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Introduction

Since the first silent film flickered to life, 
mankind has been fascinated with motion pic­
tures. No other contemporary message commu­
nication medium has the same visual impact as 
the movie or the video. To this day, 3D ani­
mated characters or motion video is the visual el­
ement in computer based presentations that can 
draw gasps from a crowd in a show or exhibi­
tion, or hold the student's attention and interact 
in a computer aided tutoring system. While dig­
ital video relies entirely on capturing and play­
ing back the visual dynamics existing in the real 
world, animation is concerned with the creation 
and playback of the visual dynamics of an ar­
tificially created world within the realms of the 
digital computer.

In recent years computer animation has been ex­
periencing increased popularity, especially in the 
advertising and film industry. Today, the tech­
nology allows an artist or a scientist to visualize 
what was previously possible only in the realm of 
imagination. In no movie is this better illustrated 
than in a film such as Jurassic park, where real­
istically modelled 3D giant sized dinosaurs, com­
plete with textured skin and limbs, walk, run or 
gallop at roaring speeds in a most realistic fash­
ion.

The movement in animation is really just an il­
lusion. Like in a movie, an animation is just a 
series of still images that are displayed in se­
quence at a fixed rate. Animations, or for that 
matter movies or video, are possible because of 
a biological phenomena - persistence o f vision. 
The image on an eye’s retina is retained for a 
short while, even after the object is moved out of 
view. If a series of images, slightly differing from
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each other are shown In rapid succession, the 
eye/mind blends these successive images to re­
sult in the visual illusion o f movement or change. 
Typically, movies are shot at a shutter rate o f 24 
frames or pictures per second. Ten minutes of 
animation would thus require as many as 14400 
separate frames or pictures: each one differing 
only slightly from its predecessor.

Traditional computer animation

Animation can be considered to be of two kinds. 
2D or cel-based animation and 3D or model 
based animation. To this day, 2D cel-based ani­
mation is the most common kind, where flat im­
ages are hand-drawn and painted one frame at a 
time. While this is very time consuming, cel an­
imation has produced spectacular results. Any 
animated Disney film is a fine example o f this. 
Increasingly, computer graphics techniques are 
being used for improving the sketching, inking 
and colouring process in cel animation [41.

In 3D animation, a mathematical model of the 
three dimensional object is created and realis­
tically rendered in each frame using sophisti­
cated image synthesis techniques. For inanimate 
rigid objects, animation would involve a series 
of transformations of object position and orien­
tation. As a result for such objects modelling 
and rendering can be much more time consum­
ing than synthesizing their motion.

On the other hand, animating the movement of 
legged creatures is very complex; as it has to be 
physically valid and also appear realistic - a dog 
like creature must move like a dog. In the rest of 
this paper we shall specifically address the tech­
niques for this.

The traditional computer animation methods are 
focused on providing a rich set of geometric prim­
itives to model shape and motion. To support an­
imation, the models are parameterized into a hi­
erarchy such that animating the model is then a 
matter of varying the parameter value over time. 
Keyframe animation is one such technique [3], 
For a legged creature a frame in animation is ba­
sically a description of the particular position of 
the object at a particular instance in time. The 
position refers to the degrees o f  freedom  (DOF), or 
generalized coordinates that define the object's

position in space. Degrees of freedom are the 
minimal set of parameters that can specify the 
complete configuration of the object in space. For 
example, a single body In a plane has three DOFs. 
Two coordinates to define a reference point (z, y) 
on the body and one coordinate 8 to define its 
orientation. With these three generalized coor­
dinates, it can be translated and rotated to any 
configuration in a plane.

In a keyframe animation system, the animator 
need not describe each frame. Instead he de­
scribes a set o f 'keyframes’ from which the ani­
mation system can geometrically interpolate each 
DOF independently, to automatically obtain the 
frames in between. Keyframing is a powerful 
and still widely used technique in the animation 
industry. It allows the animator to have com­
plete control over the depleted motion. A vari­
ety of techniques has been devised to interpo­
late motion between keyframes. Linear interpola­
tion is very simple to Implement but may lead to 
jerky motion (the velocity being discontinuous). 
There arc methods based on spline fitting which 
make use of non-linear Interpolation to generate 
smoother motion.

There are two major problems with keyframe an­
imation systems. Firstly It puts a large burden 
on the animator to adjust too many paranieters 
at very fine levels of detail. For example, con­
sider the motion specification problem of an ar­
ticulated object such as a human or an animal. 
For a reasonably detailed figure with 30 DOFs, 
a minute of animation with a keyframe every 
quarter of a second, would require approximately 
eight thousand values to he specified. This is 
perhaps an impossible task. Secondly, to gener­
ate veiy convincing looking motion, the animator 
requires to have a very good understanding of 
the motion and artist like skills, lor resynthesiz- 
ing the internalised motion. Therefore more often 
than not, even after many trials, synthesized mo­
tion tends to look unrealistic and puppet like.

Motion is a result of forces

In the late 1980's, researchers working in the 
field of computer animation were convinced that 
if the animation has to look realistic, the physics 
behind the motion has to be taken Into account 
[ 1, 16, 7]. Moreover at that time researchers from
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computer graphics were already using physics to 
model interaction of light with the environment to 
produce photorealistic effects. Initial results on 
incorporation of physics to produce life like mo­
tion were very encouraging. This is typically done 
by augmenting the traditional geometric model to 
include other physical characteristics that com­
puters can use to compute motion. Some of these 
physical characteristics are mass of the body, its 
moment of inertia, and external forces such as 
gravity, frictional forces etc. The idea is to incor­
porate appropriate physical complexity *md real­
ism of the behaviour into the model itself, rather 
than requiring that it be imposed by the anima­
tor.

• Already, some of the early research into physi­
cally based modelling and animation is finding 
application in commercial software. For example, 
gravity, friction, and wind help animators create 
nearly automatic animation of characters and ob­
jects in Softimage's work-station based, 3D ani­
mation software program called Actor. Also using 
Knowledge Revolution’s Interactive Physics, stu­
dents and animators are able to simulate 2D ob­
jects and elements such as ropes, motors and 
pulleys that move according to the physical laws 
[ 121.

In computer animation, the objects of intercut 
may vary from rigid body to flexible or deformable 
body, single body to articulated body, passive 
body to active body . A rigid body is one that 
does not change shape over time. On the other 
hand a deformable body changes shape. A pas­
sive object is an inanimate object which behaves 
according to the forces acting upon it but has no 
internal mechanism to bring about its own mo­
tion. On the other hand active bodies can bring 
about their own motion without external forces. 
Articulated bodies are composed of multiple rigid 
links that are connected to each other via joints. 
A simple articulated body with 5 DOF is shown 
in Figure 1. Many articulated bodies have actua­
tors placed at some of its joints which make them 
active. The role of an actuator is similar to that of 
a muscle in a biological creature. For animation 
purposes, simulated actors resembling humans 
and animals are created out of articulated bodies 
and then automatically fleshed with deformable 
elements to give the effect of bones, flesh, skin. 
The ultimate goal of physically based animation 
is to be able to control and synthesize complex 
motions involving simulated actors. The role of

Figure 1: A  planar articulated body with three 
links and two rotary joints

the animator should be that of a director rather 
than that of one who must implement every detail 
of animation. Just as the dance choreographer 
relies on the ability of the individual dancer , the 
animator should be able to rely on the abilities of 
the simulated actors involved in a scene.

We see living beings all around us, whether they 
are people, animals, birds or fishes. From the 
smallest of these creatures to the largest of them; 
they all exhibit tremendous skill in coordina­
tion and balance in moving about. Their move­
ments seem amazingly simple, yet as we shall see 
later are very demanding to reproduce. In every­
day life, we execute many tasks involving com­
plex motion without feeling burdened or know­
ing how we do what we do. The goal of physi­
cally based animation is to be able to reproduce 
such type of motion in the simulated environ­
ment of a computer. How is this different from 
creating dinosaurs and animating them? A film 
like Jurassic Park is a marvel of collective effort 
by artists, animators, computer graphics special­
ists and experts in animal motion. Not only did 
they create make believe animals on the screen, 
they were also able to demonstrate how well com­
puter graphics techniques can be integrated into 
live action. However, there is no single technique 
used in the creation o f these sequences. Rather 
a number of different strategies/techniques have 
gone into making dinosaur scenes. These include 
measurement from physical models, realistic mo­
tion data capturing . rotoscoping and traditional 
animation, all very cleverly used [111.

On the other hand, in physically based mod­
elling and animation, we are talking about cre­
ating mathematical models o f the objects which
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follow laws of physics. To create mathematical 
models of the complexity of dinosaur and simu­
lating them is beyond the means o f the current 
technology. Therefore most of the creatures that 
we consider are relatively simple but still rich 
enough to demonstrate a wide variety of inter­
esting motions. Implementing such scenarios re­
quires creating simulated actors and bestowing 
upon them the skills to move about in a natural 
way.

The potential application of physical^ based an­
imation is not restricted to the entertainment in­
dustry, it has already found applications in di­
verse fields such as industrial design, medical 
imaging and education.

Physically based modelling and animation is rel­
atively a young discipline It allows the user 
to model complex motion in a realistic fashion. 
Common elements in all physically based anima­
tion are classical dynamics, interbody interaction 
and motion control. In the following sections, we 
discuss each of these elements briefly in relation 
to articulated bodies. Animation techniques con­
cerning deformable objects are not however dis­
cussed here.

Dynamics

Dynamics is concerned with the formulation of 
equations of motion and their numerical solu­
tion. Typically these are second order differential 
equations and are solved using some of the stan­
dard techniques in numerical methods. There 
are many methods to formulate equations of mo­
tion (17|. But all are based on Newton's second 
law force equals mass times acceleration F  =  ma 
. Netwton’s law implies that if the position, ve­
locity and all the forces acting on the body are 
known at time t, one can compute it’s position 
and velocity at time t + At by numerical integra­
tion. See Figure 2. For an articulated body, the 
equations of motion are non-linear and are gen­
erally quite complicated to be derived by hand. 
These equations are symbolically evaluated, to 
yield differential equations which can be written 
in the form:

Ax =  b

'T ile field was first named In a course in the 1987 ACM 
SIGGRAPH annual conference.

* 0 40
' f it *  A )

Integrate*
Motion

K«* *0

K0 v(0

Figure 2: Numerical integration of equation of 
motion

where A and b are dependent on the internal 
torques produced by the actuators at the joints, 
external forces due to gravity, forces due to inter­
action with the environment, the physical prop­
erties of the links, and the state o f the links, x 
represents the vector o f unknown accelerations.

The accelerations are then numerically inte­
grated to determine the new velocities and po­
sitions of the links.

The most straight-forward method of integration 
is using Euler technique. Given the state (posi­
tion, velocity) o f the system and the acceleration 
at time t, one can compute state at time t -f At by 
the simple formula given below:

p(t +  At) — p(t) + v(t)A t

v(t +  At) =  v(t) + o(t)At

Inter-body interaction

When several objects are moved about by dy­
namic simulation, there is a possibility that they 
will interpenetrate. In order to preserve the au­
thenticity of simulation, it is essential that the 
computer detect collisions amongst objects and 
simulate object response appropriately. Collision 
detection is mainly a geometric problem involv­
ing the positional relationship of objects in the 
world. On the other hand, collision response is 
a dynamic problem, that involves predicting be­
haviour according to physical laws (9). Collision 
detection involves checking at every time step t 
whether any two objects penetrate. This is com­
putationally very expensive. The basic algorithm 
is 0 (n2) for n objects. A number of methods have 
been proposed to minimize the computational 
cost. A simple way to handle collision response is 
to introduce spring forces which prevent objects 
being penetrated. Thus whenever collision is de­
tected. a very stiff spring is temporarily inserted
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between the points o f closest approach. See Fig­
ure 3. The spring law is usually K/d, that goes 
to infinity as the separation d of the two objects 
approaches zero. K  is a spring constant control­
ling stiffness of the spring. The direction of the 
force is such that it pushes the two objects apart. 
The spring method is easy to understand but is 
computationally expensive. Stiffer springs mean 
stiffer equations of motion, which require smaller 
time steps for accurate numerical integration. A 
robust method o f resolving collision is to use an 
analytical method [2]. The analytical method de­
pends upon the conservation of momentum dur­
ing collision. It may introduce discontinuities in 
the velocities when a collision occurs. This is 
typically solved by stopping the integrator at the 
time o f collisions, resolving the collision by com­
puting new angular and linear velocity for each 
body and then restarting the integrator with new 
initial conditions.

Motion control

Motion control is a fundamental problem in com­
puter animation. One of the major tasks of the 
animator is to control the motion of the moving 
object according to the script of the animation. In 
physically based modelling, it means that proper 
torques have to be associated at the joints such 
that the desired motion is obtained.

Some of the earlier techniques required the an­
imator to directly specify the torques, each as a 
function of time, then view the resulting anima­
tion and refine the torques iteratively to achieve 
the desired motion [1, 7], This explicit control 
gives physically realistic trajectories, but the level 
of automation is low in terms of effort required to 
discover and refine acceptable motion. One of the 
important objectives of an animation system is to 
automate this task.

A common method of defining torques at the

Figure 4: A planar joint with an actuator

joints is through the proportional derivative (PD) 
control law [101. The control law acts like a sim­
ulated spring. The way it works is as follows. 
Whenever the current angle 6 deviates from the 
rest angle 0d of the spring , it applies torque on 
the two adjacent links according to the formula:

r = kp(8d -  6) -  kdd

Where kp and kd are spring and damping con­
stants respectively. See Figure 4. The advantage 
of the PD controller is that the torque function 
gets automatically defined once the desired angle 
is specified. To execute a particular task, it is 
necessary to define a series o f intermediate de­
sired joint angles. Any coordinated task will in­
volve a series of activation o f desired angles for 
each active joint. In animation, it would mean 
that these desired intermediate angles need to be 
determined for executing a particular task. This 
is an inverse problem and does not have a unique 
solution. For example, if we have to reach for a 
cup of coffee, we can do so by moving our hand 
in many different Ways. The problem is grossly 
underconstrained and can be solved by imposing 
additional constraints to define a unique solu­
tion.

There are two methods to solve this problem. 
In the first method we specify an approximate 
trajectoiy In terms of the position of the object 
in space and time (18). This is very similar to 
specification of keyframes; except that we require 
them in fewer numbers. In addition, we specify 
desired initial and final states (position and ve­
locity) and an objective function that would min­
imize or maximize certain criteria. The method 
uses the variational calculus technique which is 
very similar to gradient methods used for finding 
minima of an ordinary real-valued function. The 
method starts with the trajectory specified, and

•i
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Figure 5: A three state controller for generating 
hopping motion for a lamp

alters it slightly by moving certain points on the 
trajectory in some direction. Then a computation 
is made to determine whether the new trajectory 
is closer to a good trajectory, where good trajec­
tory means laws of physics satisfied, low energy 
expenditure and starting and ending conditions 
are met. In case it is closer, it becomes the new 
trajectory and the entire step is repeated. Here 
the assumption is that animals and human be­
ings move such that the energy expended is min­
imum. Although there is no proof for the argu­
ment, in theory, the results gathered to date do 
support the suggestion [5],

The second method tries to synthesize a con­
troller which when actuated results into motion 
114, 15]. See example in Figure 5. A controller 
is just a finite state machine (FSM). Each state of 
the controller determines its internal configura­
tion.

Depending upon certain inputs, the FSM goes 
from one state to the next state (in the example 
shown in Figure 5, it is time). Associated with 
each state there is a set of control laws which 
specify the torques to be applied at the joints to 
bring about the motion. The quality o f the gener­
ated motion depends upon the representation of 
the controller and the method o f controller syn­
thesis. Typically, the representation of the con­
troller will determine the number of states in FSM 
and its topology. Associated with each state there 
are a set of control parameters. For example, the 
desired configuration to be reached in a partic­
ular state could be one such set of parameters. 
The values of these parameters are determined in 
the synthesis phase. In one synthesis method, to 
begin with, we choose the control parameter val­
ues arbitrarily. The resulting controller is then 
plugged into the simulator (refer to Figure 5) to 
generate motion. The output motion is evalu­
ated to determine how good or how bad it is. the 
control parameters are altered if necessary and 
the simulation process is repeated. Evaluation is

done either by visually inspecting the motion and 
then changing the control parameters manually 
or with the help of a fitness function and an auto­
mated search procedure, which alters the control 
parameters incrementally to the desired optimal 
state.

We have implemented and experimented with the 
controller based technique for animations with 
automated search technique at the National Cen­
tre of Software Technology (8). We discuss in 
brief the basic idea behind our method. We de­
fine, what we call motion features as attributes 
to characterize motion. Mathematically speak­
ing, one can characterize a motion by a feature 
vector / = (/i,/2l .../„) where /i,/2.../„ are the n 
individual features. The features are computable 
functions which when applied to a given motion 
return a set o f numbers. For example, walking 
has features which are distinct from that of run­
ning or hopping. Motions which have similar fea­
tures will cluster together in feature space. How­
ever, degree o f separability among types of motion 
will strongly depend on the selected features and 
the task at hand. The features are chosen such 
that they are intuitive for the animator to spec­
ify. The animator specifies the desired motion 
with the help of set of features. Once the features 
are specified, a fitness function is composed and 
a search procedure is called. The task of the 
search procedure is to search through the space 
of controllers and locate motion having similar 
features. Sincc the search space is large and dis- 
continuos (a small change in the control parame­
ter causing large change in the resulting motion), 
we have chosen the genetic algorithm technique, 
which is well suited for this kind of situation [ 13).

Genetic algorithms are based on the evolution­
ary principle o f "survival of the fittest". The basic 
algorithm which can be used for search is de­
scribed below. Let P(t )  =  be a pop­
ulation (set) o f solutions, for iteration t. Each 
solution x\ is evaluated to give some measure 
of fitness. Then a new population is formed 
for iteration t +  1 by selecting the more fit in­
dividuals from amongst the current population. 
Some members of the current population un­
dergo reproduction'by means of genetic operators 
to form new solutions. There are unary trans­
formations mi (mutation types), which create new 
individual (solution) by a small change in a sin­
gle individual, and higher order transformations 
cj (crossover type), which create two new indi
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viduals by combining parts from two individu­
als. After a number of generations the algorithm 
converges: the best solution often represents the 
optimal solution. See Figure 6. Since the en­
tire procedure is very compute intensive, we have 
parallelised the algorithm to run on a number of 
networked CPUs using the parallel virtual ma­
chine (PVM) system [6].

procedure genetic algorithm: 
begin

t :=0;
initialize P(t); 
evaluate P(t);
while not ( terminate condition) do 
begin

t := t + 1:
select P(t) from P(t-l); 
recombine P(t); 
mutate P(t): 
evaluate P(t);

end:
end:

Figure 6: A simple genetic algorithm

The results of some of our experiments are shown 
in the Figures 7-9 below. We have experimented 
using our technique on a number of simple but 
representative articulated bodies. The simula­
tions typically take about 6 to 7 hours time on 
four networked VAX 2000 workstations.

pif! tp n1

Figure 7: Mr. Luxo, a lamp like creature hopping

Figure 8: Mr. Pogo, a dog like creature walking

Figure 9: Mr. Walker, a humgn like creature 
walking

Conclusions

The price performance of digital system currently 
doubles about every 12 months or so. This has 
happened for the last few years and industry 
pundits see no immediate end in sight. It is 
therefore important that we consider approaches 
which today may look computationally impracti­
cal. In the area of virtual reality systems there 
is tremendous interest in multi-participant sim­
ulations - virtual worlds networked via the global 
internet and hyperlinked with the worldwide web. 
These virtual worlds must impose the same phys­
ical restraints as in the real world i.e gravity, 
picking up and putting down objects, restrict­
ing motion to walking around, climbing up/down 
stairs etc. A world without life (virtual or real) 
would be a dull place indeed! Physically based 
and automated search techniques like the genetic 
algorithm discussed above may today be very 
compute intensive but will surely come very soon 
within the reach of available computing power 
and thus are bound to have far reaching impacts 
on the simulation of virtual worlds.
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