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Introduction
	 Cadmium (Cd) occurs naturally in sedimentary rocks 

and soils in the environment and is also a constituent of zinc, lead 
and copper ores. It is used extensively in various applications 
such as anticorrosive agents, stabilizers in PVC products, in 
pigments, a neutron-absorber in nuclear power plants and the 
manufacture of nickel-cadmium batteries. It is also present in 
phosphate fertilizers (1). Cd can therefore be released into the 
aquatic environment from sources such as rainwater runoffs from 
metal mining sites, mine drainage water, phosphate fertilizers, 
sewage treatment plants landfills and hazardous waste sites 
(2,3). Cd is known to be implicated in carcinogenesis either 
through oxidative stress or inhibition of DNA repair processes 
(4). The Environmental Protection Agency has thus classified 
Cd as a Group B1 carcinogen and is considered to be a probable 
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human carcinogen (5). The toxicity of Cd is well documented in 
plants and is known to affect various important processes (6). 
In animal models such as fish, acute and sub-chronic exposure 
to Cd leads to alterations of gill epithelium, liver and kidneys 
and also affects enzymes such as acetyl cholinesterase (7,8). In 
molluscs, Cd exposure results in reduction of growth rate and 
mortality due to impairment of several metabolic functions 
(9,10). Several studies have also reported the genotoxicity of Cd 
in various animal models (11-15). The effect of Cd on DNA may be 
indirect, via the action of reactive oxygen species thus leading to 
oxidative DNA damage (16). Further, metal-induced genotoxicity 
is predominantly due to the inhibition of the DNA repair process 
(17). 

	 Molluscs, particularly bivalves have been popularly 
used as “sentinels” to detect pollution caused by a wide array 
of contaminants in the environment (18). The advantage of 
using bivalves is due to their intimate association with the 
sediment, filter- or suspension-feeding habit and their ability 
to bioaccumulate various contaminants. Bivalves can selectively 
concentrate metal ions several hundred times from their 
surrounding water by several mechanisms such as the ingestion 
of particulate substances from suspended material, ingestion 
of food material that have acquired these metals, uptake by 
exchange onto mucous sheets of siphons and gills resulting in 
their incorporation into important physiological systems and 
formation of metal complexes with other organic molecules 
within the body (19). Cd, along with other hazardous metals is 
known to bioaccumulate in the tissues of bivalve molluscs which 
can pose a serious threat to the seafood consumers (20,21). Cd 
also affects the early development of bivalves causing growth 
abnormalities and reduced survival (22). The International 
Agency for Research on Cancer has reported that regular 
consumers of bivalve molluscs are estimated to have weekly 
dietary cadmium exposures of 4.6 μg/kg of body weight (3).

	 In the present study, Meretrix casta (Chemnitz) 
commonly called the backwater or estuarine clam, was selected 
due to its occurrence in the backwaters or estuaries of both the 
east and west coast of India (23). It is consumed as local seafood 
in many parts along the coast of India and is available throughout 
the year. Despite its consumption, few studies are available on 
the toxicity of various contaminants that predominantly occur 
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more than 90% viability and a cell count of a minimum of 106 

cells/ml were used for the tests.

Micronucleus Test

	 The Micronucleus (MN) test was performed following 
the protocol outlined by Baršiene et al. (32). A portion of the gill 
tissue was placed in a drop of methanol acetic acid mixture (3:1) 
on a clean glass slide. This tissue was then gently nipped with 
tweezers for a few minutes and the resulting cell suspension was 
then smeared and air-dried. The smears were fixed in methanol 
for 10 min, stained with 5% Giemsa for 15 mins and allowed to 
dry. The frequency of Micronuclei (MNi) was recorded by scoring 
2,000 intact cells per bivalve at 1000x magnification using an 
Olympus BX53 trinocular research microscope. Micronuclei 
(MNi) were identified according to the following criteria: (1) 
spherical or ovoid-shaped extra nuclear bodies in the cytoplasm 
(2) a diameter of 1/3 - 1/20 of the main nucleus (3) non-refractory 
bodies (4) colour texture and optical features resembling those 
of the nucleus, and (5) the bodies completely separated from the 
main nucleus.

Single Cell Gel Electrophoresis (Comet Assay)

	 The comet assay was carried out as per Lee and Steinert 
(33). All steps were carried out in dim light to prevent photo-
oxidation of DNA. Gill tissue (0.1g) was homogenized gently with 
phosphate buffer saline (pH 7.4) and the resulting cell suspension 
was passed through a muslin cloth to filter out tissue debris. This 
cell suspension was then embedded in Low Melting Agarose 
(LMA) on frosted microscopic slides. The cells were then lysed by 
placing the slides in a cold lysing solution (2.5 M NaCl, 100 mM 
Na2EDTA, 10 mM Tris, 10% DMSO and 1% Triton-X pH 10) at 4°C, 
overnight. Following lysis the slides were placed in unwinding 
buffer (electrophoresis buffer, pH 10) for 15-20 min to allow the 
DNA to unwind. Electrophoresis was then performed for 30 min 
at 300 mA, 25 V (Biorad electrophoresis unit). The slides were 
placed in neutralization buffer (400 mM Tris base, pH 7.5) for 5 
min. The gel containing DNA was stained with ethidium bromide 
and examined using a fluorescence microscope (Olympus BX53) 
with a green filter at 200x magnification. Randomly selected non-
overlapping cells were screened and their comets were analyzed 
with the help of computer software, CASP (34) and the % tail DNA 
was recorded. The % tail DNA is the amount of DNA (in percent) 
present in the tail of the “comet” and is used as a measure of DNA 
damage (35).

Catalase Assay

	 Bivalves were dissected and their whole soft bodies 
were collected and homogenized in 50 mM of Tris buffer (pH 
7.4) containing 0.3 M sucrose and 1 mM EDTA. This suspension 
was then centrifuged at 10,000 xg for 20 min at 4°C and the 
supernatant was collected. Catalase activity was carried as per 
Aebi (36) based on the decrease in absorbance of the test sample 
by the decomposition of H2O2. The reaction mixture consisted of 
13.2 mM H2O2 in 50 mM phosphate buffer (pH 7.0) and 0.1 ml of 
the homogenate. The reduction in absorbance was measured at 
240 nm using a multiwall plate reader (Analytical Technologies 

in these regions in M. casta. The presence of Cd in the waters 
along the coast of Goa may be attributed to the discharge of 
effluents from agrochemical industries (24). Oysters (Crassostea 
sp.) collected from a polluted estuary in Goa were found to 
have high concentrations of Cd in their soft tissues which are 
dependent on the speciation of Cd in the water and sediment 
(25,26). High concentrations of Cd were also observed in oysters 
(C. madrasensis, C. gryphoides and Saccostrea cucullata) collected 
from three different polluted sites in Goa and were found to be 
consistently high in all the seasons (27).

Materials and Methods
Quality Assurance and Quality Control

	 The appropriate quality assurance methods of sample 
preparation, handling and preservation were carried out in 
accordance with US EPA procedures. All chemicals used were of 
analytical grade from Himedia (Himedia, India) unless specified 
otherwise.

Maintenance of Meretrix casta

	 Meretrix casta (Estuarine backwater clam) was selected 
for the present study as it is consumed by a majority of the 
coastal population and also due to its availability in the Goan 
estuaries throughout the year. The bivalves (both sexes) were 
collected from the intertidal zone with the help of skilled local 
fishermen from Palolem, a pristine location in Goa. This site is 
a clean, pristine beach with no known industrial activity or 
anthropogenic stress (28,29). They were stored in a bucket with 
water from the study site and transported alive to the laboratory. 
They were then allowed to acclimatize in ordinary seawater from 
Palolem for 30 days. The water conditions were maintained as 
follows: temperature 25°C, pH 7.5, salinity 25 ppt, dissolved 
oxygen 7.5 mg/L. The water was changed once daily to reduce 
fecal contamination.

Treatment Schedule

	 Bivalves were distributed in groups, each containing 
10 individuals and were used for dose-response studies. 
Concentrations of CdCl2 were selected based on the 96h LC50 
values in M. meretrix (30) and the environmental levels along the 
Goan coast (31). Accordingly, three sub-lethal concentrations of 
CdCl2 (0.75 μg/L, 1.5 μg/L and 3 μg/L) were selected and were 
exposed to the bivalve groups for a period of 15 days. A group of 
bivalves was maintained in parallel without any Cd treatment and 
served as the negative control.

Analysis of Samples

	 The bivalves were dissected open, their gill and muscle 
tissues were cleaned thoroughly prior to the genotoxicity and 
biochemical analyses.

Cell viability

	 Prior to the comet assay and micronucleus test, the cell 
count and cell viability of the peripheral blood were checked to 
ensure that there were enough living cells to perform the assay 
employing trypan blue dye exclusion test. The samples showing 
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Ltd.) at 25°C over 3 minutes. Total protein concentration was 
measured by Bradford’s method (37). The activity of Catalase 
(CAT) was expressed as µmol H2O2

-1min-1mg protein.

Acetylcholinesterase Assay

	  The Acetylcholinesterase (AChE) activity in whole soft 
bodies of bivalves was determined using the Ellman et al. (38) 
with modifications as described by Galloway et al. (39). Briefly, 
50 μL of sample homogenate was incubated in microtitre plates 
with 150 μl DTNB (270 μM in 50 mM sodium phosphate pH 
7.4) at 25°C for 5 min. The enzyme activity was initiated by the 
addition of 3 mM acetylthiocholine iodide and the absorbance 
was measured at 412 nm. The activity of AChE was expressed as 
nmol thiocholine-1min-1mgprotein. 

Malondialdehyde Assay

	 The Malondialdehyde (MDA) assay which is used to 
test lipid peroxidation in the whole soft bodies of bivalves was 
carried out using a commercial kit (North West Life Science 
Specialities- NWK-MDA01). The assay is based on the reaction 
of MDA with Thiobarbituric Acid (TBA) forming a pink coloured 
MDA-TBA2 adduct that absorbs strongly at 532 nm. Butylated 
Hydroxytoluene (BHT) and EDTA are also added to the reaction 
mixture containing the sample homogenate to minimize oxidation 
of lipids. The activity of MDA was expressed as nmol MDA1min-

1mgprotein.

Condition Index

	 Bivalves were cleaned, dissected and the soft tissues 
were carefully separated from the hard shells. Both the soft tissue 

and the shells were placed separately in an oven (REMI) at 60°C 
overnight to determine their dry weights (40). Condition index 
(CI) was then calculated as follows:

Statistical Analyses

	 Statistical analyses of the data were carried out using 
IBM SPSS 23 statistical software package. The data were tested 
to meet the assumptions of normality and homogeneity prior to 
subsequent analyses by linear models. The data of the MN test 
and comet assay are expressed as percentage values and were 
therefore arc sine transformed whereas the data of CAT, AChE 
and MDA assays were log transformed. A one-way ANOVA was 
applied to test the effect of treatment on the % MNi, % Tail DNA, 
CAT, AChE, MDA and CI with a post hoc Dunnet’s test to compare 
the different groups with the control within the same treatment 
group. Pearson’s correlation with scatter plots were also used to 
test the relationship between the all the parameters. The data 
were considered to be statistically significant at p < 0.05.

 Results
	 The dose response data of the MN test, comet assay, 
catalase assay, acetyl cholinesterase assay, malondialdehyde assay 
and condition index are presented in figure 1 (a-f).  A significant 
dose dependent increase of DNA damage in the form of % MNi 
was observed in the gill cells of M. casta at all the concentrations 
of Cd (p < 0.05).	
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Figure 1: [Variations of biomarker responses (a-f) in M. casta exposed to different concentrations of CdCl2 (0.75, 1.5 and 3 µg/L; Number of repli-
cates = 3). % MNi: Percentage Micronuclei, CAT: catalase, AChE: acetylcholinesterase, MDA: Malondialdehyde, CI: condition index. * p < 0.05, ** p < 

0.01, *** p < 0.001
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DNA damage in the form of % tail DNA was also found to be 
significantly high at the 0.75 μg/L and 1.5 μg/L of Cd concentrations 
and was extremely significant at the 3μg/L concentration (p< 
0.001). The CAT activity did not change significantly at the 0.75 
μg/L concentration but increased significantly at the 1.5 μg/L (p 
< 0.05) and the 3 μg/L (p < 0.05) of Cd. AChE activity was found 
to decrease in a dose-dependent manner whereas MDA activity 
showed an increasing trend with an increase in the concentration 
of Cd and was significant at all the doses (p < 0.05). The CI ratio 
also decreased significantly with an increase in the concentration 
of Cd (p < 0.05). 

	 The effects of different concentrations of Cd on the 
variance of different tests are indicated in the one-way ANOVA 
(Table 1).

Table 1: one-way ANOVA of different concentrations of Cd on 
different biomarker responses in M. casta

Dependent variable Independent variable (Treatment)

F value p

% MNi 926.86 < 0.001 ***

% Tail DNA 1551.42 < 0.001 ***

CAT 535.95 < 0.001 ***

AChE 315.46 < 0.001 ***

MDA 515.75 < 0.001 ***

CI 124.21 < 0.001 ***

between DNA damage and the CI ratio. The scatterplots (Figure 
2) further illustrate the associations between DNA damage and 

the other parameters.

	 A high positive correlation was observed between 
the % MNiand the % tail DNA (R = 0.95) as well as between 
both the genotoxicity parameters and the activities of CAT 
and MDA. However, a high negative correlation was observed 
between DNA damage and AChE levels (R = -0.93, -0.94) as well 
as Different concentrations of Cd effects contributed the most to 
the % Tail DNA (F = 1551.42, p < 0.001) followed by the % MNi 
(F = 926.86, p < 0.001). The activities of CAT, AChE and MDA and 
the condition index ratio were also significantly influenced by the 
different concentrations of Cd. 

	 The correlation matrix indicating the association 
between the different parameters is given in (Table 2).

Table 2: Correlation matrix between the associations of the 
biomarker responses in M. casta

% MNi
% Tail 
DNA

CAT AChE MDA CI

% MNi -

%Tail DNA 0.95 -

CAT 0.92 0.92 -

AChE -0.93 -0.94 -0.92 -

MDA 0.95 0.96 0.89 -0.92 -

CI -0.86 -0.90 -0.87 0.87 -0.85 -
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Figure 2: Scatter plots depicting the associations of DNA damage with other biomarker responses in M. casta exposed to different concentrations of 
CdCl2 (0.75, 1.5 and 3 µg/L; Number of replicates = 3). % MNi: Percentage Micronuclei, CAT: catalase, AChE: acetyl cholinesterase, MDA: Malondial-
dehyde, CI: condition index. 
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Discussion
	 The present study demonstrates the genotoxicity, 
neurotoxicity, oxidative stress and deteriorated condition 
induced by Cd in M. casta as indicated by the MN test, comet 
assay, AChE assay CAT assay, MDA assay and condition index. Cd 
was found to induce DNA damage in the gill cells of M. casta at all 
the concentrations studied. This is in agreement with the studies 
of Slobodskova et al. (41) where in they observed significant 
DNA damage induced by Cd in the gill cells of the clam, Corbicula 
japonica. Our observations were also on par with that of Sarkar 
et al. (31) in which they reported a significant increase of DNA 
damage with a concurrent decrease of DNA integrity in the gill 
cells of a marine gastropod, Nerita chamaeleon exposed to various 
concentrations of CdCl2. In another study, Cd was found to be 
clastogenic in the Pacific oyster (Crassostrea gigas), affecting the 
number of chromosomes in somatic cells significantly compared 
to control groups (42). 

	 Significant increases in CAT activity were observed at 
the 1.5 μg/L and 3 μg/L concentrations. Similar observations 
were also reported by Macías-Mayorga et al. (43) in which 
Crassostrea angulata exposed to Cd showed an increase of CAT 
activity up to 7 days of exposure after which it was found to 
decrease significantly. Further, they attributed this oxidative 
stress in bivalves to the exposure to Cd. Liu et al. (44) proposed 
that Cd may generate free radicals by interfering with cellular 
antioxidant systems such as CAT.

	 Similarly, another consequence of oxidative stress was 
found to occur in M. casta as observed by the increase of a lipid 
peroxidation product, malondialdehyde (MDA). Dovzhenko et 
al. (45) also reported a similar increase of MDA in the bivalve 
Modiolus modiolus exposed to Cd. The increase in MDA and other 
lipid peroxidation products lead to a decrease in the total oxygen 
radical scavenging activity. As a result, there is an accumulation 
of Reactive Oxygen Species (ROS) leading to oxidative stress in 
the organism. These ROS in turn affect DNA causing modification 
of DNA bases and DNA strand breaks (46,47). Alternatively, 
Malondialdehyde (MDA) which is also highly mutagenic may 
form adducts with DNA and induce DNA damage (48). Our 
results are also supported by the observations of Xia et al. (30) 
in which an increase in the activities of both CAT and MDA in 
M. meretrix exposed to different concentrations of Cd, which in 
turn induced the apoptosis of hepatopancreatic cells. Dailianis 
et al. (49) suggested that Cd may induce the formation of ROS 
and DNA damage by stimulating the production of Protein 
Kinase C (PKC) via adrenergic receptors. Therefore, based on the 
strong correlation between DNA damage and oxidative stress 
parameters, the DNA damage observed in M. casta in the present 
study may be attributed to oxidative stress as a result of Cd 
exposure.

	 We also observed a significant positive correlation 
between the frequencies of % MNi and % tail DNA (R = 0.95) 
which are represented in the form of scatter plots (Figure 2). 
The comet assay is able to detect repairable DNA damage such 
as DNA strand breakages, whereas the MN test detects more 

persistent DNA damage that are more difficult to repair (50,51). 
These micronuclei are formed when a whole chromosome or a 
fragment of a chromosome does not get incorporated into either 
of the two daughter cells during cell division due to aneugenic 
agents that affect the spindle apparatus or clastogenic agents 
that damage and break the chromosome (52). Thus these two 
tests reflect different forms of environmental stress. The positive 
correlation in our study may be due to the conversion of the short 
term reversible damage to long term irreversible damage as a 
result of persistent Cd exposure.

	 Cd was also found to be neurotoxic in the bivalves as seen 
by the decreased concentration of AChE. The primary function of 
AChE is to catalyze the rapid hydrolysis of the neurotransmitter 
Acetylcholine (ACh) in the synaptic cleft thus terminating 
synaptic transmission. Cd may thus disrupt the function of 
AChE leading to an accumulation of ACh and overstimulation 
of cholinergic receptors. Our results are in agreement with 
that of Machreki-Ajmi and Hamza-Chaffai(53) in which cockles 
(Cerastoderma glaucum) transplanted from an unpolluted site 
to a site contaminated with Cd exhibited a significant inhibition 
of AChE activity. Our studies are also comparable with those 
of Dellali et al. (54) in which clams (Ruditapes decussatus) and 
mussels (Mytilus galloprovincialis) collected from sites polluted 
with heavy metals exhibited decreased acetylcholinesterase 
activity compared to those collected from unpolluted sites. 
Although the exact mechanism by which Cd causes inhibition 
of AChE in bivalves is not known, one possible mechanism may 
be due to ROS-mediated oxidative stress which is also seen to be 
negatively correlated in the present study (44).

	 A significant negative correlation was observed between 
the MN test and CI (R = -0.86) as well as between the comet assay 
and CI (R = 0.9). A similar negative correlation between condition 
index and tissue levels of environmental contaminants of 
Littorina littorea, Mytilus edulis and Cerastoderma edule in a river 
system (Milford Haven Waterway) of Wales, UK was reported by 
Langston et al. (55). This decrease of condition of the organism 
may be attributed to altered DNA function and thereby resulting 
in an altered protein function which is ultimately required for 
normal physiological processes. The physiological state of the 
bivalve can also lead to changes in its feeding activity thereby 
altering its life cycle as a consequence (56). Another reason for 
the decrease in the CI ratio could possibly be the survival adaptive 
response of M. casta wherein they reduce the filtration rate or 
closure of the shell on exposure to contaminants (57).

Conclusions
	 The present study revealed that Cd (0.75 μg/L, 1.5 μg/L 
and 3 μg/L) induced DNA damage in M. casta which was caused 
as a result of oxidative stress. Increasing concentrations of Cd 
also inhibited the activity of AChE and lowered the condition 
index ratio. The comet assay and the micronucleus test along 
with the biomarkers of oxidative stress such as CAT and MDA, 
AChE assay and condition index can be reliably used to assess 
the genotoxicity of Cd in M. casta in the environment. Hence, the 
regular monitoring of estuaries for contaminants such as Cd is 
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of utmost importance as the persistence of these contaminants 
could lead to significant decline in the natural populations of 
bivalves and may also pose a threat to the humans consuming 
them.
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