
Evolutionary Programming For Animating Articulated Figures V. V. Kamat et. al

An Evolutionary Programming Technique Using Motion Features For
Animating Articulated Figures

V. V. Kamat1, Atul Jain2, S. P. Mudur3

The primary purpose of a computer animation system is to provide assistance to the human
animator in synthesizing the movement of the animated character such that the resulting
motion appears physically correct and natural. If the character is modelled as an articulated
figure consisting of an appropriate number of links and joints, then it’s movement could be
specified by a trajectory — time dependent values for the position of the figure. Hence all pos­
sible trajectories for a given set of goals to the character can be considered as forming a space
of trajectories and the problem of synthesizing movement can be viewed as that of searching
in this space for a trajectory satisfying all the physical requirements and the animator’s goals.
Unfortunately, this space is normally of very high dimension, and even for relatively simple
characters and goals, the solution space is vast, multimodal and discontinuous, not lending
itself very well to the use of conventional gradient based search techniques.

This paper presents an evolutionary programming technique that uses motion features to
direct the search. While genetic algorithms for motion synthesis have been proposed by other
researchers, the computation of motion features and their use in the definition of a fitness
function for determining subsequent generations is novel. The method has been implemented
and simulation experiments with characters of reasonable complexity have yielded very good
results. In this paper, we describe in detail the evolutionary programming technique that we
have devised, computation of motion features and fitness function formulation. We also present
results from some of the experiments conducted using our implementation.

1 Animation as Trajectory
Search

Over the past few years, computer animation has
rapidly progressed from the production of simple
transformation based movements of inanimate ob­
jects to the production of natural looking and highly
sophisticated movement of simulated characters.
The primary purpose of a computer animation sys­
tem is to provide assistance to the human animator
in synthesizing the movement of the character such
that all the movements and actions appear to work
in concert in order to suspend the disbelief of a char­
acter’s existence. The realism of the movements of
dinosaurs in the film Jurassic Park is a very good
example of what is possible with computer anima­
tion techniques today.

Movement or motion is a dynamic phenomena. If

'Goa University, Goa
2HCL Technologies, Noida
3National Centre for Software Technology, Mumbai

the character to be animated is modelled as an artic­
ulated body composed of links that are connected to
each other via joints, then the movement involves
change in spatial configuration of the articulated
body over time. The spatial configuration of a body
is defined geometrically using Degrees o f freedom
(DOF), which constitutes the minimal set of param­
eters needed to completely specify the configuration
of a body in space. An articulated body has DOF
depending on the number of links, joint types etc.
Consider for example the planar articulated body
with 3 links and 2 rotary joints as shown in Fig­
ure 1. This simple body has 5 degrees of freedom.
Human bodies are amongst the most complicated of
articulated bodies, with about 200 degrees of free­
dom [20],

A universally accepted convention is to consider de­
grees of freedom as constituting a vector and use
vector notation say X to denote the spatial configu­
ration of a body. Hence the motion of the body over a
time period T would be denoted by X(t), 0 < t < T .
This is also referred to as the trajectory.

Computer Science and Informatics Vol.26No.4, 1996

Figure 1: A planar articulated body with three links
and two rotary joints

\

goal can be achieved in many different ways. Thus,
for example, a cup of coffee might be reached while
moving the hand along many different paths. Usu­
ally the search is cast as a non-linear constrained
optimization problem. The physical laws, and phys­
ical and user specified constraints are to be satisfied
while the animators goals are in the form of an ob­
jective function to be optimized. Unfortunately, the
solution space is vast and even for relatively sim­
ple characters and goals, the space could be mul­
timodal and discontinuous. As a result traditional
local optima search techniques such as steepest de­
scent etc., do not work satisfactorily. Other more
robust and global search methods need to be con­
sidered. Genetic algorithm based search techniques
are in this category.

A rather simple definition of the motion synthesis
problem is as follows:

Given the geometry of an articulated body,
say X, a desired type of movement say
walk and a time period T, determine
X(i), 0 < t < T such that the result­
ing motion looks physically correct and
natural.

The above definition hides the enormous underly­
ing complexity in this problem. Certainly physics
is involved; gravitational and other forces have to
be considered. Animators for example, take years
before they acquire the necessary skills to predict
the spatial configurations of objects at any time for
generating a specific movement.

There is another view to the motion synthesis prob­
lem. All possible trajectories for a given character
for a particular goal specified by the animator, can
be considered as forming a space of trajectories and
the problem of synthesizing a particular movement
can be viewed as that of searching for a suitable tra­
jectory in that space. The trajectory that is finally
selected must satisfy all the physical requirements
and also the animators goals. For autonomous ar­
ticulated figures however, the search problem gets
extremely complex. Firstly the number of DOF is
very large. As a result the trajectory space is of
very large dimension. Secondly, there is always
built in task level redundancy, i.e any behaviourial

2 A Brief Review of Trajectory
Search Techniques

Traditional Key-frame animation systems provided
some minimal support in the interactive creation of
a trajectory. In key-frame animation, the animator
describes a set of “key-fraihes” from which the sys­
tem geometrically interpolates in between frames
to obtain the complete trajectory. With sufficient
number of trials the animator can construct the de­
sired trajectory. There are two major problems with
key-frame animation. Firstly, it requires the ani­
mator to adjust too many parameters at very fine
levels of detail. Secondly, to generate very convinc­
ing iooking motion, the animator must have a very
good understanding of the motion. In practice, how­
ever, even after many trials, key-frame synthesized
motion tends to look unrealistic and puppet like.

In the late 1980’s, researchers working in the field
of computer animation were convinced that if the
animation has to look realistic, the physics behind
the motion has to be taken into account. Thus tradi­
tional geometric models were augmented to include
physical characteristics such as mass of the body,
its moment of inertia, external forces like gravity,
friction etc. Interaction with other objects in the
environment and resulting behaviour is also mod­
elled and variety of collision detection and collision
response techniques have evolved [9]. The idea is

2

Evolutionary Programming For Animating Articulated Figures V. V. Kamat et. al

to incorporate appropriate physical complexity and
realistic behaviour into the model itself, rather than
imposing it on the animator. Initial results on incor­
poration of physics to produce realistic movements
were very encouraging [1, 18].

However, this is not without problems. The spec­
ification of forces and torques to produce desired
motion is non-intuitive and certainly non-trivial.
Further, once time varying forces/torques are spec­
ified the motion is completely determined and is
autonomous, and not any more under the control
of the animator. Thus incorporation of physics into
the model results into loss of fine control over the
generated motion.

Two approaches have evolved that partially over­
come this problem. In the first approach the tra­
jectory is discretized in space and time and then
an iterative search is made in the trajectory space
for a trajectory satisfying physical constraints, user
specified constraints and optimizing an objective
function [19]. The method uses the variational cal­
culus technique which is very similar to the gradi­
ent methods used for finding the local minima of an
ordinary real-valued function.

The second approach, tries to synthesize a con­
troller which when executed results into motion
[16, 13, 14]. A controller is just a finite state ma­
chine (FSM) with a set of rules that determines the
torques to be applied at the joints in any given state.
Controllers can be parameterized using fewer num­
ber of parameters and the search is made in the pa­
rameter space of controllers for a set of parameters
which when plugged into a controller results into
motion that satisfies the user specified constraints
and optimizes the objective function. (See Figure 2).

Although both the methods differ fundamentally
in technique, they suffer from the same source of
difficulties mentioned earlier, namely the solution
space for desired motion is vast, and multimodal i.e
replete with solutions which are not so good. Sec­
ondly, due to the dynamic instability of the system
the solution space is discontinuous which causes ex­
treme sensitivity towards control parameters and
initial conditions. This manifests itself in the form
of drastic changes in the motion behaviour of the
creature even with slight changes in the control pa­
rameters or in the initial condition.

(a) Parameter Optimization (b)Conrolter Synthesis

State /Sensor /Time

(c) Controller Playback

Figure 2: Controller synthesis and playback

Evolutionary based search algorithms basically be­
ing global and more robust are better suited for
such situations. Application of evolutionary based
search for motion planning and motion control is
not new. Davidor [4] has used genetic algorithms
for generating and optimizing a time-indexed se­
quence of configurations in robot trajectory plan­
ning. Fogel has used evolutionary programming to
generate “bang bang” solution to classic cart-pole
[2] problem in control. De Garis [5] uses genetic al­
gorithms to synthesize weights in a neural network
to produce the walking behaviour of a bipedal ar­
ticulated figure. However, his underlying model is
geometric and not physical. Lately researchers in
computer animation have also started using evolu­
tionary based techniques to synthesize motion se­
quences in animation [13, 15, 8], Ngo and Marks
[13] for example have used a massively parallel ge­
netic algorithm to synthesize motion of articulated
figures using what they call as "Banked stimulus
response" controllers. A genetic algorithm is also
used in controller synthesis in the recent work by
[15] and by Gritz and Hahn [8]. While all the above
research has shown the applicability and effective­
ness of genetic algorithm based search techniques
in animating articulated figures, the work reported
in this paper defines new techniques which extend
the use of such evolutionary algorithms for more
goal oriented motion synthesis. We use motion fea­
tures to characterize different types of motions and
for making the specification of animator’s goals sim-

3

Computer Science and Informatics Vol.26No.4, 1996

pie and natural. These motion features are then
used to define a fitness function which is instru­
mental in determining subsequent generations of
trajectory solutions.

3 Solution Representation

The choice of representation for the solutions plays
a crucial role in the success of the evolutionary al­
gorithm.

Ideally, the representation should be such that the
motion synthesis problem can be solved in a rea­
sonable time, without sacrificing generality. This
directly implies the following:

1. The representation should be as compact as
possible so that the dimensionality of the pa­
rameter space is kept low.

2. A method is needed that smoothly alters the
internal configuration from one time slice to
another. This would reduce the number of dis­
tinct spatial configuration samples that need
to be computed for the given time interval.

Compactness is achieved by having fairly powerful
rule based controller representations that need a
small number of states and hence a small number
of parameters.

A common method of achieving smoothness is
through the use of the proportional derivative (PD)
control law. It consists of a spring/damper mecha­
nism in which a torsional spring attached between
two links applies a torque on the adjacent links ac­
cording to the equation:

r — kp(6d - 9) - kv 9

where kp is the spring constant, kv is the damper
constant, 9 and 9 are the current angle and the an­
gular velocity respectively and 9<j is the rest angle
(equilibrium position) of the spring. (See Figure 3)
The values of kp and kv are typically chosen such
that the mechanism is critically damped. A crit­
ically damped system is one that when disturbed
will most rapidly return to equilibrium position.

6<,

\
\V

r = kp(9d - 6) - kvQ \

Figure 3: Actuator modelling spring damper mech­
anism

Such a system acts to control the angular position,
in that, if the current angle is different from the
equilibrium angle, the spring will apply a torque on
the adjacent links so as to again be in equilibrium.
For example, if the current limb joint angle is less
than its desired angle, the mechanism will cause a
positive torque to be applied to the joint to move it
back toward the desired angle and vice versa. The
velocity damping term reduces the torque applied
to the joint once movement towards the desired an­
gle is underway. By changing the desired angle at
different instances of time, the mechanism can be
actuated to bring about the motion.

The advantage of the PD controller is that the torque
function gets automatically defined once the desired
angle is specified To execute a particular move­
ment of the joint, it is necessary to define a series
of desired joint angles. The motion synthesis prob­
lem is then converted to that of synthesizing the
function 9d[t). If the articulated figure has m ac­
tuators, it amounts to synthesizing m functions of
the type ©d(<) = (9l(t), 92d(t) . . . 9™(t)). The simplest
way to solve the problem is to choose a piece-wise
continuous function. This function could be a con­
stant, linearly varying or more complex with contin­
uous basis functions such as splines [3], sinusoids
or wavelets [11],

4

Evolutionary Programming For Animating Articulated Figures V. V. Kamat et. al

For the sake of simplicity, for our experimentation
purposes, we have used piece-wise constant func­
tions. To synthesize a motion sequence for duration
T, we divide T into several phases or states. Each
phase will be associated with a set of parameters
such as

t, e{d, **, K

where
i — ith joint actuator
8xd — desired angle for the itK joint
k'p — spring constant corresponding to the

ith joint
k'v — damping constant corresponding to

the ith joint
t — time duration of the phase.

If there are fifteen phases in a motion sequence, the
number of unknowns to be determined are 15 x 4 =
60. We have mentioned earlier, that, as the simula­
tion duration increases, the search space increases
exponentially. When we consider periodic motion,
such as walking, running, hopping, etc. one can
reduce the search space. In periodic motion, after
every period tper, the motion is repeated to fill the
simulation time T. Unknown parameters depend
only on the number of phases in the period tpeT.
(See Figure 4.)

£
T = Simulation time

— T— 7 V
x : / . A

t\ H H . . , . i 4

Figure 4: An illustration of the controller

In order to reduce the search space further, one
can fix the values t, k'p, k[a priori. The time pe­
riod t could be either derived from a previously syn­
thesized keyframed version of the motion or from
live or video data of a creature similar in size and
shape [17]. Values of spring constants can be esti­

mated depending on the mass of the body. For heav­
ier links, higher values of spring constants are re­
quired in order to protect the springs from a possible
collapse (spring failure). However, values should
not be so high that they would generate such high
torques at the joints that unexpected motions are
caused.

4 Motion features

In automatic motion synthesis for articulated fig­
ures, the animator essentially specifies the follow­
ing:

1. the physical structure of the character (link
lengths, mass, moment of inertia, range of an­
gles for the joints etc.)

2. the joints where the actuators are to be placed
which will control the character’s internal con­
figuration

3. criteria for evaluating the character’s motion

Given this information, the computer animation
system is expected to automatically generate a phys­
ically realistic motion satisfying the criteria speci­
fied by the animator. In most of the systems de­
scribed in the literature so far, the criterion for eval­
uating the character’s motion is kept rather simple,
say, motion with minimal energy, or with maximum
height or maximum distance traveled, etc. One of
the main drawbacks of these methods is the diffi­
culties associated with the specification of a suitable
performance criterion. Even in the case when the
animator wants to generate a slightly different mo­
tion for the character, a different motion evaluation
criteria would have to be given and the synthesis
process started again. The methods provide no clue
whatsoever as to how to choose other criteria, even
those which are slightly differing from the first! We
have proposed the use of motion features to over­
come this problem and these are briefly discussed
below.

We define, what we call motion features as attributes
to characterize motion. The basic idea here is to
classify different types of motion according to fea­
tures, and use that information to synthesize new

5

Computer Science and Informatics Vol.26 No.4, 1996

controllers that can generate motion with similar
features. It is well known that, humans can ef­
fortlessly perceive the subtle details of the types
of motions found in animals. This includes a wide
variety of motions ranging from undulatory motion
of worms, to the esthetic walk of human beings.
The deep rooted structure underlying motion is so
well understood by humans that we are often able
to identify the gender of a person just by the style
of the walk. Since in computer animation our ob­
jective is to generate natural looking motion, an
obvious question to ask is, whether the informa­
tion present in the perceived motion can be used
in creation of natural looking motion. In this sec­
tion we explore this idea in some detail. Our hy­
pothesis is that, the information which humans use
to identify, distinguish among, and classify motion
patterns could be used in the search for suitable
motion. The motivation for such an hypothesis can
be found in [10, 12].

Mathematically speaking, a motion can character­
ized by a feature vector f = (/i, / 2, .../n) where
fufo-'-fn are the n individual features. The fea­
tures are computable functions which when applied
to a given motion return a set of numbers. For
example, walking has features which are distinct
from that of running or hopping. Motions which
have similar features will cluster together in fea­
ture space. However, degree of separability among
types of motion will strongly depend on the selected
features and the task at hand. The features are
to be chosen such that they are intuitive for the
animator to specify and also have good discrimina­
tion properties. The animator specifies the desired
motion with the help of a set of features. Once
the features are specified, a fitness function is com­
posed and a search procedure is called. The task of
the search procedure is to search through the space
of controllers and locate motion having similar fea­
tures. (See Figure 5.)

Some of the features that we have built into our
implementation and experimented with are :

• key poses (03|i), fully or partially specified

• external energy (E)

• horizontal distance traveled by the centre of
mass (D)

. Initial features

a Desired features

Feature 2

Figure 5: Search in feature space for desired motion

These features could either be extracted out of ac­
tual motion using motion capture devices or spec­
ified by the animator. The optimization function
tries to match the features of the synthesized mo­
tion to that desired by the animator.

5 Evolutionary programming

Typically the goal of an optimization process is not
only to achieve an optimal solution but also to find
an optimal process to achieve that goal. In order to
search effectively, it is necessary to specify a small
but useful amount of additional information that
can greatly reduce the synthesis or search time.
The information we are providing is the following:

1. time interval between the phases

2. the number of phases in period tper.

3. values for spring and damper constants

6

Evolutionary Programming For Animating Articulated Figures V. V. Kamat et. al

sam ples joxn ts

/ = « i * E
» = i j = i

„ {E0 - E) .+W2 * (i ------ ---------)
x>mai

Umax

where,

u>i, « 2i ^ 3 are weights, assigned to the features
depending on their relative,
importance the value ranging
betwifigs 0 and 1 .

is the angle at joint j for sample,

is the external energy

is the horizontal distance travelled

Emax i Dmax are the maximum expected external
energy and horizontal distance,
respectively. These values are
used for normalization of the two.

quantities.

Ol.,y E°,D0 are the feature values obtained
during feature extraction process.

Stochastic Population Hill Climbing (SPHC)
Algorithm

The SPHC algorithm is an evolutionary program­
ming algorithm [7] that can be distinguished from
genetic algorithms, primarily by the fact that it
uses only the mutation operator and does not use a
crossover operator.

Like all genetic algorithms (SPHC) uses a popula­
tion of solutions. Each solution in the population
is perturbed randomly at each iteration, using the
mutation operation with probability 1. The result­
ing solutions are compared with their original so­
lutions and the better ones are kept for the next
generation. Periodically, a re-seeding operator is

Initialize populationEvaluate each solution in the population for generation = 1 to number, of-generations for each individual solution in the population Randomly perturb the solution Evaluate new solution if (new solution better than) old solution)then replace old solution with new solution end forif ((generation mod re-seed.interval) = 0-)then Rank order the population Replace bottom 50% of population with top 50% end if end for

Figure 6: Stochastic population hill climbing
(SPHC)

applied which selects the top half of the population
and copies them into the bottom half of the popu­
lation, refocusing the search on the most promising
solutions in the population. The full algorithm is
shown in Figure 6.

Mutation Operator

The mutation operation is the backbone of our SPHC
algorithm. In every iteration all solutions go through
this operation. Since a slight change in parame­
ters can change the motion drastically, it is nec­
essary to apply the mutation operation with care.
We have selected to mutate only one parameter at
a time with only a small change in original value.
The parameter to mutate is selected randomly with
all the parameters having equal probability. This
was found quite suitable through experiments, as
it helps the algorithm to fully explore the region
near to the existing solution. If we try to mutate
more than one parameter at a time, the solution
may jump from one region to another without ex­
ploring the current one. As the function is mul­
timodal, it may actually be the case that optimal
solution is in the vicinity of solution being mutated.
Each time mutation is called either the selected pa­
rameter goes through a creep operation4 or all its
parameters are randomized from scratch. As there

4The creep operation is used here to modify the parameter by
a very small factor

Computer Science and Informatics Vol.26 No.4, 1996

Randomly select any one of the phases to be modified
Randomly select the operation to be

applied on the selected phase if (operation is creep operation) then
Randomly select one of t;he creep operations operations and applyelse
Generate randomized parameters for new phase

phase from scratch

Figure 7: Mutation operation

are three types of parameters to be modified, there
are three possible creep operations, these are de­
fined as follows:

1. The original time interval is multiplied by a
randomly chosen factor close to unity (0.8 -
1.2).

2. One of the joint angles is selected randomly
and changed by a randomly chosen amount
between -1 0 degrees and 10 degrees.

3. One of the joint angles is selected randomly
and multiplied by a randomly chosen factor
close to unity (0.8 - 1.2).

6 Implementation and Results

For the sake of containing the computational efforts
involved, we have considered only 2D planar bod­
ies. Apart from gravity, the other external forces
exerted on the articulated figure that we have con­
sidered are those due to its interaction with the
ground. The ground has been modelled using a
spring and damper mechanism which exerts forces
on the articulated figure at the points of contact.
Typically, the position and velocity of these contact
points on the articulated figure are used to compute
the external forces as follows:

F x — (^n® Px'jkp vx kv

F y — — (m y — p y) k p — V y k v

Spring and damper constants chosen are kr =
105N/m and kv = 10sN/m. This creates a suitably
stiff floor that functions effectively when used in a
simulator. Since the equations of motion for our
articulated bodies are too complex to be derived by
hand, they have been compiled symbolically using
the Newton-Euler recursive formulation. The equa­
tions of motion are solved for acceleration using LU
decomposition method and integrated to get posi­
tion/orientation using simple Euler method. The
time step for integration has been chosen as small
as 0.005 to overcome the stiffness problem. How­
ever, this results into long simulation times. In or­
der to overcome this problem, we have parallelized
the SPHC algorithm to run on a Parallel Virtual
Machine (PVM) [6]. We have experimented using
our technique on a number of simple but repre­
sentative articulated bodies. It took about 6 to 7
hours of computation time to synthesize a controller
on four networked VAX 2000 workstations running
PVM.

We describe below the structure and motion be­
haviour from our experiments of two creatures
named Luxo and Pogo.

ft
6.1 The Luxo creature

Figure 8 shows the geometric structure of Luxo.
It is a lamp like creature made of three links con­
nected with two joints.

Figure 8: A luxo articulated body

Table 1 shows the allowable ranges of joint angles
(in degrees) defining the internal configurations.

8

Evolutionary Programming For Animating Articulated Figures V. V. Kamat et. al

Joint Min Max
A l -300 -240
A2 360 210

Table 1: Luxo Angles

Table 2 shows the physical properties of different
links.

Link Mass Inertia cmassx cmass y
LI 0.15 0.00312 0.0 0.0
L2 0.10 0.00208 0.25 0.0
L3 0.30 0.00625 0.25 0.0

Figure 9: Synthesis of two different controllers for
Luxo

Table 2: Physical Properties of Luxo

The controller for Luxo has been designed using two
phases. The parameter space is ten dimensional.
The ratio kp/kv is approximately chosen as 0.1.

Figure 10: Mr. Luxo, a lamp like creature hopping

Feature values have been chosen so as to synthe­
size hopping motion. The progress of the search
algorithm in finding the hopping motion controller
is shown in Figure 9. The motion has been synthe­
sized for two different initial populations. In the
first case the desired controller is found after 40
generations with a population size of 50. In the
second case, more or less a similar controller was
found after only 25 generations.

Figure 10 shows the hopping motion obtained for
Luxo Figure 11 shows a phase diagram which plots
the height of the centre of mass versus vertical ve­
locity of centre of mass. The trajectories in the
phase diagram show a periodic behaviour with tra­
jectories being attracted towards an attractor cy­
cle. Figures 12 and 13 show the variation of joint
torques and the variation of joint angles with time.

<U>

Figure 11: Height of centre of mass v/s velocity for
Luxo

Change in fitness of soultion with genetations

0 5 10 15 20 25 30 35 40
Generation

0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 1 .1
Cmass Height (m)

9

Computer Science and Informatics Vol.26No.4, 1996

&
O

O*-3

Time

Time (sec)

Figure 12: Torque v/s Time for Luxo

*010

T3«U

tJi
C«J

o*-3

Time (sec)

Time (sec)

Figure 13: Joint Angles v/s Time for Luxo

10

Evolutionary Programming For Animating Articulated Figures V. V. Kamat et. al

6.2 The Pogo creature

The geometric structure of “Pogo” is shown in Fig­
ure 14. It is a dog like creature made of five links
connected with four joints.

Figure 14: A pogo articulated body

Table 3 shows the allowable ranges of joint an-
gles(in degrees) defining the internal configuration.

Joint Min Max
A l -115 -45
A 2 270 360
A3 -70 -40
A4 210 300

Table 3: Pogo Angles

Table 4 shows the physical properties of different
links. 4.

Link Mass Inertia cmassx cmassy
LI 0.15 0.003123 0.25 0.0
L2 0.10 0.002082 0.125 0.0
L3 0.10 0.002082 0.125 0.0
L4 0.10 0.002082 0.125 0.0
L5 0.10 0.002082 0.125 0.0

Table 4: Physical Properties of Pogo

The controller for Pogo has been designed using
two phases again. The parameter space is how­
ever eighteen dimensional. The ratio kp/kv is ap­
proximately chosen as 0.1. Feature values have

been chosen so as to synthesize walking motion.
The progress of the search algorithm in finding the
walking motion controller is shown in Figure 15.

Change in fitness of soultion with genetations

Generation

Figure 15: Synthesis of a controller for Pogo

The result of the simulations of Pogo are shown in
the Figure 16 below.

Figure 16: Mr. Pogo, a dog like creature walking

Figure 17 shows a phase diagram which plots height
of centre of mass versus vertical velocity of centre of
mass. The trajectories in the phase diagram once
again show a periodic behaviour with trajectories
being attracted towards an attractor cycle.

7 Concluding Remarks

In this paper we have first shown how the task
of motion synthesis for an autonomous character
in computer animation can be viewed as a con­
strained optimal search problem in trajectory space.
Since the solution space does not admit to con­
ventional gradient based local optima search tech­
niques use of more robust and global optima search
like the evolutionary programming technique is rec­
ommended. We have described in detail a novel

11

Computer Science and Informatics Vol.26 No. 4, 1996

0 . 1 5 0 . 2 0 . 2 5 0 . 3 0 . 3 5 0 . 4 0 . 4 5
Cmass Height (m)

Figure 17: Height v/s velocity of centre of mass for
Pogo

extension of the evolutionary programming tech­
nique using motion features. While we have used
very simple motion features in our implementa­
tion and in our experimental simulation, the re­
sults obtained for complex movements like hopping
and walking for reasonably complex virtual crea­
tures are indeed very encouraging. Parallelizing
the search algorithm has also shown that the method
scales easily to perform well with increase in the
number of processors. Certainly a more comprehen­
sive repertoire of motion features have to be evolved
and more experiments need to be carried out with
different kinds of movements being specified and
automatically synthesized.

8 Acknowledgements

The above work has been carried out in the Graph­
ics and CAD Division of NCST Bombay while the
first author was on a study leave from the univer­
sity and the second author was a project student.
The authors are very grateful to Dr. S. Ramani,
Director, NCST for his generous support and en­
couragement. The first author would also like to
express his sincere thanks towards Goa University
authorities for the financial support.

References

[1] William Armstrong and Mark Green, “The
dynamics of articulated rigid bodies for pur­
pose of animation”, Visual Computer, 1(4):231-
240,1985.

[2] A. G. Barto, R. S. Sutton, and C. W. Ander­
son, “Neuron-like adaptive elements that can
solve difficult learning control problem”, IEEE
Transaction on Systems Man and Cybernetics,
13:834-846, 1983.

[3] Micheal F. Cohen, “Interactive space time
control for animation”, Computer Graphics,
26:293-302, July 1993.

[4] Y. Davidor, “A genetic algorithm applied to
robot trajectory generaiton.” In L. Davis, ed­
itor, Handbook o f genetic algorithms, pages
144-165. Van Nostrand Reinhold, 1991.

[5] H. de Garis, “Genetic programming: building
artificial nervous system using genetically pro­
grammed neural network modules.” Proceed­
ings o f the seventh international conference on
machine learning, pp 132-139, 1990.

[6] Geist et. al. PVM 3 user’s guide and reference
manual.

[7] A. Fukunaga, L. Hsu, P. Reiss, A. Shuman, J.
Christenen, J. Marks, and J. T. Ngo. “Motion-
synthesis techniques for 2d articulated fig­
ures”. Technical Report TR-05-94, Harvard
University, Center for Research in Computing
Technology, 1994.

[8] L. Gritz and J. Hahn. “Genetic programming
for articulated figure motion”. The Journal
o f Visualisation and Computer Animation,
6(3):129-142, 1995.

[9] V. V. Kamat. “A survey of techniques for sim­
ulation of dynamic collision detection and re­
sponse”. Computers and Graphics, 17(4):379-
385, 1993.

[10] J. A. S. Kelso and A. S. Pandya. “Dynamic pat­
tern generation and recognition”. In Norman
I. Badler, Brian A. Barsky, and David Zeltzer,
editors, Making them move: mechanics, control
and animation, pages 171-190. Morgan Kauf-
mann, 1991.

12

Evolutionary Programming For Animating Articulated Figures V: V. Kamat et. al

[11] Zicheng Liu, Steven J. Gortler, and Micheal F.
Cohen. “Hierarchical spacetime control”. Com­
puter Graphics, 28:35-42, 1994.

[12] T. McMahon. “Mechanics of locomotion”. The
International Journal o f Robotics Research,
3(2):5-26, 1984.

[13] J. T. Ngo and J. Marks. “Physically realistic
motion synthesis in animation”. Evolutionary
Computation, l(3):235-268, 1993.

[14] Mark Raibert and Jessica Hodgins. “Anima­
tion of dynamic legged locomotion”. Computer
Graphics, 25:349-358, July 1991.

[15] Karl Sims. “Evolving virtual creatures”. Com­
puter Graphics, 28:15-22, July 1994.

[16] Michiel van de Panne, Eugene Fiume, and
Zvonko Vranesic. “Reusable motion synthe­
sis using state-space controller”. Computer
Graphics SIGGRAPH’90, 24:225-234, August
1990.

[17] Michiel van de Panne, Ryan Kim, and Eugene
Fiume. “Virtual wind-up toys for animation”.
In Proceedings o f Graphics Interface, pp 208-
215, 1994.

[18] Jane Wilhelms. ’Toward automatic motion
control”. IEEF Computer Graphics and Appli­
cations, 7(4): 11-22, 1987.

[19] Andrew Witkin and Micheal Kass. “Spacetime
contraints”. Computer Graphics, 22:159-168,
August 1988.

[20] D. Zeltzer. ‘Task-level graphical simulation:
abstraction, representation and control”. In
Norman I. Badler, Brian A. Barsky, and David
Zeltzer, editors, Making them move: mechan­
ics, control and animation, pages 171-190.
Morgan Kaufmann, 1991.

13

