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Potential of Fourier-Transform Infrared (FTIR) spectroscopy was assessed and Hierarchical Cluster Analysis 

(HCA) was applied over entire range of spectra for determining characteristic chemical compositional 

similarity of 11 different Termitomyces Heim strains using 20 days old pelletized dry biomass produced under 

submerged shaken condition at 28±1
o
C. Four dominant spectral windows showing C-H, O-H stretching 

region, amide I, amide II and polysaccharide regions were identified displaying characteristic variable bands 

across species at 3400-3200 cm
-1

, 2900-2850 cm
-1

, 2350-2215 cm
-1

, 1750 cm
-1

, 1658-1625 cm
-1

, 1582-1547 

cm
-1

, 1375-1315 cm
-1 

and 900-725 cm
-1

. The HCA dendrogram showed formation of two major clusters based 

on their presumptive chemical similarity.   
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1. INTRODUCTION 
 

The identification of fungi by traditional phenotypic 

methods and molecular methods requires special laboratory skills 

and expertise, besides being time consuming and expensive [1]. 

Fourier-transform infrared (FTIR) spectroscopy has been known 

to be a very promising method to characterize biological samples 

by their chemical composition and provides qualitative and 

quantitative estimates of lipids, polysaccharides, nucleic acids, 

proteins [2, 3]. FTIR spectrum is considered as a global 

“molecular fingerprint” which can be used for characterization, 

differentiation and identification of microorganisms [1] and has 

been widely applied for identification of bacteria [3-5], yeast, 

filamentous fungi [6, 7] and also some mushrooms [8-10]. 

Various fungal genera have been identified by using dry spores, 

fruit bodies or cultural biomass as source material for FTIR. 

These include Aspergillus [2], Mucor [11], Penicillium [2, 12], 

Memnoniella, Fusarium [12] and dermetophytes [13] and certain 

wood fungi [14], food spoilage fungi [15] and mushrooms genera 

such as Agaricus, Amanita, Lactarius, Macrolepiota and 

Pleurotus [8]. Fungal cell wall structure and chemical 

composition is found to be diverse from species to species and            
. 
       . 
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thus characterization of fungi by their cell walls is generally 

thought to be very difficult [16]. Chitin, a polymer of the 

acetylated amino N-Acetylglucosamine in which the subunits are 

linked by β (1→4)-a glycosidic bond is a major chemical 

component of fungal cell walls. Other main fungal wall 

constituents are lipids, glycoproteins, cellulose, β glucan, mannan, 

chitosan and other polysaccharides [16, 17]. Termitomyces Heim is 

most popular and highly priced edible mushroom genus in Africa 

and Asia.  Termitomyces species are known to have high nutritive 

value [18, 19] and also contain novel neuritogenic cerebrosides 

[20, 21]. However domestication of Termitomyces has failed due 

to its complex mutualistic nature with fungus growing termites 

Macrotermitinae [22] thus, requiring approaches like submerged 

fermentation. In order to standardize Termitomyces submerged 

fermentation process there is need to characterize its pellet 

biomass for future validation of its purity and chemical signature. 

Termitomyces pellets are known to represent 3D heterogeneity 

[23]. Also Termitomyces clypeatus pelletized biomass has also 

been used for metal biosorption of Chromium from waste water 

[24-27] thus indicating need to understand its chemical profiling 

across different species. Consistent with previous attempts to use 

FTIR spectroscopic technique for characterization of viable fungal 

biomass this work was aimed at its application to determine 

presence or absence of distinct chemical signatures from 

submerged growth conditions, aiding in chemical characterization 

of different Termitomyces species. 
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2. MATERIALS AND METHODS  
 

2.1 Fungal Strains and Cultivation Conditions 

In all 11 pure mycelial cultures of Termitomyces                

were isolated from sterile context tissues of fresh fruit bodies                

of six species. The purity of these cultures was checked          

macro and microscopically [28-34]. These were T. albuminosus 

(TAL1, TAL2), T. striatus (TSTR), T. aurantiacus (TAUR), T. 

heimii (THE2), T. globulus (TGLO), and T. clypeatus (TCL1, 

TCL2, TCL3, TCL4, TCL5). These cultures were maintained on 

Malt Extract Agar (20 g L
-1

 Agar bacteriological grade; 20 g L
-1

 

Malt extract powder, HiMedia) in slants at 28
o
C in Goa University 

Fungus Culture Collection (WFCC Reg. no. 946).  

 

2.2 Preparation of Fungal Pellets 

Ten plugs of 5 mm diameter each excised from old 

colonies growing on Czapek Dox Agar plates containing 5 g L
-1

 

Sucrose, as carbon source for 6 days were transferred to flasks in 

triplicates which contained 100 ml of Czapek Dox Solution with 5 

g L
-1

 Sucrose and incubated at 28±1
o
C, pH 5.5, dark for 7 days at 

150 rpm. The fungal biomass was obtained by centrifugation at 

5000 rpm for 20 min in sterile centrifuge tubes and washed thrice 

with sterile distilled water. The biomass was resuspended into 100 

ml sterile distilled water in Erlenmeyer flasks containing 100 

sterile glass beads of 3.5-4.5 mm diameter and kept for maceration 

on orbital shaker at 300 rpm for 20 min.  

The fragmented mycelial suspensions, 1% v/v, from 

biomass was added to flask with 100 ml Czapek Dox liquid 

medium with pH 5.5 and incubated on shaker at 28±1
o
C in dark at 

150 rpm for 20 days.  

 

2.3 FTIR Analysis  

The pelletized biomass was washed with sterile distilled 

water and dried in an oven maintained at 75
o
C for 48 h. Dried 

composite of whole pelletized biomass was macerated using 

mortar and pestle. Samples of 1 mg were mixed with 100 mg of 

spectroscopic grade KBr, HiMedia. The FTIR spectra were 

determined between 4000 and 400 cm
-1

 using a Shimadzu IR 

Prestige 21 with the following parameters: Spectral resolution 4 

cm
-1

, 40 scans min
-1

, encoding interval 1 cm
-1

, Happ-Genzel 

apodization and scanning speed 2.8 mm s
-1

.  

 

2.4 Multivariate Statistical Analysis 

These spectra were analyzed for signal processing 

procedure by smoothing on spectral second derivatives using 

Savitzky-Golay method with 9 points of window using Origin 

version 8 (OriginLab Corporation) graphing and analysis software 

[35] and the multivariate statistical analyses were performed using 

Hierarchical Cluster Analysis (HCA) using SYSTAT software 

version 13 (Systat Software Inc, Chicago, IL).  

Cluster analysis easily classifies data into groups which 

helps to show similarities and is widely used for rapid 

differentiation and classification of spectral data of 

microorganisms [3]. 

3. RESULTS AND DISCUSSION  
 

This is first report on application of FTIR for genus 

Termitomyces for following species T. albuminosus, T. striatus, T. 

aurantiacus, T. heimii, T. globulus and T. clypeatus. Most of the 

work reported in literature is done with natural fruitbodies and 

solid state cultural mat but rarely on pellet biomass produced by 

liquid submerged fermentation. Thus there are differences in 

metabolic cultures grown on solid and liquid cultures. Fig. 1 shows 

composite representation of FTIR spectra for 11 different 

Termitomyces strains belonging to six different species. 

Chemically significant regions of FTIR called spectral windows 

were identified which included fatty acid region dominated by C–

H (3450 –2850 cm
-1

); amide region dominated by C=O amide I 

and N–H amide II bands of proteins and peptides (1800–1500 cm
-

1
); Mixed region (1500–1200 cm

-1
); polysaccharides region (1200–

900 cm
-1

); true finger printing region (900 to 700 cm
-1

) [24, 36-

40]. Detailed FTIR bands assignments of characteristic infrared 

bands across Termitomyces species are shown in Table 1.  

 

 
Fig. 1: FTIR spectra of Termitomyces species with some characteristic 

dominant spectral windows. 

 
 

Table 1: Assignment of Infrared absorption bands for Termitomyces species 

[24, 37-40]. 

Frequency (cm-1) Band Assignment  

3400-3200 O-H stretching vibration of hydroxyl groups, 

Amine N-H stretching 

2900-2850 CH3, CH2  stretching  
2350-2215 C≡C alkyne stretching 

1750 C=O carbonyl stretching of esters 

1658-1625 Amide I, chitin 
1582, 1550, 1547 N-H bending -Amide II, chitosan 

1450-1425 O-H bending bending polysaccharide 

1375-1315 O-H bending polysaccharide, Amide III 
1250-1025 C-O bond, β (1→3) glucan, cell wall 

polysaccharide 

900 β (1→6) glucan, Finger print region 
810-725 -N-H wag, Finger print region 

 

FTIR spectral bands of pellet biomass were found to be 

contributing characters of three physiological different regions. 

Central pellet zone (chemical zone-I) consisting of less oxygen 

tension, limited energy metabolism leading to autolysis, cell wall 

degeneration, vacuolation and also secondary metabolite 
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production [41, 42]. Intermediate pellet zone (chemical zone–II) is 

with less or partial degeneration of chitin microfibrils, cell wall 

glycoproteins and beginning of some secondary metabolite 

production. Barberel and Walker [41] have modified the zones of 

hypothetical fungal pellet from Trinci [43]. According to Barry 

and Williams [42] and Bizukojc and Ladakowicz [44] the 

illustrations of pellet morphology indicates the densely stained 

central pellet zone as inactive layer. Pirt [45] claimed that when 

the pellet diameter exceeds certain value, the growth is limited to a 

certain thickness at peripheral zone and it depends on diffusion 

coefficient and nutrient availability. Outer pellet zone (chemical 

zone–III) known as active layer consists of high oxygen 

availability and nutrient uptake indicating fresh cell wall material 

[42], de novo chitin, chitosan biosynthesis, no secondary 

metabolite production [46] and healthy cytoplasm. The vacuolated 

cells are metabolically different than the actively growing apical 

and subapical cells and they are known for the production of 

secondary metabolites [47]. Thus it is assumed that the spectral 

chemotypes of Termitomyces pellets could be directly proportional 

to the contributions from all these three pellet zones.  

 

 
Fig. 2: The dendrogram indicates the difference between the species of 

Termitomyces. 

 

Fig. 2 shows the dendrogram calculated by cluster 

analysis, where the separation shows clear heterogeneity distances 

among Termitomyces species forming two cluster groups that 

occur about the same horizontal distance of 0.053. TGLO forms 

outlier to the two sister clade resolved at distance 0.018. Different 

species of Termitomyces showed heterogeneity below 0.06 (Table 

2). The distance measures were comparably lower in TAUR, 

TAL1, TAL2, TCL1, TCL2, TCL4, TCL5 and TSTR indicating 

less heterogeneity than THE2, TAUR and TGLO. The FTIR 

spectral chemometrics of different Termitomyces species showed 

sub grouping with other species may be due to heterogeneity of 

chemical components in different pellet zones. Grouping various 

strains to form clusters representing species or genera based on 

taxonomical classification is not always satisfactory by using 

physiological and morphological characters [48, 49]. The chemical 

heterogeneity between these species may be affected by the 

geographic origin, morphology, physiology of culture and ability 

for metabolite production. The FTIR spectral cluster analysis 

helped in grouping chemically related species together indicating 

strains could be grouped based on their comparably higher 

similarity in metabolite production [2]. According to previous 

reports by Kummerle et al., [50] and Lecellier et al., [1] HCA of 

spectra from different species of the same genus and also strains 

from the same species generally did not cluster together. Thus we 

can conclude that the use of FTIR spectroscopy for taxonomic 

purposes is limited but it does not prevent it from being a powerful 

identification system based on spectral chemotypes [50]. 

 

Table 2: Distance Metric - Pearson Correlation Coefficient Ward Minimum 

Variance Method. 

Cluster Joining At Distance No. of Members 

TAUR TAL2 0.000 2 

TCL5 TCL2 0.001 2 

TCL1 TAL1 0.001 2 

TCL4 TSTR 0.002 2 
TCL3 TCL1 0.002 3 

TCL4 THE2 0.006 3 

TAUR TCL4 0.011 5 
TCL3 TAUR 0.012 8 

TCL5 TCL3 0.018 10 

TGLO TCL5 0.053 11 

 

4. CONCLUSION 
 

The FTIR spectroscopic technique coupled with 

chemometric methods found principal advantage in understanding 

chemotypic similarity between different Termitomyces species in 

3-D pelletized form but may not be helpful to classify strains 

based on their taxonomic ranking.   
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