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Abstract

Here we prove the Hyers-Ulam stability and Hyers-Ulam-Aoki-Rassias stability of the n-th order

ordinary linear differential equation with smooth coefficients on compact and semi-bounded

intervals using successive integration by parts.
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1. Introduction

Stanislaw Marcin Ulam, in 1940, posed a problem concerning the stability of functional equation

to give conditions in order for a linear mapping near a approximate linear mapping to exist.

Hyers solved the problem for a pair of Banach spaces, thus came the terminology Hyers-Ulam

stability (in short HU stability). The result of Hyers was further generalised by (Aoki, 1950)

and (Rassias, 1978), which is termed as Hyers-Ulam-Aoki-Rassias stability (in short HUAR

stability) or simply Hyers-Ulam-Rassias stability or generalised Hyers-Ulam stability. Since

then the stability problems for functional equations have been studied by many mathematicians.

The study of stability for linear ordinary differential equations was started with the investigation

by (Obloza, 1993; Obloza, 1997) and soon after by (Alsina and Ger, 1998). They studied the

stability of y′(t) = y(t). This was further generalised by (Miura et al., a). They studied the Hyers-
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Ulam stability of the differential equation y′(t) = λy(t) where λ is a complex number. After this

many have investigated the Hyer-Ulam stability of various types of differential equations. In this

note we prove the Hyers-Ulam stability and the HUAR stability for n-th order ordinary linear

differential equation.

For more on Hyers-Ulam type stability of ordinary differential equations, we refer to (Jung, 2004;

Jung, 2005; Jung, ; Miura et al., a; Qarawani, 2012; Rus, 2009; Miura et al., 2003a; Miura et al.,

2003b; Miura et al., b; Cimpean and Popa, 2010).

Consider a linear differential equation of n-th order

Lny(x) ≡ y(n) + p1y
(n−1) + · · · + pny + q = 0, (.1)

on two types of intervals; compact interval and non-compact interval. Assume that the coefficient

functions p1, · · · , pn are sufficiently smooth on the interval under consideration. For non compact

intervals, the Hyers-Ulam stability is somewhat difficult to prove.

For a non-negative function ε(t) on an interval, we say that a n times continuously differentiable

function y is an ε(t)-approximate solution of (.1) if y satisfies

|y(n)(t) + p1(t)y
(n−1)(t) + · · · + pn(t)y(t) + q(t)| ≤ ε(t), (.2)

for all t in the interval. Similarly we say a n times continuously differentiable function z is an

exact solution of (.1) if

Lnz(t) = 0.

Definition 0.1: The differential equation (.1) on an interval is said to be HU stable on an interval

if the following holds:

For any ε > 0 there exists a constant K > 0 (independent of ε) such that whenever y is a

n-times differentiable function satisfying |Lny(x)| ≤ ε, there exists a solution z of (.1) such that

|y(x)− z(x)| ≤ Kε for all x.

Definition 0.2: The differential equation (.1) on an interval is said to be HUAR stable on if the

following holds:

Let ε(t) ≥ 0 be a continuous function. Then there exists an nonnegative function ε1(t), which

depends only on ε(t) and the coefficients of the ODE (.1), such that whenever y is a n-times

differentiable function satisfying (.2), there exists a solution z of (.1) such that |y(t)−z(t)| ≤ ε1(t).

Consider the first order linear differential equation

p0y
′ + p1y + q = 0, (.3)

where p′is and q are assumed to be continuous functions on I = (a, b). In this case assuming (i)

p0(t) 6= 0 for all t ∈ I , (ii) |p1(t)| ≥ δ for some δ > 0, and (iii)
∫ b

a

p1(t)
p0(t)

dt < ∞, the HU stability

was proved in (Wang et al., 2008).



AAM: Intern. J., Vol. 10, Issue 1 (June 2015) 151

However, (Jung, ) considered the equation (.3) in a complex Banach space X with complex

valued continuous coefficients. He proved the HUAR stability of (.3):

Theorem 0.3: ((Jung, )) Let X be a complex Banach space, and let q : I → X strongly continuous

function. Let p1 be a complex valued continuous function and ε(t) be a non-negative function

on I . Denote Ga by Ga(t) = e−
R t

a
p1(u)du. Assume that

(i) p1(t),
(

exp
∫ t

a
p1(u)du

)

q(t) are integrable on (a, c) for each c ∈ I ,

(ii) ε(t) exp
∫ t

a
p1(u)du is integrable on I .

Let y : I → X be an ε(t)-approximate solution of (.3) with p0(t) ≡ 1, where the derivative is

understood to exist in the strong sense. Then there exists a unique x0 ∈ X given by

x0 = s − limt→b−

(

1

Ga(t)
y(t) +

∫ t

a

q(u)

Ga(u)
du

)

,

such that the function y1(t) = Ga(t)
(

x0 −
∫ t

a

q(u)
Ga(u)

du
)

is an unique exact solution of (.3) (with

p0(t) ≡ 1) and satisfies

||y(t)− y1(t)|| ≤ |Ga(t)|

∫ b

t

ε(u)

|Ga(u)|
du.

This result gave an impetus to study the stability (in terms of a unique solution) of higher order

linear differential equations.

In the general case of n-th order, for constant and non constant coefficients, the HUAR stability

was proved by (?), and (Popa and Rosa, 2012) respectively. In this case the argument for the

n-th order linear equation was basically successive application of the Theorem 0.3, assuming

that the linear part of the equation is factorised into a product of first order terms (although not

mentioned explicitly)

(

d

dx
+ a1(x)

)(

d

dx
+ a2(x)

)

· · ·

(

dy

dx
+ an(x)y

)

+ q(x),

and on certain conditions on ai(x). For n = 2, the HU stability was proved in (Li and Shen,

2010) using the above factorisation.

The conditions on the ai(x)’s can be replaced by some integrability conditions to prove the

stability for these equations. Also there are other methods, such as reducing a second order linear

non homogeneous equation to a first order equation using a known solution of the corresponding

second order homogeneous equation (Javadian et al., 2011), or reducing the second order non

homogeneous equation to a first order linear non homogeneous equation if the second order

equation is exact (Ghaemi et al., 2012). For third order, the stability was studied explicitly using

the above factorisation method in (Jung, 2012) and (Abdollahpour et al., 2012).

As it has been noted, the constraints on the coefficient functions for stability for higher order

equation is fairly strong. However, if the underlying interval is compact, the conditions on the

coefficients can be relaxed and hence the above techniques work under less number of conditions.
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Here we assume that the interval under consideration is either compact or semibounded and we

prove the HU and HUAR stability of a n-th order linear differential equation with smooth variable

coefficients by successively integrating it and converting it to an integral equation, where certain

initial or terminal conditions are satisfied. This method is simple and seems to have been either

remained unnoticed so far or is considered too elementary to be discussed in a research article.

We note that on compact intervals the HU stability was studied for linear differential equations

in (Li and Shen, 2009; Gavruta et al., 2011; Qarawani, 2012; Abdollahpour and Najati, 2011;

Abdollahpour et al., 2012; Li and Shen, 2010), using different methods. The intervals on which

we prove the stability are either compact or semi bounded.

2. Hyers-Ulam stability of linear ODE on compact and semibounded intervals

For the remaining part of our discussion we will denote

I1 = [a, b], −∞ < a < b < ∞,

I2 = [a, b), −∞ < a < b ≤ ∞,

I3 = (a, b],−∞≤ a < b < ∞.

Here we need a few lemmas which are required for the main result:

Lemma 0.4: (a) Let f be a continuous function on an interval I , where I = I1 or I = I2. Then

n-successive integrations near the end point a yield

(i)

∫ tn

a

dtn−1

∫ tn−1

a

dtn−2 · · ·

∫ t1

a

f(t) dt =

∫ tn

a

f(t)
(tn − t)n−1

(n − 1)!
dt. (.4)

(ii)

∫ tn

a

dtn−1

∫ tn−1

a

dtn−2 · · ·

∫ t1

a

dt =
(tn − a)n

(n)!
, (.5)

where tn ∈ I .

(b) Let f be a continuous function on I , where I = I1 or I = I3. Then n-successive integrations

near the end point b give

(iii)

∫ b

tn

dtn−1

∫ b

tn−1

dtn−2 · · ·

∫ b

t1

f(t) dt =

∫ b

tn

f(t)
(t − tn)n−1

(n − 1)!
dt. (.6)

(iv)

∫ b

tn

dtn−1

∫ b

tn−1

dtn−2 · · ·

∫ b

t1

dt =
(b − tn)

n

(n)!
, (.7)

where tn ∈ I .

Proof: we will prove (i) by induction. For n = 1 the identity is trivially true. Assume it to hold

for n − 1, i.e.
∫ tn−1

a

dtn−2 · · ·

∫ t1

a

f(t) dt =

∫ tn−1

a

f(t)
(tn−1 − t)n−2

(n − 2)!
dt.
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Then for n,

∫ tn

a

dtn−1

∫ tn−1

a

dtn−2 · · ·

∫ t1

a

f(t) dt =

∫ tn

a

dtn−1

∫ tn−1

a

f(t)
(tn−1 − t)n−2

(n − 2)!
dt.

With a change of region using a ≤ t ≤ tn−1 ≤ tn, one has the t-integral from a to tn and tn−1

integral from t to tn. So the right hand side of the integral in the above becomes

∫ tn

a

dt f(t)

∫ tn

t

dtn−1
(tn−1 − t)n−2

(n − 2)!
=

∫ tn

a

f(t)
(tn − t)n−1

(n − 1)!
dt.

This proves part (i). Now part (ii) follows from part (i) by setting f(t) ≡ 1.

The proofs of parts (iii) and (iv) are similar to that of parts (i) and (ii) respectively. So we omit

the proof.

Lemma 0.5: (a) Let ξ be an k times continuously differentiable on I , where I = I1 or I = I2,

such that ξ(a) = ξ′(a) = · · · = ξ(k−1)(a) = 0. Then for any k times continuously differentiable

function f on I and for any t, tk ∈ I ,

(i)

∫ t

a

f(u)ξ(k)(u)du =

k−1
∑

j=0

(−1)jf (j)(t)ξ(k−j)(t) + (−1)k

∫ t

a

f (k)(t)ξ(t)dt, (.8)

(ii)

∫ tk

a

dtk−1

∫ tk−1

a

dtk−2 · · ·

∫ t1

a

f(u)ξ(k)(u)du

=
k
∑

m=0

(−1)m

(

k

m

)
∫ tk

a

dtk−1

∫ tk−1

a

dtk−2 · · ·

∫ tk−m+1

a

f (m)(u)ξ(u)du, (.9)

where the term for m = 0 is understood to be f(tk)ξ(tk).

(b) Let ξ be an n times continuously differentiable on I where I = I1 or I = I3 such that

ξ(b) = ξ′(b) = · · · = ξ(k−1)(b) = 0. Then for any k times continuously differentiable function f

on I and for any tk ∈ I ,

∫ b

tk

dtk−1

∫ b

tk−1

dtk−2 · · ·

∫ b

t1

f(u)ξ(k)(u)du

= (−1)k

k
∑

m=0

(

k

m

)
∫ b

tk

dtk−1

∫ b

tk−1

dtk−2 · · ·

∫ b

tk−m+1

f (m)(u)ξ(u)du, (.10)

where the term for m = 0 is understood to be f(tk)ξ(tk).

Proof: We will prove part (a)(i) by induction. Note that for k = 1, the conclusion holds trivially

by integration by parts. Assuming that it is true for k for any 1 ≤ k ≤ n − 1, we will prove it
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for k + 1. Now, the hypothesis that it is true for k and an integration by parts yield
∫ t

a

f(u)ξ(k+1)(u)du

= f(t)ξ(k)(t) −

∫ t

a

f ′(u)ξ(k)(u)du

= f(t)ξ(k)(t) −

{

k−1
∑

j=0

(−1)jf (j+1)(t)ξk−j (t) + (−1)k

∫ t

a

f (k+1)(u)ξ(u)du

}

= f(t)ξ(k)(t) +
k−1
∑

j=0

(−1)j+1f (j+1)(t)ξ(k−j)(t) + (−1)k+1

∫ t

a

f (k+1)(u)ξ(u)du

=

k
∑

l=0

(−1)lf (l)(t)ξ(k+1−j)(t) + (−1)k+1

∫ t

a

f (k+1)(u)ξ(u)du.

Part (a)(ii) can also be proved using induction. This identity is satisfied for k = 1. Assume that

part (ii) holds for k = m. We will prove it for k = m + 1. For k = m + 1, an integration by

part, the conditions on ξ at a and the hypothesis that (.9) holds for m = k yield
∫ tk+1

a

dtk

∫ tk

a

dtk−1 · · ·

∫ t1

a

f(u)ξ(k+1)(u)du

=

∫ tk+1

a

dtk

∫ tk

a

dtk−1 · · ·

∫ t2

a

dt1

(
∫ t1

a

f(u)ξ(k+1)(u)du

)

=

∫ tk+1

a

dtk · · ·

∫ t2

a

dt1

(

f(t1)ξ
(k)(t1) −

∫ t1

a

f ′(u)ξ(k)(u)du

)

=

∫ tk+1

a

dtk · · ·

∫ t2

a

dt1f(t1)ξ
(k)(t1) −

∫ tk+1

a

dtk · · ·

∫ t1

a

f ′(u)ξ(k)(u)du

=

∫ tk+1

a

dtk · · ·

∫ t2

a

f(t)ξ(k)(t)dt−

∫ tk+1

a

dtk

(
∫ tk

a

dtk−1 · · ·

∫ t1

a

f ′(u)ξ(k)(u)du

)

=
k
∑

j=0

(−1)j

(

k

j

)
∫ tk+1

a

dtk

∫ tk

a

dtk−1 · · ·

∫ tk−j+2

a

f (j)(u)ξ(u)du

−

∫ tk+1

a

dtk

[

k
∑

i=0

(−1)i

(

k

i

)
∫ tk

a

dtk−1

∫ tk−1

a

dtk−2 · · ·

∫ tk−i+1

a

f (i+1)(u)ξ(u)du

]

.

Now that the l-th term of the first sum adds up to the (l − 1)-th term of the second sum in the

above to give

(−1)l

(

n + 1

l

)
∫ tk+1

a

dtk

∫ tk

a

dtk−1 · · ·

∫ tk−l+2

a

f (l)(u)ξ(u)du.

After summing up there are k +1 terms which are the terms of the expansion for the case k +1.

The proof of part (b) is same as that of part (a)(ii). So we omit its proof.



AAM: Intern. J., Vol. 10, Issue 1 (June 2015) 155

Remark 0.6: We may call the identities (.9), (.10) as Leibnitz formulae for successive integra-

tion.

Lemma 0.7: (a) Let I = I1 or I2, and assume that pi ∈ Cn−i(I) for 1 ≤ i ≤ n. Suppose that ξ

is a solution of the differential equation

y(n)(x) + p1(x)y(n−1)(x) + · · · + pn(x)y(x) = g(x), (.11)

on I with ξ(k)(a) = 0 for 0 ≤ k ≤ n− 1, where g is a given continuous function on I . Then for

any tn ∈ I

∫ tn

a

g(t)
(tn − t)n−1

(n − 1)!
dt = ξ(tn) +

n
∑

j=1

n−j
∑

m=0

(−1)m

(

n − j

m

)
∫ tn

a

[

p
(m)
j (t)

(tn − t)j+m−1

(j + m − 1)!

]

ξ(t) dt.

(.12)

(b) Let I = I1 or I = I3. Let ζ be a solution of the differential equation (.11) on I , with

ζ(k)(b) = 0 for 0 ≤ k ≤ n − 1, where g and pi be as in the part(a) of this lemma. Then for any

tn ∈ I

∫ b

tn

g(t)
(t− tn)

n−1

(n − 1)!
dt

= (−1)nζ(tn) +
n
∑

j=1

(−1)n−j

n−j
∑

m=0

(

n − j

m

)
∫ b

tn

[

p
(m)
j (t)

(tn − t)j+m−1

(j + m − 1)!

]

ζ(t) dt. (.13)

Proof: We will omit the proof of part (b) since it is similar to that of part (a). To prove part(a),

using Lemmas 0.4(i) and 0.5(ii) we have
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∫ tn

a

g(t)
(tn − t)n−1

(n − 1)!
dt

=

∫ tn

a

dtn−1

∫ tn−1

a

dtn−2 · · ·

∫ t1

a

g(u)du

=

∫ tn

a

dtn−1

∫ tn−1

a

dtn−2 · · ·

∫ t1

a

dt
[

ξ(n)(t) + p1(t)ξ
(n−1)(t) + · · · + pn(t)ξ(t)

]

= ξ(tn) +

∫ tn

a

dtn−1

(
∫ tn−1

a

dtn−2

∫ tn−2

a

dtn−3 · · ·

∫ t1

a

p1(t)ξ
(n−1)(t)dt

)

+

...

+

∫ tn

a

dtn−1

∫ tn−1

a

dtn−2 · · ·

(
∫ tn−j

a

dtn−j−1 · · ·

∫ t1

a

pj(t)ξ
(n−j)(t) dt

)

+

...

+

∫ tn

a

dtn−1

∫ tn−1

a

dtn−2 · · ·

∫ t1

a

pn(u)ξ(u)du

= ξ(tn) +
n
∑

j=1

∫ tn

a

dtn−1 · · ·

∫ tn−j+1

a

dtn−j

(
∫ tn−j

a

dtn−j−1 · · ·

∫ t1

a

pj(t)ξ
(n−j)(t) dt

)

= ξ(tn) +
n
∑

j=1

∫ tn

a

dtn−1 · · ·

· · ·

∫ tn−j+1

a

dtn−j

(

n−j
∑

m=0

(−1)m

(

n − j

m

)
∫ tn−j

a

dtn−j−1 · · ·

∫ tn−j−m+1

a

p
(m)
j (t)ξ(t) dt

)

= ξ(tn) +
n
∑

j=1

n−j
∑

m=0

(−1)m

(

n − j

m

)
∫ tn

a

dtn−1 · · ·

∫ tn−j−m+1

a

p
(m)
j (t)ξ(t) dt

= ξ(tn) +

n
∑

j=1

n−j
∑

m=0

(−1)m

(

n − j

m

)
∫ tn

a

[

p
(m)
j (t)

(tn − t)j+m−1

(j + m − 1)!

]

ξ(t) dt. (.14)

Our main result is as follows:

Theorem 0.8: Consider the differential equation (.1) on an interval I . Assume that the coefficients

pk are n − k times continuously differentiable on I for 1 ≤ k ≤ n. Assume that q is a complex

valued continuous function on I . Let ε(t) be an arbitrary nonnegative continuous function on I .

(a) Assume that the above hypotheses hold on I = I1 or I = I2. Then there exists a nonnegative

function ε1(x) (depending on ε(x) and the coefficient functions pi only) such that if an n-times

continuously differentiable function y satisfies the inequality (.2), then there exists a nonzero

solution z1 of (.1) such that

|y(x)− z1(x)| ≤ ε1(x), (.15)
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where ε1(x) is given by (.18).

(b) Assume that the above hypotheses hold on I , where I = I1 or I = I3. Then there exists a

nonnegative function ε2(x) (depending on ε(x) and the coefficient functions pi only) such that if

an n-times continuously differentiable function y satisfies the inequality (.2), then there exists a

nonzero solution z2 of (.1) satisfying

|y(x)− z2(x)| ≤ ε2(x), (.16)

where

ε2(x) ≡

[
∫ b

x

ε(t)
(t− x)n−1

(n − 1)!
dt

]

exp

(

∫ b

x

∣

∣

∣

∣

∣

n
∑

j=1

(−1)n−j

n−j
∑

m=0

(

n − j

m

)

p
(m)
j (t)

(t − x)j+m−1

(j + m − 1)!

∣

∣

∣

∣

∣

dt

)

.

(.17)

Proof: For part (a), for simplicity, we will denote Lny to be the left hand side of (.1). Suppose

that |Lny(t)| ≤ ε(t) for all t ∈ I . Let z1 satisfies Lnz(t) = 0 and that z
(k)
1 (a) = y(k)(a) for

0 ≤ k ≤ n − 1. Then

|Lny(t) − Lnz1(t)| ≤ ε(t).

Setting g(t) = Lny(t) − Lnz1(t), and ξ(t) = y(t)− z1(t), note that |g(t)| ≤ ε(t), and that g and

ξ satisfy the hypotheses of Lemma 0.7. So

ξ(n)(t) + p1(t)ξ
(n−1)(t) + · · · + pn(t)ξ(t) = g(t).

Upon integrating successively n times near a we obtain (.12) using Lemma 0.7(a). Using triangle

inequality of the absolute value, and that |g(t)| ≤ ε(t), we have

|ξ(tn)| −

∣

∣

∣

∣

∣

n
∑

j=1

n−j
∑

m=0

(−1)m

(

n − j

m

)
∫ tn

a

[

p
(m)
j (t)

(tn − t)j+m−1

(j + m − 1)!

]

ξ(t) dt

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

ξ(tn) +
n
∑

j=1

n−j
∑

m=0

(−1)m

(

n − j

m

)
∫ tn

a

[

p
(m)
j (t)

(tn − t)j+m−1

(j + m − 1)!

]

ξ(t) dt

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ tn

a

g(t)
(tn − t)n−1

(n − 1)!
dt

∣

∣

∣

∣

≤

∫ tn

a

ε(t)
(tn − t)n−1

(n − 1)!
dt.

Setting tn = x in the above inequality, we have

|ξ(x)| ≤

∫ x

a

ε(t)
(x− t)n−1

(n − 1)!
dt +

∫ x

a

∣

∣

∣

∣

∣

[

n
∑

j=1

n−j
∑

m=0

(−1)m

(

n − j

m

)

p
(m)
j (t)

(x− t)j+m−1

(j + m − 1)!

]
∣

∣

∣

∣

∣

|ξ(t)| dt.

So by Gronwall’s inequality (see Theorem 1.3.1 of (Pachpatte, 1998) and recalling that ξ(x) =
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y(x)− z1(x), one has

|y(x)− z1(x)|

≤

[
∫ x

a

ε(t)
(x− t)n−1

(n − 1)!
dt

]

× exp

(

∫ x

a

∣

∣

∣

∣

∣

n
∑

j=1

n−j
∑

m=0

(−1)m

(

n − j

m

)

p
(m)
j (t)

(x− t)j+m−1

(j + m− 1)!

∣

∣

∣

∣

∣

dt

)

≡ ε1(x), (.18)

for all x.

The proof of part (b) is similar to that of part (a), where z2 is a solution of (.1), z
(k)
2 (b) = y(k)(b)

for 0 ≤ k ≤ n − 1, and uses Lemmas 0.4(b), 0.5(b) and 0.7(b).

Remark 0.9: If the interval under consideration is I1 and ε(x) ≡ ε, then it follows that the

function ε1(x) in (.18) and ε2(x) in (.17) are bounded by Kε for some K > 0. Hence in this

case the linear ODE is HU stable.

Remark 0.10: It is interesting to compare the error estimates in the above Theorem 0.3 with that

of Theorem 0.8. Note that for n = 1, z2(x) = y1(x), where z2 and y1 are obtained in Theorems

0.8(b) and 0.3 respectively. So z2 in Theorem 0.8 is unique. For n > 1, the function z1 satisfying

(.18) is not unique, as can be seen from the next example.

Example 0.11: Consider the differential equation

u′′ −
x2

16
= 0.

on the interval I = [0, 1]. Let ε = 1/4 and y(x) = x2

16
+ 1

16
. Here K = supx∈[0,1]

x2

2
= 1

2
.

Then

∣

∣

∣

∣

y′′ −
x2

16

∣

∣

∣

∣

=

∣

∣

∣

∣

1

8
−

x2

16

∣

∣

∣

∣

=
(2 − x2)

16
≤

1

8
≤

1

4
≡ ε.

Since y(0) = 1/16 and y′(0) = 0, according to Theorem 0.8, z1(x) = x4

192
+ 1

16
and

|y(x)− z1(x)| ≤ ε
x2

2
≤

ε

2
= 1/8.

Let z2(x) = x4

192
. Then z2 satisfies z′′

2 −
x2

16
= 0 and, since x2

16
≥ x4

192
for all x ∈ [0, 1],



AAM: Intern. J., Vol. 10, Issue 1 (June 2015) 159

|y(x)− z2(x)| =

∣

∣

∣

∣

x2

16
−

x4

192
+

1

16

∣

∣

∣

∣

=
x2

16
−

x4

192
+

1

16

=
x2(12 − x2)

192
+

1

16
≤

12

192
+

1

16
=

1

8
=

ε

2
.

Hence, z is not unique.

However, if we insist on zj (j = 1, 2) and its derivatives upto (n− 1)-th order to have the same

initial or terminal value as that of the derivatives of y, then zj is unique (which follows from

the uniqueness of solutions of the initial value problem) and we have |y(t) − zj(t)| ≤ εj(t) for

j = 1, 2, appearing in (.15) and (.16) respectively.

Remark 0.12: All the results in this section can easily be generalised to a linear differential

equation in a complex Banach space X, where the differentiability is considered in the strong

sense. More precisely,

Theorem 0.13: Let J = Jj, j = 1, 2, where J1 = I1 or J1 = I2, and J2 = I1 or J2 = I3

respectively. Let X be a complex Banach space. Let ε : J → [0,∞) be a continuous function. If

y : J → X is a strongly n-times continuously differentiable function satisfying (.11), where pi are

in C(n−i)(J, C) functions such that, whenever ||g(x)|| ≤ ε(x), there exist non-negative functions

εj(x), j = 1, 2 (independent of y), and Banach space valued n-times strongly differential functions

zj, j = 1, 2, satisfying Lnzj(x) = 0, z
(k)
j (sj) = y(k)(sj) (for j = 1, 2), 0 ≤ k ≤ n − 1, with

s1 = a, s2 = b, such that ||y(x)− zj(x)|| ≤ εj(x) for j = 1, 2.

The proof of it goes almost in verbatim with that of the above theorem using results similar to

Lemmas 0.5, 0.7 for Banach space valued functions.

3. Conclusion

Here we prove the Hyers-Ulam stability and Hyers-Ulam-Aoki-Rassias stability of n-th order

linear ordinary differential equation with smooth coefficients on compact and semi-bounded

intervals using successive integration by parts. The idea here is as follows: if y satisfies (.2)

on I , where I is one of the form I1 or I2 or I3, then choose a solution z of (.1) which alongwith

all upto its n − 1 derivatives agree with those of y at the finite end point of the interval. This

solution z is used to prove that the differential equation (.1) is HUAR stable. This is achieved

by applying the corresponding differential operator on y− z and integrating successively n times

near this end point (at which y and z alongwith their first n − 1 derivatives agree) and making

use of Gronwall’s inequality.
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