
[12) K. Fukunaga and P. M. Narendra. A
branch and bound algorithm for computing
fc-nearest neighbors. IEEE Transactions on
Computers, pages 750-753, 1975.

113| A. K. Jain and R. C. Dubes. Algorithms fo r
Clustering Data. Prentice Hall, Englewood
Cliffs, New Jersey, 1988.

[14| H. Chernoff. The use of faces to represent
points in k-dimensional space graphically.
Journal o f the Americal Statistics Associa­
tion, 68:361-368, 1973.

□

Synthesis of Realistic
Motion for Legged Creatures

V .V .K a m a t

Goa University, Goa
email: wkamat@unigoa . e rn e t. in

Introduction

Since the first silent film flickered to life,
mankind has been fascinated with motion pic­
tures. No other contemporary message commu­
nication medium has the same visual impact as
the movie or the video. To this day, 3D ani­
mated characters or motion video is the visual el­
ement in computer based presentations that can
draw gasps from a crowd in a show or exhibi­
tion, or hold the student's attention and interact
in a computer aided tutoring system. While dig­
ital video relies entirely on capturing and play­
ing back the visual dynamics existing in the real
world, animation is concerned with the creation
and playback of the visual dynamics of an ar­
tificially created world within the realms of the
digital computer.

In recent years computer animation has been ex­
periencing increased popularity, especially in the
advertising and film industry. Today, the tech­
nology allows an artist or a scientist to visualize
what was previously possible only in the realm of
imagination. In no movie is this better illustrated
than in a film such as Jurassic park, where real­
istically modelled 3D giant sized dinosaurs, com­
plete with textured skin and limbs, walk, run or
gallop at roaring speeds in a most realistic fash­
ion.

The movement in animation is really just an il­
lusion. Like in a movie, an animation is just a
series of still images that are displayed in se­
quence at a fixed rate. Animations, or for that
matter movies or video, are possible because of
a biological phenomena - persistence o f vision.
The image on an eye’s retina is retained for a
short while, even after the object is moved out of
view. If a series of images, slightly differing from

SOFTWARE BULLETIN October 1995/Vol 3,No 4 0

each other are shown In rapid succession, the
eye/mind blends these successive images to re­
sult in the visual illusion o f movement or change.
Typically, movies are shot at a shutter rate o f 24
frames or pictures per second. Ten minutes of
animation would thus require as many as 14400
separate frames or pictures: each one differing
only slightly from its predecessor.

Traditional computer animation

Animation can be considered to be of two kinds.
2D or cel-based animation and 3D or model
based animation. To this day, 2D cel-based ani­
mation is the most common kind, where flat im­
ages are hand-drawn and painted one frame at a
time. While this is very time consuming, cel an­
imation has produced spectacular results. Any
animated Disney film is a fine example o f this.
Increasingly, computer graphics techniques are
being used for improving the sketching, inking
and colouring process in cel animation [41.

In 3D animation, a mathematical model of the
three dimensional object is created and realis­
tically rendered in each frame using sophisti­
cated image synthesis techniques. For inanimate
rigid objects, animation would involve a series
of transformations of object position and orien­
tation. As a result for such objects modelling
and rendering can be much more time consum­
ing than synthesizing their motion.

On the other hand, animating the movement of
legged creatures is very complex; as it has to be
physically valid and also appear realistic - a dog
like creature must move like a dog. In the rest of
this paper we shall specifically address the tech­
niques for this.

The traditional computer animation methods are
focused on providing a rich set of geometric prim­
itives to model shape and motion. To support an­
imation, the models are parameterized into a hi­
erarchy such that animating the model is then a
matter of varying the parameter value over time.
Keyframe animation is one such technique [3],
For a legged creature a frame in animation is ba­
sically a description of the particular position of
the object at a particular instance in time. The
position refers to the degrees o f freedom (DOF), or
generalized coordinates that define the object's

position in space. Degrees of freedom are the
minimal set of parameters that can specify the
complete configuration of the object in space. For
example, a single body In a plane has three DOFs.
Two coordinates to define a reference point (z, y)
on the body and one coordinate 8 to define its
orientation. With these three generalized coor­
dinates, it can be translated and rotated to any
configuration in a plane.

In a keyframe animation system, the animator
need not describe each frame. Instead he de­
scribes a set o f 'keyframes’ from which the ani­
mation system can geometrically interpolate each
DOF independently, to automatically obtain the
frames in between. Keyframing is a powerful
and still widely used technique in the animation
industry. It allows the animator to have com­
plete control over the depleted motion. A vari­
ety of techniques has been devised to interpo­
late motion between keyframes. Linear interpola­
tion is very simple to Implement but may lead to
jerky motion (the velocity being discontinuous).
There arc methods based on spline fitting which
make use of non-linear Interpolation to generate
smoother motion.

There are two major problems with keyframe an­
imation systems. Firstly It puts a large burden
on the animator to adjust too many paranieters
at very fine levels of detail. For example, con­
sider the motion specification problem of an ar­
ticulated object such as a human or an animal.
For a reasonably detailed figure with 30 DOFs,
a minute of animation with a keyframe every
quarter of a second, would require approximately
eight thousand values to he specified. This is
perhaps an impossible task. Secondly, to gener­
ate veiy convincing looking motion, the animator
requires to have a very good understanding of
the motion and artist like skills, lor resynthesiz-
ing the internalised motion. Therefore more often
than not, even after many trials, synthesized mo­
tion tends to look unrealistic and puppet like.

Motion is a result of forces

In the late 1980's, researchers working in the
field of computer animation were convinced that
if the animation has to look realistic, the physics
behind the motion has to be taken Into account
[1, 16, 7]. Moreover at that time researchers from

SOFTWARE BULLETIN October 1995/Vol 3.N0 4

computer graphics were already using physics to
model interaction of light with the environment to
produce photorealistic effects. Initial results on
incorporation of physics to produce life like mo­
tion were very encouraging. This is typically done
by augmenting the traditional geometric model to
include other physical characteristics that com­
puters can use to compute motion. Some of these
physical characteristics are mass of the body, its
moment of inertia, and external forces such as
gravity, frictional forces etc. The idea is to incor­
porate appropriate physical complexity *md real­
ism of the behaviour into the model itself, rather
than requiring that it be imposed by the anima­
tor.

• Already, some of the early research into physi­
cally based modelling and animation is finding
application in commercial software. For example,
gravity, friction, and wind help animators create
nearly automatic animation of characters and ob­
jects in Softimage's work-station based, 3D ani­
mation software program called Actor. Also using
Knowledge Revolution’s Interactive Physics, stu­
dents and animators are able to simulate 2D ob­
jects and elements such as ropes, motors and
pulleys that move according to the physical laws
[121.

In computer animation, the objects of intercut
may vary from rigid body to flexible or deformable
body, single body to articulated body, passive
body to active body . A rigid body is one that
does not change shape over time. On the other
hand a deformable body changes shape. A pas­
sive object is an inanimate object which behaves
according to the forces acting upon it but has no
internal mechanism to bring about its own mo­
tion. On the other hand active bodies can bring
about their own motion without external forces.
Articulated bodies are composed of multiple rigid
links that are connected to each other via joints.
A simple articulated body with 5 DOF is shown
in Figure 1. Many articulated bodies have actua­
tors placed at some of its joints which make them
active. The role of an actuator is similar to that of
a muscle in a biological creature. For animation
purposes, simulated actors resembling humans
and animals are created out of articulated bodies
and then automatically fleshed with deformable
elements to give the effect of bones, flesh, skin.
The ultimate goal of physically based animation
is to be able to control and synthesize complex
motions involving simulated actors. The role of

Figure 1: A planar articulated body with three
links and two rotary joints

the animator should be that of a director rather
than that of one who must implement every detail
of animation. Just as the dance choreographer
relies on the ability of the individual dancer , the
animator should be able to rely on the abilities of
the simulated actors involved in a scene.

We see living beings all around us, whether they
are people, animals, birds or fishes. From the
smallest of these creatures to the largest of them;
they all exhibit tremendous skill in coordina­
tion and balance in moving about. Their move­
ments seem amazingly simple, yet as we shall see
later are very demanding to reproduce. In every­
day life, we execute many tasks involving com­
plex motion without feeling burdened or know­
ing how we do what we do. The goal of physi­
cally based animation is to be able to reproduce
such type of motion in the simulated environ­
ment of a computer. How is this different from
creating dinosaurs and animating them? A film
like Jurassic Park is a marvel of collective effort
by artists, animators, computer graphics special­
ists and experts in animal motion. Not only did
they create make believe animals on the screen,
they were also able to demonstrate how well com­
puter graphics techniques can be integrated into
live action. However, there is no single technique
used in the creation o f these sequences. Rather
a number of different strategies/techniques have
gone into making dinosaur scenes. These include
measurement from physical models, realistic mo­
tion data capturing . rotoscoping and traditional
animation, all very cleverly used [111.

On the other hand, in physically based mod­
elling and animation, we are talking about cre­
ating mathematical models o f the objects which

SOFTWARE BULLETIN October 1995/Vol.3,No.4

follow laws of physics. To create mathematical
models of the complexity of dinosaur and simu­
lating them is beyond the means o f the current
technology. Therefore most of the creatures that
we consider are relatively simple but still rich
enough to demonstrate a wide variety of inter­
esting motions. Implementing such scenarios re­
quires creating simulated actors and bestowing
upon them the skills to move about in a natural
way.

The potential application of physical^ based an­
imation is not restricted to the entertainment in­
dustry, it has already found applications in di­
verse fields such as industrial design, medical
imaging and education.

Physically based modelling and animation is rel­
atively a young discipline It allows the user
to model complex motion in a realistic fashion.
Common elements in all physically based anima­
tion are classical dynamics, interbody interaction
and motion control. In the following sections, we
discuss each of these elements briefly in relation
to articulated bodies. Animation techniques con­
cerning deformable objects are not however dis­
cussed here.

Dynamics

Dynamics is concerned with the formulation of
equations of motion and their numerical solu­
tion. Typically these are second order differential
equations and are solved using some of the stan­
dard techniques in numerical methods. There
are many methods to formulate equations of mo­
tion (17|. But all are based on Newton's second
law force equals mass times acceleration F = ma
. Netwton’s law implies that if the position, ve­
locity and all the forces acting on the body are
known at time t, one can compute it’s position
and velocity at time t + At by numerical integra­
tion. See Figure 2. For an articulated body, the
equations of motion are non-linear and are gen­
erally quite complicated to be derived by hand.
These equations are symbolically evaluated, to
yield differential equations which can be written
in the form:

Ax = b

'T ile field was first named In a course in the 1987 ACM
SIGGRAPH annual conference.

* 0 40
' f it * A)

Integrate*
Motion

K«* *0

K0 v(0

Figure 2: Numerical integration of equation of
motion

where A and b are dependent on the internal
torques produced by the actuators at the joints,
external forces due to gravity, forces due to inter­
action with the environment, the physical prop­
erties of the links, and the state o f the links, x
represents the vector o f unknown accelerations.

The accelerations are then numerically inte­
grated to determine the new velocities and po­
sitions of the links.

The most straight-forward method of integration
is using Euler technique. Given the state (posi­
tion, velocity) o f the system and the acceleration
at time t, one can compute state at time t -f At by
the simple formula given below:

p(t + At) — p(t) + v(t)A t

v(t + At) = v(t) + o(t)At

Inter-body interaction

When several objects are moved about by dy­
namic simulation, there is a possibility that they
will interpenetrate. In order to preserve the au­
thenticity of simulation, it is essential that the
computer detect collisions amongst objects and
simulate object response appropriately. Collision
detection is mainly a geometric problem involv­
ing the positional relationship of objects in the
world. On the other hand, collision response is
a dynamic problem, that involves predicting be­
haviour according to physical laws (9). Collision
detection involves checking at every time step t
whether any two objects penetrate. This is com­
putationally very expensive. The basic algorithm
is 0 (n2) for n objects. A number of methods have
been proposed to minimize the computational
cost. A simple way to handle collision response is
to introduce spring forces which prevent objects
being penetrated. Thus whenever collision is de­
tected. a very stiff spring is temporarily inserted

SOFTWARE BULLETIN October 1995A/ol.3.NoA

y-
-y
li­
ne
id
)n
tv -
he
is

je­
on
? i
m-
mi
ive
ial
: is
cts
ie-
ted

C ollision D etection C ollision R esponse

Figure 3: A collision and response

between the points o f closest approach. See Fig­
ure 3. The spring law is usually K/d, that goes
to infinity as the separation d of the two objects
approaches zero. K is a spring constant control­
ling stiffness of the spring. The direction of the
force is such that it pushes the two objects apart.
The spring method is easy to understand but is
computationally expensive. Stiffer springs mean
stiffer equations of motion, which require smaller
time steps for accurate numerical integration. A
robust method o f resolving collision is to use an
analytical method [2]. The analytical method de­
pends upon the conservation of momentum dur­
ing collision. It may introduce discontinuities in
the velocities when a collision occurs. This is
typically solved by stopping the integrator at the
time o f collisions, resolving the collision by com­
puting new angular and linear velocity for each
body and then restarting the integrator with new
initial conditions.

Motion control

Motion control is a fundamental problem in com­
puter animation. One of the major tasks of the
animator is to control the motion of the moving
object according to the script of the animation. In
physically based modelling, it means that proper
torques have to be associated at the joints such
that the desired motion is obtained.

Some of the earlier techniques required the an­
imator to directly specify the torques, each as a
function of time, then view the resulting anima­
tion and refine the torques iteratively to achieve
the desired motion [1, 7], This explicit control
gives physically realistic trajectories, but the level
of automation is low in terms of effort required to
discover and refine acceptable motion. One of the
important objectives of an animation system is to
automate this task.

A common method of defining torques at the

Figure 4: A planar joint with an actuator

joints is through the proportional derivative (PD)
control law [101. The control law acts like a sim­
ulated spring. The way it works is as follows.
Whenever the current angle 6 deviates from the
rest angle 0d of the spring , it applies torque on
the two adjacent links according to the formula:

r = kp(8d - 6) - kdd

Where kp and kd are spring and damping con­
stants respectively. See Figure 4. The advantage
of the PD controller is that the torque function
gets automatically defined once the desired angle
is specified. To execute a particular task, it is
necessary to define a series o f intermediate de­
sired joint angles. Any coordinated task will in­
volve a series of activation o f desired angles for
each active joint. In animation, it would mean
that these desired intermediate angles need to be
determined for executing a particular task. This
is an inverse problem and does not have a unique
solution. For example, if we have to reach for a
cup of coffee, we can do so by moving our hand
in many different Ways. The problem is grossly
underconstrained and can be solved by imposing
additional constraints to define a unique solu­
tion.

There are two methods to solve this problem.
In the first method we specify an approximate
trajectoiy In terms of the position of the object
in space and time (18). This is very similar to
specification of keyframes; except that we require
them in fewer numbers. In addition, we specify
desired initial and final states (position and ve­
locity) and an objective function that would min­
imize or maximize certain criteria. The method
uses the variational calculus technique which is
very similar to gradient methods used for finding
minima of an ordinary real-valued function. The
method starts with the trajectory specified, and

•i

SOFTWARE BULLETIN October 1995/Vbl.3.No.4 3

Figure 5: A three state controller for generating
hopping motion for a lamp

alters it slightly by moving certain points on the
trajectory in some direction. Then a computation
is made to determine whether the new trajectory
is closer to a good trajectory, where good trajec­
tory means laws of physics satisfied, low energy
expenditure and starting and ending conditions
are met. In case it is closer, it becomes the new
trajectory and the entire step is repeated. Here
the assumption is that animals and human be­
ings move such that the energy expended is min­
imum. Although there is no proof for the argu­
ment, in theory, the results gathered to date do
support the suggestion [5],

The second method tries to synthesize a con­
troller which when actuated results into motion
114, 15]. See example in Figure 5. A controller
is just a finite state machine (FSM). Each state of
the controller determines its internal configura­
tion.

Depending upon certain inputs, the FSM goes
from one state to the next state (in the example
shown in Figure 5, it is time). Associated with
each state there is a set of control laws which
specify the torques to be applied at the joints to
bring about the motion. The quality o f the gener­
ated motion depends upon the representation of
the controller and the method o f controller syn­
thesis. Typically, the representation of the con­
troller will determine the number of states in FSM
and its topology. Associated with each state there
are a set of control parameters. For example, the
desired configuration to be reached in a partic­
ular state could be one such set of parameters.
The values of these parameters are determined in
the synthesis phase. In one synthesis method, to
begin with, we choose the control parameter val­
ues arbitrarily. The resulting controller is then
plugged into the simulator (refer to Figure 5) to
generate motion. The output motion is evalu­
ated to determine how good or how bad it is. the
control parameters are altered if necessary and
the simulation process is repeated. Evaluation is

done either by visually inspecting the motion and
then changing the control parameters manually
or with the help of a fitness function and an auto­
mated search procedure, which alters the control
parameters incrementally to the desired optimal
state.

We have implemented and experimented with the
controller based technique for animations with
automated search technique at the National Cen­
tre of Software Technology (8). We discuss in
brief the basic idea behind our method. We de­
fine, what we call motion features as attributes
to characterize motion. Mathematically speak­
ing, one can characterize a motion by a feature
vector / = (/i,/2l .../„) where /i,/2.../„ are the n
individual features. The features are computable
functions which when applied to a given motion
return a set o f numbers. For example, walking
has features which are distinct from that of run­
ning or hopping. Motions which have similar fea­
tures will cluster together in feature space. How­
ever, degree o f separability among types of motion
will strongly depend on the selected features and
the task at hand. The features are chosen such
that they are intuitive for the animator to spec­
ify. The animator specifies the desired motion
with the help of set of features. Once the features
are specified, a fitness function is composed and
a search procedure is called. The task of the
search procedure is to search through the space
of controllers and locate motion having similar
features. Sincc the search space is large and dis-
continuos (a small change in the control parame­
ter causing large change in the resulting motion),
we have chosen the genetic algorithm technique,
which is well suited for this kind of situation [13).

Genetic algorithms are based on the evolution­
ary principle o f "survival of the fittest". The basic
algorithm which can be used for search is de­
scribed below. Let P(t) = be a pop­
ulation (set) o f solutions, for iteration t. Each
solution x\ is evaluated to give some measure
of fitness. Then a new population is formed
for iteration t + 1 by selecting the more fit in­
dividuals from amongst the current population.
Some members of the current population un­
dergo reproduction'by means of genetic operators
to form new solutions. There are unary trans­
formations mi (mutation types), which create new
individual (solution) by a small change in a sin­
gle individual, and higher order transformations
cj (crossover type), which create two new indi

SOFTWARE BULLETIN October 1995/Vol.3,No 4

viduals by combining parts from two individu­
als. After a number of generations the algorithm
converges: the best solution often represents the
optimal solution. See Figure 6. Since the en­
tire procedure is very compute intensive, we have
parallelised the algorithm to run on a number of
networked CPUs using the parallel virtual ma­
chine (PVM) system [6].

procedure genetic algorithm:
begin

t :=0;
initialize P(t);
evaluate P(t);
while not (terminate condition) do
begin

t := t + 1:
select P(t) from P(t-l);
recombine P(t);
mutate P(t):
evaluate P(t);

end:
end:

Figure 6: A simple genetic algorithm

The results of some of our experiments are shown
in the Figures 7-9 below. We have experimented
using our technique on a number of simple but
representative articulated bodies. The simula­
tions typically take about 6 to 7 hours time on
four networked VAX 2000 workstations.

pif! tp n1

Figure 7: Mr. Luxo, a lamp like creature hopping

Figure 8: Mr. Pogo, a dog like creature walking

Figure 9: Mr. Walker, a humgn like creature
walking

Conclusions

The price performance of digital system currently
doubles about every 12 months or so. This has
happened for the last few years and industry
pundits see no immediate end in sight. It is
therefore important that we consider approaches
which today may look computationally impracti­
cal. In the area of virtual reality systems there
is tremendous interest in multi-participant sim­
ulations - virtual worlds networked via the global
internet and hyperlinked with the worldwide web.
These virtual worlds must impose the same phys­
ical restraints as in the real world i.e gravity,
picking up and putting down objects, restrict­
ing motion to walking around, climbing up/down
stairs etc. A world without life (virtual or real)
would be a dull place indeed! Physically based
and automated search techniques like the genetic
algorithm discussed above may today be very
compute intensive but will surely come very soon
within the reach of available computing power
and thus are bound to have far reaching impacts
on the simulation of virtual worlds.

Acknowledgement

This work was carried out at the Graphics & CAD
Division of the National Centre for Software Tech­
nology (NCST). Bombay during my study leave
period from the University. I am grateful to Dr.
S. P. Mudur. for his continued intellectual, emo­
tional. and technical support. I thank Atul Jain
for his help in the implementation. Lastly. I
thank Dr. S. Ramani, Director NCST for pro­
viding an excellent research environment and the
Goa University authorities for their financial sup­
port.

References

11) William Armstrong and Mark Green. The

SOFTWARE BULLETIN October 1995.Vol 3.No 4

dynamics o f articulated rigid bodies for
purpose o f animation. Visual Computer.
1(4):231-240, 1985.

[2| David Baraff. Analytical methods for dy­
namic simulation of non-pcnetrating rigid
bodies. Computer Graphics, 23(3):223-231,
1989.

[31 N. Burtnyk and M. Wein. Interactive skele­
ton techniques for enhancing motion dy­
namics in key frame animation. Communi­
cation o f the ACM. 19(10):564-569, 1976.

[41 E. Catmull. The problems of computer as­
sisted animation. Computer Graphics, SIG-
GRAPH'78. pages 348-353, 1978.

[5] C. K. Chow and D. H. Jacobson. Studies
of human locomotion via optimal program­
ming. Mathematical Bioscience. 10:239-306,
1971.

|6) Geistet. al. PVM 3 user's guide and reference
manual.

(7) Paul M. Issac and Michael F. Cohen. Con­
trolling dynamic simulation with kinematic
constraints, behavior functions and in­
verse dynamics. Computer Graphics, SIG-
GRAPH'87, 21:215-224. July 1987.

[81 V. V. Kamat. Automatic motion synthesis o f
articulated figures fo r computer animation.
PhD thesis, Goa University, 1996. To be
submitted.

[9] Mathew Moore and Jane Wilhelms. Colli­
sion detection and response for computer
animation. Computer Graphics, 22(4):289-
298. 1988.

110) Mark Raibcrt and Jessica Hodgins. Anima­
tion o f dynamic legged locomotion. Com­
puter Graphics. 25:349-358, July 1991.

(11) B. Robertson. Dinosaur magic. Computer
Graphics World, pages 44-52, September
1993.

[121 B. Robertson. Physical graphics. Computer
Graphics World, pages 37—43, March 1993.

(131 M. Srinivas and L. M. Patnaik. Genetic algo­
rithms: a survey. IEEE Computer, 27(6): 17-
26, 1994.

|14| Michiel van de Panne. Eugene Fiume, and
Zvonko Vranesic. Reusable motion synthe­
sis using state-space controller. Computer
Graphics SIGGRAPH’90, 24:225-234, Au­
gust 1990.

[15] Michiel van de Panne, Ryan Kim, and Eu­
gene Fiume. Virtual wind-up toys for ani­
mation. In Proceedings o f Graphics Interface.
pages 208-215, 1994.

[161 Jane Wilhelms. Toward automatic motion
control. IEEE Computer Graphics and Appli­
cations, 7(4): 11-22. 1987.

(17) Jane Wilhelms. Dynamic experiences. In
Norman I. Badler, Brian A. Barsky, and
David Zeltzer, editors. Making them move:
mechanics, control and animation, pages
265-279. Morgan Kaufmann, 1991.

[181 Andrew Witkin and Michael Kass. Spacetime
constraints. Computer Graphics, 22:159-
168. August 1988.

□

SOFTWARE BULLETIN October 1995/Voi.3,No 4

