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Abstract

Iron being one of the most important elements required for 
metabolic activities of the bacteria has limited bioavailability. 
Therefore bacteria produce siderophores to sequester it from the 
environment. Halophilic and halotolerant adhered bacteria from 
the mangrove ecosystem were screened for the production of 
siderophores. Out of a total of 16 bacterial isolates 81% showed 
siderophore production. The effect of zerovalent iron (ZVI) 
nanoparticles was studied on the production of these siderophores. 
Among a total of 13 siderophore producing isolates 46.15% showed 
an increase in the siderophore production in the presence of ZVI 
nanoparticles. The ZVI affected growth negatively in 7% of the 
bacterial isolates.
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Introduction

Mangrove ecosystem, faces a constant influx of tides and therefore 
halotolerant and halophilic bacteria predominate this ecosystem. 
It is one of the most efficient ecosystems of this planet [1] and 
for it to be efficient, the bacteria require many essential elements 
for their metabolic activities. Limitation in any essential element 
would mean a direct effect on the survival of the bacteria and the 
important role they play in nutrient recycling. One such essential 
element required for respiration, DNA synthesis and metabolic 
activities of bacteria is Iron (Fe). Though iron is the most abundant 
metal in the Earth’s crust its bioavailability is limited, as owing to 
the aerobic atmosphere of the planet iron occurs mostly as ferric 
oxyhydroxide polymers which has low solubility iron. Therefore, 
due to the limited bioavailability of this metal bacteria have adopted 
strategies such as production of siderophores [2] Siderophores 
are iron binding compounds of weight less than 1000 Da that are 
produced by bacteria, fungi and plants. They chelate ferric ion 
from the environmental complexes and transport it to the bacterial 
cell [3,4,5]. 

Nanoparticles have been studied for their effect on the production 
of these siderophores in bacteria. Zinc oxide and copper oxide 
nanoparticles are reported to inhibit production of pyoverdine 
siderophore in Pseudomonas chlororaphis O6 [6]. Interestingly, 
a recent study reported the acquisition of iron from ferrihydride 
nanomineral by the bacteria Pseudomonas mendocina by 
siderophores and a cell-associated metalloreductase. This study also 
revealed the copious amounts of extracellular polymeric substances 
(EPS) produced by the Pseudomonas mendocina which enhanced 
the acquisition of iron from the nanomineral [7]. Zerovalent iron 
nanoparticles (ZVI) nanoparticles are being used for remediation 
of groundwater contaminated by perchloroethylene and 
trichloroethylene [8] and currently, ZVI nanoparticles are being 
studied for their role in bioremediation of other polychlorinated 
compounds [9,10,11] and uranium contaminated effluents [12]. 
Interestingly, iron nanoparticles represent the only field application 
of free released nanoparticles for environmental pollution therefore 
it was of interest to study their effect on mangrove bacteria.

In the present research work adhered halophilic and halotolerant 
bacteria that were isolated from the mangrove ecosystem were 
screened for the production of siderophores. The effect of ZVI 
nanoparticles on the production of these siderophores by the 
bacterial isolates was studied.
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Materials and Methods

5.1 Production of Siderophores by the Adhered Bacterial Isolates

Adhered bacterial isolates were isolated by the EDTA method [13]. 
These isolates were spot inoculated on Chrome Azurol sulphonate 
(CAS) agar with nutrient agar (NA or NaCl-tryptone-yeast extract 
(NTYE) as the base [14]. Negative control was maintained by 
addition of 0.1g/L of  FeCl3. The plates were incubated at room 
temperature for 24-48 hr and observed for zones of yellow 
colouration around the bacterial colonies.

Effect of Zerovalent Iron Nanoparticles (Zvi) on Siderophore

The selected isolates were spot inoculated on NA-CAS/ NTYE-CAS 
agar containing 0.1g/L of ZVI nanoparticles. CAS agar without 
ZVI nanoparticles served as the positive control for siderophore 
formation and CAS with 0.1g/L FeCl3 was used as the negative 
control for siderophore. The plates were incubated at room 
temperature (280C) for 48-72 hr and the zones of colour change 
around the bacterial colonies were observed. The zone diameter 
was calculated by measuring the diameter of the zone divided by 
the diameter of the colony using a zone reader.

Results and Discussion

Screening of the Selected Bacterial Isolates for Production of 
Siderophores

Siderophores form stable complexes that are taken up by the 
bacterial cell and utilized for various metabolic activities. One of the 
isolates MXM-10 producing siderophores has been demonstrated 
in Figure 1. 

  
Fig.1: Isolate MXM-10 showing siderophore production on CAS agar

Among the 16 bacterial isolates that were screened, 81% showed 
siderophore production of which 62% were adhered halotolerant 
bacteria and 38% were adhered halophilic bacteria. It was observed 
that 19% of the isolates that did not produce siderophores were 
all halotolerant bacteria while all the halophilic bacteria showed 
the production of siderophores as shown in Figure 2. The high 
percentage of siderophore producers depict the iron deficiency 
for growth in the mangrove ecosystem which triggers the isolates 
to produce siderophores in order to obtain the element from the 
surrounding environment. Mangroves being one of the most 
efficient ecosystems, it was necessary to understand the ability of the 
bacterial isolates from this ecosystem to acquire iron and metabolize 
with optimum efficiency that contributes to efficient degradation 
and mineralization of particulate organic matter in this ecosystem. 

Earlier studies have shown siderophore producing Pseudomonas 
sp [15,16], Escherichia coli, Bacillus subtilis from coastal sand 
dunes [16] and Azotobacters from the tropical mangroves [17,18]. 
In the coastal and marine ecosystem, the iron concentration 
is low and in order to metabolise organic particulate matter 
containing aromatic ring bacteria use the enzymes oxygenases. 
These enzymes have iron as their cofactor and thus the ability of 
bacteria to produce siderophores is an important aspect in efficient 
degradation of particulate organic matter and pollutants such 
as aromatic anthropogenic compounds and hydrocarbons [16].

Fig. 2:  Percentage distribution of siderophore producing halophilic and 
halotolerant  adhered bacteria among the isolates.

Effect of ZVI Nanoparticles on Siderophore Production

Iron is the basic requirement for bacterial metabolism and its 
concentration in the surrounding environment has significant 
effects on cell processes and metabolic products. The effect of 
ZVI nanoparticles on siderophores was studied. Among the 13 
siderophore producing adhered bacteria, 6 isolates showed an 
increase in the siderophore production in the presence of the ZVI 
nanoparticles (Figure 3). 

A significant increase in the production of  siderophores was 
observed in isolates MXM-1, MXM-10 and MXM -12. Similar 
increase in siderophore production has been studied in case of 
Azotobacter vinelandii, Pseudomonas aeruginosa and Pseudomonas 
fluorescens in response to the presence of heavy metals such zinc 
cadmium, aluminium and nickel. Such stimulating effect on 
siderophores may be the result of the free siderophore concentration 
in the medium  which decreases owing to the formation of 
siderophore-ion complex with ions other than Fe(III). This triggers 
an iron limitation and thus stimulates more siderophore production 
[17]. However in case of halotolerant isolate MXM-10 it was seen 
that a significant increase in the siderophore production, was also 
accompanied by a decrease in the diameter of the bacterial colony. 
Such negative effects on the growth of the bacteria due to the 
presence of metals have been reported by [19,20,21]. 

Conclusion

The halophilic and halotolerant adhered bacteria produced 
siderophores in order to overcome iron limitations in the mangrove 
ecosystem. The ability to produce such metal sequestering 
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compounds results in efficient degradation of particulate organic 
matter and nutrient recycling. The presence of ZVI nanoparticles 
like other heavy metals induced an increased production of 
siderophores. This may pave new pathways in strategies using 
siderophores in bioremediation of coastal and marine environments 
contaminated with heavy metals.
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