 

number of longitudinal strands of the torus link Li+i- 

Figure 3.10 L"# L' ED vi+i t#mi+i Lii+2  
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Figure 3.11 (LitmiL12) ISI(E4t7n2L 13) 

The unspliced lmi — 	I and Imi  — qi?F!tli) 1 meridional strands of the (n — 1) sub- 

multiple connected sums L'Ittm,-Vi +i of (LitmiL12) e(L2Nm2-4) e...e(g_lttmn_lLn) 

are arranged alternately below and above the spliced strands as shown in figure 3.10 

for i = 1, 2, ..., n-1 and ki, E {1, 2}. Arranging the unspliced meridional strands 

in LitmlL2ttm2L3ttm3.•.ttmn_i Lin as mentioned above enables us to represent it in an un- 

ambiguous parametric form as follows. 

[(pi, 0)(e) , q12) ), (p2,  0)(e, 
q21); mu] 

 EB[(p2, 
0) (q2 

q?,), (p3, 0)(43 , go ); rn2]  

[(Pn-1) 0 )(q(1) 1,23 q22) 1,2), (Pn, 
0 ) (q(1) q(2)) ;  mn  1 ] 	 ...(3.1) 

where e;)  + 	= q?')  and qi  = I (ei)  + 	— (q121)  + q2)1, i = 2, 3, ..., n —1,  ji  

1, 2. The above parametric representation (3.1) of L i  tr,,,L2ttm,L3ttm 3 .•.trri n, Ln  makes 

it possible to associate a permutation with it. Each cycle in this permutation will 

represent a component of the link generated by the multiple connected sum. To arrive 

at such a permutation, it is essential to label sequentially the longitudinal strands of 

the multiple connected sum under consideration in the following way. 

Case(1) Let the submultiple connected sum L3 m,Ei+1  of Li. irni L2irn2 L3ttm3 	Ln 

be a direct multiple connected sum and suppose further that the labels {1, 2, ..., s} are 
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already assigned sequentially to the longitudinal strands of the submultiple connected 

sum (Litt.,A) 8(40,7,24) 

 

• • e(g_ithni_,La of LiOrni L2 tim2 L307713 • • 	 V■Te Ik 

 

label the p2 + p2 +1 longitudinal strands of Li'#,,. 1jii+i  sequentially by the labels {s 

p2 + 1, 	s + p2} as shown in the figure (3.12) below. 

Figure 3.12 Labelling of strands of a direct submultiple connected sum L'itt,,,L4 1  

The permutation associated with a direct submultiple connected sum 

is given by p(mi )(x) = [(x + m2  — s + p2) mod (pi +pi+i) — Trii q2,2]mod (pi) + s — pi 

if 1 < (x + m2  — s + pi )mod (pi + p2+1 ) 5_ p2  and p(mi )(x) = [(x + m2  — s + pi) 

mod (pi + pi+i) — p2 — mi + qi+i,i]mod (pi+i) + s, if pi + 1 < (x + m2  — s + pi) 

mod (p2  + pi+i ) < p2 + pi+i  Here qi,k = 	— 	and k = 1, 2. Note that the 

labels {s — pi  + 1, ..., s} are used for the longitudinal strands of both the submultiple 

connected sums Lit l ttnii_ i  and L'ittnii /4+1 . These common labels between the two 

submultiple connected sum VI i ttnii ,L4 and Lilmi L41  are related by one of the two 

permutations given below. 
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(a) If the submultiple connected sum 	i ttni,_ 1 ./4 is either a direct submultiple 

connected sum or a reverse submultiple connected sum with p i  > pi_ i , then the 

relation ti  between the common labels is a permutation given by the action t i (x) = 

2s — Pi + 1 — x on the set of common labels {s — pi + 1, ..., 8}. 

(b) If the submultiple connected sum 	is a reverse submultiple con- 

nected sum with pi  < pi_ i , then the relation t i  between the common labels is the 

identity permutation. 

Case(2) Let the submultiple connected sum L'ILL'mi±i  of Littm,L2itm2  L3 0m3 #1771„_1 Ln 

be a reverse multiple connected sum and suppose further that the labels {1, 2, ..., s} are 

already assigned sequentially to the longitudinal strands of the submultiple connected 

sum (L i ttm 0 ED,L (4 jtm 2  L'3 ) e(vh.itm„,g) of L iitm i  L2itm2 L3itm3 . L n  . We 

label the r longitudinal strands of L'Itt mt g±i  sequentially by the labels {s — Pi + 

1, . . . , s r — pi} where r = max{pi,p i±i} as shown in the figure (3.13)(a) and (b). 

Figure3.13 Labelling of strands of a reverse submultiple connected sum L'i'it,„/41 
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Subcase(i). r = pi  

The permutation p(mi) associated with a reverse submultiple connected sum L'10,,, g +1 

 with r = pi is given by p(mi ) = (o- (mi )) -1  where o-(m i )(x) = s+1— h+1 +1— (x — s+ 

pi+mi — qi,2)mod (pi)+mi — G+1,1]mod (pi+i), if 1 < (x — s+pi+mi — qi,2 )mod (pi) < 

pi+1, and a(mi)(x) = [(x — s + + mi — qi ,2 )mod (pi)] mod (pi — pi+i ) + s — pi , if 

Pi+1 + 1 < (x — s + pi  + mi  — qi,2) mod (pi) < pi , where qi,k  = I gi — qi(,k) I and 

k = 1, 2. 

The labels {s — pi + 1, ..., s} are used for the longitudinal strands of both the sub-

multiple connected sums 111 1 $1,„_1 14 and Ln1ni,g+1 . These common labels between 

the two submultiple connected sum /4 i tinir,L: and L'10 ,,A +1  are related by one of 

the two permutations given below: 

(a) If the submultiple connected sum 	is either a direct submultiple con- 

nected sum or a reverse submultiple connected sum with p i  > pi_ i , then the relation t i 

 between the common labels is a permutation given by the action ti (x) = 2s—pi +1—x 

on the set of common labels {s — p i  + 1, ..., s}. 

(b) If the submultiple connected sum 	/4 a reverse submultiple connected 

sum with pi < pi_ i , then the relation t i  between the common labels is the identity 

permutation. 

Subcase(ii) r = pi+i  

The permutation p(m i ) associated with a reverse submultiple connected sum 

gni+, with r = pi+i is given by p(m i ) = (o- (mi )) -1  where o- (mi ) = Q1  0 ao 0 a1 

Here is the permutation given by the action o-i (mi)(x) = 2s — 2pi  + r + 1 — x on 

the set of labels {s — pi + 1, s + r — pi} and o-0  is the permutation defined by 
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a-0  (mi ) (x) = s + 1 — [pi  + 1 — (x — s +pi  + mi  — qi+1 , 1  ) mod (pi+i ) — mi  + gi , 2] mod (pi ) if 

1 < (x — s +pi  — mi  + qi+1,1) mod (pi+i) 5_ pi, and ao (mi )(x) = [(x — s +pi — mi + qi+i,i) 

mod (pi+i )]mod (pi+i —pi)+s—pi , ifpi+1 < (x—s+pi —mi +qi+i , i )mod (Pi+i) < pi+i  

where qi = 

Note that the labels {s —p i  +1, s} are used for the longitudinal strands of both 

Li- 1 $1 77,t _ i lli  and L10,„ 4+1 . These common labels between and Li  tl,4 Li+i 

 are related by one of the two permutations given below: 

(a) If 	l timt _ i L'i  is either a direct submultiple connected sum or a reverse submultiple 

connected sum with p i  > pi_ i , then the relation t i  between the common labels is the 

identity permutation. 

(b) If 	i tl,4_ 1 L12.  a reverse submultiple connected sum with p i  < pi _i  , then the 

relation t i  between the common labels is a permutation given by the action ti  (x) = 

2s — pz  + 1 — x on the set of common labels { s — p i  + 1, ..., s}. Once the longitudi-

nal strands of L i  tl,ii  L2 #m2 L3 tj m3  ...tjmm_ i L7, are labelled in accordance with the above 

scheme and an orientation is assigned to the multiple connected sum it is possible 

to derive a permutation p(m) associated with the multiple connected sum. This can 

be achieved by taking the product of the permutations p(m i ) associated with the 

submultiple connected sums L?i#mi L41 , i = 1, 2, ..., n — 1 and the permutations t(j) 

relating the common labels between the submultiple connected sums 	Ams_ i L'i  and 

Littlms  L4 1 , j = 1, 2, ..., n — 2 appropriately. The orientation assigned to the multiple 

connected sum L i  ti,„ L2tj m2 L3tj m, .tjmn  _ L i, must ensure that the induced orientation 

of each component torus link L i , i = 1, 2, ..., n is such that all the longitudinal strands 

are compatibly oriented. 

( 1 ) — 	and k = 1, 2. 
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We illustrate below the method to compute the permutation p(rn) associated with 

an oriented multiple connected sum L 14t mi L2 0,„,2 L3 tfm3 ...0,„,n_ i Ln  for the case n = 3 

with two examples . 

Example 1 Consider the multiple connected sum L i1tmi L2 0m2 L3  having the paramet-

ric representation [((4,O)(4,1)), ((4, 0)(4, 3)); 4] OR(4, 0)(2, 4)), ((3, 0)(2, 4)); 4]. With-

out loss of generality, we assign a positive orientation to the longitudes of the torus 

link L1 ((4, 0) (3, 0)) that fixes the orientation of L 1  ttrni  L2 #.m2  L3. Therefore, the permu-

tations associated with the submultiple connected sums Li tim i  L'2 and /14ttm2 L3  with 

) 
respect to the assigned orientation are p(m i  = 4) = 	

1 2 3 4 5 6 7 8 	
and 

( 6 7 8 5 4 1 2 3 

( 5 6 7 8 9 10 11 ) 
P(m2 = 4) = respectively. The permutation t(1) relat- 

10 11 9 7 8 5 6 
ing the common labels {5, 6, 7, 8} of the two submultiple connected sums L i ttml  /12  

and /40,.„,L3  is t(1) = 	
5 6 7 8 )

. Hence, the permutation p(rn = 11) associ- 
8 7 6 5 

ated with the above torus link L i  ttmi  LAm2 L3 is given by the product p(m i ) o t(1) o 

P(7122) ot(1) = (1, 9, 5, 4, 6) (2, 11, 7) (3, 10, 8), and therefore the number of components 

n(Li L2Nm2 L3) = 3 . 

Example 2 Consider the multiple connected sum Litimi L2ttrn 2 L3 having the paramet-

ric representation R(4, 0)(5, 2)), ((5, 0)(5, 2)); 5] et((5, 0)(3, 1)), ((4, 0)(2, 3)); 3]. With-

out loss of generality, we assign a positive orientation to the longitudes of the torus 

link L1((4, 0)(3, 0)), this fixes the orientation of LdimiL20m2L3.  Therefore, the permu-

tations associated with the submultiple connected sums Li tt m,14 and 14#m2  L3 with 

( 	 9 ) 
respect to the assigned orientation are p(m i  = 5) = 	

1 2 3 4 5 6 7 8 	
and 

9 5 6 7 3 4 1 2 8 
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() p(m2 = 
3) = 	

5 6 7 8 9 
	 respectively. The permutation t(1) relating the com- 

9 5 8 6 7 
mon labels {5, 6, 7, 8, 9} of the two submultiple connected sums L i 0,,V2  and L'40,,2 1,3  

( 5 	) 
is t(1) 	

6 7 8 9 	
Hence, the permutation p(m = 9) associated with the 

9 8 7 6 5 
above torus link LATh.i. L2in2L3 is given by the product p(m l ) o t(1) o p(m2) o t(1) = 

(1, 5, 3, 8, 2, 7) (4, 6)(9), and hence the number of components n (L i  ttral  L2  Om, L ) = 3. 

3.3 Some Open Questions 

During the period of this work we were fascinated with many interesting problems 

connected with the materials presented here. Some of them we could not study in 

detail due to time constraints. We thought it apt to state some those problems here. 

A. One of the most important question that comes to our mind is whether "all links 

can be obtained as generalized multiple connected sums". It may be true that the genus 

of the handle body on which a link can be embedded as a multiple connected sum 

may be higher than the genus of the link. Even if this is the case, the combinatorial 

advantage certainly makes it very useful. If this is not the case, then "can one 

characterize in a reasonable way the links that appear as multiple connected sums"? 

B. Another problem is regarding the kind of ("reduced) permutations that appear as 

the permutations associated with a multiple connected sum". Even for the multiple 

connected sum of two torus links this is not being satisfactorily answered. A reasonably 

good answer to this would probably have some bearing on the fundamental group of 

three manifolds obtained from them as is seen the thesis above. The general one would 

have to be studied further to say more about them. 
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C. Can we "generalize the concept of multiple connected sum" further by splicing the 

links along more arcs and meaningfully apply some combinatorial or other techniques 

to them to obtain interesting properties of them? 

D. Can we use the concept of multiple connected sum to "compute the various well 

known link invariants" in a simpler way for such links? 



Bibliography ■ 

[1] Joan S. Rirman and Hugh M. Hilden, Qn Isotopies of Homeomorphisms of Me, 

mann Surfaces, Ann, of Math. 424-439 (1972. 

[2] R. H. Crowell and R. H. Fox, Introduction to Knot Theory, Springer- Verlag 

(1977). 

[3] C. M. Gordon and J. Luecke, Knots are determined by their complements, J. 

Amer, Math, Soc. 2, 371-415 (1989). 

[4] liotip84 3.k1ttitifolt1.8 ;  Ann,: di Math,: jtutiesi Ptittbeibtt tittitt 	Pits6 

(ig70: 

[5]Pk 0.' /ha; Oh 	 01; 	kilt 	tiiitt its 
fibaiidii8; iid1:(1); 1000-16.0 (iggg): 

id] 	P: 	tdpildgy 	 Maiiikti8 ; 	tiefitig 
(ig7g): 

L: 	Oki kiidt8; 	thliftHig Pius (1Y4). 

[8] L: 	kiidth afiti 	 (1ggi): 

[j] 07; A 	A ttdoke§efitddbfi est driblitable tdifibiiiatOrial 

Ann: of li/i'cith. 531-540 (108). 

97 



9$ 

X10] W. B. R. Lickorish, A finite set of generators for the homeotopy group of 

2-Manifold, Proc. Cambridge Philos. Sac, 769-778 (1964) 

ill] W. P. R. Lickorish, A finite set of generators for the homeotopy group of 

2-Manifold (Corrigendum), Proc. Cambridge Philos, Sac. 679-681 (1966), 

[12] W. B. Raymond Lickorish, An Introduction to Knot theory, Springer-Verlag 

(1991). 

[13] C, Livingston, Knot Theory, Carus Mathematical Monographs, Math, Assoc, 

Amer. (1993). 

[14] W. S. Masse, An Introduction to Algebraic Topology, Sringer-Verlag (1991), 

05] Edwin Moise, Geometric Topology in Dimension 2 and 3, Springer-Verlag, 

[16] John Stillwell, Classical Topology and Combinatorial Group Theory, 2" Edi-

tion, Springer-Verlag. 

7] J, C. Turner and P. Van de Griend, History and Science of Knots, world Sci-

entific (1995). 

8] B. Wajnryb, A simple presentation for the Mapping Class Group of an orientable 

surface, Israel J. Math, 157-174 (1983). 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104

