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Chapter 1 

Introduction and Preliminaries 

1.1 General Introduction 

Driven by needs of application, the field of inverse problems has been one of the 

fastest growing area in applied mathematics in the last decades. It is well known that 

these problems typically lead to mathematical models that are ill-posed. 

The notion of a well posed or correctly set problem makes its debut with the 

discussion in chapter 1 of J.Hadamard [29]. It represented a significant step forward 

in the classification of multitude of problems associated with differential equations, 

singling out those with sufficiently general properties of existence, uniqueness and 

stability of solutions. He expresses the opinion that only problems of physical inter-

est are those that has a unique solution depending continuously on the given data. 

Such problems he called correctly set problem or well posed problems and problems 

that are not well posed are called incorrectly set problems or ill- posed problems. 

But Hadamard's notion of a mechanical or physical problem turns out to be too 

narrow. It applies when a problem is that of determining the effects(solutions) of a 

complete set of independent causes(data). But in many applied problems we have 

to get along without a precise knowledge of causes and in the others we are really 

trying to find causes that will produce the desired effect. We are then led to ill-posed 

problems. One might say that majority of applied problems are, and always have 

been ill-posed, particularly when they require numerical answers. Ill-posed problems 

1 
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include such classical problems of analysis and algebra as differentiation of functions 

known only approximately, solutions of integral equations of the first kind, summation 

of Fourier series with approximate coefficients, analytical continuation of functions, 

finding inverse Laplace transforms, the Cauchy problem for Laplace equations, so-

lution of singular or ill-conditioned systems of linear algebraic equations and many 

others(cf.[59, 26]). 

The next important question is in what sense ill-posed problems could have solu-

tions that would be meaningful in applications. Often, existence and uniqueness can 

be forced by enlarging or reducing the solution space. For restoring stability, how-

ever, one has to change the topology of the space, which in many cases is impossible 

because of presence of measurement errors. At first glance it seems impossible to 

compute a solution of the problem numerically if the solution of the problem does not 

depend continuously on the data. If the initial data in such problems are known ap-

proximately and contain a random error, then the above mentioned instability of their 

solution leads to non uniqueness of the classically derived approximate solution and to 

serious difficulties in their physical interpretation. Under additional hpriori informa-

tion about the solution such as smoothness and bounds on the derivatives, however, 

it is possible to restore stability and to construct efficient numerical algorithms for 

solving the ill-posed problems (cf.[59]). Ofcourse in solving such problems, one must 

first define the concept of an approximate solution that is stable to small changes 

in the initial data, and use special methods for deriving the solution. Tikhonov was 

one of the earliest workers in the field of ill-posed problems ([59]) who succeeded in 

giving a precise mathematical definition of approximate solution for general class of 

such problems and in constructing optimal solutions. Numerical methods that can 

cope with these problems are the so called regularization methods. 

In the abstract setup, typically, ill-posed problems are classified as linear ill-posed 

problems or nonlinear ill-posed problems (cf. [48], [46]). A classical example of a 

linear ill-posed problem is the computerized tomography ([46]). Nonlinear ill-posed 

problems appear in a variety of natural models such as impendence tomography. The 

analysis of regularization methods for linear problems is relatively complete ([6], [9], 
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[10], [23], [30]). The theory of nonlinear problems is developed to a much lesser 

extend. Several results on the well known Tikhonov regularization are given in [11]. 

Due to rapidly evolving innovative processes in engineering and business, more and 

more nonlinear ill-posed problems arise and a deep understanding of the mathematical 

and physical aspects that would be necessary for deriving problem specific solution 

approaches can often not be gained for these new problems due to lack of time (see 

[35, 48]). Therefore one needs algorithms that can be used to solve inverse problems in 

their general formulations as nonlinear operator equations. In the last few years more 

emphasis was put on the investigation of iterative regularization methods. It turned 

out that they are an attractive alternative to Tikhonov regularization, especially for 

large' scale inverse problems ([35, 48]). It is the topic of this thesis to propose such 

methods and algorithms for a special class of nonlinear ill-posed equations, namely, 

ill-posed Hammerstein type operator equations. 

We will first set up the notations and introduce the formal notion and difficulties 

encountered with ill-posed problems. 

1.2 Notations and Preliminaries 

Throughout this thesis X and Y denote Hilbert spaces over real or complex field 

and BL(X, Y) denote the space of all bounded linear transformations from X to Y. 

If X = Y, then we denote BL(X, X) by BL(X). We will use the symbol (., .) to 

denote the inner product and denote the corresponding norm for the spaces under 

consideration. 

For a subspace S of X, its closure is denoted by S and its annihilator is denoted 

by Si- i.e., 

SI  = fu E X : (x, u) = 0, Vx E Sl. 

If T E BL(X, Y), then its adjoint, denoted by T*, is a bounded linear operator 

from Y to X defined by 

(Tx, y) = (x,T*y), Vx E X, y E Y. 
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We shall denote the range and null space of T by R(T) and N(T) respectively. 

The results quoted in this section with no reference can be found in any text book 

on functional analysis(for example, [43], [44]). 

Theorem 1.2.1. If T E BL(X ,Y), then R(T) 1  = N(T*), N(T) 1  = R(T*), R(T*) -I-  = 

N(T) and N(T*) ±  = R(T). 

The spectrum and spectral radius of an operator T E BL(X) are denoted by a(T) 

and r,(T) respectively, i.e., o- (T) = {A E C: T — A/ does not have bounded inverse} 

where I is the identity operator on X, and r,(T)= sup{ lAl : A E a(T)}. 

It is well known that r, (T) < and o- (T) is a compact subset of the scalar 

field. If T is a non zero self adjoint operator, i.e.,T* = T, then a(T) is a nonempty 

subset of real numbers and r,(T) = 11 7' 11. 
If T is a positive self adjoint operator, i.e., T = T* and (T x , x) > 0, Vx E X, then 

o- (T) is a subset of the set of non-negative reals. If T E BL(X) is compact, then o- (T) 

is a countable set with zero as the only possible limit point. In fact the following 

result is well known: 

Theorem 1.2.2. Let T E BL(X) be a non-negative compact self adjoint operator . 

Then there is a finite or infinite sequence of non-zero real numbers (An ) with lAui > 

IA2I> • • • , and a corresponding sequence (un) of orthonormal vectors in X such that 

for all x E X, 

• Tx -= A n (x,It n)lin  
n 

where An —+ 0 as n 	oo, whenever the sequence (An ) is infinite. Here An, are 

eigenvalues of T with corresponding eigenvectors u n . 

If T E BL(X, Y) is a non-zero compact operator then T. 	is a positive compact 

self adjoint operator on X. Then by Theorem 1.2.2 and by the observation that 

0- (T*T) consists of non-negative reals, there exists a sequence (s i,) of positive reals 
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with s1  > s2 > • • • and a corresponding sequence of orthonormal vectors (v n) in X, 

satisfying 

T*Tx = sn (x ;  vn )vn  
n 

for all x E X and T*Tv a  snvn , n = 1, 2, • • • . 

Let An  = 	itn 	Un = AnTvn  and vn  = itr,T*un . The sequence fu n , vu., 

is called a singular system for T. 

In order to define functions of operators on a Hilbert space we require spectral 

theorem for self adjoint operators which is a generalization of Theorem 1.2.2. 

Theorem 1.2.3. Let T E BL(X) be self adjoint and let a = inf o- (T), b = sup a(T). 

Then there exists a family {E ), : a < < b} of projection operators on X such that 

1. A l  < A2 implies (E'Ai x , 	< (E),,x , , VxE x 

2. Ea  = 0, Eb = I where I is the identity operator on X 

3. T = fah  AclE A . 

The above integral is in the sense of Riemann-Stieltje. The family {E),}),Eta,q  is 

called the spectral family of the operator T. If f is a continuous real valued function 

on [a, b], then ,f (T) E BL(X) is defined by 

b 

f (7') = f f (A)dE A . 

Then a(f(T)) ={f(A):AE a(T)} and lif (T)11 = ra(f(T)) = sukif (A)I A E g(71)}. 

For real valued function f and g we use the notation f (x) = 0(g(x)) as x —> 0 

to denote the relation 

f(x)  < M 
g(x) 

as x 0 where M > 0 is constant independent of x and f (x) = o(g(x)) as x 0 to 

denote 
lim f(x)  0  

x —> 0 g(x) 

We will be using the concept of Hilbert scales (cf. [47]) in Chapter3; 
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Definition 1.2.4. (Hilbert Scales) Let L be a densely defined, self adjoint, strictly 

positive operator in a Hilbert space X that fulfills 11 1'4 > iixii on its dom,ain.For 

s > 0 let X, be the completion of nr 0  D(L k ) with respect to the Hilbert space norm 

induced by the inner product (x, y), := (Ls x, Ls y) and for s < 0 let X, be the dual 

space of X_s.Then (X), ER  is called a Hilbert scale induced by the operator L. 

1.3 Basic Results from Nonlinear Functional Analy-

sis 

In this section we recall some definitions and basic results which will be used in this 

thesis. 

Definition 1.3.1. Let F be an operator mapping a Hilbert space X into a Hilbert 

space Y . If there exists a bounded linear operator L from X into Y such that 

+ — F(x 0 )  — L(h)ii  = 0,  

	

lim 	
lihll 11h11-0 

then F is said to be Frechet-differentiable at xo , and the bounded linear operator 

F'(x0 ) 	L 

is called the first Fr6chet derivative of F at xo . 

We assume that the Frechet derivative F' of F satisfies the condition 

— 	kollx — Yll, 	ex,Y E  Bro(x0)- 

for some ro  > 0. 

We shall make use of the following lemma, extensively in our analysis. 

(1.3.1) 
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Lemma 1.3.2. Let ro  > 0 and x,y E Bro (xo) C X. Then 

(xo)(x — fro) — [F(x) — F(xo)111 	— xoli, 

11 F/ (x0)(x — y) — [F(x ) — F(Y ) 11I 	korol i x — yli. 

Proof. By the Fundamental Theorem of Integral Calculus, 

F(x) — F(y) = f 	(y + t(x — y))(x — y)dt, 

and so 

(x 0)(x — y) —x  (F() — FM) = f {F i (xo) — F'(y + t(x — 0)1(x — y)dt. (1.3.2) 

Hence by (1.3.1) 

IIF/ (xo)(x 	— {F(x) — F(Y)]ii C kollx Yil f lixo — (y+ t(x — 

Now since y t(x — y) E Bro (xo) C X, then 

and 

hence 

and 

11xo — (y + t(x — Y)11 	To 

— (xo + t(x — xo))1I < tro 

r(x0 )(x — xo ) — [F(x) — F(xo)]li 	— xoll 

tiF'(x0)(x 	y) 	[F(x) — F(Y)iii 	kordix 	Yii• 

This completes the proof. 	 ❑ 
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Definition 1.3.3. Let X be a real Hilbert space and F : D(F) C X —> X is an 

operator. Then F is said to be monotone if 

(F(x 1 ) — F(x2),xi — x2) 	Vxi, x2 E D(F). 

Remark 1.3.4. 	1. If F(x) = Ax where A : X X is linear then F is monotone 

<=> (Ax, x) > 0, Vx E X 4=> A is positive semi definite. 

2. If F is continuously differentiable on X, then F is monotone .#>. F'(x) is positive 

semidefinite for all x. 

In the analysis involving monotone operators we shall be using the concept of 

majorizing sequence. 

Definition 1.3.5. (see MY, Definition 1.3.11) A nonnegative sequence (t n) is said to 

be a majorizing sequence of a sequence (x n) in X if 

II XT/±1 	Xri 11 ; tn+1 	tn, nV > 0. 

During the convergence analysis we will be using the following Lemma on majoriza-

tion, which is a reformulation of Lemma 1.3.12 in 121. For the sake of completeness, 

we supply its proof. 

Lemma 1.3.6. Let (t n) be a majorizing sequence for 

x* = Inn x n  exists and 

in X. If lira tn  = t* then 
n--.co 

11 x*  — xn 11 5_ t* — tn , Vn > 0. 	 (1.3.3) 

Proof. Note that 

n+,n-1 	 n+m- 

xJ+1 - xj11 5_ (tj+1 	ti t 77.+TIL 	t71. (1.3.4) 
j=n y=rt 
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so (xn) is a Cauchy sequence in X and hence (x n) converges to some x*. The error 

estimate in (1.3.3) follows from (1.3.4) as m 	co. This completes the proof. 	❑ 

Now we shall formally define the concept of ill-posedness. 

1.4 Ill-posedness of Equations 

Definition 1.4.1. Let F : X 	Y be an operator (linear or nonlinear) between 

Hilbert spaces X and Y. The equation 

F(x) = y 	 (1.4.1) 

is said to be well-posed if the following three conditions hold. 

1. (1.4.1) has a solution 

2. (1.4.1) cannot have more than one solution 

3. the solution x of (1.4.1) depends continuously on the data y. 

In the operator theoretic language the above conditions together means that F is 

a bijection and F-1  is a continuous operator. 

The equation (1.4.1) is said to be ill-posed if it is not well-posed. 

An ill-posed operator equation is classified as linear or nonlinear as the operator F 

is linear or nonlinear. The subject matter of this thesis is nonlinear ill-posed operator 

equations. 

Below we present some well-known examples for linear as well as nonlinear ill-

posed problems. 
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Linear Ill-posed Problems 

Example 1.4.2. The Vibrating String (see /26]): The free vibration of a nonhomo- 

geneous string of unit length and density distribution p(x) > 0, 0 < x < 1, is modeled 

by the partial defferential equation 

p(x) t = Uxx; (1.4.2) 

where u(x, t) is the position of the particle x at time t. Assume that the end of the 

string are fixed and u(x, t) satisfies the boundary conditions 

u(0, t) = 0, u(1, t) = 0. 

Assuming the solution u(x, t) is of the form 

u(x , t) = y(x)r(t), 

one observes that y(x) satisfies the ordinary differential equation 

y + c4.)2  p(x)y = 0 (1.4.3) 

with boundary conditions 

y(0) = 0, y(1) = 0. 

Suppose the value of y at certain frequency w is known, then by integrating equation 

(1.4.3) twice, .first from zero to s and then from zero to one, we obtain 

f 
1 	 1 
O 	

is 
Os; w)ds — y'(0; + w 2 	p(x)y(x; w)dxds = 0. 

o o 

(1 — s)y(s; w)ds 
y'(0;  w) 

w2 (1.4.4) 

The inverse problem here is to determine the variable density p of the string, satisfying 

(1.4.4) for all allowable frequencies w. 
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Example 1.4.3. Simplified Tomography (see P6D: Consider a two dimensional ob-

ject contained within a circle of radius R. The object is illuminated with a radiation of 

density Io . As the radiation beams pass through the object it absorbs some radiation. 

Assume that the radiation absorption coefficient f (x, y) of the object varies from point 

to point of the object. The absorption coefficient satisfies the law 

dI 

dy = f I  

where I is the intensity of the radiation. By taking the above equation as the definition 

of the absorption coefficient, we have 

y(x) 
Ix  = I()  exp(— f f (x, WY) 

-y(x) 

where y = V R2  — x 2 . Let p(x) = ln(10;. ), i.e., 

y(x) 

p(x) =— 
	

f (x , y)dy 
y(x) 

Suppose that f is circularly symmetric,i. e., f (x, y) = f (r) with r = /x2 + y2 , then 

p(x)  IR  \/r2  2r x2  f (r)dr. 	 (1.4.5) 

The inverse problem is to find the absorption coefficient f satisfying the equation 

(1.4.5) 

Nonlinear Ill-posed Problems 

Example 1.4.4. Nonlinear singular integral equation (see [8.1): 

Consider the nonlinear singular integral equation in the form 

(t — s) —A x(s)ds + F(x(t)) = fo(t), 	0 < A < 1, 	(1.4.6) 
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where fo E L2 [0,1] and the nonlinear function F(t) satisfies the following conditions: 

• IF (t)i < al  + a2Itl, 	al, a2 > 0, 

• F(t1 ) < F(t2 ) < 	> t 1  < t2 , and 

• F is differentiable. 

Thus, F is a monotone operator from X = L2 [0;1] into X* = L2 [0; 1]. In addition, 

assume that F is a compact operator. Then the equation (1.4.6) is an ill- posed 

problem, because the operator K defined by 

Kx(t) = f (t — s) —A x(s)ds, 

also is compact. 

Example 1.4.5. Parameter identification problem (see 114): 

A nonlinear ill-posed problem which arises frequently is applications is the inverse 

problem of identifying a parameter in a two point boundary value problem. Consider 

a two point boundary value problem given by 

—u„+ cu = f, u(0) = u(1) = 0, 	 (1.4.7) 

where f E L2 [0, 1] is given and c E L2 [0, 1] is such that c > 0 almost everywhere. 

The inverse problem here is to estimate the parameter c from noisy measurements 

us E L2  [0, 1]. It is assumed that the unperturbed data u is attainable, i.e., there exists 

E L2 [0, 1], c > 0 almost everywhere, with u E  = u. Here ua denotes the solution of the 

differential equation with c = c. Under the assumption that c > 0 and f E L2 [0, 1], 
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it is known that the above boundary value problem (147) has a unique solution. In 

the context of this problem, the operator F : D(F) C 00,1] F-4 L2 [0,1] is given by: 

F(c) := u, 

with domain 

D(F) := {c E L2 [0,1] : c > 0 almost everywhere} 

The problem of estimating c is ill-posed as can be seen from the following argument, 

as in [12J:- 

Let f be the constant function say f 16. Then, for the data 

u(s) := 8s(1 — s), 	un (s) := u(s) + en (s), 	n > 2, 

where 

71 -5 /4 (2s) 2n - 4n-1 /4 s 	 , s < 1/2 

n-5/4 (2 - 2s) 2fl - 4n-1 /4 (1 - 	, s > 1/2 

the unique solution in D(F) are given by 

c= 0 and, cm = (en)33 
 

u + en  

Here Ilun — 	—> 0 and un  —p u in L 2 [0,1], but lic„112- n114  —f co, and hence cn, does 

not converge to c in L2 [0, 1]. 

Example 1.4.6. Nonlinear Hammerstein integral equation (see [14): 

F(x)=y 

where F : D = 00,1] -4 L2 [0, 1] defined by 

F(x)(t) := f k(s ,t)u(s , x(s))ds , 

{

en (s) := 
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is injective with a non-degenerate kernel k(., .) E L 2 ([0, 1] x [0, 1]) and, u : [0, 1] x R 

R satisfies 

lu(t, s)l< a(t) + bisl, 	t E [0,1], 	s E R 

for some a E L2 [0,1] and b > 0. It can be seen that F is compact and continuous on 

L 2 [0,1] (see 184,1). Further, since D(F) is weakly closed and F is injective, it follows 

that the problem of solving F(x) = y is ill posed (see /14 Proposition 10.1). 

Example 1.4.7. Exponential growth model (see /26]) 

For a given c > 0, consider the problem of determining x(t), t E (0, 1), in the 

initial value problem 

dy 
x(t)y(t), 	y(0) = c, 

dt 
(1.4.8) 

where y E L2 [0, 1]. This problem can be written as an operator equation of the form 

(1.4.1), where F : L 2 [0,1] —> L2 [0,1] is defined by 

F(x)(t) = c exp( f x(t)dt), 	c E L2 [0, 1], 	t E (0,1). 

It can be seen from the following argument that the problem is ill-posed. Suppose, in 

place of an exact data y, we have a perturbed data 

y 6  (t) := y(t) exp(b sin( —6t2  )), 	t E (0, 1). 

Then, from (1.4.8), the solution corresponding to y 8 (t) is given by 

x a  (t) := —ddt log(y 6 (t)), 	t E (0,1). 

Note that, 

Iy - 6112—> 0  as 6 	0. 
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But 

x 5 (t) — x(t) = 
dt 	 6-  

	

log(exp(o sin —
t 	

6 

	

2 	dt 
)) = 	(S sin —

t
2 
 ), 

so that 

iixs 	xii2 	sin(2/82 )  + 1 

	

112 	4 	2 2  
co as 6 —> . 

Hence, the solution dose not depend continuously on the given data and thus the 

problem is ill-posed. 

1.5 Regularization of Ill-posed Operator Equations 

Let us first consider the case when the operator F in (1.4.1) is a linear operator. 

Generalized Inverse 

If y 	R(F) then clearly (1.4.1) has no solution and hence the equation (1.4.1) is 

ill-posed. In such a case we may broaden the notion of a solution in a meaningful 

sense. For F E BL(X, Y) and y E Y, an element u E X is said to be a least square 

solution of (1.4.1) if 

11F(u) 	Yll = inf{IIF(x) — till: x E X }.  

Observe that if F is not one-one, then the least square solution (cf.[23]) u, if exists 

, is not unique since u + v is also a least square solution for every v E N(F). The 

following theorem provides a characterization of least square solutions. 

Theorem 1.5.1. U231, Theorem 1.3.1) For F E BL(X, Y) and y E Y, the following 

are equivalent. 

N IIF(u) - till = inf{IIF(x) — till : x E 
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(ii) F*F(u) = F*y 

(iii) F(u) = Py 

where P : Y ----> Y is the orthogonal projection onto R(F). 

From (iii) it is clear that (1.4.1) has a least square solution if and only if Py E 

R(F). i.e., if and only if y belongs to the dense subset R(F) + R(F)± . By Theorem 

1.5.1 it is clear that the set of all least square solutions is a closed convex set and 

hence by Theorem 1.1.4 in [24], there is a unique least square solution of smallest 

norm. For y E R(F) R(F) I , the unique least square solution of minimal norm 

of (1.4.1) is called the generalized solution or the pseudo solution of (1.4.1). It can 

be easily seen that the generalized solution belongs to the subspace N(F) 1  of X. 

The map Ft D(Ft) R(F) + R(F)1  —> X which assigns each y E D(Ft) with 

the unique least square solution of minimal norm is called the generalized inverse or 

Moore-Penrose inverse of F. Note that if y E R(F) and if F is injective the generalized 

solution of (1.4.1) is nothing but the solution of (1.4.1). If F is bijective then it follows 

that Ft = 

Theorem 1.5.2. ([44J, Theorem 4.4) Let F E BL(X, Y). Then Ft : D(Ft) := R(F)+ 

R(F) 1  —> X is closed densely defined operator and Ft is bounded if and only if R(F) 

is closed. 

If the equation (1.4.1) is ill-posed then one would like to obtain the generalized 

solution of (1.4.1). But by Theorem 1.5.2, the problem of finding the generalized 

solution of (1.4.1) is also ill-posed, i.e., Ft is discontinuous if R(F) is not closed. 

This observation is important since a wide class of operators of practical importance, 

especially compact operators of infinite rank falls into this category ([26]). Further 

in application the data y may not be available exactly. So one has to work with an 

approximation "Y of y. If Ft is discontinuous then for "Y close to y, the generalized 

solution Ft "y, even when it is defined need not be close to Fty. To manage this 
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situation the so called regularization procedures have to be employed and obtain 

approximations for Fty. 

1.6 Regularization Principle and Tikhonov Regu-

larization 

Let us first consider the problem of finding the generalized solution of (1.4.1) with 

F E BL(X, Y) and y E D(Ft). For 6 > 0 y5  E Y be an inexact data such that 

II Y - y6 ii < 6. By a regularization of equation (1.4.1) with y 6  in place of y we mean 

a procedure of obtaining a family (x 8a ) of vectors in X such that each x(5,,,, a > 0 is a 

solution of a well posed equation and esc, Fty as a 0,5 0. 

A regularization method which has been studied most extensively is the so called 

Tikohonov regularization ([23]) introduced in the early sixties, where x 6c, is taken as 

the minimizer of the functional J,,s (x), where 

	

4(x) = liF(x) 	Y6 ii 2  + (1 114 2 	 (1.6.1) 

The fact that x 5c, is the unique solution of the well-posed equation 

(F* F + aI)x5c, = F*y5  

is included in the following well known result (see [44]). 

Theorem 1.6.1. Let F E BL(X, Y). For each a > 0 there exists unique x,„'s  E X 

which minimizes the functional Jg (x) in (1.6.1). Moreover the map y 5  -4 x 5c, is 

continuous for each a > 0 and 

xa = (F* F + aI)-1 F*y5  

If Y = X and F is a positive self adjoint operator on X, then one may consider 

([3]) a simpler regularization method to solve (1.6.1) where the vectors w c,(5  satisfying 

(F + aI)wa = y5 	 (1.6.2) 
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are considered to obtain approximation for Fty. Note that for positive self adjoint 

operator F, the ordinary Tikhonov regularization applied to the equation (1.4.1) re-

sults in a more complicated equation (F2  + aI)x6a  = Fy5  than (1.6.2). Moreover 

it is known that (see [56]) the approximation obtained by the regularization proce-

dure (1.6.2) has better convergence property than the approximation obtained by 

Tikhonov regularization. As in [27] we call the above regularization procedure (1.6.2) 

the simplified regularization of (1.4.1). 

One of the prime concerns of regularization methods is the convergence of x 6a  (wa8 

 in the case of simplified regularization) to Fty, as a —> 0 and 8 --> 0. It is known that 

([23]) if R(F) is not closed then there exist sequences (b n) and an  = a(8,,) such that 

—> 0 and a, —> 0 as n —f  oo but the sequence (x,,%) diverges as 8n  —> 0.Therefore 

it is important to choose the regularization parameter a depending on the error level 

8 and also possibly on y6 , say a := a(6, y8 ) such that a(8, —> 0 and x 8,,, —> Fty as 

8 —> 0. Practical considerations suggest that it is desirable to choose the regularization 

parameter at the time of solving ?a  using a so called a posteriori method which 

depend on y 8  as well as on 6 ([50]). For our work we have used the adaptive selection 

of parameter proposed by Pereverzeve and Schock ([50]) in 2005. Before explaining 

this procedure in detail we shall briefly refer to the topic of Tikhonov regularization 

for a nonlinear ill-posed operator equation. 

For the equation (1.4.1) with F a nonlinear operator, the least square solution 

is defined by the requirement 

f 
= 

x E

in 

D(F) 11F(1) 

and an xo  minimum norm solution should satisfy (1.6.3)([13]) and also 

IIx — moll = min{IIx moll : F (x) = y, x E D(F)} 

here xo  is some initial guess. Such a solution: 

• need not exist 

• need not be unique, even when it exists. 

(1.6.3) 

(1.6.4) 
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Tikhonov regularization for nonlinear ill-posed problem (1.4.1) provides approximate 

solutions as solutions of the minimization problem 4(x), where 

4(x) = IIF(x) y8 11 2  + allx 41 2  

a > 0. If xas  is an interior point of D(F), then the regularized approximation x„5  

satisfies the normal operator equation 

F'*(x)[F(x) — y 6] + a(x — x0 ) = 0 

of the Tikhonov functional 4(x). Here F'*(.) is the adjoint of the Frechet derivative 

F'(.) of F. For the special case when F is a monotone operator the least squares 

minimization (and hence the use of adjoint) can be avoided and one can use the 

simpler regularized equation 

F(x) + a(x — xo) -= y8 . (1.6.5) 

The method in which the regularized approximation x'a  is obtained by solving the 

singularly perturbed operator equation (1.8.1) is called the method of Lavrentiev reg-

ularization ([39]), or sometimes the method of singular perturbation ([40]). In general 

a regularized solution x'5a  can be written as x s,„ = R ays, where Re, is a regularization 

function. 

1.6.1 Iterative Methods 

Iterative methods have the following form: 

(1) Beginning with a starting value x o , 

(2) Successive approximates x i , i = 1, 2, 	to x°,„ are computed with the aid of 

an iteration function G : X H X: 

	

G(x j ) = xj+i 	i =1, 2, • • • 

(3) If xaa  is a fixed point of G i.e., G(x'50 = el, all fixed points of G are also zeros 

of F, and if C is continuous in a neighborhood of each of its fixed points, then 
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each limit point of the sequence x,, i = 1, 2, 	, is a fixed point of G, and 

hence a solution of the equation (1.4.1). 

1.7 Selection of the Regularization Parameter 

Making a right choice of a regularization parameter in a regularization method is as 

important as the method itself. A choice a = as of the regularization parameter may 

be made in either an apriori ( before computing, a s  fixed) or a posteriori way (after 

computing we fix as)(cf.[23]). The question of making an implicit (aposteriori) choice 

of a suitable value for the regularization parameter in ill-posed problems without the 

knowledge about the solution smoothness (which may not be accessible) has been 

discussed extensively in regularization theory (see [21], [42]). A first aposteriori rule 

of choice is described by Phillips in [51]. 

Suppose there exist a function co on [0, oo) such that 

xo - = (p (FV )) v (1.7.1) 

where xo  is an initial guess, X is the solution of (1.4.1) and Fi(X) is the Frechet 

derivative (see Definition 1.3.1) of F at x and 

RaYil 5_ (P(a), 

then co is called a source function and the condition (1.7.1) is called source condition. 

Note that (See [23]) the choice of the parameter as depends on the unknown source 

conditions. In applications, it is desirable that a is chosen independent of the source 

function cp, but may depend on the data (8, y5 ), and consequently on the regularized 

solutions. For linear ill-posed problems there exist many such a posteriori parameter 

choice strategies. These strategies include the ones proposed by Archangeli (see,[27]), 

[28], [16] , and [58]. 

In [50], Pereverzev and Schock considered an adaptive selection of the parameter 

which does not involve even the regularization method in an explicit manner. Let us 
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briefly discuss this adaptive method in a general context of approximating an element 

E X by elements from a set {x 6a  : a > 0,6 > 0}. 

Suppose x E X is to be approximated by using elements x( 5a  for a > 0, 5 > 0. 

Assume that there exist increasing functions (p(t) and OW for 1, > 0 such that 

limco (t) = 0 = li 
—o 

 m0(t), 
t--,0   

and 

+ 	(P(t) + 0(0 

for all a > 0, b > 0. Here, the function cp may be associated with the unknown element 

whereas the function IP may be related to the method involved in obtaining x 6c,. 

Note that the quantity (p(a) ,t-R(5, attains its minimum for the choice a :=- a 5  such 

that w(a5) = ,p(±,,,) , that is for 

as = (400) -1 (b) 

and in that case 

x50, 5 11 	408). 

The above choice of the parameter is a priori in the sense that it depends on the 

unknown functions go and . 

In an aposteriori choice, one finds a parameter ct,5  without making use of the 

unknown source function cp such that one obtains an error estimate of the form 

c(P(a8). 

for some c > 0 with a5  = (<00 -1 (8). The procedure considered by Pereverzev and 

Schock in [50] starts with a finite number of positive real numbers, ao, al, a2 , • • 

,aN , such that 

°to  < ai < a2 < < aN 

The following theorem is essentially a reformulation of a theorem proved in [50]. 

Theorem 1.7.1. ([20.1 Theorem 4.3) Assume that there exists i E {0, 1,2,• • • , N} 

such that w(a,) < Zo  and for some > 1, 

1_1-10(ai-i.) 	di E {0, 1, 2, • • • , N}. 
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Let 

	

:= max{i : (ai ) < 	 
0( 	

< N, 
cti) 

 

k := max{i 	x 50, < 4 	6 	V = 0 ; 1 ; • • • , i.}. 

Then 1 < k and 

— x6a,,11 < 61 1W(cts), 	cx,5 := (W0) -1 (6) 

1.8 Hammerstein Operators 

Let a function k(t, s, u) be defined for t E [a, b], s E [c, d] and —oo < u < oo. Then 

the nonlinear integral operator 

d 

Ax(t) =- 	k(t, s, x(s))ds 	 (1.8.1) 

is called an Uryson integral operator and the function k(t, s, u) is called its kernel. 

If k has the special form k(t, s, = k(t, s)f (s, u), then the operator A in (1.8.1) is 

called a Hammerstein integral operator. 

Note that each Hammerstein integral operator A admits a representation of the 

form A = K F where K is a linear integral operator with kernel k(t, s) : 

d 

K x(t) = 	k(t, s)x(s)ds 

and F is the nonlinear superposition operator (cf. [37]) 

Fx(s) = f (s, x(s)). 

Hence the study of a Hammerstein operator can be reduced to the study of the linear 

operator K and the nonlinear operator F. An equation of of the form 

K Fx(t) = y(t) 	 (1.8.2) 

is called a Hammerstein type operator equation ([14]). 

Subject matter of this thesis is the ill-posed Hammerstein type operator equations. 
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1.9 Summary of the Thesis 

Chapter 2:  We consider an ill-posed Hammerstein type operator equation (1.8.2) with 

R(K), the range of K not closed. For obtaining approximate solutions for the equation 

(1.8.2), for n E N we consider xan,a , defined iteratively as 

xns 	xr,5  — F'GrnS  ,a ) -1 (F(X n, ,a ) — za5 ), (1.9.1) 

with 4,, = xo  and za6  = (K*K aI)-1 K*(y° — KF(xo)) + F(xo)• 

We shall make use of the adaptive parameter selection procedure suggested by 

Pereverzev and Schock [50] for choosing the regularization parameter a, depending 

on the inexact data y 6  and the error 6 satisfying 

(1.9.2) 

It is shown that the method that we consider give quadratic convergence compared 

to the linear convergence obtained in [20]. 

Chapter 3:  In this chapter we consider the Hilbert scale ([46]) variant of the method 

considered by George and Nair in [20] and obtained improved error estimate. Here we 

take X = Y = Z = H. Let L : D(L) C H H, be a linear, unbounded, self-adjoint, 

densely defined and strictly positive operator on H. We consider the Hilbert scale 

(Hr ) rER  (see , [38] ) generated by L for our analysis. Recall (c.f.[17])that the space 

Ht  is the completion of D := nic10 D(L k ) with respect to the norm II xli t , induced by 

the inner product 

(n, t  := 	, Ltv), 	u, v E D. 	 (1.9.3) 

In order to obtain stable approximate solution to (1.8.2), for n E N we consider 

the nth  iterate; 

x n+1,„ = 	- (X0) -1  [F(X6  ) — 	a > 0 .,s 	as 	 n,a,s 	as (1.9.4) 

where xg a s  := x o  and .z„(5 , ,, = F(x0 ) (K aLs) -1 (y 6  - K F(x0)), as an approximate 

solution for (1.8.2). Here a is the regularization parameter to be chosen appropriately 

depending on the inexact data y b  and the error level 6 satisfying (1.9.2), and for this 
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we shall use the adaptive parameter selection procedure suggested by Pereverzev and 

Schock in [50]. 

Chapter 4:  In this chapter we consider the special case of a Hammerstein type operator 

equation (1.8.2) when the nonlinear operator F is monotone. i.e., we take Z = X 

and F : D(F) C X —> X satisfies 

(F(xl) — F(x2), xl — x2) > 0, 	Vxi, x2 E D(F) 

and K : X —> Y is, as usual, bounded linear operator. We propose two iterative 

methods: 

= X n,a ( 111 ( Xn,a 	i) —1  ( F ( Xn8  a) z(:e + 	 a ( X 	— X0))) n  

and 

in+1 := ism — (F'(xo ) + I) -1 (F(isn) — za + (ins  — x0)) 

where x0  is the starting point of the iterations and z a6  = (K*K + ctI) -1 K*y a  in 

both cases. Note that in these methods we do not require invertibility of the Frechet 

derivative F'(.) as against the hypothesis in chapter 2 and chapter 3. The methods 

used in this chapter differ from the treatment in chapter 2 and chapter 3, in as much 

as, that the convergence analysis is carried out by means of suitably constructed 

majorizing sequences, thanks to the monotonicity of F. Further this approach enables 

us to get an apriori error estimate which can be used to determine the number of 

iterations needed to achieve a prescribed solution accuracy before actual computation 

takes place. Adaptive selection of the parameter in the linear part is, once again, done 

by the method of Pereverzev and Schock [50]. 

Chapter 5:  We end the thesis with some concluding remarks in this chapter. ❑ 



Chapter 2 

An Iterative Regularization 
Method for Ill-posed Hammerstein 
Type Operator Eqations 

In this chapter we discuss in detail a combination of Newton's method and a regular-

ization method for obtaining a stable approximate solution for ill-posed Hammerstein 

type operator equation. By choosing the regularization parameter according to an 

adaptive scheme considered by Pereverzev and Schock [50] an order optimal error 

estimate has been obtained. The method that we consider is shown to give quadratic 

convergence compared to the linear convergence obtained by George and Nair in [20]. 

2.1 Introduction 

Regularization methods used for obtaining approximate solution of nonlinear ill-posed 

operator equation 

Tx = y, 	 (2.1.1) 

where T is a nonlinear operator with domain D(T) in a Hilbert space X, and with 

its range R(T) in a Hilbert space Y, include Tikhonov regularization (see [13, 23, 

33, 53]) Landweber iteration [31], iteratively regularized Gauss-Newton method [4] 

and Marti's method [32]. Here the equation (2.1.1) is ill-posed in the sense that the 

solution of (2.1.1) does not depend continuously on the data y. 

The optimality of these methods are usually obtained under a number of restrictive 

25 
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conditions on the operator T (see for example assumptions (10)-(14) and (93)-(98) 

in [54]). For the special case where T is a Hammerstein type operator, George [14], 

[15] and George and Nair [20] studied a new iterative regularization method and had 

obtained optimality under weaker conditions on T (that are more easy to verify in 

concrete problems). 

Recall ([20]) that a Hammerstein type operator is an operator of the form T = K F, 

where F : D(F) C X H Z is nonlinear and K : Z H Y is a bounded linear operator 

where we take X ,Y, Z to be Hilbert spaces. 

So we consider an equation of form 

KF(x) = y. 	 (2.1.2) 

In [20], George and Nair, studied a modified form of Newton Lavrentiev Regu-

larization (NLR ) method for obtaining approximations for a solution x E D(F) of 

(2.1.2), which satisfies 

— F(xo)II ------ min{ IIF(x) — F(xo)II : KF(x) = y, x E D(F)}. 	(2.1.3) 

In this chapter we assume that the solution X satisfies (2.1.3) and that y 5  E Y are 

the available noisy data with 

(2.1.4) 

The method considered in [20] gives only linear convergence. Here we attempt to 

obtain quadratic convergence. 

Recall that a sequence (x n) is X with 	x* is said to be convergent of order 

p > 1, if there exist positive reals 7, such that for all n E N 

IIxn 	x* 11 	/3e-"n * 
	 (2.1.5) 

If the sequence (x n ) has the property, that 

x * 	Oqn 	0 < q < 1 

then (xn) is said to be linearly convergent. For an extensive discussion of convergence 

rate see Kelley [36]. 
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This chapter is organized as follows. In section 2 we introduce the iterated reg-

ularization method. In section 3 we give error analysis and in section 4 we derive 

error bounds under general source conditions by choosing the regularization parame-

ter by an a priori manner as well as by an adaptive scheme proposed by Pereverzev 

and Schock in [50]. In section 5 we consider the stopping rule and the algorithm for 

implementing the iterated regularization method. 

2.2 Iterated Regularization Method 

Assume that the function F in (2.1.2) satisfies the following: 

1. F possesses a uniformly bounded Frechet derivative F'(.) in a ball Br (x0) of radius 

r > 0 around xo  E X, where x o  is an initial approximation for a solution X of (2.1.2). 

2. There exist a constant /c o  > 0 such that 

II F'(x) — 7(01 	KolIx — YII, 	Vx, y E Br(x0) 	 (2.2.1) 

3. F'(x) -1  exist and is a bounded operator for all x E Br (x0). 

Consider e.g.,(c.f.[54])the nonlinear Hammerstein operator equation 

(K F x)(t) = f k(s,t)h(s, x(s))x(s)ds 

with k continuous and h is differentiable with respect to the second variable. Here 

F : D(F) = 	(10,1D 1—* L2 (]0, 1D is given by 

	

F(x)(s) = h(s, x(s)), 	s E [0,1] 

and K : 1,2 (10,1D 	L2 (]0, 1D is given by 

K u(t) = I k(s, t)u(s)ds, 	t E [0,1]. 

Then F is Frechet differentiable and we have 

[F' (x)]u(t) = 32 h(t, x(t))u(t), 	t E [0,1]. 
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Assume that N : H1 00 ,1[) H H 1 (10, 1D defined by (N x)(t) 	02 h(t, x(t)) is locally 

Lipschitz continuous, i.e., for all bounded subsets U C H 1  there exists lc° := n o (U) 

such that 

	

1102h(., x(.)) — 02h(.,y0)11H1 < Kollx — YII 
	

(2.2.2) 

for all x ,y E H1 . Further if we assume that there exists ic 1  such that 

32h(t, xo(t)) 
	

t E [0, 1], 	 (2.2.3) 

then by (2.2.2) and (2.2.3), there exists a neighborhood U(x o ) of xo  in H1  such that 

02h(t, x(0) ?- 

for all t E [0,1] and for all x E U(xo). So F1 (x) -1  exists and is a bounded operator 

for all x E U(xo). 

Observe that (cf. [20]) equation (2.1.2) is equivalent to 

K [F (x) — F(x o )] = y — K F (x0) 	 (2.2.4) 

for a given xo, so that the solution ± of (2.1.2) is obtained by first solving 

Kz = y — KF(x o ) 	 (2.2.5) 

for z and then solving the nonlinear equation 

F(x) = z + F (x0) . 	 (2.2.6) 

For fixed a > 0, 8 > 0 we consider the regularized solution of (2.2.5) with y 5  in place 

of y as 

	

(K + cei) -1 (Y8  — KF(xo)) + F(xo) 	 (2.2.7) 

if the operator K in (2.2.5) is positive self adjoint and Z = Y, otherwise we consider 

za = (K* K + air K* (y5  — K F (x 0 )) + F (x0 ) . 	 (2.2.8) 

Note that (2.2.7) is the simplified or Lavrentiev regularized solution of equation (2.2.5) 

and (2.2.8) is the Tikhonov regularized solution of (2.2.5). 
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Now for obtaining approximate solutions for the equation (2.1.2), for n E N we 

consider xn5 a , defined iteratively as 

X n+1,a = 
	— (x„ ,a) -1 (F(4)— 	 (2.2.9) 

with xg c, = xo . 

Note that the iteration (2.2.9) is the Newton's method for the nonlinear problem 

F(x) — z ccs  = 0. 

We shall make use of the adaptive parameter selection procedure suggested by Pereverzev 

and Schock [50] for choosing the regularization parameter a, depending on the inexact 

data y5  and the error 6 satisfying (2.1.4). 

2.3 Error Analysis 

For investigating the convergence of the iterate (x, 25 , ,,) defined in (2.2.9) to an element 

x,„5  E Br (x0) we introduce the following notations: Let for n = 1, 2, 3, • • • , 

13n := 	)11, 

en := lixn5 +1,a 	X7r5z,a117 

'Yn := Kolenen, 

 

dn 	3771( 1 	-yn) 1 , 

w := II F(i ) — F(xo ) 

(2.3.1) 

Further we assume that 

  

and 

1 
'Yo := koeoi3o < 

4 
(2.3.2) 

rl := 2e 0  < r. 	 (2.3.3) 
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THEOREM 2.3.1. Suppose (2.2.1), (2.3.2) and (2.3.3) hold. Then 4,„, defined in 

(2.2.9) belong to B n (x 0 ) and is a Cauchy sequence withlim,,,x 78,,a = x„8  E B., (x°)C 

13,.(x0). Further we have the following: 

II 2  X n5 ,a — X
5 

II < / 	d2° 	= a — 	

oe--y2n (2.3.4) 

where = 21  and 7 —logdo. do 

Proof. First we shall prove that 

6 	3 	s 	a 	
1 2  

n ' a  — 
11Xn+1,a — X  11 < On g° 	Xn-1,a 

and then by induction we prove, X 5n.a  E B n (x 0 ). 

Let G(x) = x — F'(x) -1 [F(x) — 4]. Then 

(2.3.5) 

G(x) — G(y) = x — y — (x) -1  [F(x) — 	+ F'(y)-1 [F(y) — z8] 

x — y + 	(x) -1  — (y)']z a8  — (x) -1  F(x) + (y) -1  F(y) 

x — y + [F1 (x) -1  — (y) -1 ](45, — F(y)) 

— (x) -1 [F(x) — F(y)] 

F1 (x)'[Fi (x)(x — y) — (F(x) — F(y))] 

+F1 (x) -1 [F'(y) — (x)]F' (y) -1 (4, — F(y)) 

r(x) -1 [F1 (x)(x — y) — (F(x) — F(y))] 

+Fi (x)
-1 [P1 (y) — F'(x)](G(y) — y). 	 (2.3.6) 

Now observe that G(x n , a ) =+1,co•so  by putting x = 	 a 	 n x 8  and y = x° -1,a in (2.3.6), n  

we obtain 

Xn+1,a = FI (Xn,a) -1  [FI (X5n,a)( 33672,a 	X 5n-1.a) 	(F(2n,a) 	F(X 6 	))] n1,a 

+P(X8  ) -1  [F'(x8 	) —(x an  )] 	(x 8  — x 8 	
) 	(2.3.7) n,a 	n-1,a 	 ,a 	n,a 	n-1,a 

Thus by Lemma 1.3.2 and (2.2.1), 

On NO 	 6 11 6 
 Xn,ce 	Xn5  -1,a 11 2  + Onk011Xn,a 	Xn-1,a 11 2 . 	(13 . 8 ) 2 I I x + 	— x , a I I 
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This proves (2.3.5). Again, since 

F' (xn6  ,a) = F/(4,_1,0,)+F'(4,.) — F'(x._1,a) 

= P(x7,_ 1 ,„)[I+ F'(4_1 ,a ) -1 (F1 (x 7,6 „) - F'(x,6 _ ))1, 	(2.3.9) 

F' (eri,,„ 1  = [I + 	(x n_ 1 ,„)-1  (F' (x7,)- FI  (x,i5  _ La ))] -1  F' (x7, 	. 	(2.3.10) 

So if 

11 7 (47._1„) -1 (F/(x7,,,,,) — F'(x._ 1,,y )) 1 1 C /372-1 k0en- 1 = 772-1 < 1 , 

then 

(2.3.11) 

and by (2.3.5) 

en 	-
2

1cOn.-1( 1  

3 
= 27,1(1 - 

- - 1 2 

(2.3.12) 

(2.3.13) 

(2.3.14) 

Again by (2.3.11) and (2.3.13), 

3 
= KOeni3n 	—

2
KON-1( 1  772-1) —I en-1.0n-1( 1  N-1) -1  

2 	 (2.3.15) = -2 7n-1( 1  

The above relation together with 7 0  = Koeco30 < -1 implies "n < 1. Consequently by 

(2.3.13), 
1 

en < -2 en-1, 

for all n > 1. So en, < 2-neo , and hence 

n 

(2.3.16) 

iixn+La — x011 C 	it 
J=0 

n. 

• E2-'e 0  
j=o 

• 2e 0  < r. 

Thus (xn8 ,a ) is well defined and is a Cauchy sequence with x 6c, = 	 E 

B, I (x 0 ) C Br (xo). So from (2.2.9), it follows that F(xD = za. 

6 X 
1 

— X 3+,a 	3,all 
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Further note that since -y n  < 1/4, and by (2.3.15) we have 

dn  = 37,(1— 7n) < 4y, < 4. 3 -Yn2.--1( 1  — 	< dn2 _1. 

do   

Hence 

< don, 	 (2.3.17) 

consequently, by (2.3.14), (2.3.16) and (2.3.17) 

1 7 	 2n-1 en  < an_i em-i < 2 -n
do e(). 

Therefore 
CO 

xn,« 	= urn 	x5 n,a 	n+i,a 

r2 -7  do2j-1  eo  2.2-radon
-1 
 eo 	

2e0d 
 

2n  3=n 

77don -1 
 —e 

71 
2n 	C102n  

d e —y2n = 3e ---y 2n 
o  

This completes the proof. 

(2.3.18) 

REMARK 2.3.2. Note that -y > 0 because -yo < 1/4 	> do  < 1. So by (2.1.5), 

sequence (x 8nc,) converges quadratically to x 6a . 

THEOREM 2.3.3. Suppose (2.2.1), (2.3.2) and (2.3.3) hold. If, in addition, Ilxo 

xII < < r < oolko , then 

IIx —xaII < — 1 , 	13: 	nor  II F(i) — 4, 11. 

Proof. Observe that 

IIx — xaII = 	— x 8c,i +Fi(x0)-1 [F(in — F(i) + F(i) — 411 

11-r(i0) -1 [Fi (i0)(i — 	— (FM — 	+ Ilr(i0) -1 [F(i) —  

Avcorlli — xaII + 001IF(i) — z'n• 
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Thus 

	

(1 —130Kor ) 11x — 	 13011F(±) — 411. 

This completes the proof. 

REMARK 2.3.4. If z o,(5  is as in (2.2.8)and if IIF(xo) — F(x)II + 	< 2Qo < 24" 

then 114 — xII < n < r < 
Qo o

, holds (see section 2.5). 

The following Theorem is a consequence of Theorem 3.3.4 and Theorem 2.3.3 

THEOREM 2.3.5. Suppose (2.2.1), (2.3.2) and (2.3.3) hold. If, in addition, )30nor < 

1, then 

	

130 
	+ ''d2ri. — 4 ,.11 	F(±‘) 	za5 11 	° 	•1 — Nonor 	 2n 

REMARK 2.3.6. Hereafter we consider z,„5  as the Tikhonov regularization of (2.2.5) 

given in (2.2.8). All results in the forthcoming sections are valid for the simplified 

regularization of (2.2.5). 

In view of the estimate in the Theorem 2.3.5, the next task is to find an estimate 

zoi5̀ 11. For this, let us introduce the notation; 

	

z, := F(xo ) + (K*K + 	K*(y — K F(xo))• 

We may observe that 

5- liF(i) 	+ 	— 411 

< IIF(i) 	zall + 
	

(2.3.19) 

and 

P(') — z n  = F(I) — F(xo) — (K * K + aI)-1 K*K[F(i) — F(x0)1 

= [I — (K*K aI) -1 K*K][F(±‘)— F(x0)1 

= cv(K*K + a/)-1 [F(±) — F(x0)1- 
	 (2.3.20) 
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Note that for u E R(K * K) with u = K*Kz for some z E Z, 

lia(K * K ai) -inil = licv(ICK + a/) -1 K*Kz11 < ailzll -> 0 

as a ---> 0. Now since Ila(K*K + a/) -1 11 < 1 for all a > 0, it follows that for every 

u E R(K*K),Ila(K * K ± an-l ull -4 0 as a ----> 0. Thus we have the following theorem. 

THEOREM 2.3.7. If F(:0 - F(xo ) E R(K*K), then 1IFM - 	-4 0 as a --> 0. 

2.4 Error Bounds Under Source Conditions 

In view of the above theorem, we assume that 

- z.11 	v(a) 
	

(2.4.1) 

for some positive monotonic increasing function cp defined on (0, Illf11 2] such that 

lim 
co(A) -= 0. 

-> 0 

Suppose co is a source function in the sense that x satisfies a source condition of 

the form 

- F(xo) = (p(K* K)w, 	Ilwil <1, 

such that 
sup 	aco(A)  

< 	 (2.4.2) 
0 < < 11K11 2  +a - 

then the assumption (2.4.1) is satisfied. For example if FM - F(xo) E R((K*K)"), 

for some v with, 0 < v < 1, then by (2.3.20) 

11F(x) zail 	lia(K*K + aI)-l (K * K)" 
sup 	GA' 

0 < A < IIKII 2  

	

± 	av  

Thus in this case co(A) = 	satisfies the assumption (2.4.1). Therefore by (2.3.19) 

and by the assumption (2.4.1), we have 

11F ( i) - 4)11 	(io(a)+ 
	

(2.4.3) 

So, we have the following theorem. 
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THEOREM 2.4.1. Under the assumptions of Theorem 2.3.5 and (2.4.3), 

6 	rid2" -1  
- 	-5- 	(313 	(ga) + 	) + 	'° 

' 	1 - OoKor 	NATc 	2n  

2.4.1 Apriori Choice of the Parameter 

Note that the estimate co(a) + 	in in (2.4.2) attains minimum for the choice a := as 

which satisfies cp(ao) = aa . Let 0(A) 	A Vco -1 (A), 13  < A 5- 11 10 2 . Then we have 

= Vc7o(p(ao) = Ik(cp(ao)), and 

as = co-1(0-1(8)). 	 (2.4.4) 

So the relation (2.4.3) leads to 

II F(i) - 4E11 < 20 - '( 8). 

Theorem 2.4.1 and the above observation leads to the following. 

THEOREM 2.4.2. Let V)(A) := AVco -1 (A),0 < A <11102  and the assumptions of 

Theorem 2.3.5 and (2.4.1) are satisfied. For 5 > 0, let as  = 40-1 ( 11) 1 (5)). If 

rd2-1 	S, 
no  := min{n : 	

2
° 

77 
< 	 

76 1  

then 

II x  - xL,„,,11 	0(0-1 ( 6)). 

2.4.2 An Adaptive Choice of the Parameter 

The error estimate in the above Theorem has optimal order with respect to 6. Un-

fortunately, an a priori parameter choice (2.4.4) cannot be used in practice since the 

smoothness properties of the unknown solution x reflected in the function w are gen-

erally unknown. There exist many parameter choice strategies in the literature, for 

example see [5], [27], [28], [16], [18], [52] and [58]. 
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In [50], Pereverzev and Schock considered an adaptive selection of the parameter 

which does not involve even the regularization method in an explicit manner. In 

this method the regularization parameter a, are selected from some finite set {a, : 

0 < a0  < al  < < aN } and the corresponding regularized solution, say 715,,,, 

are studied on-line. Later George and Nair [20] considered this adaptive selection 

of the parameter for choosing the regularization parameter in Newton-Lavrentiev 

regularization method for solving Hammerstein type operator equation. We too follow 

the same adaptive method for selecting the parameter a in x 6,„,„. Rest of this section 

is essentially a reformulation of the adaptive method considered in [50] in this special 

context. 

Let i E {0, 1, 2, • • • , N} and a i  = igzao  where ,a > 1 and a ()  = P. Let 

, 
1 := max{ i : (p(ai) < N <  6 r— I 	 (2.4.5) 

ai  

and 
6 

. 
	• k 	max{i : 6  — 

3 
< 	,j 	0,1,2,  

4
5, 

(2.4.6) 

The proof of the next theorem is analogous to the proof of Theorem 1.2 in [50], but 

for the sake of completeness, we supply its proof as well. 

THEOREM 2.4.3. Let l be as in (2.4.5), k be as in (2.4.6) and za°  be as in (2.2.8) 

with a = ak. Then 1 < k and 

liF(±) 	z.(c5,,,li 5- ( 2  + bi 4/1 1 )1-10 1 ( 8). 

Proof. Note that, to prove / < k, it is enough to prove that, for i = 1, 2, • • • , N 

4(5 
40(ai) 	ii 	11 	45, 	 0, 1,2, • • • ,i. 
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For j < i , 

1 1 2 
 

— 4.11 < z!, F 	+ F (i) 4; 11 

40 (ai) 	Co(ai)
ai 	 cTi 

28 	26 

Vc7i  VcT 

48 

-Vai 
This proves the relation 1 < k. Now since Val+rri = µ ' ti \ATI, by using triangle inequal- 

ity successively, we obtain for 1 < k, 

11F(±‘) - 4 k I I 5_ 1 1F(i) - zap II 

II F(x) 	45, 
m=o 711i' m  

5 F (i) 4,11 +(tt iu 	l ) v4 	aj 	 

Therefore by (2.4.2) and (2.4.5) we have 

11F(i) 	 cP(al) 	( 	 
p 

— 
Oat  

(2 + 
p, — 1

) plif1 (8). 

The last step follows from the inequality \/(e6  < Vai±i < pfet7 and 

Note that (2.4.7) holds for the case k = 1 as well. This completes the 

(2.4.7) 

„/,-1(8) . 
 vc76- 	v 

proof. 

2.5 Stopping Rule 

Note that 

= 11 ,5  
1 1,« Il.r(xo) -1 (ICK + 0.1) -1 K*(y6  — KF(xo))II 

= 11 7 (x0) -1 (K* K + ai)-1ir*(Y6 — y y — K F(xo))11 

< 00(11(IC K al) 1  K * (Y5 	+ 

11{K * K + 0/-1 ) -1 K * K(FM F(xo))II) 

k 	
48 

j=1-1-1 N/lai - 1 
 k-1-1 	

48 
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so if 

Lk) 	
1 

— < —mint r, 	
1 

N/a 	2,30 	2/30k0 
(2.5.1) 

then 2e0  < 200(w + 	< r, and 

1 
'Yo = eoOoko < 4. 

Again since ai  = 

form 

2'82 	6 	-k 
= 	; the condition (2.5.1) with a = al, takes the 

1 	. 	1 	, 
w + ■cit  < 73-c ',2 nunlr ' 200k0 j• 	

(2.5.2) 

Note that if we assume that 2 )30 k0 r < 1, then condition (2.5.2) takes the form w+ µk  < 

200 '=. So if we assume 

r < 2130(1 	
1 

w), 	- + w < 
200 

then p > 1 and (2.3.2) and (2.3.3) hold. The above discussion leads to the following 

theorem. 

THEOREM 2.5.1. Assume that 1-1 > 2$ 2 ,3ow < r < min{ 200( 1 w) ,  2001 K0}* 

Let ao  = 82 , ai  = ,a2j 62  for j = 1, 2, • • • , N and k := max{ 
	

4/1-3  = 

0, 1, 2, • • • , 	Then 

	

+ zak  11 < ( 2  + 	/1  p4 1 )110-1 ( 6) 

where W(t) = t\A0 -1 (t) for 0 < t < 11K11 2 . Further 7k := Okekrzo < 14 and if 

rdr  
nk  := minfn : 	< —k • 

2n 

then 

I — 	II = 0 (0 -1  (b)). 



Chapter2 	An Iterative Regularization Method for ill-posed Hammerstein 	39 

2.5.1 Algorithm: 

Note that for i, j E {0, 1, 2, 	, 

114 — z«.;  II = (cei  — ai )(K*K + cxi I) -1 (K* K + aiI) -1 K*(Y 5  — K F(x0))• 

Therefore the adaptive algorithm associated with the choice of the parameter specified 

in the above theorem is as follows. 

begin 

i=0 

repeat 

i=i+1 

Solve for wi  : (K*K + ail)wi  = K*(y6  — K F(x 0 )) 

j=-1 

repeat 

j=j+1 

Solve for zi p : (K*K + oz inz i ,• = 	— ct i )wi  

until( II • II < 4µ -SAND j < 

< 4p-3) 

k = i-1. 

m=0 
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repeat 

m=m+1 

d2rn-1 
-unt il( r 	2m  > 

nk = m 

for 1=1 to nk 

Solve for u1 _ 1  : Fi (xt-Lak )uz-i = F(4-1 , 0ek ) — ''' 

7
'

6' 
ak 

	

6 	6 
XI ak  := Xi_Lak  — U1-1 

end ❑ 



Chapter 3 

Iterative Regularization Methods 
for Ill-posed Hammerstein Type 
Operator Equations in Hilbert 
Scales 

In this chapter we report on a method for regularizing a nonlinear Hammerstein type 

operator equation in Hilbert scales. The proposed method is a combination of Lavren-

tieve regularization methods in Hilbert scales and a modified Newton's iteration. Un-

der the assumptions that the operator F is continuously Frechet differentiable with a 

Lipschitz-continuous first derivative and that the solution of (3.1.1) fulfills a general 

source condition, we give an optimal order convergence rate result with respect to the 

general source function. 

3.1 Introduction 

Let us take X = Y = Z = H and consider an ill-posed Hammertein type operator 

equation 

K F(x) 	y, 	 (3.1.1) 

where K : H 	H is a positive self-adjoint operator with its range R(K) not closed in 

H and F : D(F) C H H H is a nonlinear operator. The equation (3.1.1) is ill-posed, 

in the sense that a unique solution that depends continuously on the data does not 

41 
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exist. 

In [20], George and Nair studied a modified NLR method for obtaining an approx-

imation for the x o-minimum.norm solution (xo-MNS) of the equation (3.1.1). Recall 

that a solution E D(F) of (3.1.1) is called an x o-MNS of (3.1.1), if 

11 F(x) — F(x o )II = min{11F(x) — F(x o )II : K F(x) = y, x E D(F)}. 	(3.1.2) 

As in chapter 2, we assume the existence of an x o-MNS for exact data y, i.e., 

KF(x) = y. 

Not that, due to the nonlinearity of F, the above solution need not be unique. The 

element xo  E X in (4.1.2) plays the role of a selection criterion. 

Further we assume that y 5  E H are the available noisy data with 

8 . 
	 (3.1.3) 

Since (3.1.1) is ill-posed, regularization methods are to be employed for obtaining a 

stable approximate solution for (3.1.1). See, for example [7], [10], [11], [58], [45] for 

various regularization methods for ill-posed operator equations. 

In [20], George and Nair considered the n th  iterate 

x ri 	xn 	—(x 0 ) -1 [F(x7,8 	— F(x0) — (K + al) -1 (y a  — K F(x 0 ))] (3.1.4) 

as an approximation for the x o-minimum norm solution of (3.1.1). In order to improve 

the error estimate available in [20], in this chapter we consider the Hilbert scale variant 

of (3.1.4). 

Let L : D(L) C H —> H, be a linear, unbounded, self-adjoint, densely defined and 

strictly positive operator on H. We consider the Hilbert scale (Hr)rel  (see ,[17], [19], 

[38] and [45]) generated by L for our analysis. Recall (c.f. [17]) that the space lit  is 

the completion of D nck'°_,D(Lk) with respect to the norm 114,, induced by the 

inner product 

(71, v) i  := (Lt u, L iv), 	u,v E D. 	 (3.1.5) 
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In order to obtain stable approximate solution to (3.1.1), for n E N we consider 

the nth  iterate; 

x +1.a,s 	5 ,a s = x 	— 	(x0) -1 [F (x7,5  ,„ s ) — z« > 0 n 	 n, (3.1.6) 

where xo a s  := xo  and za6 , = F(x0 ) + (K a Ls) -1  (y 6  — K F (x0)), as an approximate 

solution for (3.1.1). Here a is the regularization parameter to be chosen appropriately 

depending on the inexact data ys and the error level S satisfying (3.1.3). 

Note that, if D(L) = H and L = I, then the above procedure is the modified 

Newton-Lavrentieve regularization method considered in [20]. Further note that un-

der the assumptions on L, the iterates in (3.1.6) is well defined. We observe that, 

regularization methods for nonlinear ill-posed problems in Hilbert scales, an assump-

tion of the form; 

mII X II — a < II F' ( xo)xII 
	

(3.1.7) 

on the smoothness of F'(xo ) is used (cf.[57]). Another feature of the proposed method 

is that no assumption of the form (3.1.7) on F'(xo ) is used in our analysis. 

Again in many cases one is not interested in completely knowing x, but some 

derived quantities of x (see [42], [22]). Often such derived quantities correspond to 

bounded linear functionals of the solution. Then the problem is to estimate (f, 

where f is any given functional. A straight forward approach to find an approximation 

to (f, 	is to find some approximate solution of (3.1.1) and then apply the given 

functional to this. This approach is referred to as the solution-functional strategy 

(cf.[1]). 

Note that, if f E Ht, for some u, then 

l(f,x)1 	Ilfilullxil-„ 

for all x E H. Thus to obtain an estimate for 1( f , 	— ( f x°,„,,,,5 )1, it is enough to find 

an estimate for 11± 	 So our main aim in this chapter is to obtain an optimal 

order error estimate for 11x — x6 ,a,3—u under an apriori and an aposteriori parameter 'n  

choice strategy. 

In section 2 we give some preliminary results which are required in the remaining 

sections of the chapter. In section 3 we derived error bounds for II x n,a,s — x I 	In 
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section 4 we derived optimal order error bounds for 11 xb a s  — x I I -u  under general 

source condition, provided a and n are chosen apriorily. In section 5 we considered 

an adaptive scheme for choosing the regularization parameter a and in section 5.1 we 

considered a stopping rule for the iterative index n. 

3.2 Preliminaries 

Let K E L(H) be a bounded, positive self-adjoint operator on H (i.e., (Kx, x) > 0 

for every x E H) with its range R(K) not closed in H. Let us introduce the operator 

K, 	L'12 K L -812 . 	 (3.2.1) 

Note that the operator K, is a positive and self-adjoint bounded operator on H. We 

shall make use of the relation 

(KS + ai) -l ic II ar-1 	> 0, 0 < T < 1, 	(3.2.2) 

which follows from the spectral properties of the positive self adjoint operator K,, 

s > 0. 

We need the following assumptions for our analysis. 

ASSUMPTION (A1) There exist constants c 1  > 0, c2  > 0 and a > 0 such that 

11x11-. 	11Kx11 	c211x11-.. 	 (3.2.3) 

ASSUMPTION (A2)1I F(x) — F(xo ) li t  < E for some t > 0. 

Further we need the function f and g; defined by 

f (v) = min{cY, 4}, 	g(v) ---- max {cY , 	v E R, Iv' < 1, 	(3.2.4) 

respectively. One of the crucial results for proving the results in this chapter is the 

following Proposition. 

PROPOSITION 3.2.1. (See /17], Proposition3.1) For s > 0 and Iv' < 1, 

/( 1/ 2)11x11-v(s+a,v2 5_ iiK isi/2 x11 	g(v1 2)11x1i_v(s+a)12 7 	x E H. 	(3.2.5) 
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Let 

zaa , s  := F(xo ) + (K + ct.U) -1 (y°  — KF(xo)) 	 (3.2.6) 

and 

:= F(xo) + (K + aLs ) -1 (Y — KF(xo)). 
	 (3.2.7) 

THEOREM 3.2.2. Suppose that Assumption A2 holds for, 0 < u + t < s + a, 

0 < u < a and a > O. Then 

— 	 Il_u  < p(s)a( u — a)/( s+a)(5 , 	 (3.2.8) 

II F (xo ) — za, s II —u < 1 ( s ) II F(x)— F ( xo ) I I —u, 	(3.2.9) 

— za , s 1 1-u < (k (s, t)a(u+t) / (s+a) E , 
	 (3.2.10) 

where  w(s) = g(—s/(2s+2a)) 	(s) 	 and 0( t) g((2u+s)/(2s+2a)) 	 g((s-2t)/(2s+2a))  
f((2u+s)/(2s+2a)) S'IA 	f((2u+s)/(2s+2a)) 	 — f ((2u+s)/(2s+2a)) • 

Proof. Not that 

zaa ,, — za,s11-1, = 	+ aLs) -1 (y6  — Y)11 -u 

= IlL-(u+812) (Ks + cv/) -1 L-8/2 (Y6  Y)11 

now by taking v = (2u + s)/(s + a) and x = (K3  + an -1 L-9/2 (y° — y) in proposition 

3.2.1, we have 

—  114e,s Za,s1I—u < 	
 K(2u+s)/(2s+2a) (Ks + ary l L-s/2 

	— Y)11 
f (22

1

+  :+2s ) 11  sa   

f (2:++28a)11(x + 
a/

)_i_ws 2u+s)/(28-1-2a) L -s/2 (vs 	y )II 
2 	  

1 	
K f( 2 +, II (s + air 

Ku+s)1(s+a) II 

2su-1-2a) 

xlIK;
s1(2s+2a) L—s/2 	y) I 	 (3.2.11) 

We note that the relation (3.2.2) with T = (u + s)/(s + a) gives 

II (Ks  + oti)-1K:/(s+a) I I < (u—a)/(s+a) 	 (3.2.12) 
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and Proposition 3.2.1, with v = -s/(s + a) and x = L-812 (ya - y), gives 

II Ks 
s/(2s±2a) L—s/ 2 (y6 	

Y)II 	g( 2s 	2a)11L-s12(Y6 	
0110 

5- g( 28 - 2a )11Y 	Yil. 
	 (3.2.13) 

Now (3.2.8) follows from (3.2.11), (3.2.12), (3.2.13) and (3.1.3). Again 

- F(xo) II-IL = II (K + aLs)'K(F(i) - F(xo)) II, 

= 111,-(u+s12) (K, + a/)-1 L -9/2K(F(i) - F(xo )) II 

= IlL (u±s/2) (K, + air Ks Ls 12 (F(i) - F(xo)) II. (3.2.14) 

So by taking v = (2u + s)/(s + a) and x = (K, + ai)-' Ks 1,812 (FM - F(xo )) in 

Proposition 3.2.1, we obtain 

II L—((2u+s)/2)(Ks Cei) —i  Ks Li s/2  (FM 	F(xo)) II 
1 	_K2u+s)/(2s-E2a)(Ks + an —1 Ks Ls/2 (F(±,  ) — 

F(xo)) II 

f ( 
 22su+2

+sa  ) 

Now by taking v = (2u+ s)/(s +a) and x = L812 (F(i)- F(xo )) in Proposition 3.2.1, 

we have 

IIK(2u+s)/(2s+2a) Ls/2 (Fm 	 2 +  
F(xo))ll < g( 2s+ 2a ) IILs/ 2 (F(x) - F(xo))11-(2+5/2) 

u s 

g( 2us 	±± 2sa )liF(i) - F(xo)1I-u. 	(3.2.16) 

	

Thus by (3.2.14), (3.2.15), (3.2.16) and the relation 	+ 	< 1; 

— F(x0)11—u 	01(s)11F("x) — F(x0)11—u- 	(3.2.17) 

5- f 22:±±2sa  
1 

II (Ks  + 	Ks 1( 2u±s)/(2s+2a)L s/2  (FM — F(X0)) II • (3.2.15) 



Chapter3 	Iterative Regularization methods for ill-posed Hammerstein 	47 

Further we observe that 

II 	- F(x ) II = II ((K + aLs)-1 K — I)(F(i) — F( 3;0))11-u 

	

= iiaL-(u±s/ 2)  (K + 	L s/2  (F 	F(xo))II 
1  

	

1 ( 2

• 	

2  su++2s.) I  I 

R12u+ sv(2,+2.) jaws + air]. Ls/2 (Fm F(x0))11 

	

= 	
1 	

+ 1 _Ktt— l-t) 1 (s+a) K(s-2t) 1(2.5+2a) 
f 22su+- F sa  ) 

X Ls 12 (F(x) — F (x 0 ))11 

1 	
II cc

(K, ± 	---i K u+t)/(s+a) ks-201(2s+2a) 

	

f  ( 
2

2:51+2

• 	

a) 	\ 

X L s/2  (F(') — F(X0)) II 

• 9 ( 27+2: a)  ce  

.f ( 2,su;-F2sa) 2 	
u+t)/(s+a)111;5/2(F(±‘) — F(X0))11t—s/2 

< v(s, t)0C(u+t)/(5+a)E. (3.2.18) 

3.3 Error Analysis 

In addition to the assumptions on K, we assume that, F possess a uniformly bounded 

Frechet derivative F'(.) in a ball Br (x0) C H,,0 < u < a of radius r > 0 such that 

— Y(Y)11-u 5_ kolix 	Yll-u, x,y E Br(xo), 	(3.3.1) 

and that 7(x0) -1  exists and is a bounded operator. Further we assume that, 

IIL-ur (x0)- lL u ll 	< 00 	 (3.3.2) 

Now we shall give examples that satisfies the assumptions on F, L and K. 

EXAMPLE 3.3.1. Consider the nonlinear Hammerstein equation Tx = y, where 

the operator T : 	[0, 1] 	L2 [0, 1] given by 

T(x)(s) = f k(s,t)(x(t) + f (t))dt, 	0 	s 	1, 	 (3.3.3) 
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with k(s,t) := E:0 (n+1) -2v,,,(s)un (t), f(t) E L2 [0,1]; where un (s) = .4-cos(2nirs). 

Then (3.3.3) can be written as 

K F(x)(s) = y(s) 

where K : L 2 [0,1] ---> L2 [0,1] defined by 

Ku(s) = f k(s,t)u(t)dt 
	

(3.3.4) 

and F : Hu[0,1] 	L 2 [0,1] is given by 

F(x)(s) = x(s) + f (s). 	 (3.3.5) 

Note that K in (3.3.4) is compact, positive self adjoint with positive eigenvalues (n + 

1) -2  and corresponding eigenvectors un (.) for n = 0, 1, 2, .... 

Further note that FI (x)h(s) = h(s) and hence 

11r(x) - r( y )11-uc I lx - Yll-,,,• 

Thus F satisfies (3.3.1) and Fi (x0) -1  = I exist and is bounded. 

Let 
CO 

Lx := 	
( 

+ 1)2  (x,ui)ui, 	u (s) = N/2-cos(271-jt) 

with 
CO 

D(L) := {x E L2 [0, 1] : + 1) 4 1(x, 11,3 )I 2  < col. 
j=o 

Then since F' (x 0 ) -1  = I, L-"Fi(x0 ) -1 L" = I so that (3.3.2) holds. Note that 

Ht= {x E L2 [0,1] : 
	1 )4ti( x,  ui)12 < oo},  

j=0 

and a, c1 , c2  in Assumption(A 1 ) are given by a = 1, c1  = c2  = 

Next example is based on an orthogonal linear splines. 
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3.3.1 Orthogonal Linear Splines 

Let x k , k = 0,1,2, ...n be a set of ordered knots and x_ i  < xci  = a, b = xn  < 

are the exterior knots. Then the conventional family {L k }, k = 0,1,2, ... n 

of linear B-splines are defined as 

{

Lk(X) = 
X -Xk-1  

Xk+1 -x  
xk-F1 -Xk 

x E [xk_i,xk], 

x E [xk,xk +1]. 

Note that Lk is continuous with support [xk _ 1 ,x k+1]. Now we shall convert the linear 

splines {Lk } to a basis of orthogonal splines {Q k } k = 0,1, 2, ... n by the relation 

{0 x E [a, x k _ i ], 

Qk(x) = 	'Lk — Lk  .1I, 

Here Qk 

orthogonal splines. 

Let 
Qk  

Pk = 
IIQkII .  

Then {Pk}, k = 0,1, 2, ,n are orthonormal splines. We now approximate any 

continuous function f on [a, b] by {Pk} in the form 
72 

(f,Pk)Pk• 
k=0 

Since C[a,b] is dense in L 2 [a, I], we approximate every f E 1,2 [a , b] in the form 

ErL-0(f ,  Pk) Pk. 

EXAMPLE 3.3.2. Consider the nonlinear Hammerstein equation Tx = y, where 

the operator T : Hu[0,1] 	L 2 [0,1] given by 

T(x)(s) = 	k(s,t)x 2 (t)dt, 	0<s<1, 	 (3.3.6) 

. 171 	n 
=0 with k(s,t) 	

rt--4 oo h 	(k +1)- 2 Pk (s)Pk (t); where Pk (s) is the orthonormal spline 

defined in section 3.1 with x i  = 	= 0, 1, 2, . . ). Then (3.3.6) can be written as 

x E 

0, 	x E [xk, b]. 

is a linear spline with support [xk _ i , x k ], so {Q k } k = 0, 1, 2, . . . , n are 

KF(x)(s) = y(s) 
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where K : L 2 [0,1] —> L2 [0,1] defined by 

Ku(s) = f k(s,t)u(Odt 
	

(3.3.7) 

and F : H" [0,1] —> L2 [0,1] is given by 

	

F(x)(s) = x2 (s). 	 (3.3.8) 

Note that K in (3.3.4) is compact, positive self adjoint with positive eigenvalues (k + 

1) -2  and corresponding eigenvectors Pk (.) for k = 0, 1, 2, ...n. 

Further note that F'(x)h(s) = 2x(s)h(s) and hence 

(x) 	(y)U-. < 2iix 

Thus F satisfies (3.3.1) and F1(x0)-2x01()  exist and is bounded, if x o (s) > A > 

0,es E [0,1]. So we assume that x o (s) > A > 0,Vs E [0, IT Let 

lim 
Lx 

n oo 

n 

(j + 1 ) 2 (x , Pj)Pj, 

with 

D(L) := {x E L2 [0,11 : rt  innoo 	(j + 1) 4 1 (X, Pj)I 2  < 001. 

j=0 

Then since support of Pk is [Xk_i, Xk] and IIF'(x0 ) -1 11 = 1 	< 2x0(.) 	2K we have, 

(L -" (x o ) -1  Lu)(x) = 
lim, \nom lirn 

n --> co 	
(k + 1)-2' 

n —> 00 
k=0 

Pj 	7_7 7_7  
X (x, p3)  

n. 

2_,(k +1)2'i(k + 
—> 00 

k=0 

Pk 
X (X, Pk) (--

2x 
 H Pk) Pk, 
0  

(j + 1) 2n 



Chapter3 	Iterative Regularization methods for ill-posed Hammerstein 	51 

so that 

1 
EL -1'7(x°) 1 Lu )(x )II 2  C 4K2 noo k=0 

1 	2 
< — 114 • 4A2  

I( , Pk) I 2  (3.3.9) 

(3.3.10) 

Thus (3.3.2) holds. Note that 

Ht = {x E L2 [0,1] : n  lim 
	n 

( 	1 ) 41(x, P7)1 < cob 

and a, el , c2  in Assumption(A 1 ) are given by a = cl  = c2  = 1. 

We shall make use of the following lemma, extensively in our analysis. 

• LEMMA 3.3.3. Let 0 < ro < r and x, y E Bro (x0) C IL„. Then 

II (xo)(x — xo) — [F(x) — 	 k° 11x 	xoli-u, 

liFi (x0)(x y) — [F(x) — 	 no ro llx — 

Proof. By fundamental Theorem of Integral Calculus, 

F(x) — F(y) = f 7(y + t(x — y))(x — y)dt, 

SO 

(x 0 )(x — y) — (F(x) — F(y)) = f o  [7 (x0 ) — 	+ t(x — y))](x — y)dt. 

Hence by (3.3.1) 

Ilnxo ) (x — 	— [F(x) — F(Y)1II, 	icollx — Y ll-u f 	— (21, t(x — 
0 

Now since y +t(x — y) E Bro (xo) C H-u, II xo —  (y+t(x - Y))11-u < r0  and Ilxo — (xo + 

t(x — x o ))II, < tr 0  and hence 

11 r(xo )(x — xo) — [F(x) — F(x0)111-u 	4
2°  Ilx xoll-u, 
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1 1F'(x0)(x - y) - [F(x) 	F(Y)1 11-u < norollx - Yll-u• 

This completes the proof. 

We start our error analysis by introducing the following notations: Let 

w := II F( — F(xo) —u 

and for a > 0, 6 > 0, let 

7s,a := 202  koMS) ,(5cx --: 	01(S)w). 

Note that if 
1 

W(s)(5ct u-  + W i (s)b.) < —
20 

min {r, 
OK° 

then 
1-- -y s  

7s,a < 1 and ns,a := 	 ' 	 < r. 
Oko 

THEOREM 3.3.4. Suppose ( 3.3.1),(3.34 and (3.3.11) hold. 

(x n ) defined in ( 3.1.6) converges, and its limit e 5c,,, := limn  

1397,,,(X0) C Br(X0) C 1-1„. Further, 

(3.3.11) 

Then the sequence 

x s  n.a
' 
 s belong to 

	

11x 5  , 	xn5 	II 

	

s 	,,a n s —u (3.3.12) 

where q 	ns , a0no  = 1 - V1-  7s,a. 

Proof. First we prove that x n6 c,,, E Bn,(x 0 ). Suppose x, a s  E 1377s ,,(X0). Then

—  114+1,a,s X011—u = 	 — X0) — 11—u  Ff  (X0) -1 ( F(Xn6  t,a,$) Zaa  ,$)II 

= L—u r/  ( X 0) -1 Lu L—u [Fi  ( X 0)( X m,a,s — x0) — (F(X m6  ,a,$) 

—F ( xo)) + (4 ,s  — F(X0))11I. 

Thus by Lemma 3.3.3 and (3.3.2), 

11? 	- x 11 	_< 71S a I I X 	X 	„ 	011 ?  171+1,0 ,S 	0  2 	' 	m'''s 	° 	Ot,S 	F(xo  )11 	(3 3 13) -u 

< 0C_Cp72 0,  + (s)a(u—a)/(s+a)( 
o1(s)w) 
	

(3.3.14) 

< 71s,a • 	 (3.3.15) 
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The last but one step follows from Theorem 3.2.2. Since x o  E Bns ,„(x0 ), by induction 

a,s x 	E 	(x 0 ) for all n = 1,2,3.... re  

Now we prove that x ns ,a,s  is a Cauchy sequence in. .1377. , . (x 0 ). Observe that 

II — X 71+1,a ,s 	X  r 1,,a,s II —n 11 11— —  ,X5rt,a,s — X 77,8  --1as) 	L uF1  (x0) 1  

x(F(

(

x n,,, ,$ ) — F(x 7,8  _ La,$ ))11 

• II L— uF/(x0)-1L"L—u[Ft(x0)(xn ,a,s — 
6 

X  77,8  —1,a,$) 

—(F(X 6n,a,$) 	F(X 571,-1,0,,$))] II 

< 011F/ (X0)(Xn,a,s 	X  n — La ,$) 

—(F(X n"s ) — F(Xn8 —1,a ,$))II —u 

ii ,r5 • 60 778,a 	 "Jrz-1,ce,sil —u 

=_- 

 

q II 7.5 —n,c) .s 	 —u (3.3.16) 

   

where q = Oko7/.5,a < 1 — 	— -ys.a  < 1. Thus xn(5 as  is a Cauchy sequence in 3779  ,,,(X0) 

and hence converges, and its limit x 5a , 	 Xn6 a,s  E Eins , a (x0) C Br(xo) C 11-y• 

Now by (3.3.16), we have 

II 1IX ce,s — X 7-1, 	—u 

• 	

liM II i,a,s 	
x6 

 n,a,s 11 —u 

• E ris,a q 

3=n 

• s,a qn  

1 — q 

This completes the proof. 

(3.3.17) 

(3.3.18) 

(3.3.19) 

THEOREM 3.3.5. Suppose ( 3.3.1),(3.3.2) and (3.3.11) hold. If, in addition, 

Onor < 1, then 

II x — xa , s II 	< 	 1 — Ok or 

Proof. Observe that 

	

— xa , s II= lim 	— xr,,8 	II -U • -U 	71_400  
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Now since, 

Xn+1,a.s 	ll—u = 11 16  II 	i 6  — — FI(X0) -1(F(X 	,,,(5 )11 

	

n,a,s 	 n,a,s. 	"-a,s111 — u 

= 	L —u  Ff  (X0) -1  Lu u  {Fi  (X0) ( X8n,a,s 

—(F (X n6  ,a,$) 	Za8  ,$)}11 

= IIL-u F'(x0) -1 LuL -ufF1 (xo)(xn°  "s 

- (F(xs„,a, $ ) — FM) — (FM — z a5  ,j} II. 

Thus by Lemma 3.3.3 and (3.3.2), 

	

— 	-- u 	k Or lI X8 	 + 	F 	8 11 — Z  n,a,s 	—u 	 —u • 

In particular, 

	

11x 6a,s — 	< OnorlIxa,s — 11—u + all 	— 4,s11—u. 

so that the result follows. 

Combining the estimates in Theorem 3.3.4 and Theorem 3.3.5 we obtain the fol-

lowing. 

THEOREM 3.3.6. Suppose ( 3.3.1),(3.3.2) and (3.3.11) hold. Assume, in addition, 

that Okor < 1. Then 

11±' — 	< 	II F 	Z8 ,s —u + s qn  a 
1 — ,(3nor 	 1 — q 

In view of the estimate in the above theorem, it is desirable to find out the nature 

of the quantity liF(i) — z a6  , s 11,. But by (3.2.8), and triangle inequality we have 

11 FM 	 — 	Lu + //)(s)a ( "- a) / ( s+0 6. 	(3.3.20) 

Further by (3.2.10) for 0 <u+t<s+a, if II FM — F(xo)Ilt < E, for some constant 

E > 0, we have the following. 

THEOREM 3.3.7. If II F(±`) — F(xo)Ilt < E for 0 < u + t < s + a, then IIF — 

za,s1I-u —* 0 as a —> 0. 
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3.4 Error Bounds and Parameter Choice in Hilbert 

Scales 

We start our study with the following observation: by Theorem 3.3.7 if IIF(i) — 

F(x0 )11 t  < E for some 0 <u+t<s+ a, then IlF(i) — za,s11-u —> 0 as a —> 0. So we 

assume that 

za,s11, 5- (Ps,a(a) 
	

(3.4.1) 

for some positive function co s , a  defined on (0, II K s Ill such that ).__,"no cos .a (A) = 0. We fur-

ther assume that cp s , a  is monotonically increasing. Note that (p s , a (A) cp(s,t)EAliV 

satisfies the above assumptions. Again by (3.4.1), (3.2.8) and triangle inequality, we 

have 

IIF(i) - 	< cos ,a  ( a) + 	s ) a (u—a)/ (s+a) 	 (3.4.2) 

Thus we have the following theorem. 

THEOREM 3.4.1. Under the assumptions of Theorem 3.3.4 and 6944 

, 
1_ onor VPs,a(a) + 0(s)a(u-a)/(s+a)s) 	778,aqn  

1 q 

- Again the error estimate (p s , a(a) + 0(s) ce(u a)/ (s+a) in (3.4.2) attains minimum 

for the choice a := ao  which satisfies (ps , a (a) = o(s)cceu-01(s+a)(5. Clearly acs 

cos,a)s,a)-1 (8), where 

A(a-.)I(s+a) 
A s , a (A) = 	

0(s) 	
, 	0 < A 

and in this case 

II F(x) — za 	 s,aAs,a) 1  ( 6)) , 

which has at least optimal order with respect to (5 (See [50]). 

In view of the above observation, Theorem 3.4.1 leads to the following. 

(3.4.4) 

Ilx - x2,c„ .91 1_u (3.4.3) 

THEOREM 3.4.2. Let ) s ,,,(A) -=- A( ' ,,:)( 18 ()8±')  , for 0 < A 5_ Ks  assumptions in 

Theorem 3.4.1 and (3.4.1) are satisfied. For S > 0, let ce 8  = 	 If 
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cps , a (ao) + '41 (s)w < 	 and no  := min{n : gn < A9,.(a5) }, then 

II — xa%,„6 11 -.= o ( co s ,a (cos,.A .9 ,0 -1 (6)) ). 

3.5 Adaptive Scheme and Stopping Rule 

As in any regularization strategy the next important point under consideration is the 

choice of the regularization parameter a := as and stopping rule for the iteration in 

(3.3.1), independent of the source function cp,,a , but may depend on the data (6, y 6 ). 

For linear ill-posed problems in Hilbert scales, there exist many such a posteriori 

parameter choice strategies (See [16], [17]). 

In this chapter we shall modify the adaptive scheme considered by Pereverzev and 

Schock in [50], to suit the Hilbert scale set up. 

Let us introduce the following notations: 

as := (cps,aAs,a) -1 ( 6)• 	 (3.5.1) 

i E {0, 1, 2, • • • , N} and ai  = piaci  where pt = p (s+a)/(a—u) p > 1 and a0  = (0(s)6)(s+a)/(a-u). 

Let 

and 

6 
1:= max{i : yos , a (ai ) < 	 (3.5.2) 

	

k := max{i :1125 	 — 
	46 	

= 0,1,2, • • • 	 (3.5.3) 

Now we have the following. 

THEOREM 3.5.1. Let I be as in (3.5.2), k be as in (3.5.3), As , a  be as in (9•44) 

and z6 k s  be as in (3.2.6) with a = ak. Thenl< k; and 

	

zas 	(2 + p 4p 	i )Pws,a(((Ps,aAs,a) -1 ( 6)). 
	(3.5.4) 

Proof To see that 1 < k, it is enough to show that, for i = 1, 2, • , N, 

46 
cOs,a(ai) < 	 - 	 z 	<  	V j = 0,1, • • • ,i. 

Asa(ai) 	,,s 	
aj,s —u — As,a(ai)' 
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For j < i, by (3.4.2) 

114i  s 	z.a i ,s11—u < 	F(±‘)ii—u+11F(±‘) 

s,a(ai) 	\+ (i's a(%) + 	/ 

28 	26 

A s , a(ai) 	A s , a(aj) 

48 

Asa(a3 ) •  

This proves the relation 1 < k. Now by the relation A s , a (cei+m ) = pmA s .a (oz i ) and by 

using triangle inequality successively, we obtain 

k 

zL,A ,  5_ ilF(i) - 4,11-u+ E 
=1+1 

k 

• IIF 	— zaj  
s,a(ai-1) i=1+1  

k-1-1 
46 

• II F(x) 	z« I ,sI1—u+ > 	, 
A s , a(al ) Pm  

	

4 	6  1 A s ,a  

	

p 	(cei). 

Therefore by (3.4.2) we have 

IIF(±) -,z 	II, 	(ps,a( ai) + , 	 ak,s 	 ( cl- 	1  1 ( ) 
As,a,,a0 	p- , -s,akao 

4p 	6  
< (2 + 

p — 1
) 

As,a(cti) 

< (2 + 
p 
	)PSos

' 
 a(( (Ps aAs

" 
a) 1  ( 6 )) - 

\ 	—

4p

1  

The last step follows from the inequality aj  < ai±i and As,a(as) < As,a(cei+i) 

PA,,a(a/)• 

THEOREM 3.5.2. Let x sak , be as in Theorem 3.3.4 with a 	A s , c, and za8  k , be 

as in Theorem 3.5.1 and the assumptions ( 3.4.1) hold. Let k be as in (3.5.3). Then 

4 	, 
1 — ,C3n o r

(2 	
p —1 )1Aos 'a(((PsaAs

'
a) 1 (8)) • (3.5.5) 

46 

• HF(i) - 4,811-u+ 

4p 	6 

Proof. The result follows from Theorem 3.3.5, Theorem 3.5.1. 



Chapter3 	Iterative Regularization methods for ill-posed Hammerstein 	 58 

3.5.1 Stopping Rule 

Note that if ao  = (0( s)6)(s+a)/(a-u),  a  = pas+a)/(a-uw ao  
3 	 for p > 1 and j 

1,2,3, • • , N and k := max{i : liza6  ,,s 	 4P- 	= 0,1,2, • • 	then 

11) (' 5 	(a—u)/(s+a) = P  • 

Thus the condition (3.3.11) takes the form 

pk 

oi(s)w  < 2ro  

Further if we assume that 

r < 213(1 + Oi (s)w), 

then p > 1 and (3.3.11) holds. 

1 
- + Vh(s)w < 

THEOREM 3.5.3. Assume that 2001(s)b.; < r < min{20(1+01(s)w), 1/1310l, P > 

2/3/(r-2,4 1 (s)w). Let act  = (1P(S)8) (8+a) / (a—u) , 	= p(( s+a) / ( a-uWao  for p > 1 and 

1,2,3,• • • , N and k := max{i : Ilz as 	zas 	< 4p , j = 0, 1, 2, • • • , 	Then 

- 

	

II —u C [ 1 	_ 13)3kor  (2 + p 4P 	1949 s,a((S0  s . a A s , a) -1 (8)). 	(3.5.6) 

Further 

	

7s,a,k 	202 k0(01(s ) w + l/pk ) < 1, 

and if 

1 
nk min{n q: 5- 

with qk := 1 - /1  - 7s,a,k, then 

11± — X6nk,ak,s 	= 0  (CPs,a (((198,aAs,a) —1 	. 

Proof. The result follows from Theorem 3.4.1, Theorem 3.5.2 and the triangle in-

equality, 

II 	— 
1. 716  k,cek,s11 — u < 	ce6  k,s11—u 	II X ak,s 	X nk,ak,s11 — u - 

	 (3.5.7) 



Chapter 4 

Iterative Regularization Methods 
for Ill-posed Hammerstein Type 
Operator Equation with Monotone 
Nonlinear Part 

In this chapter we consider a procedure for solving an ill-posed Hammerstein type 

operator equation KF(x) = y, where F is a nonlinear monotone operator, by solv-

ing the linear equation Kz = y first for z and then solving the nonlinear equation 

F(x) = z. Convergence analysis is carried out by means of suitably constructed ma-

jorizing sequences. The derived error estimate using an adaptive method proposed 

by Perverzev and Schock [50] in relation to the noise level and a stopping rule based 

on the majorizing sequences are shown to be of optimal order with respect to certain 

assumptions on F(x), where X is the solution of KF(x) = y. 

4.1 Introduction 

In this chapter we consider the problem of approximately solving a nonlinear ill-

posed operator equation of the Hammerstein type with a monotone nonlinear part. 

Recall that a Hammerstein type operator (see [13, 14, 15, 20]) is an operator of the 

form KF, where F : D(F) C X 1-4 Z is nonlinear and K : Z H Y is a bounded 

linear operator and X, Y, Z are taken to be real Hilbert spaces in this chapter. We 

are interested in the case when Z = X and F is a monotone operator (cf. [58]). 

59 
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i.e.,F : D(F) C X 1-4 X satisfies 

(F(x i ) — F(x2 ), x l  — x 2 ) > 0, 	Vxi , x2  E D(F). 

So we consider an equation of form 

KF(x) = y 	 (4.1.1) 

where F : D(F) c X H X is monotone and K : X H Y is linear. It is assumed that 

(4.1.1) has a solution X e D(F) satisfying 

IIX — xo ll = minfilx — x o ll : KF(x) = y, x E D(F)}. 	(4.1.2) 

We assume throughout that y 5  E Y are the available noisy data with 

IlY 	y6 11 
	

(4.1.3) 

and Observe that (cf. [20]) the solution "X of (4.1.1) can be obtained by first solving 

the linear equation 

K z = y 

for z and then solving the nonlinear equation 

F(x) = z. 

(4.1.4) 

(4.1.5) 

For the treatment of nonlinear ill-posed problems the standard regularization 

method is the method of Tikhonov regularization. But if the nonlinear operator 

is monotone then a simpler regularization strategy available is the Lavrentiev regu-

larization. Note that K F need not be monotone even if F is monotone. So in the 

straight forward approach one has to consider Tihkonov regularization method for 

approximately solving (4.1.1). 

What we show in this chapter is that for the special case when K is linear and F is 

monotone, by splitting the equation (4.1.1) into (4.1.4) and (4.1.5), one can simplify 

the procedure by specifying a regularization strategy for linear part (4.1.4) and an 

iterative method for nonlinear part (4.1.5). More precisely , for fixed a > 0, 6 > 0 we 

consider the regularized solution of (4.1.4) with y 5  in place of y as 

zas  = (K ceI) —i  y 6 	 (4.1.6) 
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if the operator K in (4.1.4) is positive self adjoint and X = Y, otherwise we consider 

za6  = (K* K aI) -1 K*V. 	 (4.1.7) 

Note that (4.1.6) is the simplified or Lavrentiev regularization (see [28]) of the equa-

tion (4.1.4) and (4.1.7) is the Tikhonov regularization (see [10, 13, 23, 18, 54, 55]) of 

(4.1.4). The regularization parameter is chosen according to an adaptive method pro-

posed by Pereverzev and Schock in [50]. Also one can see that the iterative method 

we considered in section 3 and section 4 for the nonlinear equation (4.1.5) do not 

involve any regularization parameter explicitly. 

In [20], it is assumed that the bounded inverse of F'(xo ) exist and considered the 

sequence 

Xn5  +1,a  = Xn6  — Ff  (X0) -1  (F(X 6 	,Z6  n,a) — a) (4.1.8) 

with a 	 a x60 = xo  and proved that (x na)  converges linearly to the solution x 6  of 

F(x) = ,z0,8 	 (4.1.9) 

In chapter 2, we considered the sequence 	defined iteratively as 

1 
X6n+1,a 	Xn6 	

(5 
— 	 (F(xǹ 5 	— z a(5 ), (4.1.10) 

with xg a  = xo  and proved that (x 6na) converges quadratically to the solution x 6a  of 

(4.1.9) under the assumption that the bounded inverse of F(x) exist in a neighbor-

hood of xo . For the special case when F is monotone we can do away with the above 

requirement of invertibility of F' even at x0. 

Recall that a sequence (x n ) is X with lim x n  = x* is said to converge quadratically, 

if there exists positive number M, not necessarily less than 1, such that for all n 

sufficiently large 

— x * II 5- Milxn 	x * II 2  

If the sequence (x 77 ) has the property that 

(4.1.11) 

I I xn+i 	x * II 	qiixn 	x* 	0 < q <1 
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then (xn) is said to be linearly convergent. For an extensive discussion of convergence 

rate, see Ortega and Rheinboldt [49]. 

Note that the ill-posedness of equation (4.1.1) in [20] and in chapter 2 is due to 

the ill-posedness of the linear equation (4.1.4). In the present chapter we assume 

that (4.1.1) is ill-posed in both the linear part (4.1.4) and the nonlinear part (4.1.5). 

Using the monotonicity of F, we carry out the convergence analysis by means of 

suitably constructed majorizing sequences, deviating from the methods used in [20] 

and chapter 2. An advantage of this approach is that the majorizing sequence gives 

an a priori error estimate which can be used to determine the number of iterations 

needed to achieve a prescribed solution accuracy before actual computation takes 

place. 

Organization of this chapter is as follows. We collected some preparatory results 

in section 2. Convergence analysis of an iterated sequence converging quadratically 

is given in section 3 and in section 4 we consider another sequence which converges 

linearly. In section 5 we give error analysis and derive optimal order error bounds. 

Finally in section 6 we consider an algorithm for implementing method considered in 

this chapter. 

4.2 Preparatory Results 

Throughout this chapter we assume that the operator F satisfies the following as-

sumptions. 

Assumption 4.2.1. There exists r > 0 such that Br (x 0) C D(F) and F is Frechet 

differentiable at all x E Br(xo)• 

Assumption 4.2.2. There exists a constant k0  > 0 such that for every x, u E Br (x0) 

and v E X, there exists an element 4)(x,u,v) E X satisfying 

[r(x)— F'(u)]v = F'(1)(x,u,v),114)(x,u,v)11 	kollv1111x —ull. 
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The next assumption on source condition is based on a source function cp and a 

property of the source function (p. We will be using this assumption to obtain an error 

estimate for IlF(') — 411. 

Assumption 4.2.3. There exists a continuous, strictly monotonically increasing 

function yo : (0, a] 	(0, oo) with a _> IIK*KII satisfying; 

•
Jim 

),,oco(A) = 

• 

sup aco(A) 
< cv,ep(a), 

A > 0 A + — 
Va E (0, a]. 

• there exists v E X such that 

F(i) = cp(K* K)v 	 (4.2.1) 

Let 

za  := (K* K + ckI)-1  K*y. 

Hereafter we consider za as in (4.1.7). We observe that 

— 411 	liF (c0 	+ ilza 	zd1 

II F 	zaii + 
•\/v 

and 

F(i) — z a  = F(') — (K* K + 	K* K F(x) 

= [1 (K*K + ca)-1  K*K1P(i) 

= ce(K* K + al)-1  

So by Assumption 4.2.3, 

— zall 5_ Il vI le, (p ( a)• 

Thus we have the following theorem. 

(4.2.2) 

(4.2.3) 

(4.2.4) 
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THEOREM 4.2.1. Let z,,s be as in (4.1.7) and the Assumption 4.2.3 holds. Then 

z acA 	max{lIvIle,p, 1 }(w(a).+ 	)- 
VFB 

(4.2.5) 

4.2.1 Apriori Choice of the Parameter 

Note that the estimate yo(a) + -A- in (4.2.5) attains minimum for the choice a := as 

which satisfies co(as) = ±i .  Let 0(A) := A \Ap-1 (A)0 < A < 11K11 2 . Then we have 

8 = N/Co(as) = 0(C605)), and 

as = W-1 (0 1 ( 6)). 

So Theorem 4.2.1 and the above observation lead to the following. 

(4.2.6) 

THEOREM 4.2.2. Let ON := AVco -1 (A), 0 < A < 11K11 2  and the assumptions 

of Theorem 4.2.1 are satisfied. For 8 > 0, let as  = co'(I,b-1 (6)). Then 

— 4 11 	0(0-1 ( 6 ))- 

4.2.2 An Adaptive Choice of the Parameter 

The error estimate in the above Theorem has optimal order with respect to 8. As we 

have stated in the previous chapters, an a priori parameter choice (4.2.6) cannot be 

used in practice since the smoothness properties of the unknown solution ± reflected 

in the function co are generally unknown. 

In this chapter also, we consider the adaptive method for selecting the parameter 

a in za6 . 

Let i E {0,1,2, 	, N} and ai  = /Pao  where it > 1 and a0  = 82 . Let 

	

:= max{i : cp(ai ) < 
 b 

 } 
	

(4.2.7) 

and 

k := max{i : 11z0,6 i  — za6 j 11 < 	
46

,.i = 0 , 1 , 2 ,• • • ,i}. 	(4.2.8) 
3 V . 

Then analogous to the proof of Theorem 2.4.3 one can prove the following Theorem. 
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THEOREM 4.2.3. Let l be as in (4.2.7), k be as in (4.2.8) and 4 5,, k  be as in (4.1.7) 

with a = ak . Then 1 < k and 

IIF(i) - 4,11 	(2 +;11-1 1 )/10 -1 (J). 

4.3 Quadratic Convergence 

Now consider the nonlinear equation (4.1.5) with z a5 k  in place of z. It can be seen as 

in [58], Theorem 1.1, that for monotone operator F, the equation 

F(x) + (x — x 0 ) = z,„̀ k . 	 (4.3.1) 

has a unique solution x 6ak . It is interesting to note that the camouflaged presence 

of regularization parameter in ak , in (4.3.1) relieves us of the labour of Lavrentiev 

regularization in the nonlinear part. 

We propose the following iterative method for computing the solution xa k . For 

n > 0, let 

Xn+1,ak = x
5 
nak — (F1 (Xna ak ) 	(F (X n5 ak) — Za 

6 k  _i_ 
(
xn «k — X0)), (4.3.2) 

where x o  is a starting point of the iteration. The main goal of this section is to 

provide sufficient conditions for the quadratic convergence of method (4.3.2) to x 8,,k 

 and obtain an error estimate for Ilxak  — H. We use a majorizing sequence for 

proving our results. Recall (see [2], Definition 1.3.11) that a nonnegative sequence 

(tn ) is said to be a majorizing sequence of a sequence (x n) in X if 

11Xn+1 Xn11 C tn+1 	tn )  Vn > 0. 

During the convergence analysis we will be using the following Lemma on majoriza-

tion, which is a reformulation of Lemma 1.3.12 in [2]. 

LEMMA 4.3.1. Let (t n ) be a majorizing sequence for (x n) in X. If , i t imco tn  = t*, 

then x* = lim x„ exists and 

t* — tn ,vn, > o. (4.3.3) 
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The next Lemma on majorizing sequence is used to prove the convergence of the 

method (4.3.2). 

LEMMA 4.3.2. Assume there exist nonnegative numbers q e [0,1) and no , n  non- 

negative such that for all n > 0, 

31c0 q
n
ri < q. 

2 	— 

Then the iteration (tn ), n > 0, given by to = 0, tl 	ri) 

	

4 	3100 ( 4 	\ 2 

	

tn.4-1 = 	--r- 

(4.3.4) 

(4.3.5) 

is increasing, bounded above by t** :=and converges to some t* such that 0 < 1-q   

t* < 	Moreover, for n > 0; 1-g 

0 < 4,1_ 1  — < q(tn — < qn 77,  (4.3.6) 

and 

 qn  t*  — tn  < 
1 — q 

(4.3.7) 

Proof. Since the result holds for 7/ = 0, ko  = 0 or q = 0, we assume that /c o  0, ri 0 

and q 0. Observe that ti + 1 — ti  > 0 for all i > 0. If 

32k0 (t,±1 — ti) C  q, (4.3.8) 

then the estimate (4.3.7) follows from (4.3.5). So we shall prove (4.3.8) by induction 

on i > 0. 

For i = 0, (4.3.8) holds by (4.3.4). Suppose (4.3.8) holds for all i < k for some k. 

Then by (4.3.5) we have 

30 " 
	 3ko 

2 
V, /, — tk+1) 	(-2 (tk+i — tk)) 2  C q2  < q. 
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Thus by induction (4.3.8) holds for all i > 0. Also, for k > 0, 

	

tk +i < tk + q(tk . 
— tk-1) < • • • < 17 + q77 	... 	qk 77  

_ qk+i 	
77  	 < 

1 — q
. 

1 — q 

Hence the sequence (t n ), n > 0 is bounded above by —1- and is nondecreasing. So 1- 

it converges to some t* < -e-4 . Further, 

lim 	 lim 
t* — t„ = . 	

00 
tn±i 	. to < 	

00 

1 

qn  (tnmy  — tri+3 ) < 	 
1 — q 

This completes the proof of the lemma. 

To prove the convergence of the sequence (x n',,, k ) defined in (4.3.2) we introduce 

the following notations: 

Let R(x) P(x) + I and 

G(x) := x — R(x) -1 [F(x) — za k  + (x x0)]. 
	 (4.3.9) 

Note that with the above notation G(x n6 „,) = 4,44,„,. Hereafter we assume that 

iixo 	< p and • 

k0 
 Pz 

n 	 411, 

2 
+ P + (2  + 	)14-1 (d) 

— 1 
q 

min{r(1 — q), 
2

c0
} 	(4.3.10) 

THEOREM 4.3.3. Let 17 be as in (4.3.10). Under the assumption 4.2.2 and the 

assumptions in the Lemma 4.3.2 the sequence (4,,, k ) defined in (4.3.2) is well defined 

and x(5n ak  E Bt. (x 0 ) for all n > 0. Further (Xn ak)  is a Cauchy sequence in B t. (x 0 ) 

and hence converges to x( 5,,k  E Bt. (x 0 ) C Bt.. (x 0) and F(xL) = z k  + (x0  — XL). a 

Moreover, the following estimates hold for all n > 0, 

	

6— X°  II < 	— t X it+1,0 k 	rt,a k  — 	to (4.3.11) 

Xak I < i *  — in < 	q
1—

n71
q' 
	 (4.3.12) 
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and 

1,5 	 /co 	2 
• < 	IlXn — 2 	,ak 	Xak II (4.3.13) 

Proof. First we shall prove that 

3k0 	a 	 2—  Illan+1,ak 	 11 :13nak 	Xn-1,ak II • 
	 (4.3.14) 

With G as in (4.3.9), we have for u, v E Bt.(xo), 

G (u) — G (v) = u — v — R(u) -1 [F (u) — za k + (u — x 0 )] 

+ R(v) -1 [F (v) — za
k + (v — x o)] 

u — v — [R(u) -1  — R(v) -1 ] (F (v) — za k  + (v — x0)) 

— R(u) -  (F (u) — F(v) + (u — v)) 

R(u) -1  [F' (u)(u — v) — (F(u) — F(v)] 

— R(u) -1 [F' (v) — (u)] R(v) -1  (F (v) — 	(v — x o)) 

R(u) -1  [F' (u)(u — v) — (F(u) — F(v))] 

+ R(u) -1 [F' (v) — F1  (u)] (v — G (v)) 

= R(u) -1 [F' (u)(u — v) + I (F (u + t(v — u)) (v — u)dt] 

+ R(u) -1 [F' (v) — (u)] (v — G (v)) 

1. 
1 

R(u) -1 	(u + t(v — u)) — F'(u))(v — u)dt] 

+ R(u) -1 [F' (v) — (u)] (v — G (v)) 

The last but one step follows from the Fundamental Theorem of Integral Calculus. 

So by the Assumption 4.2.2 and the estimate 11/1(u) -1 F/ (u)ii < 1, we have 

11G(u) — G(v)11 < 211u+ v11 2  + Koliu 	v1111v 	(v) II. 	(4.3.15) 

Now taking u = xr,(5 ,„, and v = 3; 726 _ 1 ,,, k  in (4.3.15), we obtain (4.3.14). 

Next we shall prove that the sequence (t„) defined in Lemma 4.3.2 is a majorizing 

sequence of the sequence (x6„,,,,). 
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Note that 

II 4ak  — xo ll = IIR(x0) -1 (F(x0) — 43 11 

< IIR (x 0 ) -1 (F(x0) — 	+ 	- 4,)11 

< liR(x0) -1 (F(x0) - 	- F(xo)(xo - ±) 

+F(xo)(xo - + 	- zL)II 

< iiR(x0) -1 (F(x0) - 	- F(xo))(xo 	)11 

+ II R(xo) -1  (x0)(xo - 'i)11 + 11R(x0) -1 [F 	z« k ]II 

< liR(xo) -1  f 	+ t(xo - 	- F'(xo)](xo - ±‘)dtil 

+ II (x 0 - 	
4,11, 

011 + ( 2  + p — 1 )P0-  (6) 

< IIR(x0) -1 F'(x0) /0  (1)(+ t(x o  - ±‘),x0,xo i)dt11 

+11xo - 	+ (2  + p - 1 )114-1(6) 

ko 	 4p  
< 2 11xo i11 2  + lixo - ±‘11+ ( 2  + p - 1 )i-4-10) 

= „ 1  - 0. - < I (4.3.16) 

Assume that 114+1,.k x ; ak II < ti+1 ti for all i < k for some k. Then by (4.3.14), 

1,k+2,ak 	
3/C0 

11xk+i 	
3k0 (4 

k+1 	
4 k )2 	, 

1''' 	
< 
— 2 	

- 

xk« 
2 

< ,cek 	6 	 kb 	 b) = tk+2 	tk-I-1• k 11 	2 

Thus by induction 1145 ,±ipk  4.,ak 11 < tn+1 to  for all 77, > 0 and hence (t,i),n > 0 

is a majorizing sequence of the sequence (x 7,5 , ,, k ). So by Lemma 4.3.1 (45 ak ), n > 0 is 

a Cauchy sequence and converges to some XL E Bt- (x0 ) C Bt.. (x0 ) and 

q71 

Ilxaak 	< t* - tn  < 	 
1 

77 

 g' 

To prove (4.3.13), we observe that G(x 6c,k ) = x 6ak , so (4.3.13) follows from (4.3.15), by 

	

taking u = x, and v = XL in (4.3.15). Now by letting n 	oo in (4.3.1) we obtainak  

(at ) = za% + (x0 - k ). This completes the proof of the Theorem. 

REMARK 4.3.4. Note that (4.3.13) implies (x( 57,, c, k ) converges quadratically to xL. 
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4.4 Linear Convergence 

In this section, we consider the sequence ("X ns  ) defined iteratively by 

:= xn — (Fi(x0)+/) -1 (F(ins) — 4k + ( in5  — xo)), (4.4.1) 

where x o  is a starting point of the iteration. We prove that the sequence (i6) converge 

to the unique solution x 6,„, of (4.3.1) and obtain an error estimate for 11x 6  — -X8  The ak 	n ' 

proof of the following lemma is analogous to the proof of Lemma 4.3.2. 

LEMMA 4.4.1. Assuine there exist r E [0, 1) and nonnegative numbers no , n, a such 

that 

(1 —r) 77<r.  

Then the sequence (t n,) defined by 

k°  — to + ( 1 	i
)

77(in in-1) 

(4.4.2) 

(4.4.3) 

is increasing, bounded above by i** := 	and converges to some i* such that 0 < 

< 7 . Moreover, for n > 0; 

0 < in+1 — to < f(in — [n-1) < (4.4.4) 

and 

* t — t o  < 	 
1 	r rl (4.4.5) 

We shall assume that 

k0 2 
—

2 

P 	P ± (2  ± 41u
1 
 )A0

_1
( 8) 	77 

— 
min{r(1 —

ko 
	}. 	(4.4.6) 

Let 

.1 (x0 ) := 	(x 0 ) + I 
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and 

(x) := x - R(x 0 ) -1 [F(x) - za
k + (x - xo)1• 	 (4.4.7) 

Note that with the above notation, a(in) = i 6n+i and Ili?(x0 ) -1 11 5_ 1. 

THEOREM 4.4.2. Suppose Assumptions .4.2.1 and 4.2.2 hold. Let the assumptions 

in Lemma 4.4.1 are satisfied with n  as in (4.4.6). Then the sequence (in) defined in 

(4.4. 1) is well defined and i ms  E BE. (x0) for all n > 0. Further (in) is a Cauchy 

sequence in Bi.(x0) and hence converges to x 6c,k  E Bi.(xo) C Bi*.(xo) and F(xL) + 

(x 6c  - x0) =- zce°  

Moreover, the following estimates hold for all n > 0, 

14+1 — II < in+1 — to (4.4.8) 

and 

iznn  
Ilan — X a8 k < 	to < 1 — r 

(4.4.9) 

Proof. 

Let G be as in (4.4.7). Then for u, v E BE. (x0), 

G(u) — a(v) = u — v — R(x0) -1 [F(u) - z cc k  + (u - x0 )] 

+R(x0 ) -1 [F(v) - .zà 5  + (v - x0 )1 

- (x 0 ) -1 [Mx 0 )(u - v) - (F(u) - F(v))] + .h(x 0 ) -1 (v - u) 

- Mx 0 )'[F' (x0)(u - v) - (F(u) - F(v)) + (u - v)] 

+R(x0 ) -1 (v - u) 

- P-,(x 0)'[.Fi (x 0)(u - v) - (F(u) - F(v))] 

Thus by Assumption 4.2.2 we have 

110(u) — 0(011 5_ 	— v II. 

The rest of the proof is analogous to the proof of Theorem 4.3.3. 

(4.4.10) 
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REMARK 4.4.3. Now by taking u = xac,, k  and v = .±- 72 -1 in (4.4.10), we obtain linear 

convergence of 	to x`5„,. 

REMARK 4.4.4. For the remainder of the chapter we shall consider only the 

quadratically convergent sequence (xn6  ,„,) defined in (4.3.2) for detailed analysis. The 

results verbatim hold good in the case of linearly convergent sequence ( - 7,6. ) defined in 

(4.4.1). 

4.5 Error Bounds Under Source Conditions 

The main objective of this section is to obtain an error estimate for 11x 7,6 ,ak  —x under 

the assumption 

iixo 	c1 
	

(4.5.1) 

for some constant c and source condition (4.2.1) on F(i). Note that F(x6„k ) + (x6a, 

—x0 ) = zc,6 k . So that F(x6ak )— F ("X) (xL — x0) = za6  F (x) . Therefore by monotonicity 

of F, by taking inner product with 4,, — :1; we obtain the following: 

THEOREM 4.5.1. Under the assumption 4.2.2, 

5_ 	+ iixo 

Combining the estimates in Theorem 4.2.1 Theorem 4.3.3, Theorem 4.5.1, (4.5.1) 

and the relations µk =  1  = µ 	and 0:75 < Vai+i = pvai  we haveµ < 

= 	 1 	 6 	k _11  ,0 -1 (6), so 4k —1-1 as 	— 	 we obtain the following. 

THEOREM 4.5.2. Let x( 5,ak  be the unique solution of (4.3.1) and xn8  „a, be as in 

(4.3.2). Let the assumptions in Theorem 4.2.3, Theorem 4.3.3, and Theorem 4.5.1 

be satisfied. Then we have 

— 4 	1q 7171q  + 0(0-1 (d)). (4.5.2) 11 X 6  n,cek 
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4.5.1 Stopping Index 

Let 

nk  min{n qn 	
P' 
	 (4.5.3) 

Then we have the following 

THEOREM 4.5.3. Let x 5ak  be the unique solution of (4.3.1) and x na  ,ak  be as in 

(4.3.2). Let the assumptions in Theorem 4.2.1, Assumption 4.2.1, Assumption 4.2.2 

and Assumption 4.2.3 be satisfied. Let n k  be as in (4.5.3). Then we have 

x'7Lk 4k -±II = 0 (0 -1 (b)). 	 (4.5.4) 

4.6 Implementation of Adaptive Choice Rule 

The main goal of this section is to provide a starting point for the iteration approx- 

imating the unique solution x(5,„ of (4.3.1) and then to provide an algorithm for the 

determination of a parameter fulfilling the balancing principle (4.2.8). Hereafter we 

assume without loss of generality that ko  < IT)  (if not, replace F by cF where c < 

For i, j E 	 ,./V}, we have 

1 
4/con ) 

za, —za . 

(cei  — cx,)(K* K + ce,I) -1 (K* K + 3 I) -1  K* y 8  

The implementation of our method involves the following steps: 

Step I 

• i=1 

• Solve for wi  : (K* K + oeinw i  = K*y6  

• Solve for zi  : (K*K + 	• = (ai  — ai )wi , j < 

• If 
	

4 	take k 	— 1. 

• Otherwise, repeat with i + 1 in place of i. 
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Step II 

• Choose q < 1. 

• Choose xo  E D(F) such that 11x0 — xII < µkfor some constant c such that 

2 '24c + µk+  (2 + -1a-)/20 — ' ( 8) < 

< min{r(1 — q), 

Step III 

• n = 1 

• If q72  < , then take n k  := n 

• Otherwise , repeat with n + 1 in place of n 

Step IV 

• Solve xl,ak • (F 1 (34_ k ) + /)(xl ak  — 	= 	— w k  + 	— xo 

 for j = 1,2, • • • , nk. 



Chapter 5 

Concluding Remarks 

In this thesis we focussed our attention exclusively on some iterative regularization 

methods for solving nonlinear ill-posed Hammerstein-type operator equation 

KF(x) = y, 	 (5.0.1) 

where F : D(F) C X —> Z is a nonlinear operator and K : Z 	Y is a bounded 

linear operator where X, Y, Z are Hilbert spaces. These type of methods for abstract 

Hammerstein operator equations were first considered by George in [14] , [15] for 

obtaining approximations for an x o-minimal norm solution of (5.0.1). Recall that the 

solution x of (5.0.1) is called an x o-minimal norm solution of (5.0.1) if 

Ilx — xoll = min{ Ilx — xoll KF(x) = y, x E D(F)}. 
	

( 5.0.2) 

Later in [20], George and Nair considered an iterative method for obtaining a stable 

approximate solution for a modified x o-minimal norm solution of (5.0.1) i.e., solution 

"± of (5.0.1) satisfies 

— F(xo)II = minflIF(x) — F(xo)II KF(x) = y, x E D(F)}. 
	(5.0.3) 

In chapter 2 we proposed an iterative method for obtaining stable approximate 

solution for (5.0.1) which guarantees quadratic convergence compared to the linear 

convergence obtained in [20]. We assume that solution x of (5.0.1) satisfies (5.0.3). 

The procedure involves, with the available data y a  in place of the exact data y, solving 

the equation 

(K*K + ceI)4 = K* (y 8  — KF(x o )) 

75 
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and finding the fixed point of the function 

G(x) = x — (x) -1 (F(x) — F(xo) — z!) 

in an iterative manner. It is assumed, here, that the Frechet derivative F'(.) of F has 

continuous inverse in a neighborhood of some initial guess x o  of the actual solution. 

For choosing the regularization parameter a and the stopping index for the iteration, 

we made use of the adaptive method suggested in [50]. 

In chapter 3, we take X = Y = Z = H and study the procedure considered 

in [20] in the setting of Hilbert scales and obtained improved error estimates. Here 

it is assumed that the bounded linear operator K is positive self adjoint, F'(xo ) is 

boundedly invertible. We consider the Hilbert scale (Hr)rER  generated by a densely 

defined, linear, unbounded, strictly positive self adjoint operator L : D(L) C H -p H. 

Note that by the assumption of continuous invertibility of the Frechet derivative 

F'(.) the ill-posedness of the problems in chapter 2 and chapter 3 is due to the 

nonclosedness of the range of K. In chapter 4, we consider special case of the equation 

(5.0.1) when the nonlinear operator F is a monotone operator. Here we take Z = X 

and D(F) C X. In this case we can do away with the assumption of invertibility 

of F' even at the initial guess x o , and hence the problem may be ill-posed in the 

nonlinear part as well. We propose two different iterative methods with it 5  in place 

of y, for solving the equation (5.0.1). In the first method we find the fixed points of 

the function 

G(x) = x — (F'(x) + I) -1 [F(x) — za + x — x 0 ] 

and in the second we find the fixed point of the function 

G(x) = x — (F'(x o ) + I)-1 [F(x) — 	x — xo] 

where 

z,c1  = (K* K + aI)-1 K*y °  

The convergence analysis is carried out by means of suitably constructed majorizing 

sequences. The regularization parameter a for the linear part is chosen by the adap-

tive method of Pereverzev and Schock [50] and stopping index is prescribed using the 

majorizing sequence. 
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The methods considered in this thesis for solving ill-posed Hammerstien type 

operator equations, by no means, is exhaustive. From the perspective of this thesis 

itself, in future works, we would like to analyze the methods in chapter 2 and chapter 

4 in the Hilbert scale set up and look for finite dimensional realizations of all these 

methods. 

It is envisaged to show the effectiveness of our methods by computational verifi-

cation for some well known examples. I=1 
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