
MINING AND ANALYSIS OF TIME-STAMPED DATABASES 

 

 

 

A Thesis submitted to Goa University for the Award of the Degree of 

DOCTOR OF PHILOSOPHY 

 in 

Computer Science and Technology 

 

 

 

By 

Jhimli Adhikari 

Department of Computer Science 

Narayan Zantye College of Commerce 

Bicholim, Goa 403 529 

 

 

Research Guide 

Dr. P. R. Rao, Professor 

Department of Computer Science and Technology 

 

 

 

Goa University,  

Taleigao Goa 

2012 



ii 

________________________________________________________________________ 

 

Dedication 

 

 

To my parents 

Gouri Sankar Datta 

and 

Rina Datta 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 

________________________________________________________________________ 

 

Acknowledgement 
 

 

 

I would like to thank my advisor, Dr. P. R. Rao, for his support and advices during past five 

years. 

 

I would like to thank University Grants Commission, India for sponsoring me on faculty 

improvement programme with leave to take up full time research. 

 

I am grateful to Sri Arun Sakhardande, Principal, Narayan Zantye College of Commerce, 

Bicholim, Goa, for processing my study leave application at the right time. 

 

I would like to thank to my colleagues for their supports during the period of my study leave. 

 

I am also grateful to my husband, Animesh, my brother, Supriyo and my son, Sohom, for their 

moral supports. 

 

 

 

 

 

 

 

 



iv 

________________________________________________________________________ 

 

 

Statement from student 

 

 

 

As required under ordinance OB-9.9 of Goa University, I state that the present Ph D thesis 

entitled “Mining and Analysis of Time-stamped Databases” is my original contribution and the 

same has not been submitted on any previous occasion. To the best of my knowledge, the present 

study is the first comprehensive work of its kind in the area of Data Mining and Knowledge 

Discovery. 

The literature related to the problem investigated has been cited. Due acknowledgements have 

been made whenever facilities and suggestions have been availed of. 

 

 

Jhimli Adhikari 

Department of Computer Science 

Narayan Zantye College of Commerce 

Bicholim, Goa 403 529 

India 

 

 

Date: 23/01/2012 

 

 



v 

________________________________________________________________________ 

 

Certificate 

 

 

 

This is to certify that the Ph D thesis entitled “Mining and Analysis of Time-stamped 

Databases”, submitted by Jhimli Adhikari for the award of degree of Doctor of Philosophy in 

Computer Science and Technology is based on her original work carried out under my 

supervision. The thesis or any part thereof has not been previously submitted for any other 

degree or diploma in any other University or Institute. 

 

 

 

Place: Goa University                                                  Dr. P. R. Rao, Professor  

          Department of Computer Science and Technology 

                                                               Goa University, Taleigao Plateau 

                                                                Goa-403206, India 

 

       

                       

 

 

  

 

 

 



vi 

________________________________________________________________________ 

 

List of publications 

 

(2 journal papers, 1 book chapter and 2 conference papers) 

 

 

1.  International Journal papers 

[1] Adhikari, J., Rao, P. R., Adhikari, A., “Clustering items in different data sources induced 

by stability”, International Arab Journal of Information Technology, 6(4), 394–402, 2009 

(impact factor 0.39 in 2012, cited by 8 papers) 

[2] Adhikari, J., Rao, P. R., “Measuring influence of an item in a database over time”, Pattern 

Recognition Letters, 31(3), 179–187, 2010 (impact factor 1.266 in 2012, cited by 1 paper) 

 

2. International Book chapter 

[1]    Adhikari, J., Rao, P. R, Identifying calendar-based periodic patterns, S. Ramanna, L. 

Jain and R. J. Howlett (editors), Emerging Paradigms in Machine Learning, pp. 329–357, 

Springer, 2013  

 

3.  International Conference paper 

[1] Adhikari, J., Rao, P.R., “Clustering items in multiple databases induced by stability”, 

Proceedings of the International Conference on Emerging Technologies and Applications 

in Engineering, Technology and Sciences, pp. 370-375, 2008  

[2]     Adhikari, J., Rao, P. R., Pedrycz, W., “Mining icebergs in time-stamped databases”, Indian 

International Conference on Artificial Intelligence, pp. 639-658, 2011  

 



vii 

________________________________________________________________________ 

 

Synopsis 

Data mining on time-stamped data deals with discovering various types of knowledge hidden in 

time-stamped data. Knowledge discovery in a time-stamped database is an interesting and well-

known research issue (Adhikari & Rao, 2009; Mahanta et al, 2005; Mahanta et al., 2008). A vast 

amount of temporal data is available in science, engineering and medical fields. Also, many large 

companies collect data for a long period of time. Knowledge extracted from such data would 

help the companies to make better decisions. Due to the existence of large class of temporal 

datasets, applications dealing with temporal patterns seem to be present everywhere (Bettini et 

al, 2000; Hsu et al, 2007; Lattner, 2007; Mitsa, 2010). The goal of the thesis is to mine different 

time-stamped data and provide various types of data analyses. 

   Contributions made in this thesis are kept in Chapters 2, 3, 4, and 5. In Chapter 1, we discuss 

different concepts such as types of time-stamping (Mitsa, 2010), and time granularity (Bettini et 

al, 2000). We have made a comparison between time-stamped data and time series data 

(Brockwell, & Davis, 2002). Although there are various preprocessing techniques exist before 

mining data we illustrate only aggregation and partitioning, since these tasks are relevant to our 

study. We present various temporal patterns existing in the literature such as frequent patterns, 

temporal association rule, event, sequential patterns, episode, and temporal relational interval 

pattern. At the later part  different  data  mining  tasks viz.,  prediction,  clustering,  

classification, search  and  

 

 



viii 

________________________________________________________________________ 

retrieval, pattern discovery have been illustrated. Finally, recent developments of temporal data 

mining in various fields have been surveyed. 

   Chapter 2 has been entitled as “Clustering items in different data sources induced by stability”. 

Chapter 3 deals with the association among items and entitled as “Measuring influence of an 

item in a database over time”. Chapter 4 is related to unusual pattern and entitled as “Mining 

icebergs from time-stamped databases”. Finally, the Chapter 5 detects  calendar  based  pattern 

and  has  been  entitled as  “Identifying  calendar-based  

periodic patterns”. In the following paragraphs, we describe the work performed in different 

chapters of the thesis. 

   The variation of sales of an item over time is an important issue. Many important decisions are 

based on items whose support variation is less over the time. These items are called as stable 

items. Stable items are useful in making many strategic decisions for a company. In Chapter 2 

we have proposed a model of mining global patterns in multiple transactional time-stamped 

databases. Thus, we introduce the notion of stability of an item. The degree of stability is based 

on the variations of means and autocovariances. The proposed clustering technique is based on 

the notion of degree of stability of an item. The clustering technique requires computing the 

degree of variation for each item in the databases. Given a set of yearly databases, the difference 

in variations between every pair of items could be expressed by a square matrix, called difference 

in variation. This matrix is symmetric square matrix. Intuitively, if the difference in variations 

between two items is close to zero then they may be put in the same class.  We have proposed the 

notion of best cluster by considering average degree of variation of a class. Also, we have 

designed  



ix 

________________________________________________________________________ 

an alternative algorithm to find best cluster among items in different data sources. Experimental 

results are provided on two real and one synthetic transactional database.  

   In transactional database measuring influence among itemsets over time becomes an important 

issue, since many companies possess data for a long period of time so that they could be 

exploited in an efficient manner. Such analyses might be interesting since the proposed measure 

of influence considers both positive and negative influence of an itemset on another itemset. Tan 

et al. (2003) presented an overview of twenty one interestingness measures proposed in the 

statistics, machine learning, and data mining literature. Based on these observations, we consider 

five out of twenty one interestingness measures since overall influence of an itemset on another 

itemset lies in [-1, 1]. We show that none of the five measures serves as a measure of overall 

influence between two itemsets. Using the notion of overall influence, we have designed two 

algorithms for influence analysis involving specific items in a database. The first algorithm 

reports all the significant influences in a database. In the second algorithm we have sorted items 

based on their influences on a set of specific items. As the number of databases increases on a 

yearly basis, we have adopted incremental approach in these algorithms. Experimental results are 

reported for both synthetic and real-world databases.   

   It might be interesting as well as useful to know the interesting changes in sales over time. In 

Chapter 4 we have introduced a new pattern, called notch, of an item in time-stamped databases. 

First, we have introduced the notion of notch in a sales series of an item. Based on this pattern 

we have introduced two more patterns viz., generalized notch and  iceberg  notch, in  sales  series 

of an  item. Iceberg  notch  represents  a  special sales  

 



x 

________________________________________________________________________ 

pattern of an item over time. It could be considered as an exceptional pattern in time-stamped 

databases. Study of such patterns could be important to understand the purchase behaviour of 

customers. It helps identifying the reasons of such behaviour. We have designed an algorithm for 

mining interesting icebergs in time-stamped databases. We have presented experimental results 

on four real databases and two synthetic databases. 

   A calendar-based periodic pattern is dependent on the schema of a calendar. We assume that 

the schema of the calendar-based pattern is based on day, month and year. In the recent time, 

researchers have reported an algorithm for finding calendar-based periodic pattern in a time-

stamped data and introduced the concept of certainty factor in association with an overlapped 

interval (Mahanta et al., 2008). In Chapter 5 we mined locally frequent itemsets along with the 

set of intervals and their support range. We have extended the concept of certainty factor by 

incorporating support information for better analysis of overlapped intervals. Using this concept 

one can extract various calendar-based patterns viz., yearly, monthly, weekly and daily. In 

addition, we check whether any periodicity (full / partial) exists in the patterns. We have 

proposed some improvements in the algorithm for identifying calendar-based periodic pattern in 

a time-stamped dataset by introducing suitable data structure. The algorithm is incremental in 

nature. We have presented extensive data analysis on three data sets. We also analysed the 

constraints mininterval, minsupp and maxgap associated with each interval. We also provide a 

comparative analysis with our algorithm and the most recent algorithm for mining calendar-

based periodic patterns. Experimental results are provided on real and synthetic dataset.  

 

 



xi 

________________________________________________________________________ 

 

Table of Contents 
 

Dedication ………………………………………………………………………………...ii 

Acknowledgement ……………………………………………………………………….iii 

Statement from student ……………….………………….………………….………….. iv 

Certificate ………………...…………………..………………………………………...…v 

List of publications ……………………………………………………………………... vi 

Synopsis ...……………………………………………………………………………… vii 

Table of Contents …………………………………………………………….…………. xi 

Chapter 1: Preliminary Concepts                                                                                     1                 

   1.1 Introduction …………………………………………………………………………2 

   1.2 Time in databases……………………………………………………………….…...4 

   1.3 Time granularity …………………………………………………………………… 5 

   1.4. Time-stamped data versus time series data………………………………………... 6 

   1.5 Preprocessing of time-stamped data……………………………………….. ………7  

      1.5.1 Temporal aggregation ……………………………………………….……….…8 

      1.5.2 Partitioning database into different levels of granularity …………………….…8 

   1.6 Temporal patterns.………………………………………………………………..…9  

      1.6.1 Frequent pattern..………………………………………………………………10 

      1.6.2 Temporal association rule ……………………………………………………..11 

      1.6.3 Event …………………………………………………………………………..11 



      xii 

________________________________________________________________________ 

Table of Contents 
 (continued) 

 

      1.6.4 Sequential pattern…..…………………………………………………………..12 

      1.6.5 Episode ……………………………………………………………………….. 13 

      1.6.6 Temporal relational interval pattern …………………………………………...14 

  1.7 Temporal data mining tasks ………………………………………………………..15 

      1.7.1 Prediction …………………………………………………………………….. 16 

      1.7.2 Clustering …………………………………………………………………….. 16 

      1.7.3 Classification …………………………………………………………………. 17 

      1.7.4 Search and retrieval ……………………………………………………………18 

      1.7.5 Pattern discovery ………………………………………………………………19 

   1.8 Conclusion………………………………………………………………………... 19  

Chapter 2: Clustering Items in Different Data Sources Induced by Stability           21                   

   2.1 Introduction ………………………………………………………………………. 22 

   2.2 Related work ………………………………………………………………………23 

   2.3 A model of multiple transactional time-stamped databases ………………………24 

   2.4 Problem statement …………………………………………………………………26 

   2.5 Clustering items …………………………………………………………………...29 

      2.5.1 Finding the best non-trivial partition ………………………………………….31 

      2.5.2 Finding a best class ……………………………………………………………38 

   2.6 Experiments ……………………………………………………………………….40 



         xiii 

________________________________________________________________________ 

Table of Contents 
 (continued) 

 

   2.7 Conclusion ………………………………………………………………………...46 

Chapter 3: Mining Icebergs in Time-Stamped Databases                                           47                   

   3.1 Introduction ………………………………………………………………………. 48 

   3.2 Related work ………………………………………………………………………51 

   3.3 Notches in sales series …………………………………………………………….54 

   3.4 Generalized notch …………………………………………………………………57 

   3.5 Iceberg notch ………………………………………………………………………58 

   3.6 Sales series ………………………………………………………………………...59 

   3.7 Mining icebergs in time-stamped databases ………………………………………61 

   3.8 Experimental studies ………………………………………………………………67 

   3.9 Conclusion ……………………………………………………………………….. 80 

Chapter 4: Identifying Calendar-based Periodic Patterns                                          81                  

   4.1 Introduction ………………………………………………………………………. 82    

   4.2 Related work ………………………………………………………………………86 

   4.3 Calendar-based periodic patterns ………………………………………………….87 

      4.3.1 Overlapped intervals …………………………………………………………..89 

      4.3.2 Extending certainty factor ……………………………………………………..90 

            

 

 



 xiv 

________________________________________________________________________ 

Table of Contents 
 (continued) 

 

      4.3.3 Extending certainty factor with respect to other intervals …………………….95 

   4.4 Mining calendar-based periodic patterns ………………………………………… 97 

      4.4.1 An overview of calendar-based periodic pattern …………………………….. 98 

      4.4.2 Improving mining calendar-based periodic patterns ………………………….98 

      4.4.3 Data structure ………………………………………………………………....99 

      4.4.4 A modified algorithm ………………………………………………………...101   

   4.5 Experimental studies ……………………………………………………………..110 

      4.5.1 Selection of mininterval and maxgap………………………………………...116 

          4.5.1.1 Mininterval ………………………………………………………………117 

          4.5.1.2 Maxgap ………………………………………………………………….119 

      4.5.2 Selection of Minsupp ………………………………………………………...119 

      4.5.3 Performance analysis ………………………………………………………...121 

   4.6 Conclusion ………………..……………………………………………………...124 

Chapter 5: Measuring Influence of an Item in a Database Over Time                    126 

   5.1 Introduction ………………………………………………………………………127 

   5.2 Association between two itemsets………………………………………………..129 

   5.3 Concept of influence ……………………………………………………………..131 

      5.3.1 Influence of an itemset on another itemset…………………………………...132 

      5.3.2 Properties of influence measures …………………………………………….134 



 xv 

________________________________________________________________________ 

Table of Contents 
 (continued) 

      

5.3.3 Influence of an item on a set of specific items …………………………………....135    

5.3.4 Motivation ………………………………………………………………………...137 

5.4 Problem statement ……………………………………………………………………...141 

5.5 Related work …………………………………………………………………………...142 

5.6 Design of algorithms …………………………………………………………………...143    

   5.6.1 Designing Algorithm for measuring overall influence of an item on another item...143  

   5.6.2 Designing Algorithm for measuring overall influence of an item on each of the  

             specific items ……………………………………………………………………...145 

   5.6.3 Designing Algorithm for identifying top influential items on a set of specific  

             items ……………………………………………………………………………….146 

5.7 Experiments ……………………………………………………………………………147 

5.8 Conclusion ……………………………………………………………………………..156 

Chapter 6: Conclusion                                                                                                            157 

References                                                                                                                                161 

 

 

 

 

 

 

 

 

 

 



                          1  

______________________________________________________________________________ 

 

Chapter 1 

 

Preliminary Concepts 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 

______________________________________________________________________________ 

1.1 Introduction 

Data mining and knowledge discovery process traditionally involves analysing a static dataset, 

where data instances are collected, stored and analysed to derive models, and eventually 

decisions are made based on these models (Han & Kamber, 2006). Many business processes are 

required to collect a huge volume of data over a long period of time. Data mining methods 

assume implicitly that the domain under consideration is stable over time, and thus provide a 

rather static view on knowledge hidden in the data available so far. But many real databases are 

dynamic, and hence grow over time. Moreover, many real world databases contain time 

information. For instance, data about the sold items including its production date, data about the 

sales includes selling date, data about the warranty case together with the date of the claim, the 

expiry date of warranty and the payment, etc. Time stamp seems to be a natural attribute to 

objects described in a database. Knowledge discovery in a time-stamped database is an 

interesting and well known research issue (Bettini et al., 1998; Mitsa, 2010; Hsu et al., 2008).  

   Data mining and knowledge discovery processes often involve analyzing data by ignoring 

time. Most of the cases temporal data are treated as an unordered collection of events. Analyzing 

data involving temporal dimension has received attention in the recent time (Adhikari & Rao, 

2010; Leonard & Wolfe, 2005). Data analyses based on time dimension might offer significant 

knowledge to an organization. Time component is present almost in every data. Thus, time-based 

data analyses are present everywhere.   

   Temporal data mining (Antunes & Oliveira, 2001; Laxman & Sastry, 2006) is concerned with 

mining of a large sequential dataset ordered with respect to time. Time series data, time-stamped  

 



3 

______________________________________________________________________________ 

data are examples of popular classes of sequential data, where data are ordered by time. One 

could consider a time-stamped database as a sequence of time databases.  

    In case of mining such sequence of multiple time-stamped databases an incremental approach 

(Adhikari & Rao, 2010; Lee et al., 2001) seems to be a natural and effective solution. Little work 

has been reported on mining and analysis of multiple time-stamped databases. 

   Many organizations transact data from multiple branches. Consider one such organization that 

possesses multiple databases. It might be difficult to mine all the databases together, since some 

of the branch (local) databases could be very large. In this situation a mono-database mining 

technique (Agrawal et al., 1994; Han et al., 2000) might fail. Local pattern analysis (Adhikari & 

Rao, 2008a; Zhang et al., 2003) is an important approach to mining multiple databases. In this 

approach each local database is mined locally. Then all the local pattern bases are analysed and / 

or synthesized for mining global patterns (Adhikari & Rao, 2008a; Wu & Zhang, 2003). In local 

pattern analysis we mine each database separately. This approach could also be applied to 

analysing a time-stamped database by considering it as a sequence of time databases. Web sites 

and transactional databases contain a large amount of time-stamped data related to an 

organization’s suppliers and / or customers over time. Mining such time-stamped data could help 

business leaders make effective decisions by listening to their suppliers or customers via their 

transactions collected over time. Consider an established company possessing data over fifty 

consecutive years. Generally, the sales of a product vary from one season to another season. 

Also, a season re-appears on a yearly basis. Thus, one may decide dividing the entire database 

into a sequence of yearly databases.  In this context, a yearly database could be  considered  as  a  

 



4  

______________________________________________________________________________ 

time database. Each of these time databases is similar to a branch database of a multi-branch 

company possessing multiple databases. Thus, mining and analysis of time databases is similar 

to local pattern analysis. The goal of this thesis is to mine and provide various types of data 

analyses based on time databases. 

1.2 Time in databases 

Temporal databases capture time-related attributes whose value may change with time. These 

databases contain time-stamping information. Time-stamping could be specified as follows 

(Mitsa, 2010): 

 With a valid time, which is the time that the element information is true in the real world. 

For example, “The patient was admitted to the hospital on 5:15 a.m., March 3, 2005”, 

(Tansel et al., 1993; Date et al., 2002). 

 With a transaction time, which is the time the element information is entered into the 

database (occurrence time) (Tansel et al., 1993; Date et al., 2002). 

 A table that contains both valid times and transaction times is said to be bi-temporal. 

Many time-stamped databases are not related with valid time, since the records do not contain 

temporal information. On the other hand, almost all time-stamped databases are related with 

transaction time. In our work we have dealt with temporal databases containing transaction time.  

Market basket data are inherently related with time. Each record in market basket data is time-

stamped at the time of checking out from the store. Time-stamped data could be transformed into 

events, time intervals, and time series.  

   Two types of temporal data are dominant in the development of temporal data mining. They 

are time-series data and sequence data. If the data contain numerical values, such as stock price,  



5  

______________________________________________________________________________ 

rainfall, we usually say that the data is time series. On the other hand, when the data is based on 

categorical values, it is called sequence data. These can be time-stamped at regular or irregular 

time intervals. A common example is the items purchased by a customer in a supermarket. We 

have mainly worked with sequence data where the records in the database are entered according 

to their occurrence times.  

Many problems on sequence data are based on the order of data points rather than their concrete 

time-stamps. In Chapters 2, 3, and 5, we have presented problems based on the order of data 

points. But the problem in Chapter 4 is based on both the order of the data points and their time-

stamps.  

1.3 Time granularity 

Depending on the purpose or application different sizes of time unit may be appropriate. So the 

age of volcanoes may be measured in year, or decade, or hundred of years. The age of motorcars 

may be measured in year, or perhaps month for new cars. The age of babies may be measured in 

year, or month, or week, or day, and the age of bacteria in second or millisecond. The size of the 

unit in a particular scenario is referred to as the granularity of the unit; small temporal grains 

refer to short units of time (day, hour, second, millisecond, etc.), and large temporal grains refer 

to longer units of time (month, year, decade, etc.). Calendar units such as year, month and day; 

clock units such as hour, minute and second; and specialized units such as business day, holiday 

and academic year serve major roles in a wide range of information system applications.  

   Different facts may be associated with temporal contexts expressed in terms of different 

granularities. For example, a bank transaction may require a timestamp in seconds, while the 

presence of an  employee in a  department  may be  expressed in days. A temporal  database  that  



6  

______________________________________________________________________________ 

allows facts expressed in terms of different granularities is called a temporal database with 

multiple granularities. Goralwalla et al. (2001) showed an approach to handling of multiple 

granularities in temporal data. Authors separated temporal data into two groups: anchored  

(calendrical day or month such as January 1st, 2008 or May 1978), and unanchored (time 

intervals such as 2 months, 5 h 20 min, etc.) data (Euzenat & Montanari, 2005). Thus, a temporal 

granule is a special kind of unanchored temporal data (Goralwalla et al., 1998). Cotofrei and 

Stoffel (2009) defines formalism for a specific temporal data mining task such as the discovery 

of rules inferred from database of events having a temporal dimension. The proposed theoretical 

framework, based on first-order temporal logic allows the definition of notions such as event, 

temporal rule, and confidence in a formal way. This formalism is then extended to include the 

notion of temporal granularity, and a detailed study is made to investigate the formal 

relationships between the support measures of the same event in linear time structures with 

different granularities. 

1.4 Time-stamped data versus time series data 

In businesses we often wish to discover knowledge from temporal databases. Both time stamped 

and time series data are related with time, where a time point is an instance of time with a given 

base granularity such as a second, minute, day, month, year, etc. We assume that the time points 

are always defined over a sequentially ordered domain of base values, and thus can be compared. 

A pair of time points defines a time interval. For example, a semi-closed time interval, denoted 

by [t1, t2), is the finite set of base granularity time points t such that t1 ≤ t < t2.  

   Time-stamped data is represented using observations at discrete points of time. For example, 

web-log, point-of-sale data,  bank transactions, inventory, and  stock market data.  Transactional  



7  

______________________________________________________________________________ 

data are time-stamped data collected over time at no particular frequency (Leonard & Wolfe, 

2005). But time series data are collected over time at a particular frequency. Some examples of 

time series data are web-site visits per hour, sales per month, inventory draws per week, calls per 

day, and trades per weekday. The accumulation of time-stamped data into time series data is 

based on a particular frequency. The frequency associated with the time series varies with the 

problem at hand. Time-stamped data can be accumulated to form hourly, daily, weekly, monthly, 

or yearly time series. In addition, the method of accumulating data within each time period is 

based on a particular statistics. For example, sum, mean, median, minimum, maximum, standard 

deviation, and other statistics can be used to accumulate data within a particular time period.  

   A time series is a set of unique time points with values or objects assigned to each time point. 

But a time sequence is a multi-set of time points with assigned values or objects, i.e., it can 

include duplicate time points. If time stamps in the stored data are equidistant, data actually are 

time series. A time series can be univariate or multivariate. A multivariate time  series is  created  

by more than one variable while in a univariate time series there is one underlying variable. 

Another characteristic of time series is its stationarity (Brockwell & Davis, 2002). A stationary 

time series has a mean and a variance that does not change over time, while a non-stationary one 

has no salient mean and can decrease or increase over time.  

1.5 Preprocessing of time-stamped data 

Data preprocessing is an important step in the knowledge discovery process. Data must be 

appropriately preprocessed before deriving meaningful knowledge. Data preprocessing may vary 

from one  application to another  application. In the context of  time-stamped data, there are  two  

 



8  

______________________________________________________________________________ 

important aspects of data preprocessing viz., aggregating the time-stamped data and partitioning 

the database at different levels of granularity. 

1.5.1 Temporal aggregation 

Temporal aggregation is a process in which a time line is partitioned over time and the values of 

various attributes in the database are accumulated over these partitions (Dumas et al., 1998). A 

typical example of temporal aggregation is the monthly accumulation of salary payment. Due to 

the large varieties of temporal data and their distribution over the time line, efficient algorithms 

to perform temporal grouping are necessary. Moon et al. (2003) proposed several methods for 

large-scale temporal aggregation. In this context, the choice of time granularity is an important 

issue as the characteristics of temporal patterns is heavily dependent on this parameter. Let us 

consider an online shop that acquires monthly reports from their web hosts. The web hosts 

deliver activity reports at regular intervals. Here time granularity refers to a month instead of a 

year. Therefore, for this application month-wise time-stamped data could be accumulated to form 

smaller  databases. Similarly for stock  market  applications, weekly  data  accumulation may  be  

preferred to monthly data. In Chapter 3 we have applied aggregation technique for finding sales 

of different items. One of the reasons to summarize the time-stamped data is to reduce the 

amount of data. Afterwards, an appropriate algorithm could be designed to handle reduced data. 

1.5.2 Partitioning database into different levels of granularity  

Consider an organization possessing data over fifty consecutive years. The organization might be 

interested in mining knowledge for various purposes. It may require partitioning a database for 

various purposes such as finding items whose supports are stable over the time (Adhikari et al., 

2009), discovering the abrupt  variation in sales of  items (Adhikari et al., 2011), and  extracting  



9  

______________________________________________________________________________ 

yearly periodic patterns (Adhikari & Rao, 2011). In order to extract such knowledge, one could 

divide the given database into a number of yearly databases. 

   Also for the purpose of mining change (Bottcher et al., 2008) one may require partitioning a 

given database. In a prediction problem one requires analyzing past events that could originate 

from previous databases. Given such a problem, it might be strategically necessary to divide a 

large database into smaller databases. One could call these smaller databases as time databases. 

While dividing a large database one needs selecting certain time period. Selection of time period 

is an important decision and it is dependent on the problem. For many applications, such as the 

problems considered in Chapters 2, 3, 4 and 5, we divided the given database into yearly 

databases. We have considered time granularity as one year since a season re-appears on a yearly 

basis and the customers’ purchase patterns might vary from season to season.  

1.6 Temporal patterns 

A pattern is a local structure that makes a specific statement about a few variables or data points. 

Spikes,  for  example,  are  patterns in a  real-valued  time  series  that  may  be of  interest. The  

objective of pattern mining is simply to unearth all patterns of interest. Temporal data mining 

covers data analyses related to time. Matching and discovery of temporal patterns are very useful 

in many applications. There are many different approaches of temporal pattern mining based on 

various data models. They are usually designed with a particular application in mind. Several 

basic choices have to be made while mining temporal data. Usually both the concepts of time 

point (instant) and time interval have been used in the data mining literature to represent time 

(Terenziani & Snodgrass, 2004; Toman, 1996). These concepts are usually related to 

instantaneous  events, or  to  situations  lasting  for  a  span of  time.  Care needs  to  be  taken  in  



10  

______________________________________________________________________________ 

associating these concepts with the entities. For example, web login could be considered an 

instantaneous event, but observation on condition of a patient during ICU staying is an interval-

based concept. Intervals are then represented by their upper and lower temporal bounds (start and 

end time points). Time intervals are often used to obtain representations of sets of time instants. 

In such a case, validity over a time period is interpreted as validity at every time instant 

belonging to it. In practice, most systems employed in real life applications have used a time 

point or time intervals. In the following sections we discuss a few interesting time point patterns 

as well as time interval patterns. 

1.6.1 Frequent pattern 

A frequent pattern is one that occurs many times in a database. Since the beginning of the 1990s, 

frequent pattern mining has become one of the most actively researched topics in data mining 

and knowledge discovery. Much of data mining literature is concerned with formulating useful 

pattern structures and developing efficient algorithms for discovering patterns that occur 

frequently in the data (Agrawal et al., 1993). The starting point was  market basket  analysis  and  

especially the task of mining transactional data, which describes the shopping behavior of 

customers of supermarkets, online shops, for products that are frequently bought together. For 

this task, which became generally known as frequent itemset mining, a large number of efficient 

algorithms were developed, which are based on sophisticated data structures and clever 

processing schemes. Among them Apriori (Agrawal & Srikant, 1994), Eclat (Zaki, 2000b), and 

FP-growth (Han et al., 2000) are most widely known.  The support (Agrawal et al., 1993) of an 

itemset  is  defined as  the  fraction of  transactions  containing  the  itemset.  It  has  been  used  

 



11  

______________________________________________________________________________ 

extensively in identifying different types of patterns in a database including temporal data and as 

well as interval based data. 

   Periodic frequent patterns are special kind of frequent patterns that occur periodically 

(regularly) within a dataset (Tanbeer et al., 2009). In this approach, the time of occurrence of 

each transaction is taken into account for periodic frequent pattern mining.   

1.6.2 Temporal association rule 

Methods for finding frequent patterns are considered important because they can be used for 

discovering useful rules. These rules can in turn be used to infer some interesting regularities in 

the data. A rule consists of a pair of Boolean-valued propositions, a left-hand side proposition 

(the antecedent) and a right-hand side proposition (the consequent). The rule states that when the  

antecedent is true, then the consequent will be true as well. Rules have been popular 

representations of knowledge in machine learning and AI for many years. In data mining, 

association rules are used to capture association between different set of attributes in the data 

(Agrawal et al., 1993).  

   Temporal association rule can be defined as a pair (R, T), where R is an association rule and T 

is a temporal feature, such as a period or a calendar. There are three interesting measures 

regarding the discovery of association rules viz., support, confidence (Agrawal et al., 1993) and 

informativeness  (Smyth & Goodman, 1992). The conditional probability of the consequent 

occurring given the antecedent is referred to as confidence of the rule. Informativeness is a 

measure that computes the usefulness of a rule in terms of the information it provides. 

1.6.3 Event 

Temporal events occur in a wide range of applications in business, government, and science. 



12  

______________________________________________________________________________ 

Some of these events can be aggregated over time in a meaningful way and thus can be presented 

in time series visualizations. But other applications require each event to be visible. An event is a  

single, time-stamped item or a data point in time, which can be time-stamped. For a more 

systematic analysis, events are therefore briefly categorized as (i) event sequence, and (ii) event 

episode. An event sequence is a set of events that are ordered in time, whereas an event episode 

is a set of events that are time-stamped. Event sequences are investigated in order to predict 

events or to determine correlations of events (Agrawal et al., 1995). There is a distinction 

between event sequences and event episodes (Mannila et al., 1997). Since an event episode is a 

set of events that are time-stamped, the distance between the atomic events matters. Under the 

assumption that every event has an assigned value, event data can be further refined into a) time- 

synchronous event data, in which an accurate time-stamp is important, b) ordinal event data, 

where the ordering of the events according to time plays an important role, c) aggregateable 

event data, which can be summarized for a particular interval, and d) hierarchical event data, 

where the grouping is defined based on a hierarchical structure in the meta data. To foster a 

better understanding of analysis tasks for event data, we define the following terms. A significant 

event is a single event that is interesting for some reason. An event cluster is a set of events that 

are considered as being similar to each other. This may, but not necessarily, include similarity in 

time. An event pattern is an event sequence or episode that shows some interesting regularity 

with respect to certain properties. 

1.6.4 Sequential pattern 

Sequential pattern mining has received a particular  attention in the last decade (Agrawal & 

Srikant, 1994; Zaki, 2001; Han, et al., 2000; Wang & Han, 2004).  A sequence is a  time-ordered 



13  

______________________________________________________________________________ 

list of objects. These can be time-stamped at regular or irregular time intervals. The objective is 

to extract patterns from a set of sequences of instantaneous events that satisfy some user-

specified constraints. These constraints can vary from just a support threshold that defines 

frequency of a set of gaps, windows (Zaki, 2000a; Srikant & Agrawal, 1996), or regular 

expression constraints (Garofalakis et al., 1999) in view of focusing more into the mining 

process. 

   An example of a temporal sequence is the time-stamped sequence of purchases of a customer 

on a web site. An event can be considered as a special case of a temporal sequence with a time-

stamped element. Therefore, a series of events is another way to represent a temporal sequence, 

where the  elements of  the  sequence are  semantically of the same type. The  sequential  pattern  

mining framework is basically an extension of the idea of frequent itemsets having a temporal 

order.  Here the database is not just some unordered collection of transactions. Each transaction 

in the database carries a time-stamp as well as a customer identifier. The transactions associated 

with a single customer can be regarded as a sequence of itemsets ordered by time and database 

contains one such transaction sequence corresponding to each customer. This concept of 

sequential patterns is quite general and can be used in many other situations as well. Sequential 

pattern mining can be used to discover those sequences of websites that are frequently visited 

one after another.  

1.6.5 Episode 

Another approach to discover temporal patterns in sequential data is the frequent episode 

discovery framework (Mannila et al., 1997). In the sequential patterns mining framework a 

collection of  sequences  are  given, and  the  task is to  discover ordered  sequences of items  that 



14  

______________________________________________________________________________ 

occur in sufficiently many of those sequences. In the frequent episodes mining framework the 

data are given as a single long sequence, and the task is to unearth temporal patterns, called 

episode, and it occurs sufficiently often along that sequence.  

   An episode is defined as a sequence of events appearing in a specific order within a specific 

time window. An example of episode is the occurrence of flu followed by pneumonia. An event 

sequence is defined as a pair of events and corresponding timestamps <(E1, t1), (E2, t2), . . . >, 

where ti is an integer denoting the time stamp of the i-th event Ei. The sequence is ordered with 

respect to the timestamps so that ti ≤ ti + 1 for i = 1, 2, . . . . An episode is just a partially ordered 

set of event types. An episode is said to belong to a sequence if the events in the episode appear 

in the same  order in the  sequence. An  episode can be  either serial or  parallel. In case of  serial  

episode order is important. An example of a serial episode is (A → B → C), while a parallel 

episode is of the form (ABC). The problem of mining episodes is to discover all episodes that 

satisfy a minimum frequency threshold among the time windows with a user-specified window 

size. The frequent episode discovery framework has also been applied to many other kinds of  

datasets such as web navigation logs (Casas-Garriga, 2003) and Wal-Mart sales data (Atallah et 

al., 2004). 

1.6.6 Temporal relational interval pattern  

Time stamp could be expressed in either absolute or relative terms. Earlier we have discussed 

absolute value of time information, i.e. time point and time interval. The temporal relationship 

between two temporal events can be captured by an operator such as before, after, equal, and 

overlap. These operators return Boolean values and are used in expressing temporal queries in 

temporal calculus.  Relative  time  expression could be  achieved using  Allen’s  relations such as  



15  

______________________________________________________________________________ 

before, after, meets, overlaps, and contains (Allen, 1983). Recently interval sequence data came 

into the focus of knowledge discovery process. In contrast to event sequences, interval sequences 

contain labeled events with a temporal extension. Each event has a label and a timestamp. These 

temporally extended events are called temporal intervals. Each temporal interval can be 

described by a triplet (b, e, l), where b and e denote the beginning and the end of the interval 

respectively, and l represents its label.  

   Temporal intervals are used to define interval sequences. Without temporal extension there are 

only two possible relations. Either one event is before (or after) the other, or the events coincide. 

Due to the temporal extension of temporal intervals, the possible relations between two intervals 

become more  complex. There  are  seven  possible  relations  between two  events.  Based on the  

problems, the interval sequences may have gaps. A temporal interval relation is defined 

as       IOPyxyxPyxR  ,,,,  (Lee et al., 2009). The set of temporal interval operators 

IO = {before, equals, meets, overlaps, during, starts, finishes},   yxIEyxyx  ,,,  

where IE is a set of temporal intervals and P(x, y) is a binary predicate which expresses the 

temporal interval relationship P between x and y.  

1.7 Temporal data mining tasks 

The objectives of data mining, called tasks of data mining, can be classified broadly into some 

groups (Han & Kamber, 2006; Hand et al., 1999). In case of temporal data mining, the tasks may 

be grouped as prediction, clustering, classification, searching and retrieval, and pattern 

discovery. 

 



16  

______________________________________________________________________________ 

1.7.1 Prediction 

Prediction is often the ultimate goal of temporal data mining. It has variety of applications in the 

diverse areas such as financial forecasting, meteorology, seismology, and medical disease 

detection. For example, a couple of specific applications are given as follows: (i) a company is 

interested in predicting its sales for the next month, and (ii) a doctor would like to predict the 

reaction of his patients to a new diabetes medication.  The first example falls under the area of 

time series prediction (forecasting), while the second one falls under the category of event 

prediction. In time series forecasting data are historical, and obtained at regular time intervals. In 

univariate time series forecasting, the problem is to predict the value of a variable at multiple 

time intervals. For event prediction, the population data are about the variables that are related to 

the  occurrence of  an  event or  series  of  events. It  predicts  the  occurrence of  an  event or the  

number of  occurrences of an  event or the  duration of an  event at  given  conditions.  Predictive  

model permits the value of one variable to be predicted from the known values of other 

variables. The goal of temporal prediction is to predict some fields based on other fields. 

Temporal data prediction also involves using prior temporal patterns such as models and 

knowledge, for finding the relevant data attributes of interest. 

1.7.2 Clustering   

Clustering is a process of dividing objects into different groups. It is the subject of active 

research in several fields such as statistics, pattern recognition, and machine learning. Temporal 

clustering targets separating temporal data into subsets of similar data. There are two 

fundamental problems of temporal clustering viz., (i) to define a meaningful similarity measure, 

and (ii) to choose the number of temporal clusters. In temporal data analysis, many temporal data  



17  

______________________________________________________________________________ 

mining applications make use of clustering according to similarity and optimization of temporal 

set functions. If the number of clusters is given then clustering techniques can be divided into 

three classes: metric-distance based technique, model-based technique, and partition-based 

technique. These techniques can be used occasionally in combination. For example, in 

probability-based versus distance-based clustering analysis a combination technique is used. If 

the number of clusters is not given, then one can use non-hierarchical clustering algorithms to 

find the number of clusters. 

   To consider spatial information in clustering, three types of clustering analysis have been 

studied including spatial clustering (i.e., clustering of spatial points), regionalization (i.e., 

clustering with geographic contiguity constraints), and point pattern analysis (i.e., hot spot 

detection with spatial scan statistics). In  case of  spatial  clustering, the  similarity  between  data  

points or clusters is defined with spatial properties (such as locations and distances). Spatial 

clustering methods can be partitioning or hierarchical, density-based or grid-based. Today, a 

huge amount of data are being collected with spatial and temporal components from sources such 

as meteorological, and satellite imagery. Efficient visualization as well as discovery of useful 

knowledge from these datasets is therefore very challenging and becoming a massive economic 

need.  

1.7.3 Classification 

Data classification is an important machine learning problem with a wide variety of applications. 

A number of classification models and techniques have been proposed, and applied to the 

analysis of various datasets. These include methods such as decision trees, bayesian networks, 

nearest-neighbor classifiers, or support vector machines.  However, the  success of  classification  



18  

______________________________________________________________________________ 

methods depends heavily on the quality of data and data features used by the models. 

Consequently, feature selection and feature construction methods in combination with a 

classification model often determine the success of the machine learning approach in extracting 

useful and accurate classification models. Advances in data collection and data storage 

technologies have led to the emergence of complex multivariate datasets. The examples based on 

these datasets are not simple data points. They even trace the complex behaviors characterized 

by time series. Consider a problem of building a classifier to diagnose or predict a patient’s 

condition using past patient’s data. Ignoring the temporal aspect of data, the patient case can be 

easily described using the most recent set of values such as  “a low blood pressure”, or “a high 

white blood cells count”. However, this information may be limited in describing the patient’s 

state. For example, the information that is important for the diagnosis may include simple trends,  

such as “increase in the blood pressure” or more complex temporal patterns such as “low blood 

pressure following the prescription of a certain medication”. Clearly, more complex temporal 

information may improve the ability to diagnose the case effectively.  

1.7.4 Search and retrieval 

Searching for sequences in large databases is another important task in temporal data mining. 

Sequence search and retrieval techniques play an important role in interactive explorations of 

knowledge in large sequential databases. The problem is concerned with efficiently locating 

subsequences, often referred to as queries, in large archives of sequences or, in a single long 

sequence. Query-based searches have been extensively studied in language and automata theory. 

While the problem of efficiently locating exact matches of substrings is a well solved problem, 

but the situation is quite different in looking for approximate matches (Wu & Manber, 1992).  



 19  

______________________________________________________________________________ 

   For similarity searching in multimedia data, we consider here two main families of multimedia 

indexing and retrieval systems: (i) description-based retrieval systems, which build indices and 

perform object retrieval based on image description, such as keywords, captions, size, and time 

of creation, (ii) content-based retrieval systems, which support retrieval based on the image 

content, such as colour histogram, texture, shape, objects and wavelet transforms. In content-

based retrieval, it is approximate matching that one might be more interested in.  

1.7.5 Pattern discovery  

Unlike in search and retrieval applications, in pattern discovery there is no specific query to 

search a database. Pattern discovery is an unsupervised or a supervised operation that is meant 

only for data mining methods. The main goal of pattern discovery is to discover all interesting 

patterns in data as  discussed in  Section 1.6. There is no  universal  notion for defining a  pattern.  

One of the primary aims of pattern detection is spotting fraudulent behavior by detecting regions 

of the space defining different types of transactions, where the data points significantly different 

from the rest. 

1.8 Conclusion 

A vast amount of temporal data is available in science, engineering and medical fields. Also, 

many large companies collect data for a long period of time. Knowledge extracted from such 

data would help the companies to make effective decisions. Due to the existence of a large class 

of temporal datasets, applications dealing with temporal patterns seem to be present everywhere 

(Bettini et al., 2000; Lattner, 2007; Mitsa, 2010). In the recent time, some amount of work has 

been reported on mining and analyzing time-stamped database (Mahanta et al., 2008; Hong et al.,  

 



20  

______________________________________________________________________________ 

2009; Khan et al., 2010; Chen & Chundi, 2011). But the domain of multiple time-stamped 

databases has not been studied well. We have also worked based on this domain. We conclude 

this chapter by mentioning our contributions made in the thesis. 

   We have mined various patterns from a collection of  yearly databases. These patterns are 

useful in making many strategic decisions for a company. In Chapter 2, we have proposed a 

model of mining global temporal patterns in multiple databases, and the notion of degree of 

stability of an item to extract stable items. We have designed an algorithm for clustering items in 

multiple databases based on degree of stability. In Chapter 3 we have proposed the concept of 

generalized notch, and then a special generalized notch, called iceberg, has been proposed. We 

designed an algorithm to mine icebergs in time-stamped databases. In Chapter 4 we have 

extended the concept of certainty factor by incorporating support information for an effective 

analysis of overlapped intervals. We have proposed improvements on the existing algorithm for 

identifying calendar-based periodic pattern in a time-stamped dataset. We have also analysed the 

constraints viz., minimum interval, minimum support and maximum gap associated with each 

time interval. We also provide a comparative analysis between the proposed algorithm and the 

existing algorithm for mining calendar-based periodic patterns. In Chapter 5 we introduce the 

notion of an overall influence of a set of items on another set of items. We have proposed an 

extension to the notion of overall association between two items in a database. Using the notion 

of overall influence, we have designed two algorithms for influence analysis involving specific 

items in a database.        

 

 

 



21 

______________________________________________________________________________ 

 

Chapter 2 

 

Clustering Items in Different Data Sources Induced by Stability 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



22 

______________________________________________________________________________ 

2.1 Introduction 

Due to the liberalization of government policies across the globe, the number of multi-branch 

companies is increasing over time. Many multi-branch companies deal with multiple databases. 

Thus, the study of data mining on multiple databases is an important issue. Data mining and 

knowledge discovery on multiple databases has been recently recognized (Wu & Zhang, 2003; 

Adhikari & Rao, 2008a) as an important area of research in data mining community.  

   Many of these multi-branch companies also deal with transactional time-stamped data. 

Transactional data collected over time at no particular frequency is called transactional time-

stamped data (Leonard & Wolfe, 2005). Some examples of transactional time-stamped data are 

point of sales data, inventory data, and trading data. Little work has been reported on the area of 

mining multiple transactional time-stamped databases. Many important and useful applications 

might involve transactional time-stamped data.  

   All the transactions in a branch might get stored locally. A transaction could be viewed as a 

collection of items with a unique identifier. An interesting characteristic of an item is its 

variation of sales over time. The items having less variation of sales over time are useful in 

devising strategies for a company. Thus, it is important to study such items.  

Example 1. Let us consider ten yearly time databases and sample time series of supports 

corresponding to five different items. Let i-th series be the time series of supports corresponding 

to item xi, for i = 1, 2, 3, 4, 5. 

(1) 0.03, 0.20, 0.31, 0.11, 0.07, 0.35, 0.82, 0.62, 0.44, 0.13 

(2) 0.19, 0.20, 0.18, 0.21, 0.20, 0.20, 0.19, 0.18, 0.21, 0.20 

 



23 

______________________________________________________________________________ 

(3) 0.05, 011, 0.07, 0.20, 0.16, 0.12, 0.13, 0.08, 0.17, 0.10 

(4) 0.03, 0.04, 0.03, 0.07, 0.08, 0.12, 0.09, 0.15, 0.17, 0.12 

(5) 0.04, 0.04, 0.03, 0.05, 0.04, 0.06, 0.04, 0.05, 0.06, 0.05 

Among the support series corresponding to different items, we observe that the variation of sales 

corresponding to item x5 is the least. The company would prefer to devise strategy based on item 

x5. In this chapter we have proposed a model of mining global temporal patterns in multiple 

databases, and the notion of degree of stability of an item. We have designed an algorithm for 

clustering items in multiple databases based on the degree of stability. 

   The rest of the chapter is organized as follows. We discuss related work in Section 2.2. In 

Section 2.3, we propose a model of mining multiple transactional time-stamped databases. We 

state our problem in Section 2.4. In Section 2.5, we design an algorithm for clustering of items in 

multiple databases. Experimental results are provided in Section 2.6. 

2.2 Related work  

Liu et al. (Liu et al., 2001) have proposed stable association rules based on testing of hypothesis. 

In this case, the distribution of test statistic under null hypothesis is normal for large sample size. 

Thus, the stable association rules are determined based on some assumptions. Due to these 

reasons, we define stable items based on the concept of stationary time series data (Brockwell & 

Davis, 2002). In the context of interestingness measures, Tan et al. (2002) have described several 

key properties of twenty one interestingness measures proposed in statistics, machine learning 

and data mining literature. Wu et al. (2005) have proposed two similarity measures for clustering 

a set of databases. Zhang et al. (1997) have proposed an efficient and scalable data clustering 

method BIRCH based on a new in-memory data structure called CF-tree. 



24 

______________________________________________________________________________ 

Estivill-Castro and Yang (2004) have proposed an algorithm that remains efficient, generally 

applicable, multi-dimensional but is more robust than to noise and outliers. Jain et al. (1999) 

have presented an overview of pattern clustering methods from a statistical pattern recognition 

perspective, with a goal of providing useful advice and references to fundamental concepts 

accessible to the broad community of clustering practitioners. Authors discussed various 

clustering processes where objects were considered from single database. In this chapter, we 

cluster items in multiple databases based on supports of items. Thus, the above algorithms might 

not be suitable under this framework. Yang and Shahabi (2005) have proposed an algorithm to 

determine the stationarity of multivariate time series data for improving the efficiency of many 

correlation based data analysis. Zhang et al. (2003) designed a local pattern analysis for mining 

multiple databases. Zhang et al. (2004) studied various issues such as data preparation, data 

privacy related to multi-database mining. A good insight into mining aspect of both single and 

multi-databases was provided. 

2.3 A model of multiple transactional time-stamped databases 

Consider a multi-branch company that has n branches. Let Di be the transactional time-stamped 

database corresponding to i-th branch, for i = 1, 2, …, n. Web sites and transactional databases 

contain a large amount of time-stamped data related to an organization’s suppliers and / or 

customers over time. Mining these types of time-stamped data could help business leaders make 

better decisions by listening to their suppliers or customers via their transactions collected over 

time (Leonard & Wolfe, 2005). We propose a model for mining global patterns in multi- 

databases over time.  Adhikari and Rao (2008b) have proposed an extended model of mining 

multiple databases using local pattern analysis. 



25 

______________________________________________________________________________ 

The limitation of this model is that it provides approximate global pattern. Thus, we propose a 

new model of mining global patterns in multiple transactional time-stamped databases. The 

proposed model in Figure 2.1 has a set of interfaces and a set of layers. Each interface is a set of 

operations that produces dataset(s) (or, knowledge) based on the lower layer dataset(s). There are 

five distinct interfaces of the proposed model of synthesizing global patterns from local patterns. 

The function of each interface is described below. Interface 2/1 cleans / transforms / integrates / 

reduces data at the lowest layer. By applying these procedures we get processed database from 

the original database. In addition, interface 2/1 applies a filtering algorithm on each database for 

separating relevant data from outlier data. E.g., if we are interested in studying the durable items 

then the transactions containing only non-durable items could be treated as outlier transactions. 

Also, it loads data into the respective data warehouse. At interface 3/2, each processed database 

PDi is partitioned into k time databases DTij, where DTij is the processed database (if available) 

for the j-th time slot at the i-th branch, for j = 1, 2, …, k, and i = 1, 2, …, n. At interface 4/3 the j-

th time databases of all branches are merged into a single time database DTj, for j = 1, 2, …, k. A 

traditional data mining technique could be applied on database DTj at the interface 5/4, for j = 1, 

2, …, k. Let PBj be pattern base corresponding to the time database DTj, for j = 1, 2, …, k. 

Finally, all the pattern bases are processed for synthesizing knowledge or, making decision at the 

interface 6/5. Other undirected lines in Figure 2.1 are assumed to be directed from bottom to top. 

The proposed model of mining global patterns over time is efficient, since we get the exact 

global patterns in multiple databases over time. In layer 4, we have collection of time databases. 

If any one of these databases is too large to apply  a  traditional  data  mining  technique  then  

this   data  mining  model  would  fail. In this situation, we  could  apply an appropriate sampling 



26 

______________________________________________________________________________ 

technique to reduce the size of a database. Thus, we get approximate patterns over time.  

 

 

 

Figure 2.1 A model of mining global patterns in multiple transactional time-stamped databases 

 

2.4 Problem statement 

With reference to Figure 2.1, let DTj be the database corresponding to the j-th year, for j = 1, 2, 

…, k. Each of these databases corresponds to a specific period of time. Thus, we could call them 

as time databases. Each of these time databases is mined using a traditional data mining  

technique (Han et al., 2000; Agrawal & Srikant 1994). For the specific requirement of this 

problem, we need to mine only items in the time databases. Let I be the set of all items in these 

databases. Each itemset X in a database D is associated with a statistical measure, called support 

(Agrawal et al., 1993) denoted by supp(X, D). The support of an itemset is defined as the fraction 

of  transactions  containing the  itemset. The  variation of  sales of an item  over  the  time is  an  

 



27 

______________________________________________________________________________ 

important issue in determining stability of the item. Stable items are useful in many applications, 

eg. stable items could be useful to promote sales of other items. Modeling with stable item is 

more justified than modeling with unstable item. 

   Let s(x)(t) be the mean support of item x in the database DT1, DT2, …, DTt. Thus, s(x)(t) is 

obtained by the following formula: 

s(x)(t)=   )()( ) ,( i

t

1  iii

t

1  i DTsizeDTsizeDTxsupp   , for t =1, 2, …, k                                       … (1)  

Let (s(x)) be the standard deviation of s(x)(t), for t = 1, 2, …, k. We call (s(x)) as the 

variation of means corresponding to support of x. Let s(x)(t, t + h) be the autocovariance of 

supp(x, DTt) at lag h, for t = 1, 2, …, k-1. Thus, s(x)(t, t + h) is obtained by the following 

formula: 

s(x)(t,  t + h)  =      )(  ,)(  ,
1

s(x)hts(x)t

h-k

1 t kDTxsuppkDTxsupp
k

                            … (2) 

(s(x)(t, t + h)) be the standard deviation of  s(x)(t, t + h), for h = 1, 2, … , k-1. We call this 

(s(x)(t, t + h)) as variation of autocovariances corresponding to support of x. We have chosen 

standard deviation as a measure of dispersion (Bluman, 2006). Standard deviation and mean 

deviation about mean are relevant  measures of dispersion. These measures take into account of 

variation due to each support unlike the measure range. Skewness, being a descriptive measure 

of dispersion is not suitable in this context. Before we define stability of an item, we study the 

following time series of supports corresponding to an item. In the following example, we 

compute () and () of support series corresponding to different items. 

Example 2. We continue with Example 1. The variations of means and autocovariances of above 

series are given as follows: (1) () = 0.09342, () = 0.01234, (2) () = 0.00230,  



28 

______________________________________________________________________________ 

() = 0.00002, (3) () = 0.02351, () = 0.00039, (4) () = 0.02114, () = 0.00076, (5) () 

= 0.0027986, () = 0.0000124. We observe that the value of total variation, () + (), is the 

least corresponding to item x5.  

We define stable items based on the concept of stationary time series data (Brockwell & Davis, 

2002).   In finding (), we first compute a set of means of support values. Then we compute 

standard deviation of these mean values. Thus, we find standard deviation of a set of fractions. In 

finding (), we first compute a set of autocovariances of support values. Then we compute 

standard deviation of these autocovariances. An autocovariance of supports is an average of a set 

of squared fractions. Thus, we find standard deviation of a set of squared fractions. So, ()  

(). In fact, () is close to 0. Thus, we define our first measure of stability stable1 as follows.  

Definition 1. An item x is stable if (s(x))  , where   is user defined maximum threshold.  

More strictly, we may wish to impose restrictions on both () and (). Thus we define our 

second measure of stability stable2 as follows. 

Definition 2. An item x is stable if (s(x)) + (s(x))   , where  is user defined maximum 

threshold.  

In Definition 2, the expression () + () is the determining factor of stability of an item. We 

define degree of variation of an item x as follows. 

degOfVar(x) = (s(x)) + (s(x))                                                                                               … (3) 

Higher value of degOfVar implies lower degree of stability of the item. Based on above 

discussion, we state our problem as follows. 

     



29 

______________________________________________________________________________ 

   Let Di and DTj be the databases corresponding to i-th branch and j-th year of a multi-branch 

company as depicted in Figure 1 respectively, for i = 1, 2, …, n, and  j = 1, 2, …, k. Each of the 

time (year) databases has been mined using a traditional data mining technique. Based on the 

mining results, degree of variation of each item has been computed as discussed above. Find the 

best non-trivial partition (if it exists) of the items in D1, D2, …, Dn based on degree of variation 

of an item. 

   A partition (Liu, 1985) is a specific type of clustering. Formal definition of non-trivial partition 

is given in Section 2.5.  

2.5 Clustering items 

Our clustering technique is based on the notion of degree of stability of an item. Again, the 

degree of stability is based on the variations of means and autocovariances. The clustering 

technique requires computing the degree of variation for each item in the databases. Let I be the 

set of all items in the databases. Given a set of yearly databases, the difference in variations 

between every pair of items could be expressed by a square matrix, called difference in variation 

(diffInVar). We construct diffInVar as follows.  

diffInVar(i, j) = | degOfVar (xi) – degOfVar(xj) |, for xi, xj  I.                                       … (4) 

In the following example, we compute diffInVar corresponding to Example 1.  

Example 3. We continue here with Example 1. Matrix diffInVar is given as follows.  

 

0018.0020.0001.0102.0

018.00002.0019.0084.0

020.0002.00021.0082.0

001.0019.0021.00103.0

102.0084.0082.0103.00























diffInVar  



30 

______________________________________________________________________________ 

Matrix diffInVar is symmetric square matrix. We shall use this matrix for clustering items in 

multiple databases.  

Intuitively, if the difference in variations between two items is close to zero then they may be put 

in the same class. Before clustering the items, we define a class as follows.  

Definition 3. Let I = {i1, i2, …, ip} be the set of items. A class formed at the level of difference in 

variation  is defined as follows. 

  
1  || ,   : 

   ,for  , ) ,(   and 2,  || ,  : 
  ),(

2121










XIXX

XxxαxxdegOfVarXIXX
αIclass  

Based on the above definition of a class, we define a clustering as follows. 

Definition 4. Let I  = {i1, i2, …, ip} be the set of items. Let  (I, ) be a clustering of items in I at 

the level of difference in variation . Then,  (I, ) = {X: X ρ(I), and X is a class(I, ) }, where 

ρ(I) is the power set of I.  

During the clustering process we may like to impose the restriction that each item belongs to at 

least one class. This restriction makes a clustering complete. We define a complete clustering as 

follows. 

Definition 5. Let I = {i1, i2,  …, ip} be the set of items. Let  (I, ) = {C1 (I, ), C2 (I, ),  …, Cm 

(I, )}, where Ck (I, ) is the k-th class of the cluster , for k = 1, 2, …, m.  is complete, if 

),(k

m

1 k αIC  = I.  

In a complete clustering, two classes may have common items. We may be interested in finding 

out a cluster containing mutually exclusive classes. A mutually exclusive cluster could be 

defined as follows. 



31 

______________________________________________________________________________ 

Definition 6. Let I = {i1, i2,  …, ip} be the set of items. Let  (I, ) = {C1 (I, ), C2 (I, ), …, Cm 

(I, )}, where Ck (I, ) is the k-th class of the cluster , for k = 1, 2, …, m.  is mutually 

exclusive if  Ci (I, )  Cj (I, )  = ,  for i  j, and 1  i, j  m.  

We may be interested in finding out such a mutually exclusive and complete cluster. A partition 

of a set of items I is defined as follows. 

Definition 7. Let  (I, ) be a mutually exclusive and complete cluster of a set of items I at the 

level of difference in variation .  (I, ) is called a non-trivial partition if 1 < || < m.  

A partition is a cluster. But a cluster is not necessarily be a partition. In the next section, we find 

the best non-trivial partition (if it exists) of a set of items. The items in a class are similar with 

respect to their variations. We are interested in the classes of a  partition  where the  variations of  

items are less. The items in these classes are useful in devising strategies for the company. Thus, 

we define average degree of variation adv, of a class as follows. 

Definition 8. Let C be a class of partition . Then, 

  ).(
||

1
)|( C x xdegOfVar

C
Cadv   

2.5.1 Finding the best non-trivial partition 

With reference to Example 1, we arrange all non-zero and distinct values of diffInVar in non-

decreasing order for finding all the non-trivial partitions, for 1  i  j  5. The arranged values of 

diffInVar are given as follows: 0.001, 0.002, 0.018, 0.019, 0.020, 0.021, 0.082, 0.084, 0.102, 

0.103. We get two  non-trivial  partitions at   =  0.001, and 0.002. The  partitions  are  given as  



32 

______________________________________________________________________________ 

follows: 0.001
 = {{x1}, {x2, x5}, {x3}, {x4}}, and 0.002

 = {{x1}, {x2, x5}, {x3, x4}}. We observe 

that at different levels of  we have different partitions. We would like to find the best partition 

among these partitions. The best partition is based on the principle of minimizing the intra-class 

variation and minimizing the inter-class similarity. Intra-class variation and inter-class similarity 

are defined as follows. 

Definition 9. The intra-class variation intra-var of a partition  at the level  is defined as 

follows. 

  |)(-)(|)( jix x;C   x,x

|π|

1k jikji
xdegOfVarxdegOfVarπintra-var  

 

Definition 10. The inter-class similarity inter-sim of a partition  at the level  is defined as 

follows.  

inter-sim() =  )}( ),({ minimum jiC   x,C   xqp π;c,c q jpiqp
xdegOfVarxdegOfVar   

The best partition among a set of partitions is selected on the basis of goodness value of a 

partition. Goodness measure goodness, of a partition is defined as follows. 

Definition 11. The goodness of a partition  at level  is defined as follows: goodness() = 

intra-var() + inter-sim() - ||, where || is the number of classes of .  

We have subtracted || from the sum of intra-class variation and inter-class similarity to remove 

the bias of goodness value of a partition. Better partition is obtained at higher goodness value. 

We would like to partition the set of items in Example 1 using above goodness measure. 

Example 4. With reference to Example 2, we calculate goodness value of each of the non-trivial 

partitions.  



33 

______________________________________________________________________________ 

intra-var(0.001
) = 0.001, inter-sim(0.001

) = 0.081, and |0.001
| = 4. Thus,                 

goodness(0.001
) = -3.916.  

intra-var(0.002
) = 0.003, inter-sim(0.002

) = 0.06, and |0.002
| = 3. Thus, goodness(0.002

) = -2.937.  

The goodness value corresponding to the partition 0.002
 is the maximum. Thus, the partition 

0.002
 is the best among the non-trivial partitions. Let us return back to Example 1. There are five 

series of supports corresponding to five items. Based on variation among the supports in a series, 

we could partition the series as follows: {series 1}, {series 2, series 5}, {series 3, series 4}. 

Hence, we get the following partition: {x1}, {x2, x5}, {x3, x4}. The proposed clustering technique 

also  identifies the  same  partition as the best  partition. Thus, it  verifies  the  correctness  of  the  

proposed clustering technique. adv ({x1}| 0.002
) = 0.105,  adv ({x2, x5}| 0.002

) = 0.0025  and adv 

({x3, x4}| 0.002
) =  0.022. We find that the average degree of variation of {x2, x5} is the least 

among the classes of 0.002
. Thus, the items x2 and x5 are most suitable among all the items in the 

given databases for making strategies of the company.  

   We design an algorithm for finding best non-trivial partition of items in multiple databases. 

First we describe different data structures used in designing an algorithm for finding the best 

partition of items. For each item there are k supports corresponding to k different years. We 

maintain m  k supports for m items in array supports. The i-th row of supports stores supports 

corresponding to i-th item for k years, for i = 1, 2,…, m. Let means be a two dimensional array 

such that the i-th row stores means of supports corresponding to different years for i-th item, for i 

= 1, 2,…, m. Let autocovariances be a two dimensional array such that the i-th row stores 

autocovariances of supports corresponding to different lags for i-th item, for i = 1, 2,…, m. For  



34 

______________________________________________________________________________ 

year j, we compute mean value of supports for year 1 to j. Thus we get different mean values for 

different years. Let stdDevMeans be the standard deviation of these mean values. For year j, we 

also compute autocovariances of supports for year 1 to j at different lags. Thus we get different 

autocovariances for different lags corresponding to a year. Let stdDevAutocovars be the standard 

deviation of these autocovariances. The degrees of variation of different items are stored in array 

degInVar. Variable S is a one dimensional array containing 
m

C2 difference in variations. adv is a 

one dimensional array which stores the average degree of variation for the items in each class. 

The algorithm is presented below. 

Algorithm 1. Find best non-trivial partition (if it exists) of items in multiple databases. 

procedure BestPartition (m, supports) 

Inputs: 

m: number of items 

supports: array of supports of different items corresponding to different years  

Outputs:  

Best non-trivial partition (if it exists) of items in multiple databases 

01:  for i = 1 to m do 

02:    compute means(i) using formula (1) at different years; 

03:    let stdDevMeans = standard deviation of mean values for different years; 

04:    compute autocovariance(i) using formula (2) at different time lags; 

05:    let stdDevAutocovars = standard deviation of autocovariances;  

06:    compute degOfVar(i) = stdDevMeans + stdDevAutocovar; 

07:  end for 



35 

______________________________________________________________________________ 

08:  for row = 1 to m do 

09:     for col = (row + 1) to m do 

10:       compute diffInVar(row, col) using formula (4); 

11:     end for 

12:  end for 

13:  sort distinct elements in the upper triangle of diffInVar in non-decreasing order into S; 

14:  let k = 1; let maxGoodness = -9999;  = ; 

15:  while (k  |S|) do 

16:     let curRow = 1; let curClass = 1; 

17:     for i = 2 to m do 

18:        classLabel(i) = 0; 

19:     end for 

20:     let classLabel(1) = 1; 

21:     let curDiffVar = S(k); 

22:     for col = curRow + 1 to m do 

23:        if (diffInVar(curRow, col)  curDiffVar) then 

24:           if (classLabel (col) = 0) then 

25:              classLabel(col) = curClass; 

26:           else if (classLabel (col)  curClass) then 

27:              partition does not exist at this level; 

28:              go to line 49; 

29:           end if 



36 

______________________________________________________________________________ 

30:        end if 

31:     end for 

32:     increased curRow by 1; 

33:     if (classLabel(curRow) = 0) then 

34:        increase curClass by 1;  

35:        classLabel(curRow) = curClass;  

36:     else curclass = classLabel(curRow); 

37:     end if 

38:     if (curRow ≤ m) go to line 22; end if 

39:     let j = 0; 

40:     while ((classLabel(j)  0) and (j < m)) do  

41:        increase j by 1;  

42:     end while  

43:     if (j = m + 1) then 

44:        if (maxGoodness < goodness value of current partition) then 

45:           maxGoodness = goodness value of current partition; 

46:           store current partition into ; 

47:       end if 

48:    end if 

49:    increase k by1; 

50:  end while 

51:  return ; 

end procedure 



37 

______________________________________________________________________________ 

In this paragraph, we explain different lines of above algorithm. Algorithm 1 computes 

degreeOfVar for all items using lines 1-7. Matrix diffInVar is constructed using lines 8-12. We 

check the existence of partition at every value in S. We start checking partition by assigning the 

first item to classLabel 1. Also, clustering process is performed row by row, starting from row 

number 1. At the i-th row, all the items greater than i are classified. During this process, if a 

labeled item gets another label then we conclude that partition does not exist at the current level. 

After increasing the current row by 1 we check the class label corresponding to current row. 

Each row corresponds to an item in the database. If the current row is not labeled yet then we 

increase the class label by1. If the goodness value of the current partition is less than the 

goodness value of another partition then the current partition is ignored. 

Lemma 1. Algorithm 1 executes in O(m
4
) time.  

Proof. Line 2 takes O(k) time to compute means(i), for some i = 1, 2, …, m. Also, line 3 takes 

O(k) time to compute standard deviation of mean values. To compute formula (2), we require 

O(k) time. Thus, line 4 takes O(k
2
) time. In line 5, we compute standard deviation of k-1 

autocovariance values. Thus, line 5 takes O(k
2
) time. The for-loop in lines 1-7 repeats m times. 

Thus, the for-loop in lines 1-7 take O(m×k
2
) time. For computing diffInVar at a given row and 

column, it takes O(1) time. Thus, lines 8-12 take O(m
2
) time. There are maximum 

m-1
C2 elements 

in the upper triangle of diffInVar. Thus, line 13 takes O(m
2
×log(m)) time. The while-loop at line 

15 repeats maximum 
m-1

C2 times. Each of the loops at lines 17, 22, and 40 takes O(m) time. To 

store a partition it takes O(m) time. To compute goodness value for a particular partition, it takes  

 

 

 



38 

______________________________________________________________________________ 

O(m
2
) time. Thus, the lines 15-50 take O(m

4
) time. The time complexity of bestPartition 

algorithm is O(m
4
).  

   In finding stable items in multiple databases, a class having minimal average degree of 

variation in the best partition might not be a best class at a given degree of stability. In many 

applications, we may need to find stable items at a given degree of stability. In this case, it might 

not be a requirement that the stable items need to form a class of a non- trivial partition. Thus, 

the question of finding a partition might not arise always. To find such a class we shall follow a 

different approach.  

2.5.2 Finding best class 

Before finding best class, we first define the concept of best class as follows.   

Definition 12. Let C be a class of items. C is called a best class at the level of difference in 

variation  if (i) |degOfVar(x) – degOfVar(y)|  , for x, y  C, (ii) adv(C) is the minimum 

among all classes of maximal size, and (iii) C has a maximal size.  

In Lemma 1, we show that it might not be possible to find two classes of maximal size having 

the same average degree of variation.  

Lemma 2. Best class is unique. 

Proof. Let x1, x2,…, xm be the items sorted on non-decreasing degree of variation. We conclude 

that item x1 has maximum stability, and the item xm has minimum stability. At level , let the 

stabilities of items x1, x2,…, xk be less than or equal to , and the stabilities of items xk+1, xk+2, …, 

xm be greater than , for 1  k  m. The best class has least average degree of variation. Also, the 

difference in  variation of  two  items in the class is less  than or  equal to . Thus, {x1, x2,…, xk}  

 



39 

______________________________________________________________________________ 

forms the best class. We are not concerned whether it becomes a member of a partition.  adv({x1, 

x2,…, xk}) is the minimum, and hence best class is unique.  

We might be interested in finding best class of items in multiple databases. We use array class to 

hold the best class of items. In the following, we provide an algorithm in finding best class of 

items in multiple databases. 

Algorithm 2. Find the best class of items in multiple databases induced by stability. 

procedure BestClass (m, , supports) 

Inputs:  

m: number of items 

:  level of degree of variation 

supports: array of supports of different items corresponding to different years  

Outputs:  

Best class of items in multiple databases  

01:  perform lines 01 – 07 of Algorithm 1; 

02:  sort array degOfVar in non-decreasing order; 

03:  let class (1) = degOfVar(1); let count = 1; let avgVar = 0; 

04:  for i = 2 to m do 

05:     class (i) = -1;  

06:  end for 

07:  for i = 2 to m do 

08:     if ((degOfVar(i) – degOfVar(1))  ) 

09:        class (i) = degOfVar(i);  



40 

______________________________________________________________________________ 

10:        increase count by 1; 

11:        avgVar = avgVar + degOfVar(i); 

12:     end if 

13:  end for 

14:  avgVar = avgVar / count; 

15:  return (class, count, avgVar); 

end procedure 

In this paragraph, we explain different lines of above algorithm. We compute degree of 

variations for all items using lines 1-7 and store them in array degreeOfVar in non-decreasing 

order. The best class would contain the first item of degreeOfVar. The item with least 

degreeOfVar is assigned to class 1. An item i is included in the best class if (degOfVar(i) – 

degOfVar(1))  . Algorithm 2 returns best class class, the number of items in the best class 

count, and the average degree of variation of the best class avgVar.  

Lemma 3. Algorithm 2 executes in maximum { O(m×k
2
),  O(mlog(m)) }time.  

Proof. Line 1 executes in O(m×k
2
) time [Lemma 2], where k is the number of years. There are 

two for loops in Algorithm 2 apart from loops placed in line 1. Each of these loops executes in 

O(m) time. Line 2 takes O(mlog(m)) time. Thus, the lemma follows. 

2.6 Experiments 

We have carried out several experiments to study the effectiveness of our approach. All the 

experiments have been implemented on a 1.6 GHz  Pentium IV with 256  MB of  memory, using 

the  software  visual  C++  (version 6.0). We  present  the  experimental  results  using  two  real  



41 

______________________________________________________________________________ 

datasets mushroom (Frequent itemset mining dataset repository), and ecoli (UCI ML repository). 

Dataset ecoli is a subset of ecoli database and it has been processed for the purpose of 

conducting experiments. Let DB, NT, ALT, AFI, and NI denote database, the number of 

transactions, average length of a transaction, average frequency of an item, and number of items 

respectively. We present some characteristics of these datasets in Table 2.1. Each dataset has 

been divided into 10 databases, called input databases, for the purpose of conducting 

experiments. The input databases obtained from mushroom and ecoli are named as Mi, and Ei, for 

i = 0, 1, …, 9. The mushroom dataset contains 8,124 transactions and 120 distinct items. Its 

average transactions size is 24, around 20% ((24/120)×100) of its distinct items are present in 

every transaction and therefore it is a dense dataset. Similarly, density of ecoli and random-68 is 

0.077 and 0.08 and therefore, they are considered as sparse. We present some characteristics of 

the input databases in Table 2.2. 

Table 2.1 Dataset characteristics 

Dataset NT ALT AFI NI 

mushroom 8124 24.000 1624.800 120 

ecoli 336 7.000 25.835 91 

random-68 3000 5.460 280.985 68 

 

In Table 2.3, we present top 10 stable items in multiple databases. In mushroom, 85 has least 

degree of variation and it is zero. From experiment we observed that item 85 occurs in every 

transaction and its support is 1.0 in all the input databases. One could also notice that items of 

mushroom has less degree of variation as compare to ecoli and random-68. 



42 

______________________________________________________________________________ 

 

Table 2.2 Time database characteristics   

 

 

 

DB NT ALT AFI NI DB NT ALT AFI NI 

M0 812 24.000 295.273 66 M5 812 24.000 221.454 88 

M1 812 24.000 286.588 68 M6 812 24.000 216.533 90 

M2 812 24.000 249.846 78 M7 812 24.000 191.059 102 

M3 812 24.000 282.435 69 M8 812 24.000 229.270 85 

M4 812 24.000 259.840 75 M9 816 24.000 227.721 86 

E0 33 7.000 4.62000 50 E5 33 7.000 3.915 59 

E1 33 7.000 5.133 45 E6 33 7.000 3.500 66 

E2 33 7.000 5.500 42 E7 33 7.000 3.915 59 

E3 33 7.000 4.812 48 E8 33 7.000 3.397 68 

E4 33 7.000 3.397 68 E9 39 7.000 4.550 60 

R0 300 5.590 28.676 68 R5 300 5.140 26.676 68 

R1 300 5.417 28.000 68 R6 300 5.510 28.353 68 

R2 300 5.360 27.647 68 R7 300 5.497 28.338 68 

R3 300 5.543 28.456 68 R8 300 5.537 28.471 68 

R4 300 5.533 28.382 68 R9 300 5.477 28.235 68 



43 

______________________________________________________________________________ 
 

Table 2.3 Top 10 stable items in multiple databases  

 

 

 

 

 

 

 

 

 

Table 2.3 shows that the range of variation in mushroom is (0.0 – 0.0014) for top ten stable 

items. Whereas the degree of variation range among the items in ecoli and random-68 is 

(0.0013 – 0.0044) and (0.0012 – 0.00311) respectively.  In Table 2.4, we present five best 

classes and their average degree of variation for a given value of  for each database. Since 

mushroom is dense we get best five classes at  = 0.00025 and at  = 0.0014. We also 

observe the Adv of these classes are quite less. Unlike mushroom higher value of  is 

considered for ecoli and random-68 because they are sparse and Adv is also high for all these 

classes. The items with least degree of variations such as {85, 8} in mushroom, {1, 99} in 

ecoli and {42, 41} in random-68 are included first for lowest . The best partition contains 

two classes. The reason behind that the item with highest degofvar forms a class and all the 

remaining items belong to other class.  

mushroom ecoli random-68 

item degOfVar item degOfVar item degOfVar 

85 0.000 1 0.0013 42 0.0012 

8 0.0002 99 0.0018 41 0.0018 

12 0.0003 91 0.0022 37 0.0023 

75 0.0003 4 0.0025 67 0.0027 

89 0.0003 94 0.0036 11 0.0028 

62 0.0009 15 0.0038 45 0.0029 

22 0.0010 12 0.0039 18 0.0030 

20 0.0011 19 0.0040 56 0.0031 

82 0.0012 3 0.0040 3 0.0031 

33 0.0014 10 0.0044 28 0.0031 



44 

______________________________________________________________________________ 

The best partition of items in mushroom dataset is obtained at level 0.2476. The amount of intra 

variation, inter similarity, and goodness value are 413.59719, 377.58308, and 789.18027 

respectively. Here 56 has highest degree of variation with 0.02478 and therefore it is not 

included in best class. The best class is given as follows: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 

14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 

40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 

67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 

93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 

114, 115, 116, 117, 118, 119 }. It has average degree of variation 0.05682. 

The best partition of items in ecoli dataset is obtained at level 0.05632. The amount of intra 

variation, inter similarity, and goodness value are 44.17961, 185.60862, and 227.78823 

respectively. Item 35 has highest degree of variation with 0.058126. The best class is given as 

follows: {0, 1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 

29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 

58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 

85, 86, 87, 88, 89, 90, 91, 92, 94, 99, 100}. It has average degree of variation 0.01829. 

   The best partition of items in random-68 dataset is obtained at level 0.013670. The amount of 

intra variation, inter similarity, and goodness value are 4.627779, 18.608446, and 21.236225 

respectively. Item 4 has highest degree of variation with 0.0155. The best class is given as 

follows:  {1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 

27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 

53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68}. 



45 

______________________________________________________________________________ 

It has average degree of variation 0.006382. We have studied execution time with respect to 

number of data sources. We observe in Figures 2.2, 2.3 and 2.4 that the execution time increases 

as the number of data sources increases. Execution time depends on NI, NT, ALT and number of 

input databases. In mushroom the density of input databases vary from 23% to 33%. Number of 

transactions of each input databases are 812. Thus, maximum time is taken 2725 sec. 

0

500

1000

1500

2000

2500

3000

4 5 6 7 8 9 10

Number of data sources

E
x

e
c
u

ti
o

n
 t

im
e
 (

se
c
.)

 

Figure 2.2 Execution time vs. number of data sources obtained from mushroom 

Table 2.4 5 best classes in multiple databases   

mushroom ecoli random-68 

 items adv  items adv  items adv 

0.00025 {85, 8} 0.0001 .0.0020 {1, 99, 91, 4} 0.0020 0.0010 {42, 41} 0.0015 

0.0003 
{85, 8, 12, 75, 

89} 
0.0002 0.0025 {1, 99, 91, 4, 94} 0.0023 0.0015 {42, 41, 37} 0.0018 

0.0010 
{85, 8, 12, 75, 

89, 62} 
0.0003 0.0030 

{1, 99, 91, 4, 94, 

15,12,19, 3} 
0.0030 0.0017 

{42,41,37,67,11

,45} 
0.0023 

0.0012 
{85, 8, 12, 75, 

89, 62, 22, 20} 
0.0005 0.0035 

{1, 99, 91, 4, 94, 

15,12,19, 3,10,6} 
0.0033 0.0020 

{42,41,37,67,11

,45,18,56,3, 28} 
0.0026 

0.0014 

{85, 8, 12, 75, 

89, 62, 22,20, 

82} 

0.0006 0.0050 

{1, 99, 91, 4, 94, 

15,12,19, 

3,10,6,18} 

0.0035 0.0022 

{42,41,37,67,11

,45,18,56,3,28,7

,53} 

0.0027 



46 

______________________________________________________________________________ 

 

0

200

400

600

800

1000

4 5 6 7 8 9 10

Number of data sources

E
x
ec

u
ti

o
n
 t

im
e 

(s
ec

.)

 

Figure 2.3 Execution time vs. number of data sources obtained from ecoli 

7

9

11

13

15

17

4 5 6 7 8 9 10

Number of data sources

E
x
e
c
u
tio

n
 t
im

e
(s

e
c
.)

 

Figure 2.4 Execution time vs. number of data sources obtained from random-68  

From Figure 2.2 we observe that initially the algorithm takes less time, later there is a sharp rise 

for every increase number of input databases. The density of input databases in ecoli vary from 

10% to 17% and 8% in random-68. Both the databases are sparse and ALT is also low and 

therefore figures 2.3 and 2.4 show sharp rise of execution time from the very beginning.   

2.7 Conclusion 

Stable items are useful for modeling various strategies of an organization. Thus, it is necessary to 

identify stable items. We propose the notion of degree of stability of an item. We design an 

algorithm for clustering items in multiple databases based on degree of stability. The proposed 

technique is useful and effective.  



  47 

______________________________________________________________________________ 

 

Chapter 3 

 

Mining Icebergs in Time-Stamped Databases 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



48 

______________________________________________________________________________ 

3.1 Introduction 

Many organizations collect transactional data continuously over a long period of time. A 

database grown over a long period of time might contain useful as well as interesting temporal 

patterns. By taking into the account time aspect, many interesting applications / patterns such as 

surprising patterns (Keogh et al., 2002), discords (Keogh et al., 2006), calendar based patterns 

(Mahanta et al., 2008) have been reported in the recent time. Surprising patterns, anomaly 

detection and discords could be considered as exceptional patterns occurring in a time series. 

These exceptional patterns are important as well as interesting contributions to temporal data 

mining. In this chapter, we study another kind of exceptional patterns in transactional time-

stamped data. We define the exceptional patterns and discuss how to mine them from time-

stamped databases.  

   Though an analysis of time series data (Box et al., 2003; Brockwell & Davis, 2002; Keogh, 

1997; Tsay, 1989) has been intensively studied, the analysis of time-stamped data still calls for 

more research. Specifically, in the context of multiple time-stamped databases, little work has 

been reported so far. Therefore, there arises an urgent need to study multiple time-stamped 

databases. In Example 1, we observe an interesting type of temporal pattern in multiple time-

stamped databases that needs to be analyzed fully.  

   The support of an itemset (Agrawal et al., 1993) is defined as the fraction of transactions 

containing the itemset. It has been used extensively in identifying different types of patterns in a 

database. Some examples are association rule (Agrawal et al., 1993), negative association rule 

(Wu et al., 2004)  and  conditional  pattern  (Adhikari  &  Rao, 2008c).  Nonetheless  the  support  

 



49 

______________________________________________________________________________ 

measure has a limited use in discovering some other types of patterns in a database. We illustrate 

this issue using the following example.  

Example 1. Consider a company that maintains customers’ transactions on a yearly basis. Many 

important problems can be studied given such yearly databases. Let item A be of our interest. In 

view of analyzing item A over the years, let us consider the sales series of A from the year 1970 

to 1979. 

(0.9, 1000, 1970), (0.31, 2700, 1971), (0.36, 2500, 1972), (0.29, 3450, 1973), (0.37, 1689, 1974), 

(0.075, 7098, 1975), (0.073, 8900, 1976), (0.111, 6429, 1977), (0.09, 9083, 1978), (0.07, 10050, 

1979). The first, second, and the third component of each triple refers to the support of A, the 

number of transactions in the yearly database and the corresponding year, respectively.  

 

Figure 3.1 Sales of item A reported in consecutive years 

 

The sales series of item A is depicted in Figure 3.1. There is a significant downfall of sales from 

1972 and rise in sales from the year 1975. Year 1975 is an important point (Pratt & Fink, 2002) 

for the company. It is a significant down-to-up change in the sales series. It is not surprising to 

observe a significant up-to-down change in a sales series of an item. Such patterns in time-

stamped series are interesting as well as important to investigate. They could reveal the sources 

of customers’ purchase behavior and that might provide an important knowledge to the 

organization.  



50 

______________________________________________________________________________ 

   At this point, one might be interested in knowing how a time series data differs from a time-

stamped data. Transactional data are time-stamped data collected over time at no particular 

frequency (Leonard & Wolfe, 2005). Whereas, time series data are time-stamped data collected 

over time at a particular frequency. For example, point of sales data could be considered as time-

stamped data, but sales per month / year could be considered as time series data. One could 

convert transactional data into time series data for the purpose of specific data analyses. The 

frequency associated with time series data varies from problem to problem. For future planning 

of business activities, one might need to analyze the past data of customer transactions collected 

over a long period of time. While analyzing the past data it is useful as well as important to 

figure out the abrupt changes in sales of an item along with time. Existing algorithms, as 

mentioned above, fail to detect these changes. Therefore, in this chapter our objective is to define 

such exceptional patterns and design an algorithm to extract such patterns from time-stamped 

databases. 

   For the purpose of studying patterns in time-stamped databases one may need to handle 

multiple databases over time. One could call these time variant databases as time databases. In 

this context, the choice of time granularity is an important issue as the characteristics of temporal 

patterns is heavily dependent on this parameter. It is quite reasonable to consider the time 

granularity as one year, since a season re-appears on a yearly basis and the customers’ purchase 

behaviour might vary from season to season.  

   Consider an established company having data over fifty consecutive years. The company might 

be interested in knowing the performance of different items over the years. Such analysis might 

help the company in devising the future strategies. 



51 

______________________________________________________________________________ 

The objective of this chapter is to identify abrupt changes in sales of each item (as defined in 

Sections 3.4 and 3.5) over the years as depicted in Figure 3.1. The goal of this chapter is to 

define a new type of pattern based on abrupt variation of sales of an item over the years and to 

design an algorithm to mine such patterns in time databases. 

   Rest of the chapter is organized as follows. We discuss related work in Section 3.2. In Section 

3.3, we introduce a new temporal pattern, called notch, of an item. Based on this pattern, we 

propose the concepts of generalized notch (Section 3.4) and iceberg notch (Section 3.5). We 

present another view of sales series in Section 3.6. In Section 3.7 we design an algorithm for 

mining icebergs in time-stamped databases. Experimental results are presented in Section 3.8.  

3.2 Related work 

Temporal sequences appear in a vast range of domains ranging from engineering to medicine and 

finance, and the ability to model and extract information from them becomes crucial from a 

conceptual as well as applied perspective. Identifying exceptional patterns in time-stamped 

databases deserves much attention. In Sections 3.4 and 3.5 we will propose two exceptional 

patterns in time-stamped databases. 

   There are mainly two broad directions of temporal data mining (Roddick & Spillopoulou, 

1999). One concerns the discovery of casual relationships among temporally oriented events. 

Another one deals with the discovery of similar patterns within the same time sequence or 

among different time sequences. Sequences of events describe the behavior and actions of users 

or systems that can be collected in several domains.  

 

 



52 

______________________________________________________________________________ 

The proposed problem falls under the first category of problems, since we are interested in 

identifying exceptional patterns by comparing sales in different years. 

   Agrawal et al. (1995) introduced the shape definition language (SDL), which used limited 

vocabulary such as {Up, up, stable, zero, down, Down} to describe different gradients in the 

series.  The similarity of two time series is proportional to the length of the longest common 

sequence of words in their SDL representation. Such coarse information might not be always 

helpful. We define two exceptional patterns viz. a generalized notch and an iceberg notch. 

   Perng et al. (2000) proposed the landmark model where perceptually important points of a time 

series are used in its representation. The perceptual importance depends on the specific type of 

the time series. In general, sound choices for landmarks are local maxima and minima as well as 

inflection points. The advantage of using the landmark-based method is that this time 

representation is invariant to amplitude scaling and time warping. Some of the local maxima and 

minima might lead to higher level of exceptionality. Here we are concerned with defining such 

exceptionalities in time-stamped databases. 

   There has been a significant amount of work on discovering temporal patterns of interest in 

sequence databases and time series databases. Temporal data mining is concerned with the 

analyses of data with an intention of finding patterns and regularities from a set of temporal data. 

In this context sequential association rule (Agrawal & Shrikant, 1995), periodical association 

rule  (Li & Deogun, 2005), calendar association rule  (Li et al., 2003) calendar-based periodic 

pattern (Mahanta et al., 2008) and up-to-date pattern (Hong et al., 2009) are some of the 

interesting temporal patterns reported in the recent time.  

 



53 

______________________________________________________________________________ 

   As noted in Section 3.1, support history of an item provides important information of an item 

over time. We have proposed an algorithm for clustering items in multiple databases based on 

their support history (Adhikari et al., 2009). We have introduced the notion of stability of an item 

based on its support history.  

   Lomet et al. (2008) integrated a temporal indexing technique, the TSB-tree, into Immortal DB 

to serve as the core access method. The TSB-tree provides high performance access and update 

for both current and historical data.  

   Keogh et al. (2005) proposed an algorithm for finding unusual time series where the notion of 

time discords is introduced. A time discord is a subsequence of a longer time series that is 

maximally different from all other subsequences of the series. Discords can be used to detect 

anomalies in an efficient way. 

  Many algorithms are designed incrementally to support time-dependent analysis of data. We 

have proposed algorithms incrementally to study overall influence of a set of items on another 

set of items in time databases (Adhikari & Rao, 2010).  

  Castellana et al. (2007) proposed a new approach to performing change detection analyses 

based on a combination of supervised and unsupervised techniques is presented. Experimental 

results are based on image data. Wang et al. (2010) examined an unsupervised search method to 

discover motifs from multivariate time series data. The algorithm first scans the entire series to 

construct a list of candidate motifs in linear time, the list is then used to populate a sparse self- 

similarity matrix for further processing to generate the final selections. In contrast, the algorithm 

to be proposed is based on time-stamped data. 

 



54 

______________________________________________________________________________ 

3.3 Notches in sales series 

The change in sales of an item could be defined by the change of its support over time. The 

support of an item results in a support history (Bottcher et al., 2008) of the item in time 

databases. An analysis of a support history could be important in understanding customers’ 

behavior (Adhikari et al., 2009). While dealing with the support history, the size of a database is 

an important issue. Support 0.129 from a database containing 1,000 transactions might be less 

than the support 0.091 from a database containing 1,00,000 transactions. Thus, a mere analysis 

of the support history over time might not be effective in an application. One needs to analyze 

the supports along with the sizes in time databases. In Example 1, we observe that the support of 

A has been decreased from year 1970 to 1971. But, the sales of A has been increased from the 

year 1970 to 1971. Hence, a negative change in support of an item might imply a positive change 

in frequency of the item. Thus, one needs to be careful in dealing with support history of an item 

in different databases. 

   Let us consider a company that has been operating for the last k years. For the purpose of 

studying temporal patterns, yearly databases could be constructed based on a time-stamp. Each 

of these databases corresponds to a specific period of time. Let D be the collection of customer 

transactions over k years. For the purpose of defining a temporal pattern we divide D into k 

yearly databases. Let DTi  be the database  corresponding to  the i-th year, i = 1, 2, …, k.  Each of 

these time databases is mined using a traditional data mining technique (Agrawal & Srikant, 

1994; Han et al., 2000). Mining time-stamped databases could help business make better 

decisions by listening to their suppliers and / or customers via their transactions collected over 

time (Leonard & Wolfe, 2005). 



55 

______________________________________________________________________________ 

   Over the years, an item may exhibit many consecutive data points having similar sales. As 

opposed to similar data patterns considering each data point, a limited yet meaningful number of 

points may play a dominant role in many decision making problems. These meaningful data 

points could be defined in various ways, like average, peak, or slope of lines (Pratt & Fink, 

2002). In the context of the proposed problem, such compression of data points seems to be 

irrelevant. Given the sales series of an item, one might be interested in identifying abrupt 

changes in the sales series. The goal of this chapter is to define a new type of pattern based on 

abrupt variation of sales of an item over the years and to design an algorithm to mine such 

patterns in time databases.  

   Over the years, there may exist many ups and downs in sales of an item. One might be 

interested in identifying abrupt changes of sales in different years. It might be helpful to figure 

out the causes behind it and to take actions accordingly. Let si (A) be the sales of item A for the i-

th year, i = 1, 2,…, k. We define the change in sales series of item A at year i as follows (Singh & 

Stuart, 1998). 

The change in sales series at year i is increasing if  

   si-1(A) < si(A) < si+1(A), i = 2, 3,…, k-1                                           …(1) 

The change of sales series at year i is decreasing if  

  si-1 (A) > si(A) > si+1(A), i = 2, 3,…, k-1.                                 … (2) 

[ si-1(A) < si(A) and si(A) > si+1(A)] or [si-1(A) > si(A) and si(A) < si+1(A)], i = 2, 3,…, k-1.      …(3) 

The notion of strict extrema (Fink & Gandhi, 2007) at a year corresponding to an item is defined 

as follows.  

                        



56 

______________________________________________________________________________ 

   Let si(A) be the amount of sales of an item A at year i, i = 1, 2,…, k. There exists a strict 

extrema at year i for the item A if the change of support history of A at year i is altering. Based 

on the concept of strict extrema, we define a notch as follows, for the first time. 

Definition 1.  There exists a notch at year i for the item A if there is a strict extreme at year i in 

the sales series of item A.  

Let si(A) be the difference in sales of item A between the years i and i-1. Now we propose a few 

definitions as follows. 

Definition 2. Let there exist a notch at year i for item A. The notch at year i for item A is 

downward if si(A)  0 and si+1(A)  0.  

Definition 3. Let there exists a notch at year i for item A. The notch at year i for item A is 

upward if si(A)  0 and si+1(A)  0.  

Itemset (Agrawal et al., 1993) could be considered of as a basic type of pattern present in a 

transactional database. Many important as well as interesting patterns are based on itemset 

patterns. Similarly an upward / a downward notch could be considered as a basic type of pattern 

in time databases. In Section 4, we illustrate how the notion of notch could help analyzing a 

special type of trend in time databases. Thus, it is important to mine notches in time databases. 

One could scan the sales series of an item to identify its interesting notches. Let n and k be the 

number of items in time databases and the number of time-stamped (yearly) databases, 

respectively. One could simply scan the sales series of an item to identify its interesting notches. 

For each item there are k sales data. Then the time complexity of identifying notches is O(n  k). 

 



57 

______________________________________________________________________________ 

3.4 Generalized notch 

Based on the concept of notch, we present here the notion of a generalized notch in time 

databases. Let us refer to Figure 3.1. There are two downward notches in the years 1971 and 

1975 having sales 854 and 537, respectively. The concept of notch can be generalized based on 

strict extrema as mentioned in Section 3.3. One could notice in Figure 3.1 that the downward 

notch in the year 1975 is wider than that of 1971. The width of a downward generalized notch is 

based on the two consecutive local maxima within which the downward generalized notch is 

enclosed. The width of the downward generalized notch in 1975 is 1978 – 1972 = 6. Similarly, 

the width of an upward generalized notch is based on the two consecutive local minimums 

within which the upward generalized notch is enclosed.  The  width of  the  upward  generalized  

notch  in  1972 is 1975 – 1971 = 4. Based on the above discussion, we define width of a 

generalized notch as follows. 

Definition 4. Let there be a generalized downward (upward) notch in the year i. Also, let the 

generalized downward (upward) notch be enclosed with the local maximums (minimums) in the 

years i1 and i2 (> i1). The width of the generalized notch in the year i  is equal to i2 – i1. 

   The width of a generalized notch could be divided into left width and right width. The left 

width and right width are equal to (i – i1) and (i2 – i), respectively. In case of downward 

generalized notch the sales value gradually decreases, and then attains the minimum value, and 

then it gradually increases. Thus, the change of sales value between two consecutive years seems 

to be an important characteristic of a generalized notch. In this regard, one might be interested in 

the change of sales for a year as compared to its previous year. Also, the sales at year i as 

compare to sales of year i1 and i2 are important characteristics of a generalized notch. 



58 

______________________________________________________________________________ 

Accordingly, one could define left-height and right-height of the generalized notch in the year i 

for an item A as follow: left-height (A, i) =  |sales(A, i1) – sales(A, i)|, and right-height (A, i) =  

|sales(A, i) – sales(A, i2)|. We define the height of a generalized notch as follows. 

Definition 5. Let there exists a generalized downward (upward) notch in the year i. Also, let 

the generalized downward (upward) notch be enclosed with the local maximums (minimums) i1 

and i2 (> i1). The height of the generalized notch in the year i is equal to maximum {left-height 

(A, i), right-height (A, i)}.  

Based on the concept of generalized notch, we focus on the notion of iceberg.  

3.5 Iceberg notch 

An analysis of sales series of items is an important issue. In view of performing this task, one 

could analyze the sales series for each item. In analyzing a sales series in-depth, it is evident that 

an existence of a notch might be an indication of a bigger notch. This represents an 

exceptionality of sales of an item. Based on such an exception, we define iceberg in time 

databases as follows.  

Definition 6. An iceberg notch is a generalized notch that satisfies the following conditions: (i) 

The height of the generalized notch is greater than or equal to , and (ii) The width of the 

generalized notch is greater than or equal to . Both  and  are user-defined thresholds.  

An iceberg notch is a generalized notch having a larger height and a larger width than  and . 

The concept of iceberg in data management is not new.  For example, iceberg queries (Han & 

Kamber, 2001) are commonly used in data mining, particularly in market basket analysis.  

 



59 

______________________________________________________________________________ 

Let us illustrate the concept of an iceberg using an example. Let the value of  and  be set to 

300 and 5, respectively. Also, let the values of i, i1 and i2 be 1975, 1972, and 1978, respectively 

(with respect to Figure 1). We observe that leftHeight(A, 1975) =  |sales(A, 1972) – sales(A, 

1975)| = |905 – 537| = 368 and rightHeight(A, 1975) = |sales(A, 1975) – sales(A, 1978)| = |537 – 

820| = 283, respectively. Therefore, the height of the iceberg is maximum {368, 283} i.e. 368  

. Also, i2 – i1 = (1978 – 1972) = 6  . So, there exists an interesting downward iceberg notch 

in the year 1975. We  also  observe an  upward notch in the  year 1972  with  height 368    and  

width (1975 – 1971) = 4  . So, the upward notch in the year 1972 is not an iceberg.  

3.6 Sales series 

A sales series of an item might provide an interesting information about the item. It is basically 

the same as the support history of the item. As noted above, in many problems, it is preferable to  

analyze sales series rather than looking at the support history of an item. Many temporal patterns 

might originate by analyzing such types of temporal series.   

   Each data in a sales series can be mapped into a member in the set {–1, 0, 1} by comparing 

with the previous data in the same series. Thus, a time-stamped series could be mapped into a 

ternary series. It provides a simplified view of the original time-stamped series data. Such 

simplified view might provide some useful information. The procedure for mapping a time-

stamped series into a ternary series is illustrated in the following example.  

Example 2. Consider the sales data given in Example 3.1. The sales of item A in 1971 decreased 

from the sales in 1970. We note this behavior by putting –1 in the ternary series of item A 

corresponding to year 1971.  



60 

______________________________________________________________________________ 

The sales of item A in 1972 increased over the sales in 1971. We note this behaviour by putting 

+1 in the ternary  series of item A  corresponding to  year 1972.  If  the sales of item A in any 

year remains same as that of previous year then we note this behaviour by putting 0 in the ternary 

series. Thus, we obtain the ternary series (TS) of item A in the following form: 

Year           1970      1971      1972      1973      1974     1975      1976      1977      1978      1979 

TS(A)                            –1         +1          –1          –1         –1          +1          +1          +1         –1 

In the above series, one can observe the existence of a generalized notch. The width of a 

downward generalized notch can be obtained from a run of –1’s and the subsequent run of +1’s. 

The width is obtained by adding the number of –1’s in the first run and the number of +1’s in the 

second run. A  similar  procedure can be  followed for  finding  width of an  upward  generalized  

notch. In TS(A) we observe a downward generalized notch in 1975. The width of this notch is 

equal to 3 + 3 = 6. Also, there exists an upward generalized notch in 1978 having width of 4. 

   A slightly different procedure could also be followed for obtaining a ternary series 

corresponding to a sales series of an item. Let x and y be the sales for the year 1970 and 1971, 

respectively. Let  be the level of significance of difference in sales. We put +1 in the ternary 

series of the item corresponding to year 1971, if y – x  . We put –1 in the ternary series of the 

item corresponding to year 1971, if x – y  . We put 0 in the ternary series of the item 

corresponding to year 1971, if |x – y|  . The method of obtaining a ternary series using this 

procedure might be useful in many situations, since a small change in sales value might be 

insignificant in many situations. This procedure is more useful than the previous one. 

 

 

 



61 

______________________________________________________________________________ 

3.7 Mining icebergs in time-stamped databases 

Let there are n items in time databases. For each item in time databases there exists a time-

stamped series containing k data. In this section we are interested in identifying icebergs in each 

time-stamped series.  

   For mining icebergs in time databases, we make use of an existing frequent itemset mining 

algorithm (Agrawal & Srikant, 1994; Han et al., 2000). For the requirement of proposed problem 

one needs to mine the frequencies of each item in the time databases. Based on the discussion 

held in previous sections, we design an algorithm for mining icebergs in time databases. Let n 

and k be the number of items in time databases and the number of time databases, respectively. 

In this algorithm, we use a two-dimensional array F for storing frequencies of all items in time 

databases. F consists of n rows and k + 1 columns. The  first  column  contains the  items in  time  

databases. For example, F(i)(1) contains the i-th item in time databases, i = 1, 2, …, n. The i-th 

row of F contains i-th item and its frequencies in k time databases. For example, F(i)(j) contains 

the frequency of i-th item in (j – 1)-th database,  j = 2, 3, …, k+1. Therefore, we need to check 

the existence of a generalized notch using the values in the columns from 2 to k + 1.  

   For the purpose of computing interestingness of a generalized notch, we determine the change 

of sales of a local minimum (maximum) with respect to its previous and next local maximum 

(minimum). During the process of mining icebergs, the generalized notches are kept in array GN. 

A generalized notch can be described by the following attributes: left year (leftYear), right year 

(rightYear),  item (item), year  of  occurrence (year), type of  generalized  notch (type), change of  

 



62 

______________________________________________________________________________ 

sales at the year of occurrence with respect to the previous local extremum (leftHeight), change 

of sales at the year of occurrence with respect to the next local extremum (rightHeight), width of 

generalized notch (width) and the sales at the year of occurrence (sales). The goal of the 

proposed algorithm is to find all the interesting icebergs for each item in time databases. The 

algorithm is given as follows. 

Algorithm 1. Mine icebergs in time-stamped databases. 

procedure MineIcebergs (k, F, , )  

Inputs: k, F, ,  

k: number of yearly databases 

F: array of frequencies of items in yearly databases 

: user-defined threshold of height of a generalized notch 

: user-defined threshold of width of a generalized notch 

Outputs:   

Interesting icebergs in time databases 

01:  let index = 1;  

02:  for i = 1 to n do 

03:     let j = 2; let left = 2; let flat = false; let prevDown = false; let prevUp = false; 

04:     while not end of the sales series corresponding to i-th item do 

05:         if there is a downward trend and prevUp is false then  

06:            find mid, leftWidth; let prevDown = true; 

07:            compute leftHeight; go to 04; 



63 

______________________________________________________________________________ 

08:         end if {05} 

09:         if there is an upward trend and prevDown is true then 

10:            find left, mid, right, leftWidth, rightWidth; let prevDown = false;  

11:            let leftHeight = rightHeight; 

12:            compute rightHeight; 

13:            GN(index).type = down; go to 30; 

14:         end if {09} 

15:         if there is an upward trend and prevDown is false then 

16:            let prevUp = true; find mid, leftWidth; 

17:            compute leftHeight; go to 04; 

18:         end if {15} 

19:         if there is a downward trend and prevUp is true then 

20:            find left, mid, right, leftWidth, rightWidth;  

21:             let prevUp = false; let prevDown = true; 

22:             let leftHeight  = rightHeight; 

23:             compute rightHeight; 

24:             GN(index).type = up; go to 30; 

25:         end if {19} 



64 

______________________________________________________________________________ 

26:         if the sales of the j-th and (j+1)-th year remain same then 

27:            find left; let flat = true; let prevDown = false; let prevUp = false;    

28:            go to 04;  

29:         end if  

30:         if flat is false then 

31:            compute height as defined in Definition 5; 

32:            if the current generalized notch satisfies the criteria  and  then 

33:               store it in GN(index); increase index by 1; 

34:            end if 

35:            if the current generalized notch is downward then 

36:                  let prevDown = false; let prevUp = true; 

37:            else if the current generalized notch is upward then 

38:                         let prevDown = true; let prevUp = false; 

39:                    end if  

40:            end if {35} 

41:         end if {30} 

42:      end while {04} 

43:   end for {02} 

44:  display icebergs from GN; 

end procedure 



65 

______________________________________________________________________________ 

The lines 2-43 are repeated for each item in time databases. In each repetition, the interesting 

icebergs corresponding to an item are identified. The variable index is used to index array GN. 

The variable j is used to keep track of current sales data of the item under consideration. The 

starting value of j is 2, since the sales data for the first year of an item is kept staring from 

column number 2 of array F. We use three Boolean variables viz., flat, prevUp and prevDown. 

While identifying downward (or, upward) generalized notches, we first go through its left leg of 

a generalized notch. After reaching its minimum / maximum value, if the next point also attains 

the same value then flat becomes true. The width of a generalized notch is determined by the 

following years: left year (left), middle year (mid), and right year (right). Accordingly, the width 

of a generalized notch has two components: left width (leftWidth) and right width (rightWidth). 

After identifying the left leg of a downward (or, upward) generalized notch, prevDown (or, 

prevUp) becomes true. After storing the details of the current generalized notch index gets 

increased by 1 (line 33). We identify generalized notches for each item in time databases. For 

this purpose, we introduce a for-loop at line 02 which ends at line 43. Some lines, e.g. lines 40, 

41, 42, 43, are ended with a number enclosed in curly brackets, to mark the ends of composite 

statement starting with the line number kept in curly bracket.  

   Lines 2 and 4 repeat for n and k times respectively. In other words, the sales series 

corresponding to each item is processed for identifying icebergs. Thus, the time complexity of 

lines 1-43 is O(n  k). Again, the time complexity of line 44 can not be more than O(n  k), since 

the number of interesting icebergs is always less than n  k. 

 

 



66 

______________________________________________________________________________ 

Theorem 1. Corectness of the MineIcebergs algorithm. 

Proof: Consider that there are n items in k time-stamped databases. Each sales series is 

processed using lines 2-43. For the purpose of mining interesting icebergs, each sales series is 

checked completely by applying a while-loop shown in lines 4-42. A sales series can start with 

one of the following three ways: (a) showing a downward trend, (b) showing an upward trend (c) 

remained at a constant level. The algorithm handles each of these cases separately.  

Case (a) has been checked at the line numbered as 05. Once a downward trend changes we again 

go back to while-loop at line 04 for finding one of the following two possibilities: an upward 

trend and a constant sales.  

Case (b) has been checked at the line number 15. Once the upward trend changes we again go 

back to while-loop at line 04 for finding one of the following two possibilities: a downward trend 

and a constant sales.  

Case (c) has been checked at the line number 26. Once the flatness changes we again go back to 

while-loop at line 04 for finding one of the following two possibilities: a downward trend and an 

upward trend.  

Once the left leg of a downward generalized notch is detected in lines 5-8, its right leg is 

detected in lines 9-14. When the left leg of an upward generalized notch is detected in lines 15-

18, its right leg is detected in lines 19-25. After detecting a generalized notch at lines 13 and 24, 

we go to line 30 for detecting its interestingness and re-initializing required Boolean variables. 

Thus, the above algorithm considers all the possibilities that would arise in each sales series.  

 

 

 



67 

______________________________________________________________________________ 

3.8 Experimental studies   

We have carried out several experiments for mining generalized notches in different databases. 

All the experiments are performed on a 1.6 GHz Pentium IV with 256 MB of memory using 

visual C++ (version 6.0) software. We present experimental results using four real databases and 

two synthetic databases. The databases mushroom, retail (Frequent itemset mining dataset 

repository) ecoli and BMS-WebView-1are real-world databases. The real databases BMS-Web-

Wiew-1 can be found from KDD CUP 2000 (Frequent itemset mining dataset repository). 

Database ecoli is a subset of ecoli database (UCI ML repository). The synthetic dataset 

T10I4D100K was generated using the generator from the IBM Almaden Quest research group. 

Random-68 is also a synthetic database and has been generated for the purpose of conducting 

experiments. The characteristics of these databases are given in Table 3.1. The density, i.e.   

ALT/NI, of mushroom, ecoli, random-68, retail, BMS-WebView-1, and T10I4D100K are 0.2, 

0.07, 0.08, 0.00113, 0.0003, and 0.013, respectively.  

Table 3.1 Database characteristics 

Database NT     ALT AFI NI 

mushroom (M) 8124  24.000 1624.800     120 

ecoli (E) 336   7.000 25.835 91 

random-68 (R) 3000 5.460 280.985 68 

retail (Rt) 88,162 11.306 99.674   10,000 

BMS-WebView-1 1,49,639 2.000 44.575    6714 

T10I4D100K 1,00,000 11.102 1276.124     870 

 

The symbols used in Tables 3.1 and 3.2 have following meaning: D, NT, ALT, AFI, and NI 

 



68 

______________________________________________________________________________ 

denote database, the number of transactions, average length of a transaction, average frequency 

of an item, and number of items, respectively.  

   The databases mushroom, ecoli, random-68 and retail have been divided into 10 sub-databases, 

called yearly databases, for the purpose of conducting experiments. The databases BMS-

WebView-1 and T10I4D100K have been divided into 20 databases. The databases obtained from 

mushroom, ecoli, random-68 and retail are named as Mi, Ei, Ri, and Rti, i = 0, 1, …, 9. The 

databases obtained from BMS-WebView-1 and T10I4D100K are named as Bi and Ti, i = 0, 1, …, 

19. We present some characteristics of the input databases in Table 3.2.   

   In Table 3.3, 3.4, 3.5 and 3.6 we have represented upward generalized notch as ‘u’ and 

downward generalized notch as ‘d’. In mushroom, there are many items having high frequency 

as it is relatively dense. Also, we get many generalized notches having relatively large height as 

shown in Table 3.3. On the other hand, the items in retail is somewhat skewed in the sense that 

some generalized notches for few items have large height. But, the items in random-68 and ecoli 

have  got  more or less  uniform  distribution. Many  generalized  notches in these two  databases  

have similar height. Unlike mushroom and retail, ecoli and random-68 are smaller in size and 

contain items with lesser variations. In these two databases the maximum heights are 13 and 30, 

respectively. With respect to width of a generalized notch, we have got similar characteristics. In 

mushroom and retail the generalized notches are wider than that of other two databases. These 

facts are quite natural, since mushroom and retail are bigger than random-68 and ecoli. The 

variation of sales over the years for an item in mushroom and retail is higher. Also, we observe 

that many upward generalized notch is followed by a downward generalized notch and vice 

versa. 



69 

______________________________________________________________________________ 

This is because of the fact that two consecutive different types (a ‘u’ type followed by a ‘d’ type 

or a ‘d’ type followed by an ‘u’ type) generalized notches share a common leg. For example, a 

‘u’ type generalized notch at year 4 is followed by a ‘d’ type generalized notch at year 7, for item 

116 in mushroom. Similarly, a ‘d’ type generalized notch at year 6 is followed by a ‘u’ type 

generalized notch at year 7, for item 0 in ecoli. Also, we observe that some items have both long 

height and long width. For example, item 56 has height 796 and width 8. These values are 

significantly high as compare to other items in the time databases. Also, this is true for item 67. 

In BMS-WebView-1 database items 333469 and 110877 have maximum variation. Therefore, 

only these two items are appearing among top ten generalized notches and their heights vary 

from 344 to 506. Similarly, items 966, 998 and 419 in T10I4D100K share common legs and they 

have more variations. From Table 3.6 one could conclude that generalized notches are sharper in 

BMS-WebView-1 as compared to T10I4D100K. Some more observations are made from Tables 

3.3 and 3.5. In mushroom items 56 {5(810}, 67{6(103)} and 94{5(22)} satisfy user-defined 

threshold at α = 300 and β = 4. So, these items appear in both the tables. Since AFI of mushroom 

is more, the height and width of generalized notches are very large as compare to thresholds. 

Similarly, four generalized notches for items 42, 35, and 41are common for ecoli database.  In 

random-68 only item 18 satisfies both the thresholds. From Tables 3.4 and 3.6 one could notice 

that retail does not have any common item and items 41, 0 and 48 having more variation in sales. 

Like retail, in BMS-WebView-1and T10I4D100K different items appear in both the tables. From 

the experimental results we could conclude that items having maximum variations over many 

consecutive years will appear in both the tables. The highest width of generalized notch (10) 

appears for BMS-WebView-1and lowest (4) appears in ecoli. 



70 

______________________________________________________________________________ 

Table 3.2 Characteristics of time databases 

    D     NT     ALT     AFI NI D NT ALT      AFI      NI 

   M0     812 24.000 295.273 66 M 5 812 24.000 221.454 88 

   M1 812 24.000 286.588 68 M6 812 24.000 216.533 90 

   M2 812 24.000 249.846 78 M7 812 24.000 191.059 102 

   M3 812 24.000 282.435 69 M8 812 24.000 229.271 85 

   M4 812 24.000 259.840 75 M9 816 24.000 227.721 86 

   E0 33 7.000 4.620 50 E5 33 7.000 3.915 59 

   E1 33 7.000 5.133 45 E6 33 7.000 3.500 66 

   E2 33 7.000 5.500 42 E7 33 7.000 3.915 59 

   E3 33 7.000 4.812 48 E8 33 7.000 3.397 68 

   E4 33  7.000 3.397 68 E9 39 7.000      4.550 60 

R0 300 5.590 28.677 68 R5 300 5.140 26.677 68 

R1 300 5.417 28.000 68 R6 300 5.510 28.353 68 

R2 300 5.360 27.647 68 R7 300 5.497 28.338 68 

R3 300 5.543 28.456 68 R8 300 5.537 28.471 68 

R4 300 5.533 28.382 68 R9 300 5.477 28.235 68 

Rt0 9000 11.244 12.070 8384 Rt5 9000 10.856 16.710     5847 

Rt1 9000 11.209 12.265 8225 Rt6 9000 11.200     17.416     5788 

Rt2 9000 11.337 14.597 6990 Rt7 9000 11.155 17.346 5788 

Rt3 9000 11.490 16.663 6206 Rt8 9000 11.997 18.690 5777 

Rt4 9000 10.957 16.039 6148 Rt9 7162 11.692 15.348 5456 

B0 7482 2.000 5.016 2983 B10 7482 2.000 4.573 3272 

B1 7482 2.000 4.494 3330 B11 7482 2.000 4.895 3057 

B2 7482 2.000 5.782 2588 B12 7482 2.000 4.636 3228 

B3 7482 2.000 4.359 3433 B13 7482 2.000 4.805 3114 

B4 7482 2.000 4.228 3539 B14 7482 2.000 4.192 3570 

B5 7482 2.000 4.194 3568 B15 7482 2.000 4.656 3214 

B6 7482 2.000 3.786 3952 B16 7482 2.000 5.379 2782 

B7 7482 2.000 3.477 4304 B17 7482 2.000 4.863 3077 

B8 7482 2.000 4.168 3590 B18 7482 2.000 4.654 3215 

B9 7482 2.000 4.365 3428 B19 7481 2.000 4.953 3021 

T0 5000 11.123 64.968 856 T10 5000 11.113 64.913 856 

T1 5000 10.987 63.880 860 T11 5000 11.165 64.988 859 

T2 5000 11.189 65.128 859 T12 5000 11.127 64.617 861 

T3 5000 11.078 64.330 861 T13 5000 11.089 64.694 857 

T4 5000 11.003 63.895 861 T14 5000 11.169 65.088 858 

T5 5000 11.131 64.867 858 T15 5000 11.028 64.338 857 

T6 5000 11.171 64.645 864 T16 5000 11.132 64.795 859 

T7 5000 11.075 64.764 855 T17 5000 11.031 64.661 853 

T8 5000 11.123 65.121 854 T18 5000 11.072 64.374 860 

T9 5000 11.151 64.755 861 T19 5000 11.090 64.856 855 



71 

______________________________________________________________________________ 

 

 

Table 3.3 Top 10 generalized notches in M, E and R databases (according to height) 

M ( ) at   =  4 E ( ) at   =  2 R ( ) at   =  3 

item 
year 

(sales) 
type height item 

year 

(sales) 
type height  item 

year 

(sales) 
type height 

116 4(1489) u 1344 42 2(14) u 13 48 4(48) u 30 

116 7(353) d 1136 42 6(1) d 13 48 5(18) d 30 

114 2(1131) u 1062   35 6(0) d 12 27 5(19) d 26 

114 4(69) d 1062 0 6(10) d 10 27 8(45) u 26 

56 5(810) u 796 0 7(20) u 10 36 6(39) u 26 

56 9(14) d 796 39 4(11) u 10 36 8(13) d 26 

67 6(103) d 704 39 6(1) d 10 18 8(21) d 25 

94 5(2) d   650 41 3(11) u 10 3 5(41) u 24 

94 9(652) u 650 41 6(1) d 10 3 7(17) d 24 

1 3(69) d 644 34 2(2) d 9 36 2(41) u 23 

 

Table 3.4 Top 10 generalized notches in Rt, B and T databases (according to height) 

Rt ( ) at   =  2 B ( ) at   =  3 T ( ) at   =  2 

item 
year 

(sales) 

typ

e 

heig

ht 
item 

year 

(sales) 
type 

heig

ht 
item 

year 

(sales) 

ty

p

e 

heig

ht 

41 4(2617) u 2617 333469 9(582) u 506 966 4(297) d 122 

41 9(2355) u 2355 333469 12(76) d 506 966 6(419) u 122 

0 2(2331) d 1315 333469 4(151) d 388 998 2(346) u 103 

48 9(4544) u 932 333469 6(539) u 388 998 6(243) d 103 

48 4(4704) u 711 333449 9(474) u 379 966 8(395) u 93 

0 3(2403) u 609 333449 11(95) d 379 966 10(302) d 93 

0 4(1794) d 609 333449 4(148) d 372 829 16(431) u 90 

0 7(1619) u 571 333449 6(520) u 372 966 11(389) u 87 

8978 2(556) u 556 110877 5(353) u 344 419 4(179) d 85 

0 5(2089) u 512 110877 10(9) d 344 419 6(264) u 85 

 

 



72 

______________________________________________________________________________ 

 

Table 3.5 Top 10 generalized notches in different databases (according to width) at a given  

M () at  = 300 E ( ) at  = 2 R ( ) at  = 5 

item 
year 

(sales) 
type 

wi 

dth 
item 

year 

(sales) 
type 

widt

h 
item 

year 

(sales) 
type width 

56 5(810) u 8 35    6(0) d 6 1 5(19) d 6 

11 4(427) u 7 42 6(1) d 6 11 8(21) d 6 

13 6(39) d 7   33 7(1) d 5 43 5(36) u 6 

16 5(361) u 7 41 3(11) u 5 6 3(32) u 5 

67 6(103) d 7 42 2(14) u 5 11 4(32) u 5 

94 5(2) d 7 49 6(1) d 5 18 8(21) d 5 

98 2(404) u 7 52 4(1) d 5 47 5(31) u 5 

11 8(32) d 6 40 4(8) u 4 50 4(18) d 5 

52 6(703) u 6 45 2(8) u 4 50 8(35) u 5 

53 6(109) d 6 45 5(1) d 4 53 6(40) u 5 
 

 

Table 3.6 Top 10 generalized notches in different databases (according to width) at a given  

Rt ( ) at  = 20 B () at  = 50 T ( ) at  = 5 

item 
year 

(sales) 

typ

e 

wi

dt

h 

item 
year 

(sales) 

typ

e 

widt

h 
item 

year 

(sales) 

typ

e 
width 

9823 7(30) u 9 112551 9(6) d 10 673   8(71) d 8 

2046 4(133) u 8 335213 10(4) d 10 651 11(82) u 8 

3321 7(24) u 8 112339 5(224) u 9  524 4(29) u 8 

411 4(32) u 8 335185 4(130) u 9 283 15(229) u 7 

3121 4(0) d 8 112407 5(107) u 9 487 15(139) d 7 

2919 6(32) u 8 335181 5(54) u 9 336 13(42) d 7 

103 7(267) u 7 335213 5(54) u 9 523 11(117) u 7 

855 3(118) u 7 335177 5(51) u 9 658 14(88) d 7 

1659 3(116) u 7 110877 5(353) u 8 733 16(63) u 7 

976 6(55) d 7 110315 11(310) u 8 807 10(29) u 7 

 

We have also noticed that from the above Tables higher frequency in sales indicate upward notch 

otherwise downward. 



73 

______________________________________________________________________________ 

We have also reported execution time with respect to the number of data sources. We observe in 

Figures 3.2, 3.3, 3.4, 3.5, 3.6 and 3.7 that the execution time increases linearly as the number of 

databases increases. The size of each input database generated from mushroom, retail, BMS-

WebView-1 and T10I4D100K are significantly larger than that of ecoli and random-68. The 

density of these two databases are also same. As a result we observe similar type of graphs in 

Figures 3.3 and 3.4. We have fixed   and  for ecoli and random-68 at lower level, since 

variation of frequencies of an item is lesser. In both the cases we have observed execution time 

increases linearly with the increase of number of databases. 

   We observe that the execution time of retail (Figure 3.5) is significantly larger than other 

databases, since each of the time databases is comparatively larger and the number of items are 

highest among all datasets. In Figure 3.6 and 3.7 we have considered same  and  for BMS-

WebView-1 and T10I4D100K respectively. But execution time of BMS-WebView-1 is 

significantly larger than the one reported for T10I4D100K as the number of items more than that 

of T10I4D100K.  

 

 

Figure 3.2 Execution time versus the number of databases (mushroom at  = 50,  = 3) 

 



74 

______________________________________________________________________________ 

 

 

0.09

0.19

0.29

0.39

0.49

1 2 3 4 5 6 7 8 9 10

Number of databases

E
x

ec
u

ti
o

n
 t

im
e 

(s
ec

.)

 

Figure 3.3 Execution time versus the number of databases (ecoli at  = 3,  =2) 

0.09

0.19

0.29

0.39

0.49

1 2 3 4 5 6 7 8 9 10

Number of databases

E
x

ec
u

ti
o

n
 t

im
e 

(s
ec

.)

 

Figure 3.4 Execution time versus the number of databases (random-68 at  =3,  =2) 

20
25
30
35
40
45

1 2 3 4 5 6 7 8 9 10

Number of databases

E
x

ec
u

ti
o

n
 t

im
e 

(s
ec

.)

 

Figure 3.5 Execution time versus the number of databases (retail at  = 20,  = 2) 

We analysed the nature of graphs by varying user-specified  and  and the number of icebergs 

in Figures 3.8-3.19.   



75 

______________________________________________________________________________ 

 

 

Figure 3.6 Execution time versus the number of databases (BMS-WebView-1 at  = 30,  = 4) 

 

Figure 3.7 Execution time versus the number of databases (T10I4D100K at  = 30,  = 4) 

 

In figures it is shown how the number of interesting icebergs decreases with respect to the 

increase of the values of  and . In mushroom, ALT and AFI are higher as compared to other 

databases. Therefore, we start changing the values  proceeding from 100 (Figure 3.8). Initially, 

in all the cases the number of icebergs decreases significantly. Afterwards, the decrease is not so 

significant. For higher values of  and  very few icebergs are extracted. Selecting the 

appropriate  and  are crucial, since lesser  and  generate too many icebergs and vice versa. 

This means that the time cost for mining icebergs is increased as iceberg increases. Therefore, it 

is important to specify the appropriate  and  in order to reduce the number of icebergs. 



76 

______________________________________________________________________________ 

0

20

40

60

80

100

120

100 200 300 400 500 600 700 800

height

N
u

m
b

er
 o

f 
ic

eb
er

g
s

 

Figure 3.8 Number of interesting icebergs versus height () for mushroom ( = 3) 

0
20
40
60
80

100
120
140

2 3 4 5 6 7 8 9

width

N
um

b
e
r 

o
f 

ic
e
b
er

gs

 

Figure 3.9 Number of interesting icebergs versus width () for mushroom ( = 50) 

ALT is smaller for ecoli and random-68. As a result, the height of an iceberg remains smaller. 

We start  from 2 and 5 for ecoli and random-68, respectively (Figures 3.10 and 3.12). We do 

not obtain any interesting icebergs for the width greater than or equal to 7.  

0
20
40
60
80

100
120

2 4 6 8 10 12

height

N
u
m

b
er

 o
f 

ic
eb

er
g

s

 

Figure 3.10 Number of interesting icebergs versus height () for ecoli ( = 2) 



77 

______________________________________________________________________________ 

 

0

20

40

60

80

100

120

2 3 4 5 6 7

width

N
u

m
b
e
r 

o
f 

ic
e
b
e
rg

s

 

Figure 3.11 Number of interesting icebergs versus width () for ecoli ( = 3) 

0

50
100

150

200
250

300

5 10 15 20 25 30

height

N
u
m

be
r 

o
f 

ic
e
b
er

s

 

Figure 3.12 Number of interesting icebergs versus height () for random-68 ( = 2)  

0

50

100

150

200

250

300

2 3 4 5 6 7

width

N
u

m
b

e
r 

o
f 

ic
e

b
e
rg

s

 

Figure 3.13 Number of interesting icebergs versus width () for random-68 ( = 3) 

 

 



78 

______________________________________________________________________________ 

Retail and BMS-WebView-1 datasets show the similar characteristics for number of interesting 

icebergs (Figures 3.14, 3.16 and Figures 3.15, 3.17) 

0

40

80

120

160

100 200 300 400 500 600 700 800 900

height

N
u
m

be
r 

o
f 

ic
eb

er
g
s

 

Figure 3.14 Number of interesting icebergs versus height () for retail ( = 2) 

0

500

1000

1500

2000

2500

3000

2 3 4 5 6 7 8 9

width

N
u
m

b
e
r 

o
f 

ic
e
b
e
rg

s

 

Figure 3.15 Number of interesting icebergs versus width () for retail ( = 20) 

0
50

100
150
200
250
300
350

25 75 12
5

17
5

22
5

27
5

32
5

37
5

height

N
u
m

b
er

 o
f 

ic
eb

er
g
s

 

Figure 3.16 Number of interesting icebergs versus height () for BMS-WebView-1 ( = 4) 



79 

______________________________________________________________________________ 

0

100

200

300

400

500

2 3 4 5 6 7 8 9 10 11

width

N
u
m

be
r 

o
f 

ic
eb

er
g
s

 

Figure 3.17 Number of interesting icebergs versus width () for BMS-WebView-1 ( = 30) 

0

100

200

300

400

10 20 30 40 50 60 70 80 90

height

N
u

m
b

er
 o

f 
ic

eb
er

g
s

 

Figure 3.18 Number of interesting icebergs versus height () for T10I4D100K ( = 5) 

0

200

400

600

800

1000

1200

2 3 4 5 6 7 8

width

N
u
m

b
e
r 

o
f 

ic
e
b
e
rg

s

 

Figure 3.19 Number of interesting icebergs versus width () for T10I4D100K ( = 30) 

 



80 

______________________________________________________________________________ 

3.9 Conclusion  

The study of temporal patterns in time-stamped databases is an important issue. Many interesting 

patterns have been discovered in transactional as well as in time series databases. In this chapter, 

we have proposed definitions of different patterns in time-stamped databases. First, we have 

introduced the notion of notch in a sales series of an item. Based on this pattern, we have 

introduced two more patterns viz., generalized notch and iceberg notch, in sales series of an item. 

Iceberg notch represents a special sales pattern of an item over time. It could be considered as an 

exceptional pattern in time-stamped databases. Similar to icebergs, some extreme patterns could 

also be defined from other types of data such as rainfall data and crop-production data.  

   The investigations of such patterns could be important to understand the purchasing behaviour 

of customers. They also aid in identifying the reasons for such behavior with the help of domain 

knowledge. We have designed an algorithm to extract icebergs in time-stamped databases and 

presented experimental results for real-world and synthetic time-stamped databases. 

 

 

 

 

 

 

 

 

 

 

 



81 

______________________________________________________________________________ 

 

Chapter 4 

 

Identifying Calendar-based Periodic Patterns 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



82 

______________________________________________________________________________ 

4.1 Introduction 

A large amount of data being collected every day has a temporal connotation. For example, 

databases originate from transactions in a supermarket, logs in a network, transactions in a bank, 

and events related to manufacturing industry are all inherently related to time. Data mining 

techniques could also be applied to these databases to discover various temporal patterns to 

understand the behavior of customers, markets, or monitored processes in different points of 

time. Temporal data mining is concerned with the analyses of data to find out patterns and 

regularities from a set of temporal data. In this context sequential association rule (Agrawal & 

Srikant, 1995), periodical association rule (Li & Deogun, 2005), calendar association rule (Li et 

al., 2003) calendar-based periodic pattern (Mahanta et al., 2008) and up-to-date pattern (Hong et 

al., 2009) are some interesting temporal patterns reported in the recent time.  

   For effective management of business activities, we often wish to discover knowledge from 

time-stamped data. There are several important aspects of mining time-stamped data including 

trend analysis, similarity search, forecasting and mining of sequential and periodic patterns. In a 

database from a retail store, the sales of ice cream in summer and the sales of blanket in winter 

should be higher than those of the other seasons. Such seasonal behaviour of specific items can 

only be discovered when a proper window size is chosen for the data mining process (Roddick & 

Spiliopoulou, 2002). A supermarket manager may discover that turkey and pumpkin pie are 

frequently sold in together in November in every year. Discovering such patterns may reveal 

interesting information that can be used for understanding the behaviour of customers, markets 

or monitored processes in different time periods. However, these types of seasonal patterns 

cannot be discovered by traditional non-temporal data mining approaches that treat all the data as  



83 

______________________________________________________________________________ 

one large segment with no attention paid to utilizing the time information of the transactions. If 

one looks into the entire dataset rather than the transactions that occur in November, it is likely 

that one will not be able to discover the pattern of turkey and pumpkin pie since the overall 

support for them will be evidently low. In general, a time-stamped database might exhibit some 

periodic behaviours. Length of a period might vary from one context to another context. For 

example, in case of sales of ice cream, the basic time interval could be of three months, since in 

many regions March, April and May together is considered as summer. Also, in case of sales of 

blanket, the basic time interval could be considered from November to February in every year. In 

addition, in many business applications, one might be interested in quarterly patterns over the 

years, where length of the period is equal to three months. A large amount of data is collected 

every day in the form of event time sequences. These sequences are valuable sources to analyze 

not only the frequencies of certain events, but also the patterns with which these events happen. 

For example, from data consisting of web clicks one may discover that a large number of web 

browsers who visit www.washingtonpost.com in morning hours also visit www.cnn.com. Using 

such information one can group users as daily morning users, daily evening users, weekly users 

etc. This information might be useful for communicating to the users. Temporal patterns in the 

stock market, such as whether certain months, days of the week, time periods or holidays provide 

better returns than other time periods have received particularly a large amount of attention. Due 

to the presence of various types of applications in many fields, periodic pattern mining is an 

interesting area of study. 

   Mahanta et al. (2008) used set superimposition (Baruah, 1999) to find the membership value of 

each  fuzzy  interval. The  concept  of  set  superimposition  is  defined  as   follows.  If  set  A is  



84 

______________________________________________________________________________ 

superimposed over set B or set B is superimposed over set A then set superimposition operation 

can be expressed as A (S) B = (A – B) (+) (A  B)
(2)

 (+) (B – A), where (S) denotes the set 

superimposition operation. Here, (A  B)
(2)

 are the elements of (A  B) represented twice and 

(+) represents union of disjoint sets. Authors have also designed an algorithm for mining 

calendar-based periodic pattern. While applying this concept authors have assumed intervals 

with equal membership grade, and accordingly the concept of certainty factor has been proposed 

for each sub-interval. Certainty factor of an interval over different time periods expresses the 

likelihood of reporting the pattern in that particular interval. If two intervals overlap then the 

certainty factor is more for the overlapped region than the non-overlapped region. When two 

intervals are superimposed, authors have assumed 1/2 membership grade for each interval. After 

superimposition, the fuzzy membership value for the overlapped region becomes 1. The fuzzy 

membership value for non-overlapped region remains 1/2. But these two intervals may have 

different supports of the pattern. The certainty factor and support of a pattern in an interval are 

two different concepts. For better analysis of overlapped regions, these two concepts need to be 

introduced along with the overlapped region. Thus, in this chapter we propose an extended 

analysis of superimposed intervals. The main weak point of the aforementioned paper (Mahanta 

et al., 2008) is that the concept of set superimposition is not necessary in the proposed algorithm. 

Therefore, we have proposed an algorithm to identify full / partial calendar-based periodic 

patterns. We have also improved our algorithm by introducing a hash based data structure for 

storing relevant information associated with intervals. In addition, we have suggested some other 

improvements in the proposed algorithm. Before concluding this section, we take an example of  

 



85 

______________________________________________________________________________ 

a time-stamped database that will be used for providing illustrative examples on various 

concepts. 

Example 1. Consider the following database D of transactions. Each record contains items 

purchased as well as the date of the transaction. 

Table 4.1 A sample time-stamped database 

time-stamp items time-stamp items time-stamp items 

29/03/1990 a, b, c 07/04/1992 a, c, e, g, h 17/04/1993 a, c, f 

06/04/1990 a, c, e 12/04/1992 c, e 06/04/1994 a, b, c,d 

21/04/1990 a, d 14/04/1992 c, e, f 10/04/1994 g, h 

25/04/1990 a, c, d 19/04/1992 f, g 13/04/1994 a, g 

06/03/1991 a, c 04/03/1993 a, c 18/04/1994 g, h, i 

12/03/1991 a, c, e 09/03/1993 a, c, g 20/04/1994 a, c, e, f  

19/04/1991 f, g 01/04/1993 c, h, i   

03/03/1992 a, c, d 07/04/1993 c, d   

 

We have omitted the time of a transaction, since our data analysis is not associated with the time 

component of a transaction. We will refer to this database from time to time for the purpose of 

illustrating various concepts. 

  Rest of the chapter is organized as follows. We discuss related work in Section 4.2. In Section 

4.3, we have discussed calendar-based periodic patterns and proposed an extended certainty 

factor of an interval. We have designed an algorithm for identifying calendar-based periodic 

patterns in Section 4.4. Experimental results are provided in Section 4.5. We conclude the 

chapter in Section 4.6. 



86 

______________________________________________________________________________ 

4.2 Related work 

A calendar time expression is composed of calendar units in a specific calendar and represents 

different time features, such as an absolute time interval and a periodic time over a specific time 

period. A calendar-based periodic pattern is associated with time hierarchy for calendar years. In 

this chapter we have dealt with calendar dates over the years. 

   Verma et al. (2005) have proposed an algorithm H-Mine, where a header table H is created 

separately for each interval. Each frequent item entry has three fields viz., an item-id, a support 

count and a hyper-link.  

   Lee et al. (2008) have proposed two data mining systems for discovering fuzzy temporal 

association rules and fuzzy periodic association rules. The mined patterns are expressed in fuzzy 

temporal and periodic association rules that satisfy the temporal requirements specified by the 

user. In the proposed algorithm the mined patterns are dependent on user inputs such as 

maximum gap between two intervals and minimum length of an interval. 

   Li et al. (2001) proposed two classes of temporal association rules, temporal association rules 

with respect to precise match and temporal association rules with respect to fuzzy match, to 

represent regular association rules along with their temporal patterns. A similar work was 

reported by Zimbrao et al. (2002). Authors incorporate multiple granularities of time intervals 

from which both cyclic and user-defined calendar patterns can be achieved. Ale and Rossi (2000) 

proposed an algorithm to discover temporal association rules. In this algorithm support of an 

item is calculated only during its lifespan. 

   Wenpo and Guanling (2006) have proposed a technique for mining partial multiple periodic 

patterns without redundant rules. Without mining every period, authors checked the necessary 



87 

______________________________________________________________________________ 

period and used this information to do further mining. Instead of considering the whole database, 

the information needed for mining partial periodic patterns is transformed into a bit vector that 

can be stored in a main memory. This approach needs to scan the database at most two times. In 

the context of support definition Kempe et al. (2008) have proposed a new support definition that 

counts the number of pattern instances, handles multiple instances of a pattern within one 

interval sequence and allows time constraints on a pattern instance.  

   Lee et al. (2008) have proposed a new temporal data mining technique that can extract 

temporal interval relation rules from temporal interval data by using Allen’s theory (Allen, 

1983). Authors designed a preprocessing algorithm for generalization of temporal interval data. 

Also, authors have proposed an algorithm for discovering a temporal interval relation.    

   Ozden et al. (1998) proposed a method of finding patterns having periodic nature where the 

period has to be specified by the user. Han et al. (1999) proposed several algorithms for mining  

partial periodic patterns by exploring some interesting properties such as the apriori property and 

the max-subpattern hit set property by shared mining of multiple periods. Our approach is 

different from the methods described above. In our algorithm we consider the time-stamps as a 

hierarchical data structure and then extract periodic patterns for the different levels of hierarchy. 

4.3 Calendar-based periodic patterns 

In Sections 4.1 and 4.2, we have presented some important applications of calendar-based 

periodic patterns. A calendar-based periodic pattern is dependent on the schema of a calendar. 

There are various ways one could define the schema of a calendar. We assume that the schema of 

the calendar-based pattern is based on day, month and year. The calendar patterns based on a 

schema are not isolated, but related to each other. This schema is also useful to determine 

weekly-based pattern, since first seven days of any month correspond to the first week, days 8 

to14 of any month correspond to the second week, and so on. Thus, one can have several types  



88 

______________________________________________________________________________ 

of calendar-based periodic patterns viz., daily, weekly, monthly and yearly. Based on a schema, 

some examples of calendar patterns are given as follows: every day of January, 1999; every 16-

th day of January in each year; second week of every month. Again, each of these periodic 

patterns could be of two types viz., partially periodic pattern and full periodic pattern. A problem 

related to periodicity could be of finding patterns occurring at regular time intervals. This 

concept emphasizes on two aspects viz., pattern and interval. 

   A calendar pattern refers to a market cycle that repeats periodically on a consistent basis. 

Seasonality could be a major force in the marketplace. While calendar patterns are based on a  

framework of multiple time granularities viz., day, month and year, but the periodic patterns are 

defined in term of a single granularity. These patterns are dependent on the lifespan of an item in 

a database. Lifespan of an item (x) is a pair (x, [t1, t2]), where t1 and t2 denote the time that the 

item x appears in the database for the first time and last time, respectively. The problem of 

periodic pattern mining can be categorized into two types. One is full periodic pattern mining, 

where every point in time granularity contributes to a cyclic behavior of the pattern. The other 

and more general one is called partial periodic pattern mining, which specifies the behavior of 

the pattern at some but not all points of time granularity in the database. Partial periodicity is a 

looser form of periodicity than full periodicity and it also occurs more commonly in the real 

world. A pattern is associated with a real number m (0 < m < 1), called match ratio (Li et al. 

2003) that reveals a pattern holds with respect to fuzzy match satisfying at least 100m% of the 

time intervals. Match ratio is an important measure which determines whether a calendar-based 

pattern could be full periodic or partial periodic. When the match ratio is equal to 1 then it is a 

full periodic pattern. In case of partial periodic pattern the match ratio lies between 0 and 1.  



89 

______________________________________________________________________________ 

While finding yearly periodic patterns, Mahanta et al. (2008) have proposed match ratio in 

somewhat a different way. Authors have proposed match ratio as the number of intervals is 

divided by number of years in the lifespan of the pattern. It might be difficult to work with this 

definition, since a mining algorithm returns itemsets and their intervals. A mining algorithm 

might not be concerned with reporting the first and last appearances of an itemset. Therefore, we 

will follow the definition proposed by Li et al. (2003). 

We have discussed the concept of certainty factor in Section 4.1. Also we have noticed that the 

analysis of  overlapped  region  using  certainty  factor  might  not  be  sufficient. Therefore, we 

propose an extension to it. 

4.3.1 Overlapped intervals  

In this chapter we deal with overlapped intervals in different contexts. Let us consider that A and 

B are two overlapping intervals. By employing Allen’s interval relations (Allen, 1983) one can 

have the following relationships between A and B: A before B, A meets B, A overlaps B, A is-

finished-by B, A contains B, A is-started-by B and A equals B. Similarly there exists inverse 

relations from B to A. These relationships are pair wise different and are illustrated in Figure 4.1.   

 

              (a)                      (b)                          (c)                            (d)                            (e)  

Figure 4.1 Different types of overlapped intervals 

 



90 

______________________________________________________________________________ 

For finding calendar-based yearly patterns, each of the two intervals in Figure 4.1(a) corresponds 

to the same year. In the wider interval A, a certain pattern X is frequent, whereas another pattern 

Y is frequent in narrower interval B. We may be interested whether a higher-level pattern XY is 

frequent in the intersection of intervals A and B. For analyzing a calendar-based yearly pattern 

using the concept of certainty factor, we require multiple intervals where the pattern is frequent 

in different years. In this case each interval corresponds to a year. Thus, for a particular pattern 

there are multiple intervals. From the perspective the lifespan of the yearly pattern, these 

intervals might overlap. Thus, the concept of certainty factor is also associated with overlapped 

intervals. 

4.3.2 Extending certainty factor 

The concept of certainty factor is based on the concept of set superimposition. If we are 

interested in yearly patterns, during the analysis of superimposed intervals the year component is 

ignored. We explain here the concept of set superimposition using the following example.  

Example 2. Consider the database of Example 1. Itemset {a, c} is present in 3 out of 4 

transactions in the intervals [29/03/1990 - 25/04/1990]. Also, {a, c} is present in 2 out of 3 

transactions in the intervals and [06/03/1991 - 19/04/1991]. Therefore, {a, c} is frequent in these 

intervals at minimum support level 0.66. These two intervals are being superimposed where each 

of these intervals has fuzzy set membership value 1/2. The overlapped area of these two intervals 

is [29/03 - 19/04]. Based on the concept of set superimposition, an itemset reported in a non-

overlapped region has the fuzzy set membership value 1/2. But, an itemset reported in the 

overlapped interval [29/03 - 19/04] has fuzzy set membership value 1/2 + 1/2 = 1.  

 



91 

______________________________________________________________________________ 

For the purpose of mining periodic patterns, Mahanta et al. (2008) have proposed certainty 

factor. It is based on a set of overlapped intervals corresponding to a pattern occurring on a 

periodic basis. For example, one might be interested in identifying yearly periodic patterns in a 

database. Authors have considered all the intervals having equal membership grade. For 

example, if n intervals are superimposed then every interval has 1/n equal membership grade and 

in an overlapped area the membership value will be added. The certainty of the pattern in the 

overlapped subinterval is more than the certainty in the other subintervals. Let [t1, t’1] and [t2, t’2] 

be two overlapped intervals where a pattern X gets reported with certainty value 1/2. When the 

two intervals are superimposed the certainty factors of X associated with the various subintervals 

are given as follows: 

[t1, t’1]
1/2 

(S) [t2, t’2]
1/2  

= [t1, t2)
1/2

 [t2, t’1]
1 

(t’1, t’2]
1/2 

                                                                 …(1) 

The notion of certainty factor seems to be an important contribution made by the authors. It 

represents the certainty of reporting a pattern in an interval by considering a sequence of periods. 

For example, we might be interested in knowing the certainty of pattern {a, c} in the month of 

April with respect to the database in Example 1. It is an important statistical evidence of a pattern 

in an interval over a sequence of years (periods). For example, one could say that the evidence of 

the pattern {a, c} is certain in the month of April when the years viz., 1990, 1991, 1992 and 1993 

are considered. But the concept of certainty factor does not convey the information regarding the 

frequency of a pattern in an overlapped region. In addition, it gives equal importance to all the 

intervals by considering them as equi-fuzzy intervals. From the perspective of the evidence of a 

pattern, such assumption might be realistic. But from the perspective of the depth of evidence,  



92 

______________________________________________________________________________ 

 

such concept might not be sufficient. Thus, we propose an extension to the concept of certainty 

factor. In the proposed extension, we incorporate the information regarding support of a pattern 

in an interval. There are many ways one could keep the information regarding support. In 

Example 1, there are four overlapping intervals corresponding to the pattern {a, c}. There exists 

a region where all the intervals are overlapped. On the contrary, some regions may not be 

overlapped at all. Apart from the certainty factor of a region, one could also keep the support 

information of the pattern in that interval. In general, a region could be overlapped by all 

intervals. Let there are be n supports of a pattern corresponding to n intervals. Then the question 

comes to our mind, how to keep the support information of the pattern for n intervals. The 

answer to this question might not be agreeable to all. One might be interested in keeping the 

average support of the pattern along with the certainty factor for that interval. Some of us might  

be interested in keeping information regarding the minimum and maximum of n supports. In an 

extreme case, one might be interested in keeping all the n supports of the pattern corresponding 

to n intervals. Let us consider that we are interested in yearly pattern. Let the life-span of a 

pattern be forty years. Then one has to keep a maximum of forty supports corresponding to an 

overlapped region. It might not be realistic to maintain all the forty supports. Let s-info(X, [t1, t2]) 

be the support information of the pattern X for the interval [t1, t2]. 

   The support (Agrawal et al., 1993) of a pattern X represents a fraction of transactions 

containing X. A pattern X is frequent if its support is greater than equal to a user-defined 

threshold, minsupp. Let the pattern X be frequent in time intervals [ti, t’i], i =1, 2, …, n. Each of 

these intervals is taken from a different period of time such that φtt ii

n

i  ],[ '

1 . In Example 1,  

 



93 

______________________________________________________________________________ 

 

patterns {a}, {c} and {a, c} get reported in the month of April in every year. By generalizing (1), 

the certainty factor of X in overlapped regions could be obtained as follows: 

[t1, t’1]
1/n

 (S) [t2, t’2]
1/n

 (S) … (S) [tn, t’n]
1/n

 = [t
(1)

, t
(2)

)
1/n

 [t
(2)

, t
(3)

)
2/n  

[t
(3)

, t
(4)

)
3/n 

… [t
(r)

, t
(r+1)

)
r/n 

… 

[t
(n)

, t
’(1)

]
1 

(t
’(1)

, t
’(2)

]
n-1/n 

…( t
’(n-2)

, t
’(n-1)

]
2/n

 (t
’(n-1)

, t
’(n)

]
1/n  

                                                             …(2) 

where 
n

i

it 1

)( }{  is the sequence obtained from n

iit 1}{ 
by sorting in ascending order and 

n

i

it 1

)(' }{   is 

obtained from n

iit 1

'}{ 
by sorting in ascending order. We propose an extended certainty factor of X 

in the above overlapped intervals as follows: 

When X is reported in [t
(n)

, t
’(1)

] then the certainty value is 1 with support information s-info(X, 

[t
(n)

, t
’(1)

]). But, the certainty value of X for the outside of [t
(1)

, t
’(n)

] is 0 with support information 

0. When X is reported in [t
(r-1)

, t
(r)

), then the certainty value is (r - 1) / n  with support information 

s-info(X, [t
(r-1)

, t
(r)

)), for r = 2, 3, … , n. Otherwise, the certainty values of X for (t
’(r-1)

, t
’(r)

] is (n – 

r + 1) / n with support information s-info(X, (t
’(r-1)

, t
’(r)

]), for r = 3, 4, … , n.  

Suppose we are interested in identifying yearly periodic patters. So each time interval is taken 

from a year. From the perspective of n years, the pattern X gets reported in every year in the 

interval [t
(n)

, t
’(1)

]. So, the certainty of X is 1 (highest) in this interval. But, X is not frequent 

pattern outside of [t
(1)

, t
’(n)

]. Therefore, from the perspective of all the years the certainty of X is 0 

(lowest) outside of the interval. The certainty factor also provides the information regarding how 

many intervals are overlapped on a sub-interval. For example, if the certainty factor of a sub-

interval is 2/5, for given five intervals, then two intervals are overlapped on the sub-interval. On 

the other hand s-info provides the information regarding degree of frequency of X in an interval. 

To illustrate the above concept we consider the following example.  



94 

______________________________________________________________________________ 

Example 3.  Although it is not based on the database given in Example 1, but it explains the 

proposed concept of extended certainty factor stated above. Let the years 1990, 1991, 1992 and 

1993 be of our interest. We would like to check whether the pattern X is yearly periodic. Assume 

that the mining algorithm has reported X is frequent in the time intervals [t1, t’1], [t2, t’2], [t3, t’3] 

and [t4, t’4] for the years 1990, 1991, 1992 and 1993, respectively. Also, let the supports of X in 

[t1, t’1], [t2, t’2], [t3, t’3] and [t4, t’4] be 0.2, 0.15, 0.16 and 0.12, respectively. Based on the 

proposed extended concept, we wish to analyze the time interval [t1, t’4] by overlapping these 

intervals corresponding to the four years. The overlapped intervals are depicted in Figure 4.2.  

 

Figure 4.2 Overlapped intervals for finding yearly pattern X 

While computing support information we use here the range measure for a set of values. One 

could use another support information depending on the requirement. An analysis of the 

overlapped intervals corresponding to X is presented in Table 4.2. Certainty of a sub-interval is 

based on the number of intervals overlapped on it. For example, [t1, t2) has certainty 1/4, since 

there is only one interval out of four intervals.  

Table 4.2 An analysis of the overlapped intervals for finding yearly pattern X 

interval certainty factor s-info interval certainty factor s-info 

[t1, t2) 1/4 0.2 - 0.2 (t’1, t’2] 3/4 0.12 - 0.15 

[t2, t3) 1/2 0.15 - 0.2 (t’2, t’3] 1/2 0.12 - 0.16 

[t3, t4) 3/4 0.15 - 0.2 (t’3, t’4] 1/4 0.12 - 0.12 

[t4, t’1] 1 0.12 - 0.2    



95 

______________________________________________________________________________ 

Here s-info corresponding to interval [t3, t4) represents the fact that the maximum and minimum 

supports of overlapped intervals are 0.2 and 0.15 respectively.  

Certainty factor and support information are not the same. They represent two different aspects 

of a pattern in an interval. Certainty factor is normally associated with multiple time intervals. It 

expresses the likelihood of reporting a pattern in a sub-interval of the multiple overlapped 

intervals. But the concept of support is associated with a single time-interval. It is defined as the 

fraction of the transactions containing the pattern. Thus, for an effective analysis of a 

superimposed interval both certainty factor and support information are needed in association 

with an interval. 

4.3.3 Extending certainty factor with respect to other intervals 

In Figure 4.1 we have shown four intervals overlapped corresponding to four different years.  

But in reality the scenario could be different. For four intervals, there may exist different 

combinations of overlapped intervals. But, whatever may be the case, the certainty factor of a 

sub-interval depends on the number of intervals overlapped in that sub-interval and s-info 

depends on the supports of the pattern in the intervals that are being overlapped on a sub-

interval. Let us consider a sub-interval [t, t’], where m out of n intervals are overlapped on [t, t’]. 

Based on certainty factor (Mahanta et al., 2008), we propose an extended certainty factor as 

follows:  

When X is reported in [t, t
’
], then the certainty value is m/n with support information s-info(X, [t, 

t
’
]), where s-info(X, [t, t

’
]) is based on supports of X in the m intervals overlapped on [t, t

’
]. We 

illustrate this issue with the help of Example 4. Before that, we present a few definitions related 

to overlapped intervals. Let maxgap be the user-defined maximum gap (time units) between  



96 

______________________________________________________________________________ 

current time-stamp of a pattern and the time-stamp of the pattern when it was last seen. If the gap 

between current time-stamp of a pattern and the time-stamp of the pattern when it was last seen 

is greater than maxgap then a new interval is formed for the pattern with the current time-stamp 

as the start of the interval. Also, the previous interval of the pattern was ended when it was last 

seen. Let mininterval be the minimum period length of a time interval. Each interval should be of 

sufficient length, otherwise a pattern appearing once in a transaction is also become frequent in 

an interval. If two intervals are overlapped and the length of the overlapped region exceeds 

mininterval then the overlapped region could be interesting, otherwise it is discarded. 

Example 4. We refer to the database of Example 1. Let the value of maxgap be 40 days. Then 

pattern {a, c} gets reported in the following intervals : [29/03/1990 - 25/04/1990],  [06/03/1991 - 

12/03/1991],  [03/03/1992 - 07/04/1992],  [04/03/1993 - 17/04/1993], and  [06/04/1994 –  

20/04/1994]. Let the value of mininterval be 10 days. The interval [06/03/1991 - 12/03/1991] 

does not satisfy the criterion of mininterval. Also let the value of minsupp be 0.5. Then {a, c} is 

not locally frequent in the interval [06/04/1994 - 20/04/1994]. We shall analyse the pattern {a, c} 

in the following intervals: [29/03/1990 - 25/04/1990], [03/03/1992 - 07/04/1992], and 

[04/03/1993 - 17/04/1993]. After superimposition, we require to analyse the interval [03/03 - 

25/04]. We present superimposed intervals in Figure 4.3.  

 

Figure 4.3 Overlapped intervals for finding yearly pattern {a, c} 



97 

______________________________________________________________________________ 

We present an analysis of the time interval [03/03 - 25/04] based on the concept of extended 

certainty factor. Extended certainty factor of a pattern in an interval provides information of both 

certainty factor and s-info for the pattern. In Table 4.3 we present an analysis of intervals for 

finding yearly pattern {a, c}.  

 

Table 4.3 An analysis of the time interval [03/03 - 25/04] for finding yearly pattern {a, c} 

interval certainty s-info interval certainty s-info 

[03/03 - 04/03) 1/5 1.0 - 1.0 (07/04 - 17/04] 2/5 0.6 - 0.75 

[04/03 - 29/03) 2/5 0.6 - 0.75 (17/04 - 25/04] 1/5 0.75 - 0.75 

[29/03 - 07/04] 3/5 0.6 - 1.0    

 

 

In the above we have presented an analysis of the time interval [03/03 - 25/04]. The subintervals 

[03/03 - 04/03) and (17/04 - 25/04] are also shown, but they do not satisfy mininterval criterion. 

In the experimental results we have not presented such subintervals. 

4.4 Mining calendar-based periodic patterns 

Itemsets in transactions could be considered as a basic type of pattern in a database. Many 

interesting patterns like association rules (Agrawal et al., 1993), negative association rules (Wu 

et al., 2004), Boolean expressions induced by itemset (Adhikari & Rao, 2007) and conditional 

patterns (Adhikari & Rao, 2008) are based on itemset patterns. Some itemsets may be frequent in 

certain time intervals but may not be frequent throughout the lifespan of the itemsets. In other 

words, some itemsets may appear in the transactions for a certain time period and then disappear 

for a long period and then  reappear. In view  of  making a  data analysis involving  various  



98 

______________________________________________________________________________ 

itemsets, it might be required to extract the itemsets together with the time-slots in which they 

are frequent.  

4.4.1 An overview of calendar-based periodic pattern 

Calendars are typically used to describe events or time related properties over the same span of 

time using different granularities. A granule is a set of time instants perceived as a non-

decomposable temporal entity when used to describe a phenomenon or, in general, when used to 

time-stamp a set of data (Bettini et al., 2000). For example, the Gregorian calendar comprises the 

granularities day, month and year. A granule can be composed of a single instant, a set of 

contiguous instants (time interval) or a set of noncontiguous instants. 

4.4.2 Improving mining calendar-based periodic patterns   

The goal of this chapter is to study the existing algorithm, and to propose an effective algorithm 

by improving the limitations of existing algorithm for mining calendar-based periodic patterns. 

We have discussed earlier that the concept of certainty factor of an interval does not provide 

good analysis of overlapped intervals. Therefore, the concept of extended certainty factor has 

been proposed. In view of designing an effective algorithm, we also need to understand the 

existing algorithm. While studying the existing algorithm (Mahanta et al., 2005) we have found 

that some variables contradict their definitions. The Algorithm 4.1 (Mahanta et al., 2005) finds 

all the locally frequent itemsets of size one. Authors defined two variables ptcount and ctcount as 

follows. The variable ptcount is used to count the number of transactions in an interval in which 

the current item belongs. On the other hand, the variable ctcount is used to count the number of 

transactions in that interval. Therefore, the assignment ptcount[k] = ctcount[k] in Algorithm 4.1, 

is not correct. Also, the variable icount is defined as the number of items present in the whole 



99 

______________________________________________________________________________ 

dataset. Therefore, the initialization, icount = 1, placed just before starting a new interval seems 

to be not appropriate. Moreover, the validity of the experiment is low, since the experimental 

results are based on only one dataset. We propose a number of improvements mentioned as 

follows: (i) The proposed algorithm makes corrections on the existing algorithm based on the 

points mentioned above. (ii) It makes effective data analysis by incorporating extended certainty 

factor. (iii) We propose a hash-based data structure to improve the space efficiency of our 

algorithm. (iv) Also, we have improved the average time complexity of the algorithm. (v) We 

make a comparative analysis with the existing algorithm. (vi) In addition, we have improved the 

validity of the experimental results by conducting experiments on more datasets. 

4.4.3 Data structure  

We discuss here the data structure used in the proposed algorithms for mining itemsets along 

with the time intervals in which they are frequent. A hash-based data structure is a natural way of 

storing different itemsets and their associated information. Since there are number of yearly 

databases, all the frequent itemsets in a particular year should be linked corresponding to that 

year. We describe the data structure using the following example. 

Example 5. Consider the database D of Example 1. Transactions are made in the years 1990, 

1991, 1992, 1993, and 1994, where the items a, b, c, d, e, f, g, h, and i appear in D. We propose 

Algorithm 1 to mine locally frequent itemsets of size one along with their intervals. The 

algorithm produces output as shown at level 1 of Figure 4.4. We assume here maxgap, 

mininterval and minsupp as 40 days, 5 days and 0.5, respectively. We are interested in 

identifying yearly periodic patterns. At the level 0 we have shown all the years that appeared in 

the  transaction. The  pointer  corresponding to the year  1990  keeps all the  locally  frequent 



100 

______________________________________________________________________________ 

itemsets of size one, their supports and their intervals. All the five years are stored in an index 

table at level 0. After level 0, we keep an array of pointers of each year. The first pointer 

corresponding to year 1990 points to a table containing interesting itemsets of size one for the 

year 1990, their intervals and their local supports. The second pointer corresponding to year 

1990, points to a table containing interesting itemsets of size two for the year 1990, their 

intervals and their local supports, and so on. Here itemsets of size three corresponding to a year 

do not get reported. Different itemsets, their intervals, and supports are shown in Figure 4.4.  

 

Figure 4.4 Data structure used in the proposed algorithms 

 



101 

______________________________________________________________________________ 

 

4.4.4 A modified algorithm   

As mentioned in Section 4.1, we have proposed a number of improvements to the existing 

algorithm, Algorithm 4.1 (Mahanta et al., 2005), for finding locally frequent itemsets of size one. 

We calculate the support of each item in an interval and store it whenever the item is frequent in 

that interval. Intervals that satisfy the user-defined constraint mininterval are retained 

corresponding to the itemsets of size one that satisfy the user-defined constraint minsupp. The 

modification made seems to be significant from the overall view point of  Apriori  algorithm. We 

have used a hash-based data structure to improve efficiency of storing and accessing locally 

frequent itemsets of size one. We explain here all the variables and their functions in the 

following paragraph. 

   Let item be an array of items in D. Also let the total number of items be n. We use index 

level_0 to keep track of different years. It is a two-dimensional array containing 2 columns. First 

column of level_0 contains the different years in increasing order. A two-dimensional array 

itemset_addr is used to store the addresses of tables containing itemsets. itemset_addr[row][j] 

contains the address of the table containing locally frequent itemsets of size j for the current year 

row. The second column of level_0 stores addresses of arrays pointing to these tables. Tables at 

level_p store the frequent itemsets of size p, p = 1, 2, 3, … . Variables row and row_p are used to 

index arrays itemset_addr and level_p respectively, p = 0, 1, 2, … . We consider a transaction as 

a record containing transaction date (date) and items purchased. Function year( ) is used to 

extract year from a given date. firstseen[k] and lastseen[k] specify the date when the k-th item is 

seen for the first time and last time in an interval, respectively. Each item in the database is 

associated with the arrays itemIntervalFreq and nTransInterval. Cells itemIntervalFreq[k] and  



102 

______________________________________________________________________________ 

nTransInterval[k] are used to keep the number of transactions containing item k and total number 

of transactions in a time interval, respectively. Variable nItemsTrans is used to keep track of the 

number of items in the current transaction. The goal of the proposed algorithm is to find all the 

locally frequent itemsets of size one, their intervals and supports. The algorithm is presented as 

follows. 

Algorithm 1. Mine locally frequent items and their intervals 

procedure MiningFrequentItems_One (D, maxgap, mininterval, minsupp)  

Inputs: D, maxgap, mininterval, minsupp 

D: database to be mined 

minsupp: as defined in Section 4.3.2 

maxgap, mininterval: as defined in Section 4.3.3 

Outputs:   

Locally frequent items, their intervals and supports as mentioned in Figure 4.4 

01:  let nItemsTrans = 0; row = 1; row_0 =1; row_1 = 1;  

02:  for k = 1 to n do 

03:     lastseen[k] = 0; itemIntervalFreq[k] = 0; nTransInterval[k] = 0;  

04:  end for  

05:  read a transaction t  D; 

06:  level_0[row_0][1] = year(t.date); 

07:  level_0[row_0][2] = itemset_addr[row][1]; 

08:  while not end of transaction in D do 

09:     transLength = |t|; 



103 

______________________________________________________________________________ 

10:     if (level_0[row_0][1]  year(t.date)) then  

11:        for k = 1 to n do         

12:           if (|lastseen[k]  firstseen[k]|  mininterval) and  

                (itemIntervalFreq[k] / nTransInterval[k]  minsupp) then 

13:              level_1[row_1][1] = item[k]; level_1[row_1][2] = firstseen[k]; 

14:              level_1[row_1][3] = lastseen[k];  

15:              level_1[row_1][4] = itemIntervalFreq[k] / nTransInterval[k]; 

16:              increase row_1 by 1; 

17:           end if {12} 

18:        end for {11} 

19:        row_1 = 1; 

20:        increase row_0 by 1; increase row by 1; 

21:        level_0[row_0][1] = year(t.date); level_0[row_0][2] = itemset_addr[row][1]; 

22:        for k = 1 to n do 

23:           lastseen[k] = 0; itemIntervalFreq[k] = 0; nTransInterval[k] = 0;  

24:        end for 

25:     end if {10}  

26:     for k = 1 to n do 

27:        if (item[k]  t) then 

28:           increase nItemsTrans by 1;  

29:           if (lastseen[k] = 0) then   

30:              initialize both lastseen[k] and  firstseen[k] by t.date;  



104 

______________________________________________________________________________ 

                   initialize both itemIntervalFreq[k] and nTransInterval[k] by 1; 

31:           else if ( | t.date  lastseen[k] |  maxgap ) then 

32:                      lastseen[k] = t.date; 

33:                      increase itemIntervalFreq[k] by 1; increase nTransInterval[k] by 1; 

34:                   end if  

35:           else if ( | lastseen[k]  firstseen[k] |  mininterval) and  

                       (itemIntervalFreq[k] / nTransInterval[k]  minsupp) then 

36:                     level_1[row_1][1] = item[k]; level_1[row_1][2] = firstseen[k]; 

37:                     level_1[row_1][3] = lastseen[k];  

38:                     level_1[row_1][4] = itemIntervalFreq[k] / nTransInterval[k]; 

39:                     increase row_1 by 1; 

40:                     initialize both lastseen[k] and  firstseen[k] by t.date; 

41:                     initialize both itemIntervalFreq[k] and nTransInterval[k] by 0; 

42:                  end if {35} 

43:               end if {29} 

44:        else increase nTransInterval[k] by 1; 

45:        end if {27} 

46:       if (nItemsTrans = transLength) then exit from for-loop; end if 

47:     end for {26} 

48:     read a transaction t  D; 

49:  end while {08} 

50:  for k = 1 to n do   



105 

______________________________________________________________________________ 

51:     if (|lastseen[k]  firstseen[k]|  mininterval) and  

          (itemIntervalFreq[k] / nTransInterval[k]  minsupp) then 

52:        level_1[row_1][1] = item[k]; level_1[row_1][2] = firstseen[k]; 

53:        level_1[row_1][3] = lastseen[k];  

54:        level_1[row_1][4] = itemIntervalFreq[k] / nTransInterval[k]; 

55:        increase row_1 by 1; 

56:     end if {51} 

57:  end for {50} 

58:  sort arrays level_1 on non-increasing order on primary key item and secondary key start 

date; 

end procedure 

At line 5 we read the first transaction of database. Afterwards the first row of the index level_0 is 

initialized with the first year obtained from the transaction. The pointer field of the first row of 

level_0 is initialized by the address of the first row of the table itemset_addr. Lines 8-46 are 

repeated until all the transactions are read. At line 10 we check whether the current transaction 

belongs to a different year. If it happens so then we close the last interval of different items using 

lines 11-18. We retain those intervals that satisfy criteria of mininterval and minsupp. Lines 19-

24 assign the necessary initializations for a different year. Lines 26-45 are repeated for each item 

in the current transaction. Line 29 checks whether the item is first time seen in the transaction 

and the necessary assignment is done in line 30. Lines 31-34 determine whether the current 

transaction-date is coming under the current interval by comparing the difference between t.date 

and lastseen with maxgap. Lines 35-42 construct an interval and compute the local support.              



106 

______________________________________________________________________________ 

Line 46 avoids the unnecessary repetition by comparing the transaction length. Line numbers 50-

57 close all the last intervals for last year. Line 58 sorts arrays level_1 on non-increasing order on 

primary key item and secondary key start date.                                                                

The time complexity of the algorithm has been reduced significantly by computing the length of 

current transaction (at line number 9) and putting a check at line number 27. Consider a database 

containing 10,000 items. Let the current transaction be of length 20 and these 20 items are within 

the first 100 items. Then the for-loop at line number 26 need not have to continue for the 

remaining 9,900 items, but the worst-case complexity of the algorithm remains the same as 

before. 

We shall now present below an algorithm that makes use of locally frequent itemsets obtained by 

Algorithm 1 and apriori property (Agrawal & Srikant, 1994). We use array level_1 to generate 

the candidate sets at second level. Then array level_2 is used to generate candidate sets at the 

third level, and so on. We apply pruning using conditions at line 6 to eliminate some itemsets at 

the next level. This pruning step ensures that the size of the itemsets at the current level is one 

more than the size of an itemset at the previous level. Also we apply pruning using user-defined 

thresholds at line 13.  

Algorithm 2. Mine locally frequent itemsets at higher level and their intervals 

procedure MiningHigherLevelItemsets (D, S)  

Inputs: D, S 

D: database to be mined 

S: partially constructed data structure containing locally frequent itemsets of size one 

 



107 

______________________________________________________________________________ 

Outputs: locally frequent itemsets at higher levels, their intervals and supports as mentioned in 

Figure 4.4 

01: let L1 = set of elements at level_1of S; let k = 2; 

02: while Lk-1   do  

03:    Ck = ; 

04:    for each itemset l1 Lk-1do 

05:       for each itemset l2  Lk-1do 

06:          if ((l1[1] = l2[1])  …  (l1[k-2] = l2[k-2])  (l1[k-1] < l2[k-1])) then 

07:             c = l1⋈ l2; Ck = Ck  c; 

08:          end if {06} 

09:       end for {05} 

10:    end for {04} 

11:    for each element c  Ck do 

12:       construct intervals for c as mentioned in Algorithm 1; 

13:       if the intervals corresponding to c satisfy maxgap, mininterval and minsupp then  

14:          add c and the intervals to level_k of S; 

15:       end if {13} 

16:    end for {11} 

17:    increase k by 1; 

18:    let Lk = set of elements at level_k of S; 

19: end while {02} 

end procedure 



108 

______________________________________________________________________________ 

Using Algorithms 1 and 2, one could construct the data structure S presented in Figure 4.4 

completely. Now we shall use S to determine whether an itemset pattern is fully / partially 

periodic. For this purpose we present Algorithm 3 in the following. It reports all the fully 

periodic itemsets as well as a subset of partially periodic itemsets. The variable noi represents the 

number of intervals overlapped. We are interested in the partially periodic itemsets if the 

certainty  factor is  greater than or  equal to a  user-defined  threshold value ().  In case of fully  

periodic itemsets  is 1. Collections F and P store all the fully and partially periodic itemsets 

respectively.  

Algorithm 3. Determining periodicity of itemsets 

procedure Periodicity (S, )  

Inputs:  

S: data structure containing locally frequent itemsets, their intervals, and supports 

: user-defined threshold of periodicity 

Outputs:  

Interesting periodic itemsets 

01: let k = 1; let L1 = elements at level_1of S; let F = ; P = ; 

02: while Lk   do  

03:    for each element l of Lk do 

04:       let i1, i2, …, ir be the intervals corresponding to l; 

05:       startYear = year of first interval of l; endYear = year of last interval of l; 

06:       let olr be an overlapped region among intersecting intervals; 

 



109 

______________________________________________________________________________ 

07:       while there exists a olr do 

08:          if (|olr|  mininterval) then  

09:             if (r = endYear - startYear + 1) then  

10:                add l and the details of the overlapped interval to F; 

11:             else if (number of intersecting intervals / r  ) then  

12:                       add l and the details of the overlapped interval to P; 

13:                    end if {11}   

14:             end if {09} 

15:          end if {08} 

16:          let olr be another overlapped region among intersecting maximal intervals; 

17:       end while {07} 

18:    end for {03} 

19:    increase k by 1; 

20:    let Lk = set of elements at level_k of S; 

21: end while {02} 

22: for each element l  F  P do  

23:    display subintervals of l, their certainty factors and support information; 

24: end for {22} 

end procedure 

We process the itemsets level-wise. Periodicities of itemsets at level one are checked using lines 

2-21. At line 19 we move on to the next level. For each itemset at a given level may have more 

than one overlapped region where an overlapped region is generated by a set of overlapping   



110 

______________________________________________________________________________ 

intervals. Therefore, lines 7-17 are repeated for overlapped region for a given itemset. In case of  

fully periodic pattern an overlapping interval is generated from every year. So the periodicity of 

a fully periodic pattern is 1 (highest). But an itemset may not have an interesting interval for a 

particular year. Thus, an overlapped region corresponding to a partially periodic pattern contains 

lesser number of intersecting intervals. At line 11 we check the periodicity of such patterns and 

consider only those patterns whose periodicities are greater than equal to. Interesting periodic 

itemsets are displayed in lines 22-24. 

4.5 Experimental studies 

We have carried out several experiments for mining calendar-based periodic patterns in different 

databases. All the experiments are performed on a 2.4 GHz, core i3 processor with 4 GB of 

memory, running Windows 7 HB, using Visual C++ (version 6.0) software. The data was stored 

on a 360 GB SATTA drive with 7000 rpm. We present experimental results using retail 

(Frequent itemset mining dataset repository), BMS-WebView-1 (Frequent itemset mining dataset 

repository), and T10I4D100K (Frequent itemset mining dataset repository) databases. Since the 

records of these databases consist of only items purchased in a transaction, we have attached 

time-stamps randomly as calendar date for the transactions. The characteristics of the databases 

are given in Table 4.4.     

Table 4.4 Database characteristics 

D NT ALT AFI NI 

retail 88,162 11.31 60.54 16,470 

BMS-WebView-1 1,49,639 2.00 44.57 21,614 

T10I4D100K 1,00,000 11.10 1276.12 870 



111 

______________________________________________________________________________ 

Each of the databases retail, BMS-WebView-1 and T10I4D100K has been divided into 30 sub-

databases, called yearly databases, for the purpose of conducting experiments. The 

characteristics of these databases are given in Table 5. Let D, NT, ALT, AFI, and NI be the given 

database, the number of transactions, average length of a transaction, average frequency of an 

item, and the number of items, respectively.  In Table 4.5 we have shown how the transactions   

have been time-stamped. The yearly databases obtained from retail, BMS-WebView-1 and 

T10I4D100K are named as Ri, Bi and Ti respectively, i = 1, …, 30. For simplicity, we have kept 

the number of transactions in each of the yearly databases fixed, except for the last database. We 

assume that the first and the last transactions occur on 01/01/1961 and 31/12/1990 respectively, 

and also assume that each year contains 365 days. In our experimental studies we report yearly 

periodic patterns and their periodicities in the above databases. We also compute certainty factor 

and match ratio of a pattern with respect to overlapped intervals. The density of retail, BMS-

WebView-1, and T10I4D100K are 0.0007, 0.0003, and 0.013 respectively. All three databases are 

sparse. 

In addition to partial periodic patterns, we mine full periodic patterns in the above databases. 

Itemset patterns of size one and two of retail is shown in Tables 4.6 and 4.7 respectively. In 

retail the itemsets {39} and {48} occur in all the thirty years and they are periodic throughout 

the year. Therefore, these itemsets are full periodic in the interval [1/1-31/12]. Itemset {41} is 

partially periodic, since the match ratio is less than 1. Initially it becomes frequent for thirteen 

years and then it does not get reported, and again it becomes frequent for the last six years. The 

subintervals that do not satisfy the mininterval criterion are not shown.  

 



112 

______________________________________________________________________________ 

We have noticed some peculiarity in the mined patterns. For example, many patterns such as {0} 

and {1} are frequent throughout a year.  

Table 4.5 Characteristics of yearly databases  

 

 

 

 

 

 

 

 

Although, it is peculiar but it remains also an artificial phenomenon, since the time-stamps are 

enforced. There are many itemsets such as {16217} are frequent in many years with non-

overlapping intervals.  There are some items such as {647} and {769} are frequent twice in a 

year. In Figure 6, we present itemsets of size one that are also part of interesting itemsets of size 

two. While computing the certainty factor of an itemset we have used lifespan of the itemset. For 

example, itemset {0} gets reported from two years and it becomes frequent in both the years. 

Therefore its certainty factor is 2/2 = 1. 

D NT starting date,  ending date 
average number of 

transactions per day 

R1 2920 01/01/1961, 31/12/1961 8 

… … … … 

R29 2920 01/01/1989, 31/12/1989 8 

R30 3482 01/01/1990, 31/12/1990 9.54 

   B1 5110 01/01/1961, 31/12/1961 14 

… … … … 

B29 5110 01/01/1989, 31/12/1989 14 

B30 1449 01/01/1990, 31/12/1990 3.97 

  T1 3285 01/01/1961, 31/12/1961 9 

… … … … 

T29 3285 01/01/1989, 31/12/1989 9 

T30 4735 01/01/1990, 31/12/1990 12.97 



113 

______________________________________________________________________________ 

Table 4.6 Selected yearly periodic itemsets of size one (for retail) 

retail (minsupp = 0.25, mininterval = 8, maxgap = 10) 

itemset intervals certainty s-info match ratio 

{0} [1/1-31/12] 2/2 0.35-0.66 1.0 

{1} [3/1-31/12] 2/3 0.57-0.66 0.67 

{39} [1/1-31/12] 30/30 0.52-0.63 1.0 

{41} [1/1-22/12] 13/30 0.26-0.32 0.43 

{41} [2/12-30/12] 6/30 0.27-0.32 0.20 

{48} [1/1-31/12] 30/30 0.43-0.53 1.0 

{16217} [1/1- 30/5] 1/1 0.87-0.87 1.0 

{16217} [7/9- 31/12] 1/1 0.97-0.97 1.0 

 

Table 4.7 Yearly periodic itemsets of size two (for retail) 

retail (minsupp = 0.25, mininterval = 8, maxgap = 10) 

itemset intervals certainty s-info match ratio 

{0, 1} [15/10-31/12] 1/1 0.46 1.0 

{39, 41} [1/1-30/12] 1/1 0.25 1.0 

{39, 48} [1/1-30/12] 30/30 0.28-0.38 1.0 

{39, 16217} [1/1- 30/5] 1/1 0.34 1.0 

{48, 16217} [7/9- 31/12] 1/1 0.27 1.0 

 



114 

______________________________________________________________________________ 

Interesting itemset patterns of size one and two in BMS-WebView-1 are shown in Tables 4.8 and 

4.9 respectively. Here full periodic patterns are not reported since all the itemsets in BMS-

WebView-1 have match ratio less than 1. Therefore, these patterns are partial periodic. Itemset 

{12355} becomes frequent in three years but it has lifespan for seven years. In this database the 

items are sparse. Therefore, one requires choosing smaller minsupp. From Table 4.9 one could 

observe that itemset {33449, 33469} shows periodicity by appearing two times in six years and 

remaining interesting itemsets are reported for a year only.  

 

Table 4.8 Yearly periodic itemsets of size one (for BMS-WebView-1) 

 

BMS-WebView-1(minsupp=0.06, mininterval = 7, maxgap = 10) 

itemset intervals certainty s-info match ratio 

{10311} [29/1-6/10] 2/6 0.063 - 0.86 0.33 

{12355} [21/12-28/12] 3/7 0.060 - 0.061 0.43 

{12559} [22/4-11/5] 1/2 0.064 - 0.066 0.5 

{33449} [3/1-26/12] 5/7 0.063 - 0.08 0.71 

{33469} [3/1-31/3] 5/7 0.067 - 0.08 0.71 

 

 

 

 

 

 

 

 

 

 



115 

______________________________________________________________________________ 

 

Table 4.9 Yearly periodic itemsets of size two (for BMS-WebView-1) 

 

BMS-WebView-1(minsupp=0.06, mininterval = 7, maxgap = 10) 

itemset intervals certainty s-info match ratio 

{10311, 12559} [30/4-9/4] 1/1 0.06-0.06 1.0 

{10311, 33449} [3/3-11/4] 1/1 0.065 1.0 

{33449, 33469} [15/2-25/3] 2/6 0.061-0.064 0.33 

 

In Table 4.10 we present yearly periodic itemsets of size one for T10I4D100K dataset. In this 

dataset patterns with full periodicity are not available, since the intervals corresponding to an 

item are not overlapped. We have presented examples of such items in the following table. From 

interval column one could observe that the itemsets are frequent for the short intervals, but do 

not appear at the same time for all the years. For example, itemset {966} appears in three 

intervals for 1961, but it does not show any periodicity since the intervals are not overlapped. It 

is interesting to note that the itemset {966} appears at the beginning, both in first and second 

months, of the year, then at the middle of the year i.e., for the third and fourth months, and 

finally at the end of the year (eleventh and twelfth month). This is also true for itemset {998}. 

Interesting itemset patterns of size two are not reported from this database.  

An itemset that satisfies minsupp, mininterval criteria are reported. Also, a locally frequent 

itemset in two intervals for a particular year is also reported from the intervals, provided the 

 



116 

______________________________________________________________________________ 

 

intervals satisfy maxgap criterion. The number of interesting intervals could increase by 

lowering the thresholds. In the following paragraphs we have presented a study on this aspect.  

Table 4.10 Selected yearly periodic itemsets of size one (for T10I4D100K) 

T10I4D100K (minsupp=0.13, mininterval = 7, maxgap = 10) 

itemset interval s-info itemset interval s-info 

{966} [28/1/1961 - 19/2/1961] 0.16 {998} [13/11/1964 - 22/11/1964 0.17 

{966} [16/3/1961 - 23/3/1961] 0.17 {998} [15/12/1964 - 27/12/1964] 0.16 

{966} [14/12/1961 - 25/12/1961] 0.16 {998} [2/9/1965 - 13/9/1965] 0.14 

{966} [22/3/1964 - 13/4/1964] 0.15 {998} [27/11/1966 - 8/12/1966] 0.14 

{966} [1/11/1975 - 8/11/1975] 0.16 {998} [27/11/1973 - 11/12/1973] 0.13 

{966} [12/4/1981 - 19/4/1981] 0.17 {998} [14/12/1983 - 23/12/1983] 0.17 

{966} [2/12/1988 - 12/12/1988 0.15 {998} [15/12/1984 - 23/12/1984] 0.16 

 

4.5.1 Selection of mininterval and maxgap 

The usage of constraints is application specific. Depending on the patterns that the user is 

targeting and also on the nature of the dataset, an optimal setting can be defined for the temporal 

constraints. This setting will result in the elimination of undesired patterns and at the same time 

provide further pruning. 

   The selection of mininterval and maxgap might be crucial since the process of data mining 

would depend on factors like seasonality, type of application and the data source. Some items are 

used for a particular season; while others are purchased throughout the year. When the items are                  



117 

______________________________________________________________________________ 

purchased throughout the year, the choices of mininterval and maxgap do not have much 

significance in mining yearly patterns. This observation seems to be valid for the items in retail 

and BMS-WebView-1. But the items in T10I4D100K are frequent in smaller intervals and 

therefore, mininterval and maxgap might have an impact on data mining. On the other hand, the  

requirement of an organization might determine an important parameter for mining calendar-

based patterns. The distribution of items in databases also matters in selecting the right values of 

mininterval and maxgap. For a sparse database maxgap could be longer, and it could be even 

longer than mininterval provided minsupp remains small.  

4.5.1.1 Mininterval  

In the following experiments we would like to analyse the effect of mininterval for given 

maxgap and minsupp. We observe in Figures 4.6, 4.7 and 4.8, the number of intervals decreases 

as mininterval increases. An itemset might be frequent in many intervals. The number of itemsets 

frequent in an interval decreases as the length of mininterval increases. Although the above 

observation is true in general, but the type of the graphs might differ from one database to 

another. In retail many itemsets are locally frequent for longer periods of time. In Figure 4.6 we 

observe that there exist nearly 110 intervals for mininterval of 29 days. Whereas in BMS-

WebView-1 and T10I4D100K, the itemsets are frequent for shorter duration. As a result, the 

number of intervals reduces significantly when mininterval remains small. Thus the choice of 

mininterval is an important issue. In case of retail one could observe that initial decrement is 

slow with the increase of mininterval (upto 21), later there is a rapid fall in number of intervals. 

But the opposite thingh is observed in Figure 4.9, where intial decrement is sharp. Therefore,  

 



118 

______________________________________________________________________________ 

here the items are locally frequent for longer period and the gaps between two intervals are 

shorter.   

 

Figure 4.6 retail (minsupp = 0.25, maxgap = 7) 

90

120

150

180

210

7 9 11 13 15 17 19 21

mininterval

n
o

. o
f 

in
te

rv
al

s

 

Figure 4.7 BMS-WebView-1 (minsupp = 0.06, maxgap = 7) 

0
20
40
60
80

100
120

7 8 9 10 11 12 13 14

mininterval

n
o

. o
f 

in
te

rv
al

s

 

Figure 4.8 T10I4D100K (minsupp = 0.13, maxgap = 7) 



119 

______________________________________________________________________________ 

4.5.1.2 Maxgap 

In view of analyzing maxgap parameter, we now present graphs in Figures 4.9, 4.10, and 4.11 for 

the number of intervals versus maxgap at given minsupp and mininterval. The graphs show that 

the number of intervals decreases as maxgap increases. In retail the number of intervals 

decreases rapidly when maxgap varies from 5 to 10. Afterwards the change is not so significant. 

In BMS-WebView-1 the decrement takes place almost at a uniform rate. Unlike retail and BMS- 

WebView-1, the number of intervals decreases faster at the smaller values of maxgap in 

T10I4D100K dataset.   

4.5.2 Selection of Minsupp 

The number of intervals and support of a database are inversely related at given maxgap and 

mininterval.   

 
Figure 4.9 retail (minsupp = 0.25, mininterval = 10) 

 

Figure 4.10 BMS-WebView-1(minsupp = 0.06, mininterval = 7) 



120 

______________________________________________________________________________ 

 

Figure 4.11 T10I4D100K (minsupp = 0.13, mininterval = 7) 

We observe this phenomenon in Figures 4.12, 4.13 and 4.14. When the value of minsupp is 

smaller the number of intervals reported is quite large. Initially the number of intervals reported 

significantly with small decrement of minsupp. Later the decrement of number of intervals is not 

so significant.  

 

Figure 4.12 retail (mininterval = 10, maxgap = 12)  

 

Figure 4.13 BMS-WebView-1(mininterval = 7, maxgap = 10) 



121 

______________________________________________________________________________ 

 

Figure 4.14. T10I4D100K (mininterval = 7, maxgap = 9) 

 

4.5.3 Performance analysis 

In Section 4.4.1 we have discussed the improvement on existing algorithm. We have conducted 

experiments to study the performance analysis based on two parameters size of the databases and 

minsupp between existing algorithm and proposed algorithm. The effect of database size and the 

execution time to mine the patterns using both algorithms are shown in Figures 4.15, 4.16 and 

4.17. The number of patterns increases as the number of transactions increases. Thus, the 

execution time normally increases with the increase of size of database. In the following figures 

one could notice that the difference of execution time between two algorithms increases due to 

the increase of the size of dataset. Since we have stored the time-stamps of the transactions in an 

array and it takes less time to search the required time-stamp. Therefore, initially both the 

algorithms take almost equal time. From Figures 4.15 and 4.16 one could also observe that 

execution time to mine 88162 and 1,49,639 transactions of retail and BMS-WebView-1 takes 

nearly equal time. The reason is that the average length of transaction is higher in retail than that 

of BMS-WebView-1. In Figure 4.16 upto transactions 72989 both the algorithms take same 

execution time, later the difference is observed because the ALT is 2 in BMS-WebView-1. 

Therefore, execution time not only depends on the size of the database but also depends on 



122 

______________________________________________________________________________ 

other factors like ALT and NI. We observe that our algorithm scales linearly with the size of the 

database.  

0

10

20

30

40

50

60

70

15162 29762 44362 58962 73562 88162

Number of transactions

E
x

e
c
u

ti
o

n
 t

im
e
(s

e
c
.)

ARS

MMB

 

Figure 4.15 Execution time vs. size of database at minsupp = 0.25, mininterval = 8, maxgap = 10 

(retail) 

0

20

40

60

80

21
88

9

47
43

9

72
98

9

98
53

9

12
40

89

14
96

39

Number of transactions

E
x

e
c
u

ti
o

n
 t

im
e
(s

e
c
.)

ARS

MMB

 

Figure 4.16 Execution time vs. size of database at minsupp = 0.1, mininterval = 7, maxgap = 10 

(BMS-WebView-1) 

 

 



123 

______________________________________________________________________________ 

 

Figure 4.17 Execution time vs. size of database at minsupp = 0.13, mininterval = 7, maxgap = 10 

(T10I4D100K) 

In the following Figures 4.18, 4.19, and 4.20 we have presented the comparison by 

considering the execution time and minsupp. When the support increases the number of 

frequent itemsets decrease and so the execution time also decreases. The experimental results 

have shown that the execution time of both the algorithms decreases very slowly when the 

support threshold increases, since both the algorithms scan the database once and store the 

intervals of itemsets of size one. Unlike apriori it extracts the frequent itemsets of size two 

from the overlapped intervals. Our algorithm outperforms existing algorithm, since we store 

the intervals and corresponding support values in proposed hash based data structure.  

 

Figure 4.18 Execution time vs. minsupp (mininterval = 8, maxgap = 10) for retail 



124 

______________________________________________________________________________ 

 

45

50

55

60

65

70

75

0.10 0.13 0.16 0.19 0.22 0.25

minsupp

E
x
ec

u
ti
o
n
 t
im

e(
se

c.
)

ARS

MMB

 

Figure 4.19 Execution time vs. minsupp (mininterval = 7, maxgap = 10) for BMS-WebView-1 

0
20
40
60
80

100
120

0.
12

0.
14

0.
16

0.
18 0.

2
0.

22

Number of transactions

E
x
ec

u
ti
o
n
 t
im

e(
se

c.
)

ARS

MMB

 

Figure 4.20 Execution time vs. minsupp (mininterval = 7, maxgap = 10) for T10I4D100K 

 

4.6 Conclusion  

In this chapter we mined locally frequent itemsets along with the set of intervals and their 

support range. We also extended the concept of certainty factor in association with an overlapped 

interval. Using this concept one can extract various calendar-based patterns viz., yearly, monthly,  



125 

______________________________________________________________________________ 

 

weekly and daily. In addition, one could check whether any periodicity (full / partial) exists in 

the patterns. We have proposed some improvements in the algorithm for identifying calendar-

based periodic pattern in a time-stamped dataset by introducing suitable data structure. The 

algorithm is incremental in nature. We have presented extensive data analysis on three data sets. 

We also analysed the constraints mininterval, minsupp and maxgap associated with each interval.  

In addition we have compared our algorithm with the existing algorithm. Experimental results 

show that the proposed algorithm runs faster than the existing algorithm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



126 

______________________________________________________________________________ 

 

Chapter 5 

 

Measuring Influence of an Item in a Database Over Time 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



127 

______________________________________________________________________________ 

5.1 Introduction 

Every time a customer interacts with a business organization there is an opportunity to gain 

strategic knowledge. Transactional data contains a wealth of information about customers and 

their purchase patterns. In fact, it could be one of the most valuable assets, when used wisely. It 

has been recognized by many large departmental stores, supermarkets, insurance companies, 

healthcare organizations, telecommunications, and banks for a long time. These organizations 

have spent large resources for collecting and analyzing transactional data. To stay competitive, 

transactional data mining is now a necessity. Many applications are based on inherent knowledge 

present in a database (Gary & Petersen, 2000; Wu et al., 2005; Adhikari et al., 2009). Such 

applications could be dealt with mining (Han et al., 2000; Agrawal & Srikant, 1994; Savasere et 

al., 1995) the database under consideration. In this context, many patterns e.g., frequent itemset 

(Agrawal et al., 1993), association rule (Agrawal et al., 1993), negative association rule (Wu et 

al., 2004), Boolean expression induced by itemset (Adhikari & Rao, 2007c), conditional pattern 

(Adhikari & Rao, 2008c) are mined / synthesized from a database.  Nevertheless, there are some 

applications for which association-based analysis might be inappropriate. For example, an 

organization might deal with a large number of items with its customers. The company might be 

interested in knowing how the purchase of a particular item affects the purchase of another item. 

In this chapter, we study such influences based on transactional time stamped databases.  

   Many companies transact a large number of products (items) with their customers. It might be 

required to perform data analyzes involving different items. Such analyzes might originate from   

different applications. One such analysis is identifying stable items (Adhikari et al., 2009) in a 

database over time. It could be useful in devising strategies for a company. 



128 

______________________________________________________________________________ 

Little work has been reported on data analyzes over time. In this chapter, we present another 

application involving different items in a database over time.  

   Consider a company that collects a huge amount of transactional data on yearly basis. Let DTi 

be the database corresponding to the i-th year, for i = 1, 2, …, k. Each of these databases 

corresponds to a specific period of time. Thus, one could call these as time databases. Each time 

database is mined using a traditional data mining technique (Agrawal, et al., 1993). In this 

application, we shall deal with the itemsets in a database. An itemset is a set of items in the 

database. Let I be the set of all items in the time databases. Each itemset X in a database D is 

associated with a statistical measure, called support (Agrawal, et al., 1993) denoted by supp(X, 

D). The support of an itemset is defined as the fraction of transactions containing the itemset. 

  Solutions of many problems are based on the study of relationships among variables. We shall 

see later that the study of influence of a set of variables on another set of variables might not be 

the same as the association between these two sets of variables. Association analysis among 

variables has been studied well (Agrawal, et al., 1993; Adhikari & Rao, 2007a; Brin et al., 1997; 

Shapiro, 1991; Adhikari & Rao, 2008b; Adhikari & Rao, 2008c). In the context of studying 

association among variables using association rules one could conclude that the confidence of 

the association rules gives positive influence of antecedent on the consequent of the association 

rule. Such positive influences, though important, but might not be sufficient for many data 

analyses.   

   Consider an established company possessing data over fifty consecutive years. Generally, the 

sales of a product vary from one season to another season. Also, a season reappears on a yearly 

basis. Thus, we divide the entire database into a sequence of yearly  databases. In this  context, a 



 129 

______________________________________________________________________________ 

 yearly database could be considered as a time database. In this study, we estimate the influence 

of an item y on x, for yI. In Section 2, we define the concept of influence of an itemset on 

another itemset. 

   An itemset could be viewed as a basic type of pattern in a database. Different types of pattern 

in a database could be derived from the itemset patterns. For example, frequent itemset (Agrawal 

et al., 1993), association rule (Agrawal et al., 1993), negative association rule (Wu et al., 2004), 

Boolean expression induced by itemset (Adhikari & Rao, 2007c), conditional pattern (Adhikari 

& Rao, 2008c) are examples of derived patterns in a database. Few applications have been 

reported on analysis of patterns over time. In this chapter, we wish to study the influence of an 

item on specific items.  

   Rest of the chapter is organized as follows. In Section 5.2, we extend the notion of overall 

association between two itemsets in a database. In Section 5.3, we introduce the notion of overall 

influence of an item on another item in a database. We study various properties of proposed 

measure. Also, we introduce the notion of overall influence of an item on a set of specific items 

in a database. In addition, we discuss the motivation of the proposed problem in this section. We 

state our problem in Section 5.4. We discuss work related to proposed problem in Section 5.5. In 

Section 5.6, we design an algorithm to measure the overall influence of an item on another item 

incrementally. In addition, we design an algorithm of overall influence of an item on a set of 

specific items incrementally. Experimental results are provided in Section 5.7. 

5.2 Association between two itemsets 

Adhikari and Rao (2007a) have proposed a measure, OA, of computing overall association 

between two items in a market basket data. The positive  association between two itemsets in a 



130 

______________________________________________________________________________ 

database D is defined as follows (Adhikari & Rao, 2007a) :  

PA(X, Y, D) = 
DYX

DYX

in   and  of oneleast  at   containingn transactio#

in   and both  containing ntransactio#
 , where X and Y are itemsets 

in D.  

Similarly, negative association NA (Adhikari and Rao, 2007a) between two items in a database, 

one could be extended follows (Adhikari & Rao, 2007a): 

NA(X, Y, D) = 
DYX

DYX

in   and  of oneleast  at   containingn transactio#

in   and  of oneexactly  containingn transactio#
 , where X and Y are itemsets 

in D. 

Using PA and NA, OA between two itemsets X and Y in database D could be defined as follows:  

OA(X, Y, D) = PA(X, Y, D)  NA(X, Y, D)                                                                             ... (1) 

If OA(X, Y, D) is positive, negative or zero then all the items in X together and all the items in Y 

together are positively, negatively or independently associated in D, respectively. We illustrate 

different types of association in the following example. 

Example 1. Let database D1 contain the following transactions: {a, d, e}, {a, b, c, d, g}, {a, b, e, 

g}, {b, c, g}, {d, e, g}, {b, e, f}, {c, d, e, f}, {a, b, c, d, f, g}, and {a, b, c, d, e}. We find here 

overall association between itemsets X, and Y, for some itemsets X, Y in D. In Table 5.1, supports 

of some itemsets are given below. Here PA({a, b}, {c, d}, D1) = 3/5 and NA({a, b}, {c, d}, D1) = 

2/5. Therefore, OA({a, b}, {c, d}, D1) = 1/5. In Table 5.2, overall associations are given. 

   In Table 5.2, we observe that the OA value between {a, b} and {c, d} as well as {a, c} and {b, 

d} are positive. But, the OA value between {c} and {d, e} is negative. 

 

 

 



131 

______________________________________________________________________________ 

Table 5.1 Supports of itemsets in D1 

Itemset({X}) {a, b} {c, d} {a, c} {b, d} {d, e} {e, g} 

supp({X}, D1) 4/9 4/9 3/9 3/9 4/9 2/9 

 

Table 5.2 Overall association between two itemsets 

Itemset({X, Y}) {{ab},{cd}} {{ac},{bd}} {{c},{de}} 

OA(X, Y, D1) 1/5 1 -3/6 

 

5.3 Concept of influence  

Let X and Y be two itemsets in database D. We wish to find influence of X on Y in D. The 

influence of X on Y seems different from the overall association of X and Y. In the following 

section, we review the concept of overall association between X and Y.  

   Let X = {x1, x2,… xp}, Y = {y1, y2, …yq} and X Y =  be two itemsets in database D. The 

influence of X on Y could be judged by the following events: (i) Whether a customer purchases 

all the items of Y when they purchase all the items of X  i.e., the transaction contains both X and 

Y, and (ii) Whether a customer purchases all the items of Y when they do not purchase all the 

items of X i.e., the transaction contains only Y  but not X. Such behaviors could be modeled using 

supports of X Y and X Y. The expression supp(X Y, D)/supp(X, D) measures the strength 

of positive association of X on Y. The expression supp(X Y, D)/supp(X, D) measures the 

strength of negative association of X on Y. Thus, the expressions supp(X Y, D)/supp(X, D) and 

supp(X Y, D)/supp(X, D) could be important in measuring overall influence of X on Y.   



132 

______________________________________________________________________________ 

5.3.1 Influence of an itemset on another itemset  

Let X and Y be the two itemsets in database D. The interestingness of an association rule r1: X 

Y could be expressed by its support and confidence (conf) measures (Agrawal et al., 1993). 

These measures are defined as follows. supp(r1, D) = supp(X Y, D), and conf(r1, D) =  

supp(X Y, D) / supp(X, D). conf(r1, D) could be interpreted as the fraction of transactions 

containing itemset Y among the transactions containing X in D. In other words, conf(r1, D) could 

be viewed as the positive influence (PI) of X on the itemset Y. Let us consider the negative 

association rule r2: X Y. Confidence of r2 in D could be viewed as fractions of transactions 

containing Y among the transactions containing X. In other words, confidence of r2 in D could 

be viewed as negative influence (NI) of X on Y. In similar to overall association defined in (1), 

one could define overall influence (OI) of X on Y in a database as follows.  

Definition 1. Let X and Y be two itemsets in database D such that X Y = . Then overall 

influence of X on Y in D is defined as follows:  

OI(X, Y, D) = supp(X Y, D)/supp(X, D)  supp(X Y, D)/supp(X, D)                              ...(2) 

OI(X, Y, D) represents the difference of the influence on Y when X is present in a transaction and 

the influence on Y when X is not present in the transaction. Let  be user-defined level of 

interestingness. Then OI(X, Y, D) is interesting if OI(X, Y, D)  .  

   If OI(X, Y, D) > 0 then the itemset X has positive influence on itemset Y in D. In other words, 

all the items in X together help promoting itemset Y in D. If OI(X, Y, D) < 0 then X has negative 

influence on Y in  D.  In  other  words, all the items in X  in  D  together do not help  promoting  

 



133 

______________________________________________________________________________ 

together all the items in Y. If OI(X, Y, D) = 0 then X has no influence on Y in D.  

Let X = {bread, butter}, Y = {milk, sugar} and X Y =  be two itemsets in database D. Then 

one can compute the OI(X, Y, D) by using equation (2). 

In Example 2, we illustrate the concept of overall influence. 

Example 2. We continue our discussion with reference to Example 1. We have PI({a, b}, {c, d},  

D1)  = 3/4, NI({a, b}, {c, d}, D1)  =  1/5, and OI({a, b}, {c, d}, D1)  =  11/20. In D1, given 

itemset {a, b}, itemset {c, d} occurs frequently. We observe that PI({a, b}, {c, d}, D1) is more 

than PA({a, b}, {c, d}, D1). Also, NA({a, b}, {c, d}, D1) is more than NI({a, b}, {c, d}, D1). So, 

OI({a, b}, {c, d}, D1)  is more than OA({a, b}, {c, d}, D1). In similar to overall association, 

overall influence could be negative also. Let X = {c} and Y = {d, e}. PI(X, Y, D1) = 2/5, NI(X, Y, 

D1) = 1/2, and OI(X, Y, D1) = 1/10. Thus, overall influence between two itemsets could be 

negative as well as positive.  

In most of the cases, the value of overall influence between two itemsets in a large database is 

negative. In real databases, it might be possible that the overall influence between the two 

itemsets is positive. In Example 3, we consider some special cases to illustrate the measure of 

overall influence. 

Example 3. Let database D2 contains following transactions: {a, b, e}, {a, e, g}, {b, e, g}, {a, b, 

d, e, g}, {b, d, e, g} and {c, e, g}. We compute overall influence of an itemset X on another 

itemset Y under various cases. 

Case 1: supp(X, D2) > supp(Y, D2) 

Let X = {e, g}, Y= {a, b}. supp(X, D2) = 5/6, supp(Y, D2) = 2/6 and supp(X Y, D2) = 1/6.  We 

get OI(X, Y, D2) = 0.8. 

Case 2: supp(X, D2) < supp(Y, D2) 



134 

______________________________________________________________________________ 

Let X = {a, b}, Y= {e, g}. supp(X, D2) = 2/6, supp(Y, D2) = 5/6 and supp(X Y, D2) = 1/6.  We 

get OI(X, Y, D2) = 0.5. 

Though the values of overall influence are negative for the above cases, the influence might turn 

positive for some databases. Let us consider another database D3 = {{a, b, c, d, g}, {b, c, g}, {c, 

d, g}, {a, b, c, d, e}, {b, c, e, g}, {a, b, c, d, e, g}, 

Case 1:  supp(X, D3) > supp(Y, D3)    

Let X = {c, d}, Y={a, b}. supp(X, D3) = 4/6, supp(Y, D3) = 3/6 and supp(X Y, D3) = 3/6.  We get 

OI(X, Y, D3) = 0.5. 

Case 2: supp(X, D3) < supp(Y, D3). Let X = {a, b}, Y={c, d}. supp(X, D3) = 3/6, supp(Y, D3) = 

4/6 and supp(X Y, D3) = 3/6.  We get OI(X, Y, D3) = 0.667. 

5.3.2 Properties of influence measures 

For the purpose of computing influence of an itemset on another itemset, one needs to express OI 

in terms of supports of relevant itemsets. From (2), we get OI as follows: 

OI(X, Y, D) = supp(X Y, D)/supp(X, D)  (supp(Y, D)  supp(X Y, D)) / (1  supp(X, D) 

Finally, we get OI as follows:   

OI(X, Y, D) = 
)]( 1)[(

)()()(

XsuppXsupp

YsuppXsuppYXsupp




, if supp(X, D)  1 or supp(Y, D)  1 

OI(X, Y, D) = 0, otherwise                                                                                                         ... (3)    

From the above formula one could observe that if support of itemset X in D is 1 then influence of 

other itemsets on X will be zero. On the other hand, if supp(Y, D) = 1 then supp(X Y, D) = 

supp(X, D) and supp(X, D)  supp(Y, D) = supp(X, D). Therefore, the numerator of formula (3) 

will result in zero and overall influence becomes zero. In the following proposition, we state  



135 

______________________________________________________________________________ 

some properties of PI and NI. OI(X, X, D) = 1 at X = Y. Thus, OI(X, X, D) at X = Y could be 

termed as trivial influence. 

Proposition 1. For itemsets X, Y in D, the following properties are satisfied: (i) 0  PI(X, Y, D)  

1, (ii) 0  NI(X, Y, D)  1, (iii) -1  OI (X, Y, D)  1. 

Proposition 2. OI(X, Y, D) = 
)(supp 1

]1),,()[(supp

X

DYXCorrY




, where Corr(X, Y, D) is the correlation 

coefficient between itemsets X and Y in database D.   

Proof. From equation (3) we get OI(X, Y, D) = 
)](1)[(

)supp()()(

XsuppXsupp

YXsuppYXsupp




and 

Corr(X, Y, D) = 
)()(

)(

YsuppXsupp

YXsupp




 

Therefore, OI(X, Y, D) = 
)](1)[(

)()(),,()()(

XsuppXsupp

YsuppXsuppDYXCorrYsuppXsupp




= 

)](1)[(

]1),,()[()(

XsuppXsupp

DYXCorrYsuppXsupp




 = 

)](1[

]1),,()[(

Xsupp

DYXCorrYsupp




 

If Corr(X, Y, D) = 1 then X and Y are independent in database D. In other words, if OI(X, Y, D) = 

0 then X and Y are independent in D. If Corr(X, Y, D) < 1 then X and Y are negatively correlated 

in database D. In other words, if OI(X, Y, D) < 0 then X and Y are negatively correlated. If 

Corr(X, Y, D) > 1 then X and Y are positively correlated in database D. In other words, if OI(X, Y, 

D) > 0 then X and Y are positively correlated.  

5.3.3 Influence of an item on a set of specific items 

Let I = {i1, i2,…, im}be the set of items in database D. Also, let SI = {s1, s2, …, sp} be the set of 

specific items in database D. We would like to study the overall influence of each item on SI.  



136 

______________________________________________________________________________ 

The influence of an item on SI could be computed based on OI(ij, sk, D), for j = 1, 2,…, m and k 

= 1, 2,…, p. Let  be the user-defined minimum influence level.  Thus, the influence of ij on sk is 

interesting if OI(ij, sk, D)  , for j = 1, 2,…, m and k = 1, 2,…, p. The procedure of determining 

influence of an item on a set of specific items could be explained using the following steps.  

(i) Generate influence matrix (IM) of order p  n using OI(ij, sk, D), for j = 1, 2,…, m and k = 1, 

2,…, p. (ii) An influence is counted when it is interesting. (iii) For each item, count the number  

of interesting influences on each of the specific items. (iv)The items in database D are sorted 

based on primary key as the number of interesting influences on the specific items, and 

secondary key as the support of an item. We explain steps (i)-(iv) using Example 3. 

Example 4. Consider the database D1 given in Example 1. Let I = {a, b, c, d, e, f, g} and SI = {a, 

c, d}.  

Table 5.3 Supports of each items in D1 

Items (x) a b  c  d  e f g 

supp({x}, D1) 5/9 6/9 5/9 6/9 6/9 3/9 5/9 

 

In this case, the influence matrix is of order 3  7 as given below.  

IM = 

15.00013.05.03.0

35.01667.06666.03333.013333.01.0

35.03333.01667.03333.01.03333.01







d

c

a

gfedcbaitem

 

 



137 

______________________________________________________________________________ 

Let  be 0.2. Also let x() denote  number of interesting influences of item x on specific items. 

The interesting influences of different items in D1 are given as follows. a(2), b(2), c(2), d(3), 

e(0), f(0), g(2). The items are sorted using step (iv), and they are given as follows. d(3), b(2), 

a(2), c(2), g(2), e(0), f(0). Given the set of specific items {a, c, d}, one could conclude that the 

item d has the maximum and the item f has a minimum influence on the set {a, c, d}.  

5.3.4 Motivation 

The concept of influence might not be new in the literature of data mining. For example, conf(X 

Y, D) refers to positive influence of X on Y. In other words, it implies how likely a customer 

purchases the items of Y when the customer has already purchased all the items of X. In addition,  

the concept of negative influence existed in the literature of data mining. conf(X Y, D) refers 

to the amount of negative influence of items of X in purchasing the items of Y. In other words, it  

implies how likely a customer purchases the items of Y when the customer has not purchased all 

the items of X. In many data analyzes it might be required to consider the overall influence of a 

set of items on another set of items. Our work introduces the notion of overall influence that 

could be useful in dealing with many real life problems. In the following paragraph, we justify 

that no existing measure might be appropriate to study the overall influence of an itemset on 

another itemset. 

   The analysis of relationships among variables is a fundamental task being at the heart of many 

data mining problems. For example, metrics such as support, confidence, lift, correlation, and 

collective strength have been used extensively to evaluate the interestingness of association 

patterns. These metrics are defined in terms of the frequency counts tabulated in a 2 × 2  



138 

______________________________________________________________________________ 

contingency table as shown in Table 5.4. To illustrate this, consider the ten example contingency 

tables, E1 to E10, given in Table 5.5. Tan et al. (2003) present an overview of twenty one 

interestingness measures proposed in the statistics, machine learning and data mining literature. 

   In the following discussion, we shall observe why these measures fail to compute overall 

influence of an itemset on another itemset. In Examples 2 and 3, we have observed that the 

overall influence of an itemset on another itemset could be positive as well as negative. Thus, 

overall influence of an itemset on another itemset in a database lies in [-1, 1]. In a large database, 

where items are sparsely distributed over the transactions might result in negative overall 

influence of an itemset on another itemset. Based on these observations, one could consider the 

following five out of twenty one interestingness measures since overall influence of an itemset 

on another itemset lies in [-1, 1]. These measures are presented in Table 5.6. 

 

Table 5.4 A 2  2 contingency table for variables X and Y 

 

 Y Y Total 

X f11 f10 f1+ 

X f01 f00 f0+ 

Total f.+1 f.+0 N 

 

 

 

 



139 

______________________________________________________________________________ 
 

Table 5.5 Examples of contingency tables 

Example f11 f10 f01 f00 

E1 8123 83 424 1370 

E2 8330 2 622 1046 

E3 9481 94 127 298 

E4 3954 3080 5 2961 

E5 2886 1363 1320 4431 

E6 1500 2000 500 6000 

E7 4000 2000 1000 3000 

E8 4000 2000 2000 2000 

E9 1720 7121 5 1154 

E10 61 2483 4 7452 

 

Table 5.6 Relevant interestingness measures for association patterns 

Symbol Measure Formula 

 -coefficient 
 

)P({y})-(1  P({x})-(1  P({y})P({x})

P({y})P({x}) - {y} {x}P



  

Q Yule’s Q 
        
        {y}  {x}P  {y} {x}P - {y}  {x}P  {y} {x}P

{y}  {x}P  {y} {x}P - {y}  {x}P  {y} {x}P







  

Y Yule’s Y 
        

        {y}  {x}P  {y} {x}P - {y}  {x}P  {y} {x}P

{y}  {x}P  {y} {x}P - {y}  {x}P  {y} {x}P







  

 Cohen’s 
   

{y})P(  {x})P( - P({y})  P({x}) - 1

{y})P(  {x})P( - P({y})  P({x}) - {y} {x}P  {y} {x}P



   

F Certainty factor max  
P({x}) - 1

P({x}) - {y})|P({x}
 ,

P({y}) - 1

P({y}) - {x})|P({y}







  

 

In Table 5.7, we rank the contingency tables using each of the above measures under 

consideration.  



140 

______________________________________________________________________________ 

 

Table 5.7 Ranking of contingency tables using above interestingness measures 

Example  Q Y  F 

E1 1 3 3 1 4 

E2 2 1 1 2 1 

E3 3 4 4 3 6 

E4 4 2 2 5 2 

E5 5 8 8 4 9 

E6 6 7 7 7 7 

E7 7 9 9 6 8 

E8 8 10 10 8 10 

E9 9 5 5 9 3 

E10 10 6 6 10 5 

 

Also, we rank the contingency tables based on the concept of overall influence explained in 

Example 1. In Table 5.8, we present the ranking of contingency tables using overall influence.  

Table 5.8 Ranking of contingency tables using overall influence 

Example Overall influence Rank 

E1 0.754 1 

E2 0.627 3 

E3 0.691 2 

E4 0.560 4 

E5 0.450 5 

E6 0.352 7 

E7 0.417 6 

E8 0.167 9 

E9 0.190 8 

E10 0.023 10 



141 

______________________________________________________________________________ 

None of the five measures ranks contingency tables like the ranks given in Table 5.7. Thus, none 

of the above five measures serves the special requirement of the proposed problem.  

 

5.4 Problem statement 

Let D be a database of customer transactions grown over a period of time. In this chapter, we are 

interested in  making  influence  analysis  of a set of  specific items. We will see how each of the  

specific items gets influenced by different items in the database. As the database grows over 

time, an incremental solution to influence analysis of specific items is a natural and desirable 

solution. To provide an incremental solution to this problem, one might require sequence of 

databases over time. Each time database corresponds to the set of transactions made for a 

specific period of time. In this regard, the choice of time period corresponding to a database is an 

important issue. One could observe that the sales of items might vary over different seasons in a 

year. Instead of processing all the data together, we process data on yearly basis. Then, the result 

of processing for the current year could be combined with that of previous years. Such 

incremental analysis might be appropriate since a season reappears on a yearly basis. Otherwise, 

processed result might be biased due to seasonal variations. 

   The goal of this chapter is to make an influence analysis of a set of items in a database. Let Dt 

be the database for the t-th period of time, t = 1, 2, …, n. For computing overall influence 

between two items in a database, one needs to mine supports of itemsets of size 1 and size 2. The 

size of an itemset refers to the number of items in the itemset. Let D1,k be the collection of 

databases D1, D2,…, Dk. For computing OI(x, y, D1,k+1), we assume that OI(x, y, D1,k) is available 

to us for items x, y in the given database. In other words, for computing OI(x, y, D1,k+1), we have  



142 

______________________________________________________________________________ 

supp(x, D1,k), supp(y, D1,k), and supp(x y, D1,k). Thus, our incremental procedure needs to 

compute supp(x, D1,k+1), supp(y, D1,k+1), and supp(x y, D1,k+1) using (i) supp(x, D1,k), supp(y, 

D1,k), and supp(x y, D1,k), (ii) supp(x, Dk+1), supp(y, Dk+1), and supp(x y, Dk+1). In general, for 

an itemset X in the database, supp(X, D1,k+1) could be obtained incrementally as follows. 

 )( )(

) ,(  )( ) ,(  )(
  ) ,(

k1,1k

k1,k1,1k1k

1k1,
DsizeDsize

DXsuppDsizeDXsuppDsize
DXsupp










                         … (4) 

The size(D) refers to the number of transactions in database D. 

5.5 Related work 

   In analyzing positive association between itemsets in a database, support-confidence 

framework was established by Agarwal et al. (1993). In Section 5.2.3, we have discussed why 

confidence measure alone is not sufficient in determining overall influence of an itemset on 

another itemset. Also, interestingness measures such as support, collective strength (Aggarwal & 

Yu, 1998) and Jaccard (Tan et al., 2003) are not relevant in this context, since they are 1-

argument measures. 

  The χ
2
 test (Greenwood & Nikulin, 1996) only tells us whether two or more items are 

dependent. Such a test answers either “yes” or “no” to the question of whether the association is 

meaningful, and hence it might not be suitable for the specific requirement of our problem.  

   The interestingness measures such as lift (Tan et al., 2003), correlation (Tan et al., 2003), 

conviction (Brin et al., 1997), and odds-ratio (Tan et al., 2003) are semantically different from 

the measure of overall influence. Moreover, each of these measures lies in [0, ). 

  



143 

______________________________________________________________________________ 

  Shapiro (1991) has proposed leverage measure in the context of mining strong rules in a 

database. It might not be suitable for the specific requirement of our problem. 

5.6 Design of Algorithms 

Based on the discussion held in previous section, we design three algorithms for measuring 

influence of an item on another item and influence of an item on a set of specific items.  

5.6.1 Designing Algorithm for measuring overall influence of an item on another item 

In this algorithm, we measure influence of an item on each the items incrementally. We have 

expressed influence of an itemset on another itemset using supports of the relevant itemsets.  

Each itemset could be described by its itemset and support. We maintain IS1 and IS2 for storing 

itemsets in D1,k of size one and two, respectively. Itemset attribute of i-th 1-itemset could be 

accessed using the notation IS1[i].itemset. Similar notation is used to access support attribute of 

an itemset. Also, we maintain IS1 and IS2 for storing itemsets in Dk+1 of size one and two, 

respectively. We merge IS1and IS1 to obtain supports of 1-itemsets in D1,k+1 and are stored in 

array OIS1. Similarly, we merge IS2 and IS2 to obtain supports of 2-itemsets in D1,k+1 and are 

stored in array OIS2. Using OIS1 and OIS2, we compute overall influence between items in 

D1,k+1. Overall influence between items is computed using formula (3) and is stored in array IOI. 

The overall influence corresponding to i-th pair of items is accessed by IOI [i].oi.  

 

Algorithm 1. Find top k overall influences in the database over time. 

procedure Top-k-OI(k, IS1, IS2, IS1, IS2, IOI)  

Inputs: 

k: an integer representing the number of top influences 



144 

______________________________________________________________________________ 

IS1: array of supports of itemsets of size one in D1,k 

IS2: array of supports of itemsets of size two in D1,k 

IS1: array of supports of itemsets of size one in Dk+1 

IS2: array of supports itemsets of size two in Dk+1 

Outputs:  

IOI: array of overall influences in D1,k+1 

01:  sort array IS1 on itemset attribute; 

02:  sort array IS2 on itemset attribute; 

03:  call Merge (IS1, IS1, OIS1); 

04:  call Merge (IS2, IS2, OIS2); 

05:  let j = 1;  

06:  for i = 1 to |OIS2| do 

07:      search OIS2[i].item1 in OIS1; 

08:      search OIS2[i].item2 in OIS1; 

09:      IOI [j].oi = OI(OIS2[i].item1, OIS2[i].item2, D); 

10:      IOI [j].item1 = OIS2[i].item1; IOI [j].item2 = OIS2[i].item2;  

11:      increase j by 1;  

12:      IOI [j].oi = OI(OIS2[i].item2, OIS2[i].item1, D); 

13:      IOI [j].item1 = OIS2[i].item2; IOI [j].item2 = OIS2[i].item1;  

14:      increase j by 1;  

15:  end for 



145 

______________________________________________________________________________ 

16:  sort array IOI in descending order on oi attribute; 

17:  return first k influences; 

18:  end procedure; 

Procedure Merge (A, B, C) merges sorted arrays A and B and generates output array C. In this 

context, sorting is based on support of an itemset. The time complexity of Merge  procedure is 

O(|A| + |B|) (Knuth, 1998). Now, OIS1 contains the supports of items in D1,k+1. Also, OIS2 

contains the supports of itemsets of size two in D1,k+1. 

The information contained in OIS1 and OIS2 is used to compute overall influence of an item on 

another item in D1,k+1.  In lines 06-12, we have computed influence of an item on another item in 

D1,k+1. In line 16, for each item, we have sorted overall influences of different items on the 

amount of influence. Finally, we display first k items and their influences for each item. 

   Let IS1 and IS2 contain M and N itemsets respectively. Let IS1 and IS2 contain m and n 

elements respectively. Lines 1 and 2 take O(m  log(m)) and O(n  log(n)) time respectively. 

Also, lines 3 and 4 take O(M + m) and O(N + n) time respectively. Each of the search statements 

in lines 7 and 8 take O(log(M + m)) time, since OIS1 is sorted. The sort statement in line 16 takes 

time O((N + n)  log(N + n)). The time complexity of lines 6-15 is O((N + n)  log(M + m)). The 

time complexity of algorithm Top-k-OI is maximum {O(M + m), O((N + n)  log(N + n)), O((N + 

n)  log(M + m))}. 

5.6.2 Designing Algorithm for measuring overall influence of an item on each of the specific 

items 

One could store specific items in an array. The proposed algorithm seems to be the same as 

Algorithm 1 except that every time it measures an overall influence of an item on a specific item.  



146 

______________________________________________________________________________ 

5.6.3 Designing Algorithm for identifying top influential items on a set of specific items  

In Algorithm 2, we find influence of an item on a set of specific items in a database. We 

construct influence matrix (IM) from the array of specific items (SI) and from the array of overall 

influence between items (IOI). The algorithm scans IM for each item to count the number of 

interesting influences. The number of interesting influences for each item is stored in array 

count. Finally, we sort count on descending order on primary key count and secondary key supp. 

Algorithm 2. Find influence of an item on a set of specific items in the database over time. 

procedure Top-k-items(SI, IS1, IS2, IS1, IS2, OIS1, OIS2, IOI)  

Inputs: 

SI: array of specific items 

IS1, IS2, IS1, IS2, OIS1, OIS2, IOI: as specified in Algorithm 1 

Outputs:  

count: array of number of interesting influences  

01:  let k = 1; 

02:  for i = 1 to |SI| do  

03:     for j = 1 to | IOI | do 

04:        if (SI[i] = IOI [j].item1) then 

05:           IM[i][j] = IOI [j].oi; 

06:        end if 

07:     end for 

08:  end for   

09:  for j = 1 to | IOI | do 



147 

______________________________________________________________________________ 

10:     let count [j] = 0;  

11:     for i = 1 to |SI| do  

12:        if (IM[j][i]  ) then 

13:           increase count [j] by 1; 

14:        end if 

15:     end for   

16:  end for   

17:  sort count on descending order on primary key count value and secondary key support;  

18:  return first k items; 

end procedure; 

Let array SI contains p items. Line 2 repeats for p times. Line 3 repeats O(M + m) times. So, lines 

2-8 take O(p  (M + m)) time. Line 9 repeats O(M + m) times. Line 11 repeats p times. Thus, line 

9-16 take O(p  (M + m)) time. Therefore, the time complexity of the above algorithm is O(p  

(M + m)), where M > m. Also, sorting statement at line 17 takes O((M + m)  log(M + m)). The 

time complexity of algorithm top k items is maximum{O(p  (M + m)), O((M + m)  log(M + 

m))}. 

 

5.7 Experiments 

We have carried out several experiments to study the effectiveness of the proposed analysis. All 

the experiments have been implemented on a 1.6 GHz Pentium IV with 256 MB of memory 

using visual C++ (version 6.0) software. We present the experimental results using two real 

datasets and one synthetic dataset. The datasets mushroom, retail  (Frequent  itemset  mining  



148 

______________________________________________________________________________ 

dataset repository) and ecoli are real. Dataset ecoli is a subset of ecoli database (UCI ML 

repository) and it has been processed for the purpose of conducting experiments. The synthetic 

dataset random-68 has been generated for the purpose of conducting experiments. The details of 

these datasets are given in Table 5.9. 

 

Table 5.9 Dataset characteristics 

 

Database NT ALT AFI NI 

mushroom (M) 8124 24.000 1624.800 120 

ecoli (E) 336 7.000 25.835  91 

random-68 (R) 3000 5.460 280.985 68 

retail (Rt) 88,162 11.306 60.54 16,470 

 

The symbols used in different tables are explained as follows. Let D, NT, ALT, AFI, and NI 

denote database, the number of transactions, average length of a transaction, average frequency 

of an item, and number of items respectively. Each dataset has been divided into 10 databases, 

called input databases, for the purpose of conducting experiments on multiple time databases. 

The input databases obtained from mushroom, ecoli, random-68 and retail are named as Mi, Ei, 

Ri, and Rti for i = 0, 1, …, 9. We present some characteristics of the input databases in Table 

5.10. Top 10 overall influences in different databases are shown in Table 5.11.  

 

 



149 

___________________________________________________________________________ 

 

Table 5.10 Time database characteristics 

 

 

 

 

D NT ALT AFI NI D NT ALT AFI NI 

M0 812 24.000 295.273 66 M5 812 24.000 221.454 88 

M1 812 24.000 286.588 68 M6 812 24.000 216.533 90 

M2 812 24.000 249.846 78 M7 812 24.000 191.059 102 

M3 812 24.000 282.435 69 M8 812 24.000 229.271 85 

M4 812 24.000 259.840 75 M9 816 24.000 227.721 86 

E0 33 7.000 4.620 50 E5 33 7.000 3.915 59 

E1 33 7.000 5.133 45 E6 33 7.000 3.500 66 

E2 33 7.000 5.500 42 E7 33 7.000 3.915 59 

E3 33 7.000 4.813 48 E8 33 7.000 3.397 68 

E4 33 7.000 3.397 68 E9 39 7.000 4.550 60 

R0 300 5.590 28.676 68 R5 300 5.140 26.676 68 

R1 300 5.417 28.000 68 R6 300 5.510 28.353 68 

R2 300 5.360 27.647 68 R7 300 5.497 28.338 68 

R3 300 5.543 28.456 68 R8 300 5.537 28.471 68 

R4 300 5.533 28.382 68 R9 300 5.477 28.235 68 

Rt0 9000 11.244 12.070 8384 Rt5 9000 10.856 16.710 5847 

Rt1 9000 11.209 12.265 8225 Rt6 9000 11.200 17.416 5788 

Rt2 9000 11.337 14.597 6990 Rt7 9000 11.155 17.346 5788 

Rt3 9000 11.490 16.663 6206 Rt8 9000 11.997 18.690 5777 

Rt4 9000 10.957 16.039 6148 Rt9 7162 11.692 15.348 5456 



150 

______________________________________________________________________________ 

Table 5.11 Top 10 overall influences in different databases 

M (supp = 0.15) E (supp = 0.12) R (supp = 0.03) Rt (supp = 0.12) 

 {x} {y} OI {x} {y} OI {x} {y} OI {x} {y} OI 

86 34 0.997 24 48 0.946 19 29 -0.017 41 39 0.200 

34 86 0.992 89 50 0.913 29 19 -0.020 39 48 0.180 

58 24 0.991 53 48 0.693 8 56 -0.023 48 39 0.175 

67 76 0.986 63 50 0.665 56 8 -0.023  41 48 0.129 

76 67 0.986 87 50 0.660 15 14 -0.031 39 41 0.114 

24 58 0.963 56 50 0.621 14 15 -0.032 48 41 0.071 

93 59 0.895 61 50 0.618 18 52 -0.035 48 7 -0.234 

93 76 0.884 27 48 0.618 52 18 -0.036 39 7 -0.292 

93 67 0.881 83 50 0.540 54 58 -0.044 48 2 -0.293 

102 24 0.875 56 48 0.488 58 54 -0.047 48 1 -0.316 

 

We have studied execution time with respect to number of data sources. We observe in Figures 

5.1, 5.2, 5.3 and 5.4 that the execution time increases as the number of data sources increases. 

 

5

9

13

17

21

3 4 5 6 7 8 9 10

Number of databases

E
xe

cu
tio

n 
tim

e 
(s

ec
.)

 
 

 

 

Figure 5.1 Execution time versus number of databases obtained from mushroom (supp = 0.2) 



151 

______________________________________________________________________________ 

0.200

0.400

0.600

0.800

3 4 5 6 7 8 9 10

Number of databases

E
x

ec
u

ti
o

n
 t
im

e 
(s

ec
.)

 

Figure 5.2 Execution time versus number of databases obtained from ecoli (supp = 0.12) 

2.000

4.000

6.000

8.000

10.000

12.000

3 4 5 6 7 8 9 10

Number of databases

E
xe

cu
tio

n 
tim

e 
(s

ec
.)

 

Figure 5.3 Execution time versus number of databases obtained from random-68 (supp = 0.03) 

5

8

11

14

17

3 4 5 6 7 8 9 10

Number of databases

E
x

ec
u

ti
o

n
 t

im
e 

(s
ec

.)

 

Figure 5.4 Execution time versus number of databases at supp = 0.2 (retail) 

The size of each input database generated from mushroom and retail are significantly larger than 

an input database generated from ecoli. As a result, we observe a steeper graph in Figure 5.1 and 

5.4. The number of frequent itemsets decreases as the minimum support increases. 



152 

______________________________________________________________________________ 

In Figures 5.5, 5.6, 5.7 and 5.8 we have shown how the execution time decreases over the 

increase of the minimum support value.  

0

10

20

30

40

50

60

.05 .10 .15 .20 .25 .30 .35 .40 .45 .50

Minimum support

E
xe

cu
tio

n 
tim

e 
(s

ec
.)

 

Figure 5.5 Execution time versus minimum support (for mushroom) 

 

0.40

0.45

0.50

0.55

0.60

0.65

.10 .11 .12 .13 .14 .15 .16 .17 .18

Minimum support

E
xe

cu
tio

n 
tim

e 
(s

ec
.)

 

Figure 5.6 Execution time versus minimum support (for ecoli) 

 

9.2

9.4

9.6

9.8

10.0

10.2

.005 .010 .015 .020 .025 .030 .035 .040 .045

Minimum support

E
xe

cu
tio

n 
tim

e 
(s

ec
.)

 

Figure 5.7 Execution time versus minimum support (for random-68) 



153 

______________________________________________________________________________ 

 

19

21

23

25

27

.05 .10 .15 .20 .25 .30 .35 .40 .45 .50

Minimum support

E
x

ec
u

ti
o

n
 t

im
e 

(s
ec

.)

 

Figure 5.8 Execution time versus minimum support (retail) 

 

By comparing Figures 5.1-5.4, one notes that the steepness of a graph increases as the size of 

branch databases increase.  Similar observation holds true for Figures 5.5-5.8. 

   In Section 5.3.1 we have explained the concept of interesting overall influence. Given a 

threshold value of , we have counted the number of overall influences. In Figures 5.9-5.12 we 

have shown how the number of interesting overall influence decreases over the increase of the 

minimum influence level. 

 

 

Figure 5.9 Number of interesting OI values versus  at supp = 0.2 (mushroom) 

 

 



 

 

154 

______________________________________________________________________________ 

 

05

25

45

65

85

105

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Minimum influence level

N
u
m

b
e
r 

o
f 

in
te

re
st

in
g
 O

I

 

Figure 5.10 Number of interesting OI values versus  at supp = 0.12 (ecoli) 

0

50

100

150

200

250

.01 .02 .03 .04 .05 .06 .07 .08 .09 .10

Minimum influence level

N
u
m

b
e
r 

o
f 

in
te

re
st

in
g
 

O
I

 

Figure 5.11 Number of interesting OI values versus  at supp = 0.015 (random-68) 

25

50

75

100

125

150

.05 .10 .15 .20 .25 .30 .35 .40 .45 .50

Minimum influence level

N
um

be
r 

of
 in

te
re

st
in

g 

O
I

 

 

Figure 5.12 Number of interesting OI values versus  at supp = 0.02 (retail) 



155 

______________________________________________________________________________ 

Figures 5.9-5.12 also provide another type of insight. As the size of a transaction increases, the 

number of interesting overall influences also increase, provided the number of transactions in a 

branch database and the level of overall influence remain constant. The average transaction 

length of mushroom branch databases is significantly higher than that of other branch databases. 

The mining algorithm generates a large number of interesting overall influences even at 

minimum influence level 0.2. 

   We have taken specific items in different databases in Table 5.12. Based on the requirement of 

association analysis one could choose specific items in time databases.  

 

Table 5.12 Specific items in different databases 

M  E  R  Rt 

SI = {1,2,3,6,9,10, 

11,13,16, 23} 

SI  = {37,39,40,41,42, 

44,48,49,50,51} 

SI  = {1,2,3,4,5, 

6,7,8,9,10} 

SI  = {0,1,2,3,4,5, 

6,7,8,9} 

 

The influences of different items on a set of specific items in different databases are presented in 

Table 5.13. In the mushroom database, item 86 is the most influential item because 3 specific 

items are influenced by it. Item 48 in ecoli database exhibits a significant influence on the set of 

specific items. It shows that item 48 has high influence on 5 out of 10 specific items. In the same 

way one could conclude that item 18 in random-68 is the most influential item with respect to 

the given set of specific items. 5 out of 10 specific items are influenced significantly by item 18. 

Item 413 influences 8 out of 10 specific items significantly in retail database. Therefore, it is the 

most influential item in retail. 



156 

______________________________________________________________________________ 

 

Table 5.13 Influences of different items on a set of specific items in different databases 

  

5.8 Conclusion  

The concept of positive influence might not be sufficient in many data analyses. One could 

perform an effective data analysis by using the measure of overall influence. Measuring 

influence over time becomes an important issue, since many companies possess data for a long 

period of time so that they could be exploited in an efficient manner. In this chapter, we have 

designed two algorithms using the measure of overall influence. The first algorithm reports all 

the significant influences in a database. In the second algorithm we have sorted items based on 

their influences on a set of specific items. Such analyses might be interesting since the proposed 

measure of influence considers both positive and negative influence of an itemset on another 

itemset. 

 

 

 

 

 

 

 

M (supp = 0.2) E (supp = 0.12) R (supp = 0.015) Rt (supp = 0.03) 

 x()  x()  x()  x() 

0.3 86(3),34(3),36(3),39(

2),59(2),63(2),2(2),93

(2),36(2),23(2),90(1),

24(1) 

  

0.07 48(5),37(2),50(1),

42(1),44(1),39(1),

40(1),49(1),41(1) 

0.05 18(5),15(3),65(2), 

55(2),61(2),7(1), 

54(1),27(1),35(1), 

66(1),22(1) 

0.05 413(8), 310(2), 

0(1), 1(1), 8(1), 

2(1), 3(1) ,5(1), 

9(1),  4(1) 



157 

______________________________________________________________________________ 

 

Chapter 6 

 

Conclusion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



158 

______________________________________________________________________________ 

In this thesis we have analysed different time-stamped datasets. Temporal aggregation and 

database partitioning are two important data processing tasks applied to various problems from 

time to time. A database grown over a long period of time could be viewed as a collection of 

time databases. Temporal aggregation requires accumulation of values of various attributes in 

these time databases. A database grown over a long period of time could be large. Sometimes we 

need to divide a large database into smaller databases to carry out a data analysis, or to recognize 

relevant patterns. For example, a large temporal database could be divided into yearly databases, 

since a season re-appear on a yearly basis. Afterwards, one could make an analysis whether the 

yearly patterns are partial or fully periodic. Thus, mining a large temporal database could be 

considered as a problem of mining multiple time databases. Therefore, database partitioning is an 

important preprocessing task. 

   Over last two decades researchers have proposed many interesting temporal patterns such as 

frequent pattern, temporal association rule, event, sequential pattern, episode, and temporal 

relational interval pattern. Temporal patterns invented so far might not be an exhaustive list of 

temporal patterns, since temporal data generation is an ongoing process in different domains. In 

this context, we have also proposed few patterns mentioned in the following paragraphs. Also, 

various temporal data mining tasks such as prediction, clustering, classification, search and 

retrieval, and pattern discovery have been applied to various problems. In this thesis we have 

applied data mining tasks viz., clustering, pattern discovery, and other association analyses. 

   The variation of sales of an item over time is important information. Many decisions could be 

influenced by support information of items whose variations are less. For example, company 

could mine the association rules where antecedent of the rule is stable item. Then it could launch  



159 

______________________________________________________________________________ 

“Buy a product, get a gift” sales promotion campaigns, where a gift is a stable item and the basic 

product has high margin rate. Sometime a set of products are defined and sold together with a 

discount where one product is stable item and the rest of the products have high margin rate.  

For the purpose of finding the support variation of items, we divided a database into several 

yearly databases. In this connection a model of mining global patterns in multiple time-stamped 

databases has been proposed. Using yearly supports of an item, we have proposed the notion of 

stability of an item. The degree of stability is based on the variations of means and 

autocovariances. The items whose degree of stability is less than the user-defined threshold are 

called as stable items. Stable items are useful for modeling various strategies of an organization. 

Clustering relevant objects is an important task of many decision support systems. We have 

designed an algorithm for clustering items in multiple databases based on degree of stability. 

Also we have proposed the notion of best cluster by considering average degree of variation of a 

class. The experimental results show that the proposed clustering technique is effective and 

promising. 

   Recognition of patterns in temporal database is an important task. Over the years, there may 

exist many ups and downs in sales of an item. We observe that the change in sales series of an 

item at a particular year could be increasing, decreasing and altering. A new type of pattern, 

called notch, has been proposed based on the variation of sales of an item over the years in a 

time-stamped database. Based on this pattern, we have proposed generalized notch, and a special 

generalized notch, called iceberg, in sales series of an item. When the height and width of a 

generalized notch exceeds user-defined threshold it is considered as an iceberg. Iceberg notch 

represents a special sales pattern of an item over time. Study of such patterns is important to  



160 

______________________________________________________________________________ 

understand the purchase behaviour of customers. Also, it helps identifying the reason of such 

behaviour. We have designed an algorithm for mining interesting icebergs in a time-stamped 

database. 

A calendar-based periodic pattern is dependent on a schema of a calendar. We assume that the 

schema of the calendar-based pattern is based on day, month and year. In Chapter 4, we have 

proposed several improvements on the existing algorithm for identifying calendar-based periodic 

patterns. We have proposed a  hash-based data  structure for  storing and  managing the  periodic  

patterns. We have extended the notion of certainty factor by incorporating support information for 

effective analysis of overlapped intervals. In addition to the proposed modified algorithm, we have 

also designed an algorithm for finding periodicity of calendar-based patterns. We have presented an 

extensive analysis on three datasets. We also have analysed the constraints mininterval, minsupp and 

maxgap associated with each interval. We have provided a comparative analysis, and shown that our 

algorithm outperforms the existing algorithm. 

Influence of items on some other items might not be the same as the association between these sets 

of items. Measuring influence over time becomes an important issue, since many organizations 

possess data over a long period of time. The concept of positive influence might not be sufficient in 

many data analyses. One could perform an effective data analysis by using the measure of overall 

influence. In Chapter 5 we have proposed a measure, called OI, for measuring overall influence 

between two itemsets in a database. The proposed measure is effective, since it considers both 

positive and negative influence between two itemsets. We have designed two algorithms for 

influence analysis involving specific items in a database. The first algorithm reports all the 

significant influences in a database. In the second algorithm, we have sorted items based on their 

influences on a set of specific items.      

In summary, we have mined different time-stamped datasets, and provided various types of data 

analyses. Generation of time-dependent data seems to be a natural phenomenon, and hence the 

analysis of such data always remains an active area of research.  



161 

________________________________________________________________________ 

References 

Adhikari, A., Rao, P. R., “Enhancing Quality of Knowledge Synthesized from Multi-Database 

Mining”, Pattern Recognition Letters, 28(16), pp. 2312 - 2324, 2007a. 

Adhikari, A., Rao, P. R., “Study of select items in multiple databases by grouping”, In: 

Proceedings of the International Conference on Artificial Intelligence, pp. 1699 - 1718, 

2007b. 

Adhikari, A., Rao, P. R., “A framework for mining arbitrary Boolean expressions induced by 

frequent itemsets”, In: Proceedings of the International Conference on Artificial 

Intelligence, pp. 5 - 23, 2007c. 

Adhikari, A. Rao, P. R., “Synthesizing Heavy Association Rules from Different Real Data 

Sources”, Pattern Recognition Letters, 29(1), pp. 59-71, 2008a. 

Adhikari, A., Rao, P. R., “Efficient clustering of databases induced by local patterns”, Decision 

Support Systems, 44 (4), pp. 925 - 943, 2008b. 

Adhikari, A., Rao, P. R., “Mining conditional patterns in a database”, Pattern Recognition 

Letters, 29(10), pp. 1515 - 1523, 2008c. 

Adhikari, J., Rao, P. R., Adhikari, A., “Clustering items in different data sources induced by 

stability”, The International Arab Journal of Information Technology, 6(4), pp. 394 - 402, 

2009. 

Adhikari, J., Rao, P. R., “Measuring influence of an item in a database over time”, Pattern 

Recognition Letters, 31(1), pp. 179 - 187, 2010. 

 

 

 



162 

________________________________________________________________________ 

Adhikari, J., Rao, P. R., “Identifying calendar-based periodic patterns”, Emerging Paradigms in 

Machine Learning, S. Ramanna, L. Jain and R. J. Howlett (editors), pp. 329–357, Springer, 

2013. 

Adhikari, J., Rao, P. R., Pedrycz, W., “Mining icebergs in time-stamped databases”, Indian 

International Conference on Artificial Intelligence, pp. 639 - 658, 2011.  

Agrawal R., Imielinski, T., Swami, A., “Mining association rules between sets of items in large 

databases”, In: Proceedings of ACM SIGMOD Conference Management of Data, pp. 207 - 

216, 1993. 

Agrawal, R., Srikant, R., “Fast algorithms for mining association rules”, In: Proceedings of 20
th

 

Very Large databases (VLDB) Conference, pp. 487 - 499, 1994. 

Agrawal, R., Srikant, R., “Mining sequential patterns”, In: Proceedings of      International 

Conference on Data Engineering, pp. 3 - 14, 1995.  

Aggarwal, C., Yu, P., “A new framework for itemset generation”, In: Proceedings of PODS, pp. 

18 - 24, 1998. 

Ale, J. M., Rossi, G. H., “An approach to discovering temporal association rules”, In: 

Proceeding of ACM Symposium on Applied Computing, pp. 294 - 300, 2000. 

 Allen, J. F., “Maintaining knowledge about temporal intervals”, Comm. of the ACM, 26(11), pp. 

832 - 843, 1983.  

 Antunes, C. M., Oliveira, A. L., “Temporal data mining: an overview”, Proceedings of the 

KDD’01 Workshop on Temporal Data Mining, USA, pp. 1 - 13, 2001. 

Aref, W. G., Elfeky, M. G., Elmagarmid, A. K., “Incremental, online, and merge      mining of 

partial periodic patterns in time-series databases”, IEEE TKDE, 16(3), pp. 332 - 342, 2004. 

 



163 

________________________________________________________________________ 

Atallah, M. J., Gwadera, R., Szpankowski, W., “Detection of significant sets of episodes in event 

sequences”, In: Proceedings 4th IEEE International Conference on Data Mining (ICDM), 

pp. 3 - 10, 2004.  

Baruah, H. K., “Set superimposition and its application to the theory of fuzzy sets” J. Assam 

Sciebce Soc. 10(1 and 2), pp. 25 - 31, 1999. 

Bettini, C., Wang, X. S., Jajodia, S., “A general framework for time granularity and its 

application to temporal reasoning”, Ann. Math. Artificial Intelligence, 22(1-2), pp. 29 - 58, 

1998. 

Bettini, C., Jajodia, S., Wang, X. S., “Time granularities in databases, data mining, and temporal 

reasoning”, Springer, 2000.  

Bluman A.G., Elementary Statistics: A Step by Step Approach, Mcgraw Hill, 2006. 

Böttcher, M., Hoppner, F., Spiliopoulou, “On Exploiting the Power of Time in Data Mining”, 

SIGKDD Explorations, 10(2), pp. 3 - 11, 2008. 

Box. G., Jenkins, G., Reinsel, G., Time series analysis, 3rd edition, Pearson Education, 2003. 

Brin, S., Motwani, R., Ullman, J.D., Tsur, S., “Dynamic itemset counting and implication rules 

for market basket data”, In: Proceedings of the ACM SIGMOD International Conference on 

Management of Data, pp. 255 - 264, 1997. 

Bringmann, B., Zimmermann, A., “One in a million: picking the right patterns”, Knowledge and 

Information Systems, 18(1), pp. 61 - 81, 2009. 

Brockwell, P. J., Davis, A. R., Introduction to Time Series and Forecasting, Springer, 2002.  

 

 

 



164 

________________________________________________________________________ 

Casas-Garriga, G., “Discovering unbounded episodes in sequential data”, In: Proceeding of 7th 

Eur. Conf. on Principles and Practice of Knowledge Discovery in Databases (PKDD’03), 

pp 83 - 94, 2003.  

Chen, W., Chundi, P., “Extracting hot spots of topics from time-stamped documents”, Data and 

Knowledge Engineering, pp. 642 - 660, 2011.  

Cotofrei, P., Stoffel, K., “Time granularity in temporal data mining”, Foundations of 

Computational Intelligence, (6), pp. 67 - 96, 2009.  

Date, C. J., Darwen, H., Lorentzos, N. A., Temporal data and the relational model, Elsevier, 1 - 

422, 2002.  

Dumas, M., Fauvet, M. C. Scholl, P. C., “Handling temporal grouping and pattern-matching 

queries in a temporal object model”, CIKM, pp. 424 - 431, 1998. 

Estivill-Castro V., Yang J., “Fast and robust general purpose clustering algorithms”, Data 

Mining and Knowledge Discovery, 8(2), pp.127 - 150, 2004. 

Euzenat, J., Montanari, A., Time Granularity, Chapter 3 of the Handbook of Temporal 

Reasoning in Artificial Intelligence, Elsevier B. V., pp. 59 - 118, 2005.  

Fink, E., Gandhi, H. S., “Important extrema of time series”, SMC, pp. 366 - 372, 2007. 

Frequent itemset mining dataset repository. http://fimi.cs.helsinki.fi/data. 

Garofalakis, M. N., Rastogi, R., Shim, K., “SPIRIT: Sequential pattern mining with regular 

expression constraints”, In: Proceedings of VLDB, pp. 223 - 234, 1999.  

Gary, J. R., Petersen, A., “Analysis of cross category dependence in market basket selection”, 

Journal of Retailing, 76 (3), pp. 367 - 392, 2000. 

 



165 

________________________________________________________________________ 

Goralwalla, I. A., Leontiev, Y., Ozsu, M. T., Szafron, D., Combi, C., “Temporal granularity for 

unanchored temporal data”, CIKM, pp. 414 - 423, 1998.  

Goralwalla, Leontiev, Y., Ozsu, M. T., Szafron, D., and Combi, C., “Temporal granularity: 

completing the puzzle”, Journal of Intelligent Information System, 16(1), pp. 41 - 63, 2001.  

Greenwood, P. E., Nikulin, M. S., A Guide to Chi-Squared testing, first edition, Wiley-

Interscience, 1996. 

Han J., Pei J., Yiwen Y., “Mining frequent patterns without candidate generation”, In: 

Proceedings of ACM  SIGMOD Conference Management of Data, pp.1 - 12, 2000.    

Han, J., Kamber, M., Data mining: Concepts and techniques, Morgan Kauffmann, 2006. 

Han, J., Dong, G., Yin, Y., “Efficient mining on partial periodic patterns in time series database”, 

In: Proceedings of the ICDE, pp. 106 - 115, 1999.  

Hand, D. J., Kok, J. N., Berthold, M. R., “Advances in intelligent data analysis”, In:  

Proceedings of Third International Symposium, IDA-99, Amsterdam, Springer 1999.  

Hong, T. P., Wu, Y. Y., Wang, S. L., “An effective mining approach for up-to-date patterns”, 

Expert Systems with Applications, (36), pp. 9747 - 9752, 2009. 

 Hsu, W., Lee, M. L., Wang, J., Temporal and Spatio-Temporal Data Mining, IGI Publishing, 

2008.  

 Jain, A. K., Murty M. N., Flynn P. J., “Data clustering: A review”, ACM Computing Surveys, 

31(3), pp. 264 - 323, 1999.  

KDD CUP 2000, http://www.ecn.purdue.edu / KDDCUP. 

 

 



166 

________________________________________________________________________ 

Kempe, S., Hipp, J., Lanquillon, C., Kruse, R., “Mining frequent temporal patterns in interval 

sequences”, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 

16(5), pp. 645 - 661, 2008. 

Keogh, E., “A fast and robust method for pattern matching in time series databases”, In: 

Proceedings of 9
th

 International Conference on tools with AI (ICTAI), pp. 578 -584,1997.  

Keogh, E., Lonardi, S., Chiu, B., “Finding surprising patterns in a time series database in linear 

time and space”, SIGKDD, pp. 23 - 26, 2002. 

Keogh, E., Lin, J., Lee, S. H., Herle, H. V., “Finding the most unusual time series subsequence: 

algorithms and applications”, Knowledge and Information Systems  

11(1), pp.1 - 27, 2006.     

Khan, M. S., Coenen, F., Reid, D., Patel, R., Archer, L., “A sliding windows based dual support 

framework for discovering emerging trends from temporal data”, Knowledge based System, 

23(4), pp. 316 - 322, 2010.  

Knuth, D.E., The Art of computer Programming, sorting and searching, second edition, (3), 

Addison-Wesley Professional, 1998. 

Lattner, A. D., Temporal Pattern Mining in Dynamic Environments, IOS Press, 2007. 

Laxman, S., Sastry, P. S., “A survey of temporal data mining”, 31(2), pp. 173 - 198, 2006.  

Lee, C. H., Lin, C. R., Chen, M. S., “Sliding-window filtering: An efficient algorithm for 

incremental mining”, Proceedings of 10th International Conference on Information and 

Knowledge Management, pp. 263 - 270, 2001.  

 

 

 



167 

________________________________________________________________________ 

Lee, G., Yang, W., Lee, J. -M., “A parallel algorithm for mining multiple partial periodic 

patterns”, Information Science, 176(24), pp. 3591 - 3609, 2006. 

Lee, Y. J., Lee, J. W., Chai, D., Hwang, B., Ryu, K. H., “Mining temporal interval relational 

rules from temporal data”, Journal of Systems and Software, 82(1), pp. 155-167, 2009.  

Leonard M., Wolfe B., “Mining transactional and time series data”, SUGI 30 Proceedings, pp. 

080 - 30, 2005. 

Li, Y., Ning, P., Wang, X. S., Jajodia, S., “Discovering calendar-based temporal association 

rules”, Data and Knowledge Engineering, 44(2), pp. 193 - 218, 2003. 

Li, D., Deogun, J. S., “Discovering partial periodic sequential association rules with time lag in 

multiple sequences for predicton”, LNCS, (3488), pp. 332 - 341, 2005. 

Liu C. L., Elements of discrete mathematics, McGraw-Hill, 1985. 

Liu B., Ma Y., Lee R., “Analyzing the interestingness of association rules from the temporal 

dimension”, IEEE International Conference on Data Mining, pp. 377 - 384, 2001. 

Mahanta, A. K., Mazarbhuiya, F. A., Baruah, H. K., “Finding locally and periodically frequent 

sets and periodic association rules”, In: Proceedings 1
st
 International Conference on Pattern 

Recognition and Machine Intelligence, LNCS, (3776), pp. 576 - 582, 2005. 

Mahanta, A. K., Mazarbhuiya, F. A., Baruah, H. K., “Finding calendar-based periodic patterns”, 

Pattern Recognition Letters, 29(9), pp. 1274 - 1284, 2008. 

 

 

 

 

 

 



168 

________________________________________________________________________ 

Manilla, H., Toivonen, H., Verkamo, L., “Discovery of frequent episodes in event sequences”, 

Data Mining Knowledge Discovery, International Journal, 1(3), pp. 259-289, 1997. 

Mitsa, T., Temporal Data Mining, CRC Press, 2010.  

Moon, B., Lopez, I. F. V., Immanuel, V., “Efficient algorithms for large-scale temporal 

aggregation”, IEEE Transaction Knowledge Data Engineering, 15(3), pp. 744 - 59, 2003.  

Ozden, B., Ramaswamy, S., Silberschatz, A., “Cyclic association rules”, In: Proceedings of 14
th

 

International Conference on Data Engineering, pp. 412-  421, 1998.  

Pratt, K., Fink, E., “Search for patterns in compressed time series”, International Journal of 

Image and Graphics, 2(1), pp. 89-106, 2002. 

Roddick, J. F., Spillopoulou, M., “A Bibliography of temporal, spatial and spatio-temporal data 

mining Research”, ACM SIGKDD, 1(1), pp. 34 - 38, 1999. 

Roddick, J. F., Spiliopoulou, M., “A survey of temporal knowledge discovery paradigms and 

methods”, IEEE TKDE, pp. 750 - 767, 2002. 

Savasere, A., Omiecinski, E., Navathe, S., “An efficient algorithm for mining association rules in 

large databases”, In: Proceedings of the International Conference on Very Large Data 

Bases, pp. 432 - 443, 1995. 

Shapiro, P., “Discovery, analysis, and presentation of strong rules”, Knowledge Discovery in 

Databases, pp. 229 - 248, 1991. 

 

 

 

 



169 

________________________________________________________________________ 

Singh, S., Stuart. E., “A pattern matching tool for time series forecasting”, In: Proceedings of 

14
th

 International Conference on Pattern Recognition, Brisbane, pp. 103 - 105, 1998.  

Smyth, P., Goodman, M., “An Information theoretic approach to rules induction from 

databases”, IEEE, TKDE, 4(4), pp. 301 - 316, 1992.  

 Srikant, R., Agrawal, R., “Mining sequential patterns: generalizations and performance 

improvements”, EDBT, pp. 3 - 17, 1996.  

Tan P. N., Kumar V., Srivastava J., “Selecting the right interestingness measure for association 

patterns”, In: Proceedings of SIGKDD Conference, pp. 32 - 41, 2002. 

Tanbeer, S. K., Ahmed, C. F., Jeong, B. S., Lee, Y. K., “Discovering periodic-frequent patterns 

in transactional databases”, Pacific Asia Knowledge Discovery in Databases, pp. 242 - 253, 

2009.  

Tansel, A. U., Clifford, J., Gadia, S. K., Jajodia, S., Segev, A., Snodgrass, R. T., Temporal 

Databases: Theory, Design, and Implementation, Benjamin / Cummings, 1993.  

Terenziani, P., Snodgrass, R. T., “Reconciling point based and interval based semantics in 

temporal relational databases, A treatment of the telic/atelic distinction”, IEEE Transactions 

on knowledge and Data Engineering, 16(5), pp. 540 - 551, 2004.  

Toman, D., “Point vs. interval-based query languages for temporal databases”, In: Proceedings 

of the 15
th

 ACM SIGACTSIGMOD-SIGART Symposium on Principles of Database Systems 

(PODS), pp. 58 - 67, 1996.  

 

 

 



170 

________________________________________________________________________ 

Tsay, R. S., “Identifying multivariate time series models”, Journal of Time Series and Analysis, 

(10), pp. 357 - 372, 1989. 

UCI ML repository content summary. http://www.ics.uci.edu/~mlearn/MLSummary.html           

Verma, K., Vyas, O. P., Vyas, R., “Temporal approach to association rule mining using T-tree 

and P-tree”, LNCS, (3587), pp. 651 - 659, 2005      

Wang, J., Han, J., “BIDE: Efficient mining of frequent closed sequences”, In ICDE’04 

Proeedings of the 20th International Conference on Data Engineering, pp. 79 - 90, 2004.                                                                                                                                        

Wang, K., Zhang, J., Shen, F., Shi, L., “Adaptive learning of dynamic Bayesian networks with 

changing structures by detecting geometric structures of time series”, Knowledge and 

Information Systems, 17(1), pp. 121 - 133, 2008. 

Wu, S., Manber, U., “Fast Text Searching Allowing Errors, Communications of the ACM), 

35(10), pp. 83 – 91, 1992.   

Wu, X., Zhang S., “Synthesizing high-frequency rules from different data sources”, IEEE 

Transactions on Knowledge and Data Engineering, 14(2), pp. 353 -367, 2003. 

Wu, X., Zhang, C., Zhang, S., “Efficient mining of both positive and negative association rules”, 

ACM Transactions on Information Systems, 22(3), pp.381 - 405, 2004. 

 Wu, X., Zhang, C., Zhang, S., “Database classification for multi-database mining”, Information 

Systems, 30(1), pp. 71 - 88, 2005. 

Yang, K., Shahabi, C., “On the stationarity of multivariate time series for correlation-based 

data”, In: Proceedings of ICDM, pp. 805 - 808, 2005. 

 

 



171 

________________________________________________________________________ 

Zaki, M. J., “Sequence mining in categorical domains: Incorporating constraints”, CIKM, pp. 

422 - 429, 2000a.  

Zaki, M. J., “Scalable algorithms for association mining”, IEEE Transactions on Knowledge and 

Data Engineering, 12(3), pp. 372 - 390, 2000b.  

Zaki, M. J., “SPADE: An efficient algorithm for mining frequent sequences”, Machine Learning 

Journal, 42(1/2), pp. 31 - 60, 2001.  

Zhang, T., Ramakrishnan, R., Livny, M., “BIRCH: A new data clustering algorithm and its 

applications”, Data Mining and Knowledge Discovery, 1(2), pp.141 -182, 1997. 

Zhang, S., Wu, X., Zhang, C., “Multi-database mining”, IEEE Computational Intelligence 

Bulletin, 2(1), pp. 5 - 13, 2003. 

Zhang, S., Zhang, C., Wu, X., Knowledge discovery in multiple databases Springer, 2004. 

Zhang, S., Zhang, J., Zhang, C., “EDUA: An efficient algorithm in dynamic database mining”, 

Information Sciences, 177(13), pp. 2756 - 2767, 2007.  

Zimbrao, G., Moreira de Souza, J., Teixeira de Almeida, V., Arauja de Silva, W., An algorithm 

to discover calendar-based temporal association rules with item’s lifespan restriction, In: 

Proceedings of 8
th

 ACM SIGKDD, 2002.  

 


	Table of Contents
	Table of Contents
	Table of Contents
	Table of Contents
	Table of Contents
	Preliminary Concepts
	2.5 Clustering items
	4.2 Related work
	4.4 Mining calendar-based periodic patterns
	58:  sort arrays level_1 on non-increasing order on primary key item and secondary key start date;
	end procedure
	Line 46 avoids the unnecessary repetition by comparing the transaction length. Line numbers 50-57 close all the last intervals for last year. Line 58 sorts arrays level_1 on non-increasing order on primary key item and secondary key start date.       ...

	5.2 Association between two itemsets
	5.3.2 Properties of influence measures
	The information contained in OIS1 and OIS2 is used to compute overall influence of an item on another item in D1,k+1.  In lines 06-12, we have computed influence of an item on another item in D1,k+1. In line 16, for each item, we have sorted overall i...

	Bringmann, B., Zimmermann, A., “One in a million: picking the right patterns”, Knowledge and Information Systems, 18(1), pp. 61 - 81, 2009.


