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Chapter 1 

 

Introduction 

1.1 Motivation 

Ocean Acoustics is the science of sound waves in the seas and has become an 

imperative tool for underwater remote sensing. Advances in the field of Ocean 

Acoustics has propelled researchers to investigate oceanic features, seafloor habitats 

and associated processes. Sound propagation modeling has augmented studies 

related to oceanographic processes including coastal upwelling, sediment plume 

movement, eddies and frontal systems, coastally trapped waves, and internal solitary 

waves. Likewise, technological innovations in active sonar based high-frequency 

single-beam (SBES) and multi-beam echosounder system (MBES) have mutually 

facilitated effective management of living and non-living resources along with 

mapping of the seafloor.  

Space based satellite remote sensing is one of the conventional techniques for 

oceanographic research studies. Many dynamical properties of the open ocean and 

the variability of the changes in the coastal zones can be mapped and effectively 

monitored using the remote sensing techniques. However, space based marine 

remote sensing methods do not provide adequate resolution for precise 

measurements as the light and electromagnetic waves attenuate rapidly in seawater. 

Prospectively, application of the acoustic remote sensing techniques, using high-

frequency SBES and MBES sonar imageries can generate significant data for ocean 

multidisciplinary studies including seafloor characterization and benthic habitat 

studies (Anderson et al., 2008; Brown et al., 2011). The acoustic remote sensing 

methods are primarily concerned with identifying, classifying and mapping surficial 
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geological features of the seafloor. These procedures are well recognized as a useful 

tool in oceanography to characterize the seafloor over a wide area and facilitate 

preliminary geological analyses. 

Considering the relevance of marine environmental management, cost-effective 

methods to study the seafloor at large spatial scales are needed. Studies investigating 

the distribution of seafloor sediments and benthic habitat usually involve overt 

collection of samples using sediment grabs or diving methods for characterizing the 

sediment substrate, associated benthic species and to assess the benthic density. Such 

methodologies provide the most accurate representation, however such studies are 

time consuming and restricted to relatively small areas of the seafloor. Alternatively, 

the acoustic remote sensing method employing SBES and MBES is being widely 

used to explore the seafloor and the benthic habitat environment owing to the rapid 

data acquisition advantages. 

The seafloor characterization and classification methodologies are traditionally 

grouped into two categories, namely model-based techniques and empirical methods, 

as can be gleaned from different seminal scientific literature1 (Fig. 1.1). The model-

based techniques often utilize physics-based acoustic backscatter models to 

differentiate the seafloor sediments by optimizing the comparison between the 

measured and the modeled signals. The empirical methods rely on the statistical and 

artificial neural network-based approaches to correlate the features derived from the 

data with the sediment type.  

Several issues still remain relative and ambiguous to both model and statistical 

based techniques used to characterize seafloor microroughness (Jackson and 

Richardson, 2007 and references therein). It has been previously presumed that the 

seafloor roughness scattering is a stationary Gaussian random process with power 

law dependence over a wide range of spatio-temporal scales (having single power 

law exponent). This postulation is counterintuitive and need to be reformulated for 

                                                 
1 The related literatures are duly cited in the respective chapters. 
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the development of nonlinear techniques2 based modeling and analyses methods to 

adequately describe seafloor roughness variation over all measured scales (Fig. 1.2). 

The standard bathymetry map at a coarse resolution can be conveniently 

characterized in a “deterministic” framework. However, the fine resolution SBES 

and MBES data reveals small scale features of the seafloor and calls for the 

application of “stochastic” formalism to carry out the analyses3. The proposition, 

with the support of concurrent environmental measurements will help to fathom out 

dominant roughness creating processes including hydrodynamic and biological 

activities on the seafloor4 (Fig. 1.3). 

The thesis consolidated here, aims at establishing and documenting quantitative 

(model-based and empirical) methods for remote acoustic characterization of the 

seafloor and the associated benthic habitats using high-frequency echo-sounding 

systems. The technologically advanced seafloor studies offer the prospect of 

acquiring new data, novel insights and delving into new research challenges. The 

versatility and improved understanding of the technology portrayed in the thesis 

should be of interest to multidisciplinary researchers. 

                                                 
2 The advantages of nonlinear technique based multifractal analyses over standard statistical 

approaches have been reported in Lovejoy et al. Nonlinear Geophysics: Why We Need It, 2009a. The 

multifractal analysis characterizes the local scale properties of the data in addition to its global 

properties. Correspondingly, it is possible to quantify the statistical distribution of the local 

singularities (i.e. local multifractal exponents) present in the data. 
3 The schematic diagram, illustrating the range of spatial resolutions required to conveniently 

characterize seafloor morphology using the deterministic and stochastic formalisms are available in 

Goff and Jordan (1988). 
4 The hydrodynamic (currents, waves) and biological processes (bioturbation) have predictable and 

profound effects on the formation of seafloor microtopography and resulting acoustic response. 

Analyzing the data collected using 12 kHz MBES, deep-towed 30 kHz sonar, and stereophotography, 

Fox and Hayes (1985) in their seminal work noted the adequacy of single power law exponent to 

characterize seafloor roughness spectra over a wide range of scales (on the Atlantic coast continental 

rise). Much recent comparison of the roughness spectra (Briggs et al., 2005) computed from MBES 

and stereophotographs in the northeastern Gulf of Mexico indicated the occurrence of multiple power 

laws and related exponents. The power law applied to wavelengths (<10 cm) was attributed to the 

biogenic features and resulting roughness that may be relatively stable in time. The power law 

exponent utilized to characterize wavelengths (>100 cm) was related to lasting morphological features 

on the seafloor. The portion of the spectrum within 10–100 cm wavelength was ascribed to wave-

generated ripple that can vary considerably with time (Jackson and Richardson, 2007). Therefore, the 

assumption of single power is inadequate to characterize seafloor roughness over a wide range of 

spatio-temporal scales. 
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Fig. 1.1 The figure illustrates general procedure for acoustic based seafloor studies describing model-based techniques and empirical 

methods. 
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Fig. 1.2 Schematic diagram depicting the dichotomy in the framework of low-order deterministic and high-order stochastic chaos for the 

adequate characterization of geophysical data sets. 
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Fig. 1.3 A scheme for quantifying dominant roughness creating processes including hydrodynamic and biological activities on the 

seafloor (modified after Jackson and Richardson, 2007). 
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1.2 Research objectives 

The doctoral research reported here highlights the potential utilization of SBES 

and MBES data acquired from the central part of the western continental margin of 

India (WCMI), to address the following specific scientific and technical objectives:  

 Model-based seafloor characterization employing multi-beam angular 

backscatter data; 

 Seabed habitat mapping employing single and multi-beam backscatter data; 

 Multifractal approach based seafloor characterization and feature 

discrimination.  

 

1.3 Thesis outline 

The thesis elaborating the doctoral research carried out has been organized as 

follows: 

 

Chapter 1: Introduction 

The introduction chapter reminiscence the background studies carried out and 

briefly describes the established procedure for seafloor studies using high-frequency 

SBES and MBES. The chapter also enunciates the motivation and objectives of the 

doctoral research. 

 

Chapter 2: Study area and data processing methodology 

Chapter 2 describes the study area, with the description of acoustic and sediment 

data sets including benthic macro-fauna. Concise overviews of acoustic data 

processing methodologies are also recapped in this chapter.   

 

Chapter 3: Model-based seafloor characterization 

The backscatter data acquired using the echo-sounding systems can be matched 

with the theoretical scattering models to interpret the fine scale seafloor information 

embedded in data (Jackson et al., 1986; Chakraborty et al., 2000; Sternlicht and de 
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Moustier, 2003a, b; De and Chakraborty, 2011; Williams et al., 2012). The 

numerical approach employed for extracting information from the data is commonly 

referred to as “inversion modeling”. Inversion modeling primarily involves physics 

based approach to calculate seafloor roughness parameters, namely, the sediment 

mean grain size (M); spectral parameters at the water-seafloor interface (2, w2); and 

sediment volume parameter (2). Accordingly, in this chapter, the composite 

roughness scattering theory developed by Jackson et al. (1986) has been 

implemented to characterize seafloor sediment provinces off Goa, utilizing the 

angular backscatter data derived employing MBES operable at 95 kHz. Distinct 

interclass separations between the sediment provinces are evident from the spatial 

variability of computed inversion results, particularly the sediment mean grain size 

(M) and sediment-water interface roughness (w2). The seafloor parameters derived 

from the 95 kHz MBES data are consistent with the ground-truth data as well as with 

the inversion results obtained using 33 and 210 kHz SBES data at the same locations. 

The results highlighted in this chapter have been reported in Haris et al. (2011). 

 

Chapter 4: Seabed habitat mapping 

Seafloor benthic habitats are physically distinct areas of the seabed that are 

associated with particular species, communities, or assemblages with its coexisting 

diversity. The benthic habitat maps can conveniently illustrate the nature, 

distribution and extent of the distinct physical environment and the associated 

species communities. Correspondingly, the acoustic backscatter computed from 

MBES and SBES operable at 95 kHz and 33/210 kHz, respectively, have been used 

to study the distribution of  sediment texture and benthic macro-fauna abundance 

along the central part of the WCMI (off Goa)5. Concurrent acoustical, physical, and 

biological parameters were measured to characterize the continental shelf seafloor. 

Two distinct feeding groups were observed from the study area: namely, “deposit 

feeders” (majority of polychaete worms and related soft body species like nematode, 

                                                 
5 The interaction effects of the dual-frequency SBES backscatter signal with the seafloor sediment 

substrate and benthic biota along the WCMI was first initiated by Chakraborty et al. (2007).   
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oligochaetes, nemertinea, and echurids) mainly in shallow region and “filter feeders” 

(hard body bivalves and gastropods) in deeper depths. The relationships between 

processed acoustic backscatter strength, grain size, and benthic macro-fauna 

abundance have been demonstrated by applying Principal Component Analyses 

(PCA), and Geographic Information System (GIS) based seafloor maps. The 

clustering analysis explains that the backscatter values at three frequencies are 

strongly correlated with both substrate type and faunal functional group assemblages 

on the seafloor. The preferences of deposit feeders (soft body benthic macro-fauna) 

in the fine-sediment regions and filter feeders (hard body benthic macro-fauna) in 

coarse sediment regions were linked to the variations in sediment granulometry as 

well as backscatter strengths in the study area. This study further underscores the 

versatility of high-frequency echo-sounding systems to map seafloor sediment 

distribution and associated benthic habitat across large areas of seafloor (Haris et al., 

2012).  

 

Chapter 5: Benthic habitat characterization using geoacoustic inversion results 

In this chapter, the spatial variability of sediment geoacoustic inversion results, 

derived from dual-frequency SBES and MBES have been further analyzed to 

demonstrate the interrelationship among the sediment texture and benthic macro-

fauna abundance. The correlationship among the derived acoustical and biological 

parameters has been identified from the spatial map generated using ArcGIS and 

validated by applying PCA. Distinct interclass separation of the sediment provinces 

is revealed by the spatial variability in the computed inversion results, demonstrating 

a strong correlation with the backscatter and biologically active faunal functional 

group assemblages on the seafloor. The results obtained are indicative of 

bioturbation by benthic animals, resulting in variability in the data that should be 

taken into account to optimize the model-data matching procedure during inversion 

(Haris et al., 2015). 
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Chapter 6: Multifractal approach for seafloor characterization: Part 1 

Seafloor bathymetry and the associated backscattering data of submerged objects 

have an extremely wide range of spatio-temporal scales necessitating application of 

power law to carry out the analyses (Fox and Hayes, 1985). The power law behavior 

in such instances requires multifractal analyses in order to determine the fractal 

statistics of both seafloor backscatter and bathymetry image data (Fig. 1.2). It is 

imperative to treat such data as a scale invariant field requiring multifractal measures 

and exponent functions, rather than a unique scaling exponent, such as fractal 

dimension. Besides, the continuous form of seafloor heterogeneity (due to 

bioturbation, sediment deposition, seafloor seepages, or hydrodynamic processes) 

has received the most attention and calls for the application of more versatile 

statistical techniques for determining seafloor roughness statistics. Accordingly, the 

work described in this chapter demonstrates multifractal techniques based 

characterization of pockmark seepage associated seafloor along the central part of 

the WCMI. Six representative blocks of backscatter and bathymetry co-registered 

image data were used to characterize the seafloor. Two distinct multifractal 

formalisms have been applied to determine the characteristics. The first formalism 

employs data analyses using generalized dimension D(q), and multifractal singularity 

spectrum f(α) linked shape parameters, based on the “strange attractors” (Fig. 1.2) 

that exhibit multifractal scaling (Halsey et al., 1986). The second approach is 

designed as “stochastic” multifractal fields that connect the image block 

quantification to the three fundamental parameters namely, degree of multifractality 

α, sparseness C1 and degree of smootheness H (Schertzer and Lovejoy, 1987). The 

present investigation using the two multifractal formalisms to characterize the 

seafloor backscatter and bathymetry data provides comparative results that can be 

expounded upon. The results described in this chapter have been reported in 

Chakraborty et al. (2014). 
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Multifractal approach for seafloor characterization: Part 2 

The success of the model-based inversion procedure (described in Chapter 3) 

depends on the scattering theory employed in the forward backscatter model and 

requires detailed understanding of the scattering mechanism. The study of sound 

interaction with the seafloor and the corresponding inversion modeling impose a 

challenging task, particularly with the existence of diversity in the benthic habitat of 

the area (detailed in Chapter 4 and 5). The scattering process of acoustic wave is 

influenced by the presence of benthic fauna (Fig. 1.3) responsible for modifying the 

small-scale morphological features and the density fluctuations within the sediment 

volume (in addition to the hydrodynamic processes). Incorporation of the number 

density of biological organisms and their collective activities (i.e. burrowing and 

home building) in the forward backscatter model complicate the inverse modeling 

even further. In order to further expand the seafloor feature discrimination, an 

empirical method that uses the scaling and multifractality of the dual frequency 

SBES echo-envelopes at 33 and 210 kHz has been introduced. The reason for using 

multifractal framework is to build on the fact that the layers of seafloor imprints a 

fractal signature on the echo signal along with the self-similarity of sediment ripples 

of various sizes. Moreover, acoustically soft sediments are penetrated more deeply 

by acoustic signals and produce longer and corrugated echoes than hard sediments, 

evidencing fractal structures.  

In the second part of this chapter, dual-frequency echo-envelope data acquired 

using the normal-incidence SBES, have been examined to study its scale invariant 

properties. The scaling and multifractality of the SBES echo-envelopes (at 33 and 

210 kHz) were validated by applying stochastic based multifractal analyses 

technique. The analyses carried out substantiate the hierarchy of multiplicative 

cascade dynamics in the echo-envelopes, demonstrating a first-order multifractal 

phase transition. The resulting scale invariant parameters (α, C1, and H) establish 

gainful information that can facilitate the distinctive delineation of the sediment 

provinces in the central part of the WCMI. The “universal multifractal” parameters 

(Gagnon et al., 2006) among the coarse and fine sediments exhibit subtle difference 
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in α and H, whereas the codimension parameter C1 representing the sparseness of the 

data is varied. The C1 values are well clustered at both the acoustic frequencies, 

demarcating the coarse and fine sediment provinces. Statistically significant 

correlations are noticeable between the computed C1 values and the ground truth 

sediment information. The variations in the multifractal parameters and their 

behavior with respect to the ground truth sediment information are in good 

corroboration with the previously computed sediment geoacoustic inversion results 

obtained at the same locations (Haris et al., 2014).  

 

Chapter 8: Summary 

The concluding chapter summarizes the salient findings of the thesis.  



 

 

 

Chapter 2 

 

Study area and data processing 

methodology 

 

2.1 Study area 

The acoustic and sediment data acquired from two study regions (Fig. 2.1) 

selected in the central part of the WCMI are utilized for the research work carried out 

in this thesis. The sediment substrates in the study areas were generally ranging from 

clayey silt to sand. The seafloor mapping experiments were conducted by CSIR-

National Institute of Oceanography (CSIR-NIO) using hull-mounted calibrated high-

frequency SBES and MBES in calm weather conditions. The shallow water SBES 

data was acquired under a project granted by Department of Information Technology 

(DIT), Government of India. The MBES data from shallow and outer slope area were 

collected as a part of Exclusive Economic Zone (EEZ) mapping program of Ministry 

of Earth Sciences (MoES), Government of India.  

The seafloor depths in the shallow study region generally varied between 29 and 

109 m (Fig. 2.1). The deep water study area extended over 105 km2 with water 

depths ranging from 145 m in the northeast to 330 m in the southwest. The average 

slope of the study area was 0.90o. A number of deep seated faults, basement highs, 

reefs, and ridge systems were reported earlier along the WCMI (Bhattacharya and 

Chaubey, 2001). The faults in the region were parallel to the Dharwar Precambrian 
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orogenic trend and 112 pockmarks (Dandapath et al., 2010) were reported from the 

study area close to NNW-SSE trending fault zone. 

 

 

Fig. 2.1 The figure represents study regions with type of data collected in the 

central part of the WCMI. The acoustic data were acquired using RESON-NS 420 

dual-frequency SBES and EM 1002 MBES. The ground truth sediment 

information was collected using a Van-Veen grab. 

  

2.2 Single-beam data acquisition and processing  

The dual-frequency (33 and 210 kHz) echo data were acquired over substrates 

ranging from clayey silt to sand in the central part of the WCMI, using a hull-

mounted normal incidence RESON-NS 420 SBES. The beam width of the echo-

sounder transducer for 33 and 210 kHz are 20º and 9º respectively, with 

corresponding pulse lengths of 0.97 and 0.61 ms. The raw analog output on the 
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receiver circuit board was tapped and connected to a PCL 1712L 12-bit A/D 

converter with a sampling frequency of 1 MHz. The echoes were recorded along 

with the information of the echo-sounder adjustments and ship position obtained 

from the GPS system. Figure 2.1 shows the SBES data acquisition locations. 

The recorded echo data were converted from binary to ASCII format restricting 

to a range –5 to +5 V. Hilbert transform was employed to obtain the echo-envelope 

from the echo trace at each location. The shape of the echo-envelope is generally 

influenced by various factors including natural variability of the seafloor, transducer 

heave, and noise due to echo-sounder instability (Haris et al., 2012). Therefore, 

several post processing steps such as visual check, echo alignment and echo 

averaging were performed for obtaining good averaged echo-envelopes (Fig. 2.2). 

The first step taken in the post processing was to select good echo-envelopes 

(with minimum distortion) by removing the saturated and clipped echo-envelopes 

through visual inspection. This was achieved by careful selection of the echo-

envelopes, characterized by a well-defined initial rise and amplitude followed by a 

slow decay. The data having voltage response saturates at + 5 V and those with 

prominent multi peaks were discarded. Precisely, an echo-envelopes displaying only 

one important peak, with amplitude between 2.5 and 5 V were qualified for further 

processing steps. Due to the transducer heave motion and small variations of seafloor 

depth over consecutive pings (while recording the backscatter data), initial rise times 

of the echo-envelopes are not identical. Hence, it was imperative to align all the 

echo-envelopes before carrying out further processing. The alignment was based on 

identifying and indexing a temporal feature on the echo-envelope. The initial rise 

time and the time of peak amplitude were considered as an important temporal 

feature of the echo. After identifying the temporal feature, all echoes within the 

ensemble were adjusted with time to align with the selected feature (Fig. 2.2). The 

aligned echo-envelopes were averaged to obtain stable acoustic signals to compute 

the values of universal multifractal parameters associated with different sediment 

provinces. The echo-envelopes were first averaged using 20 successive envelopes 

with 95% overlap (in a moving average sense with sequences 1–20, 2–21, and so on, 
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utilizing all the consistent echo-envelopes available in the dataset). The voltage form 

of the aligned data were converted to pressure signal using the hydrophone 

sensitivity values provided by the transducer manufacturer. The resulting aligned 

pressure curves were finally ensemble averaged to obtain a representative stable 

acoustic signal at each location (De, 2010; Haris et al., 2014). 

Apart from the processing steps described above, the echo-envelope data 

necessitated additional correction for the sonar footprint dimension prior to the 

analyses. The footprint diameter enlarges in proportion to the water depth, 

correspondingly the backscatter area and echo duration increases. As a result, an 

echo recorded at a greater depth is expanded in time and an echo recorded at a lesser 

depth is compressed along the time axis (when compared to a reference depth). 

Consequently, the acoustic returns from the same seafloor sediment type lying at 

different depths do not have the same shape (De and Chakraborty, 2009). 

Accordingly, a first-order correction was applied to remove the influence of the 

depth on the time spread (Pouliquen, 2004). The time spread of the echo-envelope 

was multiplied by a factor hhref / , where refh is the reference depth of 50 m 

(approximate average of all the spot depths) and h  is the depth at the position of the 

individual echo data (De and Chakraborty, 2010, 2012). The procedure followed is 

equivalent to the depth-dependent correction described by van Walree et al. (2005).  

Finally, to compute the backscatter strength (in dB) from the depth corrected 

backscatter signal of the dual-frequency echo-sounder, we follow Urick (1983), as 

referenced in Chakraborty et al. (2007): 

ARRSLGupVUS btotA 10101010 log102)(log40log20log10    (2.1) 

where S  is the backscatter strength, AU  the depth corrected backscatter signal 

obtained from particular locations, and totV  the system gain utilized in the echo-

sounder. For the source level ( SL ) and receiving sensitivity ( Gup ), two different sets 

of values were used for two frequencies (33 and 210 kHz). Similarly, for the 

attenuation coefficient ( b ), two values corresponding to 33 and 210 kHz were used 

with R  and A  as the vertical depth (m) and the beam-insonified area respectively. 
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Fig. 2.2 Graphical abstract of the SBES data processing methodology. 

 

2.3 Multi-beam data acquisition and processing  

The 95 kHz MBES data were acquired using the EM 1002 echo-sounding 

system. The Simrad EM 1002 is a phase interpolated beam-forming MBES with 128 

transducer elements forming 111 beams in a semicircular transducer array of 45 cm 

radius. The echo-sounder was calibrated following a patch test to minimize 

navigational and motion errors as described in the Simrad EM 1002 installation 

manual. The line spacing was around 3–4 times water depth to provide sufficient 

overlap between adjacent lines. An Applied Microsystems SV Plus velocimeter was 
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used to carry out sound speed calibration profiles of the water column during the 

survey. 

During the time of data acquisition, the Simrad EM 1002 system primarily 

measures the time average of the received backscattered signal envelope ( EL ) in 

each of its 111 beams. The received signal envelopes are corrected for time variable 

gain (TVG ), predicted beam patterns, and the insonified area. The data gets recorded 

online in a packet format called “datagram” and stored for every ping as 

representative of the seafloor’s backscatter strength (Hammerstad, 2000). However, 

the raw data recorded by the MBES is not directly suitable to compute the angular 

dependence of seafloor backscattering. Therefore, post processing steps have to be 

carried out essentially for the removal of Lambert’s law1, corrections for actual 

bottom slope and the insonified area (Hammerstad, 2000). Moreover, if the sonar is 

not routinely calibrated, the backscatter values obtained after the post processing are 

probably not accurate (i.e., the reference level is effectively arbitrary), nevertheless 

they are likely to be sufficiently reliable in a relative sense to record differences 

between the sediment types. Consequently, even after post processing, prior to 

model-data comparison, there is a lack of absolute calibration and a depth-dependent 

offset (scaling parameter in dB) is required to be added with each of the processed 

data sets.  

The corrections applied by the MBES to the echo level ( EL ) of the backscatter 

signal can be derived from the sonar equation as:  

TSTLSLEL  2      (2.2) 

where SL  is the MBES source level, TL2 is the two-way transmission loss, and TS is 

the target strength that includes the local backscattering strength, the insonified area 

and Lambert’s law to normalize the acoustic image of the seafloor (Lurton et al., 

1994).  

In normal operation mode, the MBES applies a time variable gain (TVG ) to the 

received signals to compensate beam spreading and absorption losses. The purpose 

                                                 
1 The angular variation is given by Lambert’s law as: )log(cos200  BSBS , where 0BS is the 

mean backscattering coefficient and   is the incidence angle. 
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of TVG  is to maintain a constant sensitivity for the observation of a given target at 

any range. The TVG  must be predicted before the reception (based on previous 

pings), and must be applied online so that the average signal level in the receiver is at 

an optimum level to avoid saturation or clipping of the echo envelope. An additional 

reason for implementing TVG  is to flatten the beam sample amplitudes. The 

technique is advantageous for bottom detection and also important for the proper 

display of the seabed image. 

The PROBASI-II (PROcessing BAckscatter SIgnal) algorithm (Fernandes and 

Chakraborty, 2009) was utilized to apply necessary corrections related to the 

position, heading, bathymetry slope, seafloor insonified area, and Lambert’s law 

corrections (Fig. 2.3). The program reads the raw data as a batch file and extracts the 

specified parameters including backscatter strength, bathymetry, heading, position, 

and beam angle required during the processing.  

 

2.3.1 Heading and position correction 

The recorded data is normally corrected for ship motion during the time of 

acquisition. However, the data is not compensated accurately for heading, likely due 

to latency problem during ship turning. By comparing the preceding and succeeding 

pings, the PROBASI-II algorithm calculated the heading offsets and appropriately 

applied to the data. Often, due to the unavailability of GPS satellites, the raw data 

record erroneous position information indicating inappropriate locations. The 

heading corrected data was monitored for any position jump and corrected suitably 

using preceding and succeeding ping data.    

  

2.3.2 Bathymetry slope and seafloor insonified area correction 

The bathymetry slope has significant influence on seafloor backscattering as the 

seabed slope varies across and along the swath. The MBES records data with a 

simplifying assumption of a flat seafloor, and bathymetry slope related position 

deviation of the beams on the seabed are not accounted during data acquisition. The 

insonified beam area incorporated in Eq. (2.2) is not accurate and re-calculation of 
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the insonified area is required if the seafloor is not flat. The insonified beam area was 

re-computed to obtain better accuracy for each beam, following the formula given in 

Hammerstad (2000).       

 

2.3.3 Lambert’s law removal and corrected angular backscatter data 

After applying appropriate corrections related to the position, heading, 

bathymetry slope, and insonified area, the influence of Lambert’s law was removed 

from the measured echo level. The Lambert’s law correction within MBES was 

introduced for normalizing the sonar image. Prior to inversion modeling, the 

processed multi-beam angular backscatter data (varying between the incidence 

angles of –75o to +75o) were binned in equal angular bins of 1o intervals, utilizing 20 

consecutive pings at each of the sampling locations. The data were subsequently 

averaged over the available number of samples within each bin. The resulting data 

was folded with respect to the normal incidence angle to represent backscatter values 

corresponding to incidence angles 0o to 75o (Fig. 2.3) (Jackson et al., 1986; de 

Moustier and Alexandrou, 1991; Matsumoto et al., 1993; Chakraborty et al., 2000; 

Chakraborty et al., 2003).  

 

2.3.4 Backscatter image data processing  

The application of the PROBASI-II algorithm was further utilized to generate 

backscatter image data. The algorithm has been developed with 4 modules, and 

module 1 is primarily used for generating angular backscatter data to carry out 

inversion modeling. The other modules 2, 3, and 4 are indented for backscatter 

image data generation. The modules 2 and 3 comprise normalization of backscatter 

strengths with respect to 10o incidence angle, angle wise averaging of backscatter 

strength, and removal of the beam pattern artifact as coarse and fine methods. In 

module 4, the noise in the backscatter image was removed with the combination of 

low and high pass filters. The representative raw and processed backscatter images 

are illustrated in Figure 2.3. 
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Fig. 2.3 Graphical abstract of the MBES data processing methodology. 

 

2.4 Sediment sampling 

The sediment data were collected using a Van-Veen grab, covering an area of 

0.04 m2 and penetration of 10 cm, following a standard protocol. About 20 g 

sediment was taken from each grab sample to carry out the textural analyses using a 

4.0 cm diameter core tube. The sediment was repeatedly washed in distilled water 

until all the chloride ions detectable with 4 % silver nitrate were removed. These 

samples were treated with 10 % sodium hexametaphosphate and kept overnight for 
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dispersion before being subjected to the grain size analyses (Ingole et al., 2002). The 

acquired sediment samples were subjected to wet sieving using a 62 μm sieve to 

separate the sand from the mud fraction. The size distribution of the mud fraction (< 

62 μm) was measured with a Malvern laser particle size analyzer (MASTERSIZER 

2000). The size distribution of the sand fraction was determined using standard dry 

sieving method as it was difficult to maintain uniform suspension of sandy material 

within the laser particle analyzer. The shelf sediments normally contain shelly 

material, which had to be sieved prior to measurement by laser diffraction. The mean 

grain size 02 /log UUM g  (where 0U =1 mm) was then calculated for each of the 

sediment data locations (Table 2.1). 

The sediment samples for benthos identification were washed through a 0.5 mm 

mesh sieve, and all organisms retained on the sieve were collected and preserved in 

10% seawater formalin Rose Bengal solution for subsequent identification. These 

samples were again washed through 0.5 mm mesh in running water in the laboratory 

to clear adhering sediments. All organisms were sorted into major groups, preserved 

in 90% alcohol for further identification and counted group-wise. Specimens were 

identified to the lowest possible taxon. The average number of organisms from the 

samples was converted to number per square meter (no. m˗2). Biomass was 

determined by using the wet weight method after blotting. The biomass obtained 

(shell included) was converted to g m˗2 (wet weight). The species identification was 

based on the work by Ingole et al. (2010). We have grouped benthic macro-fauna 

into two communities: (i) soft body organisms, referred to as ‘‘deposit feeders’’, 

which include majority of polychaete worms and related soft body species like 

nematode, oligochaetes, nemertinea, echurids and (ii) hard body organisms, referred 

to as ‘‘filter feeders’’, which include mainly bivalves and gastropods (Table 2.1). 

Total organic carbon analyses were carried out on the freeze-dried sediments using a 

NCS 2500 (Model EA/NA1110) CNS analyzer after removing inorganic carbon 

from the total sample. 
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Table 2.1 Location wise distribution of sediment type, biomass and benthic macro-fauna. 

Station Sand (%) Silt (%) Clay (%) Laboratory 

measured M  

Sediment type Water depth 

(m) 

Biomass 

(g m˗2) 

Soft body 

organisms  

(no. m˗2) 

Hard body 

organisms  

(no. m˗2) 

1 0.78 70.95 28.27 6.66 Clayey Silt 29 0.35 271 00 

2 0.54 75.86 23.60 6.42 Silt 39 2.18 132 66 

3 0.64 75.91 23.45 6.50 Silt 47 2.21 308 44 

4 57.42 32.30 10.28 4.02 Silty Sand 54 0.78 396 88 

5 91.26 6.87 1.87 2.03 Sand 60 4.97 220 176 

6 0.13 70.66 29.21 6.79 Clayey Silt 42 1.78 484 00 

7 0.92 79.05 20.03 6.20 Silt 53 0.49 264 00 

8 80.90 14.24 4.86 2.42 Sand 60 1.42 264 252 

9 89.05 8.65 2.30 1.16 Sand 66 1.85 110 154 

10 70.31 24.45 5.24 2.40 Silty Sand 74 2.18 176 221 

11 73.64 22.29 4.07 1.99 Silty Sand 87 2.49 198 121 

12 54.58 38.52 6.90 3.32 Silty Sand 100 0.57 00 44 

13 83.77 14.01 2.23 2.07 Sand 109 1.20 78 226 

14 1.49 65.28 33.23 6.71 Clayey Silt 22 – – – 

15 0.41 71.59 27.99 6.68 Clayey Silt 32 – – – 

16 1.78 70.06 28.16 6.67 Clayey Silt 37 – – – 

17 3.17 71.93 24.90 6.32 Clayey Silt 48 – – – 

18 8.03 71.52 20.45 5.83 Clayey Silt 56 – – – 

19 95.33 3.08 1.59 1.69 Sand 60 – – – 

20 91.26 6.13 2.61 2.31 Sand 63 – – – 

21 1.2 40 58.8 7.716 Silty Clay 27 0.062 796 00 

22 0.7 15 84.3 8.501 Clay 33 3.875 576 00 

23 2.7 40 57.3 7.611 Silty Clay 42 – – – 

24 2.2 45 52.8 7.496 Silty Clay 52 1.593 155 44 

25 77 15 8 3.16 Silty Sand 67 7.492 99 298 

26 68.7 17.5 13.7 3.657 Sand 76 7.962 796 1393 

27 94 0 6 2.42 Sand 84 – – – 

 



 

 

 

Chapter 3 

 

Model-based seafloor characterization 

 

3.1 Introduction 

The use of high-frequency SBES and MBES operable within the frequencies 300 

kHz is well established for remote acoustic seafloor characterization. The acoustic 

backscatter data obtained from such echo-sounding systems can be matched with 

theoretical scattering models to interpret the information embedded in the data. The 

numerical approach employed for extracting information from the data is commonly 

referred to as “inversion modeling”. The inversion modeling primarily involves 

physics based model for inversion of echo-sounding data to obtain the seafloor 

roughness parameters, namely the sediment mean grain size (M); spectral 

parameters at the water-seafloor interface (2, w2); and sediment volume parameter 

(2), that can be further used to examine fine scale seafloor processes (APL 

Handbook, 1994). The composite roughness model developed by Jackson et al. 

(1986), using the shape of the angular backscatter data has been extensively applied 

in this context (de Moustier and Alexandrou, 1991; Matsumoto et al., 1993; 

Chakraborty et al., 2003). In this chapter, a model-based seafloor characterization 

technique based on the composite-roughness theory has been developed and 

demonstrated utilizing the data acquired using a MBES operable at 95 kHz. The 

MBES angular backscatter data acquired over the substrates ranging from clayey silt 
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to sand (at 12 locations) in the central part of the WCMI are subject to inversion 

modeling (Fig. 3.1).  

 

Fig. 3.1 Panel (a) illustrates the acoustic and sediment sample data acquisition 

locations with respective sediment types. The panel (b) demonstrates the 

effectiveness of the PROBASI-II algorithm to generate spatial image of the 

backscatter data. Presented in panel (c) are the processed MBES and SBES 

(angular backscatter and echo envelope) data used to carry out the inversion 

modeling.  



Chapter 3. Model-based seafloor characterization   26 | P a g e  

 

Moving beyond the techniques that employ MBES angular backscatter data, 

Pouliquen and Lurton (1992) initiated a modeling method for seabed identification 

using the shape of the echosounder signals. Sternlicht and de Moustier (1997, 2003a, 

b) also developed a robust time-dependent seafloor acoustic backscatter model 

within the frequency range 10–100 kHz, that has been effectively demonstrated for 

seafloor characterization using the normal-incidence SBES (De and Chakraborty, 

2011). The use of multiple acoustic frequencies (van Walree et al., 2006) highlighted 

in this work improves seafloor characterization, because the roughness spectrum and 

the sediment volume heterogeneities cause backscatter variation that can be 

conveniently substantiated using multi-frequency inversion results. In this chapter, 

the seafloor parameters computed using 95 kHz MBES data are compared with the 

ground-truth data as well as with the inversion results obtained using 33 and 210 kHz 

SBES data at the same locations (De and Chakraborty, 2011).  

 

3.2 Model-data comparison 

The composite roughness model1 using the shape of the angular backscatter data 

developed by Jackson et al. (1986) requires few geoacoustic parameters as the model 

input. In the absence of measured geoacoustic parameters in the study area, these 

parameters are computed in terms of the mean grain size (M). The equations 

relating geoacoustic model parameters to the mean grain size (M) are adapted from 

the APL-UW High-Frequency Ocean Environmental Acoustics Models Handbook 

(APL Handbook, 1994).   

 

3.2.1 Computation of scaling parameter to calibrate the data 

Even after implementing the pre- and post-processing procedures discussed in 

the preceding chapter, prior to the model-data comparison, there was an 

unfulfillment of absolute calibration, and a depth-dependent offset (scaling 

parameter in dB) was required to correct each of the processed data sets. The scaling 

                                                           
1 The basic equations formulating the composite roughness model is detailed in Jackson et al. (1986).  
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parameters (calibration offsets) were computed by comparing the model derived 

backscatter values with the measured data. The seabed scattering model combines 

the most dominant dimensionless scattering mechanism of the surface roughness 

coefficient )( gsS   and volume scattering coefficient )( gvS  , as a superposition of 

the incoherent scatter to estimate the total seabed backscattering strength )(mod gelBS   

as: 

)]()([log10)( 10mod gvgsgel SSBS     dB     (3.1) 

where g  is the grazing angle (90o–incidence angle). The scaling difference between 

the APL-UW model predicted backscatter values and the processed MBES data is 

apparent for the fine and coarse sediment regions (as can be seen in Fig. 3.2). These 

differences may be due to instrument calibration, model accuracy or erroneous TVG 

applied online (de Moustier and Matsumoto, 1993; Dziak et al., 1993; Kloser et al., 

2010). Therefore, it would be convenient to treat the level of measured backscatter 

values as relative for appropriate model-data comparison.  

The error-to-signal ( SE / ) ratio has been used as a merit function to evaluate the 

model-data matching procedure with the goal of minimizing the value. The SE /  is 

expressed as (Haris et al., 2011): 
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    (3.2) 

where the terms )( gdataBS  and )(mod gelBS   represent the data and model predicted 

backscatter values. This method is independent of the backscatter angular range, and 

provides a convenient numerical evaluation of the model-data comparison. The 

resulting scaling parameter (difference between model and data), which minimizes 

the SE /  ratio is used as the representative scaling factor to calibrate the data. 

Accordingly, the scaling parameters at 12 locations from the study area have been 

computed. The scatter diagram among the derived scaling parameter and water depth 

of the study depicts a linear relationship with a correlation coefficient of 0.85 (Fig. 
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3.2). For model-data comparison and subsequent inversion modeling, the processed 

backscatter data for all the grazing angles were calibrated with the corresponding 

scaling parameter obtained from the linear trend line of the scatter diagram. 

 

 

Fig. 3.2 (a) The differences between the model predicted backscatter values and 

the corresponding processed MBES data are significant for representative sediment 

types. Panel (b) depicts the linear relationship among the scaling parameter (in dB) 

and water depth (m) of the study area. 
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3.2.2 Two-stage parametric optimization 

The computation of the correct set of geoacoustic parameters gets convoluted by 

the large number of good fits existing in the multidimensional search space. It is 

possible to obtain convincing model-data fits in the search space that do not 

necessarily represent correct set of seafloor parameters. Accordingly, we have parsed 

the problem into a two stage parametric optimization method (Sternlicht and de 

Moustier, 2003b) by constraining the search space (Fig. 3.3). Several options are 

available to quantify the corresponding results involving the data and model. Here, 

we have designated the cost-function the error to signal ratio ( SE / ) as the suitable 

parameter to evaluate the model-data matching procedure (with the goal of 

minimizing the value). A low value of SE /  signifies a finer model-data comparison. 

In the frame work of a 3D global search based echo envelope matching procedure, 

Sternlicht and de Moustier (2003b) have applied simulated annealing with the 

downhill simplex method to compute the parameters M , w2 , and v . In the present 

study, we have developed a 4D global search technique including 2, and have 

substituted the sediment volume scattering coefficient ( v ) with the sediment 

volume scattering parameter (2). The first stage of the model-data matching 

procedure employs a 1D search to estimate the general values of the sediment mean 

grain size (M). The output of the 1D search process provides the input M value for 

the subsequent 4D global search method to calculate the precise mean grain size 

(M); the roughness spectral exponent (2) and strength (w2); and the sediment 

volume parameter (2) (Fig. 3.3).  

 

3.3 Inversion results and discussion 

The following sections describe the analyses of the computed sediment 

geoacoustic inversion results (at 33, 95 and 210 kHz) along with the ground truth 

values of the mean grain size of the seabed sediment. The analyses provide a 

comparison among the computed seafloor parameters at three acoustic frequencies to 

evaluate and assess the modeling performance and bottom characterization 
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potentialities. The end results (given in Table 3.1) have been statistically analyzed 

and compared with the ground truth data and published information available in the 

literature. Figure 3.4 shows the model-data comparison in three geologically distinct 

sediment provinces2.  

 

 

Fig. 3.3 Flow chart representing 4D inversion procedure for seafloor parameter 

computation.

                                                           
2 For simplicity, throughout the thesis, silty-sand and sand sediments will be referred to as coarse 

sediments (with M < 4); and clayey-silt and silt sediments will be referred to as fine sediments (with 

M > 4). 
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Table 3.1 Summary of the seafloor parameters derived from three acoustic frequencies, 33 and 210 kHz (SBES) and 95 kHz (MBES). 

 

 

 

 

 

Station 

 

 

 

 

 

Measured 

 M (phi) 

 

 

 

Computed seafloor parameters  

at 33 kHz 

 

 

Computed seafloor parameters  

at 95 kHz 

 

 

 

SE /  

at 95 kHz 

 

 

Computed seafloor parameters  

at 210 kHz 

 M 

(phi) 

2 w2 

(cm4) 

 

2  M 

(phi) 

2 w2 

(cm4) 

 

2  

dB 
 M 

(phi) 

2 w2 

(cm4) 
2 

1 6.66 6.96 3.32 0.000527 0.0037 6.67 3.26 0.000503 0.0045 -22 5.00 3.22 0.000524 0.0040 

2 6.42 6.59 3.29 0.000561 0.0049 6.74 3.23 0.000512 0.0043 -26 4.75 3.27 0.000625 0.0040 

3 6.50 6.29 3.10 0.000643 0.0049 6.53 3.21 0.000601 0.0044 -23 5.02 3.29 0.000670 0.0045 

4 4.02 2.79 3.29 0.002370 0.0045 4.54 3.27 0.000917 0.0046 -24 3.08 3.12 0.001530 0.0041 

5 6.79 6.71 3.21 0.000593 0.0050 6.75 3.21 0.000498 0.0048 -24 5.01 3.34 0.000582 0.0044 

6 6.20 6.08 3.24 0.000516 0.0050 6.47 3.23 0.000510 0.0047 -26 4.21 3.28 0.000603 0.0045 

7 2.42 1.97 3.12 0.00343 0.0046 1.99 3.15 0.00365 0.0041 -27 1.40 3.10 0.00401 0.0029 

8 1.16 2.10 3.25 0.00365 0.0042 1.21 3.24 0.00375 0.0039 -23 1.31 3.14 0.00438 0.0040 

9 2.40 2.37 3.24 0.00366 0.0043 2.10 3.21 0.00343 0.0038 -28 2.05 3.11 0.00255 0.0029 

10 1.99 1.86 3.20 0.00419 0.0039 1.78 3.21 0.00428 0.0031 -29 1.10 3.10 0.00439 0.0027 

11 3.32 2.33 3.19 0.00346 0.0038 2.17 3.18 0.00347 0.0034 -26 1.03 3.20 0.00452 0.0032 

12 2.07 1.75 3.10 0.00388 0.0029 1.80 3.17 0.00397 0.0024 -24 1.51 3.20 0.00424 0.0028 
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Fig. 3.4 Panels (a), (b) and (c) represent the model-data comparison for three 

geologically distinct sediment provinces: clayey-silt (location 1), silty-sand 

(location 10) and sand (location 8) with respective 33-, 210-(SBES) and 95-kHz 

(MBES) frequencies. The model-data matching procedure for the 95 kHz angular 

MBES data was carried out within the grazing angles 35o to 65o. The excluded data 

(star) between 65o and 90o is also plotted to depict the relationship with the data. 

 

3.3.1 Mean grain size (M)  

The peak amplitudes of the echo envelopes fundamentally depend on the 

impedance contrast between the water-sediment interfaces. The impedance contrast 

is often correlated with the mean grain size of sediments (Sternlicht and de Moustier, 

2003a). With reference to the inversion modeling study carried out by De and 

Chakraborty (2011), the computed M values of the surficial sediments obtained 

employing SBES inversions were found to be correlated well with the measurements 
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(having 95% of confidence limit). Similarly, the M values derived from the 

inversion of MBES data is expected to exhibit correlation with the measurements 

(based on the sediment ground truth) or information available in De and Chakraborty 

(2011). Accordingly, the computed M values at the three acoustic frequencies are 

analyzed with respect to the measured M values (Fig. 3.5). The computed M values 

are in good corroboration with the measured M, indicating statistically significant 

correlation coefficients of 0.97, 0.98, and 0.96, respectively, at 33, 95, and 210 kHz.  

The linear regression analyses carried out to validate the SBES inversion results 

indicate marginally better computation of M at 33 kHz as compared with 210 kHz. 

The correlation analyses have been carried out including the published SBES 

inversion results to substantiate the estimated M values at 95 kHz. Statistically 

significant correlation coefficients of 0.97, 0.97 and 0.98 is evident among the model 

derived M values at 33 and 210 kHz, 33 and 95 kHz, and 95 and 210 kHz 

respectively, indicating the suitability of MBES data for inversion modeling.        

The model derived  M values are in good corroboration with the ground-truth 

measurements (laboratory derived M values). However, variations are noticeable 

among the computed M values at three acoustic frequencies. The backscattering 

from the seabed can be generally ascribed to two contributing factors, namely 

interface and volume scattering. The strength of the backscatter signal is primarily 

controlled by the acoustic frequency, the acoustic impedance contrast between water 

and sediment, the contributions from seafloor interface roughness, as well as the 

sediment volume heterogeneity. In fine sediment region, a part of the transmitted 

acoustic energy penetrates the sediment and is scattered back by the buried 

inhomogeneities including coarse sand particles and mollusk shells (De and 

Chakraborty, 2011). The buried heterogeneities can cause local impedance contrast 

resulting in deviation of the geoacoustic parameters (values correlated with M) 

calculated in the model-data matching procedure (Sternlicht and de Moustier, 

2003a). The input geoacoustic parameters are sensitive to the acoustic impedance 

contrast (the product of density and sound speed in the sediment), and the variation 
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of density within the sediment layers can contribute to disparity between the model 

derived and the ground-truth M values. 

 

Fig. 3.5 The scatter plot showing multi-frequency inversion results. 

 

3.3.2 Seafloor roughness parameters (2 and w2) 

The computed seafloor roughness parameters (2 and w2) at 95 kHz along with 

the SBES inversion results have been analyzed to evaluate the relationship between 

the backscatter and relief spectral parameters (Fig. 3.5). The scatter diagram between 

the measured M and estimated 2 reveals that, in the coarse sediment region, the 2 

values are confined within the limits of 3.10–3.25, 3.15–3.24, and 3.10–3.20, 

respectively, at 33, 95, and 210 kHz, but that in fine sediments, the 2 values are 

found to vary between 3.21–3.32, 3.21–3.27, 3.22–3.34, respectively, at 33, 95, and 
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210 kHz. Moreover, in the coarse sediment region, the average 2 values are 

restricted to values around 3.18±0.061, 3.19±0.032, and 3.14±0.047, respectively, at 

33, 95, and 210 kHz. In the fine sediment region, the average 2 values are found to 

be within 3.23±0.085, 3.22±0.020, and 3.28±0.043, respectively, for 33, 95, and 210 

kHz. It is observed that the relatively higher values of 2 are associated with fine 

sediments, while the lower values of 2 are the characteristics of coarse sediments 

(Fig. 3.5). 

The seafloor “roughness power spectrum” estimated from the SBES and MBES 

data characterizes the size and periodicity of the seafloor height fluctuations as a 

function of the spatial frequency (Briggs et al., 2005). The roughness power 

spectrum is often parameterized using a power law by slope and intercept of a linear 

regression line through the points of the periodogram estimate in log–log space. The 

parameters 2 and w2 used in the scattering model of Jackson et al. (1986) are the 

slope and intercept, respectively, of the 2D roughness power spectrum, which are 

calculated from the 1D power-law values. A wide range of 2D roughness power 

spectrum parameters can be gleaned from the literature (Briggs, 1989; Stanic et al., 

1989; Jackson et al., 1996a; Briggs et al., 2005), and indicate that the majority of the 

2D spectral exponent values are confined within 2.90–3.30 in coarse sediments and 

3.20–3.50 in fine sediments. In the present study, the computed 2 values are 

corroborated well with the published data, but have a narrower range of values. 

Several studies (Jackson et al., 1986; Stanic et al., 1989) have concluded that the 

majority of measured 2D spectral strength (w2) values are greater than 0.002 cm4 in 

coarse sediments and restricted to values around 0.003 cm4 in fine sediments 

(Sternlicht and de Moustier, 2003a). The scatter diagram between the measured M 

and estimated w2 (Fig. 3.5) reveals that the w2 values are less than 0.001 cm4 in fine 

sediments and confined within the limit 0.002–0.005 cm4 in coarse sediments. 

Moreover, in the coarse sediment region, the average w2 values are restricted to 

values around 0.0037±0.00028, 0.0037±0.00032 and 0.0040±0.00074, respectively, 

at 33, 95, and 210 kHz. In the fine sediment region, the average w2 values are found 

to be within 0.00057±0.000052, 0.00052±0.000043, and 0.00060±0.000054, 
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respectively, for 33, 95, and 210 kHz. The computed w2 values were validated with 

the published data. The w2 values are well clustered at the three acoustic frequencies, 

having fewer fluctuations for the fine sediment as compared with the coarse 

sediment region (Fig. 3.5). It is also observed that the relatively higher values of w2 

and lower values of 2 are associated with coarse sediments, while the lower values 

w2 and higher values of 2 are the characteristics of fine sediments.  

Briggs et al. (2005) and Jackson and Richardson (2007) have reported that the 

computed w2 and 2 values can cluster depending on the sediment type with distinct 

trends in coarse and fine sediment regions. Similar clustering patterns of roughness 

parameters are conspicuous in the present study, demarcating the coarse and 

sediment provinces (Fig. 3.5). Briggs (1989) also reported that the parameters 

derived from a roughness power spectrum can vary with respect to the sediment 

type, such that the roughness spectra characteristic of coarse sediments have a less-

steep decay (i.e., lower value of 2) in the power-law relationship. The less-steep 

decay (i.e., less-steep slope of the regression line) in the power spectrum can be 

attributed to relatively high intercept energy of the spectrum at a unit spatial 

frequency (1 cm). Therefore, it is likely to have higher values of w2 and lower values 

of 2 for coarse sediments and comparatively lower values w2 and higher values of 2 

characteristics in fine sediments. Apparently, these aspects are evident in the 

presented analyses (Fig. 3.5). 

 

3.3.3 Sediment volume scattering parameter (2) 

The shape of the SBES echo envelope has two distinct parts, the initial part and 

the tail part. The initial part of the data represents the reflection from the water-

sediment interface (interface scattering and the related 2 and w2), and the tail portion 

corresponds to the backscatter from the sediment volume (volume scattering and the 

associated parameter 2). The 2 values are generally related to the sediment type 

(fine or coarse) and seafloor inhomogeneities (Jackson et al., 1986). Jackson and 

Briggs (1992) have demonstrated dominant sediment volume backscatter in finer 

sediments, and Jackson et al. (1986) used 2 as a variable parameter with a 
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maximum range up to 0.004 in soft sediments. However, Stewart and Chotiros 

(1992) have experimentally demonstrated that the limit of 2 designated in soft 

sediment is low, and the sediment volume scattering coefficient is usually much 

higher than the predicted value. Nonetheless, it is convenient to use 2 as a variable 

parameter in the model-data matching procedure. The sensitivity analyses carried out 

on the shape of the SBES data3 indicates significant contribution of sub-bottom 

scattering conspicuous near the tail of the echo-envelope with relatively higher 2 

value. The higher 2 has marginal effect on the peak amplitude of the echo-envelope. 

With reference to the recent study carried out by De and Chakraborty (2011), the 

selection of low 2 values (<0.004) resulted in higher values of SE / ratio during the 

inversion modeling. Improved model-data comparisons (with low values of SE /  

ratio) were achieved by increasing the 2 values (>0.004). The variation of the 

computed 2 among the coarse and fine sediments was subtle because it has been 

chosen as a variable parameter that varies with the locations. In the absence of 

measured 2 parameters in the study area, based on the published SBES inversion 

results (De and Chakraborty, 2011), the input value of 2 is assigned as 0.004 for 

MBES inversion modeling irrespective of the sediment type. 

In the coarse sediment region, the average 2 values are restricted to values 

around 0.0039±0.00059, 0.0034±0.00063, and 0.0031±0.00048, respectively, at 33, 

95, and 210 kHz. In the fine sediment region, the average 2 values are found to be 

within 0.0047±0.00056, 0.0045±0.00021, and 0.0043±0.00026, respectively, for 33, 

95, and 210 kHz. The computed 2 are important to provide convincing model-data 

comparison at the three acoustic frequencies (Fig. 3.5). Jackson and Briggs (1992) 

have reported dominant volume scattering in fine sediments. The experiment carried 

out by Jackson and Briggs (1992) demonstrated improved model-data comparison in 

the fine sediment region with relatively higher values of 2 (0.004–0.006). In the 

present study, the 2 values computed in the fine sediments have been found to be 

                                                           
3 The method used to examine relative importance of input parameters to the model output is 

commonly termed as sensitivity analyses. The readers are referred to the PhD thesis of De. (2010), for 

more information on the sensitivity analyses of SBES model.  
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relatively higher as compared with the coarse sediment region. An appropriate 

assessment on the accurateness of the estimated 2 values is difficult due to lack of 

supporting data and further studies are required to draw better conclusion.      

 

3.4 Concluding remarks 

The composite roughness scattering model (Jackson et al., 1986) derived seafloor 

parameters (M, 2 and w2) using the 95 kHz MBES data are compared with the 

ground-truth data as well as with the inversion results obtained using 33 and 210 kHz 

SBES data at the same locations. The resulting geoacoustic parameters provide 

important information that can be utilized for acoustic seafloor characterization. 

Statistically significant correlations are noticeable between the model derived M 

values and the ground truth sediment information, substantiating the multi-frequency 

inversion results. The M values estimated at 33 and 95 kHz appears to be marginally 

better as compared with 210 kHz4. In the absence of measured roughness data, the 

computed roughness spectrum parameters (2 and w2) are compared with the 

published information available in the literature. The computed 2 and w2 values are 

corroborated well with the published data, displaying subtle variations among 33, 95, 

and 210 kHz.  

Williams et al. (2002) have postulated transition of the scattering theory in the 

critical frequency range of 150–300 kHz. Utilizing the backscatter data of the 

experiments SAX99 and SAX04, Williams et al. (2009) have reported the emergence 

of a new scattering mechanism at 200 kHz or higher frequencies. Significant 

difference in scattering strength from the surrounding medium and the embedded 

                                                           
4 The analyses of multi-frequency inversion results and related geoacoustic parameters for different 

combination of sediment substrate, operating frequency, and transducer orientation suggests that the 

moderate frequencies (33 and 95 kHz) are more appropriate for model-based seafloor 

characterization. The subtle difference among the roughness parameters computed at 33, 95, and 210 

kHz is possibly due to limitations of Helmholtz-Kirchhoff theory implemented in the SBES temporal 

backscatter model. The Helmholtz-Kirchhoff theory basically computes the seafloor interface 

roughness (and the resulting model) with the assumption of isotropic Gaussian distribution of the 

surface relief. The assumption restricts the application of Helmholtz-Kirchhoff theory to extremely 

rough (rocky) seafloor and higher operating frequencies (>100 kHz), where the Kirchhoff’s criterion 

fails (Sternlicht and de Moustier, 2003b). However, De. (2010) computed the Kirchhoff’s criterion for 

210 kHz and demonstrated its suitability for seafloor characterization.    
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coarse material in the controlled laboratory experiments is also obvious at higher 

frequencies between 150 kHz to 2 MHz (Ivakin and Sessarego, 2007). Besides, it has 

been reported that at higher frequencies (> 200 kHz), even a small portion of the 

embedded shell fragments can significantly alter the seafloor scattering 

characteristics, resulting in the subtle difference among the roughness parameters 

computed at 33, 95, and 210 kHz. In the context of multi-frequency inversion, the 

results derived using the 95 kHz MBES data are more correlated with the seafloor 

parameters corresponding to 33 kHz as compared with 210 kHz SBES data.            



 

 

 

Chapter 4 

 

Seabed habitat mapping  

 

4.1 Introduction 

The application of acoustic remote sensing using high-frequency SBES and 

MBES sonar imageries can generate significant data for ocean multidisciplinary 

studies including seafloor characterization and benthic habitat studies (Kloser et al., 

2001; Tegowski, 2005; Brown and Blondel, 2009a). The technological innovations 

in SBES and MBES for acoustic seabed classification and benthic habitat mapping 

are currently an active area of research, and have become an imperative tool in 

ecosystem based management of marine environment. 

Considering the ecological aspects of benthic habitats on the seafloor, cost-

effective methods to study the seabed at large spatial scales are desirable. Studies 

investigating the distribution of seafloor sediments and benthic habitat usually 

involve collection of samples using sediment grabs or diving methods for 

characterizing the sediment substrate and the associated benthic species, and 

assessment of benthic density. Such methodologies provide precise representation, 

however they are time consuming and are rather preferred for assessment of 

relatively small areas of the seafloor (Quintino et al., 2009). Alternatively, the 

acoustic remote sensing techniques are widely used to study the seafloor and the 

benthic habitat environment with the purpose of delineating sediment substrates and 

the associated species communities. Amongst the acoustic systems the normal 
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incidence SBES provides backscatter data over relatively small areas of the seafloor. 

Several studies have been carried out in the past to characterize the seafloor and 

benthic habitats using SBES data (Anderson et al., 2002; Freitas et al., 2003; 

Chakraborty et al., 2007; Quintino et al., 2009). There has been significant 

improvement in swath sounding system resulting in the technological development 

of MBES for studying the seafloor (Chakraborty et al., 2004; van Walree et al., 

2005; Brown et al., 2011; Hamilton and Parnum, 2011) and the related habitat 

environment (Brown and Blondel, 2009b; McGonigle et al., 2009; De Falco et al., 

2010; Kloser et al., 2010; Ierodiaconou et al., 2011). In this chapter, the multi-

frequency acoustic backscatter computed from MBES and SBES operable at 95 kHz 

and 33/210 kHz, respectively, have been used to demarcate the distribution of 

sediment texture and benthic macro-fauna abundance along the central part of the 

WCMI (Fig. 4.1).   

Marine benthos present on the seafloor can be broadly categorized as micro and 

macro organisms. In this study, only the macro benthos is considered. Its presence on 

the seafloor can affect the backscatter in many ways: (i) due to the movement of the 

hard body fauna such as bivalves and gastropods that scatters the sound signal due to 

strong impedance mismatch between the sediments or their body parts (Jumars et al., 

1996), and (ii) by altering the local density of sediment-water interface, including 

displacements responsible for producing or erasing the small scale features. Such 

changes are caused by burrowing and tube building of soft body fauna, mainly 

dominated by polychaete worms (Kogure and Wada, 2005). Besides, the micro 

benthic organisms commonly produce gas. The gas in the form of bubbles are 

trapped in the top layer of sediments, scattering the acoustic wave (Pouliquen and 

Lyons, 2002; Holliday et al., 2004). Then scattering strength is expected to be high 

when the spatial scale of the scattering animal or the modifications in the sediment 

substrates becomes comparable to the transmitting acoustic wavelength (De and 

Chakraborty, 2011). In the present study, the backscatters at three acoustic 

frequencies (33, 95, and 210 kHz) are analyzed to demonstrate the interrelationship 

among acoustic backscatter, grain size, and benthic macro-fauna abundance. 
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Fig. 4.1 Study area shows the acoustic and sediment sample data acquisition locations with respective sediment types. The depth 

contours are expressed in meters. The geographic locations of the two estuaries (Mandovi and Zuari) and rivers (Chapora and Sal) have 

also indicated. 
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4.2 Results and discussion 

The comprehensive application of GIS has been implemented (Mortensen et al., 

2009) to generate spatial map of the ground truth and derived backscatter data. The 

spatial maps were generated incorporating available data sets from the study area 

(the type of data collected has been illustrated in Fig. 2.1). However, in the statistical 

analyses we have examined the data corresponding to 12 locations along with 

acoustical, physical, and biological information. ArcGIS “Kriging” technique was 

used for image generation. The technique involves an interactive investigation of the 

spatial behavior of the phenomenon or data. Kriging is an advanced geostatistical 

procedure that generates an estimated surface from a scattered set of points with z-

values. Unlike other interpolation methods supported by ArcGIS Spatial Analyst, 

Kriging account for the spatial behavior of the phenomenon represented by the z-

values. It is based on the regionalized variable theory that assumes that the spatial 

variation in the phenomenon represented by the z-values is statistically homogeneous 

throughout the surface. This hypothesis of spatial homogeneity is fundamental to the 

regionalized variable theory. 

The following sections compare the computed backscatter strengths of SBES and 

MBES with weight percentage of the sediment fraction and the number density of 

benthic macro-fauna present on the seafloor. The use of traditional statistical 

techniques to examine spatial and temporal dependence of benthic habitat on the 

acoustic backscatter has been proposed in the past (Jackson et al., 1996b). Similarly, 

in the present analyses we have employed PCA to better understand shelf seafloor 

processes along the WCMI. PCA is a mathematical procedure that uses 

an orthogonal transformation to convert a set of observations of possibly correlated 

variables into a set of values of linearly uncorrelated variables called principal 

components (PCs). This technique has three features: it orthogonalizes the 

components of the input vectors (so that they are uncorrelated with each other), it 

orders the resulting orthogonal PCs such that those with the largest variation come 

first, and it eliminates the PCs that contribute least variation in the data set. The first 

several PCs account for cumulatively 80–90% of the variances in the data. The 

http://en.wikipedia.org/wiki/Orthogonal_matrix
http://en.wikipedia.org/wiki/Correlation_and_dependence
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insignificant data variances are also included in the PCs with higher indexes (Manly, 

1994).  

 

4.2.1 Ground-truth data 

The percentage distribution of sediment compositions based on Shepard’s 

classification (Shepard 1954) indicates the presence of four sediment types: clayey-

silt, silt, silty-sand and sand with varied levels of mixing of three textural grades, 

namely, sand, silt, and clay. The sediment texture was relatively coarse (M<4) in the 

deeper depths (60–109 m), whereas fine-grained sediment (M>4) was found in the 

shallow depth region (29–54 m). Table (2.1) in Chapter 2 provides location wise 

details of the sediment type, biomass, and population density of benthic macro-

fauna.  

 

4.2.2 Backscatter and grain size 

The computed backscatter data (using Eq. 2.1 in Chapter 2) at three acoustic 

frequencies are compared with weight percentage of the individual grain size classes 

namely, sand, silt, and clay. The correlation coefficient (R2) between backscatter 

intensity and grain size classes is displayed in Figure 4.2. The backscatter intensity is 

directly correlated with coarse fractions (sand within the range 62–2000 μm) and 

inversely correlated with finer fractions, namely silt (2–62 μm) and clay (<2 μm) at 

three acoustic frequencies. The relationship between backscatter intensity and the 

weight percentage of the sand fraction is depicted in Figure 4.2. The acoustic 

backscatter shows a linear relationship with the percentage of the sand fraction. 

Conversely, the relationship between backscatter intensity and the weight percentage 

of the silt and clay indicates that the backscatter intensity decreases with increasing 

weight percentage of both silt and clay fraction (Fig. 4.2). 

Several studies while comparing the acoustic backscatter responses with the 

ground-truth sediment information have concluded the suitability of different 

acoustic technologies to classify seafloor types (e.g. Goff et al., 2004; Ferrini and 

Flood, 2006; Simons and Snellen, 2009; De Falco et al., 2010). The backscatter 
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intensity from a muddy seafloor has been reported to be inversely related to the 

percentage content of silt and clay (Goff et al., 2004; Sutherland et al., 2007). Fine 

sediments generally exhibit low backscatter intensity due to low density and sound 

velocity (De Falco et al., 2010). The spatial variability of backscatter intensity in 

coarse sediments is mainly driven by the weight percent of coarse grains (sand) 

(Goff et al., 2004; De Falco et al., 2010). Coarse sediments are more likely to result 

in higher backscatter intensity due to scattering from coarse particles, lower porosity, 

higher density and sound velocity, and greater roughness of the water-sediment 

interface. The results obtained in the present study are in corroboration with De 

Falco et al. (2010), establishing a linear relationship between weight percentage of 

sand and backscatter intensity. An inverse relationship revealed between backscatter 

intensity and percentage content of silt and clay in fine sediments validates the 

previous studies (Goff et al., 2004; Sutherland et al., 2007). 

The benthic macro-fauna present on the seafloor can affect backscatter in several 

ways. The hard body fauna as an individual and group can scatter acoustic energy. 

The benthic macro-fauna can compact and dilate the sediment, resulting in 

modification of seafloor roughness, sediment density and fluctuations in the sound 

speed. They can also destroy layers created by sedimentary events (Diaz et al., 

1994). The collective mixing processes of sediment substrates by the benthic macro-

fauna are termed as bioturbation. Besides bioturbation, the acoustic energy 

transmitted by the echosounder penetrates the sediment and is scattered back by the 

buried inhomogeneities including coarse sand particles, shell hash, mollusk shells, 

and layers of coarse materials. The intensity of the scattered energy depends on the 

sizes of the buried heterogeneities relative to the impinging acoustic wavelength (De 

and Chakraborty, 2011). The collective processes might be controlling higher 

backscatter strength observed in the coarse sediment region with substantial 

occupancy of hard body organisms. 
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Fig. 4.2 Scatter diagram demonstrating the relationship between the backscatter at 

three frequencies and weight percentage of sediment types sand (Panel a), silt 

(Panel b), and clay (Panel c). 

 

Relatively significant correlations between the backscatter intensity and grain 

size are evident for SBES as compared to MBES measurements. The difference in 

correlation coefficient (R2) is not directly related to the acoustic frequency because 

the SBES measurements were performed at 33 and 210 kHz. The low correlation 

coefficients attributed to 95 kHz MBES measurements may possibly due to the 

selection of reference angle used for backscatter computation. In the present study, to 

compute representative backscatter values for statistical analysis, it was necessary to 

designate a reference angle that is minimally sensitive to slope correction and 

absorption errors. Accordingly, the backscatter values corresponding to 40o 

incidence angles were chosen for the analysis carried out (Kloser et al., 2010). A 

generic representation of backscatter strength versus incidence angle is illustrated in 
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Figure 4.3 with the description of physical processes involved in the seafloor 

backscattering. At higher frequencies used by seafloor mapping sonar, the 

backscattering from the seabed can be generally ascribed to two contributing factors 

(Fig. 4.3). Part of the energy is scattered by the interface relief, either by the 

subhorizontal facets at incidence angle close to the vertical or by microscale 

roughness at grazing incidence. The other part of the energy penetrates the sediments 

and is scattered back by the volume heterogeneities. The volume scattering can 

become predominant at oblique incidence (Lurton, 2002).    

 

 

Fig. 4.3 Generic representation of backscatter strength versus incidence angle 

(after Lurton, 2002) illustrating the physical processes involved in seafloor 

backscattering. The angular backscatter data presented here corresponds to the 

location 11 (silty-sand). The marked backscatter value at reference angle 40o was 

chosen for the statistical analysis carried out in this study. This particular reference 

angle is minimally sensitive to slope correction and absorption errors as compared 

to other values in the angular profile. 
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4.2.3 Grain size and benthic habitat 

The number density of both hard and soft body organisms are compared with 

weight percentage of the individual grain size classes. The correlation coefficient R2 

to determine the animal-sediment relationship is depicted (Fig. 4.4). The number 

density of hard body organism is directly correlated with coarse fractions (sand 

within the range 62–2000 μm) and inversely correlated with finer fractions, namely 

silt (2–62 μm) and clay (<2 μm). The number density of hard body organisms shows 

a linear relationship with the percentage of the sand fraction. In fine region, the 

number density of hard body organism indicate an inverse relationship with weight 

percentage of both silt and clay fraction (Fig. 4.4). Conversely, the number density of 

soft body organisms is linearly correlated with both silt and clay fractions and 

inversely correlated with coarse fractions. The meager correlations are suggestive of 

unquantified factors influencing the distribution of benthic macro-fauna. 

Two distinct feeding groups are observed in the study area: namely, deposit 

feeders (majority of polychaete worms and related soft body species like nematode, 

oligochaetes, nemertinea, and echurids) mainly in shallow region and filter feeders 

(hard body bivalves and gastropods) in deeper depths. Besides, a coexistence of 

deposit feeder along with filter feeder in the deeper regions is also observed. The 

dominance of deposit feeders in the fine-grained sediment has been previously 

reported from Indian waters (Jayaraj et al., 2007, 2008). Ansari et al. (1977) and 

Jayaraj et al. (2007, 2008) have concluded that fine-sediment including clayey 

regions are not a favorable substratum for filter feeders. Sanders (1958) had 

suggested that the coarse region (sand sediment), with filter feeder dominance, 

reflects the environment with pronounced under water current activity providing 

sufficient food source to filter feeding organisms. Conversely, the fine sediment 

region towards the shallow depth reflects the environment with weaker currents, 

allowing the fine particles to settle down. This can cause inadequate amount of 

organic matter in suspension as the food source for filter feeders and inhibits them 

from inhabiting in such environments (Jayaraj et al., 2008). The dominance of 

deposit feeders in the fine sediment regions and filter feeders in the coarse sediment 
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regions suggests the influence of sediment texture on the feeding behavior of the 

organisms (Fig. 4.5).  

 

 

Fig. 4.4 Scatter diagram depicting correlationship between the benthic macro-

fauna and weight percentage of sediment types sand (Panel a), silt (Panel b), and 

clay (Panel c). 
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Fig. 4.5 GIS-based classification representing the animal-sediment relationship. 

The distribution of benthic macro-fauna in relation to the sediment types is clearly 

distinguished. 

 

4.2.4 Interrelationship between backscatter, grain size, and benthic 

macro-fauna abundance 

The correlationship among the acoustic backscatter strength, grain size, and 

benthic macro-fauna abundance are validated by applying PCA. The associated 

dendrogram incorporating 8 variables delineates two major clustering patterns from 

the study area (Fig. 4.6). The dendrogram involves many U-shaped lines connecting 

the variables in a hierarchical tree. The height of each U represents the distance 

between the two objects being connected. The cluster 1 consists of coarse sediment 

texture (with higher sand percentage) and high backscatter intensity values at three 

acoustic frequencies with substantial occupancy of hard body benthos. The 

sediments in cluster 2 are characterized by relatively low backscatter values and fine 

sediment texture (high percentage content of both silt and clay) with significant 

occupancy of soft body organisms. Briefly, high backscatter intensity values, coarse 
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sediments, and hard body organisms are the major components contributing to 

cluster 1. Conversely, low backscatter intensity values, fine sediments, and soft body 

organisms are the major components associated with cluster 2. The location wise 

clustering of the input variables is shown as a biplot of PCA in 3D view (Fig. 4.6). In 

PCA, each variable is represented by a vector, and the direction and length of the 

vector indicates how the variable contributes to each of the clusters formed. The 

related variances are found to be 74.74, 10.83, and 9.38 %, respectively, for PC1, 

PC2, and PC3. The other variances of the data are also included in the PCs with 

higher indexes, but they are insignificant to be represented. The dominance of 

deposit feeders in the fine-sediment regions (locations: 1–6) and filter feeders in the 

coarse sediment regions (locations: 7–12) are substantiated by applying PCA. The 

clustering analysis also reveals the suitability of acoustic backscatter and sediment 

texture data to demarcate the distribution of the benthos present on the seafloor (Fig. 

4.7 and Fig. 4.8). 

The benthos inhabiting on the seafloor have diverse population and complex 

community dynamics (Kloser et al., 2010) that are often affected by factors other 

than the substrate type. In this context, we have mapped the variations of total 

organic carbon in the study area and correlated with the distribution of biomass and 

benthic density. The overall variation of biomass displays a peak at 54 m water 

depth, with decreasing trend towards both shallow (<54 m) and deeper (>54 m) 

depths (Fig. 4.9). Noticeably, the low biomass was apparent at 29 m depth. The 

distribution of benthic density is relatively significant at water depths 43, 54, and 60 

m (Fig. 4.9). Beyond 60 m, the benthic density exhibits a decreasing trend with 

increasing water depth. The present findings are in good corroboration with the 

earlier studies from Indian waters (Jayaraj et al., 2007, 2008).      
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Fig. 4.6 Panel (a) represents the dendrogram and clustering of benthic macro-

fauna, multi-frequency backscatter, and sediment types. The acronym BS, SB and 

HB denotes backscatter, soft body and hard body benthic macro-fauna 

respectively. Panel (b) represents the location wise clustering of the 8 variables in 

3D view. The first three PCs representing 94.95% variance in the data sets are 

presented. Each variable in the data set is represented by a vector, and the direction 

and length of the vector indicates how the variable contributes to each of the 

clusters formed.  
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Fig. 4.7 GIS-based classification representing the backscatter-animal-sediment 

interrelationship at 33 kHz.  

 

 

 

Fig. 4.8 GIS-based classification representing the backscatter-animal-sediment 

interrelationship at 210 kHz.  
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Fig. 4.9 Panels (a) and (b) exemplifies the depth wise spatial variations of biomass, 

backscatter, and benthic density.  

 

Relatively high species richness and diversity apparent in the coastal region 

(<100 m) of the study area could be ascribed to the enrichment of coastal waters 

caused by riverine flow and land runoff (Parulekar, 1973). The high percentage 

distribution of fine grained sediments with relatively abundant organic carbon is 
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noticeable in the shallow region (Fig. 4.10). The distribution of organic carbon is 

governed by a set of physico-chemical, sedimentological and hydrographic factors 

(Jayaraj et al., 2007). The study area receives relatively high annual rainfall that can 

transport organic matter through the rivers and discharges to the shallow water 

regions. This process might have resulted in significant amount of both fine sediment 

and organic carbon in the shallow region. The present study indicates comparatively 

low benthic density at shallow region (29 and 39 m) as compared to deeper depths 

(43, 54, and 60 m). The low biomass evident at 29 m water depth (with clayey-silt 

substrate and abundant organic carbon) further suggests that the fine sediment and 

organic carbon enrichment in the shallow region can adversely affect the benthic 

density (Jayaraj et al., 2007).  

 

 

Fig. 4.10 GIS-based classification representing the distribution of total organic 

carbon in relation to the benthic macro-fauna and sediment types. The geographic 

locations of the two estuaries (Mandovi and Zuari) and rivers (Chapora and Sal) 

transporting organic matter to the shallow water regions of the study area are also 

indicated. 
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4.3 Concluding remarks 

The backscatter data from dual-frequency SBES and MBES operable at 33/210 

kHz and 95 kHz, respectively, have been utilized to demonstrate the correlationship 

among the derived backscatter, grain size, and benthic macro-fauna abundance. The 

resulting benthic habitat maps illustrate the nature, distribution and extent of the 

distinct sedimentary environment and the associated species communities along the 

central part of the WCMI. The preferences of deposit feeders (soft body benthic 

macro-fauna) in the fine-sediment regions and filter feeders (hard body benthic 

macro-fauna) in coarse sediment regions indicate the influence of sediment texture 

and total organic carbon on the feeding behavior of the organisms. The 

correlationship among the derived acoustical (multi-frequency backscatter intensity) 

and biological parameters (number density of benthic macro-fauna) was identified 

from the spatial map generated using GIS and validated by applying PCA. The 

acoustic backscatter data presented here accentuates the versatility of SBES and 

MBES to conveniently map seafloor sediment distribution and associated benthic 

habitat across large areas of seafloor. 

 

 



 

 

 

Chapter 5 

 

Benthic habitat characterization using 

geoacoustic inversion results 

 

5.1 Introduction 

Acoustic remote sensing technique using high-frequency SBES and MBES has 

been recognized as an effective tool for studying the seafloor over a wide area 

(Jackson and Richardson, 2007). The backscatter data acquired using the echo-

sounding systems can be matched with the theoretical scattering models to interpret 

the fine scale seafloor information embedded in data (Jackson et al., 1986; Sternlicht 

and de Moustier, 2003a, b). The numerical approach employed for extracting 

information from the data is commonly referred to as inversion modeling (detailed in 

Chapter 3). Inversion modeling primarily involves physics based approach to 

calculate seafloor roughness parameters, namely, the sediment mean grain size (M); 

spectral parameters at the water-seafloor interface (2, w2); and sediment volume 

parameter (2) (De and Chakraborty, 2011; Haris et al., 2011). However, the study 

of the interaction of sound with the seafloor and the application of inversion 

modeling can provide new insights if the physical structure of the seafloor and the 

associated benthic communities with its diversity coexists (Thorsos et al., 2001).  
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The bottom dwelling benthic organisms often modify the physical properties of 

the sediment and create fine scale seabed structures (Jones and Jackson, 1998). The 

multiple processes that are continually occurring at the water-sediment interface and 

within the sediment volume significantly causes fluctuation in acoustic 

backscattering. The collective displacement and mixing processes of sediment 

substrates by the benthic macro-fauna are termed as bioturbation. The bioturbation 

can affect the sediment properties including derived parameters as follows: a) due to 

the movement of the hard body fauna such as bivalves and gastropods that scatters 

the sound signal due to strong impedance mismatch between the sediments or their 

body parts (Jumars et al., 1996), and b) by altering the local density of sediment-

water interface, including displacements responsible for producing or erasing the 

small-scale features. Such changes are caused by burrowing and tube building of soft 

body fauna, mainly dominated by polychaete worms (Kogure and Wada, 2005; Haris 

et al., 2012). 

Relatively high backscattering is expected when the spatial scale of the scattering 

animal or its modifications in the sediment substrates become comparable to the 

transmitting acoustic wavelength. Besides, the SBES echo-envelope shape 

parameters such as peak along with its width, rise, fall time, and the tail part gets 

modified due to the bioturbation. Therefore, it is important to examine the role of 

bioturbation on the acoustic backscatter using high-frequency echo-sounding 

systems. In the present study, the spatial variability of the previously estimated 

sediment geoacoustic inversion results (De and Chakraborty, 2011; Haris et al., 

2011), using MBES and dual-frequency SBES operable at 95 kHz and 33/210 kHz, 

respectively, were analyzed along with the sediment texture and benthic macro-

faunal information obtained at the same locations (Fig. 5.1). 

The analyzed results demonstrate the interrelationship among seafloor micro-

roughness parameters, grain size, and benthic macro-faunal abundance (Haris et al., 

2012) along the central part of the western continental shelf of India (WCSI). 
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Fig. 5.1 The figure shows the study area with respective sediment types: clayey-silt 

(cross), silt (square), silty-sand (closed-triangle) and sand (star). The depth 

contours are expressed in meters. The acoustic data was acquired with EM 1002 

MBES and RESON-NS 420 SBES along the two tracks. The sediment samples for 

textural and benthic studies were acquired using a Van-Veen grab.  The inversion 

results (described in Chapter 3) are analyzed here with the sediment texture and 

benthic macro-faunal abundance obtained at the same locations. 
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Fig. 5.2 GIS-based sediment distribution and benthic macro-faunal abundance map 

of the study area. The maps illustrate general environmental scenarios of the study 

region, including acoustical, physical, and biological properties. 

 

5.2 Results and discussion 

In the following sections, the geoacoustic inversion results derived from the 

MBES and SBES data (Chapter 3) have been compared with the sediment texture 

and benthic macro-faunal information.  
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5.2.1 Backscatter and mean grain size 

The percentage distribution of sediment compositions indicates the presence of 

four seafloor sediment types: clayey-silt, silt, silty-sand and sand. The sediment 

texture was relatively coarse (M < 4) in the deeper depths (60–109 m), and fine-

grained sediment (M > 4) was found in the shallow depth region (29–54 m) (Fig. 

5.2). Statistically significant correlations observed among the measured and 

computed M  values demonstrates the success of inversion modeling carried out 

(Fig. 5.3). The multi-frequency inversion is advantageous because the studies 

(Williams et al., 2002) assessing the scattering models with the data acquired are rare 

so as to provide an evaluation of the model over a broader range of sediment types 

and frequency. 

 

 

Fig. 5.3 Scatter plot demonstrating the success of inversion modeling carried out.  

 

The backscatter strength from the seafloor is primarily controlled by the acoustic 

frequency, the acoustic impedance contrast between water and sediment, and the 

contributions from seafloor interface roughness as well as sediment volume 

inhomogeneity. Several studies (Goff et al., 2004; De Falco et al., 2010; Haris et al., 
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2012) while comparing the backscatter response with the ground truth sediment data 

have concluded that the acoustically soft fine sediments (M > 4) generally exhibit 

low backscatter intensity due to low density and sound velocity. On the flip side, the 

acoustically hard coarse sediments (M < 4) results relatively higher backscatter 

intensity due to scattering from coarse particles, lower porosity, higher density and 

sound velocity, and greater roughness of the water-sediment interface (Fig. 5.4). 

The benthic macro-fauna can compact and dilate the sediment, resulting 

modification in seafloor roughness, sediment density and fluctuations in the sound 

speed (Diaz et al., 1994). Besides, the hard body epifauna as an individual and group 

can scatter acoustic energy (Stanton et al., 2000). The collective biological processes 

might be controlling higher backscatter strength observed in the coarse sediment 

region with substantial occupancy of hard body organisms (Fig. 5.4). 

 

5.2.2 Macrobenthos-sediment relationship 

PCA indicates two major clustering patterns (Fig. 5.4). The number density of 

hard body organism is inversely correlated with the computed M. Whereas, the soft 

body abundance is linearly correlated with the estimated M. Two distinct feeding 

groups are observed from the study area: the deposit feeders in the shallow region 

(including polychaete worms and related soft body species like nematode, 

oligochaetes, nemertinea, and echurids) and filter feeders (hard body bivalves and 

gastropods) in deeper depths. 

Studies (Jayaraj et al., 2008; Ingole et al., 2010) have been conducted in past to 

report animal-sediment relationship along the Indian coast. Sanders (1958) and 

Jayaraj et al. (2008) suggested that the coarse sediment region reflects the 

environment with pronounced under water current activity (with filter feeder 

dominance). In contrast, the fine sediment region towards the shallow depth reflects 

the environment with feeble current.  The weaker current allows the fine particles to 

settle down and provides an adequate source of nutrition for deposit feeders. 

Therefore, only a limited amount of organic matter would be available in suspension 

as the food source for filter feeders and inhibits them from inhabiting in such 
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environments. The dominance of deposit feeders in the fine-sediment regions and 

filter feeders in the coarse sediment regions are well corroborated by the distinct 

trends observed in the computed backscatter and M values (Fig. 5.4). 

 

 

Fig. 5.4 The dendrogram in panel (a) and bioplot of PCA (b) illustrates the location 

wise clustering of measured and derived parameters. The acronym BS, SB, HB 

denotes backscatter, soft body and hard body benthic macro-fauna respectively. 
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5.2.3 Macrobenthos-roughness relationship 

The computed geoacoustic parameters (Haris et al., 2011) w2 and 2, that account 

for the interplay of sediment interface and volume scattering have been analyzed 

with the macrobenthos abundance. The variation of geoacoustic parameters 

conforms to the shape of the SBES echo-envelope and MBES angular backscatter 

data (e.g., peak of the echo-envelope along with the width, rise, fall time, and tail 

part). The bioturbation occurring at the seafloor interface and sediment volume can 

modify the shape parameters, and the extend of bioturbation gets reflected in the 

computed parameters (w2 and 2). The sensitivity analyses carried out on the shape 

of the echo-envelope data indicates lees-steep slope and reduced amplitude of the 

response curve with higher value of w2. The higher w2 has significant influence on 

the interface scattering and marginal effect on the tail part. The contribution of sub-

bottom scattering is conspicuous near the tail of the echo-envelope with relatively 

higher 2 value. The fine sediment provinces are penetrated more deeply by the 

acoustic signal, consequently the sediment volume scattering increases in 

comparison with the interface scattering. 

With reference to the multi-frequency inversion modeling study carried out by 

Haris et al. (2011), in the coarse sediment region, the w2 values were restricted 

within the range 0.002 to 0.005 cm4. In the fine sediment region, the w2 values were 

found to be less than 0.001 cm4. The corresponding GIS generated roughness map 

(Fig. 5.5) reveals relatively higher values of  w2 in the coarse sediment region with 

substantial occupancy of hard body organisms (Fig. 5.4). Likewise, the lower  w2 

values are apparent in the fine sediment provinces with dominant soft body 

abundance. The average value of 2 computed at three acoustic frequencies (Chapter 

3) were found to be relatively higher in the fine sediment region as compared to the 

coarse sediment provinces. Correspondingly, GIS generated volume scattering map 

(Fig. 5.6) indicates comparatively lower 2 values in the coarse sediment region with 

significant occupancy of hard body organisms (Fig. 5.4). Conversely, the higher 2 

values are evident in the fine sediment provinces with dominant soft body 

abundance. 
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Fig. 5.5 GIS-based image classification representing the variation of interface 

roughness spectral parameter w2 in relation to the benthic macro-fauna and 

sediment types at 33 (a) and 210 kHz (b). 
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Fig. 5.6 GIS-based image classification representing the variation of sediment 

volume scattering parameter 2 in relation to the benthic macro-fauna and 

sediment types at 33 (a) and 210 kHz (b). 

 

The biologically active marine sediments get continually modified due to the 

collective activities of epifauna (hard body organisms that live on the sediment 

surface) and infauna (soft body organisms living within the sediment). The epifaunal 
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activities basically include locomotion and home building that creates additional 

roughness at the sediment-water interface, causing relatively high interface 

scattering. On the other hand, the infaunal activity, including tube building is 

responsible for the vertical and the horizontal redistribution of solid material within 

the sediment volume. The process can create spatial and temporal inhomogeneities in 

sediment bulk properties (density, porosity, and compressibility). Such changes are 

mainly driven by burrowing and tube building by soft body infauna including 

polychaete worms. Accordingly, strong volume scattering is inevitable from the 

corresponding habitat region. In the present study, the high values of w2 and 2 are 

attributed to the coarse and the fine sediment region, with the dominance of hard 

body epifauna and the soft body infauna respectively (Fig. 5.4). 

 

5.3 Concluding remarks 

The multi-frequency sediment geoacoustic inversion results, derived from the 

MBES (Haris et al., 2011) and SBES (De and Chakraborty, 2011) data have been 

analyzed to demonstrate the interrelationship among the sediment texture and 

benthic macro-faunal abundance. Two distinct feeding groups were observed in the 

coarse and fine sediment regions. The preference of hard body organisms to coarse 

sediment region causes the relatively high interface scattering due to the collective 

epifaunal activities including locomotion and home building. In the fine sediment 

region, the tube building infaunal activity generated by the soft body organisms 

creates spatial and temporal inhomogeneities in the sediment bulk properties, 

evidencing dominant sediment volume scattering as compared to the interface 

scattering. 



 

 

 

Chapter 6 

 

Multifractal approach for seafloor 

characterization: Part 1. Application to 

multi-beam image data 

 

6.1 Introduction 

The seafloor bathymetry and the associated backscattering data of submerged 

objects have an extremely wide range of spatio-temporal scales necessitating 

application of “power law” to carry out the analyses. The power law behavior in such 

instances requires multifractal analyses (Mandelbrot1, 1967, 1989) in order to 

determine if both (seafloor backscatter and bathymetry image data) follow “fractal” 

statistics. It is imperative to treat such data as a scale invariant field requiring 

multifractal measures and exponent functions, rather than a unique scaling exponent 

(such as fractal dimension) (Hentschel and Procaccia, 1983). An infinite number of 

fractal dimensions would be needed to completely characterize the scaling, as 

evident in other fields like: satellite radiance data (Lovejoy et al., 2009b), medicine 

(Ivanov et al., 1999), and ecology (Seuront, 2010).   

                                                 
1 Benoit B. Mandelbrot is widely regarded as the “father of fractal geometry”. Mandelbrot was a 

mathematical genius who advanced the concept of power law scaling as the fundamental property of a 

broad range of natural processes and patterns in geophysics, mathematics, economics, and virtually all 

the branches of science. Mandelbrot died on 14 October 2010 in Cambridge, Mass., at the age of 85. 
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The two important formalisms of multifractal analyses such as: (i) “strange 

chaotic attractors” (Halsey et al., 1986) and (ii) “stochastic” multifractal fields 

(Schertzer and Lovejoy, 1987) have been used in this study. The first formalism is 

based on the “box counting” method. It involves analyses of multifractal distribution 

pattern using the correlation dimension D(q), and multifractal spectrum f(α) related 

shape parameters [i.e., width of the spectrum W, degree of asymmetry B, and 

stability of spectrum ∆f(α)]. The properties of these functions at different statistical 

moments are used to characterize the spatial distribution of seafloor backscatter and 

bathymetry seepage2 blocks used in this study. The other formalism allows 

quantification of the seepage blocks with three fundamental parameters namely, 

degree of multifractality α, sparseness C1, and degree of smootheness H (Gagnon et 

al., 2006). 

Dandapath et al. (2010) had reported seafloor seepages in the WCMI using 

MBES backscatter and bathymetry data (Fig. 6.1). The investigations were related to 

underlying geology, pockmark occurrences, overlying sediment texture, and 

sediment movements due to strong influences of monsoonal bottom currents. 

Thereafter, utilizing the method proposed by Seuront and Spilmont (2002), 

Dandapath et al. (2012) had noted the possible multifractal behavior of the MBES 

backscatter and bathymetry image data. Therefore, the present study involves 

quantitative estimation of the multifractal parameters from seafloor seepage to 

improve the understanding of the processes in the WCMI.  

The application of inversion modeling for seafloor roughness characterization 

impose a challenging task as most of the models presume the input data in stationary 

form. Therefore, the application of segmentation techniques (Malinverno, 1989) is 

indispensable and facilitates in achieving stationary profile data sets suitable for 

inversion modeling. The application of online segmentation techniques can also 

                                                 
2 Seafloor seepages offer important proxy for shallow or deep water hydrocarbon accumulations. 

Pockmark associated seepages (Hovland and Judd, 1988) are prevalent from sub-arctic to tropical 

seas, continental shelf to deep ocean basins, even in shallow and deep lakes under different geological 

environments. Pockmarks are craters in the seabed caused by fluids (gas and liquids) erupting and 

streaming through the sediments. The presence of fluid escape features like seafloor pockmarks was 

first discovered by King and MacLean (1970) over the Nova Scotian shelf.  
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significantly reduce the frequency of time consuming ground-truth measurements 

required for the validation of model parameters. The use of soft-computing technique 

(Alexandrou and Pantzartzis, 1993; Michalopoulou et al., 1995) including artificial 

neural networks (ANNs) were effectively demonstrated for hydroacoustic data 

classification (Chakraborty et al., 2015) to segment the data into stationary form.         

The application of the multifractal techniques could substantiate the hitherto 

applied numerical inversion based characterization (De and Chakraborty, 2011; 

Haris et al., 2011), and the soft computational technique based classification 

(Chakraborty et al., 2001, 2004; De and Chakraborty, 2009) of the seafloor 

sediments employing the backscatter data.  
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Fig. 6.1 (a) Study blocks including some of the main structural features of the 

region of the WCMI. (b) Backscatter map of the study area showing 160–320 m 

isobaths with 20 m interval. Pockmarks are indicated by crossed circles. Black, 

blue and red color mark represents circular, elliptical and elongated pockmarks 

respectively. The dashed lines indicate location of the identified faults. The black 

arrows show bottom current directions. Solid colored squares represent the 

sediment types (modified after Dandapath et al. 2010).  
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6.2 Data sets 

The backscatter and bathymetry data used in the present study were acquired 

from the central part of WCMI, where the water depth varies between 145–330m 

(Fig. 6.1). Simrad EM 1002 MBES operating at 95 kHz was used to acquire the data. 

The important morphological aspects of the study area have been investigated in 

detail, and 112 pockmarks related to the seepages were identified from the seafloor 

maps generated using ArcGIS (Dandapath et al., 2010). The backscatter and 

bathymetry image blocks having 400 × 400 pixels, were classified according to the 

degree of seepage based on the backscatter strength as well as fractal dimension 

(determined using box-dimension technique) (Dandapath et al., 2012). The analyses 

carried over each gray tone image blocks (with digital numbers ranging 0 to 255) 

suggest that the area with very high seepage has higher fractal dimension and lower 

dimension with very low seepage. In this study, six representative seepage blocks 

i.e., F20, J19, F07, Q19, S23 and N25 having very high, high, moderate, low, very 

low, and no evidence of seafloor seepages respectively (Fig. 6.2) have been 

considered for analyses.  

 

 

Fig. 6.2 Backscatter (in digital number: 0–255) and bathymetry seafloor seepage 

blocks selected from the Figure 6.1 for the present investigation. 
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6.3 Strange attractors  

Self-similar fractals are scale invariant, i.e. possessing a structure with a basic 

characteristic of nonscaling. They can be divided into two categories. The first one is 

the monofractal, having strict geometric self-similarity that can be described with a 

single fractal dimension. The other is the multifractal that requires a series of fractal 

spectrum rather than a unique fractal dimension. Highly intermittent multifractal 

fields common in nature are the generic outcome of multiplicative cascade processes 

dominated by scaling non-linear interactions.  

The multifractal formalism based on the strange chaotic attractors followed here 

identifies a set of parameters derived from the shape of such a fractal spectrum. As a 

part of the image analyses, the variation of these shape parameters among the 

seafloor seepage blocks is examined to measure the “complexity” of the field. In 

view of this, a probability distribution is estimated using the box counting method 

(Chhabra and Jensen, 1989). The partition function χ(q,ε) that describes the 

probability of “containing the object” (i.e., the values of backscatter and bathymetry 

in this application), within each box i, can be calculated for different moments of q 

using: 
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where m is the mass of the measure, ε is the length of the box and n(ε) is the number 

of boxes. Based on this, the mass exponent function τ(q) shows how the moments of 

the measure scales with the box size and is given as: 
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The generalized fractal dimension function D(q) can be calculated from τ(q) as 

)1()()(  qqqD   (where q≠1). The singularity index (α) is subsequently 

determined to calculate the singularity spectrum f(α) by Legendre transformation of 

the τ(q) curve as dqqdq )()(   . Finally the f(α), which represents the fractal 

dimension of the subset with the same singularity strength (α) is determined to 
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describe the characteristic of the different hierarchy of fractal as 

)()()( qqqf   . 

An image can be realized as multifractal when the graph of α vs. f(α) (i.e., 

multifractal spectrum), exists and has the shape of an inverted parabola. If the curve 

f(α) converges to a single point, it can be termed as monofractal wherein D(q) is 

constant for all values of q. The width of the generalized dimension i.e., ∆D(q) 

=D(qmax) – D(qmin), is a measure of multifractality and indicates the deviation from 

monofractal behavior. The particulars of the shape parameters used to describe the 

multifractality (based on the said formalism) are shown in Figure 6.3. 

 

Fig. 6.3 Schematic representation of (a) generalized correlation dimension function 

D(q) for estimation of the parameter ∆D(q) and (b) multifractal spectrum  f(α) for 

assessment of the three multifractal parameters i.e., width of the spectrum W, 

degree of asymmetry B and stability of the spectrum ∆f(α) based on strange 

attractor formalism. 

 

In order to distinguish the multifractal spectrum f(α) quantitatively, it is 

convenient to calculate the width of the spectrum W so as to measure the overall 

variability (Fig. 6.3). A wider f(α) spectrum is indicative of larger W, denoting 

multifractality. Such a situation reveals a “heterogeneous” seafloor. In the case of a 

monofractal set, W would be small and tending to “zero”. The spectrum will 

converge to a single point signifying a “homogeneous” seafloor. The other parameter 

B measures the asymmetry of the curve and shows the dominance of low or high 

fractal exponents (Szczepaniak and Macek, 2008). The value of B is zero for 
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symmetric shapes and positive or negative for right or left-skewed shapes 

respectively. A left-skewed spectrum denotes low fractal exponents dominating the 

distribution, while a right-skewed spectrum implies dominance of high fractal 

exponents (Telesca et al., 2003). Thereafter, the values of αmin and αmax are estimated 

to obtain the parameter ∆f(α) as ∆f(α) = f(αmin)–f(αmax). |∆f(α)| defines the undulation 

or instability of the system under study. The degree of undulation or instability is 

minimum for the smallest ∆f(α) (≈0). 

 

6.4 Stochastic multifractal formalism 

 

6.4.1 Moment scaling function and universal multifractals 

The seafloor bathymetry and the related backscatter data can be modeled taking 

into consideration a small number of (generally deterministic) or many (stochastic) 

degrees of freedom. In order to incorporate high degree of freedom and variability 

over a wide range of scales, stochastic approaches are preferred as they have infinite 

dimensional probability space3 (Lovejoy et al., 2009a). One way to characterize the 

statistics of stochastic processes is to use its statistical moments. When a multifractal 

cascade has proceeded over a scale ratio λ=L/l (L and l representing largest and 

smallest scale4 in the data), the statistical moments of the conserved multifractal flux 

(the field values of the MBES bathymetry\backscatter image and the pressure values 

of the SBES echo envelope5) measured at scale λ, follow a power law that can be 

expressed as (Schertzer and Lovejoy, 1987, 1991): 

 )(qKq          (6.3) 

where λ is the scale by scale conserved multifractal flux, q is the order of the 

moment, and  K(q) is a nonlinear convex function. K(q) characterizes the scaling of 

                                                 
3 See Figure 1.2 in Chapter 1. 
4 Two types of data are utilized in this chapter. In Part 1, the MBES bathymetry and backscatter image 

data have been analyzed in the frame work of stochastic multifractal formalism. In Part 2, the same 

formalism has been applied to the time dependent SBES echo envelope data. Note that the term 

“scale” mentioned here is different for MBES and SBES data. The spatial scale in “meter” is 

applicable to MBES image data and the temporal scale in “millisecond” is ascribed to SBES echo 

envelope.    
5 See Part 2. 
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the moments of the λ, hence it is called the “moment scaling function”. With 

reference to the existence of stable attractive multifractal processes called universal 

multifractals (Schertzer and Lovejoy, 1987, 1991, 1997; Lovejoy and Schertzer, 

1990), K(q) can be expressed as: 

)(
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)( 1 qq
C

qK 

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
      (6.4) 

where α6 and C1 are the basic parameters characterizing the scaling properties of the 

multifractal flux λ. The parameter α is the degree of multifractality and varies from 

0 to 2, where α=0 is the monofractal case and α=2 is the log normal case. This 

parameter describes how rapidly the fractal dimensions of the sets at different 

thresholds vary as they leave the mean singularity. C1 is the codimension parameter 

of the set. Low value of C1 (≈ 0), implies that the field values are close to the mean. 

C1 (> 0) indicates that the region making the dominant contribution to the mean is a 

sparse fractal set such that the vast majority of the field doesn’t contribute (Gagnon 

et al., 2006). The function K(q) is related to the generalized dimension D(q) as: 
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where d is the dimension of the space (=2 here) (Seuront, 2010).  

 

6.4.2 Fractionally Integrated Flux model  

The multiplicative process (the cascade) discussed above generates a scale by 

scale conserved multifractal flux λ characterized by a moment scaling function K(q). 

The spectrum of such a conserved flux has an exponent 1)2(1  K . In order to 

discriminate the seafloor echo-envelopes (having β ≈ 2), FIF model (Gagnon et al., 

2006) has been utilized. The FIF model of the multifractal flux provides the 

following statistics in relation to the intensity field7 Iλ at scale ratio λ as (Schertzer 

and Lovejoy, 1987, 1991): 

.HI          (6.6) 

                                                 
6 The symbol  used in the strange attractor formalism represents the singularity index.  
7 For MBES image data the intensity field represents the values of bathymetry and backscatter within 

each bock. Whereas, in SBES echo envelope data the intensity field signifies the pressure values.  
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Here the linear scaling H  corresponds to a fractional integral of order H. The 

parameter H can be designated as a degree of smootheness where higher H signifies 

smoother fields. Characterization of seafloor backscattering using FIF model is 

difficult to distinguish the underlying cascade dynamics as it involves a convolution 

due to the exponent H. Therefore resorting to the use of “trace moments” (that 

directly characterizes the conserved multifractal flux λ), is necessary so that the 

differentiation is possible8 (Gagnon et al., 2006; Chakraborty et al., 2014).  

The first step to obtain λ from the intensity field involved the removal of H in 

the Eq.  (6.6). This is equivalent to a filtering as in Fourier space with “power law”, 

which is a scale invariant smoothing. On elimination of H , only the underlying 

conserved multifractal flux λ is retained. The next step was to examine the scaling of 

the statistical moments of λ and compare them with Eq. (6.3). To this end, we 

normalized λ so that the ensemble average of all the samples is <λ > = 1. 

Thereafter, the qth power of the samples (bathymetry\backscatter and pressure 

values) over the sets of size (or time interval) l= L/λ was determined. It gives the 

moments of the normalized multifractal flux for a given value of q. This procedure 

was performed with different values of q and K(q) was evaluated from the 

logarithmic slopes (Fig. 6.49). The multifractality of the intensity field has been 

validated with nonlinear K(q). Using the values of K(q) the parameters C1 and α were 

estimated as C1=K '(1) and α=K "(1)/C1 (Stolle et al., 2009; Gires et al., 2013). The 

values of α and C1 combined with spectral slope β were utilized to estimate values of 

H, using the relationship β=1+2H–K(2). The three universal multifractal parameters 

(α, C1, and H) computed here, determine the statistics of the data at all scales and 

moments. 

 

                                                 
8 The trace moment algorithm accessible on the website: http://www.physics.mcgill.ca/~eliasl/ has 

been used in this study. 
9 The corresponding figure for SBES data is illustrated in Part 2. 
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Fig. 6.4 The scaling behavior of the statistical moments of the two representative 

backscatter and bathymetry image data is illustrated here by the straightness of the 

Log/log curves of the normalized trace moment (M) as functions of the scale ratio 

λ=L/l. The values of the exponent q of each trace moments are varied between 0-2. 

The linear deviation of dashed curves for q≥ qc>1.5 is indicative of a multifractal 

phase transition. 
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6.5 Results and discussion 

 

6.5.1 Strange attractors based technique 

As mentioned earlier, the degree of multifractality can be easily related to the 

width of the generalized dimension ΔD(q) and the f(α) spectrum. The computed 

ΔD(q) values get successively reduced from maximum to minimum, in the case of 

the backscatter blocks: Q19, J19, S23, F07, N25 and F20, associated with low, high, 

very low, moderate, nil, and very high seepages respectively (Fig. 6.5). Such 

reductions in ΔD(q) values indicate decrease in the degree of multifractality. 

Generally, low ΔD(q) values of bathymetry data blocks indicate comparatively 

reduced multifractality than the corresponding backscatter block (Fig. 6.5). However, 

gradual reduction of ΔD(q) values among the bathymetry data blocks show 

successive reduction in the degree of multifractality or monofractality (particularly in 

Q19 and S23 blocks) as D(q) vs. q curves are unvarying. Interestingly, the overall 

observation of the D(q) vs. q plots of backscatter as well as bathymetry data blocks 

imply similar construal for f(α) spectrum. The Q19 and S23 bathymetry blocks show 

single data point in the f(α) spectrum i.e., monofractality (Fig. 6.5). 

It is further observed that the shape parameters estimated from the f(α) spectrum 

also provide information about the multifractality (Telesca et al., 2003). The W 

values of the four backscatter blocks, Q19, S23, J19 and F07, show gradual decrease 

in the degree of multifractality (heterogeneity) in a decreasing order. Though, Q19 

and S23 blocks are located at a relatively shallower depth (≈180m), they have low to 

very low backscatter strength indicating dominant multifractality (heterogeneity) 

(Fig. 6.6). Intriguingly, bathymetry blocks with negligible W values display 

relatively reduced degree of multifractality as compared to the corresponding 

backscatter blocks. This may be due to the presence of shell materials along with 

coarse sediments and the changes in the seafloor roughness at the textural level 

caused by bottom currents (Fig. 6.1) (Dandapath et al., 2010, 2012). Such changes at 

the textural level can only be notably detected in the backscatter data as compared to 

the bathymetry data. 
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Fig. 6.5 Block wise generalized correlation dimension D(q) and multifractal 

spectrum f(α) plots for (a) backscatter strength, and (b) bathymetry data of the 

study blocks. 
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Fig. 6.6 Results obtained using the two multifractal formalisms. (a) Block wise 

multifractal spectrum f(α) related shape parameters estimated using strange 

attractor formalism. (b) Scatter plots of the three multifractal parameters [W, B, 

and ∆f(α)]. The bathymetry blocks are encircled. (c) Block wise multifractal 

parameters estimated using stochastic multifractal formalism. (d) Scatter plots of 

the three multifractal parameters (α, C1 and H). The solid and hollow shapes 

represent different study blocks as shown in the legend. 
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The estimated B values using backscatter image blocks reveal that all the blocks 

are positive or right skewed except S23. Among them, the blocks J19 and F20, 

located away from fault regime (Fig. 6.1), possess higher B values indicating 

dominance of higher fractal exponents (Fig. 6.6). Whereas S23 block possess a 

negative value of B showing left skewed spectrum i.e., the dominance of lower 

fractal exponents. The estimated B parameters of all the bathymetry blocks are 

significantly low and negative (left skewed), indicating that the distributions are 

dominated with lower fractal exponent.  

The positive values of the parameter ∆f(α), are seen successively diminishing in 

the case of backscatter image blocks J19, F07, F20, Q19, N25 and S23, suggesting 

reduction in the undulations or instability at the textural level (Fig. 6.6). However in 

the case of bathymetry image blocks, low negative values of ∆f(α) are observed in all 

the six blocks. The variability of the three parameters [W, B, and ∆f(α)] of the  

backscatter blocks is more conspicuous than their corresponding parameters of the 

bathymetry blocks, indicating dominant  fine scale undulations in the backscatter as 

compared to the depth data. The scatter plots (Fig. 6.6) of the three parameters affirm 

the location wise study results using the strange attractor technique.   

6.5.2 Stochastic multifractal field based technique 

In our analyses, the universal form [determined from Eq. (6.4) based on the 

estimated α and C1] fits the empirical K(q) (determined from the logarithmic slopes 

of trace moments) quite well. A “multifractal phase transition” (Schertzer and 

Lovejoy, 1992) is observable in the plot (Fig. 6.4) of empirical and theoretical K(q) 

curves, indicating that the measured moments will only have the theoretical K(q) for 

q below a critical moment qc. Beyond qc there is a multifractal phase transition where 

K(q) becomes asymptotically linear for q≥ qc>1.5 (a sample size-dependent effect 

corresponding to the domination of the statistics by the largest flux values present). 

Indeed, for q<1.5, the deviations from the universal form are negligible.   

The α values of the bathymetry and backscatter blocks show identical trend (≈2) 

expressing similar degree of multifractality excluding Q19 and S23 of the 

bathymetry blocks (Fig. 6.6). The low α values of the two blocks are well 
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corroborated with the results of the other formalism signifying monofractality. The 

C1 values of the backscatter and bathymetry blocks are found to be varying between 

0.058 and 0.091 and between 0.038 and 0.690 respectively. Excluding the S23 

bathymetry block (C1= 0.690), the lower values of C1 attributed to the remaining 

blocks, indicate that the field values are close to the mean values. Fluctuations in 

higher values of H between 0.636 and 0.706 are observed in the backscatter image 

blocks, except in the N25 block (0.412) having no evidence of seepages. Whereas, 

lower H values (0.255–0.480) are observed in the bathymetry as compared to the 

backscatter blocks at the same location. The estimated H value of N25 bathymetry 

block is the lowest.  

Cluster analyses output (Fig. 6.6) of H vs. α reveals a uniform α in the 

backscatter and bathymetry blocks except in the Q19 bathymetry block. However, 

the H value of the bathymetry block S23, does not subsist owing to the isotropic field 

condition as mentioned in p. 549 of Gagnon et al. (2006). Remarkably the clustering 

tendency around the high α (≈ 2) and low C1 of the bathymetry and backscatter data, 

show extremely close relationship among, the six backscatter and four bathymetry 

blocks (Fig. 6.6). However both Q19 and S23 bathymetry blocks possess comparable 

α values and relatively higher C1 values. The C1 (0.690) value of the S23 bathymetry 

block espouse the setting wherein the depths at specific locations (i.e., center of the 

pockmark) are higher as compared to the rest of the locations within the block. In 

this study, the stochastic multifractal based technique show no significant variation 

in α and C1 of the backscatter field data, except parameter H.            

 

6.6 Concluding remarks 

Two multifractal formalisms (strange attractor and stochastic) were applied to the 

backscatter and corresponding bathymetry blocks to characterize the pockmark 

seepage associated seafloor in the WCMI. The outcome of the application of the 

strange attractor technique, ΔD(q) and the f(α) spectrum related shape parameters 

[W, B and Δf(α)] reveal multifractal character of the six backscatter blocks. The 

variability of the estimated shape parameters is more apparent in the backscatter as 
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compared to the corresponding bathymetry blocks. This can be related to the 

interpretation of ΔD(q), and f(α) parameters of the ECG signal of a healthy and a 

diseased heart (Stanley et al., 1999). The above referred multifractality aspects 

support the fact that greater the data heterogeneity, higher would be the system 

stability. Characteristically, higher stability can be realized when |∆f(α)| is low. 

Appropriately Q19 and S23 backscatter blocks reveal low |∆f(α)| values. The 

stability attributed to the blocks could be ascribed to their location in shallow depth 

(≈180m) as compared to the rest of the blocks. Moreover, the above blocks possess 

coarse seafloor sediments having dominant shell materials, and are influenced by the 

monsoonal bottom currents, resulting in greater heterogeneity (Dandapath et al., 

2010).  

The three computed parameters (α, C1, and H) from bathymetry and backscatter 

blocks using stochastic multifractal formalism show almost similar degree of 

multifractality with the exception of  Q19 and S23 bathymetry blocks. The low 

values of the two blocks are in sound corroboration as they show monofractality. 

Generally the level of the C1 values of backscatter data blocks are found to be higher 

(0.058–0.091) than the bathymetry (0.038–0.690). In the case of backscatter image 

blocks, higher H values (0.636–0.706) are observed except in N25 block (0.412) 

having no seepages. On the other hand, lower H values (0.255–0.480) are observed 

in the bathymetry blocks in relation to the backscatter. The advantage of the 

stochastic multifractal technique is that it provides three distinct parameters, with 

which it is easier to comprehend the multifractality aspects of the seafloor than the 

strange attractor based f(α) spectrum related shape parameters. Cheng and Agterberg 

(1996) had made assessment between the interrelationships of the two methods (akin 

to the ones we have used here) and had suggested the aptness of the multifractal 

spectrum f(α) over the codimension function C1. The two multifractal techniques 

utilized in our work is a first-time attempt to analyze the high resolution MBES 

backscatter and bathymetry data. The present investigation employing both the 

methods ascertain an important finding, however further interest is required to 

expound the techniques.  



 

 

 

Chapter 6 

 

Multifractal approach for seafloor 

characterization: Part 2: Application to 

single-beam echo envelope data 

 

6.7 Introduction 

Acoustic remote sensing methods using the normal-incidence SBES and MBES 

are mainly concern with identifying, classifying and mapping surficial geological 

features of the seafloor. These methods are well recognized as a useful tool in 

oceanography to characterize the seafloor over a wide area and facilitate preliminary 

geological analyses (Anderson et al., 2008). The seafloor characterization and 

classification methodologies available in the literature using SBES and MBES can be 

traditionally grouped into two categories namely, model based techniques and 

empirical methods. The model-based techniques often utilize physics-based acoustic 

backscatter models to characterize the seafloor sediments by optimizing the match 

between the measured and the modeled signals (Sternlicht and de Moustier, 2003a, 

b; van Walree et al., 2006; De and Chakraborty, 2011; Snellen et al., 2011; Williams 

et al., 2012; Snellen et al., 2013). The empirical methods however rely on the 

statistical and artificial neural network based approaches to correlate the features of 

echo signals with the sediment type (Chakraborty et al., 2004; van Walree et al., 
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2005; De and Chakraborty, 2009; Amiri-Simkooei et al., 2011; Madricardo et al., 

2012; Chakraborty et al., 2015). 

The success of the model-based inversion procedure depends on the scattering 

theory employed in the forward backscatter model and requires detailed 

understanding of the scattering mechanism. The study of sound interaction with the 

seafloor and the corresponding inversion modeling impose a challenging task, 

particularly with the existence of diversity in the benthic habitat of the area 

(Holliday, 2007). The scattering process of acoustic wave is influenced by the 

presence of benthic fauna responsible for modifying the small-scale morphological 

features and the density fluctuations within the sediment volume (in addition to the 

hydrodynamic processes). Incorporation of the number density of biological 

organisms and their collective activities (i.e. burrowing and home building) in the 

forward backscatter model complicate the inverse modeling even further. The 

continuous form of seafloor heterogeneity (due to bioturbation, sediment deposition, 

or hydrodynamic processes) therefore necessitates the development of versatile and 

robust statistical techniques to determine the seafloor roughness statistics (Jackson 

and Richardson, 2007). Accordingly, to further improve the seafloor feature 

discrimination we introduce an empirical method that uses the scaling and 

multifractality of the dual frequency SBES echo-envelopes at 33 and 210 kHz (Fig. 

6.7). 

The “stochastic” multifractal formalism followed herein discriminates the SBES 

echo-envelopes with three fundamental parameters namely, degree of multifractality 

α, sparseness C1, and degree of smootheness H (related mathematical equations are 

described in Part 1 of Chapter 61). In the specific framework of stochastic based 

“universal multifractals” (Schertzer and Lovejoy, 1987, 1991, 1997; Lovejoy and 

Schertzer, 1990), the statistics of the underlying cascade process is completely 

characterized by the aforementioned scale invariant fundamental parameters 

(Gagnon et al., 2006). The reason for using multifractal framework is to build on the 

fact that the layers of seafloor imprints a fractal signature on the echo signal along 

                                                 
1 See Eq. (6.4) and related explanation. 
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with the self-similarity of sediment ripples of various sizes. Moreover, acoustically 

soft sediments are penetrated more deeply by acoustic signals and produce longer 

and corrugated echoes than hard sediments, evidencing fractal structures. Therefore, 

the estimated multifractal parameters of echo-envelopes as a measure of complexity 

and roughness proffer useful information to improve seafloor feature discrimination. 

 

 

Fig. 6.7 Panel (a) represents GIS-based sediment distribution map of the study area 

indicating the acoustic and sediment data acquisition locations. The acoustic 

data were sampled with RESON-NS 420 dual-frequency SBES along the three 

tracks. The ground truth sediment information (given Table 2.1) was collected 

using a Van-Veen grab. Panel (b) represents the graphical abstract of the 

methodology implemented in the study. The dual frequency echo-envelopes from 

20 locations are subject to stochastic based universal multifractal analyses to verify 

the existence of multiscaling. 
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6.8 Multiscaling  

Many geophysical fields have been shown to be multifractal over various ranges 

(Lovejoy and Schertzer, 2007a). However, in the specific case of SBES echo 

envelopes, the power law behaviour of the data calls for stochastic multifractal 

analyses to verify the existence of multiscaling. When a multifractal cascade proceed 

over a scale ratio λ=L/l (L and l representing largest and smallest time scale in the 

data), the statistical moments of the conserved multifractal flux λ (the pressure 

values of the echo envelope data) measured at scale λ, follow a power law that can be 

expressed using Eq. (6.3). The multiplicative process (the cascade) mentioned here 

generates a scale by scale conserved multifractal flux characterized by a moment 

scaling function K(q)2. The K(q) characterizes the scaling of the moments of the λ 

and can be termed as the “moment scaling function”. Generally, the spectrum of such 

a conserved flux has an exponent 1)2(1  K . In order to discriminate the SBES 

echo envelope data (having β ≈ 2), FIF model (Gagnon et al., 2006) has been utilized 

(the theoretical formalism and the related equations are described in the Part 1 of 

Chapter 6). However, the characterization of SBES echo envelopes using FIF model 

is difficult to distinguish the underlying cascade dynamics, because it involves a 

convolution due to the exponent H (see Eq. 6.6). Therefore, resorting to the use of 

“trace moments” (that directly characterizes the conserved multifractal flux λ), is 

necessary so that convenient differentiation is possible. The multiscaling of the 

statistical moments corresponding to the SBES echo envelopes can be verified by the 

straightness of the curves fitted in the resulting Log/log plot between the normalized 

trace moments and the scale ratio λ (Fig 6.8)3. 

                                                 
2 See Eq. (6.4). 
3 The multiscaling of trace moments generally holds quite well up to q<1.6. The deviation of trace 

moments (dots) from the fitted linear curve is indicative of “break” in the multiscaling. The break is 

less apparent for low q (<1.6) values, but becomes conspicuous for large q (>1.6) values. The break 

associated with the time dependent seafloor backscattering is possibly due to the collective effect of 

inherent heterogeneities present in the seafloor (mainly because of the coarse sand particles, shells, 

gas bubbles, benthic organisms and sediment layers). Depending on acoustic wavelength/frequency 

the individual features such as shells and other roughness elements at the sediment-water interface 

may be more appropriately characterized as discrete scatters than as micro topography (Jackson and 
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Fig. 6.8 Panels (a) and (b) shows the Log/log plot of the normalized trace moments 

as a function of the scale ratio λ=L/l at 33 and 210 kHz. The multiscaling of the 

statistical moments of the representative clayey silt and sand substrate is verified 

by the straightness of the curves. The q values of the each trace moments are 

varied between 0 and 2, in intervals of 0.1 (from top to bottom, q=2–1, 0.1, 0.9, 

0.2, 0.8, 0.3, 0.7, 0.4, 0.6 and 0.5).  

 

 

 

                                                                                                                                          
Richardson, 2007). An appropriate assessment in this regard is difficult due to lack of supporting data 

[Similar results were also reported earlier by Gagnon et al. (2006) and Lovejoy and Schertzer (2007a) 

while analyzing the high resolution Lower Saxony DEM data over Germany. The break observed in 

their analyses was due to the effect of “trees” evident in the high resolution topography data]. 
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6.9 Results and discussion 

The following sections describe the analyses of the estimated universal 

multifractal parameters (at 33 and 210 kHz) along with ground truth values of the 

mean grain size of the seabed sediment. The end results are statistically analyzed and 

compared to the ground truth data as well as with the previously estimated sediment 

geoacoustic inversion results (De and Chakraborty, 2011) obtained at the same 

locations.  

 

6.9.1 Sediment distribution 

The percentage distribution of sediment composition indicates the presence of 

four sediment types: clayey-silt, silt, silty-sand and sand with varied levels of mixing 

of three textural grades namely sand, silt, and clay. The important substrate 

characteristics of the study area have been investigated in detail (Haris et al., 2012), 

and four distinct sediment provinces were identified from the map generated using 

GIS (Fig. 6.7).  The sediment texture was relatively coarse in the deeper depths (60–

109 m) whereas fine-grained sediment was found in the shallow depth region (29–54 

m). The high percentage distribution of fine-grained sediment in the shallow depth 

region is being governed by a set of sedimentological and hydrodynamic conditions. 

The study area receives relatively high annual rainfall, which can bring the sediment 

load through the rivers and discharges to the shallow water regions of the study area. 

Besides, the shallow region is influenced by an environment with a feeble current 

that allows fine particles to settle down as compared to the regions of higher depth. 

These processes might have resulted in the accretion of fine sediment in the shallow 

depth region.   
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6.9.2 Multifractal phase transition 

Self-Organized Criticality (SOC) was first introduced by Bak et al. (1987) as an 

explanation to the 1/f noise detected in various dynamical systems. The SOC is 

generally evident in multifractal processes along with a multifractal phase transition 

(Schertzer and Lovejoy, 1992; Schertzer et al., 1993; Hooge et al., 1994; Schmitt et 

al., 1994; Garrido et al., 1996; Stolle et al., 2009). In our analyses, the universal 

form (determined from Eq. 6.4 based on the estimated α and C1) fits the empirical 

K(q) (determined from the logarithmic slopes of trace moments) quite well. A 

multifractal phase transition is observable in the plot (Fig. 6.9) of empirical and 

theoretical K(q) curves, indicating that the measured moments will only have the 

theoretical K(q) for q below a critical moment qc. Beyond qc there is a multifractal 

phase transition where K(q) becomes asymptotically linear. The linear behaviour of 

the empirical moment scaling function is either due to sampling limitations (i.e. 

second-order multifractal phase transition; Schertzer and Lovejoy, 1992) or its 

association with a divergence of statistical moments (i.e. first-order multifractal 

phase transition; Schertzer and Lovejoy, 1992). In the first-order multifractal phase 

transition, qc corresponds specifically to maximum singularity measured and is 

associated with the occurrence of very rare and violent singularities, whereas in the 

case of a second-order multifractal phase transition, qc corresponds to the maximum 

singularity effectively measurable from a finite sampling (Seuront et al., 1999).  

In order to differentiate between first and second order multifractal phase 

transitions, we compare the theoretical value of the critical moment qs with the 

empirical critical moment qc calculated from the K(q) curve. The theoretical value of 

the critical moment qs can be computed as (Schertzer and Lovejoy, 1992): 

.
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qs       (6.7) 

If qc ≈ qs, the phase transition can be termed as a second-order multifractal phase 

transition wherein the critical moments are only related to sampling limitations. 

Also, if qc < qs the critical moments qc are independent of the sampling and 

characterizes the occurrence of very rare and violent singularities present in the 
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dataset (i.e. first-order multifractal phase transition) (Seuront et al., 1999). Using the 

values of C1 and α, the average qs values computed for coarse sediment region are 

found to be 2.32 and 2.16, respectively at 33 and 210 kHz, whereas in fine sediment 

region, the average qs values are observed to be 4.22 and 3.97, respectively at 33 and 

210 kHz. The estimated qs values indicate a first-order multifractal phase transition 

(qc<qs) in the dual frequency echo-envelopes with the occurrence of rare and violent 

singularities in the dataset. The detection of the presence of a first-order multifractal 

phase transition possibly suggests that the time dependent dual frequency seafloor 

backscattering could be a SOC process.   

 

 

Fig. 6.9 Comparison between the empirical (solid curve) and theoretical (dash 

curve) moment scaling function K(q) as a function of q. The empirical K(q) values 

of the  representative clayey silt and sand substrates are determined from the 

logarithmic slopes of trace moments illustrated in Figure 6.8. The theoretical K(q) 

values are calculated using Eq. (6.4) based on the computed α and C1. The linear 

deviation of theoretical curves beyond q≥ qc>1.25 is indicative of a first-order 

multifractal phase transition, caused by the rare and violent singularities in the 

dual-frequency data. 
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6.9.3 The universal multifractal parameters 

The dual frequency universal multifractal parameters were analyzed along with 

the ground truth values of the mean grain size (M) to understand their relationships. 

The C1 values are negatively correlated with the measured M, having correlation 

coefficients of –0.96 and –0.92, respectively at 33 and 210 kHz (Fig. 6.10). The C1 

values decreases with increasing weight percentage of both silt and clay fraction 

(with M > 4). Concurrently, the C1 values increases linearly with increasing 

percentage content of sand fraction (with M < 4). The range of C1 values associated 

with coarse and fine sediments vary between 0.171–0.249 and 0.035–0.089 and 

between 0.180–0.294 and 0.051–0.090, respectively at 33 and 210 kHz. Moreover, in 

coarse sediment region, the average C1 values are restricted to values around 

0.203±0.0222 and 0.209±0.0372, respectively at 33 and 210 kHz. In fine sediment 

region, the average C1 values are found to be within 0.066±0.0162 and 

0.0722±0.0115, respectively at 33 and 210 kHz. In brief, the C1 values are well 

clustered at both the acoustic frequencies with fewer fluctuations for the fine 

sediment as compared to the coarse sediment region found at deeper depths (Fig. 

6.10). The relatively low C1 values attributed to the fine sediment region indicate that 

the field values (pressure values) are close to the mean values. 

 

Table 6. 1 Summary of universal multifractal parameters.  

Sediment β α C1 H 

33 

kHz 

210 

kHz 

33 

kHz 

210 

kHz 

33 

kHz 

210 

kHz 

33 

kHz 

210 

kHz 

Clayey 

Silt 

2.74 

± 

0.074 

2.64 

 ±  

0.085 

1.91 

± 

0.056 

1.91 

± 

0.029 

0.064 

± 

0.019 

0.068 

± 

0.011 

0.92 

± 

0.031 

0.87 

± 

0.038 

Silt 2.68 

± 

0.017 

2.51  

±  

0.061 

1.93 

± 

0.040 

1.95 

± 

0.035 

0.067 

± 

0.006 

0.079 

± 

0.009 

0.91 

± 

0.010 

0.86 

± 

0.051 

Silty 

Sand 

2.32 

± 

0.09 

2.43  

±  

0.032 

1.89 

± 

0.037 

1.94 

± 

0.046 

0.189 

± 

0.013 

0.232 

± 

0.048 

0.92 

± 

0.044 

0.94 

± 

0.037 

Sand 2.34 

± 

0.090 

2.39 

 ± 

0.220 

1.91 

± 

0.075 

1.93 

± 

0.034 

0.212 

± 

0.023 

0.226 

± 

0.032 

0.95 

± 

0.023 

0.95 

± 

0.018 
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The α values of the dual frequency echo-envelopes show identical trend (≈1.93), 

expressing similar degree of multifractality in coarse and fine sediment provinces 

(Fig. 6.11 and Fig. 6.12). The H values signifying the degree of smootheness of the 

data associated with coarse and fine sediments vary between 0.857–0.999 and 0.888–

0.984 and between 0.887–0.986 and 0.804–0.913, respectively at 33 and 210 kHz. 

The scatter diagram (Fig. 6.12) of H values at 33 and 210 kHz reveals that the values 

computed at 210 kHz are confined within 0.874±0.0406 in fine sediments and within 

0.951±0.0268 in coarse sediments. However, at 33 kHz the calculated H values do 

not exhibit any apparent trend distinguishing between the fine and coarse sediment 

provinces. The obtained results provide a construal that is similar to the previously 

estimated sediment geoacoustic inversion results (discussed in the Chapter 3). 

Generally, the dual frequency universal multifractal parameters among the coarse 

and fine sediments shows subtle difference in α and H, whereas the codimension 

parameter C1 representing the sparseness of the data is varying (Fig. 6.12 and Table 

6.1). This suggests that the physics of scattering mechanism responsible for the 

variation in C1 is different. 
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Fig. 6.10 Frequency wise scatter plot of the measured M  and computed 

codimension parameter C1 at 33 and 210 kHz. The shaded region demarcates the 

boundaries of C1 in coarse and fine sediment provinces.  
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Fig. 6.11 A quantitative comparison between the scale invariant multifractal 

parameters (α, C1, and H) at 33 and 210 kHz. The shaded region represents the 

coarse and fine sediment provinces. 
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Fig. 6.12 Panel (a) shows the comparison of the computed multifractal parameters 

(α, C1, and H) at frequencies 33 and 210 kHz. The C1 values are well clustered, 

demarcating the coarse and fine sediment provinces. The horizontal dash line (red) 

demarcates the H values at 210 kHz in fine and coarse sediment provinces. The 

variations of multifractal parameters for different frequencies with the same 

sediment types at each location are represented in panel (b), the shaded region 

corresponds to coarse sediment locations. 
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6.9.4 Possible influence of seafloor backscattering process 

The backscattering from the seabed can be generally attributed to two 

contributing factors namely, interface and volume scattering (Sternlicht and de 

Moustier, 2003a). The strength of the backscattered signal is primarily controlled by 

the acoustic frequency, the acoustic impedance contrast between water and sediment, 

the contributions from seafloor interface roughness, as well as the sediment volume 

heterogeneity. The interface scattering is governed by the microscale roughness of 

the seafloor facets coupled with the acoustic impedance. A part of the transmitted 

acoustic energy penetrates the sediments and reflected back by the volume 

heterogeneities. Such scattering mechanism is normally referred to as volume 

scattering (mainly due to the coarse sand particles, shells, gas bubbles, benthic 

organisms and sediment layers). 

The shape of the echo-envelope has two distinct parts, the initial part and the tail 

part. The initial part of the data represents the reflection from the water-sediment 

interface (interface scattering), and the tail portion corresponds to the backscatter 

from the sediment volume (volume scattering).  A significant contribution, due to the 

volume scattering (in addition to the interface scattering) from various scatterers is 

expected to be dominant for acoustically soft sediments such as mixtures of clayey-

silt and silt. Accordingly, the contribution of sub-bottom scattering becomes 

prominent near the tail portion of the echo-envelope from the soft sediments (De and 

Chakraborty, 2011). Besides, acoustically soft sediments are penetrated more deeply 

by the acoustic signal and produce longer and corrugated echoes than hard 

sediments. The scattering process takes place exclusively at the surface for 

acoustically hard sediments, i.e. mixtures of silty-sand and sand sediments. The 

scattering processes described herein determine the statistical and geometrical 

properties of the data, resulting in the variation of the estimated C1 parameter.  

 

6.9.5 Relationship with fractal dimension 

Several studies while comparing the fractal dimension of the echo-envelopes to 

the ground truth sediment have concluded that the fractal dimension (as a measure of 



Chapter 6. Multifractal approach for seafloor characterization: Part 2   99 | P a g e  

 

complexity and roughness) is a good descriptor of a bottom type in the investigated 

area (Tegowski and Lubniewski, 2000; Tegowski et al., 2003; Tegowski, 2005; van 

Walree et al., 2005; De and Chakraborty, 2009). The fractal dimension describes the 

statistical and geometrical properties of the data. Variations in the fractal dimension 

of the echo-envelope carry information concerning the fractal structure of the 

sediment layers signifying the hardness of the seabed.  The fractal dimension of the 

echo-envelopes reflected from the fine seafloor has been found to be higher as 

compared to the coarse sediment region (Tegowski and Lubniewski, 2000). The low 

values of fractal dimension in coarse region have been controlled by the dominant 

interface scattering due to limited bottom penetration of the acoustic signals. 

Besides, the fine region reflects the environment with deeper acoustic penetration 

and the fractal structure of the sediment layers are more apparent in the recorded 

echo, indicating higher fractal dimension values.  

The C1 parameter represents the codimension of the set of points that give the 

dominant contribution to the mean of the conserved multifractal flux. The 

corresponding fractal dimension can be expressed as d–C1, where d denotes the 

standard dimension of the space (Lovejoy et al., 2001). The relatively high C1 values 

correspond to a very sparse process. The field values contributing to the mean 

behaviour in such instance is violent and confined to a very sparse set signifying low 

fractal dimension. Conversely, a low C1 implies a more uniform and less extreme 

process. Appropriately, the relatively low values of C1 attributed to the fine sediment 

region (with higher fractal dimension) indicate that the field values (pressure values) 

are close to the mean values as compared to the coarse sediment region (Fig. 6.10). 

The stochastic based multifractal analysis followed herein has several advantages 

over standard statistical approaches as it characterizes the local scale properties of 

the data in addition to its global properties. Correspondingly, it is possible to 

quantify the statistical distribution of the local singularities (i.e. local multifractal 

exponents) present in the data (see Lovejoy et al., 2009a). 
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6.9.6 Comparison with inversion results 

The acoustic backscatter data obtained from the echo-sounding systems can be 

matched with theoretical scattering models to interpret the information embedded in 

the data (Jackson et al., 1986). The numerical approach employed for extracting 

information from the data is commonly referred to as “inversion modeling” 

(discussed in Chapter 3). The inversion modeling primarily involves physics based 

inversion of echo-sounding data to obtain the upper-layer seafloor roughness 

parameters, namely the sediment mean grain size (M); spectral parameters at the 

water-seafloor interface (2, w2); and sediment volume parameter (2), that can be 

used to examine the fine scale seafloor processes (Sternlicht and de Moustier, 2003a, 

b; De and Chakraborty, 2011; Haris et al., 2011). 

The seafloor “roughness power spectrum” estimated from the echo data 

characterizes the size and periodicity of the seafloor height fluctuations as a function 

of the spatial frequency. The roughness power spectrum is often parameterized using 

a power law by slope and intercept of a linear regression line through the points of 

the periodogram estimate in log-log space. Indeed, the parameters 2 and w2 used in 

the scattering models are the slope and intercept respectively, of the 2D roughness 

power spectrum, which are estimated from the 1D power-law values (Haris et al., 

2011). A wide range of 2D roughness power spectrum parameters of the study area 

are available (De and Chakraborty, 2011) and offer an opportunity to determine their 

relationship with the presently estimated universal multifractal parameters.  

The parameter H describing the height statistics of the data has been empirically 

determined from the spectral slope β and K(2) using the relation β=1+2H–K(2) 

(Table 6.1). The differences in H principally reflect variations in the spectral slopes 

(Lovejoy et al., 2001) (and thereby the corresponding 2 values). With reference to 

the inversion modeling study carried out by De and Chakraborty (2011), in coarse 

sediment region, the average 2 values were restricted to values around 3.23±0.071 

and 3.16±0.047 respectively at 33 and 210 kHz. In fine sediment region, the average 

2 values were found to be within 3.22±0.074 and 3.30±0.037 respectively for 33 and 
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210 kHz. The scatter diagram [Fig. 3b of De and Chakraborty (2011)] between the 

estimated mean values of M and 2 at 210 kHz indicated that the values of 2 were 

confined within 3.21–3.4 in fine sediments and within 3.0–3.21 in coarse sediments. 

In contrast, the estimated mean values of 2 at 33 kHz inversions did not exhibit any 

apparent trend to discriminate between the fine and coarse sediment provinces. The 

subtle difference in the computed 2 (or the spectral slope β) between coarse and fine 

sediments conform to the meager variation in the computed H parameter (Fig. 6.12), 

particularly at 33 kHz.  

The scatter diagram between the estimated mean values of M and w2 [Fig. 3a of 

De and Chakraborty (2011)] revealed that, in coarse sediment region, the average w2 

values were restricted to values around 0.00356±0.00047 and 0.00365±0.00101 

respectively at 33 and 210 kHz. But in fine sediments, the average w2 values were 

found to be varying between 0.000461±0.00013 and 0.000605±0.000042, 

respectively at 33 and 210 kHz.  The computed w2 (or intercept) values were well 

clustered at both the acoustic frequencies, having fewer fluctuations for the fine 

sediment as compared to the coarse sediment region. Likewise, the parameter C1 

revealing the noise statistics of the data are well clustered at both the acoustic 

frequencies with fewer fluctuations for the fine sediment as compared to the coarse 

sediment region. It is observed that the relatively higher values of  w2 and C1 are 

associated with coarse sediments, while the lower values of  w2 and C1 are the 

characteristics of fine sediments (Fig. 6.13).  

As pointed out in the introduction, the model-based methods can help interpret 

echo signal of the seafloor sediment properties (M) and micro roughness parameters 

(2, w2). However, the calculation of correct set of geoacoustic parameters gets 

convoluted by the large number of good fits existing in the multidimensional search 

space. Accordingly, it is possible to obtain convincing model-data fits in the search 

space that do not necessarily correspond to the correct set of geoacoustic parameters 

(Sternlicht and de Moustier, 2003b). Moreover, the physics based models are valid 
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only for a certain range of frequencies and sediment types4 (Amiri-Simkooei et al., 

2011), such that the direct inversion of acoustic signal is unlikely without setting the 

limits of geoacoustic parameters for a known seabed sediment. In contrast the 

statistical based empirical methods rely on the analyses of certain echo signal 

features that are correlated with sediment properties. These methods are relatively 

easy to implement in view of computation time involved. However proper ground-

truth measurements are imperative to validate and interpret the results. 

  

 

Fig. 6.13 3D scatter diagram showing clustering among M, C1 and w2 at 33 and 210 kHz. 

Regions comprising of coarse and fine sediments can be seen clearly delineated.  

                                                 
4 See Appendix A for the validity of the composite-roughness approximation. 
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6.10 Concluding remarks  

The scaling and multifractality of the SBES echo-envelopes (at 33 and 210 kHz) 

have been demonstrated using stochastic based universal multifractal framework. 

The variations in the three fundamental scale invariant parameters (α, C1, and H) and 

their behaviour with respect to the ground truth sediment information can delineate 

different bottom types in the investigated area. The evidence for the first-order 

multifractal phase transition (with the divergence of higher order statistical 

moments) further reveals the hierarchy of multiplicative cascade dynamics 

associated with the echo-envelopes.  

The universal multifractal parameters among the coarse and fine sediments show 

subtle difference in α and H, whereas the codimension parameter C1 representing the 

sparseness of the data is varying. The C1 values are well clustered at both the 

acoustic frequencies, demarcating the coarse and fine sediment provinces. The 

computed α values show identical trend (≈1.93), expressing similar degree of 

multifractality in coarse and fine sediment region. The minute variation in the H 

parameter ascribed to the coarse and fine sediment location is well corroborated with 

the previously estimated sediment geoacoustic inversion results. In the context of 

multifractal analyses the 210 kHz appears to be marginally better as compared to 33 

kHz. This could be due to the fact that the lower acoustic frequencies penetrate 

relatively more in the substrates whereas higher frequencies have a better resolving 

capability. The final outcome of the multifractal analyses underpins the hitherto-

applied model based seafloor characterization and help foster research on the 

empirical method based feature discrimination.  



 

 

 

Chapter 7 

 

Summary 

 

The thesis highlights the technological approach and relevance to remote 

acoustic seafloor characterization using high-frequency echo-sounding systems. The 

geoacoustic inversion results obtained using multi-frequency MBES and SBES data 

provide important information that can be utilized for acoustic seafloor 

characterization. The generation of benthic habitat maps has ever more underpinned 

a relationship among the benthic habitat attributes, the acoustic backscatter and the 

sediment texture that exist in the study area. The multifractal techniques utilized in 

the work is a first-time endeavor to analyze and statistically characterize the 

patchiness of the seafloor using high resolution MBES backscatter and bathymetry 

data. The outcome of stochastic formalism based multifractal analyses of SBES data 

underpins the hitherto applied model-based seafloor characterization and helps foster 

research on the empirical method-based feature discrimination. 

In Chapter 3, the angular backscatter data acquired using MBES have been 

matched with the composite roughness scattering model to interpret the fine scale 

seafloor roughness information embedded in the data. The seafloor parameters (M, 

2, w2, and 2) are derived employing 4D inversion approach at 95 kHz acoustic 

frequency. Distinct interclass separations between the sediment provinces are evident 

from the spatial variability of computed inversion results, particularly the sediment 

mean grain size (M) and sediment-water interface roughness (w2), substantiating the 



Chapter 7. Summary    105 | P a g e  

 

multi-frequency inversion results. In the absence of measured roughness data, the 

computed multi-frequency 2 and w2 values are assessed with reference to the 

available published information, displaying subtle variations among 33, 95, and 210 

kHz. The seafloor parameters derived from the 95 kHz MBES data are consistent 

with the ground-truth data as well as with the inversion results obtained using 33 and 

210 kHz SBES data at the same locations. 

The acoustic data acquired using SBES and MBES operable at 33/210 kHz and 

95 kHz, respectively, have been further utilized to demonstrate the correlationship 

among the derived backscatter, grain size, geoacoustic inversion results and benthic 

macro-fauna abundance (Chapter 4 and 5). The corresponding benthic habitat maps 

conveniently illustrate the nature, distribution and extent of the distinct sedimentary 

environment and the associated species communities along the central part of the 

WCMI. The preferences of deposit feeders (soft body benthic macro-fauna) in the 

fine-sediment regions and filter feeders (hard body benthic macro-fauna) in coarse 

sediment regions reveal the influence of sediment texture and total organic carbon on 

the feeding behavior of the organisms. The results presented here accentuates the 

versatility of SBES and MBES for generating benthic habitat maps across large areas 

of seafloor. 

The attainment of the model-based inversion procedure (Chapter 3) for seafloor 

characterization fundamentally depends on the scattering theory employed in the 

forward backscatter model and requires detailed understanding of the scattering 

mechanism. The study of sound interaction with the seafloor and the corresponding 

inversion modeling impose a challenging task, particularly if the physical structure 

of the seafloor and the associated benthic communities with its diversity coexists 

(Chapter 4 and 5). Therefore, expounding on the established power law behaviour of 

seafloor bathymetry and backscatter data, we have developed nonlinear statistical 

based multifractal techniques to elucidate the spatial and temporal seafloor 

heterogeneities (Chapter 6). Two distinct multifractal formalisms (strange attractors 

and stochastic) have been applied in this context to further expand the seafloor 

characterization procedure. The final outcome of the two multifractal analyses 
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underscores the advantages of nonlinear techniques to substantiate the hitherto 

applied numerical inversion based characterization and the soft computational 

technique based classification of the seafloor sediments along the WCMI. 

The time lapse remote sensing of seabed processes using high-frequency 

SBES\MBES\Stereo photography\X-ray tomography\Underwater laser scanner can 

generate unique data to facilitate multidisciplinary studies of the ocean environment 

and associated physical and biological activities. Advanced studies, with the support 

of concurrent environmental measurements (including the hydrodynamic and 

biological activities), can be envisioned to examine the suitability of scaling analyses 

based multifractal techniques for uncovering dominant roughness creating processes 

on the seafloor over a wide range of spatio-temporal scales.  

 



 

 

 

Appendix 

 

A. Validity of the composite-roughness approximation 

The attainment of the composite-roughness approximation used to model 

scattering by the sea surface (McDaniel and Gorman, 1982) intrigued Jackson et al. 

(1986) for the corresponding application to seafloor scattering. The bottom line of this 

approximation is the division of the seafloor roughness into large- and small-scale 

components (as illustrated in Fig. 13.16 of Jackson and Richardson, 2007). In terms of 

the spectrum of seafloor roughness, the small-scale (shorter-wavelength) roughness 

causes scattering, while the large-scale (longer-wavelength) roughness virtually tilts 

the seafloor, altering the grazing angle and resulting in acoustic shadowing. The 

division of the seafloor roughness into large and small scale is based on the “cutoff” 

wavenumber ( cK ) that can be expresses as (Jackson and Richardson, 2007): 
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where wk  is the acoustic wavenumber1, 2w  the spectral strength, and 2  the spectral 

exponent2. 

With reference to Jackson and Richardson (2007), the composite-roughness 

approximation is applicable only if the cutoff wavenumber ( cK ) is less than the Bragg 

                                                 
1 The acoustic wavenumber is given as: cfakw /2/2   , where a  is the acoustic wavelength, 

f the acoustic frequency, and c the sound speed in water. 
2 See Figure 3.5 in Chapter 3. 
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wavenumber ( K ). In the specific case of seafloor backscattering, the Bragg 

wavenumber follows the simple form: 

)cos(2 gwkK        (A.2) 

where g  is the grazing angle. 

The validity condition ( cK < K ) restricts the application of the composite-

roughness approximation to certain “valid” grazing angles that need to be precisely 

defined during the inversion modeling. For a given value of cK , the valid grazing 

angles can be obtained by assuming K = cK  and solving Eq. (A.2) for g . The value 

of cK  is dependent on the spectral strength 2w  and the spectral exponent 2  (Eq. A.1). 

Therefore, for a particular acoustic frequency, it is possible to compute the valid g  

as a function of 2w  (Fig. A.1). The value of 2  has been assigned as 3.25 in the 

calculation procedure irrespective of the sediment type. 

 

 

Fig. A.1 The figure depicts the validity of the composite-roughness approximation 

as a function of the acoustic frequency and spectral strength 2w . 
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