Advances in Plant Sciences and Biotechnology

Editors: S. Krishnan and B. F. Rodrigues

First Edition: August 2015

© Goa University

Disclaimer: The editors are not responsible for the contents of the articles and it is solely the responsibility of the authors.

Free E-Book Circulation by: Goa University Library

ISBN: 978-81-908791-4-9

Published by:
Goa University
Taleigao Plateau
Goa 403 206, India

Publication supported by:
Department of Science, Technology & Environment,
Saligao, Bardez, Goa 403 511 &
University Grants Commission (UGC), New Delhi.

Cover Photograph: Impatiens clavata (Courtesy Prof. M. K. Janarthanam)

Printed by: R. A. Prints, Panaji, Goa 9326102225
Sex Detection in Micropropagated Plants and Natural Seedlings of \textit{Garcinia indica} using RAPD and ISSR Markers

Flozil D. Dias and S. Krishnan
Department of Botany, Goa University, Goa 403 206, India
Email: skrish@unigoa.ac.in; flozil3006@gmail.com

Abstract
\textit{Garcinia indica} (Kokum) is an economically important endemic tree species of the Western Ghats region of India. It has three sex types viz. male, female and bisexual that could be identified only at the emergence of flowers after seven to eight years of vegetative growth. RAPD and ISSR markers were used for the detection of sex (male or female) in micropropagated plants and natural seedling populations of \textit{G. indica}. Amplification of genomic DNA using primers RAPD OPT 01 (5’-GGGCCACTCA-3’) and ISSR UBC 881 (5’-GGGTGGGGTGGGGTG-3’) have produced a specific band in standard male plants and that particular band was absent in female plants. Hence, these two primers were used for screening large number of tissue cultured plants and natural seedling populations. The results indicated the presence of specific band in some of the tissue cultured plants and as well as in the natural seedlings indicating them as male plants, while this specific band was absent in remaining plants screened indicating them as female. Determination of sex in seedlings stage of \textit{G. indica} is essential to establish desired ratio of male and female plants in field for large scale cultivation.

Key Words: \textit{Garcinia indica}; RAPD; ISSR; Sex determination.

Introduction
\textit{Garcinia} (Clusiaceae) is a large pantropical genus comprising of dioecious trees and shrubs. It exhibits a wide spectrum of floral form (Sweeney, 2008; Sharma \textit{et al.}, 2013). \textit{Garcinia indica} (Thouars) Choisy is an underexploited, economically important, evergreen, endemic tree species of the Western Ghats region of India (Anerao \textit{et al.}, 2013; Braganza \textit{et al.}, 2012). It is endangered in Southern India due to deforestation, urbanization and habitat destruction (Chauhan \textit{et al.}, 2012). The fruits are used in various traditional preparations and have high value appreciation when processed (Daniel and Dudhade, 2006; Braganza \textit{et al.}, 2012). They are anti-bilious, possess anti-helmintic properties contain important biochemical constituents like garcinol and hydroxycitric acid that have antioxidative, antiglycation, free radical scavenging activity,
anti-cancer action (Kaur et al., 2012; Braganza et al., 2012), act as anti-obesity agent and an anti-cholesterol drug (Anerao et al., 2013; Thatte et al., 2012). The anthocyanin pigment extracted from the fruit rinds is a natural source for the red colour.

Besides being stated by Karnik (1978) that G. indica has eleven floral types. Thatte and Deodhar (2012) and Devi et al. (2013 characterized three main floral types i.e. male (staminate), female (pistillate) and bisexual (hermaphrodite). The flowers are insect pollinated (Thatte et al., 2012; Anerao et al., 2013) or may be wind pollinated (Haldankar et al., 2012; Patil et al., 2012). The flowering period begins from November to February and fruiting occurs during April to first week of June (Braganza et al., 2012; Devi et al., 2013).

Molecular markers were employed in the detection of sex in several dioecious plants such as Pistacia sp. (Kafkas et al., 2001), Carica papaya (Lemos et al., 2002; Urasaki et al., 2002; Reddy et al., 2012), Ginkgo biloba (Ling et al., 2003), Borassus flabellifer (George et al., 2007), Pandanus tectorius (Panda et al., 2010), Piper betle (Samantaray et al., 2011), Trichosanthes dioica (Kumar et al., 2012), Momordica dioica (Patil et al., 2012; Baratakke et al., 2013), etc. Detection of sex in Garcinia indica was studied by Sawardekar et al. (2011) wherein the male, female and hermaphrodite plants were screened with 20 RAPD primers. Primer OPA-05 revealed specific band in male plants and not in female plants. Similarly, Thatte and Deodhar (2012) used RAPD primers and shown the production of polymorphic bands in female plants and ISSR primer produced polymorphic bands in male plants of G. indica.

The determination of sex in G. indica is necessary for the farmers to establish seedling orchards, as the male plants are of not much use unlike the fruit yielding female trees. It is not possible to distinguish sex types in seedling stage until the onset of flowering which normally takes about 7-8 years. This study aimed at determining the sex (male or female plants) in tissue cultured plants (in vitro mass propagated plants) and natural seedling populations of G. indica using RAPD and ISSR markers.

**Materials and methods**

**Plant materials:** Ripened fruits were collected from the natural source of the Western Ghats regions. Seeds were separated from the pulp, sun dried, sown in pots, grown under polyhouse condition for raising seedlings. Baskaran and Krishnan (2011) carried out in-vitro regeneration and mass multiplication of G. indica for the production of elite clones. Leaf samples from these in vitro propagated plants were collected and used for isolation of DNA (Plate 1G). Similarly, leaf samples from natural seedling populations were collected and used for DNA isolation (Plate 1F). At the same time, Leaf samples from
male and female plants of *G. indica* variety “Konkan Amruta” were collected and used for DNA isolation and these samples kept as standards. All the leaf samples were cleaned and stored in -80°C deep freezer until DNA isolation.

Table 1. Details of RAPD primers used.

<table>
<thead>
<tr>
<th>Primer Name</th>
<th>Sequence (5’-3’)</th>
<th>Tm</th>
<th>Previous reports</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA 05</td>
<td>AGGGGTCTTG</td>
<td>32.0°C</td>
<td>Sex detection in <em>G. indica</em> (Sawardekar <em>et al.</em>, 2011)</td>
</tr>
<tr>
<td>OPAS 12</td>
<td>GGGTGTGTAG</td>
<td>32.0°C</td>
<td>Sex determination in <em>Carica papaya</em> (Deputy <em>et al.</em>, 2002)</td>
</tr>
<tr>
<td>OPD 11</td>
<td>AGCGCCATTG</td>
<td>32.0°C</td>
<td>Genetic diversity studies in <em>G. indica</em> (Sahasrabudhe <em>et al.</em>, 2010)</td>
</tr>
<tr>
<td>OPD 13</td>
<td>GGGGTGACGA</td>
<td>34.0°C</td>
<td>Genetic diversity studies in <em>G. indica</em> (Sahasrabudhe <em>et al.</em>, 2010)</td>
</tr>
<tr>
<td>OPT 01</td>
<td>GGGCCACTCA</td>
<td>34.0°C</td>
<td>Sex determination in <em>Carica papaya</em> (Deputy <em>et al.</em>, 2002)</td>
</tr>
<tr>
<td>OPW 08</td>
<td>GACTG CCTCT</td>
<td>32.0°C</td>
<td>Sex determination in <em>G. indica</em> (Thatte and Deodhar, 2012)</td>
</tr>
<tr>
<td>OPW 11</td>
<td>CTGATGCGTG</td>
<td>32.0°C</td>
<td>Sex determination in <em>Carica papaya</em> (Deputy <em>et al.</em>, 2002)</td>
</tr>
<tr>
<td>STD</td>
<td>ATTTGATCGC</td>
<td>21.0°C</td>
<td>Random primer</td>
</tr>
</tbody>
</table>

Table 2. Details of ISSR primers used.

<table>
<thead>
<tr>
<th>Primer Name</th>
<th>Sequence (5’-3’)</th>
<th>Tm</th>
<th>Previous reports</th>
</tr>
</thead>
<tbody>
<tr>
<td>UBC 807</td>
<td>AGAGAGAGAGAGAGAGGT</td>
<td>50.0°C</td>
<td>Selection of male and female plants in <em>Simmondsia chinensis</em> (Sharma <em>et al.</em>, 2008)</td>
</tr>
<tr>
<td>UBC 881</td>
<td>GGGTG GGGGTGGGTTG</td>
<td>57.0°C</td>
<td>Sex determination in <em>G. indica</em> (Thatte and Deodhar, 2012)</td>
</tr>
</tbody>
</table>

Isolation and purification of genomic DNA: The genomic DNA from the respective plant leaf samples were extracted using CTAB method according to Sahasrabudhe *et al.* (2010) and Baskaran (2012) with some modifications. The quality of the plant DNA samples were further checked by running on 0.8% (w/v) agarose gel with 1X TBE buffer and stained with ethidium bromide. The gel images were visualized using a gel documentation system (Bio-Rad EZ...
Similarly the purity of the isolated DNA samples were checked using UV spectrophotometer by taking absorbance at 260 and 280 nm. Pure DNA samples were screening using various primers.

**PCR amplification:** PCR amplification was carried out with primers obtained from Pharmaids & Equipments, Bicholim, Goa. List of RAPD and ISSR primers used during this study is provided in Table 1 & 2. Amplification was performed in a 25 µl reaction volume that contained 13 µl of MiLiQ water, 2.5 µl Taq buffer, 0.5 µl Taq DNA polymerase, 2 µl of 10 mM dNTPs mixture, 2 µl 25 mM MgCl₂, 3 µl of the respective primer and 2 µl of the respective DNA plant sample. The amplification was carried out in a PCR thermal cycler (Eppendorf, Hamburg, Germany). For RAPD analysis the first cycle consisted of initial denaturation of template DNA at 94°C for 3 minutes, followed by 40 cycles of denaturation at 94°C for 1 minute, primer annealing step and extension of newly synthesized DNA strand at 72°C for 2 minutes. This was followed by a final extension step of 10 minutes at 72°C (Baskaran, 2012). For ISSR analysis the first cycle consisted of initial denaturation of template DNA at 94°C for 5 minutes, followed by 35 cycles of denaturation at 94°C for 1 minute, primer annealing step and extension of newly synthesized DNA strand at 72°C for 2 minutes and followed by a final extension step of 10 minutes at 72°C (Baskaran, 2012). The amplified products were run in electrophoresis unit by using 1.8% (w/v) agarose gel containing ethidium bromide in 1X TBE buffer for about 2.5 h. The size of the amplified products was determined using 100 bp DNA ladder. The DNA fragments were visualized under UV light using gel documentation system (Bio-Rad EZ System, USA).

**Results and Discussion**

*G. indica* is perennial woody tree that grows up to the height of 20-30 m, conical or pyramidal in shape with spreading or drooping branches (Plate 1A). Male flowers are borne in clusters that may be terminal or axillary. The flowers are generally consists of a long pedicel, with numerous fertile stamens; tetrasporangiate with four anther locules; petals are yellow to red in colour, anthers are borne in a circular fashion around the main axis of the flower (Plate 1B, E). Numerous pollen grains are present in each of the anther locules. The male flower also contains many laticifers. Female flowers may be sessile or borne on short pedicels. They are generally bundled in two or three, of which only one remains; hence appear solitary. They consist of staminodes in phalanges that are present on four sides around the pistil, sepals 4, smaller than inner petals, green; petals 4, yellow to pinkish, ovary superior, 4-8 locular, axile placentation; About eight ovules are seen in each flower. The ovules are of orthotropous type, micropyle, chalaza and funiculus found as straight line. Laticifers are seen surrounding the ovules. Fruits a berry, smooth and many
seeded (5-6) (Plate 1C, D). Thatte and Deodhar (2012) and Devi et al. (2013) reported three flower types viz. staminate (do not yield fruits), pistillate (high fruit yielding) and bisexual plants produce fruits very rarely and are poor in yield (low fruit yielding). Bisexual flowers showed a decrease in masculine characters but development of more feminine characters (Haldankar et al., 2012). Hence, only female trees are more beneficial in terms of fruit yield.

Plate 1. A. *Garcinia indica* female plant; B. Longitudinal section (L.S) of male flowers; C. Opened female flower showing staminodes; D. L.S. of female flower; E. Male flowers (lower row) and female flowers (upper row); F. Seedlings from natural population; G. In-vitro mass propagated plants of *G. indica* grown in polyhouse used for isolation of genomic DNA.

Eight RAPD and two ISSR primers were used for analysis of distinguishing male and female plants of *G. indica*. The banding patterns in the gel were analyzed for presence or absence of specific bands in male and female plants. Among the eight RAPD primers screened, OPA 05 primer, OPAS 12, OPW 11, and OPT 01 primer have produced clear visible banding pattern and two other
primers viz. STD and OPW 08 produced faint band. The primers OPD 11 and OPD 13 did not show any amplified bands. Therefore, four primers OPA 05, OPAS 12, OPW 11 and OPT 01 were used for the analysis of DNA isolated from standard male and female plants, tissue cultured (in vitro derived plants) and natural seedling populations of *G. indica*.

Plate 2. A & B. RAPD primer (primer OPT 01) amplified banding patterns showing the presence of specific band in male and absence of specific band in female plants of *Garcinia indica*. Lane M is 100 bp ladder; Lane 1, 2 male plants; Lane 3, 4 female plants; Lane 5-19 tissue cultured samples; Lane 20-25 seedling from natural populations.

Sawardekar *et al.* (2011) used RAPD primer OPA 05 (5’-AGGGGTCTTG-3’; Tm: 32°C) to distinguish male specific bands in *G. indica* and this particular band is absent in female plants. However, during this study no distinct band for male and absence of band in female plants were not observed. A total of 21 plant samples were screened out of which four were standard male plants, three standard female plants, eight tissue cultured plants and six natural seedlings. The primer yielded a total of 141 bands.

Total of 25 samples were screened with RAPD primer OPAS 12 (5’-GGGTGTGTGAG-3’; Tm: 32°C), out of which two were standard male...
plants, two standard female plants, 16 tissue cultured plants and five natural seedlings. The amplification yielded a total of 222 bands. However, no sex determining bands could be identified with this primer. RAPD primer OPW 11 (5’- CTGATGCGTG-3’; Tm: 32°C) was used for the evaluation of 25 plant samples, two standard male plants, two standard female plants, 15 tissue cultured plants and six seedlings. A total of 114 amplified bands were obtained that included both faint and prominent bands. This primer also could not detect any specific bands among the screened plants.

Detection of sex in male and female plants of *G. indica* was achieved by using the primer OPT 01 (5’- GGGCCACTCA-3’; Tm: 34°C). During this screening, two standard male plants, two standard female plants, 15 tissue cultured sample plants and six seedling samples were examined. A band of approximate size of 790 bp was detected in standard male plants and the presence of same band was observed in some of the tissue cultured plants and seedling populations indicating that those plants are male plants (Plate 2). This same band was absent in the standard female plants and some of the other plants

![Plate 3. A & B. ISSR primer (primer UBC 881) amplified banding patterns showing the presence of specific band in male and absence of specific band in female plants of Garcinia indica. Lane M is 100 bp ladder; Lane 1-4 male plants, Lane 5-8 female plants; Lane 9-18 tissue cultured samples; Lane 19-25 seedling from natural populations.](image-url)
screened indicating them as female plants. Hence, this particular RAPD primer can detect sex in *G. indica* and it could be used for large scale screening to distinguish male, female plants at seedling stage. This primer generated a total of about 222 amplified bands (Plate 2).

Detection of sex in male and female plants of *G. indica* was achieved by using the primer OPT 01 (5’- GGGCCACTCA-3’; Tm: 34°C). During this screening, two standard male plants, two standard female plants, 15 tissue cultured sample plants and six seedling samples were examined. A band of approximate size of 790 bp was detected in standard male plants and the presence of same band was observed in some of the tissue cultured plants and seedling populations indicating that those plants are male plants (Plate 2). This same band was absent in the standard female plants and some of the other plants screened indicating them as female plants. Hence, this particular RAPD primer can detect sex in *G. indica* and it could be used for large scale screening to distinguish male, female plants at seedling stage. This primer generated a total of about 222 amplified bands (Plate 2).

ISSR primers UBC 807 and UBC 881 were used for screening the DNA samples of four standard male, four standard female, ten tissue cultured plants and seven natural seedling populations of *G. indica*. ISSR primer UBC 807 yielded about 217 bands, however no distinction of male and female bands could be observed. However, ISSR primer UBC 881 distinguished male and female plant by producing a specific band in male plants and that particular band was absent in female plants (Plate 3). A total of 193 bands were obtained. This primer was also used earlier for determination of sex in *G. indica* (Thatte and Deodhar, 2012).

Among eight RAPD primers used during this investigation, only OPT 01 (5’-GGGCCACTCA-3) produced a distinct band of ~ 790 bp in the standard male plants, some tissue cultured plants and some seedling samples indicating them as males. This same band was absent in standard female plants and remaining plants examined indicating them as female. Among the two ISSR primers, UBC 881 primer produced specific band in standard male and the same band was absent in female plants of *G. indica*. It is concluded that the RAPD primer OPT 01 and ISSR primer UBC 881 can amplify and produce specific band in male plants and the same band was found to be absent in female plants. Hence, these two primers are effective in distinguishing male and female plants of *G. indica*. As Kokum (*G. indica*) is predominantly cultivation in Konkan regions which occupies an area of about 1000 hectares and present annual production of fruits of about 4500 metric tonnes (Haldankar *et al.*, 2012; Patil *et al.*, 2012). There is a continuous increase in demand as it is evident by the market trends and export scenario. Also, it is reported that 50% chance of occurrence of males in sexually propagated plants (Haldankar *et
Hence, this present study of determination of sex in early seedlings stage is very important in order to establish desired ratio of male and female plants in field for large scale cultivation of Kokum.

Acknowledgements

Authors acknowledge the financial support provided by the Council of Scientific and Industrial Research (CSIR) (No. 38(1348)/13/EMR-II); dated 16. 10. 2012, New Delhi, India and the University Grants Commission (UGC), New Delhi, India, under SAP-II at the level of DRS-III to carry out the above research work.

References


