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VARIATION OF PARAMETERS FORMULA
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(Communicated by Kenneth R. Meyer)

Abstract. A variation of parameters and Gronwall type integral inequality are

proved for a differential equation involving piecewise alternately retarded and

advanced argument.

1.  INTRODUCTION

In [3] Cooke and Wiener studied a new differential equation alternately of

retarded and advanced type. They have shown that all equations with piece-

wise constant delays have characteristics similar to the equations studied in [2].

These equations are closely related to impulse and loaded equations and, espe-

cially, to difference equations of a discrete argument. The equations are similar

in structure to those found in certain "sequential-continuous" models of disease

dynamics [1].

The method of variation of parameters and Gronwall type integral inequal-

ities are some of the most important techniques in the study of the qualitative

properties of linear and nonlinear differential equations [5]. In particular, the

study of perturbation theory heavily depends on these methods.

In this paper we establish variation of parameters formula for equation (1.3)

and also prove an integral inequality. Consider for / > 0 the following equa-

tions

(1.1) x {t) = a{t)x(t),

(1.2) y'(t) = a(t)y(t) + c(t)y(2[(t+l)/2],

(1.3) z'(t) = a(t)z(t) + c(t)z(2[(t + l)/2]) + f(t),

with initial conditions:

(1-4) x(0) = v(0) = z(0) = c0,
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where a, c, f are real-valued continuous functions of t defined on [0, oo).

Here the symbol [ ] represents the greatest integer function. Observe that the

argument deviation t-2[(t+ l)/2] is negative for In- 1 < t < In and positive

for In < t < 2n+l (n is an integer). Therefore, (1.2) and (1.3) are of advanced

type on [2n - 1, 2«) and of retarded type on (2«, 2« + 1).

It has been established in [3] that if

r2fl

IJin
u    (t)c(t)dt^u   (2n),        n= 1,2,3,

/ 2/1-1

where u~ is the reciprocal of u and u(t) = exp(f^a(s)ds), then problem

(1.2), (1.4) has a unique solution. Also, if a, c, are constant functions in

(1.2), then the solution is given by

(1.5) yrt) = X(t-2[(t+l)/2])\j^L) c0   ifA(-l)/0

and

(1.6) À(t) = exp(ai)(i + a~lc)-a~lc.

Let 4> denote the fundamental solution of (1.1) such that <j>(0) = 1.

Next we define the fundamental solution of (1.2).

Definition. A solution y/(t) of (1.2) is said to be a fundamental solution if it

satisfies (1.2) with the initial condition ^(0) = 1.

2. Variation of parameters method

Let x(t), y(t), z(t) be solutions of (1.1), (1.2), (1.3), respectively, satisfying

the initial condition (1.4). It is natural to expect that the solutions x, y, and

z are related to each other. This relationship is established below through

the method of variation of parameters formula.   We use below the notation

V/{t,k) = w(t)w~1(k), k= 1,2,3,....

Theorem 1. The unique solution of (1.3), (1.4) is given by

[(/+D/2J-1 2k+l

(2.1)    z(t)=y(t)+     J2     x    M v(t,2k)<K2k+l,s)As)ds

[C+D/2] ,2*-l

-   T   A    (-1)/        ¥(t,2k)<p(2k-\,s)f(s)ds

+ f (f>(t,s)f(s)ds,
./2[(r+l)/2]

where <f> and y/ are fundamental solutions of (I A) and (1.2), respectively, and

y(t) is the solution of (1.2), (1.4).

Proof. Let z(t) represent the integral terms on the right-hand side of (2.1). It

suffices to prove that z(t) is a solution of (1.3) and then use the superposition

principle.
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Differentiate z(t) and use (1.1) and (1.2), to obtain

[(/+1V2J-1     2k+l

z(l)=      J2      /       (a(t)v(t,2k) + c(t)V(2[(t+\)l2],2k))4>(2k+\,s)f(s)ds

[C+D/21     , ,2*-l

-    Y,   *    M)/        (a(t)V(t,2k) + c(t)V(2[(t+\)l2],2k))<t>(2k-\,s)f(s)ds
kTi ■'»

+ /" a(/)*(/,J)/(s)rfJ + /(0
■/2[(l+l)/2]

= a(r)z(0 + c(í)r(2[(/+l)/2]) + /(í).

The proof is complete.

For the purpose of simplicity, we prove the next theorem which verifies the

relation (2.1) for equation (1.3) with constant coefficients. The result can be

generalized to equations of the type (1.3) with minor modifications.

Theorem 2. The unique solution z(t) of (1.3), (1.4) with constant functions

a(t) = a, c(t) = c, on [0, oo) is given by the relation (2.1) where <f>(t) = exp(at)

and y/(t) is given by (1.5) with c0 — 1 and y(t) is the corresponding solution

o/(1.2), (1.4).

Proof. Assume that yn(t) and zn(t) are solutions of (1.2) and (1.3) in the

interval [2n - 1, 2« + 1), respectively. Further, let zn(2n) = d2n, for n =

0, 1,2,....
It is easy to verify that

(2.2) zn(t) = dlnl(t -2n)+ f exp{a(r - s)}f(s) ds,
Jin

where k is given in (1.6). From (2.2), we obtain

(2.3) zn(2n-\) = d2n_x=d2nX(-\)+ ['     exp{a(2n-l-s)}f(s)ds
Jin

r-ln + l

zn(2n + 1) = d2n+l = d2nk(\) + /        exp{a(2« + \-s)}f(s)ds.
Jin

and in the limit

rf2n+l

In

Eliminating d2n , we get

¿2„+> = #7T ^2„-l -  T"   'e:

(2.4) H
rln+l

^ id - r
-DP""1     !m

cln+\

+ /        exp{a(2« + 1 - s)}f(s) ds.
Jin
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Applying (2.4) repeatedly for d2n_l, d2n_3, ... , d3 yields

K-i)J   '   èîVA(-i)

(2.5) x (j^ j       exp{a(2k - 1 - s)}f(s) ds

rlk+l \

+ /        exp{a(2À: + 1 - s)}f(s) ds j

for n - 0, 1, 2, 3,_ From (2.2), one gets

(2.6) dl=z0(l) = X(l)d0 + f exp{a(l-s)}f(s)ds.
Jo

Use (2.5) to obtain the value of d2n_l and then use (2.3) and (2.6) to find d2n .

Substitute d2n in (2.2) and use the fact d0 - c0 to obtain finally

(2.7)
B-l        . /.2/fc+l

^W = y„(/) +
k=0

zn(t)=yn(t) + ^X~\\)j^ k(t-2n)(J^jn'ktxp{a(2k+\-s)}f(s)ds

" i /-2fc-l /  ;/i\   \n-k

-J2*-l(-l)J2k     k(t-2n)i^^-Lj      exp{a(2k-l-s)}f(s)ds

+      exp{a(t-s)}f(s)ds;        2« - 1 < t < 2n+ 1.
./2n

If we take « = [(?+ l)/2], then (2.7) is true for any t and hence, write zn(t) =

z(i), yn(t) = y(t), for í > 0. Observe that

W-2l,)(^TÍ))"     =V(t>2k)

and hence, we get (2.7) in the form (2.1).

3. Gronwall type integral inequality

Integral inequalities play a useful role in the study of the qualitative behavior

of solutions of linear and nonlinear differential equations. We extend the well-

known Gronwall inequality further in the following theorem.

Theorem 3. Let c0, a, c be nonnegative constants and u e C[[0, oo), R+]. If

the inequality

(3.1) u(t) <c0+ f (au(s) + cu(2[(s + l)/2]))ds,        t£[0,oo),
Jo

holds and A(-l) ^ 0 then for t > 0

(3.2) «(i) < c0X(t - 2[(t + l)/2]) (y^rjy)

where X is defined in (1.6).

E(i+l)/2]
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Proof. From (3.1) we have, in [2n, 2« + 1),

u(t)<u(2n)+      au(s)ds+      cu(2n)ds.
Jin Jin

Therefore,

u(t) < u(2n)exp (      ads)+      cu(2n)exp(      adr\ds,

and hence,

(3.3) u(2n + 1) < u(2n){exp(a)(l + a']c) - a~lc}.

Similarly, in the interval [2n - 1, 2n], we obtain

u(2n) < u(2n - 1) exp(a) -l- a~ cu(2n){exp(a) - 1}

which leads to

(3.4) u(2n) < u(2n - l){exp(-a)(l + a~xc) - a~lc}~\

Applying inequalities (3.3) and (3.4) repeatedly and using (1.6) we get the de-

sired conclusion (3.2).

Remark. Observe that the right-hand side of inequality (3.2) is in fact the so-

lution of the related equation (1.2) when a and c are constant functions. In

this sense, (3.2) is the best estimate. When c = 0 in (3.1), (3.2) reduces to

u(t) < c0exp(at), t > 0.

Observation. Equation (1.3) can be further generalized to contain two types of

delays, namely, continuous past history and piecewise constant argument. We

can study the equation

(3.5) z'(t) = az(t) + bz(t-l) + cz(2[(t+l)/2]) + f(t),        t>0,

where a, b, c are real constants with some suitable initial requirements.

Theorem 5.1 of [4, p. 19] provides a method of constructing the fundamental

solution (j) of the equation x'(t) = ax(t) + bx(t - 1).

Also, using the relation (6.1) of [4, p. 21] we can construct the fundamental

solution y/ . Once the functions </> and i// are available, the variation of param-

eters formula given in Theorem 1 can be extended for equation (3.5). The same

procedure is applicable with respect to the functional differential equations of

the form

z'(t) = az(t) + bL(z(t + 6)) + cz(2[(t + l)/2]) + /(/),        t > 0,

where L is a linear operator defined in [4, p. 142].
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