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Abstract 
 

In this paper we present a comparison result to discuss the periodic boundary 
value problem for neutral differential equation with piecewise constant delay. 
 
Keywords: Neutral Differential Equations, Piecewise constant argument, 
positive solution. 

 
 
1. INTRODUCTION 
In past few decades Neutral Differential Equations appeared in numerous models of 
Biology, Physics, Engineering, Control Systems, Mechanics, etc. These models 
turned out to be very useful in the situation where the system depends not only on the 
present state but also on the past states. In most of these applications delay function is 
either discrete or continuous. But there are some systems where the delay is piecewise 
continuous as reported for the first time in [1], [2] and further developed in [3], [4], 
[5]. 
This paper is concerned with the periodic boundary value problem (PBVP) of the 
following type is: 

 (1. 1) 
  

where  and and [. ]is the greatest integer 
function. 
Let  denote the class of all functions where , satisfying 
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1.  
2. is continuous, for  
3.  exists and is continuous on the intervals  for  

and on  
where 

 
A function  is said to be solution of (1. 1) and (1. 2), if and 
satisfies (1. 1) and (1. 2) with  
 
 
2. MAIN RESULT 
In this section we present a comparison result for (1. 1) and (1. 2). Comparison 
resultsare useful in studying differential equations and its various properties. 
Let such that Consider the space  on functions  
such that  exists and is continuous on  
and on . 
 
Theorem 2. 1. Suppose that such that: 
• (Y1)  
• (Y2 ) , 
• (Y3)  

• (Y4)  

 
where  and  are constants. Then  
 
Proof: Let Then, by (Y1), for every  we 
get 

  

 (2. 2) 
Consider , we can write 

 (2. 3) 
For  where  we get 

 
i. e. 

 (2. 4) 
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Where 

 
Consider  then we have, 

 (2. 5) 
 
For  

 (2. 6) 
Now we are going to prove that it is not possible to have for every  

 (2. 7) 
Let us assume relation (2. 7) holds, then from relation (2. 2) we can say q (t) is 
decreasing function on and on . 
Thus we have  and which gives 

 which contradicts condition (Y2) of the theorem. 
Therefore, we have  for some From continuous 
application of relation (2. 4) we get 

where . In particular when 
 we get From relation (2. 6) we get  and using 

(Y2) we get  
Again from relation (2. 4) we get  and From 
relation (2. 6) we also get . Hence we get for  where 

 and  
Hence by relations (2. 4) and (2. 6) we get q(t) decreasing on every , 

and on . Hence  for every 
Consequently we get  

Hence the proof. 
We apply this result to establish the solution of (1. 1), (1. 2). If is a solution of 
PBVP (1. 1), (1. 2) then both  and  satisfies the inequality (Y1) and (Y2). 
Hence we have the following corollaries. 
 
Corollary 2. 2. The PBVP (1. 1) and (1. 2) has the unique solution , if (Y3) 
and (Y4) holds. 
 
Corollary 2. 3. Let  satisfying (Y1)and . If (Y3) and (Y4) are satisfied, 
then  
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