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Figure 1. Structures of some n urally occurring lignans.
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A convenient two step protocol for the synthesis of carbazole lignans involving Domino Wittig reaction/
Diels Alder reaction followed by aromatization with DDQ is described. The main step of this protocol
involves interaction between 2- or 3-indolecarboxyaldehydes and cinnamyl 2-(triphenylphosphoranyli-
dene)acetates.

� 2016 Elsevier Ltd. All rights reserved.
Furanone moiety fused to a cyclic framework is a structural fea-
ture found in many biologically active compounds.1 For example
podophyllotoxin (1a) a naturally occurring lignan is a drug used
in the treatment of cancer.2 Taiwanin C (2a) and justicidin E (2b)
are two naturally occurring naphthalene lignans where furanone
ring is fused with the aromatic ring.3 When one of the aromatic
rings in the lignan skeleton is replaced by a heterocycle it is usually
termed as heterolignan. Azatoxin (3a) and 80-azapodophyllotoxin
(1b) are two successfully designed and synthesized potent azalig-
nans. Isoelliptitoxin (3b) is an indole analogue of deoxypodophyl-
lotoxin (Fig. 1).4 Heterolignans are of interest due to their potential
biological activities and efforts are ongoing to synthesize them.5 In
continuation of our interest in Domino Wittig–Diels Alder reaction
sequence,6 we report herein synthesis of a series of indole lignans.

Thus, when indole-2-carboxyaldehyde 4 was subjected to
Domino Wittig–Diels Alder reaction protocol with phosphorane
6a, a mixture of two diastereomers 8a and 8b was obtained
in 9:1 ratio in 63% yield (Scheme 1).7 The major isomer 8a
was obtained as a white solid while the minor was a viscous
oil. We could not unambiguously decide the nature of the
geometry of the two isomers based on their NMR data. Recourse
was taken to single crystal X-ray diffraction analysis in the case
of solid 8a which afforded suitable crystals for structure deter-
mination (Fig. 2).8
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Figure 3. Transition state involved in Diels–Alder reaction.

Figure 2. Crystal structure for 8a. Displacement ellipsoids have been drawn at 50%
probability level and H atoms are shown as small spheres of arbitrary radii.
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Scheme 2. Synthesis of phosphoranes 6a–d from cinnamyl alcohols.
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Table 1
Tetrahydrocarbazole (8–11; 13–16) – carbazole (12, 17) lignans

Entry Products Ratio (a/b) Total
yield (%)

DDQ aromatized
product

Yield
(%)

1 8a/8b 9/1a 63 12a 60
2 9a/9b 10/1b 75 12b 78
3 10a/10b Traces of b 82 12c 83
4 11a/11b 7/3a 59 12d 58
5 13a/13b Traces of b 62 17a 61
6 14a/14b Traces of b 60 17b 60
7 15a/15b Traces of b 76 17c 79
8 16a/16b Traces of b 56 17d 56

a Isolated ratio.
b Ratio based on 1H NMR.
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Scheme 1. Domino Wittig reaction Diels–Alder reaction protocol.
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In this one pot sequence first the Wittig reaction takes place to
form the (E)-unsaturated ester 7, which undergoes [4+2] cycload-
dition either in syn or anti mode (Fig. 3) followed by rapid isomer-
ization to give a mixture of 8a and 8b. The formation of both the
diastereoisomers in unequal proportion suggests that the energy
barrier between the two transition states is different and favors
the anti transition state. It was observed that the diastereoisomer
in which the six and five membered rings are trans fused to each
other was formed in more proportion than the cis fused one, as
indicated by the orientation of the protons attached at C10A and
C3A (Fig. 2).

Having successfully synthesized the tetrahydrocarbazole
lignan skeleton 8, the synthesis of its analogues 9–11 was
undertaken. The required phosphoranes 6b–d were prepared
from the corresponding cinnamyl alcohols (Scheme 2). These
phosphoranes were then condensed with 4 to obtain 9–11
(Scheme 3) in moderate to good yields. The tetrahydrocarbazole
lactones were then aromatized using DDQ to carbazole lignans
12a–d in good yields (Table 1). A one pot procedure was
attempted for the direct preparation of 12a by refluxing a mix-
ture of 4, 6a and 10% PdAC in diphenyl ether. However the pro-
duct 12a was obtained in mere 32% yield. Hence the two-step
protocol was preferred.
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After successfully synthesizing the carbazole lignans 12a–d,
the two-step protocol was evaluated for the synthesis of iso-
meric carbazole lignans 17a–d. Thus indole-3-carboxyaldehyde
5 was condensed with the phosphoranes 6a–d to obtain
tetrahydrocarbazoles 13–16, which were then oxidized with
DDQ to provide the carbazole lignans 17a–d (Scheme 4,
Table 1).

In conclusion, we have demonstrated that isomeric carbazole
lignans can be conveniently assembled by Domino Wittig–Diels
Alder reaction sequence followed by aromatization with DDQ.
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