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Animating Articulated Figures
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The primary purpose of a computer animation system is to provide assistance to the human 
animator in synthesizing the movement of the animated character such that the resulting 
motion appears physically correct and natural. If the character is modelled as an articulated 
figure consisting of an appropriate number of links and joints, then it’s movement could be 
specified by a trajectory — time dependent values for the position of the figure. Hence all pos­
sible trajectories for a given set of goals to the character can be considered as forming a space 
of trajectories and the problem of synthesizing movement can be viewed as that of searching 
in this space for a trajectory satisfying all the physical requirements and the animator’s goals. 
Unfortunately, this space is normally of very high dimension, and even for relatively simple 
characters and goals, the solution space is vast, multimodal and discontinuous, not lending 
itself very well to the use of conventional gradient based search techniques.

This paper presents an evolutionary programming technique that uses motion features to 
direct the search. While genetic algorithms for motion synthesis have been proposed by other 
researchers, the computation of motion features and their use in the definition of a fitness 
function for determining subsequent generations is novel. The method has been implemented 
and simulation experiments with characters of reasonable complexity have yielded very good 
results. In this paper, we describe in detail the evolutionary programming technique that we 
have devised, computation of motion features and fitness function formulation. We also present 
results from some of the experiments conducted using our implementation.

1 Animation as Trajectory 
Search

Over the past few years, computer animation has 
rapidly progressed from the production of simple 
transformation based movements of inanimate ob­
jects to the production of natural looking and highly 
sophisticated movement of simulated characters. 
The primary purpose of a computer animation sys­
tem is to provide assistance to the human animator 
in synthesizing the movement of the character such 
that all the movements and actions appear to work 
in concert in order to suspend the disbelief of a char­
acter’s existence. The realism of the movements of 
dinosaurs in the film Jurassic Park is a very good 
example of what is possible with computer anima­
tion techniques today.

Movement or motion is a dynamic phenomena. If
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the character to be animated is modelled as an artic­
ulated body composed of links that are connected to 
each other via joints, then the movement involves 
change in spatial configuration of the articulated 
body over time. The spatial configuration of a body 
is defined geometrically using Degrees o f freedom 
(DOF), which constitutes the minimal set of param­
eters needed to completely specify the configuration 
of a body in space. An articulated body has DOF 
depending on the number of links, joint types etc. 
Consider for example the planar articulated body 
with 3 links and 2 rotary joints as shown in Fig­
ure 1. This simple body has 5 degrees of freedom. 
Human bodies are amongst the most complicated of 
articulated bodies, with about 200 degrees of free­
dom [20],

A universally accepted convention is to consider de­
grees of freedom as constituting a vector and use 
vector notation say X  to denote the spatial configu­
ration of a body. Hence the motion of the body over a 
time period T would be denoted by X(t), 0 < t  < T . 
This is also referred to as the trajectory.
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Figure 1: A planar articulated body with three links 
and two rotary joints

\

goal can be achieved in many different ways. Thus, 
for example, a cup of coffee might be reached while 
moving the hand along many different paths. Usu­
ally the search is cast as a non-linear constrained 
optimization problem. The physical laws, and phys­
ical and user specified constraints are to be satisfied 
while the animators goals are in the form of an ob­
jective function to be optimized. Unfortunately, the 
solution space is vast and even for relatively sim­
ple characters and goals, the space could be mul­
timodal and discontinuous. As a result traditional 
local optima search techniques such as steepest de­
scent etc., do not work satisfactorily. Other more 
robust and global search methods need to be con­
sidered. Genetic algorithm based search techniques 
are in this category.

A rather simple definition of the motion synthesis 
problem is as follows:

Given the geometry of an articulated body, 
say X, a desired type of movement say 
walk and a time period T, determine 
X(i), 0 < t < T such that the result­
ing motion looks physically correct and 
natural.

The above definition hides the enormous underly­
ing complexity in this problem. Certainly physics 
is involved; gravitational and other forces have to 
be considered. Animators for example, take years 
before they acquire the necessary skills to predict 
the spatial configurations of objects at any time for 
generating a specific movement.

There is another view to the motion synthesis prob­
lem. All possible trajectories for a given character 
for a particular goal specified by the animator, can 
be considered as forming a space of trajectories and 
the problem of synthesizing a particular movement 
can be viewed as that of searching for a suitable tra­
jectory in that space. The trajectory that is finally 
selected must satisfy all the physical requirements 
and also the animators goals. For autonomous ar­
ticulated figures however, the search problem gets 
extremely complex. Firstly the number of DOF is 
very large. As a result the trajectory space is of 
very large dimension. Secondly, there is always 
built in task level redundancy, i.e any behaviourial

2 A Brief Review of Trajectory 
Search Techniques

Traditional Key-frame animation systems provided 
some minimal support in the interactive creation of 
a trajectory. In key-frame animation, the animator 
describes a set of “key-fraihes” from which the sys­
tem geometrically interpolates in between frames 
to obtain the complete trajectory. With sufficient 
number of trials the animator can construct the de­
sired trajectory. There are two major problems with 
key-frame animation. Firstly, it requires the ani­
mator to adjust too many parameters at very fine 
levels of detail. Secondly, to generate very convinc­
ing iooking motion, the animator must have a very 
good understanding of the motion. In practice, how­
ever, even after many trials, key-frame synthesized 
motion tends to look unrealistic and puppet like.

In the late 1980’s, researchers working in the field 
of computer animation were convinced that if the 
animation has to look realistic, the physics behind 
the motion has to be taken into account. Thus tradi­
tional geometric models were augmented to include 
physical characteristics such as mass of the body, 
its moment of inertia, external forces like gravity, 
friction etc. Interaction with other objects in the 
environment and resulting behaviour is also mod­
elled and variety of collision detection and collision 
response techniques have evolved [9]. The idea is
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to incorporate appropriate physical complexity and 
realistic behaviour into the model itself, rather than 
imposing it on the animator. Initial results on incor­
poration of physics to produce realistic movements 
were very encouraging [1, 18].

However, this is not without problems. The spec­
ification of forces and torques to produce desired 
motion is non-intuitive and certainly non-trivial. 
Further, once time varying forces/torques are spec­
ified the motion is completely determined and is 
autonomous, and not any more under the control 
of the animator. Thus incorporation of physics into 
the model results into loss of fine control over the 
generated motion.

Two approaches have evolved that partially over­
come this problem. In the first approach the tra­
jectory is discretized in space and time and then 
an iterative search is made in the trajectory space 
for a trajectory satisfying physical constraints, user 
specified constraints and optimizing an objective 
function [19]. The method uses the variational cal­
culus technique which is very similar to the gradi­
ent methods used for finding the local minima of an 
ordinary real-valued function.

The second approach, tries to synthesize a con­
troller which when executed results into motion 
[16, 13, 14]. A controller is just a finite state ma­
chine (FSM) with a set of rules that determines the 
torques to be applied at the joints in any given state. 
Controllers can be parameterized using fewer num­
ber of parameters and the search is made in the pa­
rameter space of controllers for a set of parameters 
which when plugged into a controller results into 
motion that satisfies the user specified constraints 
and optimizes the objective function. (See Figure 2).

Although both the methods differ fundamentally 
in technique, they suffer from the same source of 
difficulties mentioned earlier, namely the solution 
space for desired motion is vast, and multimodal i.e 
replete with solutions which are not so good. Sec­
ondly, due to the dynamic instability of the system 
the solution space is discontinuous which causes ex­
treme sensitivity towards control parameters and 
initial conditions. This manifests itself in the form 
of drastic changes in the motion behaviour of the 
creature even with slight changes in the control pa­
rameters or in the initial condition.

(a) Parameter Optimization (b)Conrolter Synthesis

State /Sensor /Time 

(c) Controller Playback

Figure 2: Controller synthesis and playback

Evolutionary based search algorithms basically be­
ing global and more robust are better suited for 
such situations. Application of evolutionary based 
search for motion planning and motion control is 
not new. Davidor [4] has used genetic algorithms 
for generating and optimizing a time-indexed se­
quence of configurations in robot trajectory plan­
ning. Fogel has used evolutionary programming to 
generate “bang bang” solution to classic cart-pole
[2] problem in control. De Garis [5] uses genetic al­
gorithms to synthesize weights in a neural network 
to produce the walking behaviour of a bipedal ar­
ticulated figure. However, his underlying model is 
geometric and not physical. Lately researchers in 
computer animation have also started using evolu­
tionary based techniques to synthesize motion se­
quences in animation [13, 15, 8], Ngo and Marks
[13] for example have used a massively parallel ge­
netic algorithm to synthesize motion of articulated 
figures using what they call as "Banked stimulus 
response" controllers. A genetic algorithm is also 
used in controller synthesis in the recent work by
[15] and by Gritz and Hahn [8]. While all the above 
research has shown the applicability and effective­
ness of genetic algorithm based search techniques 
in animating articulated figures, the work reported 
in this paper defines new techniques which extend 
the use of such evolutionary algorithms for more 
goal oriented motion synthesis. We use motion fea­
tures to characterize different types of motions and 
for making the specification of animator’s goals sim-
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pie and natural. These motion features are then 
used to define a fitness function which is instru­
mental in determining subsequent generations of 
trajectory solutions.

3 Solution Representation

The choice of representation for the solutions plays 
a crucial role in the success of the evolutionary al­
gorithm.

Ideally, the representation should be such that the 
motion synthesis problem can be solved in a rea­
sonable time, without sacrificing generality. This 
directly implies the following:

1. The representation should be as compact as 
possible so that the dimensionality of the pa­
rameter space is kept low.

2. A method is needed that smoothly alters the 
internal configuration from one time slice to 
another. This would reduce the number of dis­
tinct spatial configuration samples that need 
to be computed for the given time interval.

Compactness is achieved by having fairly powerful 
rule based controller representations that need a 
small number of states and hence a small number 
of parameters.

A common method of achieving smoothness is 
through the use of the proportional derivative (PD) 
control law. It consists of a spring/damper mecha­
nism in which a torsional spring attached between 
two links applies a torque on the adjacent links ac­
cording to the equation:

r — kp(6d - 9 )  -  kv 9

where kp is the spring constant, kv is the damper 
constant, 9 and 9 are the current angle and the an­
gular velocity respectively and 9<j is the rest angle 
(equilibrium position) of the spring. (See Figure 3) 
The values of kp and kv are typically chosen such 
that the mechanism is critically damped. A crit­
ically damped system is one that when disturbed 
will most rapidly return to equilibrium position.

6<,

\
\V

r =  kp(9d -  6) -  kvQ \

Figure 3: Actuator modelling spring damper mech­
anism

Such a system acts to control the angular position, 
in that, if the current angle is different from the 
equilibrium angle, the spring will apply a torque on 
the adjacent links so as to again be in equilibrium. 
For example, if the current limb joint angle is less 
than its desired angle, the mechanism will cause a 
positive torque to be applied to the joint to move it 
back toward the desired angle and vice versa. The 
velocity damping term reduces the torque applied 
to the joint once movement towards the desired an­
gle is underway. By changing the desired angle at 
different instances of time, the mechanism can be 
actuated to bring about the motion.

The advantage of the PD controller is that the torque 
function gets automatically defined once the desired 
angle is specified To execute a particular move­
ment of the joint, it is necessary to define a series 
of desired joint angles. The motion synthesis prob­
lem is then converted to that of synthesizing the 
function 9d[t). If the articulated figure has m ac­
tuators, it amounts to synthesizing m functions of 
the type ©d(<) = (9l(t), 92d( t ) . . .  9™(t)). The simplest 
way to solve the problem is to choose a piece-wise 
continuous function. This function could be a con­
stant, linearly varying or more complex with contin­
uous basis functions such as splines [3], sinusoids 
or wavelets [11],
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For the sake of simplicity, for our experimentation 
purposes, we have used piece-wise constant func­
tions. To synthesize a motion sequence for duration 
T, we divide T into several phases or states. Each 
phase will be associated with a set of parameters 
such as

t, e{d, **, K

where
i — ith joint actuator
8xd — desired angle for the itK joint
k'p — spring constant corresponding to the

ith joint
k'v — damping constant corresponding to 

the ith joint
t — time duration of the phase.

If there are fifteen phases in a motion sequence, the 
number of unknowns to be determined are 15 x 4 = 
60. We have mentioned earlier, that, as the simula­
tion duration increases, the search space increases 
exponentially. When we consider periodic motion, 
such as walking, running, hopping, etc. one can 
reduce the search space. In periodic motion, after 
every period tper, the motion is repeated to fill the 
simulation time T. Unknown parameters depend 
only on the number of phases in the period tpeT. 
(See Figure 4.)

£
T =  Simulation time

— T—  7  V
x :  / . A

t\ H H . . , . i 4

Figure 4: An illustration of the controller

In order to reduce the search space further, one 
can fix the values t, k'p, k[ a priori. The time pe­
riod t could be either derived from a previously syn­
thesized keyframed version of the motion or from 
live or video data of a creature similar in size and 
shape [17]. Values of spring constants can be esti­

mated depending on the mass of the body. For heav­
ier links, higher values of spring constants are re­
quired in order to protect the springs from a possible 
collapse (spring failure). However, values should 
not be so high that they would generate such high 
torques at the joints that unexpected motions are 
caused.

4 Motion features

In automatic motion synthesis for articulated fig­
ures, the animator essentially specifies the follow­
ing:

1. the physical structure of the character (link 
lengths, mass, moment of inertia, range of an­
gles for the joints etc. )

2. the joints where the actuators are to be placed 
which will control the character’s internal con­
figuration

3. criteria for evaluating the character’s motion

Given this information, the computer animation 
system is expected to automatically generate a phys­
ically realistic motion satisfying the criteria speci­
fied by the animator. In most of the systems de­
scribed in the literature so far, the criterion for eval­
uating the character’s motion is kept rather simple, 
say, motion with minimal energy, or with maximum 
height or maximum distance traveled, etc. One of 
the main drawbacks of these methods is the diffi­
culties associated with the specification of a suitable 
performance criterion. Even in the case when the 
animator wants to generate a slightly different mo­
tion for the character, a different motion evaluation 
criteria would have to be given and the synthesis 
process started again. The methods provide no clue 
whatsoever as to how to choose other criteria, even 
those which are slightly differing from the first! We 
have proposed the use of motion features to over­
come this problem and these are briefly discussed 
below.

We define, what we call motion features as attributes 
to characterize motion. The basic idea here is to 
classify different types of motion according to fea­
tures, and use that information to synthesize new

5
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controllers that can generate motion with similar 
features. It is well known that, humans can ef­
fortlessly perceive the subtle details of the types 
of motions found in animals. This includes a wide 
variety of motions ranging from undulatory motion 
of worms, to the esthetic walk of human beings. 
The deep rooted structure underlying motion is so 
well understood by humans that we are often able 
to identify the gender of a person just by the style 
of the walk. Since in computer animation our ob­
jective is to generate natural looking motion, an 
obvious question to ask is, whether the informa­
tion present in the perceived motion can be used 
in creation of natural looking motion. In this sec­
tion we explore this idea in some detail. Our hy­
pothesis is that, the information which humans use 
to identify, distinguish among, and classify motion 
patterns could be used in the search for suitable 
motion. The motivation for such an hypothesis can 
be found in [10, 12].

Mathematically speaking, a motion can character­
ized by a feature vector f  =  (/i, / 2, .../n) where 
fufo-'-fn  are the n individual features. The fea­
tures are computable functions which when applied 
to a given motion return a set of numbers. For 
example, walking has features which are distinct 
from that of running or hopping. Motions which 
have similar features will cluster together in fea­
ture space. However, degree of separability among 
types of motion will strongly depend on the selected 
features and the task at hand. The features are 
to be chosen such that they are intuitive for the 
animator to specify and also have good discrimina­
tion properties. The animator specifies the desired 
motion with the help of a set of features. Once 
the features are specified, a fitness function is com­
posed and a search procedure is called. The task of 
the search procedure is to search through the space 
of controllers and locate motion having similar fea­
tures. (See Figure 5.)

Some of the features that we have built into our 
implementation and experimented with are :

• key poses (03|i), fully or partially specified

• external energy (E)

• horizontal distance traveled by the centre of 
mass (D )

.  Initial features 

a Desired features

Feature 2

Figure 5: Search in feature space for desired motion

These features could either be extracted out of ac­
tual motion using motion capture devices or spec­
ified by the animator. The optimization function 
tries to match the features of the synthesized mo­
tion to that desired by the animator.

5 Evolutionary programming

Typically the goal of an optimization process is not 
only to achieve an optimal solution but also to find 
an optimal process to achieve that goal. In order to 
search effectively, it is necessary to specify a small 
but useful amount of additional information that 
can greatly reduce the synthesis or search time. 
The information we are providing is the following:

1. time interval between the phases

2. the number of phases in period tper.

3. values for spring and damper constants

6
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sam ples joxn ts

/  =  « i *  E
» = i  j = i

„  {E0 - E ) .+W2 * ( i ------ --------- )
x>mai

Umax

where,

u>i, « 2i ^ 3  are weights, assigned to the features 
depending on their relative, 
importance the value ranging 
betwifigs 0  and 1 .

is the angle at joint j  for sample,

is the external energy

is the horizontal distance travelled

Emax i Dmax are the maximum expected external 
energy and horizontal distance, 
respectively. These values are 
used for normalization of the two.

quantities.

Ol.,y E°,D0 are the feature values obtained 
during feature extraction process.

Stochastic Population Hill Climbing (SPHC) 
Algorithm

The SPHC algorithm is an evolutionary program­
ming algorithm [7] that can be distinguished from 
genetic algorithms, primarily by the fact that it 
uses only the mutation operator and does not use a 
crossover operator.

Like all genetic algorithms (SPHC) uses a popula­
tion of solutions. Each solution in the population 
is perturbed randomly at each iteration, using the 
mutation operation with probability 1. The result­
ing solutions are compared with their original so­
lutions and the better ones are kept for the next 
generation. Periodically, a re-seeding operator is

Initialize populationEvaluate each solution in the population for generation = 1 to number, of-generations for each individual solution in the population Randomly perturb the solution Evaluate new solution if ( new solution better than ) old solution)then replace old solution with new solution end forif ( ( generation mod re-seed.interval ) = 0- )then Rank order the population Replace bottom 50% of population with top 50% end if end for

Figure 6: Stochastic population hill climbing
(SPHC)

applied which selects the top half of the population 
and copies them into the bottom half of the popu­
lation, refocusing the search on the most promising 
solutions in the population. The full algorithm is 
shown in Figure 6.

Mutation Operator

The mutation operation is the backbone of our SPHC 
algorithm. In every iteration all solutions go through 
this operation. Since a slight change in parame­
ters can change the motion drastically, it is nec­
essary to apply the mutation operation with care. 
We have selected to mutate only one parameter at 
a time with only a small change in original value. 
The parameter to mutate is selected randomly with 
all the parameters having equal probability. This 
was found quite suitable through experiments, as 
it helps the algorithm to fully explore the region 
near to the existing solution. If we try to mutate 
more than one parameter at a time, the solution 
may jump from one region to another without ex­
ploring the current one. As the function is mul­
timodal, it may actually be the case that optimal 
solution is in the vicinity of solution being mutated. 
Each time mutation is called either the selected pa­
rameter goes through a creep operation4 or all its 
parameters are randomized from scratch. As there

4The creep operation is used here to modify the parameter by 
a very small factor
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Randomly select any one of the phases to be modified 
Randomly select the operation to be 

applied on the selected phase if ( operation is creep operation ) then
Randomly select one of t;he creep operations operations and applyelse
Generate randomized parameters for new phase 

phase from scratch

Figure 7: Mutation operation

are three types of parameters to be modified, there 
are three possible creep operations, these are de­
fined as follows:

1. The original time interval is multiplied by a 
randomly chosen factor close to unity (0.8 -  
1.2).

2. One of the joint angles is selected randomly 
and changed by a randomly chosen amount 
between -1 0  degrees and 10 degrees.

3. One of the joint angles is selected randomly 
and multiplied by a randomly chosen factor 
close to unity (0.8 -  1.2).

6 Implementation and Results

For the sake of containing the computational efforts 
involved, we have considered only 2D planar bod­
ies. Apart from gravity, the other external forces 
exerted on the articulated figure that we have con­
sidered are those due to its interaction with the 
ground. The ground has been modelled using a 
spring and damper mechanism which exerts forces 
on the articulated figure at the points of contact. 
Typically, the position and velocity of these contact 
points on the articulated figure are used to compute 
the external forces as follows:

F x — (^n® Px'jkp vx kv

F y  —  — ( m y  —  p y ) k p  —  V y k v

Spring and damper constants chosen are kr =  
105N/m and kv = 10sN/m. This creates a suitably 
stiff floor that functions effectively when used in a 
simulator. Since the equations of motion for our 
articulated bodies are too complex to be derived by 
hand, they have been compiled symbolically using 
the Newton-Euler recursive formulation. The equa­
tions of motion are solved for acceleration using LU 
decomposition method and integrated to get posi­
tion/orientation using simple Euler method. The 
time step for integration has been chosen as small 
as 0.005 to overcome the stiffness problem. How­
ever, this results into long simulation times. In or­
der to overcome this problem, we have parallelized 
the SPHC algorithm to run on a Parallel Virtual 
Machine (PVM) [6]. We have experimented using 
our technique on a number of simple but repre­
sentative articulated bodies. It took about 6 to 7 
hours of computation time to synthesize a controller 
on four networked VAX 2000 workstations running 
PVM.

We describe below the structure and motion be­
haviour from our experiments of two creatures 
named Luxo and Pogo.

ft
6.1 The Luxo creature

Figure 8 shows the geometric structure of Luxo. 
It is a lamp like creature made of three links con­
nected with two joints.

Figure 8: A luxo articulated body

Table 1 shows the allowable ranges of joint angles 
(in degrees) defining the internal configurations.

8
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Joint Min Max
A l -300 -240
A2 360 210

Table 1: Luxo Angles

Table 2 shows the physical properties of different 
links.

Link Mass Inertia cmassx cmass y
LI 0.15 0.00312 0.0 0.0
L2 0.10 0.00208 0.25 0.0
L3 0.30 0.00625 0.25 0.0

Figure 9: Synthesis of two different controllers for 
Luxo

Table 2: Physical Properties of Luxo

The controller for Luxo has been designed using two 
phases. The parameter space is ten dimensional. 
The ratio kp/kv is approximately chosen as 0.1.

Figure 10: Mr. Luxo, a lamp like creature hopping

Feature values have been chosen so as to synthe­
size hopping motion. The progress of the search 
algorithm in finding the hopping motion controller 
is shown in Figure 9. The motion has been synthe­
sized for two different initial populations. In the 
first case the desired controller is found after 40 
generations with a population size of 50. In the 
second case, more or less a similar controller was 
found after only 25 generations.

Figure 10 shows the hopping motion obtained for 
Luxo Figure 11 shows a phase diagram which plots 
the height of the centre of mass versus vertical ve­
locity of centre of mass. The trajectories in the 
phase diagram show a periodic behaviour with tra­
jectories being attracted towards an attractor cy­
cle. Figures 12 and 13 show the variation of joint 
torques and the variation of joint angles with time.

<U>

Figure 11: Height of centre of mass v/s velocity for 
Luxo

Change in fitness of soultion with genetations

0 5 10 15 20 25 30 35 40
Generation

0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 1 .1
Cmass Height (m)
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&
O

O*-3

Time
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Figure 12: Torque v/s Time for Luxo

*010

T3«U

tJi
C«J

o*-3

Time (sec)

Time (sec)

Figure 13: Joint Angles v/s Time for Luxo
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6.2 The Pogo creature

The geometric structure of “Pogo” is shown in Fig­
ure 14. It is a dog like creature made of five links 
connected with four joints.

Figure 14: A pogo articulated body

Table 3 shows the allowable ranges of joint an- 
gles(in degrees) defining the internal configuration.

Joint Min Max
A l -115 -45
A 2 270 360
A3 -70 -40
A4 210 300

Table 3: Pogo Angles

Table 4 shows the physical properties of different 
links. 4.

Link Mass Inertia cmassx cmassy
LI 0.15 0.003123 0.25 0.0
L2 0.10 0.002082 0.125 0.0
L3 0.10 0.002082 0.125 0.0
L4 0.10 0.002082 0.125 0.0
L5 0.10 0.002082 0.125 0.0

Table 4: Physical Properties of Pogo

The controller for Pogo has been designed using 
two phases again. The parameter space is how­
ever eighteen dimensional. The ratio kp/kv is ap­
proximately chosen as 0.1. Feature values have

been chosen so as to synthesize walking motion. 
The progress of the search algorithm in finding the 
walking motion controller is shown in Figure 15.

Change in fitness of soultion with genetations

Generation

Figure 15: Synthesis of a controller for Pogo

The result of the simulations of Pogo are shown in 
the Figure 16 below.

Figure 16: Mr. Pogo, a dog like creature walking

Figure 17 shows a phase diagram which plots height 
of centre of mass versus vertical velocity of centre of 
mass. The trajectories in the phase diagram once 
again show a periodic behaviour with trajectories 
being attracted towards an attractor cycle.

7 Concluding Remarks

In this paper we have first shown how the task 
of motion synthesis for an autonomous character 
in computer animation can be viewed as a con­
strained optimal search problem in trajectory space. 
Since the solution space does not admit to con­
ventional gradient based local optima search tech­
niques use of more robust and global optima search 
like the evolutionary programming technique is rec­
ommended. We have described in detail a novel

11
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0 . 1 5 0 . 2 0 . 2 5 0 . 3 0 . 3 5 0 . 4 0 . 4 5
Cmass Height (m)

Figure 17: Height v/s velocity of centre of mass for 
Pogo

extension of the evolutionary programming tech­
nique using motion features. While we have used 
very simple motion features in our implementa­
tion and in our experimental simulation, the re­
sults obtained for complex movements like hopping 
and walking for reasonably complex virtual crea­
tures are indeed very encouraging. Parallelizing 
the search algorithm has also shown that the method 
scales easily to perform well with increase in the 
number of processors. Certainly a more comprehen­
sive repertoire of motion features have to be evolved 
and more experiments need to be carried out with 
different kinds of movements being specified and 
automatically synthesized.
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