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Abstract. We obtain excitation spectra in the superfluid and the Mott Insulator phases of Bose Hubbard model near unit 
filling within Random Phase Approximation (RPA) and calculate its spectral weight. This gives a transparent description 
of contribution of each excitation towards the total Density of States (DOS) which we calculate from these spectral 
weights.  
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INTRODUCTION

Great control and flexibility over ultracold gases 
loaded in optical lattice has led itself as a important 
tool to study quantum phase transitions in precise way 
[1]. Bosonic gases in such lattice are described by 
Bose-Hubbard Models, which predicts many novel 
phases including much studied superfluid (SF) and 
Mott-insulating (MI) phases. These models have 
received great interest ever since proposal and 
experimental realization of Bose Hubbard model [2,3]. 
Varity of theoretical techniques like Quantum Monte 
Carlo, DMRG, mean field theory have been employed 
to study its phase diagram and excitations. These are in 
good agreement with each other.

Although great amount of work has been done on 
calculating excitations and density of states (DOS) of 
these excitations for this model, a proper description of 
spectral weight of each excitation and its contribution 
towards DOS is lacking. In this letter we obtain 
excitations within Random Phase Approximation 
(RPA) within mean felid theory of Bose Hubbard 
Model and calculate the spectral weight for each of 
them. Further we calculate Density of States 
corresponding to each of these excitations. In next 
section we give model and method of calculation. In 
final section we present the results obtained.

MODEL AND METHOD

Model describing bosons in optical lattice is given 
by 
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where t is the hopping amplitude and summation 
<i,j> runs over all the nearest neighboring sites.
a+

i(ai) and ni are, respectively, the boson creation 
(annihilation) and number operators at site i. U is the 
onsite repulsion strength and is chemical potential.

Mean Field Theory 

Hamiltonian (1) can be solved by using mean field 
approximation which reduces the full Hamiltonian into 
summation over single site Hamiltonian [4]. This is 
done by writing creation (annihilation) operators as a 
average value and fluctuations, i.e. ai=<ai> i
(a+
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parameter =<ai>, Hamiltonian (1) can be re-written 
as ).(
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and z is the coordination number of the lattice. We 
scale all parameters by setting zt=1. Mean field 
Hamiltonian is solved by operating it on number basis 
|0>,|1>...|nmax> and calculating self-consistently. 
Here nmax is maximum number of bosons allowed per 
site to truncate the single site Hilbert space and it 
depends on onsite interaction U and . This gives us 
eigen energies E and eigen states of the single 
site Hamiltonian. The boson density i> is 
calculated from the ground state. Non-zero order 
parameter shows a superfluid phase whereas 

cts Mott 
insulating phase. Phase diagram is plotted in Figure (1) 
where we focused near density .
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Excitations within Random Phase 
Approximations 

The excitations are obtained from the single 
particle Green's Function defined by

)0(),()()(, jiji atatitg where is 

Heaviside step function. We construct standard basis 
operator [5] using the mean field states; we define 
Li =|i i . The single particle Green's function 
can be written as ),()( ''
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of motion for Gij within Random Phase 
Approximation and Fourier transforming it into 
momentum and energy space, we get
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where P =< L >-< L = T + T
and   

Solving the equation of motion for the Green 
function and writing it in the form

                                                                              (2) 
                                                
we get excitation spectra i(k) and its spectral 

weights A'i(k). Summation i runs for all excitations. 
Density of states for each excitation i(k) is calculated 

by
k
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where += ; we have added small complex part 
to Results of these calculations have been shown in
the next section. 

RESULTS

The phase diagram of model (1) near unit density is 
shown in Figure (1). We choose few characteristic 
points shown in the figure by red dots to obtain the 
excitations. For example excitations at point (a) 

ure (1) are plotted in the Figure 
(2). Here we choose ky=kz=0 and plot excitations as 
function of kx. First particle (green line) and hole (blue 
line) excitations are gapless consistent with the SF 
nature of the phase. The first gapped particle (red line) 
excitation has finite weight, however first gapped hole 
(orange line) excitation has almost zero weight. This is 
because for 
than hole excitation. In all cases we see that spectral 

weights for excitations near to kx=0 are dominant and 
it reduces as we increase kx. We have not shown 
particle and hole excitations which have zero spectral 
weights.

FIGURE 1. Mean field phase diagram of model 
(1) near unit density. Red dots are the points where 
excitations are calculated and presented below.

FIGURE 2. (i) Excitation spectra for point (a) in 
figure (1). (ii) represents corresponding spectral 
weights. Excitation and corresponding spectral weight 
are represented by same coloured line. (inset) Weight 
for lowest hole excitation. 

Density of States (DOS) for each of these 
excitations, using the same colour coding, is plotted in 
figure (3). 

FIGURE 3. DOS of excitations of figure (2).  

density, but continue to be in the SF phase, several 
higher excitations contributes to the DOS since the 
spectral weight of these excitations are finite.  Both 
particle and hole excitations contributes significantly. 
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FIGURE 4. Excitations (i) and (iv), their spectral weights (ii) and (v)  and DOS (iii) and (vi), respectively,  for 

For Mott insulator, near the lower edge of lobe 
(point (d)), the excitations and their weights are given 
in figure (5). Both particle and hole excitations have
finite gap. Hole excitation has smaller gap compare to 
particle excitation. Since the point we choose is closer 
to the lower edge of the lobe, the hole excitation has 
higher spectral weight. The corresponding density of 
state is given in figure (6).

FIGURE 5. Excitations (i) and weights (ii) for 
point (d) in figure (1). Only excitations which have 
finite spectral weight have shown here.

FIGURE 6. DOS of excitations of figure (5) in 
MI phase.  
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